forked from RuleWorld/mcellRules
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathread_mdl.py
351 lines (285 loc) · 13.1 KB
/
read_mdl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from __future__ import print_function
from grammar_definition import *
import sys
try:
from StringIO import StringIO
except ImportError:
from io import StringIO
import small_structures as st
import pprint
from subprocess import call
from collections import defaultdict
import write_bngxmle
import os
def eprint(*args, **kwargs):
'''
stderr printing
'''
print(*args, file=sys.stderr, **kwargs)
def process_parameters(statements):
pstr = StringIO()
pstr.write('begin parameters\n')
for parameter in statements:
if parameter[1][0] != '"':
temp_str = '\t{0} {1}\n'.format(parameter[0],parameter[1]).replace('/*', '#')
temp_str.replace('//', '#')
else:
continue
pstr.write(temp_str)
pstr.write('end parameters\n')
return pstr.getvalue()
def create_molecule_from_pattern(molecule_pattern, idx):
tmp_molecule = st.Molecule(molecule_pattern['moleculeName'], idx)
if 'moleculeCompartment' in molecule_pattern:
tmp_molecule.compartment = molecule_pattern['moleculeCompartment'][1]
if 'components' in molecule_pattern.keys():
for idx2, component in enumerate(molecule_pattern['components']):
tmp_component = st.Component(component['componentName'],'{0}_{1}'.format(idx,idx2))
if 'state' in component:
for state in component['state']:
if state != '':
tmp_component.addState(state)
if 'bond' in component.keys():
for bond in component['bond']:
tmp_component.addBond(bond)
tmp_molecule.addComponent(tmp_component)
return tmp_molecule
def create_species_from_pattern(speciesPattern):
tmp_species = st.Species()
if 'speciesCompartment' in speciesPattern.keys():
tmp_species.compartment = speciesPattern['speciesCompartment'][1]
for idx, element in enumerate(speciesPattern['speciesPattern']):
tmp_species.addMolecule(create_molecule_from_pattern(element, idx))
return tmp_species
def process_molecules(molecules):
mstr = StringIO()
molecule_list = []
mstr.write('begin molecule types\n')
for idx, molecule in enumerate(molecules):
tmp_molecule = create_molecule_from_pattern(molecule[0], idx)
molecule_list.append((tmp_molecule.name,str(tmp_molecule)))
mstr.write('\t{0}\n'.format(tmp_molecule.str2()))
mstr.write('end molecule types\n')
return mstr.getvalue(), molecule_list
def process_init_compartments(initializations):
sstr = StringIO()
cstr = StringIO()
sstr.write('begin seed species\n')
cstr.write('begin compartments\n')
for initialization in initializations:
#print initialization.keys()
if 'name' in initialization.keys():
tmp_species = None
initialConditions = 0
for entry in initialization['entries']:
if entry[0] == 'MOLECULE':
pattern = species_definition.parseString(entry[1])
tmp_species = create_species_from_pattern(pattern[0])
elif entry[0] in ['NUMBER_TO_RELEASE', 'CONCENTRATION']:
initialConditions = entry[1]
sstr.write('\t {0} {1}\n'.format(str(tmp_species),initialConditions))
else:
optionDict = {'parent': '', 'name': initialization['compartmentName']}
for option in initialization['compartmentOptions'][0]:
if len(option) > 0:
if option[0] == 'MEMBRANE':
tmp = option[1].strip()
optionDict['membrane'] = tmp.split(' ')[0]
elif option[0] == 'PARENT':
tmp = option[1].strip()
optionDict['parent'] = tmp
if 'membrane' in optionDict:
cstr.write('\t{0} 2 1 {1}\n'.format(optionDict['membrane'], optionDict['parent']))
cstr.write('\t{0} 3 1 {1}\n'.format(optionDict['name'], optionDict['membrane']))
else:
tmp = '{0} 3 1 {1}'.format(optionDict['name'], optionDict['parent'])
tmp = tmp.strip()
cstr.write('\t{0}\n'.format(tmp))
sstr.write('end seed species\n')
cstr.write('end compartments\n')
return sstr.getvalue(), cstr.getvalue()
def process_observables(observables):
ostr = StringIO()
ostr.write('begin observables\n')
for observable in observables:
if 'patterns' in observable.keys() and 'outputfile' in observable.keys():
tmpObservable = '\tMolecules '
tmpObservable += '{0} '.format(observable['outputfile'].split('/')[-1].split('.')[0])
patternList = []
for pattern in observable['patterns']:
patternList.append(str(create_species_from_pattern(pattern['speciesPattern'])))
tmpObservable += ', '.join(patternList)
ostr.write(tmpObservable + '\n')
elif 'obskey' in observable.keys():
tmpObservable = '\t{0} '.format(observable['obskey'])
tmpObservable += '{0} '.format(observable['obsname'])
patternList = []
for pattern in observable['obspatterns']:
patternList.append(str(create_species_from_pattern(pattern)))
tmpObservable += ', '.join(patternList)
ostr.write(tmpObservable + '\n')
ostr.write('end observables\n')
return ostr.getvalue()
def process_mtobservables(moleculeTypes):
'''
creates a list of observables from just molecule types
'''
ostr = StringIO()
raise Exception
ostr.write('begin observables\n')
for moleculeType in moleculeTypes:
ostr.write('\t Species {0} {1}\n'.format(moleculeType[0], moleculeType[1]))
ostr.write('end observables\n')
return ostr.getvalue()
def process_reaction_rules(rules):
rStr = StringIO()
rStr.write('begin reaction rules\n')
for rule in rules:
tmp_rule = st.Rule()
for pattern in rule['reactants']:
tmp_rule.addReactant(create_species_from_pattern(pattern))
for pattern in rule['products']:
tmp_rule.addProduct(create_species_from_pattern(pattern))
for rate in rule['rate']:
tmp_rule.addRate(rate)
rStr.write('\t{0}\n'.format(str(tmp_rule)))
rStr.write('end reaction rules\n')
return rStr.getvalue()
def process_diffussion_elements(parameters, extendedData):
'''
extract the list of properties associated to molecule types and compartment
objects. right now this information will be encoded into the bng-exml spec.
It also extracts some predetermined model properties.
'''
modelProperties = {}
moleculeProperties = defaultdict(list)
compartmentProperties = defaultdict(list)
#for parameter in parameters:
# if parameter[0] in ['TEMPERATURE']:
# modelProperties[parameter[0]] = parameter[1]
for parameter in extendedData['system']:
modelProperties[parameter[0].strip()] = parameter[1].strip()
for molecule in extendedData['molecules']:
if 'moleculeParameters' in molecule[1]:
for propertyValue in molecule[1]['moleculeParameters']:
data = {'name':propertyValue[1].strip(), 'parameters': []}
moleculeProperties[molecule[0][0]].append((propertyValue[0], data))
if 'diffusionFunction' in molecule[1]:
if 'function' in molecule[1]['diffusionFunction'].keys():
parameters = molecule[1]['diffusionFunction'][1]['parameters']
data = {'name': '"{0}"'.format(molecule[1]['diffusionFunction'][1]['functionName']),
'parameters':[(x['key'], x['value']) for x in parameters]}
else:
data = {'name':molecule[1]['diffusionFunction'][1].strip(), 'parameters': []}
#moleculeProperties[molecule[0][0]].append((molecule[1]['diffusionFunction'][0], data))
if '3D' in molecule[1]['diffusionFunction'].keys():
dimensionality = {'name':'3','parameters':[]}
if '2D' in molecule[1]['diffusionFunction'].keys():
dimensionality = {'name':'2','parameters':[]}
moleculeProperties[molecule[0][0]].append(('diffusion_function', data))
moleculeProperties[molecule[0][0]].append(('dimensionality', dimensionality))
for seed in extendedData['initialization']:
if 'compartmentName' in seed.keys():
membrane = ''
membrane_properties = []
for element in seed['compartmentOptions'][0]:
# skip stuff already covered by normal cbng
if element[0] in ['PARENT']:
continue
if element[0] == 'MEMBRANE':
membrane = element[1].strip().split(' ')[0]
elif element[0].startswith('MEMBRANE'):
membrane_properties.append((element[0].split('_')[1], element[1].strip()))
else:
compartmentProperties[seed['compartmentName']].append((element[0], element[1]))
if membrane != '' and len(membrane_properties) > 0:
compartmentProperties[membrane] = membrane_properties
return {'modelProperties':modelProperties, 'moleculeProperties': moleculeProperties,
'compartmentProperties': compartmentProperties}
def process_functions(rawFunctions):
ofun = StringIO()
ofun.write('begin functions\n')
for function in rawFunctions:
ofun.write('{0}() ={1}\n'.format(function['functionName'][0], function['functionBody'][0]))
ofun.write('end functions\n')
return ofun.getvalue()
def write_default_functions():
defaultFunctions = StringIO()
defaultFunctions.write('begin functions\n')
defaultFunctions.write('\teinstein_stokes(p_kb, p_t, p_rs, p_mu)= p_kb*p_t/(6*3.141592*p_mu*p_rs)\n')
defaultFunctions.write('\tsaffman_delbruck(p_kb, p_t, p_rc, p_mu, p_mu_ex, p_gamma, p_h) = p_kb*p_t*log((p_mu*p_h/(p_rc*p_mu_ex)-p_gamma))/(4*3.141592*p_mu*p_h)\n')
defaultFunctions.write('end functions\n')
return defaultFunctions.getvalue()
def construct_bng_from_mdlr(mdlrPath,nfsimFlag=False, separate_spatial=True):
'''
initializes a bngl file and an extended-bng-xml file with a MDLr file description
'''
with open(mdlrPath, 'r') as f:
mdlr = f.read()
statements = statementGrammar.parseString(mdlr)
sections = grammar.parseString(mdlr)
final_bngl_str = StringIO()
final_bngl_str.write('begin model\n')
parameterStr = process_parameters(statements)
try:
moleculeStr, molecule_list = process_molecules(sections['molecules'])
except 'KeyError':
eprint('There is an issue with the molecules section in the mdlr file')
try:
seedspecies, compartments = process_init_compartments(sections['initialization']['entries'])
except KeyError:
eprint('There is an issue with the initialization section in the mdlr file')
if 'math_functions' in sections:
functions = process_functions(sections['math_functions'])
else:
functions = ''
if not nfsimFlag:
observables = process_observables(sections['observables'])
else:
try:
observables = process_observables(sections['observables'])
except KeyError:
eprint('There is an issue with the observables section in the mdlr file')
#observables = process_mtobservables(molecule_list)
reactions = process_reaction_rules(sections['reactions'])
#functions = write_default_functions()
final_bngl_str.write(parameterStr)
final_bngl_str.write(moleculeStr)
final_bngl_str.write(compartments)
final_bngl_str.write(seedspecies)
final_bngl_str.write(observables)
final_bngl_str.write(functions)
#final_bngl_str.write('begin observables\nend observables\n')
final_bngl_str.write(reactions)
final_bngl_str.write('end model\n')
#add processing actions
if not nfsimFlag:
final_bngl_str.write('generate_network({overwrite=>1})\n')
final_bngl_str.write('writeSBML()\n')
'''
eventually this stuff should be integrated into bionetgen proper
'''
if separate_spatial:
extended_data = {}
if 'systemConstants' in sections.keys():
extended_data['system'] = sections['systemConstants']
else:
extended_data['system'] = []
extended_data['molecules'] = sections['molecules']
extended_data['initialization'] = sections['initialization']['entries']
propertiesDict = process_diffussion_elements(statements, extended_data)
bngxmle = write_bngxmle.write2bngxmle(propertiesDict, mdlrPath.split(os.sep)[-1])
return {'bnglstr':final_bngl_str.getvalue(), 'bngxmlestr':bngxmle}
def bngl2json(bnglFile):
call(['bngdev',bnglFile])
sbmlName = '.'.join(bnglFile.split('.')[:-1]) + '_sbml.xml'
print(sbmlName)
call(['./sbml2json','-i', sbmlName])
def output_bngl(bngl_str, bnglPath):
with open(bnglPath, 'w') as f:
f.write(bngl_str)
if __name__ == "__main__":
bngl_str = construct_bng_from_mdlr('example.mdlr')
bnglPath = 'output.bngl'
output_bngl(bngl_str, bnglPath)
bngl2json(bnglFile)