-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.rs
33 lines (28 loc) · 1.16 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// `block_on` blocks the current thread until the provided future has run to
// completion. Other executors provide more complex behavior, like scheduling
// multiple futures onto the same thread.
use futures::executor::block_on;
struct Song {}
async fn learn_song() -> Song { Song{} }
async fn sing_song(_song: Song) { /* ... */ }
async fn dance() { /* ... */ }
async fn learn_and_sing() {
// Wait until the song has been learned before singing it.
// We use `.await` here rather than `block_on` to prevent blocking the
// thread, which makes it possible to `dance` at the same time.
let song = learn_song().await;
sing_song(song).await;
}
async fn async_main() {
let f1 = learn_and_sing();
let f2 = dance();
// `join!` is like `.await` but can wait for multiple futures concurrently.
// If we're temporarily blocked in the `learn_and_sing` future, the `dance`
// future will take over the current thread. If `dance` becomes blocked,
// `learn_and_sing` can take back over. If both futures are blocked, then
// `async_main` is blocked and will yield to the executor.
futures::join!(f1, f2);
}
fn main() {
block_on(async_main());
}