diff --git a/README_ch.md b/README_ch.md index 6df17b6..6592500 100644 --- a/README_ch.md +++ b/README_ch.md @@ -94,6 +94,7 @@ * [Hopper: 建模检测横向移动](https://arxiv.org/pdf/2105.13442.pdf1) * [通过强化学习寻找有效的安全策略](https://arxiv.org/abs/2009.08120) * [利用最优停止理论进行入侵防御](https://arxiv.org/abs/2111.00289) +* [网络风险管理:AI 生成的威胁](https://stacks.stanford.edu/file/druid:mw190gm2975/faberSubmission-augmented.pdf) ## [↑](#table-of-contents) 书籍 @@ -156,8 +157,9 @@ ## [↑](#table-of-contents) 教程 -* [基于机器学习的密码强度分类](http://fsecurify.com/machine-learning-based-password-strength-checking/) -* [应用机器学习在检测恶意 URL](http://fsecurify.com/using-machine-learning-detect-malicious-urls/) +* [基于机器学习的密码强度分类](http://web.archive.org/web/20170606022743/http://fsecurify.com/machine-learning-based-password-strength-checking/) +* [使用机器学习分类捕获数据包](https://medium.com/@siddharthsatpathy.ss/introducing-flowmeter-97e0507862b6) +* [应用机器学习在检测恶意 URL](http://web.archive.org/web/20170514093208/http://fsecurify.com/using-machine-learning-detect-malicious-urls/) * [使用深度学习突破验证码](https://deepmlblog.wordpress.com/2016/01/03/how-to-break-a-captcha-system/) * [网络安全与入侵检测中的数据挖掘](https://www.r-bloggers.com/data-mining-for-network-security-and-intrusion-detection/) * [应用机器学习提高入侵检测系统](https://securityintelligence.com/applying-machine-learning-to-improve-your-intrusion-detection-system/) @@ -192,7 +194,8 @@ ## [↑](#table-of-contents) 杂项 * [使用人类专家的输入对网络攻击达到 85% 的预测系统](http://news.mit.edu/2016/ai-system-predicts-85-percent-cyber-attacks-using-input-human-experts-0418) -* [使用机器学习的网络安全项目开源列表](http://www.mlsecproject.org/#open-source-projects) +* [根据包头对数据包分类的机器学习工具](https://github.com/deepfence/FlowMeter) +* [使用机器学习的网络安全项目开源列表](http://www.mlsec.org/) * [关于机器学习和安全的源码](https://github.com/13o-bbr-bbq/machine_learning_security) * [精通渗透测试中的机器学习源码](https://github.com/PacktPublishing/Mastering-Machine-Learning-for-Penetration-Testing) * [用于分析渗透测试的 CNN](https://github.com/BishopFox/eyeballer)