-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
337 lines (276 loc) · 14.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import hydra
import logging
import numpy as np
import os
import torch
from hydra.utils import call, instantiate
from omegaconf import DictConfig
from pathlib import Path
from src.utils import Dictionary, get_repo_status, format_time
import time
import random
# Absolute path for the current working directory
ABS_PATH = os.path.abspath('.')
# Utility function to create a directory if it doesn't exist
def create_path_if_not_exists(directory_path):
if not os.path.exists(directory_path):
os.makedirs(directory_path)
print(f"Created directory: {directory_path}")
else:
print(f"Directory already exists: {directory_path}")
@hydra.main(version_base=None, config_path="config", config_name="main")
def main(cfg: DictConfig) -> None:
# Random number generator and device setup (GPU if available)
rng = call(cfg.rng)
device = "cuda" if torch.cuda.is_available() and cfg.cuda else "cpu"
# Process acquisition objectives with 'full-' prefix
if 'full-' in cfg.acquisition.objective:
cfg.partially_observed = False
cfg.acquisition.objective = cfg.acquisition.objective.replace('full-', '')
is_first_al_step = True
# Logging setup
time.sleep(0.2)
logging.info(f"Seed: {cfg.rng.seed}")
logging.info(f"Device: {device}")
# PO (Partially Observed) configuration
PO_DUMB_IMPUT_NOT_ACQ = cfg.po_dumb_imput_not_acq
PO_DUMB_IMPUT_ACQ = cfg.po_dumb_imput_acq
PO_DUMB_IMPUT = PO_DUMB_IMPUT_NOT_ACQ or PO_DUMB_IMPUT_ACQ
if PO_DUMB_IMPUT:
cfg.partially_observed = True
# Load the data and transfer to device
logging.info("Loading data")
data = instantiate(cfg.data, rng=rng, seed=cfg.rng.seed, partially_observed=cfg.partially_observed, llm_cfg=cfg.llm_cfg)
data.torch()
data.to(device)
# Set variables related to dataset and masking
features_idx_unobs = None
use_mask = data.main_dataset.use_mask
this_dataset_name = data.main_dataset.this_dataset_name
mask_input_used = None
# Add additional name info based on dataset and PO configuration
if 'syndata' in this_dataset_name:
add_exp_name = f"_{cfg.llm_cfg.syn_class}"
else:
add_exp_name = ''
if PO_DUMB_IMPUT_ACQ:
add_exp_name += '_DB_IMP_AQ'
if PO_DUMB_IMPUT_NOT_ACQ:
add_exp_name += '_DB_IMP_NOTAQ'
# MC (Monte Carlo) samples handling
add_name_mc_samples = ''
if cfg.llm_cfg.use_name_mc_samples:
add_name_mc_samples = f'_MC{cfg.llm_cfg.max_mc_samples}'
# Final experimental name based on observation type
if cfg.partially_observed:
experimental_name_used = f"{cfg.acquisition.objective}{add_exp_name}{cfg.llm_cfg.add_name_results}{add_name_mc_samples}_{cfg.feature_selection.imputation_type}"
else:
experimental_name_used = f"{cfg.acquisition.objective}{add_exp_name}{cfg.llm_cfg.add_name_results}{add_name_mc_samples}_{cfg.feature_selection.imputation_type}_FO"
use_mask = False
# Additional processing for acquisition objectives
if cfg.acquisition.objective == 'bald' and use_mask and not PO_DUMB_IMPUT:
cfg.acquisition.objective = 'bald-po-bald-marginalized'
if cfg.acquisition.objective == 'epig' and use_mask and not PO_DUMB_IMPUT:
cfg.acquisition.objective = 'epig-po-epig-marginalized'
# Set up result directories
logging.info(f"Making results directories at {cfg.directories.results_run}")
if cfg.results_main_dir is None:
results_dir = Path(f"{ABS_PATH}/results/{data.main_dataset.get_dir_llm_vanilla()}/{experimental_name_used}/seed{cfg.rng.seed}")
else:
results_dir = Path(f"{cfg.results_main_dir}/{data.main_dataset.get_dir_llm_vanilla()}/{experimental_name_used}/seed{cfg.rng.seed}")
create_path_if_not_exists(results_dir)
# Modification Start: Check if the run has already been completed
completion_file = results_dir / "run_completed.csv"
if completion_file.exists():
print("Run already completed for this configuration. Skipping execution.")
return
logging.info(f"Number of classes: {data.n_classes}")
# Load LLM-generated data if PO is enabled and acquisition objective contains '-po'
if "-po" in cfg.acquisition.objective and not PO_DUMB_IMPUT:
logging.info("Loading LLM-generated samples")
# Generate a random sleep time between 0 and 5 seconds
sleep_time = random.uniform(0, 10)
# Sleep for the random time
time.sleep(sleep_time)
gen_data = data.load_llm_samples(is_numpy=True, get_original=False, filter_unobs=True, apply_mode=True,
max_mc_samples=cfg.llm_cfg.max_mc_samples,
max_mc_samples_random=cfg.llm_cfg.max_mc_samples_random)
logging.info(f"Loading {gen_data.shape[1]} MC samples from LLM")
gen_data = torch.Tensor(gen_data).to(device)
gen_data = data.normalize_data(gen_data, partially_observed=True)
if "bald-po-feature" in cfg.acquisition.objective:
features_idx_unobs = data.get_features_indexes_matrix()
gen_data[torch.isinf(gen_data)] = 0
data.update_gen_data(gen_data)
if use_mask:
mask_table, mask_table_extended = data.main_dataset.get_original_mask_pool_data()
mask_input_used = torch.Tensor(mask_table_extended.to_numpy().astype(float)).to(device)
data.update_mask_data(torch.Tensor(mask_table.to_numpy().astype(float)).to(device), mask_input_used)
if PO_DUMB_IMPUT and use_mask:
logging.info("Applying dumb imputation with mask")
mask_table, mask_table_extended = data.main_dataset.get_original_mask_pool_data()
mask_input_used = torch.Tensor(mask_table_extended.to_numpy().astype(float)).to(device)
data.update_mask_data(torch.Tensor(mask_table.to_numpy().astype(float)).to(device), mask_input_used)
gen_data = mask_input_used * 0
data.update_gen_data(gen_data)
# Load cost data
cost_data = data.load_cost_data(cfg.feature_selection.include_y_cost,
cfg.feature_selection.different_x_cost,
cfg.feature_selection.stochastic_cost)
cost_summed = cost_data.sum(1)
if cfg.feature_selection.is_cost_based:
data.update_cost_data(torch.Tensor(cost_data).to(device))
# Active learning setup
logging.info("Starting active learning")
IS_COST_RESTRICTION = cfg.feature_selection.cost_restriction
MAX_BUDGET = cfg.llm_cfg.max_budget
acum_cost = 0
test_log = Dictionary()
cost_log = Dictionary()
if cfg.partially_observed and not use_mask:
test_log_po = Dictionary()
PUT_ADD_SCORES = False
if 'syndata' in this_dataset_name:
mean_score_metrics = Dictionary()
if 'bald-po' == cfg.acquisition.objective or 'bald-po-marginal' == cfg.acquisition.objective:
diff_mean_score_metrics = Dictionary()
PUT_ADD_SCORES = True
# Active learning loop
while True:
if IS_COST_RESTRICTION and acum_cost > MAX_BUDGET:
break
n_labels_str = f"{data.n_train_labels:04}_labels"
is_last_al_step = data.n_train_labels >= cfg.acquisition.n_train_labels_end
logging.info(f"Number of labels: {data.n_train_labels}")
# Trainer setup
logging.info("Setting up trainer")
if cfg.model_type == "nn":
model = instantiate(cfg.model, input_shape=torch.Size((data.input_shape_total,)), output_size=data.n_classes).to(device)
trainer = instantiate(cfg.trainer, model=model)
if cfg.partially_observed and not use_mask:
model_po = instantiate(cfg.model, input_shape=torch.Size((data.input_shape_po,)), output_size=data.n_classes).to(device)
trainer_po = instantiate(cfg.trainer, model=model_po)
elif cfg.model_type == "rf":
model = instantiate(cfg.model)
trainer = instantiate(cfg.trainer, model=model)
if cfg.partially_observed and not use_mask:
model_po = instantiate(cfg.model)
trainer_po = instantiate(cfg.trainer, model=model_po)
else:
raise ValueError("Unsupported model type")
# Model training
if data.n_train_labels > 0:
logging.info("Training the model")
train_log = trainer.train(
train_loader=data.get_loader("train"),
val_loader=data.get_loader("val"),
)
if cfg.partially_observed and not use_mask:
train_log_po = trainer_po.train(
train_loader=data.get_loader("train", partially_observed=True),
val_loader=data.get_loader("val", partially_observed=True),
)
if train_log:
logging.info("Saving training logs")
formatting = {
"step": "{:05}".format,
"time": format_time,
"train_acc": "{:.4f}".format,
"train_loss": "{:.4f}".format,
"val_acc": "{:.4f}".format,
"val_loss": "{:.4f}".format,
}
train_log.save_to_csv(results_dir / "training" / f"{n_labels_str}.csv", formatting)
if cfg.partially_observed and not use_mask:
train_log_po.save_to_csv(results_dir / "training_po" / f"{n_labels_str}.csv", formatting)
# Model testing
logging.info("Testing the model")
with torch.inference_mode():
test_acc, test_loss = trainer.test(data.get_loader("test"))
if cfg.partially_observed and not use_mask:
test_acc_po, test_loss_po = trainer_po.test(data.get_loader("test", partially_observed=True))
test_log_update = {
"n_labels": data.n_train_labels,
"test_acc": test_acc.item(),
"test_loss": test_loss.item(),
}
test_log.append(test_log_update)
formatting = {"n_labels": "{:04}".format, "test_acc": "{:.4f}".format, "test_loss": "{:.4f}".format}
test_log.save_to_csv(results_dir / "testing.csv", formatting)
features_selected = None
if cfg.partially_observed and not use_mask:
test_log_po_update = {
"n_labels": data.n_train_labels,
"test_acc": test_acc_po.item(),
"test_loss": test_loss_po.item(),
}
test_log_po.append(test_log_po_update)
test_log_po.save_to_csv(results_dir / "testing_po.csv", formatting)
# Check if cost restrictions apply or if it's the last active learning step
if not IS_COST_RESTRICTION and is_last_al_step:
logging.info("Stopping active learning")
break
# Acquisition step based on acquisition objective
if cfg.acquisition.objective == "random":
logging.info("Randomly sampling data indices")
acquired_pool_inds = rng.choice(len(data.inds["pool"]), size=cfg.acquisition.batch_size, replace=False)
else:
logging.info("Estimating uncertainty")
trainer_scorer = trainer if not cfg.partially_observed or "-po" in cfg.acquisition.objective or PO_DUMB_IMPUT else trainer_po
target_loader = data.get_loader(
"target", partially_observed=cfg.partially_observed,
obtain_gen_data=True if "-po" in cfg.acquisition.objective or PO_DUMB_IMPUT else False,
obtain_cost_data=cfg.feature_selection.is_cost_based, use_mask=use_mask)
batch_aux = next(iter(target_loader))
with torch.inference_mode():
scores = trainer_scorer.estimate_uncertainty(
pool_loader=data.get_loader("pool", partially_observed=cfg.partially_observed,
obtain_gen_data=True if "-po" in cfg.acquisition.objective or PO_DUMB_IMPUT else False,
obtain_cost_data=cfg.feature_selection.is_cost_based,
use_mask=use_mask),
batch_target_inputs=batch_aux,
mode=cfg.acquisition.objective, rng=rng,
epig_probs_target=cfg.acquisition.epig_probs_target,
epig_probs_adjustment=cfg.acquisition.epig_probs_adjustment,
epig_using_matmul=cfg.acquisition.epig_using_matmul,
features_idx_unobs=features_idx_unobs,
num_subset_pool=cfg.feature_selection.num_subset_pool,
dumb_imput=PO_DUMB_IMPUT
)
if 'features_selected' in scores:
features_selected = scores.pop('features_selected')
if cfg.feature_selection.is_cost_based:
cost_selected = scores.pop('cost_selected')
scores_obj = scores
scores = scores.numpy()
if 'syndata' in this_dataset_name:
mean_score_metrics.append({"metric_mean": scores[cfg.acquisition.objective].mean()})
mean_score_metrics.save_to_csv(results_dir / "mean_score.csv", {"metric_mean": "{:.4f}".format})
if PUT_ADD_SCORES:
diff_mean_score_metrics.append({"diff_metrics_mean": (scores['second_MI'] - scores['first_MI']).mean()})
diff_mean_score_metrics.save_to_csv(results_dir / "diff_metrics_mean.csv", {"diff_metrics_mean": "{:.4f}".format})
scores = scores[cfg.acquisition.objective]
acquired_pool_inds = np.argmax(scores)
if PUT_ADD_SCORES and (is_first_al_step or not (data.n_train_labels % 5)):
scores_obj.save_to_csv(results_dir / f"scores-{data.n_train_labels}.csv")
logging.info(f"Acquiring data with {cfg.acquisition.objective}")
data.move_from_pool_to_train(acquired_pool_inds, features_selected=features_selected,
imputation_type=cfg.feature_selection.imputation_type,
mask_inputs=mask_input_used, po_dumb_imput_not_acq=PO_DUMB_IMPUT_NOT_ACQ)
is_first_al_step = False
if not isinstance(acquired_pool_inds, (list, np.ndarray)):
pool_inds_to_move = [acquired_pool_inds]
else:
pool_inds_to_move = acquired_pool_inds.copy()
for this_idx in pool_inds_to_move:
if cfg.feature_selection.is_cost_based:
acum_cost += float(cost_selected[this_idx])
else:
acum_cost += float(cost_summed[this_idx])
cost_log.append({"cost": acum_cost})
cost_log.save_to_csv(results_dir / "cost_log.csv", {"cost": "{:.4f}".format})
time.sleep(0.1)
completion_file.touch()
if __name__ == "__main__":
os.environ["HYDRA_FULL_ERROR"] = "1" # Produce a complete stack trace in case of an error
main()