torch.backends controls the behavior of various backends that PyTorch supports.
These backends include:
torch.backends.cuda
torch.backends.cudnn
torch.backends.mkl
torch.backends.mkldnn
torch.backends.openmp
.. autofunction:: torch.backends.cuda.is_built
.. attribute:: torch.backends.cuda.matmul.allow_tf32 A :class:`bool` that controls whether TensorFloat-32 tensor cores may be used in matrix multiplications on Ampere or newer GPUs. See :ref:`tf32_on_ampere`.
.. attribute:: torch.backends.cuda.cufft_plan_cache ``cufft_plan_cache`` caches the cuFFT plans .. attribute:: size A readonly :class:`int` that shows the number of plans currently in the cuFFT plan cache. .. attribute:: max_size A :class:`int` that controls cache capacity of cuFFT plan. .. method:: clear() Clears the cuFFT plan cache.
.. autofunction:: torch.backends.cudnn.version
.. autofunction:: torch.backends.cudnn.is_available
.. attribute:: torch.backends.cudnn.enabled A :class:`bool` that controls whether cuDNN is enabled.
.. attribute:: torch.backends.cudnn.allow_tf32 A :class:`bool` that controls where TensorFloat-32 tensor cores may be used in cuDNN convolutions on Ampere or newer GPUs. See :ref:`tf32_on_ampere`.
.. attribute:: torch.backends.cudnn.deterministic A :class:`bool` that, if True, causes cuDNN to only use deterministic convolution algorithms. See also :func:`torch.is_deterministic` and :func:`torch.set_deterministic`.
.. attribute:: torch.backends.cudnn.benchmark A :class:`bool` that, if True, causes cuDNN to benchmark multiple convolution algorithms and select the fastest.
.. autofunction:: torch.backends.mkl.is_available
.. autofunction:: torch.backends.mkldnn.is_available
.. autofunction:: torch.backends.openmp.is_available