-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
57 lines (48 loc) · 2.09 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import codecs
import tensorflow as tf
class PredictModel(object):
def __init__(self):
self.model_dir = "model/"
self._currPath = os.path.dirname(__file__)
self.word_2_id, self.id2word = self.__load_chinese_vocab()
self.__cnn_by_meta_graph()
def __cnn_by_meta_graph(self):
checkpoint_file = tf.train.latest_checkpoint(self.model_dir)
graph = tf.Graph()
with graph.as_default():
self.sess = tf.Session()
with self.sess.as_default():
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(self.sess, checkpoint_file)
self.inputs = graph.get_operation_by_name("encoder_inputs").outputs[0]
self.keep_prob = graph.get_operation_by_name("keep_prob").outputs[0]
self.predictions = graph.get_operation_by_name("greedy_search/predictions").outputs[0]
def __load_chinese_vocab(self):
word_2_id = dict()
id_2_word = dict()
with codecs.open(os.path.join(self._currPath, "data/chinese_vocab.txt"), "r", "utf8") as f:
for i, line in enumerate(f.readlines()):
word_2_id[line.strip()] = i
id_2_word[i] = line.strip()
return word_2_id, id_2_word
def __convert_question(self, question):
_id_lst = []
for char in question:
_id = self.word_2_id.get(char, 3) # index(<UNKNOWN>) == 3
_id_lst.append(_id)
return _id_lst
def __get_predict_result(self, predictions):
result = ""
for item in predictions[0]:
result += self.id2word.get(item[0], "")
return result
def predict_by_meta_graph(self, question):
assert isinstance(question, str)
question = self.__convert_question(question)
predictions = self.sess.run(self.predictions, {self.inputs: [question], self.keep_prob: 1.})
return self.__get_predict_result(predictions)
if __name__ == "__main__":
ques = "想问下"
pm = PredictModel()
print(pm.predict_by_meta_graph(ques))