.. currentmodule:: torch
PyTorch provides :class:`torch.Tensor` to represent a multi-dimensional array containing elements of a single data type. By default, array elements are stored contiguously in memory leading to efficient implementations of various array processing algorithms that relay on the fast access to array elements. However, there exists an important class of multi-dimensional arrays, so-called sparse arrays, where the contiguous memory storage of array elements turns out to be suboptimal. Sparse arrays have a property of having a vast portion of elements being equal to zero which means that a lot of memory as well as processor resources can be spared if only the non-zero elements are stored or/and processed. Various sparse storage formats (such as COO, CSR/CSC, LIL, etc.) have been developed that are optimized for a particular structure of non-zero elements in sparse arrays as well as for specific operations on the arrays.
Note
When talking about storing only non-zero elements of a sparse array, the usage of adjective "non-zero" is not strict: one is allowed to store also zeros in the sparse array data structure. Hence, in the following, we use "specified elements" for those array elements that are actually stored. In addition, the unspecified elements are typically assumed to have zero value, but not only, hence we use the term "fill value" to denote such elements.
Note
Using a sparse storage format for storing sparse arrays can be advantageous only when the size and sparsity levels of arrays are high. Otherwise, for small-sized or low-sparsity arrays using the contiguous memory storage format is likely the most efficient approach.
Warning
The PyTorch API of sparse tensors is in beta and may change in the near future.
Currently, PyTorch implements the so-called Coordinate format, or COO format, as the default sparse storage format for storing sparse tensors. In COO format, the specified elements are stored as tuples of element indices and the corresponding values. In particular,
- the indices of specified elements are collected in
indices
tensor of size(ndim, nse)
and with element typetorch.int64
,- the corresponding values are collected in
values
tensor of size(nse,)
and with an arbitrary integer or floating point number element type,
where ndim
is the dimensionality of the tensor and nse
is the
number of specified elements.
Note
The memory consumption of a sparse COO tensor is at least (ndim *
8 + <size of element type in bytes>) * nse
bytes (plus a constant
overhead from storing other tensor data).
The memory consumption of a strided tensor is at least
product(<tensor shape>) * <size of element type in bytes>
.
For example, the memory consumption of a 10 000 x 10 000 tensor
with 100 000 non-zero 32-bit floating point numbers is at least
(2 * 8 + 4) * 100 000 = 2 000 000
bytes when using COO tensor
layout and 10 000 * 10 000 * 4 = 400 000 000
bytes when using
the default strided tensor layout. Notice the 200 fold memory
saving from using the COO storage format.
A sparse COO tensor can be constructed by providing the two tensors of indices and values, as well as the size of the sparse tensor (when it cannot be inferred from the indices and values tensors) to a function :func:`torch.sparse_coo_tensor`.
Suppose we want to define a sparse tensor with the entry 3 at location (0, 2), entry 4 at location (1, 0), and entry 5 at location (1, 2). Unspecified elements are assumed to have the same value, fill value, which is zero by default. We would then write:
>>> i = [[0, 1, 1], [2, 0, 2]] >>> v = [3, 4, 5] >>> s = torch.sparse_coo_tensor(i, v, (2, 3)) >>> s tensor(indices=tensor([[0, 1, 1], [2, 0, 2]]), values=tensor([3, 4, 5]), size=(2, 3), nnz=3, layout=torch.sparse_coo) >>> s.to_dense() tensor([[0, 0, 3], [4, 0, 5]])
Note that the input i
is NOT a list of index tuples. If you want
to write your indices this way, you should transpose before passing them to
the sparse constructor:
>>> i = [[0, 2], [1, 0], [1, 2]] >>> v = [3, 4, 5 ] >>> s = torch.sparse_coo_tensor(list(zip(*i)), v, (2, 3)) >>> # Or another equivalent formulation to get s >>> s = torch.sparse_coo_tensor(torch.tensor(i).t(), v, (2, 3)) >>> torch.sparse_coo_tensor(i.t(), v, torch.Size([2,3])).to_dense() tensor([[0, 0, 3], [4, 0, 5]])
An empty sparse COO tensor can be constructed by specifying its size only:
>>> torch.sparse_coo_tensor(size=(2, 3)) tensor(indices=tensor([], size=(2, 0)), values=tensor([], size=(0,)), size=(2, 3), nnz=0, layout=torch.sparse_coo)
Pytorch implements an extension of sparse tensors with scalar values to sparse tensors with (contiguous) tensor values. Such tensors are called hybrid tensors.
PyTorch hybrid COO tensor extends the sparse COO tensor by allowing
the values
tensor to be a multi-dimensional tensor so that we
have:
- the indices of specified elements are collected in
indices
tensor of size(sparse_dims, nse)
and with element typetorch.int64
,- the corresponding (tensor) values are collected in
values
tensor of size(nse, dense_dims)
and with an arbitrary integer or floating point number element type.
Note
We use (M + K)-dimensional tensor to denote a N-dimensional hybrid sparse tensor, where M and K are the numbers of sparse and dense dimensions, respectively, such that M + K == N holds.
Suppose we want to create a (2 + 1)-dimensional tensor with the entry [3, 4] at location (0, 2), entry [5, 6] at location (1, 0), and entry [7, 8] at location (1, 2). We would write
>>> i = [[0, 1, 1], [2, 0, 2]] >>> v = [[3, 4], [5, 6], [7, 8]] >>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2)) >>> s tensor(indices=tensor([[0, 1, 1], [2, 0, 2]]), values=tensor([[3, 4], [5, 6], [7, 8]]), size=(2, 3, 2), nnz=3, layout=torch.sparse_coo)>>> s.to_dense() tensor([[[0, 0], [0, 0], [3, 4]], [[5, 6], [0, 0], [7, 8]]])
In general, if s
is a sparse COO tensor and M =
s.sparse_dim()
, K = s.dense_dim()
, then we have the following
invariants:
M + K == len(s.shape) == s.ndim
- dimensionality of a tensor is the sum of the number of sparse and dense dimensions,s.indices().shape == (M, nse)
- sparse indices are stored explicitly,s.values().shape == (nse,) + s.shape[M : M + K]
- the values of a hybrid tensor are K-dimensional tensors,s.values().layout == torch.strided
- values are stored as strided tensors.
Note
Dense dimensions always follow sparse dimensions, that is, mixing of dense and sparse dimensions is not supported.
PyTorch sparse COO tensor format permits uncoalesced sparse tensors,
where there may be duplicate coordinates in the indices; in this case,
the interpretation is that the value at that index is the sum of all
duplicate value entries. For example, one can specify multiple values,
3
and 4
, for the same index 1
, that leads to an 1-D
uncoalesced tensor:
>>> i = [[1, 1]] >>> v = [3, 4] >>> s=torch.sparse_coo_tensor(i, v, (3,)) >>> s tensor(indices=tensor([[1, 1]]), values=tensor( [3, 4]), size=(3,), nnz=2, layout=torch.sparse_coo)
while the coalescing process will accumulate the multi-valued elements into a single value using summation:
>>> s.coalesce() tensor(indices=tensor([[1]]), values=tensor([7]), size=(3,), nnz=1, layout=torch.sparse_coo)
In general, the output of :meth:`torch.Tensor.coalesce` method is a sparse tensor with the following properties:
- the indices of specified tensor elements are unique,
- the indices are sorted in lexicographical order,
- :meth:`torch.Tensor.is_coalesced()` returns
True
.
Note
For the most part, you shouldn't have to care whether or not a sparse tensor is coalesced or not, as most operations will work identically given a coalesced or uncoalesced sparse tensor.
However, some operations can be implemented more efficiently on uncoalesced tensors, and some on coalesced tensors.
For instance, addition of sparse COO tensors is implemented by simply concatenating the indices and values tensors:
>>> a = torch.sparse_coo_tensor([[1, 1]], [5, 6], (2,)) >>> b = torch.sparse_coo_tensor([[0, 0]], [7, 8], (2,)) >>> a + b tensor(indices=tensor([[0, 0, 1, 1]]), values=tensor([7, 8, 5, 6]), size=(2,), nnz=4, layout=torch.sparse_coo)
If you repeatedly perform an operation that can produce duplicate entries (e.g., :func:`torch.Tensor.add`), you should occasionally coalesce your sparse tensors to prevent them from growing too large.
On the other hand, the lexicographical ordering of indices can be advantageous for implementing algorithms that involve many element selection operations, such as slicing or matrix products.
Let's consider the following example:
>>> i = [[0, 1, 1], [2, 0, 2]] >>> v = [[3, 4], [5, 6], [7, 8]] >>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2))
As mentioned above, a sparse COO tensor is a :class:`torch.Tensor` instance and to distinguish it from the Tensor instances that use some other layout, on can use :attr:`torch.Tensor.is_sparse` or :attr:`torch.Tensor.layout` properties:
>>> isinstance(s, torch.Tensor) True >>> s.is_sparse True >>> s.layout == torch.sparse_coo True
The number of sparse and dense dimensions can be acquired using methods :meth:`torch.Tensor.sparse_dim` and :meth:`torch.Tensor.dense_dim`, respectively. For instance:
>>> s.sparse_dim(), s.dense_dim() (2, 1)
If s
is a sparse COO tensor then its COO format data can be
acquired using methods :meth:`torch.Tensor.indices()` and
:meth:`torch.Tensor.values()`.
Note
Currently, one can acquire the COO format data only when the tensor instance is coalesced:
>>> s.indices() RuntimeError: Cannot get indices on an uncoalesced tensor, please call .coalesce() first
For acquiring the COO format data of an uncoalesced tensor, use :func:`torch.Tensor._values()` and :func:`torch.Tensor._indices()`:
>>> s._indices() tensor([[0, 1, 1], [2, 0, 2]])
Constructing a new sparse COO tensor results a tensor that is not coalesced:
>>> s.is_coalesced() False
but one can construct a coalesced copy of a sparse COO tensor using the :meth:`torch.Tensor.coalesce` method:
>>> s2 = s.coalesce() >>> s2.indices() tensor([[0, 1, 1], [2, 0, 2]])
When working with uncoalesced sparse COO tensors, one must take into
an account the additive nature of uncoalesced data: the values of the
same indices are the terms of a sum that evaluation gives the value of
the corresponding tensor element. For example, the scalar
multiplication on an uncoalesced sparse tensor could be implemented by
multiplying all the uncoalesced values with the scalar because c *
(a + b) == c * a + c * b
holds. However, any nonlinear operation,
say, a square root, cannot be implemented by applying the operation to
uncoalesced data because sqrt(a + b) == sqrt(a) + sqrt(b)
does not
hold in general.
Slicing (with positive step) of a sparse COO tensor is supported only for dense dimensions. Indexing is supported for both sparse and dense dimensions:
>>> s[1] tensor(indices=tensor([[0, 2]]), values=tensor([[5, 6], [7, 8]]), size=(3, 2), nnz=2, layout=torch.sparse_coo) >>> s[1, 0, 1] tensor(6) >>> s[1, 0, 1:] tensor([6])
In PyTorch, the fill value of a sparse tensor cannot be specified explicitly and is assumed to be zero in general. However, there exists operations that may interpret the fill value differently. For instance, :func:`torch.sparse.softmax` computes the softmax with the assumption that the fill value is negative infinity.
The following table summarizes supported Linear Algebra operations on
sparse matrices where the operands layouts may vary. Here
T[layout]
denotes a tensor with a given layout. Similarly,
M[layout]
denotes a matrix (2-D PyTorch tensor), and V[layout]
denotes a vector (1-D PyTorch tensor). In addition, f
denotes a
scalar (float or 0-D PyTorch tensor), *
is element-wise
multiplication, and @
is matrix multiplication.
PyTorch operation | Sparse grad? | Layout signature |
---|---|---|
:func:`torch.mv` | no | M[sparse_coo] @ V[strided] -> V[strided] |
:func:`torch.matmul` | no | M[sparse_coo] @ M[strided] -> M[strided] |
:func:`torch.mm` | no | M[sparse_coo] @ M[strided] -> M[strided] |
:func:`torch.sparse.mm` | yes | M[sparse_coo] @ M[strided] -> M[strided] |
:func:`torch.smm` | no | M[sparse_coo] @ M[strided] -> M[sparse_coo] |
:func:`torch.hspmm` | no | M[sparse_coo] @ M[strided] -> M[hybrid sparse_coo] |
:func:`torch.bmm` | no | T[sparse_coo] @ T[strided] -> T[strided] |
:func:`torch.addmm` | no | f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided] |
:func:`torch.sparse.addmm` | yes | f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided] |
:func:`torch.sspaddmm` | no | f * M[sparse_coo] + f * (M[sparse_coo] @ M[strided]) -> M[sparse_coo] |
:func:`torch.lobpcg` | no | GENEIG(M[sparse_coo]) -> M[strided], M[strided] |
:func:`torch.pca_lowrank` | yes | PCA(M[sparse_coo]) -> M[strided], M[strided], M[strided] |
:func:`torch.svd_lowrank` | yes | SVD(M[sparse_coo]) -> M[strided], M[strided], M[strided] |
where "Sparse grad?" column indicates if the PyTorch operation supports backward with respect to sparse matrix argument. All PyTorch operations, except :func:`torch.smm`, support backward with respect to strided matrix arguments.
Note
Currently, PyTorch does not support matrix multiplication with the
layout signature M[strided] @ M[sparse_coo]
. However,
applications can still compute this using the matrix relation D @
S == (S.t() @ D.t()).t()
.
The following methods are specific to :ref:`sparse tensors <sparse-docs>`:
.. autoattribute:: is_sparse.. automethod:: dense_dim.. automethod:: sparse_dim.. automethod:: sparse_mask.. automethod:: sparse_resize_.. automethod:: sparse_resize_and_clear_.. automethod:: to_dense.. automethod:: to_sparse.. automethod:: coalesce.. automethod:: is_coalesced.. automethod:: indices.. automethod:: values
The following :class:`torch.Tensor` methods support :ref:`sparse COO tensors <sparse-coo-docs>`:
:meth:`~torch.Tensor.add` :meth:`~torch.Tensor.add_` :meth:`~torch.Tensor.addmm` :meth:`~torch.Tensor.addmm_` :meth:`~torch.Tensor.any` :meth:`~torch.Tensor.asin` :meth:`~torch.Tensor.asin_` :meth:`~torch.Tensor.arcsin` :meth:`~torch.Tensor.arcsin_` :meth:`~torch.Tensor.bmm` :meth:`~torch.Tensor.clone` :meth:`~torch.Tensor.deg2rad` :meth:`~torch.Tensor.deg2rad_` :meth:`~torch.Tensor.detach` :meth:`~torch.Tensor.detach_` :meth:`~torch.Tensor.dim` :meth:`~torch.Tensor.div` :meth:`~torch.Tensor.div_` :meth:`~torch.Tensor.floor_divide` :meth:`~torch.Tensor.floor_divide_` :meth:`~torch.Tensor.get_device` :meth:`~torch.Tensor.index_select` :meth:`~torch.Tensor.isnan` :meth:`~torch.Tensor.log1p` :meth:`~torch.Tensor.log1p_` :meth:`~torch.Tensor.mm` :meth:`~torch.Tensor.mul` :meth:`~torch.Tensor.mul_` :meth:`~torch.Tensor.mv` :meth:`~torch.Tensor.narrow_copy` :meth:`~torch.Tensor.neg` :meth:`~torch.Tensor.neg_` :meth:`~torch.Tensor.negative` :meth:`~torch.Tensor.negative_` :meth:`~torch.Tensor.numel` :meth:`~torch.Tensor.rad2deg` :meth:`~torch.Tensor.rad2deg_` :meth:`~torch.Tensor.resize_as_` :meth:`~torch.Tensor.size` :meth:`~torch.Tensor.pow` :meth:`~torch.Tensor.square` :meth:`~torch.Tensor.smm` :meth:`~torch.Tensor.sspaddmm` :meth:`~torch.Tensor.sub` :meth:`~torch.Tensor.sub_` :meth:`~torch.Tensor.t` :meth:`~torch.Tensor.t_` :meth:`~torch.Tensor.transpose` :meth:`~torch.Tensor.transpose_` :meth:`~torch.Tensor.zero_`
.. autofunction:: torch.sparse_coo_tensor
.. autofunction:: torch.sparse.sum
.. autofunction:: torch.sparse.addmm
.. autofunction:: torch.sparse.mm
.. autofunction:: torch.sspaddmm
.. autofunction:: torch.hspmm
.. autofunction:: torch.smm
.. autofunction:: torch.sparse.softmax
.. autofunction:: torch.sparse.log_softmax
The following :mod:`torch` functions support :ref:`sparse COO tensors <sparse-coo-docs>`:
:func:`~torch.cat` :func:`~torch.dstack` :func:`~torch.empty` :func:`~torch.empty_like` :func:`~torch.hstack` :func:`~torch.index_select` :func:`~torch.is_complex` :func:`~torch.is_floating_point` :func:`~torch.is_nonzero` :func:`~torch.is_same_size` :func:`~torch.is_signed` :func:`~torch.is_tensor` :func:`~torch.lobpcg` :func:`~torch.mm` :func:`~torch.native_norm` :func:`~torch.pca_lowrank` :func:`~torch.select` :func:`~torch.stack` :func:`~torch.svd_lowrank` :func:`~torch.unsqueeze` :func:`~torch.vstack` :func:`~torch.zeros` :func:`~torch.zeros_like`