-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsifa.cpp
539 lines (462 loc) · 18.9 KB
/
sifa.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// John Fitzgerald
// MacOS arm specific
// 84 ineffective faults, searches 2^32 in 5 minutes :O
// 2024
//
#include <arm_neon.h>
#include <pthread.h>
#include <unistd.h>
#include <atomic>
#include <chrono>
#include <cmath>
#include <cstdint>
#include <fstream>
#include <iostream>
#include <numeric>
#include <string>
#include <thread>
#include <vector>
constexpr uint64_t TOTAL_KEYS = (1ULL << 32);
bool verbose = false;
// KG0 fault state[0][0], look at state[0][0]
// KG1 fault state[0][3], look at state[1][3]
// KG2 fault state[0][2], look at state[2][2]
// KG3 fault state[0][1], look at state[3][1]
enum keygroup_t {
KEYGROUP_0 = 0,
KEYGROUP_1,
KEYGROUP_2,
KEYGROUP_3,
KEYGROUP_UNKNOWN = -1
};
std::mutex result_mutex;
uint64_t best_key = 0;
double max_sei = -std::numeric_limits<double>::infinity();
std::atomic<uint64_t> progress_counter{0}; // Atomic for thread-safe progress tracking
uint32_t sample_limit = 0; // Default: no limit
int nround = 9; // Default: round 9 attack
void print_usage(char* argv0) {
std::cerr << "usage: " << argv0 << " -i [input data] [-o output text] [-v] [-r round] [-s sample_limit]" << std::endl;
std::cerr << "valid rounds: 2 attack on plaintext, 9 attack on ciphertext" << std::endl;
std::exit(EXIT_FAILURE);
}
// TODO: add error detection to this function
void load_fault_data(char* filename, std::vector<std::vector<uint8_t>>& plaintexts, std::vector<std::vector<uint8_t>>& ciphertexts, uint32_t& ineffective) {
std::ifstream fp(filename, std::ios::binary);
if (!fp.is_open()) {
std::cerr << "failed to open file: " << filename << std::endl;
std::exit(EXIT_FAILURE);
}
// Read ineffective faults count
fp.read(reinterpret_cast<char*>(&ineffective), sizeof(ineffective));
if (verbose) {
std::cout << "loading " << ineffective << " ineffective faults" << std::endl;
}
// Read plaintexts and ciphertexts
for (uint32_t i = 0; i < ineffective; ++i) {
std::vector<uint8_t> plaintext(16), ciphertext(16);
fp.read(reinterpret_cast<char*>(plaintext.data()), 16);
fp.read(reinterpret_cast<char*>(ciphertext.data()), 16);
plaintexts.push_back(plaintext);
ciphertexts.push_back(ciphertext);
}
fp.close();
}
inline uint8_t partial_encrypt_2(std::vector<uint8_t>& plaintext, enum keygroup_t kg, uint8_t kg0, uint8_t kg1, uint8_t kg2, uint8_t kg3) {
// Load ciphertext directly into a NEON register
uint8x16_t state = vld1q_u8(plaintext.data());
// Create the keyguess NEON register
uint8x16_t keyguess;
switch (kg) {
case KEYGROUP_0:
keyguess = vsetq_lane_u8(kg0, vdupq_n_u8(0), 0);
keyguess = vsetq_lane_u8(kg1, keyguess, 5);
keyguess = vsetq_lane_u8(kg2, keyguess, 10);
keyguess = vsetq_lane_u8(kg3, keyguess, 15);
break;
case KEYGROUP_1:
keyguess = vsetq_lane_u8(kg0, vdupq_n_u8(0), 3);
keyguess = vsetq_lane_u8(kg1, keyguess, 4);
keyguess = vsetq_lane_u8(kg2, keyguess, 9);
keyguess = vsetq_lane_u8(kg3, keyguess, 14);
break;
case KEYGROUP_2:
keyguess = vsetq_lane_u8(kg0, vdupq_n_u8(0), 2);
keyguess = vsetq_lane_u8(kg1, keyguess, 7);
keyguess = vsetq_lane_u8(kg2, keyguess, 8);
keyguess = vsetq_lane_u8(kg3, keyguess, 13);
break;
case KEYGROUP_3:
keyguess = vsetq_lane_u8(kg0, vdupq_n_u8(0), 1);
keyguess = vsetq_lane_u8(kg1, keyguess, 6);
keyguess = vsetq_lane_u8(kg2, keyguess, 11);
keyguess = vsetq_lane_u8(kg3, keyguess, 12);
break;
default:
throw std::runtime_error("invalid key group");
break;
}
// ShiftRows, SubBytes, and MixColumns using AES encryption round
state = vaeseq_u8(state, keyguess);
state = vaesmcq_u8(state);
switch (kg) {
case KEYGROUP_0:
return vgetq_lane_u8(state, 0);
break;
case KEYGROUP_1:
return vgetq_lane_u8(state, 4);
break;
case KEYGROUP_2:
return vgetq_lane_u8(state, 8);
break;
case KEYGROUP_3:
return vgetq_lane_u8(state, 12);
break;
default:
throw std::runtime_error("invalid key group");
break;
}
}
inline uint8_t partial_decrypt_9(std::vector<uint8_t>& ciphertext, enum keygroup_t kg, uint8_t kg0, uint8_t kg1, uint8_t kg2, uint8_t kg3) {
// Load ciphertext directly into a NEON register
uint8x16_t state = vld1q_u8(ciphertext.data());
// Create the keyguess NEON register
uint8x16_t keyguess;
switch (kg) {
case KEYGROUP_0:
keyguess = vsetq_lane_u8(kg0, vdupq_n_u8(0), 0);
keyguess = vsetq_lane_u8(kg1, keyguess, 7);
keyguess = vsetq_lane_u8(kg2, keyguess, 10);
keyguess = vsetq_lane_u8(kg3, keyguess, 13);
break;
case KEYGROUP_1:
keyguess = vsetq_lane_u8(kg0, vdupq_n_u8(0), 1);
keyguess = vsetq_lane_u8(kg1, keyguess, 4);
keyguess = vsetq_lane_u8(kg2, keyguess, 11);
keyguess = vsetq_lane_u8(kg3, keyguess, 14);
break;
case KEYGROUP_2:
keyguess = vsetq_lane_u8(kg0, vdupq_n_u8(0), 2);
keyguess = vsetq_lane_u8(kg1, keyguess, 5);
keyguess = vsetq_lane_u8(kg2, keyguess, 8);
keyguess = vsetq_lane_u8(kg3, keyguess, 15);
break;
case KEYGROUP_3:
keyguess = vsetq_lane_u8(kg0, vdupq_n_u8(0), 3);
keyguess = vsetq_lane_u8(kg1, keyguess, 6);
keyguess = vsetq_lane_u8(kg2, keyguess, 9);
keyguess = vsetq_lane_u8(kg3, keyguess, 12);
break;
default:
throw std::runtime_error("invalid key group");
break;
}
// Inverse ShiftRows, SubBytes, and MixColumns using AES decryption round
state = vaesdq_u8(state, keyguess);
state = vaesimcq_u8(state);
switch (kg) {
case KEYGROUP_0:
return vgetq_lane_u8(state, 0);
break;
case KEYGROUP_1:
return vgetq_lane_u8(state, 7);
break;
case KEYGROUP_2:
return vgetq_lane_u8(state, 10);
break;
case KEYGROUP_3:
return vgetq_lane_u8(state, 13);
break;
default:
throw std::runtime_error("invalid key group");
break;
}
}
inline double compute_sei(std::array<int, 256>& counts) {
double total = std::accumulate(counts.begin(), counts.end(), 0.0);
constexpr double expected = 1.0 / 256.0; // uniform distribution
double sei = 0.0;
for (int count : counts) {
double p = count / total;
sei += std::pow(p - expected, 2);
}
return sei;
}
void set_high_priority() {
pthread_t this_thread = pthread_self();
struct sched_param params;
params.sched_priority = sched_get_priority_max(SCHED_FIFO);
if (pthread_setschedparam(this_thread, SCHED_FIFO, ¶ms) != 0) {
std::cerr << "failed to set thread priority" << std::endl;
}
}
void search_keyspace_2(uint32_t ineffective, keygroup_t keygroup, uint64_t start, uint64_t end, std::vector<std::vector<uint8_t>>& plaintexts) {
double local_max_sei = -std::numeric_limits<double>::infinity();
uint64_t local_best_key = 0;
set_high_priority();
// Preallocate counts outside the loop
std::array<int, 256> counts;
for (uint64_t keyguess = start; keyguess < end; ++keyguess) {
uint8_t kg0 = keyguess & 0xFF;
uint8_t kg1 = (keyguess >> 8) & 0xFF;
uint8_t kg2 = (keyguess >> 16) & 0xFF;
uint8_t kg3 = (keyguess >> 24) & 0xFF;
// Zero the counts array efficiently
counts.fill(0);
// Perform decryption and count results
for (size_t i = 0; i < ineffective; ++i) {
uint8_t result = partial_encrypt_2(plaintexts[i], keygroup, kg0, kg1, kg2, kg3);
counts[result]++;
}
// Compute Squared Euclidean Imbalance
// My best frieend <3
double sei_score = compute_sei(counts);
if (sei_score > local_max_sei) {
local_max_sei = sei_score;
local_best_key = keyguess;
}
// Update progress safely
progress_counter++;
}
// Update global best score using a mutex
std::lock_guard<std::mutex> lock(result_mutex);
if (local_max_sei > max_sei) {
max_sei = local_max_sei;
best_key = local_best_key;
}
}
void search_keyspace_9(uint32_t ineffective, keygroup_t keygroup, uint64_t start, uint64_t end, std::vector<std::vector<uint8_t>>& ciphertexts) {
double local_max_sei = -std::numeric_limits<double>::infinity();
uint64_t local_best_key = 0;
set_high_priority();
// Preallocate counts outside the loop
std::array<int, 256> counts;
for (uint64_t keyguess = start; keyguess < end; ++keyguess) {
uint8_t kg0 = keyguess & 0xFF;
uint8_t kg1 = (keyguess >> 8) & 0xFF;
uint8_t kg2 = (keyguess >> 16) & 0xFF;
uint8_t kg3 = (keyguess >> 24) & 0xFF;
// Zero the counts array efficiently
counts.fill(0);
// Perform decryption and count results
for (size_t i = 0; i < ineffective; ++i) {
uint8_t result = partial_decrypt_9(ciphertexts[i], keygroup, kg0, kg1, kg2, kg3);
counts[result]++;
}
// Compute Squared Euclidean Imbalance
// My best frieend <3
double sei_score = compute_sei(counts);
if (sei_score > local_max_sei) {
local_max_sei = sei_score;
local_best_key = keyguess;
}
// Update progress safely
progress_counter++;
}
// Update global best score using a mutex
std::lock_guard<std::mutex> lock(result_mutex);
if (local_max_sei > max_sei) {
max_sei = local_max_sei;
best_key = local_best_key;
}
}
void write_output_2(std::ostream& out, keygroup_t kg) {
uint8_t kg0 = best_key & 0xFF;
uint8_t kg1 = (best_key >> 8) & 0xFF;
uint8_t kg2 = (best_key >> 16) & 0xFF;
uint8_t kg3 = (best_key >> 24) & 0xFF;
out << std::hex << std::setfill('0');
switch (kg) {
case KEYGROUP_0:
out << "key byte 0: 0x" << std::setw(2) << static_cast<int>(kg0) << std::endl;
out << "key byte 5: 0x" << std::setw(2) << static_cast<int>(kg1) << std::endl;
out << "key byte 10: 0x" << std::setw(2) << static_cast<int>(kg2) << std::endl;
out << "key byte 15: 0x" << std::setw(2) << static_cast<int>(kg3) << std::endl;
break;
case KEYGROUP_1:
out << "key byte 3: 0x" << std::setw(2) << static_cast<int>(kg0) << std::endl;
out << "key byte 4: 0x" << std::setw(2) << static_cast<int>(kg1) << std::endl;
out << "key byte 9: 0x" << std::setw(2) << static_cast<int>(kg2) << std::endl;
out << "key byte 14: 0x" << std::setw(2) << static_cast<int>(kg3) << std::endl;
break;
case KEYGROUP_2:
out << "key byte 2: 0x" << std::setw(2) << static_cast<int>(kg0) << std::endl;
out << "key byte 7: 0x" << std::setw(2) << static_cast<int>(kg1) << std::endl;
out << "key byte 8: 0x" << std::setw(2) << static_cast<int>(kg2) << std::endl;
out << "key byte 13: 0x" << std::setw(2) << static_cast<int>(kg3) << std::endl;
break;
case KEYGROUP_3:
out << "key byte 1: 0x" << std::setw(2) << static_cast<int>(kg0) << std::endl;
out << "key byte 6: 0x" << std::setw(2) << static_cast<int>(kg1) << std::endl;
out << "key byte 11: 0x" << std::setw(2) << static_cast<int>(kg2) << std::endl;
out << "key byte 12: 0x" << std::setw(2) << static_cast<int>(kg3) << std::endl;
break;
default:
throw std::runtime_error("invalid key group");
}
}
void write_output_9(std::ostream& out, keygroup_t kg) {
uint8_t kg0 = best_key & 0xFF;
uint8_t kg1 = (best_key >> 8) & 0xFF;
uint8_t kg2 = (best_key >> 16) & 0xFF;
uint8_t kg3 = (best_key >> 24) & 0xFF;
out << std::hex << std::setfill('0');
switch (kg) {
case KEYGROUP_0:
out << "key byte 0: 0x" << std::setw(2) << static_cast<int>(kg0) << std::endl;
out << "key byte 7: 0x" << std::setw(2) << static_cast<int>(kg1) << std::endl;
out << "key byte 10: 0x" << std::setw(2) << static_cast<int>(kg2) << std::endl;
out << "key byte 13: 0x" << std::setw(2) << static_cast<int>(kg3) << std::endl;
break;
case KEYGROUP_1:
out << "key byte 1: 0x" << std::setw(2) << static_cast<int>(kg0) << std::endl;
out << "key byte 4: 0x" << std::setw(2) << static_cast<int>(kg1) << std::endl;
out << "key byte 11: 0x" << std::setw(2) << static_cast<int>(kg2) << std::endl;
out << "key byte 14: 0x" << std::setw(2) << static_cast<int>(kg3) << std::endl;
break;
case KEYGROUP_2:
out << "key byte 2: 0x" << std::setw(2) << static_cast<int>(kg0) << std::endl;
out << "key byte 5: 0x" << std::setw(2) << static_cast<int>(kg1) << std::endl;
out << "key byte 8: 0x" << std::setw(2) << static_cast<int>(kg2) << std::endl;
out << "key byte 15: 0x" << std::setw(2) << static_cast<int>(kg3) << std::endl;
break;
case KEYGROUP_3:
out << "key byte 3: 0x" << std::setw(2) << static_cast<int>(kg0) << std::endl;
out << "key byte 6: 0x" << std::setw(2) << static_cast<int>(kg1) << std::endl;
out << "key byte 9: 0x" << std::setw(2) << static_cast<int>(kg2) << std::endl;
out << "key byte 12: 0x" << std::setw(2) << static_cast<int>(kg3) << std::endl;
break;
default:
throw std::runtime_error("invalid key group");
}
}
void write_output(std::ostream& out, uint32_t ineffective, keygroup_t kg, long elapsed) {
out << std::dec << ineffective << " ineffective faults" << std::endl;
out << "keygroup: " << std::dec << kg << std::endl;
if (nround == 9) {
write_output_9(out, kg);
} else if (nround == 2) {
write_output_2(out, kg);
}
out << "max SEI: " << std::dec << max_sei << std::endl;
out << "elapsed time: " << elapsed << " seconds" << std::endl;
}
void file_write_output(const std::string& output_file, uint32_t ineffective, keygroup_t kg, long elapsed) {
std::ofstream out_file(output_file, std::ios::out | std::ios::app); // Append mode
if (!out_file.is_open()) {
std::cerr << "failed to open output file: " << output_file << std::endl;
return;
}
write_output(out_file, ineffective, kg, elapsed);
out_file.close();
}
int main(int argc, char* argv[]) {
int opt;
char* input_file = NULL;
char* output_file = NULL;
keygroup_t keygroup = KEYGROUP_0;
// Parse command-line arguments
while ((opt = getopt(argc, argv, "i:o:s:k:r:v")) != -1) {
switch (opt) {
case 'i':
input_file = optarg;
break;
case 'o':
output_file = optarg;
break;
case 's': {
char* endptr;
sample_limit = std::strtoul(optarg, &endptr, 10);
if (*endptr != '\0' || sample_limit == 0) {
std::cerr << "Invalid sample limit: " << optarg << std::endl;
print_usage(argv[0]);
}
break;
}
case 'k': {
int kg = std::atoi(optarg);
if (kg >= 0 && kg <= 3) {
keygroup = static_cast<keygroup_t>(kg);
} else {
std::cerr << "invalid keygroup: " << kg << std::endl;
print_usage(argv[0]);
}
break;
}
case 'r': {
int rd = std::atoi(optarg);
if (rd == 2 || rd == 9) {
nround = rd;
} else {
std::cerr << "invalid round: " << rd << std::endl;
print_usage(argv[0]);
}
break;
}
case 'v':
verbose = true;
break;
default:
print_usage(argv[0]);
}
}
// Ensure mandatory arguments are provided
if (!input_file) {
print_usage(argv[0]);
}
if (verbose) {
std::cout << "verbose mode" << std::endl;
std::cout << "keygroup: " << std::dec << keygroup << std::endl;
std::cout << "round: " << std::dec << nround << std::endl;
}
std::vector<std::vector<uint8_t>> plaintexts, ciphertexts;
uint32_t ineffective = 0;
load_fault_data(input_file, plaintexts, ciphertexts, ineffective);
if (sample_limit != 0) {
if (ineffective < sample_limit) {
std::cout << "warning: supplied sample limit is greater than number of ineffective faults" << std::endl;
} else {
if (verbose) {
std::cout << "sample limit: " << std::dec << sample_limit << std::endl;
}
ineffective = sample_limit;
}
}
const unsigned num_threads = std::thread::hardware_concurrency();
std::vector<std::thread> threads;
uint64_t keys_per_thread = TOTAL_KEYS / num_threads;
auto start_time = std::chrono::high_resolution_clock::now();
// Launch threads
for (unsigned t = 0; t < num_threads; t++) {
uint64_t start = t * keys_per_thread;
uint64_t end = (t == num_threads - 1) ? TOTAL_KEYS : start + keys_per_thread;
if (nround == 9) {
threads.emplace_back(search_keyspace_9, ineffective, keygroup, start, end, std::ref(ciphertexts));
} else if (nround == 2) {
threads.emplace_back(search_keyspace_2, ineffective, keygroup, start, end, std::ref(plaintexts));
}
}
// Monitor progress
uint64_t last_percent = 0;
while (progress_counter < TOTAL_KEYS) {
uint64_t percent_done = (progress_counter * 100) / TOTAL_KEYS;
if (percent_done != last_percent) {
last_percent = percent_done;
auto now = std::chrono::high_resolution_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::seconds>(now - start_time).count();
std::cout << "progress: " << percent_done << "% completed. elapsed time: " << elapsed << " seconds.\r" << std::flush;
}
}
// Wait for all threads to complete
for (auto& th : threads) {
th.join();
}
auto end_time = std::chrono::high_resolution_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::seconds>(end_time - start_time).count();
write_output(std::cout, ineffective, keygroup, elapsed);
// Write output to file
if (output_file) {
file_write_output(output_file, ineffective, keygroup, elapsed);
}
return 0;
}