forked from onurboyar/Retinal-Vessel-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_stare.py
49 lines (33 loc) · 2.32 KB
/
train_stare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os, argparse, shutil, cv2, pickle, time, logging, gc, json
from utils.file import get_dirs
from unet.trainers import train_once, train_loop, train_kfold_stare
dirs = get_dirs()
TRAIN_PATH_IMG = dirs["files"][0]["TRAIN_PATH"] + "/images"
TRAIN_PATH_MASK = dirs["files"][0]["TRAIN_PATH"] + "/labels"
KFOLD_TEMP_TRAIN = dirs["files"][0]["KFOLD_TEMP_TRAIN"]
KFOLD_TEMP_TEST = dirs["files"][0]["KFOLD_TEMP_TEST"]
LOG_PATH_K = dirs["files"][0]["LOG_PATH_KFOLD"]
CKPTS_PATH = dirs["files"][0]["CKPTS_PATH_KFOLD"]
RESULTS_PATH = dirs["files"][0]["RESULTS_PATH_KFOLD"]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--save_name", "-sn", help="Your experiment's name. It is related to\
saved checkpoints, folders etc.", type = str, default = "hello_world")
parser.add_argument("--initial_model_path", "-initm", help="Previous checkpoints to load. If not, default is None.", default = None)
parser.add_argument("--model_name", "-m", help="Which unet to use.", type=str, default = "vanilla")
parser.add_argument("--epochs", "-e", help="Number of epochs", type=int)
parser.add_argument("--train_batch", "-tb", help="Training batch size.", default = 3, type=int)
parser.add_argument("--val_batch", "-vb", help="Validation batch size.", default = 3,type=int)
parser.add_argument("--n_fold", "-nf", help="Your number of folds.", default = 4, type=int)
parser.add_argument("--start_fold", "-sf", help="Where to start your fold.", default = 0, type=int)
parser.add_argument("--show_samples", "-ss", help="Show predicted masks in validation set while training.", default = False, type=bool)
args = parser.parse_args()
train_sample_number = len(os.listdir(TRAIN_PATH_MASK)) - (len(os.listdir(TRAIN_PATH_MASK))//20*args.n_fold)
train_kfold_stare(epoch = args.epochs, start = args.start_fold, \
train_batch_size = args.train_batch, \
test_batch_size = args.val_batch,\
train_sample_number = train_sample_number,\
test_sample_number = args.n_fold, \
initial_model_path = args.initial_model_path,\
k = args.n_fold, \
show_samples = args.show_samples,model_name=args.model_name)