-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy path16_kaggle_minimal.py
132 lines (101 loc) · 3.97 KB
/
16_kaggle_minimal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
'''
CLASS: Kaggle Stack Overflow competition (minimal code file)
'''
import pandas as pd
# define a function that takes a CSV file and returns a DataFrame (with new or modified features)
def make_features(filename):
df = pd.read_csv(filename, index_col=0)
df.rename(columns={'OwnerUndeletedAnswerCountAtPostTime':'Answers'}, inplace=True)
df['TitleLength'] = df.Title.apply(len)
return df
# apply function to both training and testing files
train = make_features('train.csv')
test = make_features('test.csv')
'''
Create a model with three features
'''
# define X and y
feature_cols = ['ReputationAtPostCreation', 'Answers', 'TitleLength']
X = train[feature_cols]
y = train.OpenStatus
# fit a logistic regression model
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(C=1e9)
logreg.fit(X, y)
# predict class probabilities for the actual testing data
X_oos = test[feature_cols]
oos_pred_prob = logreg.predict_proba(X_oos)[:, 1]
'''
Create a submission file
'''
# create a DataFrame that has 'id' as the index, then export to a CSV file
sub = pd.DataFrame({'id':test.index, 'OpenStatus':oos_pred_prob}).set_index('id')
sub.to_csv('sub1.csv') # 0.687
'''
Update make_features and create another submission file
'''
import numpy as np
# update the function
def make_features(filename):
df = pd.read_csv(filename, index_col=0, parse_dates=['OwnerCreationDate', 'PostCreationDate'])
df.rename(columns={'OwnerUndeletedAnswerCountAtPostTime':'Answers'}, inplace=True)
df['TitleLength'] = df.Title.apply(len)
df['NumTags'] = df.loc[:, 'Tag1':'Tag5'].notnull().sum(axis=1)
df['OwnerAge'] = (df.PostCreationDate - df.OwnerCreationDate).dt.days
df['OwnerAge'] = np.where(df.OwnerAge < 0, 0, df.OwnerAge)
return df
# apply function to both training and testing files
train = make_features('train.csv')
test = make_features('test.csv')
# train the model on ALL data
feature_cols = ['ReputationAtPostCreation', 'Answers', 'TitleLength', 'NumTags', 'OwnerAge']
X = train[feature_cols]
logreg.fit(X, y)
# predict class probabilities for the actual testing data
X_oos = test[feature_cols]
oos_pred_prob = logreg.predict_proba(X_oos)[:, 1]
# create submission file
sub = pd.DataFrame({'id':test.index, 'OpenStatus':oos_pred_prob}).set_index('id')
sub.to_csv('sub2.csv') # 0.650
'''
Build a document-term matrix from Title using CountVectorizer
'''
# build document-term matrix for the training data
from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer(stop_words='english')
dtm = vect.fit_transform(train.Title)
# define X and y
X = dtm
y = train.OpenStatus
# build document-term matrix for the actual testing data and make predictions
oos_dtm = vect.transform(test.Title)
from sklearn.naive_bayes import MultinomialNB
nb = MultinomialNB()
nb.fit(X, y)
oos_pred_prob = nb.predict_proba(oos_dtm)[:, 1]
sub = pd.DataFrame({'id':test.index, 'OpenStatus':oos_pred_prob}).set_index('id')
sub.to_csv('sub3.csv') # 0.544
'''
BONUS: Dummy encoding of Tag1
'''
# convert Tag1 from strings to integers
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
train['Tag1_enc'] = le.fit_transform(train.Tag1)
# create a dummy column for each value of Tag1_enc (returns a sparse matrix)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
tag1_dummies = ohe.fit_transform(train[['Tag1_enc']])
# adjust Tag1 on testing set since LabelEncoder errors on new values during a transform
test['Tag1'] = test['Tag1'].map(lambda s: '<unknown>' if s not in le.classes_ else s)
le.classes_ = np.append(le.classes_, '<unknown>')
# define X and y
X = tag1_dummies
y = train.OpenStatus
# apply the same encoding to the actual testing data and make predictions
test['Tag1_enc'] = le.transform(test.Tag1)
oos_tag1_dummies = ohe.transform(test[['Tag1_enc']])
nb.fit(X, y)
oos_pred_prob = nb.predict_proba(oos_tag1_dummies)[:, 1]
sub = pd.DataFrame({'id':test.index, 'OpenStatus':oos_pred_prob}).set_index('id')
sub.to_csv('sub4.csv') # 0.652