forked from joonleesky/train-procgen-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathplot_training_csv.py
51 lines (43 loc) · 1.42 KB
/
plot_training_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
def parse_args():
parser = argparse.ArgumentParser(
description='args for plotting')
parser.add_argument(
'--datapath', type=str)
args = parser.parse_args()
return args
def plot():
args = parse_args()
data = pd.read_csv(args.datapath + "/log.csv")
cols = list(data.columns)
# Get rid of columns we don't plot
cols.remove('wall_time')
cols.remove('num_episodes')
cols.remove('num_episodes_val')
cols.remove('max_episode_len')
cols.remove('min_episode_len')
cols.remove('val_max_episode_len')
cols.remove('val_min_episode_len')
cols.remove('max_episode_rewards')
cols.remove('min_episode_rewards')
cols.remove('val_max_episode_rewards')
cols.remove('val_min_episode_rewards')
cols.remove('timesteps')
# Plot episode len with some preprocessing, then remove
plt.subplots(figsize=[10, 7])
for name in ['mean_episode_len', 'val_mean_episode_len']:
plt.plot(data['timesteps'], data[name]/100, label=name+"/100",
alpha=0.8)
cols.remove('mean_episode_len')
cols.remove('val_mean_episode_len')
# Plot the rest
for name in cols:
plt.plot(data['timesteps'], data[name], label=name)
plt.xlabel('timesteps')
plt.legend()
plt.savefig(args.datapath + "/plot.png")
if __name__ == '__main__':
plot()