forked from buzem/inzpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet18_keras.py
162 lines (128 loc) · 5.46 KB
/
resnet18_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, ZeroPadding2D, AveragePooling1D, BatchNormalization ,Reshape, Dropout
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.layers import Activation, Layer, Add, Input, GlobalAveragePooling2D
import tensorflow.keras.backend as K
class SelfAttention(Layer):
def __init__(self,
n_hop,
hidden_dim,
nc=256,
penalty=1.0,
return_attention=False,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
**kwargs):
self.n_hop = n_hop
self.hidden_dim = hidden_dim
self.nc=nc
self.penalty = penalty
self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
self.kernel_constraint = tf.keras.constraints.get(kernel_constraint)
self.return_attention = return_attention
super(SelfAttention, self).__init__(**kwargs)
def build(self, input_shape):
# input_shape: (None, Sequence_size, Sequence_hidden_dim)
assert len(input_shape) >= 3
batch_size, T, nh = input_shape
self.Ws1 = self.add_weight(shape=(self.hidden_dim, self.nc),
initializer=self.kernel_initializer,
name='SelfAttention-Ws1',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.Ws2 = self.add_weight(shape=(self.nc, self.n_hop),
initializer=self.kernel_initializer,
name='SelfAttention-Ws2',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
super(SelfAttention, self).build(input_shape)
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 3
assert input_shape[-1]
batch_size, sequence_size, sequence_hidden_dim = input_shape
output_shape = tuple([batch_size, self.n_hop, sequence_hidden_dim])
if self.return_attention:
attention_shape = tuple([batch_size, self.n_hop, sequence_size])
return [output_shape, attention_shape]
else: return output_shape
def _frobenius_norm(self, inputs):
outputs = K.sqrt(K.sum(K.square(inputs)))
return outputs
def call(self, inputs):
shape=inputs.shape
H=inputs
x = K.tanh(tf.matmul(H,self.Ws1))
x = tf.matmul(x,self.Ws2)
A = K.softmax(x,axis=0) # A = softmax(dot(Ws2, d1))
At=K.permute_dimensions(A,(0,2,1))
E = tf.matmul(At,H)
return E
def get_config(self):
config = super().get_config().copy()
config.update({
'n_hop': self.n_hop,
'hidden_dim': self.hidden_dim,
'nc': self.nc,
'penalty': self.penalty,
'kernel_initializer': self.kernel_initializer,
'kernel_regularizer': self.kernel_regularizer,
'kernel_constraint': self.kernel_constraint,
'return_attention': self.return_attention,
})
return config
def resnet_block(input_tensor, kernel_size, filters, downsample):
first_stride = 1
if downsample:
first_stride = 2
# First Block
x = Conv2D(kernel_size=kernel_size, filters=filters, padding="same", strides=first_stride)(input_tensor)
x = BatchNormalization()(x)
x = Activation("relu")(x)
# Second Block
x = Conv2D(kernel_size=kernel_size, filters=filters, padding="same", strides=1)(x)
x = BatchNormalization()(x)
input_tensor = Conv2D(kernel_size=(1,1), filters=filters, padding='same', strides=first_stride)(input_tensor)
# Final Add Layer
x = Add()([input_tensor, x])
x = Activation("relu")(x)
return x
def resnet18(n_class, add_attention):
input_layer = Input(shape=(300,40,1))
x=Conv2D(32, (7, 7), padding='same' ,strides=1)(input_layer)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = MaxPooling2D(pool_size=(3,3), strides=2, padding='same')(x)
x = Dropout(0.15)(x)
x = resnet_block(x, 3, 32, True)
x = resnet_block(x, 3, 32, False)
x = Dropout(0.15)(x)
x = resnet_block(x, 3, 64, True)
x = resnet_block(x, 3, 64, False)
x = Dropout(0.15)(x)
x = resnet_block(x, 3, 128, True)
x = resnet_block(x, 3, 128, False)
x = Dropout(0.15)(x)
x = resnet_block(x, 3, 256, True)
x = resnet_block(x, 3, 256, False)
x = Dropout(0.15)(x)
# Attention here
if add_attention:
att=SelfAttention(n_hop=4,hidden_dim=512)
x=Reshape((x.shape[1], x.shape[2]*x.shape[3]))(x)
x=att(x)
x=AveragePooling1D(pool_size=4,data_format="channels_last")(x)
x = Flatten()(x)
else:
x = GlobalAveragePooling2D()(x)
x = Dropout(0.15)(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.3)(x)
preds = Dense(1251, activation='softmax')(x)
model = Model(input_layer, preds)
model.summary()
return model