-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscat_report.Rmd
135 lines (114 loc) · 4.84 KB
/
scat_report.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
title: "Olink Scatter Plots"
output: html_document
params:
rp_upload_data: NA
rp_bridging_str: NA
rp_combined_data: NA
rp_combined_meta: NA
rp_choice_a1: NA #x var
rp_choice_a2: NA # color
rp_batch_plot_scatter: NA
---
```{r eval = FALSE, echo = FALSE}
# For PDF output, change the header to have "output: pdf_document".
#
# Note that due to an issue in rmarkdown, the default value of a parameter in
# the header cannot be `NULL`, so I used a default of `NA` for the default value
# of `n`.
library(dplyr)
library(DT)
```
## Summary of plate level information.
```{r, echo=F, message=F, warning=F}
DT::datatable(
data.frame(software_version = sapply(params$rp_upload_data, function(x) x@metadata$software_version) %>% unlist(),
filename = sapply(params$rp_upload_data, function(x) x$file_name[1]) %>% unlist(),
panel = sapply(params$rp_upload_data, function(x) x@metadata$panel)%>% unlist(),
total_samples = sapply(params$rp_upload_data, function(x) ncol(x)) %>% unlist(),
total_analyte = sapply(params$rp_upload_data, function(x) nrow(x)) %>% unlist()),
rownames = NULL,
options = list(scrollX = TRUE))
```
### Reference sample identifier: `r paste(strsplit(params$rp_bridging_str, split = ","), collapse = ",")`
```{r, echo=F, message=F, warning=F}
# needs sample_id, Plate.ID, in metafile and "lot" only appear once in column names
lapply(strsplit(params$rp_bridging_str, split = ",")%>%unlist(), function(x){
bdg_ls <- pull_bdg(params$rp_upload_data, pattern = x)
data.frame(filename = names(bdg_ls),
identifier = x,
total_samples = sapply(bdg_ls, function(x) ncol(x)) %>% unlist(),
total_analyte = sapply(bdg_ls, function(x) paste(x$Assay, collapse = ",")) %>% unlist())
})%>%
do.call(what = "rbind")%>%
DT::datatable(rownames = NULL,
options = list(scrollX = TRUE))
```
### Plots
**Yellow dots indicate LOD**
```{r, echo=F, message=F, warning=F, out.width= "100%"}
lod_df <- data.frame(params$rp_combined_data@elementMetadata@listData)
if(sum(grep("(LOD_)", colnames(lod_df))) == 0){
lod_df <- cbind.data.frame(Analyt = lod_df[, 1],
LOD = lod_df[ ,grep("(LOD)", colnames(lod_df))]%>%as.numeric())
}else{
lod_df <- cbind.data.frame(Analyt = lod_df[, 1],
lapply(grep("(LOD_)", colnames(lod_df)), function(x){
lod_df[ ,x]%>%as.numeric()
})%>% do.call(what = "cbind")%>%
data.frame()%>%
set_colnames(value = colnames(lod_df)[grep("(LOD_)", colnames(lod_df))]))%>%
gather(-Analyt, key = "Plate.ID", value = "LOD")%>%
mutate(Plate.ID = gsub("LOD_", "", Plate.ID))
}
if(is.null(params$rp_batch_plot_scatter) | (length(params$rp_batch_plot_scatter) == 0)){
query <- rownames(params$rp_combined_data)
}else if(params$rp_batch_plot_scatter == ""){
query <- rownames(params$rp_combined_data)
}else{
query <- params$rp_batch_plot_scatter
}
plot.ls <- lapply(query, function(x){
p <- data.frame(params$rp_combined_meta,
NPX = params$rp_combined_data@assays@data$npx[rownames(params$rp_combined_data) == x , ]
)%>%
left_join(
data.frame(Plate.ID = unique(params$rp_combined_meta$Plate.ID))%>%
merge.data.frame(lod_df)%>%
filter(Analyt == x)%>%
dplyr::select(-Analyt),
by = "Plate.ID"
)%>%
mutate(Plate.ID = trim_string_bycommon(Plate.ID, split = "_"),
Plate.ID = substr(Plate.ID, start = 1, stop = 10))%>%
filter(!grepl("^(NC|IPC)", sample_id))%>%
ggplot()+
#geom_boxplot(aes_string(params$rp_choice_a1, "NPX",fill = params$rp_choice_a2),
# alpha = 0.7)+
geom_point(position = position_jitterdodge(jitter.width = 0.1), shape = 21,
aes_string(params$rp_choice_a1, "NPX", color = params$rp_choice_a2))+
geom_point(data = .%>%
dplyr::select(LOD, params$rp_choice_a1)%>%
distinct()%>%
data.frame(),
aes_string(params$rp_choice_a1, "LOD"),
shape = 13, color = "yellow")+
labs(title = x)+
theme_bw(base_size = 8)
if(length(unique(params$rp_combined_meta[ ,params$rp_choice_a2])) > 15){
p+theme(axis.text.x = element_text(angle = 90, hjust = 1),
legend.position="none")
}else{
p+theme(axis.text.x = element_text(angle = 90, hjust = 1),
legend.position="bottom", legend.box="vertical", legend.margin=margin())
}
})
per_panel <- 6
n_panel <- ceiling(length(plot.ls)/per_panel)
for (i in 1 : n_panel) {
print(
wrap_plots(plot.ls[(1 + (i-1) * per_panel) : min(length(plot.ls), (per_panel + (i-1) * per_panel))],
ncol = 3, nrow = 2, byrow = T, guides = "collect")& theme(legend.position = 'bottom')
)
}
```