forked from jbruce12000/kiln-controller
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py.EXAMPLE
145 lines (121 loc) · 5.44 KB
/
config.py.EXAMPLE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import logging
from lib.max31856 import MAX31856
########################################################################
#
# General options
### Logging
log_level = logging.INFO
log_format = '%(asctime)s %(levelname)s %(name)s: %(message)s'
### Server
listening_ip = "0.0.0.0"
listening_port = 8081
### Cost Estimate
kwh_rate = 0.1319 # Rate in currency_type to calculate cost to run job
currency_type = "$" # Currency Symbol to show when calculating cost to run job
########################################################################
#
# GPIO Setup (BCM SoC Numbering Schema)
#
# Check the RasPi docs to see where these GPIOs are
# connected on the P1 header for your board type/rev.
# These were tested on a Pi B Rev2 but of course you
# can use whichever GPIO you prefer/have available.
### Outputs
gpio_heat = 23 # Switches zero-cross solid-state-relay
### Thermocouple Adapter selection:
# max31855 - bitbang SPI interface
# max31856 - bitbang SPI interface. must specify thermocouple_type.
max31855 = 1
max31856 = 0
# see lib/max31856.py for other thermocouple_type, only applies to max31856
thermocouple_type = MAX31856.MAX31856_S_TYPE
### Thermocouple Connection (using bitbang interfaces)
gpio_sensor_cs = 27
gpio_sensor_clock = 22
gpio_sensor_data = 17
gpio_sensor_di = 10 # only used with max31856
########################################################################
#
# duty cycle of the entire system in seconds
#
# Every N seconds a decision is made about switching the relay[s]
# on & off and for how long. The thermocouple is read
# temperature_average_samples times during and the average value is used.
sensor_time_wait = 2
########################################################################
#
# PID parameters
#
# These parameters control kiln temperature change. These settings work
# well with the simulated oven. You must tune them to work well with
# your specific kiln. Note that the integral pid_ki is
# inverted so that a smaller number means more integral action.
# from experimentation
#pid_kp = 10 # Proportional
#pid_ki = 50 # Integral
#pid_kd = 100 # Derivative
# from ZN tuning
pid_kp = 3.0662264423638184
pid_ki = 61.295706065671204
pid_kd = 144.07164331295013
########################################################################
#
# Initial heating and Integral Windup
#
# During initial heating, if the temperature is constantly under the
# setpoint,large amounts of Integral can accumulate. This accumulation
# causes the kiln to run above the setpoint for potentially a long
# period of time. These settings allow integral accumulation only when
# the temperature is close to the setpoint. This applies only to the integral.
stop_integral_windup = True
########################################################################
#
# Simulation parameters
simulate = False
sim_t_env = 60.0 # deg C
sim_c_heat = 100.0 # J/K heat capacity of heat element
sim_c_oven = 5000.0 # J/K heat capacity of oven
sim_p_heat = 5450.0 # W heating power of oven
sim_R_o_nocool = 1.0 # K/W thermal resistance oven -> environment
sim_R_o_cool = 0.05 # K/W " with cooling
sim_R_ho_noair = 0.1 # K/W thermal resistance heat element -> oven
sim_R_ho_air = 0.05 # K/W " with internal air circulation
########################################################################
#
# Time and Temperature parameters
#
# If you change the temp_scale, all settings in this file are assumed to
# be in that scale.
temp_scale = "f" # c = Celsius | f = Fahrenheit - Unit to display
time_scale_slope = "h" # s = Seconds | m = Minutes | h = Hours - Slope displayed in temp_scale per time_scale_slope
time_scale_profile = "m" # s = Seconds | m = Minutes | h = Hours - Enter and view target time in time_scale_profile
# emergency shutoff the profile if this temp is reached or exceeded.
# This just shuts off the profile. If your SSR is working, your kiln will
# naturally cool off. If your SSR has failed/shorted/closed circuit, this
# means your kiln receives full power until your house burns down.
# this should not replace you watching your kiln or use of a kiln-sitter
emergency_shutoff_temp = 2264 #cone 7
# If the kiln cannot heat or cool fast enough and is off by more than
# kiln_must_catch_up_max_error the entire schedule is shifted until
# the desired temperature is reached. If your kiln cannot attain the
# wanted temperature, the schedule will run forever. This is often used
# for heating as fast as possible in a section of a kiln schedule/profile.
kiln_must_catch_up = True
kiln_must_catch_up_max_error = 10 #degrees
# thermocouple offset
# If you put your thermocouple in ice water and it reads 36F, you can
# set set this offset to -4 to compensate. This probably means you have a
# cheap thermocouple. Invest in a better thermocouple.
thermocouple_offset=0
# some kilns/thermocouples start erroneously reporting "short"
# errors at higher temperatures due to plasma forming in the kiln.
# Set this to False to ignore these errors and assume the temperature
# reading was correct anyway
honour_theromocouple_short_errors = False
# number of samples of temperature to average.
# If you suffer from the high temperature kiln issue and have set
# honour_theromocouple_short_errors to False,
# you will likely need to increase this (eg I use 40)
temperature_average_samples = 40
# Thermocouple AC frequency filtering - set to True if in a 50Hz locale, else leave at False for 60Hz locale
ac_freq_50hz = False