-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy path__init__.py
226 lines (189 loc) · 5.37 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import logging
from math import gcd
from math import isqrt
def int_to_bits_le(i, count):
"""
Converts an integer to bits, little endian.
:param i: the integer
:param count: the number of bits
:return: the bits
"""
bits = []
for _ in range(count):
bits.append(i & 1)
i >>= 1
return bits
def bits_to_int_le(bits, count):
"""
Converts bits to an integer, little endian
:param bits: the bits
:param count: the number of bits
:return: the integer
"""
i = 0
for k in range(count):
i |= (bits[k] & 1) << k
return i
def floor_div(a, b):
"""
Returns floor(a / b), works with large integers.
:param a: a
:param b: b
:return: floor(a / b)
"""
return a // b
def ceil_div(a, b):
"""
Returns ceil(a / b), works with large integers.
:param a: a
:param b: b
:return: ceil(a / b)
"""
return a // b + (a % b > 0)
def is_square(x):
"""
Returns the square root of x if x is a perfect square, or None otherwise.
:param x: x
:return: the square root of x or None
"""
y = isqrt(x)
return y if y ** 2 == x else None
def symmetric_mod(x, m):
"""
Computes the symmetric modular reduction.
:param x: the number to reduce
:param m: the modulus
:return: x reduced in the interval [-m/2, m/2]
"""
return int((x + m + m // 2) % m) - int(m // 2)
def solve_congruence(a, b, m):
"""
Solves a congruence of the form ax = b mod m.
:param a: the parameter a
:param b: the parameter b
:param m: the modulus m
:return: a generator generating solutions for x
"""
g = gcd(a, m)
a //= g
b //= g
n = m // g
for i in range(g):
yield (pow(a, -1, n) * b + i * n) % m
def divisors(factors):
"""
Computes all divisors from a list of factors
:param factors: the factors (tuples of primes and exponents)
:return: a generator generating divisors
"""
divisors = [1]
yield 1
for p, e in factors:
new = []
for d in divisors:
for k in range(1, e + 1):
d_ = p ** k * d
new.append(d_)
yield int(d_)
divisors += new
def make_square_free(x, factors):
"""
For any integer x, removes all square factors.
:param x: the value x
:param factors: the factors of x
:return: a square-free integer y, corresponding to x with all square factors removed
"""
for p, e in factors:
while e > 0 and e % 2 == 0:
e -= 2
x //= p
x //= p
return int(x)
def roots_of_unity(ring, l, r):
"""
Generates r-th roots of unity in a ring, with r | l.
:param ring: the ring, with order n
:param l: the Carmichael lambda of n
:param r: r
:return: a generator generating the roots of unity
"""
assert l % r == 0, "r should divide l"
x = ring(2)
while (g := x ** (l // r)) == 1:
x += 1
for i in range(r):
yield int(g ** i)
def rth_roots(Fq, delta, r):
"""
Uses the Adleman-Manders-Miller algorithm to extract r-th roots in Fq, with r | q - 1.
More information: Cao Z. et al., "Adleman-Manders-Miller Root Extraction Method Revisited" (Table 4)
:param Fq: the field Fq
:param delta: the r-th residue delta
:param r: the r
:return: a generator generating the rth roots
"""
delta = Fq(delta)
q = Fq.order()
assert (q - 1) % r == 0, "r should divide q - 1"
p = Fq(1)
while p ** ((q - 1) // r) == 1:
p = Fq.random_element()
t = 0
s = q - 1
while s % r == 0:
t += 1
s //= r
k = 1
while (k * s + 1) % r != 0:
k += 1
alpha = (k * s + 1) // r
a = p ** (pow(r, t - 1, q - 1) * s)
b = delta ** (r * alpha - 1)
c = p ** s
h = 1
for i in range(1, t):
d = b ** pow(r, t - 1 - i, q - 1)
logging.debug(f"Computing the discrete logarithm for {i = }, this may take a long time...")
j = 0 if d == 1 else -d.log(a)
b *= (c ** r) ** j
h *= c ** j
c **= r
root = int(delta ** alpha * h)
for primitive_root in roots_of_unity(Fq, q - 1, r):
yield root * primitive_root % q
def modinv_range(n, p):
"""
Computes the modular inverses of the numbers in the range (1, n] (exclusive), mod p.
More information: grhkm, "[Tutorial] Calculate modulo inverses efficiently!" (Codeforces)
:param n: the n
:param p: the modulus
:return: a generator generating the modular inverses of 1, 2... n - 1 mod p
"""
inv = [0] * n
inv[1] = 1
yield inv[1]
for i in range(2, n):
inv[i] = (p - p // i) * inv[p % i] % p
yield inv[i]
def modinv(a, p):
"""
Computes the modular inverses a list of numbers mod p.
More information: grhkm, "[Tutorial] Calculate modulo inverses efficiently!" (Codeforces)
:param a: the list of numbers
:param p: the modulus
:return: a generator generating the modular inverses of a1, a2... mod p
"""
n = len(a)
pre = [0] * n
pre[0] = 1
suf = [0] * n
suf[n - 1] = 1
prod = 1
for i in range(n - 1):
pre[i + 1] = pre[i] * a[i] % p
suf[n - i - 2] = suf[n - i - 1] * a[n - i - 1] % p
prod = prod * a[i] % p
prod = prod * a[n - 1] % p
prod = pow(prod, -1, p)
for i in range(n):
yield (pre[i] * suf[i] % p) * prod % p