-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpreprocessing.R
143 lines (103 loc) · 4.02 KB
/
preprocessing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# [email protected]; July 28th, 2023
library(gdata)
library(plyr)
library(mgm)
library(qgraph)
library(huge)
# Data obtained from: https://www.bundestag.de/bundestag/plenum/abstimmung
# Time Period: 26.11.2014 - 14.04.2016
##### Part 1 - Recover the data #####
## get title data (titles and dates of all bills collected in one file)
# !!! SET WORKING DIRECTORY !!!
titles <- read.table('file_and_vote.csv', sep=',', header=TRUE)
## get voting data (downloaded from above URL)
# !!! SET WORKING DIRECTORY / data !!!
files <- list.files('Data')
files <- files[grepl('.xls',files)]
# prepare windows batch code for xls to csv conversion
win_batch <- list()
for(i in 1:length(files)) {
win_batch[[i]] <- paste0('XlstoCsv ', files[i], ' ', substr(files[i], 1, nchar(files[i])-4), '.csv')
}
win_batch_coll <- paste0(win_batch)
write(win_batch_coll, file='winbatch_ex.cmd') # execute in windows, has to be in same folder as data
# (any other way to convert xls to csv is also fine ...)
# load data from csv
files2 <- list.files(getwd())
files_csv <- files2[grepl('.csv', files2)]
library(readr)
vote_data <- list()
for(i in 1:length(files_csv)) {
vote_data[[i]] <- read_csv(files_csv[i])
}
##### Part 2 - Transform Data #####
# three data parts:
# a) mapping person <-> Fraktion
# b) voting id <-> title
# c) voting id <-> voting behavior
## a) Person, Id, Fraktion
list_conform <- list()
for(i in 1:length(vote_data)) {
list_conform[[i]] <- vote_data[[i]][,names(vote_data[[i]])!='AbgNr'] # necessary because in some datafiles we have the additional column
}
df_comb <- do.call(rbind, list_conform)
colnames(df_comb)[11] <- 'ungultig'
person_table <- ddply(df_comb, c('Name', 'Vorname'), function(x) return(as.character(x[1,4])))
colnames(person_table)[3] <- c('Fraktion')
person_table <- person_table[order(person_table$Name),] # order by surname
# Clean Party Names
grouping <- person_table$Fraktion
grouping[grouping=="DIE LINKE."] <- "DIE LINKE"
grouping[grouping==grouping[657]] <- "B90/GRUENE"
person_table$Fraktion <- grouping
# Deal with Germain umlauts
name_new1 <- gsub('\xf6', 'oe', person_table$Name)
name_new2 <- gsub('\xe4', 'ae', name_new1)
name_new3 <- gsub('\xfc', 'ue', name_new2)
name_new4 <- gsub('\xd6', 'Oe', name_new3)
name_new5 <- gsub('\xdc', 'Ue', name_new4)
name_new6 <- gsub('\xdf', 'ss', name_new5)
person_table$Name <- name_new6
vname_new1 <- gsub('\xf6', 'oe', person_table$Vorname)
vname_new2 <- gsub('\xe4', 'ae', vname_new1)
vname_new3 <- gsub('\xfc', 'ue', vname_new2)
vname_new4 <- gsub('\xd6', 'Oe', vname_new3)
vname_new5 <- gsub('\xdc', 'Ue', vname_new4)
vname_new6 <- gsub('\xdf', 'ss', vname_new5)
person_table$Vorname <- vname_new6
## b) Vote, Vote title
makeDate <- paste(substr(titles$File, 1,4), substr(titles$File, 5,6), substr(titles$File, 7,8), sep='-')
dates <- as.Date(makeDate, format="%Y-%m-%d")
titles$dates <- dates
titles$days <- dates-dates[1] # get effective time vector
## c) Voting behavior
# Coding:
# 1 = ja (yes)
# 2 = nein (no)
# 3 = enthaltung (abstention from vote)
# 4 = ungueltig (not valid)
# 5 = not present (not present)
unique_votes <- unique(paste(df_comb$Wahlperiode, df_comb$Sitzungnr, df_comb$Abstimmnr, sep = '_'))
unique_persons <- unique(paste(person_table$Name, person_table$Vorname, sep = '_'))
# storage
vote_table <- matrix(NA, length(unique_votes), nrow(person_table))
for(p in 1:length(unique_persons)) {
print(p)
# subset person
s_p <- subset(df_comb, Name==person_table$Name[p] & Vorname==person_table$Vorname[p])
for(v in 1:length(unique_votes)) {
vote <- s_p[paste(s_p$Wahlperiode, s_p$Sitzungnr, s_p$Abstimmnr, sep = '_')==unique_votes[v],]
if(nrow(vote)==0) next
resp <- NA
if(vote$ja==1) resp <- 1
if(vote$nein==1) resp <- 2
if(vote$Enthaltung==1) resp <- 3
if(vote$ungultig==1) resp <- 4
if(vote$nichtabgegeben==1) resp <- 5
vote_table[v,p] <- resp
}
}
# save all preprocessed data
saveRDS(vote_table, file='Data_vote.X.person.RDS')
saveRDS(person_table, file='Data_persons.RDS')
saveRDS(titles, file='Data_votes.RDS')