-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHOMER_prep.R
89 lines (69 loc) · 3.37 KB
/
HOMER_prep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Library
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(BSgenome.Hsapiens.UCSC.hg19)
library(org.Hs.eg.db)
library(GenomicRanges)
library(dplyr)
# Set working directory
setwd("")
# Import HyperTRIBE data
df <- read.csv("snp_counts_significance_fpkm.csv")
# Prepare significant edit sites
df.sig <- subset(df, p.adj < 0.05)
df.sig$grange.start <- df.sig$start - 100
df.sig$grange.end <- df.sig$start + 100
cluster.df <- df.sig %>% select(c("seqnames", "grange.start", "grange.end", "strand", "gene.symbol"))
# Prepare non-significant edit sites (background)
df.not.sig <- subset(df, p.adj >= 0.05)
df.not.sig$grange.start <- df.not.sig$start - 100
df.not.sig$grange.end <- df.not.sig$start + 100
cluster.df.not.sig <- df.not.sig %>% select(c("seqnames", "grange.start", "grange.end", "strand", "gene.symbol"))
# Convert dataframe to GenomicRanges object
cluster.gr <- makeGRangesFromDataFrame(cluster.df,
keep.extra.columns=TRUE,
seqnames.field=c("seqnames"),
start.field="grange.start",
end.field=c("grange.end"),
strand.field="strand" )
cluster.gr.not.sig <- makeGRangesFromDataFrame(cluster.df.not.sig,
keep.extra.columns=TRUE,
seqnames.field=c("seqnames"),
start.field="grange.start",
end.field=c("grange.end"),
strand.field="strand" )
# Get genome
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene # annotation database of genome
exons.by.transcript.id <- GenomicFeatures::exonsBy(txdb, by=("tx"), use.names = TRUE) # Group exons by transcript ID
genome <- BSgenome.Hsapiens.UCSC.hg19 # genome
# Get sequence based on grange coordinates
prepare.homer.input <- function(cluster.gr, cluster.df) {
cluster.sequence <- Biostrings::getSeq(genome, cluster.gr)
cluster.sequence.df <- as.data.frame(hypertribe.cluster.sequence)
rownames(cluster.sequence.df) <- paste(cluster.df$gene.symbol,
cluster.df[,1],
cluster.df[,2],
cluster.df[,3],
rownames(cluster.sequence.df),
sep=".")
colnames(cluster.sequence.df) <- "sequence"
return(cluster.sequence.df)
}
cluster.sequence <- prepare.homer.input(cluster.gr, cluster.df)
cluster.sequence.not.sig <- prepare.homer.input(cluster.gr.not.sig, cluster.df.not.sig)
# write fasta file using dataframe that has column names "ensembl_gene_id" and "3utr".
writeFasta<-function(data, filename){
data <- as.data.frame(data)
fastaLines = c()
for (rowNum in 1:nrow(data)){
fastaLines = c(fastaLines, as.character(paste(">", rownames(data)[rowNum], sep = "")))
fastaLines = c(fastaLines,as.character(data[rowNum,"sequence"]))
}
fileConn<-file(filename)
writeLines(fastaLines, fileConn)
close(fileConn)
}
# Write all sequences
writeFasta(cluster.sequence,
paste0("clusters_100bp_window.fa"))
writeFasta(cluster.sequence.not.sig,
paste0("clusters_100bp_window.fa"))