forked from joonleesky/train-procgen-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathplot_value_coin_barchart.py
151 lines (124 loc) · 5.93 KB
/
plot_value_coin_barchart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
def parse_args():
parser = argparse.ArgumentParser(
description='args for plotting')
parser.add_argument(
'--datapath', type=str)
args = parser.parse_args()
return args
def plot():
args = parse_args()
num_evaluated_ims = 1001
metadata = pd.read_csv(args.datapath + "/obs_metadata.csv")
cols = list(metadata.columns)
metadata = metadata[0:num_evaluated_ims]
# Add value data
value_files = os.listdir(args.datapath)
value_file_cond = lambda file: ('val' in file) and ('.npy' in file)
value_files = [file for file in value_files if value_file_cond(file)]
value_files = sorted(value_files)
value_files = value_files[0:len(metadata)]
values = [np.load(os.path.join(args.datapath, file)) for file in value_files]
values = np.array(values)
metadata['value'] = values.tolist()
# Make the labels and indices you'll use to identify different categories
coin_categs_inds = [0, 1] #set(metadata['coin_visible'])
bme_categs_inds = [0, 1, 2, 3] #set(metadata['begin_middle_end'])
coin_categs_strs = ['(No coin)', '(with coin)']
bme_categs_strs = ['Beginning\n', 'Middle\n', 'End\n', 'After End\n']
full_categs_strs = []
full_categs_inds = []
for bme_categ in bme_categs_strs:
for coin_categ in coin_categs_strs:
full_categs_strs.append(f"{bme_categ} {coin_categ}")
for bme_categ in bme_categs_inds:
for coin_categ in coin_categs_inds:
full_categs_inds.append( (bme_categ, coin_categ) )
# Separate the data into their categories
match_dict = {arr: label for (arr, label) in zip(full_categs_inds, full_categs_strs)}
categ_metadata = {}
for coin_categs_ind in coin_categs_inds:
for bme_categs_ind in bme_categs_inds:
condition = (metadata['coin_visible'] == coin_categs_ind) & (metadata['begin_middle_end'] == bme_categs_ind)
label = match_dict[ (bme_categs_ind, coin_categs_ind) ]
categ_metadata[label] = metadata[condition]
# Get the mean value for each category and compute confidence intervals
results_low_mean_high = {}
for full_categ in full_categs_strs:
# Draw 15000 bootstrap replicates
categ_values = categ_metadata[full_categ]['value']
bs_replicates_values = draw_bs_replicates(categ_values, np.mean, 10000)#15000)
categ_mean = np.mean(categ_values)
# Print empirical mean
print(f"{full_categ} | Empirical mean: " + str(categ_mean))
# Print the mean of bootstrap replicates
print(f"{full_categ} | Bootstrap replicates mean: " + str(np.mean(bs_replicates_values)))
categ_low = np.percentile(bs_replicates_values,[5.])
categ_high = np.percentile(bs_replicates_values,[95.])
results_low_mean_high[full_categ] = (categ_low, categ_mean, categ_high)
# Count how many samples are actually used
sample_count_list = []
for full_categ in full_categs_strs:
# Draw 15000 bootstrap replicates
categ_values = categ_metadata[full_categ]['value']
sample_count_list.append(categ_values)
print(f"n={sum([len(y) for y in sample_count_list])}")
# # And we do 'post end-wall' manually because we collected that data later
# value_files_post = os.listdir(args.datapath + "/for_post_endwall_bars")
# value_files_post = [file for file in value_files_post if value_file_cond(file)]
# value_files_post = sorted(value_files_post)
# values_post = [np.load(os.path.join(args.datapath + "/for_post_endwall_bars", file)) for file in value_files_post]
# values_post = np.array(values_post)
# bs_replicates_values_post = draw_bs_replicates(values_post, np.mean,
# 10000) # 15000)
# values_post_mean = np.mean(values_post)
# print(f"Post | Empirical mean: " + str(values_post))
# # Print the mean of bootstrap replicates
# print(f"Post | Bootstrap replicates mean: " + str(
# np.mean(bs_replicates_values_post)))
# values_post_low = np.percentile(bs_replicates_values_post, [5.])
# values_post_high = np.percentile(bs_replicates_values_post, [95.])
# post_name = 'After End\n(No coin)'
# results_low_mean_high[post_name] = (values_post_low, values_post_mean, values_post_high)
#
# full_categs_strs.append(post_name)
# Then do a bit of processing
xticks = np.arange(0,len(full_categs_strs))
means = [v[1] for v in results_low_mean_high.values()]
lows = [v[0] for v in results_low_mean_high.values()]
highs = [v[2] for v in results_low_mean_high.values()]
errs = [(v[0], v[2]) for v in results_low_mean_high.values()]
errs = [np.concatenate(e) for e in errs]
errs = np.stack(errs, axis=0).transpose()
errs = errs - means
errs = np.abs(errs)
fig, ax = plt.subplots(figsize=(7, 4))
ax.yaxis.grid(True)
ax.bar(xticks, means, yerr=errs, align='center', alpha=0.95,
ecolor='black', color=['orangered', 'lightsalmon', 'olivedrab', 'yellowgreen', 'deepskyblue', 'skyblue', 'darkslategray', 'cadetblue'], capsize=10)
plt.ylim([5, 10])
ax.set_ylabel('Value function output')
plt.box(False)
ax.set_xticks(xticks)
ax.set_xticklabels(full_categs_strs)
# Save the figure and show
plt.tight_layout()
plt.savefig(args.datapath + '/bar_plot_with_error_bars.png')
plt.close()
def draw_bs_replicates(data, func, size):
"""creates a bootstrap sample, computes replicates and returns replicates array"""
# Create an empty array to store replicates
bs_replicates = np.empty(size)
# Create bootstrap replicates as much as size
for i in range(size):
# Create a bootstrap sample
bs_sample = np.random.choice(data, size=len(data))
# Get bootstrap replicate and append to bs_replicates
bs_replicates[i] = func(bs_sample)
return bs_replicates
if __name__ == '__main__':
plot()