forked from dantros/grafica
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathex_surface.py
120 lines (88 loc) · 3.24 KB
/
ex_surface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# coding=utf-8
"""Bezier Surface using python, numpy and matplotlib"""
import numpy as np
import matplotlib.pyplot as mpl
from mpl_toolkits.mplot3d import Axes3D
__author__ = "Daniel Calderon"
__license__ = "MIT"
def generateT(t):
return np.array([[1, t, t**2, t**3]]).T
def evalBernstein3(k, t):
# Full Bezier Matrix
Mb = np.array([[1, -3, 3, -1], [0, 3, -6, 3], [0, 0, 3, -3], [0, 0, 0, 1]])
T = generateT(t)
return np.dot(Mb[k,:], T)[0]
def evalBezierSurfaceSample(ps, t, s):
Q = np.zeros(3)
for k in range(4):
for l in range(4):
Bk = evalBernstein3(k, s)
Bl = evalBernstein3(l, t)
Q += Bk * Bl * ps[k, l]
return Q
def evalBezierSurface(ps, ts, ss):
Q = np.ndarray(shape=(N, N, 3), dtype=float)
for i in range(len(ts)):
for j in range(len(ss)):
Q[i,j] = evalBezierSurfaceSample(ps, ts[i], ss[j])
return Q
if __name__ == "__main__":
"""
Defining control points
"""
# A 4x4 array with a control point in each of those positions
P = np.ndarray(shape=(4, 4, 3), dtype=float)
P[0, 0, :] = np.array([[0, 0, 0]])
P[0, 1, :] = np.array([[0, 1, 0]])
P[0, 2, :] = np.array([[0, 2, 0]])
P[0, 3, :] = np.array([[0, 3, 0]])
P[1, 0, :] = np.array([[1, 0, 0]])
P[1, 1, :] = np.array([[1, 1, 10]])
P[1, 2, :] = np.array([[1, 2, 10]])
P[1, 3, :] = np.array([[1, 3, 0]])
P[2, 0, :] = np.array([[2, 0, 0]])
P[2, 1, :] = np.array([[2, 1, 10]])
P[2, 2, :] = np.array([[2, 2, 10]])
P[2, 3, :] = np.array([[2, 3, 0]])
P[3, 0, :] = np.array([[3, 0, 0]])
P[3, 1, :] = np.array([[3, 1, -5]])
P[3, 2, :] = np.array([[3, 2, -5]])
P[3, 3, :] = np.array([[3, 3, 0]])
# Setting up the matplotlib display for 3D
fig = mpl.figure()
ax = fig.gca(projection='3d')
"""
Visualizing the control points
"""
# They are sorted into a list of points
Pl = P.reshape(16, 3)
# Each component is queried from the previous array
ax.scatter(Pl[:,0], Pl[:,1], Pl[:,2], color=(1,0,0), label="Control Points")
"""
Discretizing the surface
"""
# We use the same amount of samples for both, t and s parameters
N = 10
# The parameters t and s should move between 0 and 1
ts = np.linspace(0.0, 1.0, N)
ss = np.linspace(0.0, 1.0, N)
# This function evaluates the bezier surface at each t and s samples in the arrays
# The solution is stored in the 2D-array Q, where each sample is a 3D vector
Q = evalBezierSurface(P, ts, ss)
"""
Visualizing the Bezier surface
"""
# For convenience, we re-organize the data into a list of points
QlinearShape = (Q.shape[0] * Q.shape[1], 3)
Ql = Q.reshape(QlinearShape)
# An option is to plot just each dot computed
#ax.scatter(Ql[:,0], Ql[:,1], Ql[:,2], color=(0,0,1))
# The more elegant option is to make a triangulation and visualize it as a surface
surf = ax.plot_trisurf(Ql[:,0], Ql[:,1], Ql[:,2], linewidth=0, antialiased=False)
# Showing the result
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.legend()
mpl.title("Bezier Surface")
mpl.show()