-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
134 lines (101 loc) · 4.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import argparse
from datetime import datetime
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
# os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import numpy as np
import torch.nn as nn
import torch.utils.data
from datasets.coco import COCO_eval
from datasets.pascal import PascalVOC_eval
from nets.hourglass import get_hourglass
# from nets.resdcn import get_pose_net
from utils.keypoint import _decode, _rescale_dets
from utils.summary import create_logger
from lib.nms.nms import soft_nms, soft_nms_merge
# Training settings
parser = argparse.ArgumentParser(description='cornernet')
parser.add_argument('--root_dir', type=str, default='./')
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('--log_name', type=str, default='test')
parser.add_argument('--dataset', type=str, default='coco', choices=['coco', 'pascal'])
parser.add_argument('--arch', type=str, default='large_hourglass')
parser.add_argument('--test_flip', action='store_true')
parser.add_argument('--test_scales', type=str, default='1')
parser.add_argument('--topk', type=int, default=100)
parser.add_argument('--ae_threshold', type=float, default=0.5)
parser.add_argument('--nms_threshold', type=float, default=0.5)
parser.add_argument('--w_exp', type=float, default=10)
parser.add_argument('--num_workers', type=int, default=1)
cfg = parser.parse_args()
os.chdir(cfg.root_dir)
cfg.ckpt_dir = os.path.join(cfg.root_dir, 'ckpt', cfg.log_name)
cfg.log_dir = os.path.join(cfg.root_dir, 'logs', cfg.log_name)
cfg.pretrain_dir = os.path.join(cfg.ckpt_dir, 'checkpoint.t7')
os.makedirs(cfg.log_dir, exist_ok=True)
os.makedirs(cfg.ckpt_dir, exist_ok=True)
cfg.test_scales = [float(s) for s in cfg.test_scales.split(',')]
def main():
logger = create_logger(save_dir=cfg.log_dir)
print = logger.info
print(cfg)
torch.manual_seed(317)
torch.backends.cudnn.benchmark = False
cfg.device = torch.device('cuda')
print('Setting up data...')
Dataset_eval = COCO_eval if cfg.dataset == 'coco' else PascalVOC_eval
dataset = Dataset_eval(cfg.data_dir, 'val', test_scales=cfg.test_scales, test_flip=cfg.test_flip)
val_loader = torch.utils.data.DataLoader(dataset, batch_size=1,
shuffle=False, num_workers=1, pin_memory=True,
collate_fn=dataset.collate_fn)
print('Creating model...')
if 'hourglass' in cfg.arch:
model = get_hourglass[cfg.arch]
elif 'resdcn' in cfg.arch:
model = get_pose_net(num_layers=int(cfg.arch.split('_')[-1]), num_classes=dataset.num_classes)
else:
raise NotImplementedError
model = model.to(cfg.device)
model.load_state_dict(torch.load(cfg.pretrain_dir))
print('loaded pretrained model from %s !' % cfg.pretrain_dir)
print('validation starts at %s' % datetime.now())
model.eval()
results = {}
with torch.no_grad():
for inputs in val_loader:
img_id, inputs = inputs[0]
detections = []
for scale in inputs:
inputs[scale]['image'] = inputs[scale]['image'].to(cfg.device)
output = model(inputs[scale]['image'])[-1]
dets = _decode(*output, ae_threshold=cfg.ae_threshold, K=cfg.topk, kernel=3)
dets = dets.reshape(dets.shape[0], -1, 8).detach().cpu().numpy()
if dets.shape[0] == 2:
dets[1, :, [0, 2]] = inputs[scale]['fmap_size'][0, 1] - dets[1, :, [2, 0]]
dets = dets.reshape(1, -1, 8)
_rescale_dets(dets, inputs[scale]['ratio'], inputs[scale]['border'], inputs[scale]['size'])
dets[:, :, 0:4] /= scale
detections.append(dets)
detections = np.concatenate(detections, axis=1)[0]
# reject detections with negative scores
detections = detections[detections[:, 4] > -1]
classes = detections[..., -1]
results[img_id] = {}
for j in range(dataset.num_classes):
keep_inds = (classes == j)
results[img_id][j + 1] = detections[keep_inds][:, 0:7].astype(np.float32)
soft_nms_merge(results[img_id][j + 1], Nt=cfg.nms_threshold, method=2, weight_exp=cfg.w_exp)
# soft_nms(results[img_id][j + 1], Nt=0.5, method=2)
results[img_id][j + 1] = results[img_id][j + 1][:, 0:5]
scores = np.hstack([results[img_id][j][:, -1] for j in range(1, dataset.num_classes + 1)])
if len(scores) > dataset.max_objs:
kth = len(scores) - dataset.max_objs
thresh = np.partition(scores, kth)[kth]
for j in range(1, dataset.num_classes + 1):
keep_inds = (results[img_id][j][:, -1] >= thresh)
results[img_id][j] = results[img_id][j][keep_inds]
eval_results = dataset.run_eval(results, save_dir=cfg.ckpt_dir)
print(eval_results)
print('validation ends at %s' % datetime.now())
if __name__ == '__main__':
main()