-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathwrapper.py
175 lines (137 loc) · 5.44 KB
/
wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import warnings, librosa
import numpy as np
from time import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
from model import train_audio_transforms, AcousticModel, BoundaryDetection
np.random.seed(7)
def preprocess_from_file(audio_file, lyrics_file, word_file=None):
y, sr = preprocess_audio(audio_file)
words, lyrics_p, idx_word_p, idx_line_p = preprocess_lyrics(lyrics_file, word_file)
return y, words, lyrics_p, idx_word_p, idx_line_p
def align(audio, words, lyrics_p, idx_word_p, idx_line_p, method="Baseline", cuda=True):
# start timer
t = time()
# constants
resolution = 256 / 22050 * 3
alpha = 0.8
# decode method
if "BDR" in method:
model_type = method[:-4]
bdr_flag = True
else:
model_type = method
bdr_flag = False
print("Model: {} BDR?: {}".format(model_type, bdr_flag))
# prepare acoustic model params
if model_type == "Baseline":
n_class = 41
elif model_type == "MTL":
n_class = (41, 47)
else:
ValueError("Invalid model type.")
hparams = {
"n_cnn_layers": 1,
"n_rnn_layers": 3,
"rnn_dim": 256,
"n_class": n_class,
"n_feats": 32,
"stride": 1,
"dropout": 0.1
}
device = 'cuda' if (cuda and torch.cuda.is_available()) else 'cpu'
ac_model = AcousticModel(
hparams['n_cnn_layers'], hparams['rnn_dim'], hparams['n_class'], \
hparams['n_feats'], hparams['stride'], hparams['dropout']
).to(device)
print("Loading acoustic model from checkpoint...")
state = utils.load_model(ac_model, "./checkpoints/checkpoint_{}".format(model_type), cuda=(device=="gpu"))
ac_model.eval()
print("Computing phoneme posteriorgram...")
# reshape input, prepare mel
x = audio.reshape(1, 1, -1)
x = utils.move_data_to_device(x, device)
x = x.squeeze(0)
x = x.squeeze(1)
x = train_audio_transforms.to(device)(x)
x = nn.utils.rnn.pad_sequence(x, batch_first=True).unsqueeze(1)
# predict
all_outputs = ac_model(x)
if model_type == "MTL":
all_outputs = torch.sum(all_outputs, dim=3)
all_outputs = F.log_softmax(all_outputs, dim=2)
batch_num, output_length, num_classes = all_outputs.shape
song_pred = all_outputs.data.cpu().numpy().reshape(-1, num_classes) # total_length, num_classes
total_length = int(audio.shape[1] / 22050 // resolution)
song_pred = song_pred[:total_length, :]
# smoothing
P_noise = np.random.uniform(low=1e-11, high=1e-10, size=song_pred.shape)
song_pred = np.log(np.exp(song_pred) + P_noise)
if bdr_flag:
# boundary model: fixed
bdr_hparams = {
"n_cnn_layers": 1,
"rnn_dim": 32, # a smaller rnn dim than acoustic model
"n_class": 1, # binary classification
"n_feats": 32,
"stride": 1,
"dropout": 0.1,
}
bdr_model = BoundaryDetection(
bdr_hparams['n_cnn_layers'], bdr_hparams['rnn_dim'], bdr_hparams['n_class'],
bdr_hparams['n_feats'], bdr_hparams['stride'], bdr_hparams['dropout']
).to(device)
print("Loading BDR model from checkpoint...")
state = utils.load_model(bdr_model, "./checkpoints/checkpoint_BDR", cuda=(device == "gpu"))
bdr_model.eval()
print("Computing boundary probability curve...")
# get boundary prob curve
bdr_outputs = bdr_model(x).data.cpu().numpy().reshape(-1)
# apply log
bdr_outputs = np.log(bdr_outputs) * alpha
line_start = [d[0] for d in idx_line_p]
# start alignment
print("Aligning...It might take a few minutes...")
word_align, score = utils.alignment_bdr(song_pred, lyrics_p, idx_word_p, bdr_outputs, line_start)
else:
# start alignment
print("Aligning...It might take a few minutes...")
word_align, score = utils.alignment(song_pred, lyrics_p, idx_word_p)
t = time() - t
print("Alignment Score:\t{}\tTime:\t{}".format(score, t))
return word_align, words
def preprocess_audio(audio_file, sr=22050):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
y, curr_sr = librosa.load(audio_file, sr=sr, mono=True, res_type='kaiser_fast')
if len(y.shape) == 1:
y = y[np.newaxis, :] # (channel, sample)
return y, curr_sr
def preprocess_lyrics(lyrics_file, word_file=None):
from string import ascii_lowercase
d = {ascii_lowercase[i]: i for i in range(26)}
d["'"] = 26
d[" "] = 27
d["~"] = 28
# process raw
with open(lyrics_file, 'r') as f:
raw_lines = f.read().splitlines()
raw_lines = ["".join([c for c in line.lower() if c in d.keys()]).strip() for line in raw_lines]
raw_lines = [" ".join(line.split()) for line in raw_lines if len(line) > 0]
# concat
full_lyrics = " ".join(raw_lines)
if word_file:
with open(word_file) as f:
words_lines = f.read().splitlines()
else:
words_lines = full_lyrics.split()
lyrics_p, words_p, idx_word_p, idx_line_p = utils.gen_phone_gt(words_lines, raw_lines)
return words_lines, lyrics_p, idx_word_p, idx_line_p
def write_csv(pred_file, word_align, words):
resolution = 256 / 22050 * 3
with open(pred_file, 'w') as f:
for j in range(len(word_align)):
word_time = word_align[j]
f.write("{},{},{}\n".format(word_time[0] * resolution, word_time[1] * resolution, words[j]))