-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoverlap_ts.m
177 lines (153 loc) · 6.06 KB
/
overlap_ts.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
% This script calculates and plots the overlap between time-series data.
% It processes data from logit model results, computes statistical measures,
% and generates plots for different RGR reconstructions and compared time-series.
% The script also saves the processed data and plots to files.
%
% SPDX-FileCopyrightText: 2023-2024 Helmholtz-Zentrum hereon GmbH
% SPDX-FileContributor: Kai W. Wirtz <[email protected]>
% SPDX-License-Identifier: GPL-3.0-or-later
% Input files:
% - legdat.dat (or equivalent data source)
% Output files:
% - <outputDirectory>/plots/RGR_<str>_<stl>.png
% - <outputDirectory>/target_ts_<length(spv)>.mat
% Variables:
% - timeLimits: Time range for analysis
% - tmax: Maximum time for statistical measures and graphical output
% - tavg: Time window for moving average
% - fs: Font size for plots
% - y0: Y-offset for annotations
% - sdf: Scaling factor for the second curve
% - yl: Y-axis limits
% - col2: Color for the second plot
% - spv, spr: Indices of compared time-series and RGR reconstructions
% - stdc: Standard deviation constant
% - nrgr: Number of RGR reconstructions
% - dt: Time step for common time vector
% - time: Common time vector
% - tip1, tip2: Time points for data
% - avgrde: Average growth rate data
% - legdat: Legend data
% - gcf, gca: Figure and axis handles for plotting
% - xl, xlp: X-label and its position
% - sc: Scaling factors
% - j, cvar: Indices and variables for comparison
% - ts: Time-series data
% - le: Legend entries
% - leg_str: Legend strings
% - stl: String for legend
% - r, p: Correlation coefficient and p-value
% - stat1, statnam: Statistical measures and names
% - file: Filename for saving data and plots
load_pars; % sets common parameters (outputDirectory, cc, latitudeLimits, regs)
timeLimits = [2.8 10.2];
tmax = 8.9; % max time for statistical measures (ka BP) and graphical output
tavg = 1.5; % time window moving average
% load logit model results and store low-high-pass filtered probability difference to data matrix
add_logitres
% graphical parameters
fs = 22; % fontsize
y0 = 0.18; % y-offset
sdf = 0.7; % scaling of 2nd curve
yl = [-1.4 1.85]; % limits
col2 = [0.95 0.4 0.1]; % colour of 2nd plot
spv = [6:18 ones(1,6)*10]; % indices of compared TS, see legdat array or txt file 'legdat.dat'
spr = [ones(1,13)*2 4:9]; % indices of RGR reconstr., see legdat
stdc = 9E-5;
nrgr = length(spr);
% common time vector
dt = 0.010;
time = timeLimits(1):dt:timeLimits(2);
tip1 = dat(:,1)';
% loop over RGR reconstructions and compared TS
for ic = 1:nrgr
gcf = figure(ic);
set(gcf, 'position', [1 ic*25 1020 500], 'Color', 'w', 'Visible', 'on');
clf;
% mean growth rate
ioff = spr(ic);
avgrde = dat(:, ioff);
if nanstd(avgrde) > 0.1
avgrde = avgrde * 1E-3; % change units to ka-1
end
ii = find(~isnan(avgrde') & tip1 <= timeLimits(2) & tip1 >= 3);
tip2 = tip1(ii)';
avgrde = avgrde(ii);
str = regexprep(legdat{ioff}, '_', '');
% plot settings
gca = subplot('Position', [0.1 0.14 0.82 0.85]);
set(gca, 'XDir', 'reverse', 'fontsize', fs, 'Fontweight', 'bold', 'tickdir', 'out');
set(gca, 'XLim', [3 tmax], 'Box', 'on', 'YLim', yl, 'YTick', -4:5, 'XTick', 3:9);
if ioff < 6
ylabel(['Growth rate (ka' char([hex2dec('207B') hex2dec('00B9')]) ')']);
end
hold on
xl = xlabel(['Time (ka BP)'], 'FontName', 'Arial', 'FontSize', fs);
xlp = get(xl, 'Position');
xlp(2) = xlp(2) + 0.042;
set(xl, 'Position', xlp);
% add zero-line
plot(timeLimits, zeros(2, 1), '-', 'Color', ones(3, 1) * 0.5, 'LineWidth', 1);
% add text annotation
text(6.3, 2.1, str, 'fontsize', fs, 'Fontweight', 'bold');
sc = zeros(2, 1);
j = spv(ic);
cvar = dat(ii, j);
scal = sdf / nanstd(cvar);
ts = cvar * scal;
% calculate overlap
calc_overlap % calculate overlap and mark phases by bars
% plot RGR
le(1) = plot(tip2, avgrde * 1E3, '-', 'color', 'k', 'Linewidth', 3);
if ioff < 6
leg_str{1} = ['RGR ' str];
if strfind(str, 'area')
leg_str{1} = 'RGR Europe';
end
else
leg_str{1} = str;
end
if ioff == -5 % add RGR Europe for other RGRs
le(2) = plot(tip2, dat(ii, 2) * 1E3, '-', 'Color', ones(3, 1) * 0.66, 'LineWidth', 2);
j20 = 1;
leg_str{2} = 'RGR Europe';
else
j20 = 0;
end
% prepare 2nd yaxis
yyaxis right
set(gca, 'YColor', col2, 'YLim', yl);
set(gca, 'YTick', 2 * [-1 0 1] * sdf, 'YTicklabel', ['-2'; '0 '; '+2'], 'fontsize', fs, 'FontWeight', 'b');
yla = ylabel('normalized', 'fontsize', fs, 'FontWeight', 'b');
yla.Position = yla.Position + [0.05 -0.2 0];
% plot 2nd variable such as climate variability
stl = regexprep(legdat{j}, '_', '');
le(2 + j20) = plot(tip2, cvar * scal, '-', 'color', col2, 'Linewidth', 5);
le(2 + j20).Color(4) = 0.75;
% calculate (trimmed) correlation
x1 = avgrde;
x2 = cvar;
ii1 = find(~isnan(x1) & ~isnan(x2) & dat(ii, 1) <= tmax & dat(ii, 1) >= 3);
[r, p1] = corrcoef(x1(ii1), x2(ii1));
r = r(1, 2);
p = p1(1, 2);
% store stats
stat1(ic, :) = [r * r fr * 100];
statnam{ic} = [str ' : ' stl];
leg_str{2 + j20} = stl;
annotation('textbox', [0.823 y0 + 0.011 0.05 0.022], 'String', [num2str(fr * 100, '%2.0f') '%'], 'FontName', 'Arial', 'FontSize', fs - 2, 'Fontweight', 'b', 'color', col2, 'EdgeColor', 'none');
% add and re-position legend
pl = legend(le, leg_str);
ny = length(le);
set(pl, 'box', 'off', 'fontSize', fs, 'position', [0.28 0.9 0.62 0.08], 'Orientation', 'Horizontal');
stl = regexprep(stl, ' ', '');
% save plot to PNG
file = sprintf('%splots/RGR_%s_%s.png', outputDirectory, str, stl);
file = regexprep(file, ' ', '');
set(gcf, 'PaperPositionMode', 'auto', 'InvertHardCopy', 'off');
print('-dpng', '-r300', file);
end % for ic loop over RGR recon
% save data and related info to MATLAB binary
file = sprintf('%starget_ts_%d.mat', outputDirectory, length(spv));
fprintf('save all relevant data in %s\n', file)
save('-v6', file, 'dat', 'legdat', 'stat1', 'statnam', 'tmax');