-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcollect_ts.m
242 lines (206 loc) · 7.83 KB
/
collect_ts.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
% This script merges Dynamic Time Warping (DTW) time segments data and includes other time series
% such as Relative Growth Rate (RGR) and solar forcing. It processes and re-grids various datasets
% onto a common time vector, applies smoothing and detrending, and merges DTW and PCA results.
%
% SPDX-FileCopyrightText: 2023-2024 Helmholtz-Zentrum hereon GmbH
% SPDX-FileContributor: Kai W. Wirtz <[email protected]>
% SPDX-License-Identifier: GPL-3.0-or-later
% Input Files:
% - avg_rgr_all.mat: Contains RGR data for Europe
% - AllPop_<continent>_NoNorm_Bin100_all.mat: Contains RGR data for continents
% - SA_spd_rgr.mat: Contains RGR data for South America
% - Steinhilber2012_Solar.dat: Contains Total Solar Irradiance data
% - bog_std.mat: Contains Northern Irish bog data
% - dtwpca2_<tmax>_<dtw_Dist_crit>_<tol*100>_<ln>.mat: Contains DTW and PCA results
% Output Files:
% - dtwpca_proxydata_<tmax>_<dtw_Dist_crit>_<tol*100>_<ln>.mat: Contains merged DTW and PCA results
% - pca_0.mat: Contains PCA data
% - target_ts_0.mat: Contains combined data
% Variables:
% - timeLimits: Time limits for the analysis
% - tmov, toff: Smoothing parameters
% - tavg: Detrend parameter
% - dt, di: Time step and interval
% - time: Common time vector
% - dat: Data matrix
% - legdat: Legend data
% - ri: Indices for RGR methods
% - contname: Names of continents
% - cc: Current continent name
% - file: File name for input data
% - trgr, rgr: Time and RGR data
% - it: Indices for time vector
% - ts: Time series data
% - ts_time, ts_m: Time and TSI data
% - ut, avg1500: Variables for moving average
% - ti, ringw_sm, bogstd_space, bogstd_time, flood_m: Bog data variables
% - split, dtw_Dist_crit, tol: DTW and PCA parameters
% - datt, datm, datall: Data matrices for DTW and PCA results
% - datm1, datall1, datm2, datall2: Temporary data matrices
% - pca, datma: PCA data matrices
% - tmov2: Smoothing parameter for PCA
% - ln: Index for RGR method
% - tj: Time segment index
% - tmax: Maximum time for DTW and PCA
% - exp_vara: Explained variance for PCA
% - t_change, pca_change: Time and PCA change data
% - pca_cm: PCA change data after smoothing
% - time20, pcats: Time and PCA data
% - itv: Indices for time segments
% - ii: Indices for intersecting time segments
% - nt: Number of time points in intersecting segments
% - ff: Factor for merging time segments
% - clim_stability: Climate stability data
clear all;
close all;
load_pars; % Sets common parameters (outputDirectory, cc, latitudeLimits, regs)
timeLimits = [2.8 10.2];
% Parameters for band-pass filtering
tmov = 151;
toff = 40; % Smoothing parameters
tavg = 1.5; % Detrend
% Common time vector and data matrix
dt = 0.01;
di = 3;
time = timeLimits(1):dt:timeLimits(2);
dat = zeros(length(time), 12) + NaN;
dat(:, 1) = time;
legdat{1} = 'time';
% RGR Europe (methods)
load([outputDirectory 'avg_rgr_all']); % Variables: leg rgr_m tirgr
ri = [6]; % 6 area-based
for i = 1:length(ri)
j = ri(i);
legdat{1 + i} = leg{j};
% Re-grid on common time vector
it = 1:min(find(time >= tirgr(end)));
ts = interp1(tirgr, rgr_m(:, j), time(it), 'linear', 'extrap');
ts = movweighavg(time(it) * 1E3, ts, tmov, toff);
dat(it, 1 + i) = ts;
end
legdat{3} = 'void';
i0 = 4;
% RGR of continents
contname = {'EAsia', 'NAmerica', 'SAmerica', 'Africa', 'Australia'};
for i = 1:length(contname)
cc = (contname{i});
file = [outputDirectory 'mat/AllPop_' cc '_NoNorm_Bin100_all.mat'];
if exist(file)
load(file); % Variables: poptime=tm, ymv=ymv, trgr=tirgr, rgr=rgrv, nreg=nregions
trgr = trgr * 1E-3;
trgr = flipud(trgr);
rgr = flipud(rgr);
% Bring both rgr estimates on same timeline
it = find(time >= (trgr(1)) & time <= (trgr(end)));
ts = interp1(trgr, rgr, time(it), 'linear', 'extrap');
ts = movweighavg(time(it) * 1E3, ts, tmov, toff) * 1E3;
dat(it, i0) = movweighavg(time(it) * 1E3, ts, tmov, toff); % Second smooth
end
legdat{i0} = ['RGR ' cc];
i0 = i0 + 1;
end
% RGR South America
load(['data/SA_spd_rgr']); % Variables: sa_rtim, spd1, sa_rgr
it = find(time >= sa_rtim(1) & time <= sa_rtim(end));
ts = interp1(sa_rtim, sa_rgr, time(it), 'linear', 'extrap');
ts = movweighavg(time(it) * 1E3, ts, tmov, toff);
dat(it, i0) = ts;
legdat{i0} = 'RGR South America';
i0 = i0 + 1;
% Total Solar Irradiance (TSI) from Steinhilber et al. 2012
ts = load(['data/Steinhilber2012_Solar.dat']);
ts_time = ts(:, 1);
it = 1:min(find(time >= ts_time(end)));
ts_m = interp1(ts_time, ts(:, 2), time(it), 'linear', 'extrap');
[ut, avg1500] = movavg(time(it), ts_m, 1.);
ts_m = ts_m - avg1500;
ts_m = ts_m / nanstd(ts_m(find(time(it) < 8.2)));
dat(it, i0) = -movweighavg(time(it) * 1E3, ts_m, tmov, toff); % Revert in sign!
legdat{i0} = '- TSI';
i0 = i0 + 1;
% Northern Irish bog data provided by Rowan McLaughlin
load(['data/bog_std']); % Variables: ti, ringw_sm; bogstd_space; bogstd_time;
it = find(time <= ti(end) & time >= ti(1));
ts = interp1(ti, ringw_sm, time(it), 'linear', 'extrap');
ts0 = interp1(ti, bogstd_space, time(it), 'linear', 'extrap');
ts1 = interp1(ti, bogstd_time, time(it), 'linear', 'extrap');
ts2 = interp1(ti, flood_m, time(it), 'linear', 'extrap');
dat(it, i0) = (ts - mean(ts)) / std(ts);
dat(it, i0 + 1) = -(ts0 - mean(ts0)) / std(ts0);
legdat{i0} = ['bog tree ring width'];
legdat{i0 + 1} = ['tree growth homogeneity'];
i0 = i0 + 2;
% Merge DTW & PCA results for two time-segments
ri = [7];
jj = 1;
split = 2;
dtw_Dist_crit = 90;
tol = 0.1;
% Clear all fields
datt = zeros(split, length(time), length(ri)) + NaN;
datm = zeros(split, length(time)) + NaN;
datall = zeros(1, length(time)) + NaN;
datm1 = datm;
datall1 = datall;
datm2 = datm;
datall2 = datall;
pca = zeros(5, length(time)) + NaN;
datma = zeros(5, split, length(time)) + NaN;
tmov2 = 181;
ln = ri(jj);
% Loop over time-segments
tj = 1;
for tmax = [6.2 9.5]
file = sprintf('%sdtwpca/dtwpca2_%3.2f_%2.0f_%1.0f_%d.mat', outputDirectory, tmax, dtw_Dist_crit, tol * 100, ln);
fprintf('tm=%1.1f %d\t loading dtw-pca from %s\n', tmax, ln, file);
if exist(file)
load(file);
exp_vara(tj,:) = exp_var;
it = max(find(time <= (t_change(1)))):min(find(time >= (t_change(end))));
pca_cm = movweighavg(t_change * 1E3, pca_change, tmov, toff);
datt(tj, it, j) = interp1(t_change, pca_cm, time(it), 'linear', 'extrap');
for jp = 1:5
pcat = movweighavg(time20 * 1E3, pcats{jp}, tmov, toff);
datma(jp, tj, it) = interp1(time20, pcat, time(it), 'linear', 'extrap');
end
datm(tj, it) = nanmean(datt(tj, it, :), 3);
itv{tj} = it;
end
tj = tj + 1;
end
% Second loop over time-segments
for tj = 1:2
datall(itv{tj}) = datm(tj, itv{tj});
for jp = 1:5
pca(jp, itv{tj}) = datma(jp, tj, itv{tj});
end
end
ii = intersect(itv{1}, itv{2});
nt = length(ii);
ff = (ii(end) - ii) / (nt - 1);
datm(1, ii(end)) = 0;
datm(2, ii(1)) = 0;
datall(ii) = ff .* datm(1, ii) + (1 - ff) .* datm(2, ii);
for jp = 1:5
datma(jp, 1, ii(end)) = 0;
datma(jp, 2, ii(1)) = 0;
pca(jp, ii) = ff .* squeeze(datma(jp, 1, ii))' + (1 - ff) .* squeeze(datma(jp, 2, ii))';
end
[ut, avg1500] = movavg(time, datall, 1);
datall = datall - avg1500;
clim_stability = datall / nanstd(datall);
dat(:, i0) = clim_stability;
for jp = 1:2
dat(:, i0 + jp) = pca(jp, :) / nanstd(pca(jp, :));
legdat{i0 + jp} = ['climate PCA' num2str(jp)];
end
legdat{i0} = 'climate stability';
file = sprintf('%sdtwpca/dtwpca_proxydata_%3.2f_%2.0f_%1.0f_%d.mat', outputDirectory, tmax, dtw_Dist_crit, tol * 100, ln);
file = sprintf('%spca_0.mat', outputDirectory);
fprintf('save PCs/dPCs data in %s\n', file);
save('-v6',file,'time','pca','exp_vara','clim_stability');
% --------------------------------------
% save combined data to file
file = sprintf('%starget_ts_0.mat', outputDirectory);
fprintf('save all data in %s\n',file)
save('-v6',file,'dat','legdat','tmov','toff');