forked from joonleesky/train-procgen-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain-interleave-envs.py
158 lines (138 loc) · 6.14 KB
/
train-interleave-envs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from common.env.procgen_wrappers import *
from common.logger import Logger
from common.storage import Storage
from common.model import NatureModel, ImpalaModel
from common.policy import CategoricalPolicy
from common import set_global_seeds, set_global_log_levels
import os, time, yaml, argparse
import gym
from procgen import ProcgenGym3Env
import random
import torch
import gym3
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name', type=str, default = 'test', help='experiment name')
parser.add_argument('--envs', type=str, default = ['maze', 'heist'], nargs="+", help='list of environment IDs')
parser.add_argument('--start_level', type=int, default = int(0), help='start-level for environment')
parser.add_argument('--num_levels', type=int, default = int(0), help='number of training levels for environment')
parser.add_argument('--distribution_mode',type=str, default = 'easy', help='distribution mode for environment')
parser.add_argument('--param_name', type=str, default = 'easy-200', help='hyper-parameter ID')
parser.add_argument('--device', type=str, default = 'gpu', required = False, help='whether to use gpu')
parser.add_argument('--gpu_device', type=int, default = int(0), required = False, help = 'visible device in CUDA')
parser.add_argument('--num_timesteps', type=int, default = int(25000000), help = 'number of training timesteps')
parser.add_argument('--seed', type=int, default = random.randint(0,9999), help='Random generator seed')
parser.add_argument('--log_level', type=int, default = int(40), help='[10,20,30,40]')
parser.add_argument('--num_checkpoints', type=int, default = int(1), help='number of checkpoints to store')
parser.add_argument('--model_file', type=str)
#multi threading
parser.add_argument('--num_threads', type=int, default=8)
args = parser.parse_args()
set_global_seeds(args.seed)
set_global_log_levels(args.log_level)
####################
## HYPERPARAMETERS #
####################
print('[LOADING HYPERPARAMETERS...]')
with open('hyperparams/procgen/config.yml', 'r') as f:
hyperparameters = yaml.safe_load(f)[args.param_name]
for key, value in hyperparameters.items():
print(key, ':', value)
############
## DEVICE ##
############
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_device)
if args.device == 'gpu':
device = torch.device('cuda')
elif args.device == 'cpu':
device = torch.device('cpu')
#################
## ENVIRONMENT ##
#################
print('INITIALIZAING ENVIRONMENTS...')
print("Training on concatenation of the following envs:")
print("\n".join(args.envs))
print()
n_steps = hyperparameters.get('n_steps', 256)
n_envs = hyperparameters.get('n_envs', 256)
distribution_modes = [args.distribution_mode] * len(args.envs)
num_threads_per_env = args.num_threads // len(args.envs)
num_envs_per_env = n_envs // len(args.envs)
def create_concat_env(hyperparameters):
envs = [ProcgenGym3Env(num=num_envs_per_env,
env_name=env_name,
num_levels=args.num_levels,
start_level=args.start_level,
distribution_mode=distribution_mode,
num_threads=num_threads_per_env)
for env_name, distribution_mode in zip(args.envs, distribution_modes)]
venv = gym3.ConcatEnv(envs)
venv = gym3.ToBaselinesVecEnv(venv)
venv = VecExtractDictObs(venv, "rgb")
normalize_rew = hyperparameters.get('normalize_rew', True)
if normalize_rew:
venv = VecNormalize(venv, ob=False) # normalizing returns, but not
#the img frames
venv = TransposeFrame(venv)
venv = ScaledFloatFrame(venv)
return venv
env = create_concat_env(hyperparameters)
############
## LOGGER ##
############
print('INITIALIZING LOGGER...')
logdir = 'procgen-august-2021/' + 'concat' + '/' + args.exp_name + '/' + 'seed' + '_' + \
str(args.seed) + '_' + time.strftime("%d-%m-%Y_%H-%M-%S")
logdir = os.path.join('logs', logdir)
if not (os.path.exists(logdir)):
os.makedirs(logdir)
print(f'Logging to {logdir}')
logger = Logger(n_envs, logdir)
###########
## MODEL ##
###########
print('INTIALIZING MODEL...')
observation_space = env.observation_space
observation_shape = observation_space.shape
architecture = hyperparameters.get('architecture', 'impala')
in_channels = observation_shape[0]
action_space = env.action_space
# Model architecture
if architecture == 'nature':
model = NatureModel(in_channels=in_channels)
elif architecture == 'impala':
model = ImpalaModel(in_channels=in_channels)
# Discrete action space
recurrent = hyperparameters.get('recurrent', False)
if isinstance(action_space, gym.spaces.Discrete):
action_size = action_space.n
policy = CategoricalPolicy(model, recurrent, action_size)
else:
raise NotImplementedError
policy.to(device)
#############
## STORAGE ##
#############
print('INITIALIZING STORAGE...')
hidden_state_dim = model.output_dim
storage = Storage(observation_shape, hidden_state_dim, n_steps, n_envs, device)
###########
## AGENT ##
###########
print('INTIALIZING AGENT...')
algo = hyperparameters.get('algo', 'ppo')
if algo == 'ppo':
from agents.ppo import PPO as AGENT
else:
raise NotImplementedError
agent = AGENT(env, policy, logger, storage, device, args.num_checkpoints, **hyperparameters)
if args.model_file is not None:
print("Loading agent from %s" % args.model_file)
checkpoint = torch.load(args.model_file)
agent.policy.load_state_dict(checkpoint["model_state_dict"])
agent.optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
##############
## TRAINING ##
##############
print('START TRAINING...')
agent.train(args.num_timesteps)