forked from buzem/inzpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_keras.py
150 lines (119 loc) · 5.4 KB
/
model_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import keras
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten, Conv2D, MaxPooling2D, ZeroPadding2D, AveragePooling1D, BatchNormalization ,Reshape
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.layers import Activation, Layer
import tensorflow.keras.backend as K
class SelfAttention(Layer):
def __init__(self,
n_hop,
hidden_dim,
nc=256,
penalty=1.0,
return_attention=False,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
**kwargs):
self.n_hop = n_hop
self.hidden_dim = hidden_dim
self.nc=nc
self.penalty = penalty
self.kernel_initializer = keras.initializers.get(kernel_initializer)
self.kernel_regularizer = keras.regularizers.get(kernel_regularizer)
self.kernel_constraint = keras.constraints.get(kernel_constraint)
self.return_attention = return_attention
super(SelfAttention, self).__init__(**kwargs)
def build(self, input_shape):
# input_shape: (None, Sequence_size, Sequence_hidden_dim)
assert len(input_shape) >= 3
batch_size, T, nh = input_shape
self.Ws1 = self.add_weight(shape=(self.hidden_dim, self.nc),
initializer=self.kernel_initializer,
name='SelfAttention-Ws1',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.Ws2 = self.add_weight(shape=(self.nc, self.n_hop),
initializer=self.kernel_initializer,
name='SelfAttention-Ws2',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
super(SelfAttention, self).build(input_shape)
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 3
assert input_shape[-1]
batch_size, sequence_size, sequence_hidden_dim = input_shape
output_shape = tuple([batch_size, self.n_hop, sequence_hidden_dim])
if self.return_attention:
attention_shape = tuple([batch_size, self.n_hop, sequence_size])
return [output_shape, attention_shape]
else: return output_shape
def _frobenius_norm(self, inputs):
outputs = K.sqrt(K.sum(K.square(inputs)))
return outputs
def call(self, inputs):
shape=inputs.shape
H=inputs
x = K.tanh(tf.matmul(H,self.Ws1))
x = tf.matmul(x,self.Ws2)
A = K.softmax(x,axis=0) # A = softmax(dot(Ws2, d1))
At=K.permute_dimensions(A,(0,2,1))
E = tf.matmul(At,H)
return E
def get_config(self):
config = super().get_config().copy()
config.update({
'n_hop': self.n_hop,
'hidden_dim': self.hidden_dim,
'nc': self.nc,
'penalty': self.penalty,
'kernel_initializer': self.kernel_initializer,
'kernel_regularizer': self.kernel_regularizer,
'kernel_constraint': self.kernel_constraint,
'return_attention': self.return_attention,
})
return config
def vgg_att(n_class):
inputs = keras.Input(shape=(300,40,1))
x=Conv2D(64, (3, 3), padding='same', name='block1_conv1',activation='relu')(inputs)
x=Conv2D(64, (3, 3), padding='same', name='block1_conv2',activation='relu')(x)
x=BatchNormalization()(x)
x=MaxPooling2D(pool_size = (2, 2), strides = (2, 2))(x)
print(x.shape)
x=Conv2D(128, (3, 3), padding='same', name='block2_conv1',activation='relu')(x)
x=Conv2D(128, (3, 3), padding='same', name='block2_conv2',activation='relu')(x)
x=BatchNormalization()(x)
x=MaxPooling2D(pool_size = (2, 2), strides = (2, 2))(x)
print(x.shape)
x=Conv2D(256, (3, 3), padding='same', name='block3_conv1',activation='relu')(x)
x=Conv2D(256, (3, 3), padding='same', name='block3_conv2',activation='relu')(x)
x=BatchNormalization()(x)
x=MaxPooling2D(pool_size = (2, 2), strides = (2, 2),padding="same")(x)
print(x.shape)
x=Conv2D(512, (3, 3), padding='same', name='block4_conv1',activation='relu')(x)
x=Conv2D(512, (3, 3), padding='same', name='block4_conv2',activation='relu')(x)
x=BatchNormalization()(x)
x=MaxPooling2D(pool_size = (2, 2), strides = (2, 2),padding="same")(x)
print(x.shape)
att=SelfAttention(n_hop=4,hidden_dim=1536)
x=Reshape((x.shape[1], x.shape[2]*x.shape[3]))(x)
print("after reshape")
print(x.shape)
x=att(x)
print("after attention")
print(x.shape)
x=AveragePooling1D(pool_size=4,data_format="channels_last")(x)
print("after avgpool")
print(x.shape)
x = Flatten()(x)
x = Dense(256, activation = 'relu')(x)
output = Dense(n_class,activation = 'softmax')(x)
model = keras.Model(inputs=inputs, outputs=output)
model.compile(loss='categorical_crossentropy',optimizer ='adam')#need hyperparam-tuning
model.summary()
return model