-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmutation.py
338 lines (293 loc) · 11.8 KB
/
mutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import numpy as np
import matplotlib.pyplot as plt
def group_generation(size = (3,3), group_size = 2, options = ""):
"""
size: Size of the image to be divided into groups.
group_size: Width of group if the group was square.
options: Reserved parameter in case of other grouping patterns.
This method outputs a list with groups of indices. For example,
_______________
|0 |1 | 2| 3| If this square was grouped into 4 pixels,
|___|___|___|___| [[0, 1, 4, 5],
|4 |5 | 6| 7| [2, 3, 6, 7],
|___|___|___|___| [8, 9, 12, 13],
| | | | | [10, 11, 14, 15]]
|8__|9__|_10|_11| will be the outcome.
| | | | |
|12_|13_|_14|_15|
If the groups cannot be sized equally, the rightmost and bottom
groups will be cropped."""
"""
idea behind the implementation is:
1. Fill the pixels with sequential indices
2. Slice and return the slices.
Channel invariant
"""
size_y, size_x = size
# trivial case
if group_size < 1:
return np.array([[i] for i in range(size_x*size_y)])
if options =="" or options.lower() == "square":
# the "+ group_size -1" is for ceiling to integer
group_number_x = (size_x + group_size - 1) // group_size
group_number_y = (size_y + group_size - 1) // group_size
pre_cut = np.reshape(np.arange(size_x*size_y),(size_y, size_x))
# j*gs is starting index_x of a group
# i*gs is starting index_y of a group
# To maintain x as horizontal, it is secondary index.
gs = group_size
return [np.reshape(pre_cut[i*gs:(i+1)*gs , j*gs:(j+1)*gs],-1) for i in range(group_number_y) for j in range(group_number_x)]
#breakdown of above^
# 1. for i in range(group_number_x)
# for j in range(group_number_y)
# pre_cut[i*gs:(i+1)*gs , j*gs:(j+1)*gs]
# 2. reshaped into single dimensional array
else: # no option match found
print("[group_generation]Unavailable option: ", end = str(option) + "\n")
return np.array([[i] for i in range(size_x*size_y)])
def random_group_generation(size = (3,3), group_size = 2, options = ""):
size_y, size_x = size
"""
size: Size of the image to be divided into groups.
group_size: Width of group if the group was square.
options: Reserved parameter in case of other grouping patterns.
This method outputs a list with groups of indices. For example,
_______________
|0 |1 | 2| 3| If this square was grouped into 4 pixels,
|___|___|___|___| [[0, 1, 4, 5],
|4 |5 | 6| 7| [2, 3, 6, 7],
|___|___|___|___| [8, 9, 12, 13],
| | | | | [10, 11, 14, 15]]
|8__|9__|_10|_11| will be the outcome.
| | | | |
|12_|13_|_14|_15|
If the groups cannot be sized equally, the rightmost and bottom
groups will be cropped."""
"""
idea behind the implementation is:
1. Fill the pixels with sequential indices
2. Slice and return the slices.
Channel invariant
"""
# trivial case
if group_size < 1:
return np.array([[i] for i in range(size_x*size_y)])
if options =="" or options.lower() == "square":
# the "+ group_size -1" is for ceiling to integer
group_number_x = (size_x + group_size - 1) // group_size
group_number_y = (size_y + group_size - 1) // group_size
numbers = np.arange(size_x*size_y)
np.random.shuffle(numbers)
pre_cut = np.reshape(numbers,(size_y, size_x))
# j*gs is starting index_x of a group
# i*gs is starting index_y of a group
# To maintain x as horizontal, it is secondary index.
gs = group_size
return [np.reshape(pre_cut[i*gs:(i+1)*gs , j*gs:(j+1)*gs],-1) for i in range(group_number_y) for j in range(group_number_x)]
#breakdown of above^
# 1. for i in range(group_number_x)
# for j in range(group_number_y)
# pre_cut[i*gs:(i+1)*gs , j*gs:(j+1)*gs]
# 2. reshaped into single dimensional array
else: # no option match found
print("[group_generation]Unavailable option: ", end = str(option) + "\n")
return np.array([[i] for i in range(size_x*size_y)])
def read_direction(image,lower,upper,grouping):
"""
image: mutated image (If there are unmutated spots, it will be registered as lower)
lower/upper: lower/upper bounded images.
go to create_boundary_palette() for more detail.
grouping: list of indices grouped.
go to group_generation() for more detail.
Given an image and it's lower/upper pair,
this method returns direction array (Upper or Lower: T ro F).
Single channel (grayscale) images are yet to be implemented.
"""
number_of_groups = len(grouping)
is_color = len(np.shape(image)) == 3
image = np.reshape(image,-1)
upper = np.reshape(upper,-1)
if is_color:
direction_array = np.zeros((number_of_groups,3), dtype = bool)
else:
direction_array = np.zeros(number_of_groups, dtype = bool)
if is_color:
group_index = 0
for group in grouping:
for ch in range(3):
group_is_upper_bounded = np.product(image[group*3+ch] == upper[group*3+ch])
direction_array[group_index,ch] = group_is_upper_bounded
group_index += 1
else:
group_index = 0
for group in grouping:
group_is_upper_bounded = np.product(image[group] == upper[group])
direction_array[group_index] = group_is_upper_bounded
group_index += 1
return direction_array
def create_boundary_palette(image, distortion_cap):
"""
image: image in floating point 0~1 values
distortion_cap: maximum distortion value in floating point 0~1
lower, upper = create_boundary_palette(image, distortion_cap)
returns image that has all lower and all upper boundary values.
If the modified value exceeds the range[0,1], it is clipped.
Channel invariant
"""
lower = image - distortion_cap
upper = image + distortion_cap
lower[lower < 0] = 0
upper[upper > 1] = 1
return(lower,upper)
def single_mutate(image, group_index, grouping_scheme, lower, upper, direction = True, channel = 0):
"""
image: Targetting image to mutate
group_index: Used for instructing which group to mutate
grouping_scheme: list of grouped indices of pixels
for example, a first 3 by 3 group will be:
[0, 1, 2,
w, w+1, w+2,
w*2, (w*2)+1, (w*2)+2]
(w is width of image)
grouping_scheme is a list of these.
lower, upper: each are images that is entirely upper bounded or lower bounded
direction: True for upper, False for lower
(later changed to to_upper for readability)
channel: For color images. 0 for red, 1 for green, 2 for blue.
A new patch(group) is taken from either upper or lower image and is replaced of the original image.
mutated_image, mutated = single_mutated()
If the image is not mutated since it's already at the
boundary for the specified group, it will output the
original image and 'False' (bool) for 'mutated'.
"""
to_upper = direction
is_color = len(np.shape(image)) == 3
original_shape = np.shape(image)[:2]
# Channel separation
if is_color:
mutated = np.copy(image[:,:,channel])
# Single channel
else:
mutated = np.copy(image)
# Flatten to a single row to use group indices
mutated = np.reshape(mutated,-1)
if to_upper:
alternative_image = np.reshape(upper, -1)
else:
alternative_image = np.reshape(lower, -1)
# Get the pixel indices to replace
replacing_group_indices = grouping_scheme[group_index]
# Channel remerge
if is_color:
if np.product(mutated[replacing_group_indices] == alternative_image[replacing_group_indices*3 + channel]):
return (image.copy(), False)
mutated[replacing_group_indices] = alternative_image[replacing_group_indices*3 + channel]
temp = np.copy(image)
temp[:,:,channel] = np.reshape(mutated, original_shape)
return (temp, True)
# Replace a part of original image to an alternate one.
mutated[replacing_group_indices] = alternative_image[replacing_group_indices]
return (np.reshape(mutated, original_shape), True)
def image_mutate(image, grouping_scheme, lower, upper, direction_array = None):
"""
image: targetting image
direction_array: An array(or list) that has all the directions for all the groups.
For color images with three channels direction_array is shaped as [:][3] for each channels.
grouping_scheme: list of group indices created by group_generation()
This method mutates every group(pixel) of an image accordingly
"""
# If no direction is give, all goes to upper
is_color = len(np.shape(image)) == 3
image = np.copy(image)
original_shape = np.shape(image)
# direction_array was not specified
if not type(direction_array) == np.ndarray:
if is_color:
direction_array = np.array([[False,False,False] for i in range(len(grouping_scheme))])
else:
direction_array = [False for i in range(len(grouping_scheme))]
# Converting direction_array from boolean to 0,1 integer
# in order to avoid if statement and use indexing
direction_binary = np.zeros(np.shape(direction_array), dtype = int)
# False is lower, True is upper
direction_binary[direction_array] = 1
# bound[0] is lower, bound[1] is upper
bounds = np.stack((lower,upper))
# To understand how this works, read grayscale part first
if is_color:
# Channel separation
img_r = np.reshape(image[:,:,0],-1)
img_g = np.reshape(image[:,:,1],-1)
img_b = np.reshape(image[:,:,2],-1)
direction_r = direction_binary[:,0]
direction_g = direction_binary[:,1]
direction_b = direction_binary[:,2]
bound_r = np.reshape(bounds[:,:,:,0],(2,-1))
bound_g = np.reshape(bounds[:,:,:,1],(2,-1))
bound_b = np.reshape(bounds[:,:,:,2],(2,-1))
for group_number in range(len(direction_binary)):
group_indices = grouping_scheme[group_number]
dir_r = direction_r[group_number]
dir_g = direction_g[group_number]
dir_b = direction_b[group_number]
img_r[group_indices] = bound_r[dir_r][group_indices]
img_g[group_indices] = bound_g[dir_g][group_indices]
img_b[group_indices] = bound_b[dir_b][group_indices]
# Channel remerging
image[:,:,0] = np.reshape(img_r, original_shape[:2])
image[:,:,1] = np.reshape(img_g, original_shape[:2])
image[:,:,2] = np.reshape(img_b, original_shape[:2])
else: #Grayscale
# Flattening image
image = np.reshape(image,-1)
bounds = np.reshape(bounds,(2,-1))
for group_number in range(len(direction_binary)):
group_indices = grouping_scheme[group_number]
dir = direction_binary[group_number]
image[group_indices] = bounds[dir][group_indices]
image = np.reshape(image,original_shape)
return image
if __name__ == "__main__":
grouping = group_generation((6, 5), 2)
# Color test
test_image = np.reshape((np.arange(90) + 0.5 ) / 91, (6, 5, 3))
lower, upper = create_boundary_palette(test_image, 0.1)
single_mutated = single_mutate(test_image, 0, grouping, lower, upper)
# Yellow, Blue, Red
# Green, Magenta, Cyan
# Red, Green, Blue
print("Yellow, Blue, Red\nGreen, Magenta, Cyan\nRed, Green, Blue\n")
color_directions = np.array([[True,True, False],[False,False,True], [True,False,False],[False, True,False],[True,False,True],[False,True,True],[True,False,False],[False,True,False],[False,False,True]])
image_mutated = image_mutate(test_image, grouping, lower, upper, color_directions)
plt.subplot(231)
plt.imshow(lower, vmin=0, vmax=1)
plt.subplot(232)
plt.imshow(test_image, vmin=0, vmax=1)
plt.subplot(233)
plt.imshow(upper, vmin=0, vmax=1)
plt.subplot(235)
plt.imshow(single_mutated, vmin=0, vmax=1)
plt.subplot(236)
plt.imshow(image_mutated, vmin = 0, vmax = 1)
plt.show()
# Grayscale test
g_test_image = np.reshape((np.arange(30) + 0.5 ) / 31, (6, 5))
g_lower, g_upper = create_boundary_palette(g_test_image, 0.1)
g_single_mutated = single_mutate(g_test_image, 0, grouping, lower, upper)
# 1 0 1
# 0 1 0
# 1 0 0
print("101\n010\n100\n")
g_directions = np.array([True,False,True,False,True,False,True,False,False])
g_image_mutated = image_mutate(g_test_image, grouping, g_lower, g_upper, g_directions)
plt.subplot(231)
plt.imshow(g_lower, "gray", vmin=0, vmax=1)
plt.subplot(232)
plt.imshow(g_test_image, "gray", vmin=0, vmax=1)
plt.subplot(233)
plt.imshow(g_upper, "gray", vmin=0, vmax=1)
plt.subplot(235)
plt.imshow(g_single_mutated, "gray", vmin=0, vmax=1)
plt.subplot(236)
plt.imshow(g_image_mutated, "gray", vmin = 0, vmax = 1)
plt.show()