forked from explosion/prodigy-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
281 lines (232 loc) · 8.63 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# coding: utf8
from __future__ import unicode_literals
import pytest
import tempfile
import shutil
from pathlib import Path
from contextlib import contextmanager
from prodigy.components.db import connect
from prodigy.util import write_jsonl, INPUT_HASH_ATTR, TASK_HASH_ATTR
from prodigy.models.ner import merge_spans
from spacy.language import Language
from spacy.lang.en import English
from ner.ner_teach import ner_teach
from ner.ner_match import ner_match
from ner.ner_manual import ner_manual
from ner.ner_correct import ner_correct
from ner.ner_silver_to_gold import ner_silver_to_gold
from ner.ner_eval_ab import ner_eval_ab
from textcat.textcat_teach import textcat_teach
from textcat.textcat_custom_model import textcat_custom_model
from textcat.textcat_manual import textcat_manual
from textcat.textcat_correct import textcat_correct
from terms.terms_teach import terms_teach
from image.image_manual import image_manual
from other.mark import mark
from other.choice import choice
@pytest.fixture()
def dataset():
return False
@pytest.fixture
def spacy_model():
return 'en_core_web_sm'
@pytest.fixture
@Language.component("dummy_textcat")
def dummy_textcat_pipe(doc):
if doc == 'This is a text about David Bowie':
doc.cats = {"PERSON": 1.0, "ORG": 0.0}
elif doc =='Apple makes iPhones':
doc.cats = {"PERSON": 0.0, "ORG": 1.0}
else:
doc.cats = {"PERSON": 0.0, "ORG": 0.0}
return doc
@pytest.fixture(scope="session")
def nlp():
return English()
@pytest.fixture
def vectors():
return 'en_core_web_md'
@pytest.fixture
def labels():
return ['PERSON', 'ORG']
@pytest.fixture()
def source():
texts = ['This is a text about David Bowie', 'Apple makes iPhones']
examples = [{'text': text} for text in texts]
_, tmp_file = tempfile.mkstemp()
write_jsonl(tmp_file, examples)
return tmp_file
@pytest.fixture()
def patterns():
examples = [{'label': 'PERSON', 'pattern': 'David Bowie'},
{'label': 'ORG', 'pattern': [{'lower': 'apple'}]}]
_, tmp_file = tempfile.mkstemp()
write_jsonl(tmp_file, examples)
return tmp_file
@contextmanager
def tmp_dataset(name, examples=[]):
DB = connect()
DB.add_dataset(name)
DB.add_examples(examples, datasets=[name])
yield examples
DB.drop_dataset(name)
@contextmanager
def make_tmpdir():
d = Path(tempfile.mkdtemp())
try:
yield d
finally:
shutil.rmtree(d)
def test_ner_teach(dataset, spacy_model, source, labels, patterns):
recipe = ner_teach(dataset, spacy_model, source, labels, patterns)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner'
assert recipe['dataset'] == dataset
assert len(stream) == 5
assert 'spans' in stream[0]
assert 'tokens' in stream[0]
assert 'meta' in stream[0]
assert 'score' in stream[0]['meta']
def test_ner_match(dataset, spacy_model, source, patterns):
recipe = ner_match(dataset, spacy_model, source, patterns)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'spans' in stream[0]
assert len(stream[0]['spans']) == 1
assert stream[0]['spans'][0]['label'] == 'PERSON'
assert 'spans' in stream[1]
assert len(stream[1]['spans']) == 1
assert stream[1]['spans'][0]['label'] == 'ORG'
def test_ner_manual(dataset, spacy_model, source, labels):
recipe = ner_manual(dataset, spacy_model, source, labels)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner_manual'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'tokens' in stream[0]
assert 'tokens' in stream[1]
def test_ner_correct(dataset, spacy_model, source, labels):
recipe = ner_correct(dataset, spacy_model, source, labels)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner_manual'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'spans' in stream[0]
assert 'tokens' in stream[0]
def test_ner_silver_to_gold(dataset, spacy_model):
silver_dataset = '__test_ner_silver_to_gold__'
silver_examples = [
{
INPUT_HASH_ATTR: 1,
TASK_HASH_ATTR: 11,
'text': 'Hello world',
'answer': 'accept',
'spans': [{'start': 0, 'end': 5, 'label': 'PERSON'}]
},
{
INPUT_HASH_ATTR: 1,
TASK_HASH_ATTR: 12,
'text': 'Hello world',
'answer': 'reject',
'spans': [{'start': 6, 'end': 11, 'label': 'PERSON'}]
},
{
INPUT_HASH_ATTR: 2,
TASK_HASH_ATTR: 21,
'text': 'This is a test',
'answer': 'reject',
'spans': [{'start': 5, 'end': 7, 'label': 'ORG'}]
}
]
with tmp_dataset(silver_dataset, silver_examples):
recipe = ner_silver_to_gold(silver_dataset, dataset, spacy_model)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner_manual'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert stream[0]['text'] == 'Hello world'
assert 'tokens' in stream[0]
assert stream[1]['text'] == 'This is a test'
assert 'tokens' in stream[1]
def test_ner_eval_ab(dataset, spacy_model, source):
recipe = ner_eval_ab(dataset, spacy_model, "blank:en", source, ["ORG"])
stream = list(recipe['stream'])
print(stream[0])
assert stream[0]["A"]["spans"][0]["label"] == "ORG"
assert len(stream[0]["B"]["spans"]) == 0
assert len(stream[0]["options"]) == 2
assert hasattr(recipe['on_exit'], '__call__')
def test_textcat_teach(dataset, spacy_model, source, labels, patterns):
recipe = textcat_teach(dataset, spacy_model, source, labels, patterns)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'classification'
assert recipe['dataset'] == dataset
assert len(stream) >= 2
assert 'label' in stream[0]
assert 'meta' in stream[0]
assert 'score' in stream[0]['meta']
def test_textcat_custom_model(dataset, source, labels):
recipe = textcat_custom_model(dataset, source, labels)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'classification'
assert recipe['dataset'] == dataset
assert len(stream) >= 1
assert 'label' in stream[0]
def test_textcat_manual(dataset, source, labels):
recipe = textcat_manual(dataset, source, labels)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'choice'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'options' in stream[0]
def test_textcat_correct(dataset, nlp, source, labels):
component = "dummy_textcat"
dummy_textcat_component = nlp.add_pipe(component)
with make_tmpdir() as tempdir:
nlp.to_disk(tempdir)
recipe = textcat_correct(dataset, tempdir, source, labels, False, None, 0.5, component)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'choice'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'options' in stream[0]
assert 'options' in stream[1]
def test_terms_teach(dataset, vectors):
seeds = ['cat', 'dog', 'mouse']
recipe = terms_teach(dataset, vectors, seeds)
assert recipe['view_id'] == 'text'
assert recipe['dataset'] == dataset
def test_image_manual(dataset):
img_dir = tempfile.mkdtemp()
img1 = tempfile.NamedTemporaryFile(dir=img_dir, prefix='1', suffix='.jpg')
img2 = tempfile.NamedTemporaryFile(dir=img_dir, prefix='2', suffix='.png')
no_img = tempfile.NamedTemporaryFile(dir=img_dir, prefix='3', suffix='.txt')
recipe = image_manual(dataset, img_dir, ['PERSON', 'DOG', 'CAT'])
stream = list(recipe['stream'])
assert recipe['view_id'] == 'image_manual'
assert recipe['dataset'] == dataset
assert len(stream) == 2
def test_mark(dataset, source):
view_id = 'text'
recipe = mark(dataset, source, view_id)
stream = list(recipe['stream'])
assert recipe['view_id'] == view_id
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert hasattr(recipe['update'], '__call__')
assert hasattr(recipe['on_load'], '__call__')
assert hasattr(recipe['on_exit'], '__call__')
def test_choice(dataset, source):
options = ['OPTION_A', 'OPTION_B', 'OPTION_C']
recipe = choice(dataset, source, options)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'choice'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'options' in stream[0]
assert len(stream[0]['options']) == 3
assert stream[0]['options'][0]['id'] == 'OPTION_A'
assert recipe['config']['choice_style'] == 'single'
assert recipe['config']['choice_auto_accept']