-
Notifications
You must be signed in to change notification settings - Fork 291
/
Copy pathstep2_train_mass_segmenter.py
499 lines (409 loc) · 20.7 KB
/
step2_train_mass_segmenter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import settings
import helpers
import os
import glob
import random
import ntpath
import cv2
import numpy
from typing import List, Tuple
from keras.optimizers import Adam, SGD
from keras.layers import Input, Convolution2D, MaxPooling2D, UpSampling2D, merge, BatchNormalization, SpatialDropout2D
from keras.models import Model
from keras import backend as K
from keras.callbacks import ModelCheckpoint, Callback
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
import pandas
import shutil
MEAN_FRAME_COUNT = 1
CHANNEL_COUNT = 1
def random_scale_img(img, xy_range, lock_xy=False):
if random.random() > xy_range.chance:
return img
if not isinstance(img, list):
img = [img]
import cv2
scale_x = random.uniform(xy_range.x_min, xy_range.x_max)
scale_y = random.uniform(xy_range.y_min, xy_range.y_max)
if lock_xy:
scale_y = scale_x
org_height, org_width = img[0].shape[:2]
xy_range.last_x = scale_x
xy_range.last_y = scale_y
res = []
for img_inst in img:
scaled_width = int(org_width * scale_x)
scaled_height = int(org_height * scale_y)
scaled_img = cv2.resize(img_inst, (scaled_width, scaled_height), interpolation=cv2.INTER_CUBIC)
if scaled_width < org_width:
extend_left = (org_width - scaled_width) / 2
extend_right = org_width - extend_left - scaled_width
scaled_img = cv2.copyMakeBorder(scaled_img, 0, 0, extend_left, extend_right, borderType=cv2.BORDER_CONSTANT)
scaled_width = org_width
if scaled_height < org_height:
extend_top = (org_height - scaled_height) / 2
extend_bottom = org_height - extend_top - scaled_height
scaled_img = cv2.copyMakeBorder(scaled_img, extend_top, extend_bottom, 0, 0, borderType=cv2.BORDER_CONSTANT)
scaled_height = org_height
start_x = (scaled_width - org_width) / 2
start_y = (scaled_height - org_height) / 2
tmp = scaled_img[start_y: start_y + org_height, start_x: start_x + org_width]
res.append(tmp)
return res
class XYRange:
def __init__(self, x_min, x_max, y_min, y_max, chance=1.0):
self.chance = chance
self.x_min = x_min
self.x_max = x_max
self.y_min = y_min
self.y_max = y_max
self.last_x = 0
self.last_y = 0
def get_last_xy_txt(self):
res = "x_" + str(int(self.last_x * 100)).replace("-", "m") + "-" + "y_" + str(int(self.last_y * 100)).replace("-", "m")
return res
def random_translate_img(img, xy_range, border_mode="constant"):
if random.random() > xy_range.chance:
return img
import cv2
if not isinstance(img, list):
img = [img]
org_height, org_width = img[0].shape[:2]
translate_x = random.randint(xy_range.x_min, xy_range.x_max)
translate_y = random.randint(xy_range.y_min, xy_range.y_max)
trans_matrix = numpy.float32([[1, 0, translate_x], [0, 1, translate_y]])
border_const = cv2.BORDER_CONSTANT
if border_mode == "reflect":
border_const = cv2.BORDER_REFLECT
res = []
for img_inst in img:
img_inst = cv2.warpAffine(img_inst, trans_matrix, (org_width, org_height), borderMode=border_const)
res.append(img_inst)
if len(res) == 1:
res = res[0]
xy_range.last_x = translate_x
xy_range.last_y = translate_y
return res
def random_rotate_img(img, chance, min_angle, max_angle):
import cv2
if random.random() > chance:
return img
if not isinstance(img, list):
img = [img]
angle = random.randint(min_angle, max_angle)
center = (img[0].shape[0] / 2, img[0].shape[1] / 2)
rot_matrix = cv2.getRotationMatrix2D(center, angle, scale=1.0)
res = []
for img_inst in img:
img_inst = cv2.warpAffine(img_inst, rot_matrix, dsize=img_inst.shape[:2], borderMode=cv2.BORDER_CONSTANT)
res.append(img_inst)
if len(res) == 0:
res = res[0]
return res
def random_flip_img(img, horizontal_chance=0, vertical_chance=0):
import cv2
flip_horizontal = False
if random.random() < horizontal_chance:
flip_horizontal = True
flip_vertical = False
if random.random() < vertical_chance:
flip_vertical = True
if not flip_horizontal and not flip_vertical:
return img
flip_val = 1
if flip_vertical:
flip_val = -1 if flip_horizontal else 0
if not isinstance(img, list):
res = cv2.flip(img, flip_val) # 0 = X axis, 1 = Y axis, -1 = both
else:
res = []
for img_item in img:
img_flip = cv2.flip(img_item, flip_val)
res.append(img_flip)
return res
ELASTIC_INDICES = None # needed to make it faster to fix elastic deformation per epoch.
def elastic_transform(image, alpha, sigma, random_state=None):
global ELASTIC_INDICES
shape = image.shape
if ELASTIC_INDICES == None:
if random_state is None:
random_state = numpy.random.RandomState(1301)
dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
x, y = numpy.meshgrid(numpy.arange(shape[0]), numpy.arange(shape[1]))
ELASTIC_INDICES = numpy.reshape(y + dy, (-1, 1)), numpy.reshape(x + dx, (-1, 1))
return map_coordinates(image, ELASTIC_INDICES, order=1).reshape(shape)
def prepare_image_for_net(img):
img = img.astype(numpy.float)
img /= 255.
if len(img.shape) == 3:
img = img.reshape(img.shape[-3], img.shape[-2], img.shape[-1])
else:
img = img.reshape(1, img.shape[-2], img.shape[-1], 1)
return img
def get_train_holdout_files(model_type, holdout, train_percentage=80, frame_count=8):
print("Get train/holdout files.")
file_paths = glob.glob("resources/segmenter_traindata/" + "*_1.png")
file_paths.sort()
train_res = []
holdout_res = []
for index, file_path in enumerate(file_paths):
file_name = ntpath.basename(file_path)
overlay_path = file_path.replace("_1.png", "_o.png")
train_set = False
if "1.3.6.1.4" in file_name or "spie" in file_name or "TIME" in file_name:
train_set = True
else:
patient_id = file_name.split("_")[0]
if helpers.get_patient_fold(patient_id) % 3 != holdout:
train_set = True
if train_set:
train_res.append((file_path, overlay_path))
else:
holdout_res.append((file_path, overlay_path))
print("Train count: ", len(train_res), ", holdout count: ", len(holdout_res))
return train_res, holdout_res
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + 100) / (K.sum(y_true_f) + K.sum(y_pred_f) + 100)
def dice_coef_np(y_true, y_pred):
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = numpy.sum(y_true_f * y_pred_f)
return (2. * intersection + 100) / (numpy.sum(y_true_f) + numpy.sum(y_pred_f) + 100)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
class DumpPredictions(Callback):
def __init__(self, dump_filelist : List[Tuple[str, str]], model_type):
super(DumpPredictions, self).__init__()
self.dump_filelist = dump_filelist
self.batch_count = 0
if not os.path.exists("workdir/segmenter/"):
os.mkdir("workdir/segmenter/")
for file_path in glob.glob("workdir/segmenter/*.*"):
os.remove(file_path)
self.model_type = model_type
def on_epoch_end(self, epoch, logs=None):
model = self.model # type: Model
generator = image_generator(self.dump_filelist, 1, train_set=False, model_type=self.model_type)
for i in range(0, 10):
x, y = next(generator)
y_pred = model.predict(x, batch_size=1)
x = x.swapaxes(0, 3)
x = x[0]
# print(x.shape, y.shape, y_pred.shape)
x *= 255.
x = x.reshape((x.shape[0], x.shape[0])).astype(numpy.uint8)
y *= 255.
y = y.reshape((y.shape[1], y.shape[2])).astype(numpy.uint8)
y_pred *= 255.
y_pred = y_pred.reshape((y_pred.shape[1], y_pred.shape[2])).astype(numpy.uint8)
# cv2.imwrite("workdir/segmenter/img_{0:03d}_{1:02d}_i.png".format(epoch, i), x)
# cv2.imwrite("workdit/segmenter/img_{0:03d}_{1:02d}_o.png".format(epoch, i), y)
# cv2.imwrite("workdit/segmenter/img_{0:03d}_{1:02d}_p.png".format(epoch, i), y_pred)
def image_generator(batch_files, batch_size, train_set, model_type):
global ELASTIC_INDICES
while True:
if train_set:
random.shuffle(batch_files)
img_list = []
overlay_list = []
ELASTIC_INDICES = None
for batch_file_idx, batch_file in enumerate(batch_files):
images = []
img = cv2.imread(batch_file[0], cv2.IMREAD_GRAYSCALE)
images.append(img)
overlay = cv2.imread(batch_file[1], cv2.IMREAD_GRAYSCALE)
if train_set:
if random.randint(0, 100) > 50:
for img_index, img in enumerate(images):
images[img_index] = elastic_transform(img, 128, 15)
overlay = elastic_transform(overlay, 128, 15)
if True:
augmented = images + [overlay]
augmented = random_rotate_img(augmented, 0.8, -20, 20)
augmented = random_flip_img(augmented, 0.5, 0.5)
# processed = helpers_augmentation.random_flip_img(processed, horizontal_chance=0.5, vertical_chance=0)
# processed = helpers_augmentation.random_scale_img(processed, xy_range=helpers_augmentation.XYRange(x_min=0.8, x_max=1.2, y_min=0.8, y_max=1.2, chance=1.0))
augmented = random_translate_img(augmented, XYRange(-30, 30, -30, 30, 0.8))
images = augmented[:-1]
overlay = augmented[-1]
for index, img in enumerate(images):
# img = img[crop_y: crop_y + settings.TRAIN_IMG_HEIGHT3D, crop_x: crop_x + settings.TRAIN_IMG_WIDTH3D]
img = prepare_image_for_net(img)
images[index] = img
# helpers_augmentation.dump_augmented_image(img, mean_img=None, target_path="c:\\tmp\\" + batch_file[0])
# overlay = overlay[crop_y: crop_y + settings.TRAIN_IMG_HEIGHT3D, crop_x: crop_x + settings.TRAIN_IMG_WIDTH3D]
overlay = prepare_image_for_net(overlay)
# overlay = overlay.reshape(1, overlay.shape[-3] * overlay.shape[-2])
# overlay *= settings.OVERLAY_MULTIPLIER
images3d = numpy.vstack(images)
images3d = images3d.swapaxes(0, 3)
img_list.append(images3d)
overlay_list.append(overlay)
if len(img_list) >= batch_size:
x = numpy.vstack(img_list)
y = numpy.vstack(overlay_list)
# if len(img_list) >= batch_size:
yield x, y
img_list = []
overlay_list = []
def get_unet(learn_rate, load_weights_path=None) -> Model:
inputs = Input((settings.SEGMENTER_IMG_SIZE, settings.SEGMENTER_IMG_SIZE, CHANNEL_COUNT))
filter_size = 32
growth_step = 32
x = BatchNormalization()(inputs)
conv1 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(x)
conv1 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
pool1 = BatchNormalization()(pool1)
filter_size += growth_step
conv2 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
pool2 = BatchNormalization()(pool2)
filter_size += growth_step
conv3 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
pool3 = BatchNormalization()(pool3)
filter_size += growth_step
conv4 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
pool4 = BatchNormalization()(pool4)
conv5 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same', name="conv5b")(conv5)
pool5 = MaxPooling2D(pool_size=(2, 2), name="pool5")(conv5)
pool5 = BatchNormalization()(pool5)
conv6 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(pool5)
conv6 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same', name="conv6b")(conv6)
up6 = UpSampling2D(size=(2, 2), name="up6")(conv6)
up6 = merge([up6, conv5], mode='concat', concat_axis=3)
up6 = BatchNormalization()(up6)
# up6 = SpatialDropout2D(0.1)(up6)
filter_size -= growth_step
conv66 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(up6)
conv66 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(conv66)
up7 = merge([UpSampling2D(size=(2, 2))(conv66), conv4], mode='concat', concat_axis=3)
up7 = BatchNormalization()(up7)
# up7 = SpatialDropout2D(0.1)(up7)
filter_size -= growth_step
conv7 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv3], mode='concat', concat_axis=3)
up8 = BatchNormalization()(up8)
filter_size -= growth_step
conv8 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv2], mode='concat', concat_axis=3)
up9 = BatchNormalization()(up9)
conv9 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(filter_size, 3, 3, activation='relu', border_mode='same')(conv9)
# conv9 = BatchNormalization()(conv9)
up10 = UpSampling2D(size=(2, 2))(conv9)
conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(up10)
model = Model(input=inputs, output=conv10)
# model.load_weights(load_weights_path)
# model.compile(optimizer=Adam(lr=1.0e-5), loss=dice_coef_loss, metrics=[dice_coef])
model.compile(optimizer=SGD(lr=learn_rate, momentum=0.9, nesterov=True), loss=dice_coef_loss, metrics=[dice_coef])
model.summary()
return model
def train_model(holdout, model_type, continue_from=None):
batch_size = 4
train_percentage = 80 if model_type == "masses" else 90
train_files, holdout_files = get_train_holdout_files( model_type, holdout, train_percentage, frame_count=CHANNEL_COUNT)
# train_files = train_files[:100]
# holdout_files = train_files[:10]
tmp_gen = image_generator(train_files[:2], 2, True, model_type)
for i in range(10):
x = next(tmp_gen)
img = x[0][0].reshape((settings.SEGMENTER_IMG_SIZE, settings.SEGMENTER_IMG_SIZE))
img *= 255
# cv2.imwrite("c:/tmp/img_" + str(i).rjust(3, '0') + "i.png", img)
img = x[1][0].reshape((settings.SEGMENTER_IMG_SIZE, settings.SEGMENTER_IMG_SIZE))
img *= 255
# cv2.imwrite("c:/tmp/img_" + str(i).rjust(3, '0') + "o.png", img)
# print(x.shape)
train_gen = image_generator(train_files, batch_size, True, model_type)
holdout_gen = image_generator(holdout_files, batch_size, False, model_type)
if continue_from is None:
model = get_unet(0.001)
else:
model = get_unet(0.0001)
model.load_weights(continue_from)
checkpoint1 = ModelCheckpoint("workdir/" + model_type +"_model_h" + str(holdout) + "_{epoch:02d}-{val_loss:.2f}.hd5", monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
checkpoint2 = ModelCheckpoint("workdir/" + model_type +"_model_h" + str(holdout) + "_best.hd5", monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
files = []
idx = 0
while (idx < (len(holdout_files))):
files.append(holdout_files[idx])
idx += 5
dumper = DumpPredictions(holdout_files[::10], model_type)
epoch_div = 1
epoch_count = 200 if model_type == "masses" else 50
model.fit_generator(train_gen, len(train_files) / epoch_div, epoch_count, validation_data=holdout_gen, nb_val_samples=len(holdout_files) / epoch_div, callbacks=[checkpoint1, checkpoint2, dumper])
if not os.path.exists("models"):
os.mkdir("models")
shutil.copy("workdir/" + model_type +"_model_h" + str(holdout) + "_best.hd5", "models/" + model_type +"_model_h" + str(holdout) + "_best.hd5")
def predict_patients(patients_dir, model_path, holdout, patient_predictions, model_type):
model = get_unet(0.001)
model.load_weights(model_path)
for item_name in os.listdir(patients_dir):
if not os.path.isdir(patients_dir + item_name):
continue
patient_id = item_name
if holdout >= 0:
patient_fold = helpers.get_patient_fold(patient_id, submission_set_neg=True)
if patient_fold < 0:
if holdout != 0:
continue
else:
patient_fold %= 3
if patient_fold != holdout:
continue
# if "100953483028192176989979435275" not in patient_id:
# continue
print(patient_id)
patient_dir = patients_dir + patient_id + "/"
mass = 0
img_type = "_i" if model_type == "masses" else "_c"
slices = glob.glob(patient_dir + "*" + img_type + ".png")
if model_type == "emphysema":
slices = slices[int(len(slices) / 2):]
for img_path in slices:
src_img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
src_img = cv2.resize(src_img, dsize=(settings.SEGMENTER_IMG_SIZE, settings.SEGMENTER_IMG_SIZE))
src_img = prepare_image_for_net(src_img)
p = model.predict(src_img, batch_size=1)
p[p < 0.5] = 0
mass += p.sum()
p = p[0, :, :, 0] * 255
# cv2.imwrite(img_path.replace("_i.png", "_mass.png"), p)
src_img = src_img.reshape((settings.SEGMENTER_IMG_SIZE, settings.SEGMENTER_IMG_SIZE))
src_img *= 255
# src_img = cv2.cvtColor(src_img.astype(numpy.uint8), cv2.COLOR_GRAY2BGR)
# p = cv2.cvtColor(p.astype(numpy.uint8), cv2.COLOR_GRAY2BGRA)
src_img = cv2.addWeighted(p.astype(numpy.uint8), 0.2, src_img.astype(numpy.uint8), 1 - 0.2, 0)
cv2.imwrite(img_path.replace(img_type + ".png", "_" + model_type + "o.png"), src_img)
if mass > 1:
print(model_type + ": ", mass)
patient_predictions.append((patient_id, mass))
df = pandas.DataFrame(patient_predictions, columns=["patient_id", "prediction"])
df.to_csv(settings.BASE_DIR + model_type + "_predictions.csv", index=False)
if __name__ == "__main__":
continue_from = None
if True:
for model_type_name in ["masses"]:
train_model(holdout=0, model_type=model_type_name, continue_from=continue_from)
train_model(holdout=1, model_type=model_type_name, continue_from=continue_from)
train_model(holdout=2, model_type=model_type_name, continue_from=continue_from)
if True:
for model_type_name in ["masses"]:
patient_predictions_global = []
for holdout_no in [0, 1, 2]:
patient_base_dir = settings.NDSB3_EXTRACTED_IMAGE_DIR
predict_patients(patients_dir=patient_base_dir, model_path="models/" + model_type_name + "_model_h" + str(holdout_no) + "_best.hd5", holdout=holdout_no, patient_predictions=patient_predictions_global, model_type=model_type_name)