-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathpolicy.py
211 lines (196 loc) · 10.2 KB
/
policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical,Normal
import torch.utils.data as Data
import numpy as np
from algos.base.networks import ValueNetwork, CriticNetwork, ActorNetwork
from algos.base.policies import BasePolicy
class Policy(BasePolicy):
def __init__(self, cfg) -> None:
super().__init__(cfg)
self.cfg = cfg
self.gamma = cfg.gamma
self.entropy_coef = cfg.entropy_coef
self.independ_actor = cfg.independ_actor
self.share_optimizer = cfg.share_optimizer
self.action_type = cfg.action_type
if self.action_type.lower() == 'continuous': # continuous action space
self.action_scale = torch.tensor((self.action_space.high - self.action_space.low)/2, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
self.action_bias = torch.tensor((self.action_space.high + self.action_space.low)/2, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
self.k_epochs = cfg.k_epochs # update policy for K epochs
self.batch_size = cfg.batch_size
self.sgd_batch_size = cfg.sgd_batch_size
self.create_graph()
self.create_optimizer()
self.create_summary()
self.to(self.device)
def create_summary(self):
'''
创建 tensorboard 数据
'''
self.summary = {
'scalar': {
'tot_loss': 0.0,
'actor_loss': 0.0,
'critic_loss': 0.0,
},
}
def update_summary(self):
''' 更新 tensorboard 数据
'''
if hasattr(self, 'tot_loss'):
self.summary['scalar']['tot_loss'] = self.tot_loss.item()
self.summary['scalar']['actor_loss'] = self.actor_loss.item()
self.summary['scalar']['critic_loss'] = self.critic_loss.item()
def create_graph(self):
self.state_size, self.action_size = self.get_state_action_size()
if not self.independ_actor:
self.policy_net = ValueNetwork(self.cfg, self.state_size, self.action_space).to(self.device)
else:
self.actor = ActorNetwork(self.cfg, self.state_size, self.action_space).to(self.device)
self.critic = CriticNetwork(self.cfg, self.state_size).to(self.device)
def create_optimizer(self):
if self.share_optimizer:
self.optimizer = optim.Adam(self.parameters(), lr=self.cfg.lr)
else:
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=self.cfg.actor_lr)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=self.cfg.critic_lr)
def get_action(self, state, mode='sample', **kwargs):
state = np.array(state)
if len(state.shape) == 1: state = state[np.newaxis, :]
state = torch.tensor(state, device=self.device, dtype=torch.float32)
if not self.independ_actor:
if self.action_type.lower() == 'continuous':
self.value, self.mu, self.sigma = self.policy_net(state)
else:
self.probs = self.policy_net(state)
else:
self.value = self.critic(state)
output = self.actor(state)
if self.action_type.lower() == 'continuous':
self.mu, self.sigma = output['mu'], output['sigma']
else:
self.probs = output['probs']
if mode == 'sample':
action = self.sample_action(**kwargs)
self.update_policy_transition()
elif mode == 'predict':
action = self.predict_action(**kwargs)
else:
raise NameError('mode must be sample or predict')
return action
def update_policy_transition(self):
if self.action_type.lower() == 'continuous':
self.policy_transition = {'value': self.value, 'mu': self.mu, 'sigma': self.sigma}
else:
self.policy_transition = {'value': self.value, 'probs': self.probs, 'log_probs': self.log_probs}
def sample_action(self,**kwargs):
if self.action_type.lower() == 'continuous':
mean = self.mu * self.action_scale + self.action_bias
std = self.sigma
dist = Normal(mean,std)
action = dist.sample()
action = torch.clamp(action, torch.tensor(self.action_space.low, device=self.device, dtype=torch.float32), torch.tensor(self.action_space.high, device=self.device, dtype=torch.float32))
self.log_probs = dist.log_prob(action).detach()
return action.detach().cpu().numpy()[0]
else:
dist = Categorical(self.probs)
action = dist.sample()
self.log_probs = dist.log_prob(action)
return action.detach().cpu().numpy()[0]
def predict_action(self, **kwargs):
if self.action_type.lower() == 'continuous':
return self.mu.detach().cpu().numpy()[0]
else:
return torch.argmax(self.probs).detach().cpu().numpy()
def evaluate(self, states, actions):
if not self.independ_actor:
if self.action_type.lower() == 'continuous':
values, mu, sigma = self.policy_net(states)
else:
probs = self.policy_net(states)
else:
values = self.critic(states)
output = self.actor(states)
if self.action_type.lower() == 'continuous':
mu , sigma = output['mu'], output['sigma']
mean = mu * self.action_scale + self.action_bias
std = sigma
dist = Normal(mean, std)
log_probs = dist.log_prob(actions)
else:
probs = output['probs']
dist = Categorical(probs)
log_probs = torch.log(probs.gather(1, actions))
entropies = dist.entropy()
return values, log_probs, entropies
def learn(self, **kwargs):
states, actions, next_states, rewards, dones = kwargs.get('states'), kwargs.get('actions'), kwargs.get('next_states'), kwargs.get('rewards'), kwargs.get('dones')
if self.action_type.lower() == 'continuous':
mus, sigmas = kwargs.get('mu'), kwargs.get('sigma')
mus = torch.stack(mus, dim=0).to(device=self.device, dtype=torch.float32)
sigmas = torch.stack(sigmas, dim=0).to(device=self.device, dtype=torch.float32)
means = mus * self.action_scale + self.action_bias
stds = sigmas
dists = Normal(means,stds)
old_log_probs = dists.log_prob(torch.tensor(np.array(actions), device=self.device, dtype=torch.float32)).detach()
old_probs = torch.exp(old_log_probs)
else:
old_probs, old_log_probs = kwargs.get('probs'), kwargs.get('log_probs')
old_probs = torch.cat(old_probs,dim=0).to(self.device) # shape:[batch_size,n_actions]
old_log_probs = torch.cat(old_log_probs,dim=0).to(self.device).unsqueeze(dim=1) # shape:[batch_size,1]
# convert to tensor
states = torch.tensor(np.array(states), device=self.device, dtype=torch.float32) # shape:[batch_size,n_states]
if self.action_type.lower() == 'continuous':
actions = torch.tensor(np.array(actions), device=self.device, dtype=torch.float32) # shape:[batch_size,1]
else:
actions = torch.tensor(np.array(actions), device=self.device, dtype=torch.int64) # shape:[batch_size,1]
next_states = torch.tensor(np.array(next_states), device=self.device, dtype=torch.float32) # shape:[batch_size,n_states]
rewards = torch.tensor(np.array(rewards), device=self.device, dtype=torch.float32) # shape:[batch_size,1]
dones = torch.tensor(np.array(dones), device=self.device, dtype=torch.float32) # shape:[batch_size,1]
returns = self._compute_returns(rewards, dones) # shape:[batch_size,1]
torch_dataset = Data.TensorDataset(states, actions, old_probs, old_log_probs,returns)
train_loader = Data.DataLoader(dataset=torch_dataset, batch_size=self.sgd_batch_size, shuffle=True,drop_last=False)
for _ in range(self.k_epochs):
for batch_idx, (states_sgd, actions_sgd, old_probs_sgd, old_log_probs_sgd, returns_sgd) in enumerate(train_loader):
values_sgd, new_log_probs_sgd, entropies = self.evaluate(states_sgd,actions_sgd)
advantages = returns_sgd - values_sgd.detach()
self.actor_loss = torch.mean(-new_log_probs_sgd*advantages.detach())
# + self.entropy_coef * entropies.mean()
self.critic_loss = torch.mean(
F.mse_loss(values_sgd, returns_sgd.detach()))
## AC algorithm
# td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)
# td_delta = td_target - self.critic(states_sgd)
# # log_probs = torch.log(self.actor(states_sgd)['probs'].gather(1, actions_sgd))
# output = self.actor(states_sgd)
# mu , sigma = output['mu'], output['sigma']
# mean = mu * self.action_scale + self.action_bias
# std = sigma
# dist = Normal(mean, std)
# log_probs = dist.log_prob(actions_sgd)
# self.actor_loss = torch.mean(-log_probs * td_delta.detach())
# self.critic_loss = torch.mean(
# F.mse_loss(self.critic(states_sgd), td_target.detach()))
self.actor_optimizer.zero_grad()
self.actor_loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.zero_grad()
self.critic_loss.backward()
self.critic_optimizer.step()
self.update_summary()
def _compute_returns(self, rewards, dones):
# monte carlo estimate of state rewards
returns = []
discounted_sum = 0
for reward, done in zip(reversed(rewards), reversed(dones)):
if done:
discounted_sum = 0
discounted_sum = reward + (self.gamma * discounted_sum)
returns.insert(0, discounted_sum)
# Normalizing the rewards:
returns = torch.tensor(returns, device=self.device, dtype=torch.float32).unsqueeze(dim=1)
returns = (returns - returns.mean()) / (returns.std() + 1e-5) # 1e-5 to avoid division by zero
return returns