-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
executable file
·395 lines (333 loc) · 15.8 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import copy, os, logging
from collections import OrderedDict
from typing import Set, Any, Dict, List
import torch
from torch.nn.parallel import DistributedDataParallel
import torch.utils.data as torchdata
import detectron2.utils.comm as comm
import detectron2.data.transforms as T
from detectron2.solver.build import maybe_add_gradient_clipping, reduce_param_groups
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.engine import default_argument_parser, default_setup, default_writers, launch, DefaultPredictor
from detectron2.evaluation import COCOEvaluator, inference_on_dataset
from detectron2.solver import build_lr_scheduler
from detectron2.data import ( build_batch_data_loader, get_detection_dataset_dicts,
DatasetMapper, MapDataset, DatasetFromList,
MetadataCatalog, build_detection_test_loader )
from detectron2.data.samplers import TrainingSampler, RepeatFactorTrainingSampler, RandomSubsetTrainingSampler
from detectron2.utils.events import EventStorage
from detectron2.utils.logger import _log_api_usage, setup_logger
from detectron2.config import global_cfg
from detectron2.engine import DefaultPredictor
import cv2 as cv
import numpy as np
from sklearn import metrics
from tqdm import tqdm
import pandas as pd
import json
import time
import cv2 as cv
from data import *
setup_logger()
logger = logging.getLogger("detectron2")
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
def do_eval(cfg, eval_image, tta=None):
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.TEST.DETECTIONS_PER_IMAGE = 10
logger.info("Evaluating from weights: {}".format(cfg.MODEL.WEIGHTS))
start = time.time()
predictor = DefaultPredictor(cfg)
logger.info("Loading the model took {} seconds".format(time.time()-start))
start = time.time()
if tta:
logger.info("Running tests with TTA.")
results_dict = run_tta(predictor, eval_image)
else:
logger.info("Running tests without TTA.")
input = cv.imread(eval_image)
H, W, _ = input.shape
preds = predictor(input)['instances']
results_dict = {
'classes' : preds.pred_classes.cpu().numpy().tolist(),
'scores' : preds.scores.cpu().numpy().tolist(),
'boxes' : [box.detach().cpu().numpy().astype(int) for box in preds.pred_boxes]
}
logger.info("Prediciton took {} seconds".format(time.time()-start))
print(results_dict)
return results_dict
def do_test(cfg, model, mask=True):
results = OrderedDict()
loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST)
evaluator = COCOEvaluator("xray_test", tasks=["segm" if mask else "bbox"], use_fast_impl=True,
output_dir=os.path.join(cfg.OUTPUT_DIR, "eval"))
results = inference_on_dataset(model, loader, evaluator)["segm" if mask else "bbox"]
return results['AP']
def build_train_loader(cfg, mask=True):
dataset = get_detection_dataset_dicts(
cfg.DATASETS.TRAIN[1] if mask else cfg.DATASETS.TRAIN[0],
filter_empty=False,
min_keypoints=0,
proposal_files=None,
)
_log_api_usage("dataset." + cfg.DATASETS.TRAIN[0])
logger.info("Total number of images: {}".format(len(dataset)))
mapper = DatasetMapper(cfg, is_train=True,
augmentations=[T.ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'),
T.RandomFlip(), # horizontal
T.RandomFlip(horizontal=False, vertical=True)])
dataset = MapDataset(dataset, mapper)
loader_size = int(len(dataset)/cfg.SOLVER.IMS_PER_BATCH)
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
logger.info("Using training sampler {}".format(sampler_name))
if sampler_name == "TrainingSampler":
sampler = TrainingSampler(len(dataset), shuffle=False) # let's not shuffle what's already shuffled
elif sampler_name == "RepeatFactorTrainingSampler":
repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
dataset, cfg.DATALOADER.REPEAT_THRESHOLD
)
sampler = RepeatFactorTrainingSampler(repeat_factors)
elif sampler_name == "RandomSubsetTrainingSampler":
sampler = RandomSubsetTrainingSampler(len(dataset), cfg.DATALOADER.RANDOM_SUBSET_RATIO)
else:
raise ValueError("Unknown training sampler: {}".format(sampler_name))
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if isinstance(dataset, torchdata.IterableDataset):
assert sampler is None, "sampler must be None if dataset is IterableDataset"
else:
if sampler is None:
sampler = TrainingSampler(len(dataset))
assert isinstance(sampler, torchdata.Sampler), f"Expect a Sampler but got {type(sampler)}"
return build_batch_data_loader(dataset,
sampler,
total_batch_size=cfg.SOLVER.IMS_PER_BATCH,
aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING,
num_workers= cfg.DATALOADER.NUM_WORKERS,)
def build_optimizer(cfg, model, mask=True):
base_lr=cfg.SOLVER.BASE_LR
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM
bias_lr_factor=cfg.SOLVER.BIAS_LR_FACTOR
weight_decay_bias=cfg.SOLVER.WEIGHT_DECAY_BIAS
weight_decay = None
overrides = None
if overrides is None:
overrides = {}
defaults = {}
if base_lr is not None:
defaults["lr"] = base_lr
if weight_decay is not None:
defaults["weight_decay"] = weight_decay
bias_overrides = {}
if bias_lr_factor is not None and bias_lr_factor != 1.0:
if base_lr is None:
raise ValueError("bias_lr_factor requires base_lr")
bias_overrides["lr"] = base_lr * bias_lr_factor
if weight_decay_bias is not None:
bias_overrides["weight_decay"] = weight_decay_bias
if len(bias_overrides):
if "bias" in overrides:
raise ValueError("Conflicting overrides for 'bias'")
overrides["bias"] = bias_overrides
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
detection_only_modules = [module for module in model.backbone.modules()] + \
[module for module in model.proposal_generator.modules()] + \
[module for module in model.roi_heads.box_pooler.modules()] + \
[module for module in model.roi_heads.box_head.modules()] + \
[module for module in model.roi_heads.box_predictor.modules()]
segmentation_only_modules = [module for module in model.roi_heads.mask_pooler.modules()] + \
[module for module in model.roi_heads.mask_head.modules()]
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
modules = segmentation_only_modules if mask else detection_only_modules
for module in modules:
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
if isinstance(module, norm_module_types) and weight_decay_norm is not None:
hyperparams["weight_decay"] = weight_decay_norm
hyperparams.update(overrides.get(module_param_name, {}))
params.append({"params": [value], **hyperparams})
logger.info("Total number of params: {}".format(len(params)))
params = reduce_param_groups(params)
logger.info("Total number of params (after reduction): {}".format(len(params)))
return maybe_add_gradient_clipping(cfg, torch.optim.SGD)(
params,
lr=cfg.SOLVER.BASE_LR,
momentum=cfg.SOLVER.MOMENTUM,
nesterov=cfg.SOLVER.NESTEROV,
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
)
def do_train(cfg, model, resume=False):
model.train()
max_iter = cfg.SOLVER.MAX_ITER
switch_iter = cfg.SOLVER.SWITCH_ITER
pretrain_iter = cfg.SOLVER.PRETRAIN_ITER
det_iter = max_iter/2
segm_iter = max_iter/2
base_lr = cfg.SOLVER.BASE_LR
steps = cfg.SOLVER.STEPS
assert pretrain_iter < det_iter, "Pretrain iteration should be less than the maximum iteration for the detection section."
writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else []
if resume:
det_iter -= cfg.SOLVER.DET_RESUME_ITER
exponent = sum([1 for stp in steps if cfg.SOLVER.DET_RESUME_ITER/stp >= 1])
cfg.SOLVER.BASE_LR = base_lr * (0.1)**exponent
cfg.SOLVER.STEPS = tuple([stp-cfg.SOLVER.DET_RESUME_ITER for stp in steps[exponent:]]) if exponent < 3 else ()
logger.info("Learning rate modified from {} to {}.".format(base_lr, cfg.SOLVER.BASE_LR))
logger.info("Solver steps modified from {} to {}.".format(steps, cfg.SOLVER.STEPS))
det_optim = build_optimizer(cfg, model, mask=False)
det_sked = build_lr_scheduler(cfg, det_optim)
if not os.path.exists(os.path.join(cfg.OUTPUT_DIR, "det")):
os.mkdir(os.path.join(cfg.OUTPUT_DIR, "det"))
det_checkpointer = DetectionCheckpointer(
model, os.path.join(cfg.OUTPUT_DIR, "det"), optimizer=det_optim, scheduler=det_sked
)
det_periodic_checkpointer = PeriodicCheckpointer(
det_checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
if resume:
segm_iter -= cfg.SOLVER.SEGM_RESUME_ITER
exponent = sum([1 for stp in steps if cfg.SOLVER.SEGM_RESUME_ITER/stp >= 1])
cfg.SOLVER.BASE_LR = base_lr * (0.1)**exponent
cfg.SOLVER.STEPS = tuple([stp-cfg.SOLVER.SEGM_RESUME_ITER for stp in steps[exponent:]]) if exponent < 3 else ()
logger.info("Learning rate modified from {} to {}.".format(base_lr, cfg.SOLVER.BASE_LR))
logger.info("Solver steps modified from {} to {}.".format(steps, cfg.SOLVER.STEPS))
segm_optim = build_optimizer(cfg, model, mask=True)
segm_sked = build_lr_scheduler(cfg, segm_optim)
if not os.path.exists(os.path.join(cfg.OUTPUT_DIR, "segm")):
os.mkdir(os.path.join(cfg.OUTPUT_DIR, "segm"))
segm_checkpointer = DetectionCheckpointer(
model, os.path.join(cfg.OUTPUT_DIR, "segm"), optimizer=segm_optim, scheduler=segm_sked
)
segm_periodic_checkpointer = PeriodicCheckpointer(
segm_checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
segm_start_iter = (
segm_checkpointer.resume_or_load(cfg.MODEL.SEGM_WEIGHTS, resume=resume).get("iteration", -1)
)
det_start_iter = (
det_checkpointer.resume_or_load(cfg.MODEL.DET_WEIGHTS, resume=resume).get("iteration", -1)
)
if segm_start_iter < 0 or det_start_iter < 0:
segm_start_iter = 0
det_start_iter = 0
assert segm_start_iter == cfg.SOLVER.SEGM_RESUME_ITER, "Segmentation iterations mismatch! {}, {}".format(segm_start_iter, cfg.SOLVER.SEGM_RESUME_ITER)
assert det_start_iter == cfg.SOLVER.DET_RESUME_ITER, "Detection iterations mismatch! {}, {}".format(det_start_iter, cfg.SOLVER.DET_RESUME_ITER)
best_bbox_AP = det_checkpointer.resume_or_load(cfg.MODEL.DET_WEIGHTS, resume=resume).get("AP")
best_segm_AP = segm_checkpointer.resume_or_load(cfg.MODEL.SEGM_WEIGHTS, resume=resume).get("AP")
if best_bbox_AP is None or best_segm_AP is None:
best_bbox_AP = 0
best_segm_AP = 0
start_iter = (segm_start_iter + det_start_iter)
det_dataloader = build_train_loader(cfg, False)
segm_dataloader = build_train_loader(cfg, True)
with EventStorage(start_iter) as storage:
det_best_wts = {k: v for k, v in model.state_dict().items() if not k.startswith("roi_heads.mask")}
segm_best_wts = {k: v for k, v in model.state_dict().items() if k.startswith("roi_heads.mask")}
prev_iter = start_iter
logger.info("Training starts at iteration {}.".format(prev_iter))
logger.info("Current best AP for [det] : {} and [segm] : {}.".format(best_bbox_AP, best_segm_AP))
if pretrain_iter > 0:
next_iter = pretrain_iter
logger.info("Pretraining detection section for {} iterations.".format(pretrain_iter))
global_cfg.GLOBAL.TRAIN_MASK = False
else:
next_iter = int((prev_iter + switch_iter)/switch_iter) * switch_iter
while next_iter <= max_iter:
if not global_cfg.GLOBAL.TRAIN_MASK and det_iter == 0:
global_cfg.GLOBAL.TRAIN_MASK = not global_cfg.GLOBAL.TRAIN_MASK
logger.info("Iterations for detection section is complete!")
if global_cfg.GLOBAL.TRAIN_MASK and segm_iter == 0:
global_cfg.GLOBAL.TRAIN_MASK = not global_cfg.GLOBAL.TRAIN_MASK
logger.info("Iterations for object seperation section is complete!")
logger.info("Training [{}] section from iteration {} to {}".format("segm" if global_cfg.GLOBAL.TRAIN_MASK else "det", prev_iter, next_iter))
for data, iteration in zip(segm_dataloader if global_cfg.GLOBAL.TRAIN_MASK else det_dataloader, range(prev_iter, next_iter)):
storage.iter = iteration
loss_dict = model(data)
losses = sum(loss_dict.values())
assert torch.isfinite(losses).all(), loss_dict
loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()}
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
if comm.is_main_process():
storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced)
if not global_cfg.GLOBAL.TRAIN_MASK:
det_optim.zero_grad()
losses.backward()
det_optim.step()
storage.put_scalar("lr", det_optim.param_groups[0]["lr"], smoothing_hint=False)
det_sked.step()
else:
segm_optim.zero_grad()
losses.backward()
segm_optim.step()
storage.put_scalar("lr", segm_optim.param_groups[0]["lr"], smoothing_hint=False)
segm_sked.step()
if iteration - start_iter > 5 and (
(iteration + 1) % global_cfg.GLOBAL.PRINT_FREQ == 0 or iteration == max_iter - 1
):
for writer in writers:
writer.write()
if ((iteration + 1) % cfg.SOLVER.CHECKPOINT_PERIOD == 0):
#_ = os.system("fusermount -u /content/onedrive")
#_ = os.system("nohup rclone --vfs-cache-max-age 720h --vfs-cache-mode writes mount onedrive: /content/onedrive &")
pass
det_periodic_checkpointer.step(iteration)
segm_periodic_checkpointer.step(iteration)
for mode in ["segm", "det"]:
last_wts_path = os.path.join(cfg.OUTPUT_DIR, mode, "model_{:07d}.pth".format(iteration-cfg.SOLVER.CHECKPOINT_PERIOD))
if os.path.exists(last_wts_path):
os.remove(last_wts_path)
if ((iteration + 1) % switch_iter == 0):
now_AP = do_test(cfg, model, True if global_cfg.GLOBAL.TRAIN_MASK else False)
if not global_cfg.GLOBAL.TRAIN_MASK:
if now_AP > best_bbox_AP:
best_bbox_AP = now_AP
det_best_wts = {k: v for k, v in model.state_dict().items() if not k.startswith("roi_heads.mask")}
torch.save({"model": det_best_wts,
"AP": now_AP,
"iteration": iteration + 1},
os.path.join(cfg.OUTPUT_DIR, "det_best_wts.pth"))
logger.info("Best [det] weights are saved with AP = [{:0.4f}]".format(best_bbox_AP))
else:
if now_AP > best_segm_AP:
best_segm_AP = now_AP
segm_best_wts = {k: v for k, v in model.state_dict().items() if k.startswith("roi_heads.mask")}
torch.save({"model": segm_best_wts,
"AP": now_AP,
"iteration": iteration + 1},
os.path.join(cfg.OUTPUT_DIR, "segm_best_wts.pth"))
logger.info("Best [segm] weights are saved with AP = [{:0.4f}]".format(best_segm_AP))
comm.synchronize()
if cfg.SOLVER.LOAD_BEST:
best_wts = det_best_wts
best_wts.update(segm_best_wts)
model.load_state_dict(best_wts)
if not global_cfg.GLOBAL.TRAIN_MASK:
det_iter -= 1
else:
segm_iter -= 1
if pretrain_iter > 0 and iteration == pretrain_iter - 1:
pretrain_iter = 0
logger.info("Iterations for pretraining detection section is complete!")
break
if iteration == max_iter - 1:
logger.info("Training all sections is complete!")
break
prev_iter = next_iter
next_iter += switch_iter
global_cfg.GLOBAL.TRAIN_MASK = not global_cfg.GLOBAL.TRAIN_MASK