-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinference.py
370 lines (303 loc) · 15.5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import argparse
from PIL import Image, ImageDraw
from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
import os
from transformers import CLIPProcessor, CLIPModel
from copy import deepcopy
import torch
from ldm.util import instantiate_from_config
from trainer import read_official_ckpt, batch_to_device
import numpy as np
import clip
from scipy.io import loadmat
from functools import partial
import torchvision.transforms.functional as F
import torchvision.transforms.functional as TF
import torchvision.transforms as transforms
# device = "cpu"
device = "cuda"
clip_text_feature_dict = dict()
def load_clip_text_cache(device):
clip_text_feature_dict = torch.load('../clip_phrases_feature_cache.pth', map_location=device)
return clip_text_feature_dict
def set_alpha_scale(model, alpha_scale):
from ldm.modules.attention import GatedCrossAttentionDense, GatedSelfAttentionDense
for module in model.modules():
if type(module) == GatedCrossAttentionDense or type(module) == GatedSelfAttentionDense:
module.scale = alpha_scale
def alpha_generator(length, type=None):
"""
length is total timestpes needed for sampling.
type should be a list containing three values which sum should be 1
It means the percentage of three stages:
alpha=1 stage
linear deacy stage
alpha=0 stage.
For example if length=100, type=[0.8,0.1,0.1]
then the first 800 stpes, alpha will be 1, and then linearly decay to 0 in the next 100 steps,
and the last 100 stpes are 0.
"""
if type == None:
type = [1, 0, 0]
assert len(type) == 3
assert type[0] + type[1] + type[2] == 1
stage0_length = int(type[0] * length)
stage1_length = int(type[1] * length)
stage2_length = length - stage0_length - stage1_length
if stage1_length != 0:
decay_alphas = np.arange(start=0, stop=1, step=1 / stage1_length)[::-1]
decay_alphas = list(decay_alphas)
else:
decay_alphas = []
alphas = [1] * stage0_length + decay_alphas + [0] * stage2_length
assert len(alphas) == length
return alphas
def load_ckpt(ckpt_path):
saved_ckpt = torch.load(ckpt_path, map_location=device)
config = saved_ckpt["config_dict"]["_content"]
config['text_encoder'].update({
'params': {
'device': device
}
})
model = instantiate_from_config(config['model']).to(device).eval()
autoencoder = instantiate_from_config(config['autoencoder']).to(device).eval()
text_encoder = instantiate_from_config(config['text_encoder']).to(device).eval()
diffusion = instantiate_from_config(config['diffusion']).to(device)
# donot need to load official_ckpt for self.model here, since we will load from our ckpt
model.load_state_dict(saved_ckpt['model'])
autoencoder.load_state_dict(saved_ckpt["autoencoder"])
text_encoder.load_state_dict(saved_ckpt["text_encoder"])
diffusion.load_state_dict(saved_ckpt["diffusion"])
return model, autoencoder, text_encoder, diffusion, config
def project(x, projection_matrix):
"""
x (Batch*768) should be the penultimate feature of CLIP (before projection)
projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
defined in CLIP (out_dim, in_dim), thus we need to apply transpose below.
this function will return the CLIP feature (without normalziation)
"""
return x @ torch.transpose(projection_matrix, 0, 1)
def get_clip_feature(model, processor, input, is_image=False, device=device):
which_layer_text = 'before'
which_layer_image = 'after_reproject'
if is_image:
if input == None:
return None
image = Image.open(input).convert("RGB")
inputs = processor(images=[image], return_tensors="pt", padding=True)
inputs['pixel_values'] = inputs['pixel_values'].to(device) # we use our own preprocessing without center_crop
inputs['input_ids'] = torch.tensor([[0, 1, 2, 3]]).to(device) # placeholder
outputs = model(**inputs)
feature = outputs.image_embeds
if which_layer_image == 'after_reproject':
feature = project(feature, torch.load('projection_matrix').to(device).T).squeeze(0)
feature = (feature / feature.norm()) * 28.7
feature = feature.unsqueeze(0)
else:
if input == None:
return None
if input not in clip_text_feature_dict:
print(f"CLIP feature for phrase {input} not found, creating")
inputs = processor(text=input, return_tensors="pt", padding=True)
inputs['input_ids'] = inputs['input_ids'].to(device)
inputs['pixel_values'] = torch.ones(1, 3, 224, 224).to(device) # placeholder
inputs['attention_mask'] = inputs['attention_mask'].to(device)
outputs = model(**inputs)
if which_layer_text == 'before':
feature = outputs.text_model_output.pooler_output
clip_text_feature_dict[input] = feature
else:
feature = clip_text_feature_dict[input]
return feature
def complete_mask(has_mask, max_objs):
mask = torch.ones(1, max_objs)
if has_mask == None:
return mask
if type(has_mask) == int or type(has_mask) == float:
return mask * has_mask
else:
for idx, value in enumerate(has_mask):
mask[0, idx] = value
return mask
@torch.no_grad()
def prepare_batch(meta, batch=1, max_objs=30, model=None, processor=None, device=device, half=False):
subject_phrases, subject_images = meta.get("subject_phrases"), meta.get("subject_images")
subject_images = [None] * len(subject_phrases) if subject_images is None else subject_images
subject_phrases = [None] * len(subject_images) if subject_phrases is None else subject_phrases
object_phrases, object_images = meta.get("object_phrases"), meta.get("object_images")
object_images = [None] * len(object_phrases) if object_images is None else object_images
object_phrases = [None] * len(object_images) if object_phrases is None else object_phrases
action_phrases, action_images = meta.get("action_phrases"), meta.get("action_images")
action_images = [None] * len(action_phrases) if action_images is None else action_images
action_phrases = [None] * len(action_images) if action_phrases is None else action_phrases
version = "openai/clip-vit-large-patch14"
model = CLIPModel.from_pretrained(version).to(device) if model is None else model
processor = CLIPProcessor.from_pretrained(version) if processor is None else processor
subject_boxes = torch.zeros(max_objs, 4)
object_boxes = torch.zeros(max_objs, 4)
masks = torch.zeros(max_objs)
text_masks = torch.zeros(max_objs)
image_masks = torch.zeros(max_objs)
subject_text_embeddings = torch.zeros(max_objs, 768)
subject_image_embeddings = torch.zeros(max_objs, 768)
object_text_embeddings = torch.zeros(max_objs, 768)
object_image_embeddings = torch.zeros(max_objs, 768)
action_text_embeddings = torch.zeros(max_objs, 768)
action_image_embeddings = torch.zeros(max_objs, 768)
subject_text_features = []
subject_image_features = []
object_text_features = []
object_image_features = []
action_text_features = []
action_image_features = []
for subject_phrase, subject_image, object_phrase, object_image, action_phrase, action_image \
in zip(subject_phrases, subject_images, object_phrases, object_images, action_phrases, action_images):
subject_text_features.append(get_clip_feature(model, processor, subject_phrase, is_image=False, device=device))
subject_image_features.append(get_clip_feature(model, processor, subject_image, is_image=True, device=device))
object_text_features.append(get_clip_feature(model, processor, object_phrase, is_image=False, device=device))
object_image_features.append(get_clip_feature(model, processor, object_image, is_image=True, device=device))
action_text_features.append(get_clip_feature(model, processor, action_phrase, is_image=False, device=device))
action_image_features.append(get_clip_feature(model, processor, action_image, is_image=True, device=device))
for idx, (subject_box, object_box,
subject_text_feature, subject_image_feature,
object_text_feature, object_image_feature,
action_text_feature, action_image_feature,) \
in enumerate(zip(meta['subject_boxes'], meta['object_boxes'],
subject_text_features, subject_image_features,
object_text_features, object_image_features,
action_text_features, action_image_features)):
if idx >= max_objs: # no more than max_obj
break
subject_boxes[idx] = torch.tensor(subject_box)
object_boxes[idx] = torch.tensor(object_box)
masks[idx] = 1
if subject_text_feature is not None:
subject_text_embeddings[idx] = subject_text_feature
object_text_embeddings[idx] = object_text_feature
action_text_embeddings[idx] = action_text_feature
text_masks[idx] = 1
if subject_image_feature is not None:
subject_image_embeddings[idx] = subject_image_feature
object_image_embeddings[idx] = object_image_feature
action_image_embeddings[idx] = action_image_feature
image_masks[idx] = 1
if half:
subject_boxes = subject_boxes.half()
object_boxes = object_boxes.half()
masks = masks.half()
subject_text_embeddings = subject_text_embeddings.half()
object_text_embeddings = object_text_embeddings.half()
action_text_embeddings = action_text_embeddings.half()
out = {
"subject_boxes": subject_boxes.unsqueeze(0).repeat(batch, 1, 1),
"object_boxes": object_boxes.unsqueeze(0).repeat(batch, 1, 1),
"masks": masks.unsqueeze(0).repeat(batch, 1),
"text_masks": text_masks.unsqueeze(0).repeat(batch, 1) * complete_mask(meta.get("text_mask"), max_objs),
"image_masks": image_masks.unsqueeze(0).repeat(batch, 1) * complete_mask(meta.get("image_mask"), max_objs),
"subject_text_embeddings": subject_text_embeddings.unsqueeze(0).repeat(batch, 1, 1),
"subject_image_embeddings": subject_image_embeddings.unsqueeze(0).repeat(batch, 1, 1),
"object_text_embeddings": object_text_embeddings.unsqueeze(0).repeat(batch, 1, 1),
"object_image_embeddings": object_image_embeddings.unsqueeze(0).repeat(batch, 1, 1),
"action_text_embeddings": action_text_embeddings.unsqueeze(0).repeat(batch, 1, 1),
"action_image_embeddings": action_image_embeddings.unsqueeze(0).repeat(batch, 1, 1),
}
return batch_to_device(out, device)
def crop_and_resize(image):
crop_size = min(image.size)
image = TF.center_crop(image, crop_size)
image = image.resize((512, 512))
return image
@torch.no_grad()
def run(meta, config, starting_noise=None):
# - - - - - prepare models - - - - - #
model, autoencoder, text_encoder, diffusion, config = load_ckpt(meta["ckpt"])
grounding_tokenizer_input = instantiate_from_config(config['grounding_tokenizer_input'])
model.grounding_tokenizer_input = grounding_tokenizer_input
grounding_downsampler_input = None
if "grounding_downsampler_input" in config:
grounding_downsampler_input = instantiate_from_config(config['grounding_downsampler_input'])
# - - - - - update config from args - - - - - #
config.update(vars(args))
config = OmegaConf.create(config)
# - - - - - prepare batch - - - - - #
batch = prepare_batch(meta, config.batch_size)
# - - - - - generate prompt context - - - - - #
context = text_encoder.encode([meta["prompt"]] * config.batch_size)
uc = text_encoder.encode(config.batch_size * [""])
if args.negative_prompt is not None:
uc = text_encoder.encode(config.batch_size * [args.negative_prompt])
# - - - - - sampler - - - - - #
alpha_generator_func = partial(alpha_generator, type=meta.get("alpha_type"))
if config.no_plms:
sampler = DDIMSampler(diffusion, model, alpha_generator_func=alpha_generator_func,
set_alpha_scale=set_alpha_scale)
steps = 250
else:
sampler = PLMSSampler(diffusion, model, alpha_generator_func=alpha_generator_func,
set_alpha_scale=set_alpha_scale)
steps = 50
# - - - - - inpainting related - - - - - #
inpainting_mask = z0 = None # used for replacing known region in diffusion process
inpainting_extra_input = None # used as model input
# - - - - - input for interactdiffusion - - - - - #
grounding_input = grounding_tokenizer_input.prepare(batch)
grounding_extra_input = None
if grounding_downsampler_input != None:
grounding_extra_input = grounding_downsampler_input.prepare(batch)
input = dict(
x=starting_noise,
timesteps=None,
context=context,
grounding_input=grounding_input,
inpainting_extra_input=inpainting_extra_input,
grounding_extra_input=grounding_extra_input,
)
# - - - - - start sampling - - - - - #
shape = (config.batch_size, model.in_channels, model.image_size, model.image_size)
samples_fake = sampler.sample(S=steps, shape=shape, input=input, uc=uc, guidance_scale=config.guidance_scale,
mask=inpainting_mask, x0=z0)
samples_fake = autoencoder.decode(samples_fake)
# - - - - - save - - - - - #
output_folder = os.path.join(args.folder, meta["save_folder_name"])
os.makedirs(output_folder, exist_ok=True)
start = len(os.listdir(output_folder))
image_ids = list(range(start, start + config.batch_size))
print(image_ids)
for image_id, sample in zip(image_ids, samples_fake):
img_name = str(int(image_id)) + '.png'
sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
sample = sample.cpu().numpy().transpose(1, 2, 0) * 255
sample = Image.fromarray(sample.astype(np.uint8))
sample.save(os.path.join(output_folder, img_name))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--folder", type=str, default="generation_samples", help="root folder for output")
parser.add_argument("--batch_size", type=int, default=2, help="")
parser.add_argument("--no_plms", action='store_true', help="use DDIM instead. WARNING: I did not test the code yet")
parser.add_argument("--guidance_scale", type=float, default=7.5, help="")
parser.add_argument("--negative_prompt", type=str,
default='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality',
help="")
# parser.add_argument("--negative_prompt", type=str, default=None, help="")
args = parser.parse_args()
clip_text_feature_dict = load_clip_text_cache(device)
meta_list = [
dict(
ckpt="ckpt.pth",
prompt="a person is feeding a cat",
subject_phrases=['person'],
object_phrases=['cat'],
action_phrases=['feeding'],
subject_boxes=[[0.0332, 0.1660, 0.3359, 0.7305]],
object_boxes=[[0.2891, 0.4766, 0.6680, 0.7930]],
alpha_type=[0.9, 0.0, 0.1],
save_folder_name="generation_hoi"
),
]
starting_noise = torch.randn(args.batch_size, 4, 64, 64).to(device)
starting_noise = None
for meta in meta_list:
run(meta, args, starting_noise)