-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
68 lines (46 loc) · 1.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from tkinter import*
from tkinter import ttk
from PIL import Image,ImageTk
from tkinter import messagebox
import mysql.connector
import cv2
import os
import numpy as np
class Train:
def __init__(self,root):
self.root=root
self.root.geometry("1530x790+0+0")
self.root.title("Face Recognition System")
title_lbl=Label(self.root,text="TRAIN DATA SET",font=("times new roman",35,"bold"),bg="Chocolate",fg="Black")
title_lbl.place(x=0,y=0,width=1450,height=45)
img=Image.open(r"C:\Users\Pratik\Desktop\FACE-REGONITION\College_Image\7.jpg")
img=img.resize((2200,896),Image.ANTIALIAS)
self.photoimg=ImageTk.PhotoImage(img)
f_lb=Label(self.root,image=self.photoimg)
f_lb.place(x=0,y=40,width=2000,height=900)
b0_1=Button(f_lb,text="TRAIN DATA",cursor="hand2",command=self.train_classifier,font=("times new roman",15,"bold"),bg="chocolate",fg="Black",borderwidth = 7)
b0_1.place(x=620,y=600,width=150,height=40)
def train_classifier(self):
data_dir=("data")
path=[os.path.join(data_dir,file) for file in os.listdir(data_dir)]
faces=[]
ids=[]
for image in path:
img=Image.open(image).convert('L') #gray Scale image
imageNp=np.array(img,'uint8')
id=int(os.path.split(image)[1].split('.')[1])
faces.append(imageNp)
ids.append(id)
cv2.imshow("Training",imageNp)
cv2.waitKey(1)==13
ids=np.array(ids)
#======================= Train the classifier===================
clf=cv2.face.LBPHFaceRecognizer_create()
clf.train(faces,ids)
clf.write("classifier.xml")
cv2.destroyAllWindows()
messagebox.showinfo("result","Training dataset completed!!")
if __name__ == "__main__":
root=Tk()
obj=Train(root)
root.mainloop()