This module implements the quantized versions of the nn layers such as ~`torch.nn.Conv2d` and torch.nn.ReLU.
.. automodule:: torch.nn.quantized.functional
.. autofunction:: relu
.. autofunction:: linear
.. autofunction:: conv1d
.. autofunction:: conv2d
.. autofunction:: conv3d
.. autofunction:: max_pool2d
.. autofunction:: adaptive_avg_pool2d
.. autofunction:: avg_pool2d
.. autofunction:: interpolate
.. autofunction:: hardswish
.. autofunction:: upsample
.. autofunction:: upsample_bilinear
.. autofunction:: upsample_nearest
.. automodule:: torch.nn.quantized
.. autoclass:: ReLU :members:
.. autoclass:: ReLU6 :members:
.. autoclass:: ELU :members:
.. autoclass:: Hardswish :members:
.. autoclass:: Conv1d :members:
.. autoclass:: Conv2d :members:
.. autoclass:: Conv3d :members:
.. autoclass:: FloatFunctional :members:
.. autoclass:: QFunctional :members:
.. autoclass:: Quantize :members:
.. autoclass:: DeQuantize :members:
.. autoclass:: Linear :members:
.. autoclass:: BatchNorm2d :members:
.. autoclass:: BatchNorm3d :members:
.. autoclass:: LayerNorm :members:
.. autoclass:: GroupNorm :members:
.. autoclass:: InstanceNorm1d :members:
.. autoclass:: InstanceNorm2d :members:
.. autoclass:: InstanceNorm3d :members: