-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path__init__.py
1002 lines (798 loc) · 29.5 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Common Issues plugin.
This plugin provides operators to compute common issues in image datasets.
It is open source, and is adapted heavily from leading open source projects
listed in the README.
|
"""
import numpy as np
import cv2
from PIL import Image
import fiftyone as fo
import fiftyone.operators as foo
from fiftyone.operators import types
from fiftyone import ViewField as F
######## HELPER FUNCTIONS ########
def get_filepath(sample):
return (
sample.local_path if hasattr(sample, "local_path") else sample.filepath
)
def _crop_pillow_image(pillow_img, detection):
img_w, img_h = pillow_img.width, pillow_img.height
bounding_box = detection.bounding_box
left, top, width, height = bounding_box
left *= img_w
top *= img_h
right = left + width * img_w
bottom = top + height * img_h
return pillow_img.crop((left, top, right, bottom))
def _get_pillow_patch(sample, detection):
img = Image.open(get_filepath(sample))
return _crop_pillow_image(img, detection)
def _convert_pillow_to_opencv(pillow_img):
# pylint: disable=no-member
return cv2.cvtColor(np.array(pillow_img), cv2.COLOR_RGB2BGR)
def _convert_opencv_to_pillow(opencv_image):
# pylint: disable=no-member
return Image.fromarray(cv2.cvtColor(opencv_image, cv2.COLOR_BGR2RGB))
def _get_opencv_grayscale_image(sample):
# pylint: disable=no-member
return cv2.imread(get_filepath(sample), cv2.IMREAD_GRAYSCALE)
######## CONTEXT & INPUT MANAGEMENT ########
def _execution_mode(ctx, inputs):
delegate = ctx.params.get("delegate", False)
if delegate:
description = "Uncheck this box to execute the operation immediately"
else:
description = "Check this box to delegate execution of this task"
inputs.bool(
"delegate",
default=False,
required=True,
label="Delegate execution?",
description=description,
view=types.CheckboxView(),
)
if delegate:
inputs.view(
"notice",
types.Notice(
label=(
"You've chosen delegated execution. Note that you must "
"have a delegated operation service running in order for "
"this task to be processed. See "
"https://docs.voxel51.com/plugins/index.html#operators "
"for more information"
)
),
)
def _handle_patch_inputs(ctx, inputs):
target_view = ctx.target_view()
patch_types = (fo.Detection, fo.Detections, fo.Polyline, fo.Polylines)
patches_fields = list(
target_view.get_field_schema(embedded_doc_type=patch_types).keys()
)
if patches_fields:
patches_field_choices = types.DropdownView()
for field in sorted(patches_fields):
patches_field_choices.add_choice(field, label=field)
inputs.str(
"patches_field",
default=None,
required=False,
label="Patches field",
description=(
"An optional sample field defining image patches in each "
"sample to run the computation on. If omitted, the full images "
"will be used."
),
view=patches_field_choices,
)
######## COMPUTATION FUNCTIONS ########
#### ASPECT RATIO ####
def _compute_aspect_ratio(width, height):
ratio = width / height
return min(ratio, 1 / ratio)
def compute_sample_aspect_ratio(sample):
width, height = sample.metadata.width, sample.metadata.height
return _compute_aspect_ratio(width, height)
def compute_patch_aspect_ratio(sample, detection):
img_width, img_height = sample.metadata.width, sample.metadata.height
bbox_width, bbox_height = detection.bounding_box[2:]
width, height = bbox_width * img_width, bbox_height * img_height
return _compute_aspect_ratio(width, height)
#### BLURRINESS ####
def _compute_blurriness(cv2_img):
# pylint: disable=no-member
gray = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2GRAY)
# pylint: disable=no-member
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
variance = laplacian.var()
return variance
def compute_sample_blurriness(sample):
# pylint: disable=no-member
image = cv2.imread(get_filepath(sample))
return _compute_blurriness(image)
def compute_patch_blurriness(sample, detection):
patch = _get_pillow_patch(sample, detection)
patch = _convert_pillow_to_opencv(patch)
return _compute_blurriness(patch)
#### BRIGHTNESS ####
def _compute_brightness(pillow_img):
pixels = np.array(pillow_img)
if pixels.ndim == 3 and pixels.shape[-1] == 3:
r, g, b = pixels.mean(axis=(0, 1))
else:
mean = pixels.mean()
r, g, b = (
mean,
mean,
mean,
)
## equation from here:
## https://www.nbdtech.com/Blog/archive/2008/04/27/calculating-the-perceived-brightness-of-a-color.aspx
## and here:
## https://github.com/cleanlab/cleanvision/blob/72a1535019fe7b4636d43a9ef4e8e0060b8d66ec/src/cleanvision/issue_managers/image_property.py#L95
brightness = (
np.sqrt(0.241 * r**2 + 0.691 * g**2 + 0.068 * b**2) / 255
)
return brightness
def compute_sample_brightness(sample):
filepath = get_filepath(sample)
with Image.open(filepath) as image:
return _compute_brightness(image)
def compute_patch_brightness(sample, detection):
patch = _get_pillow_patch(sample, detection)
return _compute_brightness(patch)
#### CONTRAST ####
def _compute_contrast(cv2_image):
# Calculate the histogram
histogram, _ = np.histogram(cv2_image, bins=256, range=(0, 256))
min_intensity = np.min(np.where(histogram > 0))
max_intensity = np.max(np.where(histogram > 0))
contrast_range = max_intensity - min_intensity
return contrast_range
def compute_sample_contrast(sample):
image = _get_opencv_grayscale_image(sample)
return _compute_contrast(image)
def compute_patch_contrast(sample, detection):
cv2_image = _get_opencv_grayscale_image(sample)
pillow_image = _convert_opencv_to_pillow(cv2_image)
patch = _crop_pillow_image(pillow_image, detection)
patch = _convert_pillow_to_opencv(patch)
return _compute_contrast(patch)
#### ENTROPY ####
def _compute_entropy(pillow_img):
return pillow_img.entropy()
def compute_sample_entropy(sample):
filepath = get_filepath(sample)
with Image.open(filepath) as image:
return _compute_entropy(image)
def compute_patch_entropy(sample, detection):
patch = _get_pillow_patch(sample, detection)
return _compute_entropy(patch)
#### EXPOSURE ####
def _compute_exposure(opencv_gray_img):
# pylint: disable=no-member
histogram = cv2.calcHist([opencv_gray_img], [0], None, [256], [0, 256])
normalized_histogram = histogram.ravel() / histogram.max()
min_exposure = normalized_histogram[0]
max_exposure = normalized_histogram[-1]
return min_exposure, max_exposure
def compute_sample_exposure(sample):
gray_img = _get_opencv_grayscale_image(sample)
return _compute_exposure(gray_img)
def compute_patch_exposure(sample, detection):
gray_img = _get_opencv_grayscale_image(sample)
pillow_image = _convert_opencv_to_pillow(gray_img)
patch = _crop_pillow_image(pillow_image, detection)
patch = _convert_pillow_to_opencv(patch)
return _compute_exposure(patch)
#### SALT AND PEPPER ####
def _compute_salt_and_pepper(opencv_gray_img):
SALT_THRESHOLD = 244
PEPPER_THRESHOLD = 10
# Identifying salt-and-pepper pixels
salt_pixels = opencv_gray_img >= SALT_THRESHOLD
pepper_pixels = opencv_gray_img <= PEPPER_THRESHOLD
# Morphological operations to exclude larger contiguous regions
kernel = np.ones((2, 2), np.uint8)
# Dilate and then erode (Opening operation)
# pylint: disable=no-member
salt_opening = cv2.morphologyEx(
salt_pixels.astype(np.uint8), cv2.MORPH_OPEN, kernel
) # pylint: disable=no-member
pepper_opening = cv2.morphologyEx(
pepper_pixels.astype(np.uint8), cv2.MORPH_OPEN, kernel
)
# Identify isolated salt and pepper pixels
salt_isolated = salt_pixels & ~salt_opening
pepper_isolated = pepper_pixels & ~pepper_opening
# Calculate the percentage of isolated salt-and-pepper pixels
total_isolated_salt_pepper_pixels = np.sum(salt_isolated) + np.sum(
pepper_isolated
)
total_pixels = opencv_gray_img.size
noise_percentage = total_isolated_salt_pepper_pixels / total_pixels * 100
return noise_percentage
def compute_sample_salt_and_pepper(sample):
gray_img = _get_opencv_grayscale_image(sample)
return _compute_salt_and_pepper(gray_img)
def compute_patch_salt_and_pepper(sample, detection):
gray_img = _get_opencv_grayscale_image(sample)
pillow_image = _convert_opencv_to_pillow(gray_img)
patch = _crop_pillow_image(pillow_image, detection)
patch = _convert_pillow_to_opencv(patch)
return _compute_salt_and_pepper(patch)
def _compute_saturation(open_cv_image):
# pylint: disable=no-member
hsv = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2HSV)
saturation = hsv[:, :, 1]
return np.mean(saturation)
def compute_sample_saturation(sample):
# pylint: disable=no-member
image = cv2.imread(get_filepath(sample))
return _compute_saturation(image)
def compute_patch_saturation(sample, detection):
# pylint: disable=no-member
opencv_image = cv2.imread(get_filepath(sample))
pillow_image = _convert_opencv_to_pillow(opencv_image)
patch = _crop_pillow_image(pillow_image, detection)
patch = _convert_pillow_to_opencv(patch)
return _compute_saturation(patch)
#### VIGNETTING ####
def _compute_vignetting(opencv_gray_img):
# Get the image center
size_y, size_x = np.array(opencv_gray_img).shape[:2]
center_y, center_x = size_y / 2, size_x / 2
# Calculate the maximum radius
max_radius = np.min([center_x, center_y])
# Create a meshgrid for calculating distances
y, x = np.ogrid[
-center_y : opencv_gray_img.shape[0] - center_y,
-center_x : opencv_gray_img.shape[1] - center_x,
]
distances = np.sqrt(x**2 + y**2)
# Calculate the radial intensity profile
radial_profile = []
for r in range(int(max_radius)):
mask = distances < r
if np.any(mask):
radial_profile.append(np.mean(opencv_gray_img[mask]))
else:
radial_profile.append(np.nan) # Append NaN if the mask is empty
radial_profile = np.array(radial_profile)
# Filter out NaN values before calculating the drop-off
radial_profile = radial_profile[~np.isnan(radial_profile)]
# Analyze the profile for a drop-off, if there are any values
if len(radial_profile) > 0:
drop_off_percentage = (
(radial_profile[0] - radial_profile[-1]) / radial_profile[0] * 100
)
else:
drop_off_percentage = np.nan
return drop_off_percentage
def compute_sample_vignetting(sample):
# pylint: disable=no-member
image = cv2.imread(get_filepath(sample), cv2.IMREAD_GRAYSCALE)
return _compute_vignetting(image)
def compute_patch_vignetting(sample, detection):
# pylint: disable=no-member
gray_image = cv2.imread(get_filepath(sample), cv2.IMREAD_GRAYSCALE)
pillow_image = _convert_opencv_to_pillow(gray_image)
patch = _crop_pillow_image(pillow_image, detection)
patch = _convert_pillow_to_opencv(patch)
return _compute_vignetting(patch)
################################################################
################################################################
PROP_SAMPLE_COMPUTE_FUNCTIONS = {
"aspect_ratio": compute_sample_aspect_ratio,
"blurriness": compute_sample_blurriness,
"brightness": compute_sample_brightness,
"contrast": compute_sample_contrast,
"entropy": compute_sample_entropy,
"exposure": compute_sample_exposure,
"salt_and_pepper": compute_sample_salt_and_pepper,
"saturation": compute_sample_saturation,
"vignetting": compute_sample_vignetting,
}
PROP_PATCH_COMPUTE_FUNCTIONS = {
"aspect_ratio": compute_patch_aspect_ratio,
"blurriness": compute_patch_blurriness,
"brightness": compute_patch_brightness,
"contrast": compute_patch_contrast,
"entropy": compute_patch_entropy,
"exposure": compute_patch_exposure,
"salt_and_pepper": compute_patch_salt_and_pepper,
"saturation": compute_patch_saturation,
"vignetting": compute_patch_vignetting,
}
def compute_dataset_property(property, dataset, view=None, patches_field=None):
if view is None:
view = dataset
if patches_field is None:
dataset.add_sample_field(property, fo.FloatField)
for sample in view.iter_samples(autosave=True, progress=True):
prop_value = PROP_SAMPLE_COMPUTE_FUNCTIONS[property](sample)
if property == "exposure":
sample["min_exposure"] = prop_value[0]
sample["max_exposure"] = prop_value[1]
else:
sample[property] = prop_value
else:
for sample in view.iter_samples(autosave=True, progress=True):
if sample[patches_field] is None:
continue
for detection in sample[patches_field].detections:
prop_value = PROP_PATCH_COMPUTE_FUNCTIONS[property](
sample, detection
)
if property == "exposure":
detection["min_exposure"] = prop_value[0]
detection["max_exposure"] = prop_value[1]
else:
detection[property] = prop_value
dataset.add_dynamic_sample_fields()
################################################################
################################################################
##### UNIFIED INTERFACE #####
def _handle_config(property_name):
_config = foo.OperatorConfig(
name=f"compute_{property_name}",
label=f"Common Issues: compute {property_name.replace('_', ' ')}",
dynamic=True,
)
_config.icon = "/assets/icon.svg"
return _config
def _handle_inputs(ctx, property_name):
inputs = types.Object()
label = "compute " + property_name.replace("_", " ")
inputs.message(label, label=label)
_execution_mode(ctx, inputs)
inputs.view_target(ctx)
_handle_patch_inputs(ctx, inputs)
return types.Property(inputs)
def _handle_execution(ctx, property_name):
view = ctx.target_view()
patches_field = ctx.params.get("patches_field", None)
compute_dataset_property(
property_name, ctx.dataset, view=view, patches_field=patches_field
)
ctx.ops.reload_dataset()
def _handle_calling(
uri, sample_collection, patches_field=None, delegate=False
):
ctx = dict(view=sample_collection.view())
params = dict(
target="CURRENT_VIEW",
patches_field=patches_field,
delegate=delegate,
)
return foo.execute_operator(uri, ctx, params=params)
class ComputeAspectRatio(foo.Operator):
@property
def config(self):
return _handle_config("aspect_ratio")
def resolve_delegation(self, ctx):
return ctx.params.get("delegate", False)
def resolve_input(self, ctx):
return _handle_inputs(ctx, "aspect_ratio")
def execute(self, ctx):
_handle_execution(ctx, "aspect_ratio")
def __call__(self, sample_collection, patches_field=None, delegate=False):
return _handle_calling(
self.uri,
sample_collection,
patches_field=patches_field,
delegate=delegate,
)
class ComputeBlurriness(foo.Operator):
@property
def config(self):
return _handle_config("blurriness")
def resolve_delegation(self, ctx):
return ctx.params.get("delegate", False)
def resolve_input(self, ctx):
return _handle_inputs(ctx, "blurriness")
def execute(self, ctx):
_handle_execution(ctx, "blurriness")
def __call__(self, sample_collection, patches_field=None, delegate=False):
return _handle_calling(
self.uri,
sample_collection,
patches_field=patches_field,
delegate=delegate,
)
class ComputeBrightness(foo.Operator):
@property
def config(self):
return _handle_config("brightness")
def resolve_delegation(self, ctx):
return ctx.params.get("delegate", False)
def resolve_input(self, ctx):
return _handle_inputs(ctx, "brightness")
def execute(self, ctx):
_handle_execution(ctx, "brightness")
def __call__(self, sample_collection, patches_field=None, delegate=False):
return _handle_calling(
self.uri,
sample_collection,
patches_field=patches_field,
delegate=delegate,
)
class ComputeContrast(foo.Operator):
@property
def config(self):
return _handle_config("contrast")
def resolve_delegation(self, ctx):
return ctx.params.get("delegate", False)
def resolve_input(self, ctx):
return _handle_inputs(ctx, "contrast")
def execute(self, ctx):
_handle_execution(ctx, "contrast")
def __call__(self, sample_collection, patches_field=None, delegate=False):
return _handle_calling(
self.uri,
sample_collection,
patches_field=patches_field,
delegate=delegate,
)
class ComputeEntropy(foo.Operator):
@property
def config(self):
return _handle_config("entropy")
def resolve_delegation(self, ctx):
return ctx.params.get("delegate", False)
def resolve_input(self, ctx):
return _handle_inputs(ctx, "entropy")
def execute(self, ctx):
_handle_execution(ctx, "entropy")
def __call__(self, sample_collection, patches_field=None, delegate=False):
return _handle_calling(
self.uri,
sample_collection,
patches_field=patches_field,
delegate=delegate,
)
class ComputeExposure(foo.Operator):
@property
def config(self):
return _handle_config("exposure")
def resolve_delegation(self, ctx):
return ctx.params.get("delegate", False)
def resolve_input(self, ctx):
return _handle_inputs(ctx, "exposure")
def execute(self, ctx):
_handle_execution(ctx, "exposure")
def __call__(self, sample_collection, patches_field=None, delegate=False):
return _handle_calling(
self.uri,
sample_collection,
patches_field=patches_field,
delegate=delegate,
)
class ComputeSaltAndPepper(foo.Operator):
@property
def config(self):
return _handle_config("salt_and_pepper")
def resolve_delegation(self, ctx):
return ctx.params.get("delegate", False)
def resolve_input(self, ctx):
return _handle_inputs(ctx, "salt_and_pepper")
def execute(self, ctx):
_handle_execution(ctx, "salt_and_pepper")
def __call__(self, sample_collection, patches_field=None, delegate=False):
return _handle_calling(
self.uri,
sample_collection,
patches_field=patches_field,
delegate=delegate,
)
class ComputeSaturation(foo.Operator):
@property
def config(self):
return _handle_config("saturation")
def resolve_delegation(self, ctx):
return ctx.params.get("delegate", False)
def resolve_input(self, ctx):
return _handle_inputs(ctx, "saturation")
def execute(self, ctx):
_handle_execution(ctx, "saturation")
def __call__(self, sample_collection, patches_field=None, delegate=False):
return _handle_calling(
self.uri,
sample_collection,
patches_field=patches_field,
delegate=delegate,
)
class ComputeVignetting(foo.Operator):
@property
def config(self):
return _handle_config("vignetting")
def resolve_delegation(self, ctx):
return ctx.params.get("delegate", False)
def resolve_input(self, ctx):
return _handle_inputs(ctx, "vignetting")
def execute(self, ctx):
_handle_execution(ctx, "vignetting")
def __call__(self, sample_collection, patches_field=None, delegate=False):
return _handle_calling(
self.uri,
sample_collection,
patches_field=patches_field,
delegate=delegate,
)
def _need_to_compute(dataset, field_name, patches_field=None):
if patches_field is not None:
i = 0
sample = dataset.skip(i).first()
while (
"detections" not in sample[patches_field]
or len(sample[patches_field].detections) == 0
):
i += 1
sample = dataset.skip(i).first()
detection = sample[patches_field].detections[0]
if field_name not in detection:
return True
else:
return False
else:
if field_name in list(dataset.get_field_schema().keys()):
return False
else:
return field_name not in dataset.first()
def _run_computation(dataset, issue_name, patches_field=None):
compute_dataset_property(issue_name, dataset, patches_field=patches_field)
######## ISSUE FUNCTIONS ########
ISSUE_MAPPING = {
"bright": {
"label": "Bright",
"base_property": "brightness",
"threshold": 0.55,
"lt": False,
"description": "Find bright images in the dataset",
},
"dark": {
"label": "Dark",
"base_property": "brightness",
"threshold": 0.1,
"lt": True,
"description": "Find dark images in the dataset",
},
"weird_aspect_ratio": {
"label": "Weird Aspect Ratio",
"base_property": "aspect_ratio",
"threshold": 0.5,
"lt": True,
"description": "Find weird aspect ratio images in the dataset",
},
"blurry": {
"label": "Blurry",
"base_property": "blurriness",
"threshold": 100.0,
"lt": True,
"description": "Find blurry images in the dataset",
},
"low_entropy": {
"label": "Low Entropy",
"base_property": "entropy",
"threshold": 5.0,
"lt": True,
"description": "Find low entropy images in the dataset",
},
"low_exposure": {
"label": "Low Exposure",
"base_property": "min_exposure",
"threshold": 0.1,
"lt": True,
"description": "Find low exposure images in the dataset",
},
"high_exposure": {
"label": "High Exposure",
"base_property": "max_exposure",
"threshold": 0.7,
"lt": False,
"description": "Find high exposure images in the dataset",
},
"low_contrast": {
"label": "Low Contrast",
"base_property": "contrast",
"threshold": 50.0,
"lt": True,
"description": "Find low contrast images in the dataset",
},
"high_contrast": {
"label": "High Contrast",
"base_property": "contrast",
"threshold": 200.0,
"lt": False,
"description": "Find high contrast images in the dataset",
},
"low_saturation": {
"label": "Low Saturation",
"base_property": "saturation",
"threshold": 40.0,
"lt": True,
"description": "Find low saturation images in the dataset",
},
"high_saturation": {
"label": "High Saturation",
"base_property": "saturation",
"threshold": 200.0,
"lt": False,
"description": "Find high saturation images in the dataset",
},
}
def find_issue_images(
dataset,
threshold,
field_name,
issue_name,
lt=True,
patches_field=None,
view=None,
):
if _need_to_compute(dataset, field_name, patches_field=patches_field):
_run_computation(dataset, field_name, patches_field=patches_field)
if view is None:
view = dataset
if patches_field is None:
dataset.add_sample_field(issue_name, fo.BooleanField)
if lt:
view = view.set_field(issue_name, F(field_name) < threshold)
else:
view = view.set_field(issue_name, F(field_name) > threshold)
view.save()
view = view.match(F(issue_name))
view.tag_samples(issue_name)
view.tag_samples("issue")
view.save()
else:
embedded_field_name = f"{patches_field}.detections.{field_name}"
embedded_issue_name = f"{patches_field}.detections.{issue_name}"
if lt:
values = view.values(F(embedded_field_name) < threshold)
else:
values = view.values(F(embedded_field_name) > threshold)
view.set_values(embedded_issue_name, values, dynamic=True)
view = view.filter_labels(patches_field, filter=F(issue_name) == True)
view.tag_labels(issue_name, label_fields=patches_field)
view.tag_labels("issue", label_fields=patches_field)
dataset.add_dynamic_sample_fields()
def _find_issue_type_images(
dataset, issue_type, threshold=None, patches_field=None, view=None
):
issue = ISSUE_MAPPING[issue_type]
if threshold is None:
threshold = issue["threshold"]
find_issue_images(
dataset,
threshold,
issue["base_property"],
issue_type,
lt=issue["lt"],
patches_field=patches_field,
view=view,
)
def _single_or_multi_mode(inputs):
mode = types.RadioGroup()
mode.add_choice(
"SINGLE",
label="SINGLE",
description="Find a single type of issue",
)
mode.add_choice(
"MULTI",
label="MULTI",
description="Find multiple types of issues",
)
inputs.enum(
"issue_mode",
mode.values(),
default="SINGLE",
description="Find a single type of issue or multiple types of issues",
view=types.TabsView(),
)
class FindIssues(foo.Operator):
@property
def config(self):
_config = foo.OperatorConfig(
name="find_issues",
label="Common Issues: find issues",
dynamic=True,
)
_config.icon = "/assets/icon.svg"
return _config
def resolve_input(self, ctx):
inputs = types.Object()
form_view = types.View(label="Find Common Issues")
if ctx.dataset.media_type != "image":
warning = types.Warning(
label="This operator is only available for image datasets!"
)
inputs.view("warning", warning)
return types.Property(inputs)
threshold_view = types.TextFieldView(
componentsProps={
"textField": {
"step": "0.01",
"inputMode": "numeric",
"pattern": "[0-9]*",
},
}
)
_single_or_multi_mode(inputs)
mode = ctx.params.get("issue_mode", "SINGLE")
inputs.view_target(ctx)
_handle_patch_inputs(ctx, inputs)
if mode == "SINGLE":
issue_choices = types.Dropdown(multiple=False)
for issue in ISSUE_MAPPING:
issue_choices.add_choice(
issue,
label=ISSUE_MAPPING[issue]["label"],
description=ISSUE_MAPPING[issue]["description"],
)
inputs.enum(
"issue",
issue_choices.values(),
required=True,
label="Issue Type",
view=issue_choices,
)
for issue in ISSUE_MAPPING:
if ctx.params.get("issue", False) == issue:
inputs.float(
issue + "_threshold",
default=ISSUE_MAPPING[issue]["threshold"],
label=ISSUE_MAPPING[issue]["description"],
view=threshold_view,
)
else:
for issue in ISSUE_MAPPING:
inputs.bool(
issue,
default=True,
label=ISSUE_MAPPING[issue]["label"],
view=types.CheckboxView(),
)
if ctx.params.get(issue, False) == True:
inputs.float(
issue + "_threshold",
default=ISSUE_MAPPING[issue]["threshold"],
label=ISSUE_MAPPING[issue]["description"],
view=threshold_view,
)
return types.Property(inputs, view=form_view)
def execute(self, ctx):
single_mode = ctx.params.get("issue_mode", "SINGLE")
view = ctx.target_view()
patches_field = ctx.params.get("patches_field", None)
for issue in ISSUE_MAPPING.keys():
if (
ctx.params.get(issue, False) == True
and single_mode == "MULTI"
or ctx.params.get("issue", False) == issue
and single_mode == "SINGLE"
):
threshold_key = ISSUE_MAPPING[issue]["threshold"]
threshold = ctx.params.get(threshold_key, None)
_find_issue_type_images(
ctx.dataset,
issue,
threshold=threshold,
patches_field=patches_field,
view=view,
)
ctx.ops.reload_dataset()
def register(plugin):
plugin.register(ComputeAspectRatio)
plugin.register(ComputeBlurriness)
plugin.register(ComputeBrightness)
plugin.register(ComputeContrast)
plugin.register(ComputeEntropy)
plugin.register(ComputeExposure)
plugin.register(ComputeSaltAndPepper)
plugin.register(ComputeSaturation)