-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcut_patches.py
executable file
·323 lines (260 loc) · 11.9 KB
/
cut_patches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os
import glob
import math
import torch
import random
import shutil
import argparse
import numpy as np
import tifffile as tiff
from plyfile import PlyData
from tqdm import tqdm
# sample
from scipy.spatial import cKDTree
# fps and knn
from utils.pointnet_util import sample_and_group
parser = argparse.ArgumentParser()
parser.add_argument('--image_size', type=int, default=224)
parser.add_argument('--point_num', type=int, default=500, help="Number of the points of each patch")
parser.add_argument('--datasets_path', type=str, default="<dataset_path>", help="Path of preprocessed MVTec 3D-AD dataset")
parser.add_argument('--save_grid_path', type=str, default="<save_grid_path>", help="Path of patches. You can set the same path for pretrain, train, test data")
parser.add_argument('--pretrain', action="store_true", help="If true, cut the pathes for pretraining data")
parser.add_argument('--group_mul', type=int, default=10, help="Number of patches = (group_mul * points) / point_num")
parser.add_argument('--sample_num', type=int, default=20, help="Random sample nosie points for pretraining")
classes = [
"bagel",
"cable_gland",
"carrot",
"cookie",
"dowel",
"foam",
"peach",
"potato",
"rope",
"tire",
]
a = parser.parse_args()
IS_PRTRAIN = a.pretrain
DATASETS_PATH = a.datasets_path
SAVE_GRID_PATH = a.save_grid_path
GROUP_SIZE = a.point_num
GROUP_MUL = a.group_mul if not IS_PRTRAIN else 5
def file_process(split, img_path, class_name):
for i in tqdm(range(len(img_path)), desc=f'Cutting patches of {split}-data for class {class_name}'):
if split in ['pretrain']:
category_dir = img_path[i].split(DATASETS_PATH)[-1]
category_dir = category_dir.replace(".tiff", ".npz")
category_dir = category_dir.replace("/train/good/xyz/", "/")
save_path = SAVE_GRID_PATH + '/PRETRAIN_DATA/' + category_dir
save_dir = os.path.dirname(save_path)
if i == 0:
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
os.makedirs(save_dir)
else:
category_dir = img_path[i].split(DATASETS_PATH)[-1]
category_dir = category_dir.replace(".tiff", ".npz")
category_dir = category_dir.replace("xyz", "npz")
save_path = SAVE_GRID_PATH + category_dir
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
#print('\n<Sampling>')
#print('img_path = ', img_path[i])
#print('save_path = ', save_path)
split_patch(split, img_path[i], save_path) # img_path[i] is the input tiff file
def get_data_loader(split, class_name):
if split in ['pretrain']:
img_path = os.path.join(DATASETS_PATH, class_name, "train")
dir_path = glob.glob(os.path.join(img_path, 'good', 'xyz') + "/*.tiff")
dir_path = random.sample(dir_path, 20) # Random select 20 sample in each category for pre-training 3D model.
elif split in ['train']:
img_path = os.path.join(DATASETS_PATH, class_name, "train")
dir_path = glob.glob(os.path.join(img_path, 'good', 'xyz') + "/*.tiff")
dir_path.sort()
elif split in ['test']:
img_path = os.path.join(DATASETS_PATH, class_name, "test")
defect_types = os.listdir(img_path)
dir_path=[]
for defect_type in defect_types:
tiff_path = glob.glob(os.path.join(img_path, defect_type, 'xyz') + "/*.tiff")
dir_path.extend(tiff_path)
dir_path.sort()
elif split in ['validation']:
img_path = os.path.join(DATASETS_PATH, class_name, "validation")
defect_types = os.listdir(img_path)
dir_path=[]
for defect_type in defect_types:
tiff_path = glob.glob(os.path.join(img_path, defect_type, 'xyz') + "/*.tiff")
dir_path.extend(tiff_path)
dir_path.sort()
file_process(split, dir_path, class_name)
def organized_pc_to_unorganized_pc(organized_pc):
return organized_pc.reshape(organized_pc.shape[0] * organized_pc.shape[1], organized_pc.shape[2])
def read_tiff_organized_pc(path):
tiff_img = tiff.imread(path)
return tiff_img
def resize_organized_pc(organized_pc, target_height=224, target_width=224, tensor_out=True):
torch_organized_pc = torch.tensor(organized_pc).permute(2, 0, 1).unsqueeze(dim=0)
torch_resized_organized_pc = torch.nn.functional.interpolate(torch_organized_pc, size=(target_height, target_width),
mode='nearest')
if tensor_out:
return torch_resized_organized_pc.squeeze(dim=0)
else:
return torch_resized_organized_pc.squeeze().permute(1, 2, 0).numpy()
def orgpc_to_unorgpc(organized_pc):
organized_pc_np = organized_pc.squeeze().permute(1, 2, 0).numpy()
unorganized_pc = organized_pc_to_unorganized_pc(organized_pc=organized_pc_np)
nonzero_indices = np.nonzero(np.all(unorganized_pc != 0, axis=1))[0]
pc_no_zeros = unorganized_pc[nonzero_indices, :]
return pc_no_zeros, nonzero_indices
def getPointCloud(tiff_path, img_size):
organized_pc = read_tiff_organized_pc(tiff_path)
resized_organized_pc = resize_organized_pc(organized_pc, target_height=img_size, target_width=img_size)
pc, nonzero_idx = orgpc_to_unorgpc(resized_organized_pc)
return pc , nonzero_idx
###################################################################
def new_sample_query_points(target_point_clouds, query_num):
sample = []
x = int(math.ceil(query_num * 0.625))
y = query_num - x
pnts = target_point_clouds
ptree = cKDTree(pnts)
for i in range(x):
sigmas = []
for p in np.array_split(pnts,100,axis=0):
d = ptree.query(p,51)
sigmas.append(d[0][:,-1])
sigmas = np.concatenate(sigmas)
tt = pnts + 0.5*np.expand_dims(sigmas,-1) * np.random.normal(0.0, 1.0, size=pnts.shape)
sample.append(tt)
for i in range(y):
sigmas = []
for p in np.array_split(pnts,100,axis=0):
d = ptree.query(p,51)
sigmas.append(d[0][:,-1])
sigmas = np.concatenate(sigmas)
tt = pnts + 1.0*np.expand_dims(sigmas,-1) * np.random.normal(0.0, 1.0, size=pnts.shape)
sample.append(tt)
sample = np.array(sample).reshape(-1,3)
return sample
def pretrain_normal_points(ps_gt, ps):
tt = 0
if((np.max(ps_gt[:,0])-np.min(ps_gt[:,0]))>(np.max(ps_gt[:,1])-np.min(ps_gt[:,1]))):
tt = (np.max(ps_gt[:,0])-np.min(ps_gt[:,0]))
else:
tt = (np.max(ps_gt[:,1])-np.min(ps_gt[:,1]))
if(tt < (np.max(ps_gt[:,2])-np.min(ps_gt[:,2]))):
tt = (np.max(ps_gt[:,2])-np.min(ps_gt[:,2]))
tt = 10/(10*tt)
ps_gt = ps_gt*tt
ps = ps*tt
t = np.mean(ps_gt,axis = 0)
ps_gt = ps_gt - t
ps = ps - t
return ps_gt, ps, (t, tt)
def find_NN(points , samples):
points = points.reshape(-1,3)
points_KDtree = cKDTree(points)
_ , vertex_ids = points_KDtree.query(samples, p=2, k = 1)
vertex_ids = np.asarray(vertex_ids)
gt_for_NN = points[vertex_ids].reshape(-1,3)
return gt_for_NN
def sample_query_points(target_point_clouds, query_num):
sample = []
sample_near = []
gt_kd_tree = cKDTree(target_point_clouds)
x = int(math.ceil(query_num * 0.625))
y = query_num - x
for i in range(x):
pnts = target_point_clouds
ptree = cKDTree(pnts)
sigmas = []
for p in np.array_split(pnts,100,axis=0):
d = ptree.query(p,51)
sigmas.append(d[0][:,-1])
sigmas = np.concatenate(sigmas)
tt = pnts + 0.5*np.expand_dims(sigmas,-1) * np.random.normal(0.0, 1.0, size=pnts.shape)
sample.append(tt)
_ , vertex_ids = gt_kd_tree.query(tt, p=2, k = 1)
vertex_ids = np.asarray(vertex_ids)
sample_near.append(target_point_clouds[vertex_ids].reshape(-1,3))
for i in range(y):
pnts = target_point_clouds
ptree = cKDTree(pnts)
sigmas = []
for p in np.array_split(pnts,100,axis=0):
d = ptree.query(p,51)
sigmas.append(d[0][:,-1])
sigmas = np.concatenate(sigmas)
tt = pnts + 1.0*np.expand_dims(sigmas,-1) * np.random.normal(0.0, 1.0, size=pnts.shape)
sample.append(tt)
_ , vertex_ids = gt_kd_tree.query(tt, p=2, k = 1)
vertex_ids = np.asarray(vertex_ids)
sample_near.append(target_point_clouds[vertex_ids].reshape(-1,3))
sample = np.asarray(sample).reshape(-1,3)
sample_near = np.asarray(sample_near).reshape(-1,3)
return sample, sample_near
def split_patch(split, input_file, save_path):
points = []
if('.ply' in input_file):
data = PlyData.read(input_file)
v = data['vertex'].data
v = np.asarray(v)
for i in range(v.shape[0]):
points.append(np.array([v[i][0],v[i][1],v[i][2]]))
points = np.asarray(points)
elif('.tiff' in input_file):
input, nonzero_idx = getPointCloud(input_file, 224)
points = np.asarray(input)
pointcloud_s = points.astype(np.float32)
#print('### pointcloud sparse:', pointcloud_s.shape[0])
pointcloud_s_t = pointcloud_s - np.array([np.min(pointcloud_s[:,0]),np.min(pointcloud_s[:,1]),np.min(pointcloud_s[:,2])])
pointcloud_s_t = pointcloud_s_t / (np.array([np.max(pointcloud_s[:,0]) - np.min(pointcloud_s[:,0]), np.max(pointcloud_s[:,0]) - np.min(pointcloud_s[:,0]), np.max(pointcloud_s[:,0]) - np.min(pointcloud_s[:,0])]))
pointcloud_s = pointcloud_s_t
num_group = round(pointcloud_s.shape[0] * GROUP_MUL / GROUP_SIZE) # num_group:number of knn groups.
# FPS + KNN Patch Cutting
points_gt_all = np.expand_dims(pointcloud_s, axis=0)
points_gt_all = torch.tensor(points_gt_all)
org_idx_table = nonzero_idx
grouped_xyz, org_idx_all = sample_and_group(xyz=points_gt_all, npoint=num_group, nsample=GROUP_SIZE, org_idx_table=org_idx_table)
grouped_xyz = np.squeeze(grouped_xyz.cpu().data.numpy())
org_idx_all = np.squeeze(org_idx_all)
re_org_idx_all = org_idx_all.reshape(org_idx_all.shape[0] * org_idx_all.shape[1])
no_dup_idx_all = np.unique(re_org_idx_all, axis=0)
#print("Test whether the point cloud is covered")
#print("group_size:", GROUP_SIZE, "num_group:", num_group)
#print("points_gt_all", points_gt_all.shape)
#print("no_dup_idx_all", no_dup_idx_all.shape)
#print('#')
if split in ['pretrain']:
origin_all = []
sample_all = []
sample_near_all = []
trans_all = []
for patch in range(grouped_xyz.shape[0]):
samples = new_sample_query_points(grouped_xyz[patch], a.sample_num) # sample query point
points, samples, trans = pretrain_normal_points(grouped_xyz[patch], samples)
sample_near = find_NN(points, samples)
origin_all.append(grouped_xyz[patch])
sample_all.append(samples)
sample_near_all.append(sample_near)
trans_all.append(trans)
#print("group_size:", GROUP_SIZE, "num_group:", num_group)
#print("grouped_xyz", grouped_xyz.shape)
#print("----------------------------------------")
np.savez(save_path, origins_all=origin_all, samples_all=sample_all, points_all=sample_near_all)
else:
np.savez(save_path, points_gt=grouped_xyz, points_idx=org_idx_all)
if __name__ == '__main__':
print(torch.__version__)
print("Start to cut patches")
for cls in classes:
if IS_PRTRAIN:
get_data_loader('pretrain', cls)
else:
get_data_loader('train', cls)
get_data_loader('test', cls)
get_data_loader('validation', cls)
print('\nAll patches are saved to the grid_path:', a.save_grid_path)
print('Finish!')