forked from explosion/prodigy-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_frozen_model.py
233 lines (204 loc) · 7.78 KB
/
image_frozen_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# coding: utf8
from __future__ import unicode_literals, print_function
import tensorflow as tf
import numpy as np
import copy
import io
from PIL import Image
from time import time
from prodigy.components.loaders import get_stream
from prodigy.components.preprocess import fetch_images
from prodigy.core import recipe, recipe_args
from prodigy.util import log, b64_uri_to_bytes, split_string
from object_detection.utils import label_map_util
detection_graph = None
sess = None
@recipe(
"image.frozenmodel",
dataset=recipe_args["dataset"],
frozen_model_path=("Path to frozen_model.pb", "positional", None, str),
label_map_path=("Path to label_map.pbtxt", "positional", None, str),
source=recipe_args["source"],
threshold=("Score threshold", "option", "t", float, None, 0.5),
api=recipe_args["api"],
exclude=recipe_args["exclude"],
use_display_name=("Whether to use display_name in label_map.pbtxt",
"flag", "D", bool),
label=(("One or more comma-separated labels. "
"If not given inferred from labelmap"),
"option", "l", split_string, None, None),
)
def image_tfodapimodel(dataset,
frozen_model_path,
label_map_path,
source=None,
threshold=0.5,
api=None,
exclude=None,
use_display_name=False,
label=None
):
log("RECIPE: Starting recipe image.tfodapimodel", locals())
log("RECIPE: Loading frozen model")
global detection_graph
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(frozen_model_path, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
global sess
sess = tf.Session(graph=detection_graph)
log("RECIPE: Loaded frozen model")
# key class names
reverse_class_mapping_dict = label_map_util.get_label_map_dict(
label_map_path=label_map_path,
use_display_name=use_display_name
)
if label is None:
label = [k for k in reverse_class_mapping_dict.keys()]
# key int
class_mapping_dict = {v: k for k, v in reverse_class_mapping_dict.items()}
stream = get_stream(source, api=api, loader="images", input_key="image")
stream = fetch_images(stream)
return {
"view_id": "image_manual",
"dataset": dataset,
"stream": get_image_stream(stream, class_mapping_dict,
float(threshold)),
"exclude": exclude,
"on_exit": free_graph,
'config': {
'label': ', '.join(label) if label is not None else 'all',
'labels': label, # Selectable label options,
}
}
def get_image_stream(stream, class_mapping_dict, thresh):
"""Function that gets the image stream with bounding box information
Arguments:
stream (iterable): input image image stream
class_mapping_dict (dict): with key as int and value as class name
thresh (float): score threshold for predictions
Returns:
A generator that constantly yields a prodigy task
"""
for eg in stream:
if not eg["image"].startswith("data"):
msg = "Expected base64-encoded data URI, but got: '{}'."
raise ValueError(msg.format(eg["image"][:100]))
pil_image = Image.open(io.BytesIO(b64_uri_to_bytes(eg["image"])))
pil_image = preprocess_pil_image(pil_image)
np_image = np.array(pil_image)
predictions = get_predictions(np_image, class_mapping_dict)
eg["width"] = pil_image.width
eg["height"] = pil_image.height
eg["spans"] = [get_span(pred, pil_image) for pred in
zip(*predictions) if pred[2] >= thresh]
task = copy.deepcopy(eg)
yield task
def preprocess_pil_image(pil_img, color_mode='rgb', target_size=None):
"""Preprocesses the PIL image
Arguments
img: PIL Image
color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb".
The desired image format.
target_size: Either `None` (default to original size)
or tuple of ints `(img_height, img_width)`.
Returns
Preprocessed PIL image
"""
if color_mode == 'grayscale':
if pil_img.mode != 'L':
pil_img = pil_img.convert('L')
elif color_mode == 'rgba':
if pil_img.mode != 'RGBA':
pil_img = pil_img.convert('RGBA')
elif color_mode == 'rgb':
if pil_img.mode != 'RGB':
pil_img = pil_img.convert('RGB')
else:
raise ValueError('color_mode must be "grayscale", "rgb", or "rgba"')
if target_size is not None:
width_height_tuple = (target_size[1], target_size[0])
if pil_img.size != width_height_tuple:
pil_img = pil_img.resize(width_height_tuple, Image.NEAREST)
return pil_img
def get_predictions(numpy_image, class_mapping_dict):
"""Gets predictions for a single image using Frozen Model
Arguments:
numpy_image (np.ndarray): A single numpy image
class_mapping_dict (dict): with key as int and value as class name
Returns:
A tuple containing numpy arrays:
(class_ids, class_names, scores, boxes)
"""
global detection_graph
global sess
image_tensor = detection_graph.get_tensor_by_name(
'image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name(
'detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name(
'detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name(
'detection_classes:0')
num_detections = detection_graph.get_tensor_by_name(
'num_detections:0')
image_np_expanded = np.expand_dims(numpy_image, axis=0)
start_time = time()
(boxes, scores, class_ids, num) = sess.run(
[detection_boxes, detection_scores,
detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded}
)
log("time taken for image shape {} is {} secs".format(numpy_image.shape,
time()-start_time))
boxes = np.squeeze(boxes)
class_ids = np.squeeze(class_ids).astype(np.int32)
class_names = np.array([class_mapping_dict[class_id]
for class_id in class_ids])
scores = np.squeeze(scores)
return (class_ids, class_names, scores, boxes)
def get_span(prediction, pil_image, hidden=True):
"""Function which returns a prodigy span
Arguments:
prediction (iterable): containing one class_id, name, prob, box
pil_image (pil.Image): A PIL image
hidden (bool)
Returns:
A span (dict) with following keys:
score, label, label_id, points, hidden
"""
class_id, name, prob, box = prediction
name = str(name, "utf8") if not isinstance(name, str) else name
image_width = pil_image.width
image_height = pil_image.height
# boxes are in normalized coordinates
# ymin, xmin, ymax, xmax
ymin, xmin, ymax, xmax = box
xmin = xmin*image_width
xmax = xmax*image_width
ymin = ymin*image_height
ymax = ymax*image_height
box_width = abs(xmax - xmin)
box_height = abs(ymax - ymin)
rel_points = [
[xmin, ymin],
[xmin, ymin+box_height],
[xmin+box_width, ymin+box_height],
[xmin+box_width, ymin]
]
return {
"score": prob,
"label": name,
"label_id": int(class_id),
"points": rel_points,
"hidden": hidden,
}
def free_graph(ctrl):
global detection_graph
tf.reset_default_graph()
global sess
sess.close()
del detection_graph