-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathREADME
446 lines (327 loc) · 19.3 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
==================
american fuzzy lop
==================
Written and maintained by Michal Zalewski <[email protected]>
Copyright 2013, 2014, 2015 Google Inc. All rights reserved.
Released under terms and conditions of Apache License, Version 2.0.
For new versions and additional information, check out:
http://lcamtuf.coredump.cx/afl/
To compare notes with other users or get notified about major new features,
send a mail to <[email protected]>.
1) Challenges of guided fuzzing
-------------------------------
Fuzzing is one of the most powerful and proven strategies for identifying
security issues in real-world software; it is responsible for the vast
majority of remote code execution and privilege escalation bugs found to date
in security-critical software.
Unfortunately, fuzzing also offers fairly shallow coverage, because many of the
mutations needed to reach new code paths are exceedingly unlikely to be hit
purely by chance.
There have been numerous attempts to solve this problem by augmenting the
process with additional information about the behavior of the tested code,
ranging from simple corpus distillation, to flow analysis (aka "concolic"
execution), to pure symbolic execution, to static analysis.
The first method on that list has been demonstrated to work well, but depends
on the availability of a massive, high-quality corpus of valid input data. On
top of this, coverage measurements provide only a fairly simplistic view of
program state, making them less suited for guiding the fuzzing process later on.
The remaining techniques are extremely promising in experimental settings, but
frequently suffer from reliability problems or irreducible complexity. Most of
the high-value targets have enough internal states and possible execution paths
to make such tools fall apart and perform strictly worse than their traditional
counterparts, at least until fine-tuned with utmost care.
2) The afl-fuzz approach
------------------------
American Fuzzy Lop is a brute-force fuzzer coupled with an exceedingly simple
but rock-solid instrumentation-guided genetic algorithm. It uses an enhanced
form of edge coverage to easily detect subtle, local-scale changes to program
control flow, without being bogged down by complex comparisons between multiple
long-winded execution paths.
Simplifying a bit, the overall algorithm can be summed up as:
1) Load user-supplied initial test cases into the queue,
2) Take next input file from the queue,
3) Attempt to trim the test case to the smallest size that doesn't alter
the measured behavior of the program,
4) Repeatedly mutate the file using a balanced and well-researched variety
of traditional fuzzing strategies,
5) If any of the generated mutations resulted in a new state transition
recorded by the instrumentation, add mutated output as a new entry in the
queue.
6) Go to 2.
The discovered test cases are also periodically culled to eliminate ones that
have been obsoleted by newer, higher-coverage finds, and undergo several other
instrumentation-driven effort minimization steps.
The strategies mentioned in step 4 are fairly straightforward, but go well
beyond the functionality of tools such as zzuf and honggfuzz and lead to
additional finds; this is discussed in more detail in technical_notes.txt.
As a side result of the fuzzing process, the tool creates a small,
self-contained corpus of interesting test cases. These are extremely useful
for seeding other, labor- or resource-intensive testing regimes - for example,
for stress-testing browsers, office applications, graphics suites, or
closed-source tools.
The fuzzer is thoroughly tested to deliver coverage far superior to blind
fuzzing or coverage-only tools without the need to dial in any settings or
adjust any knobs.
3) Instrumenting programs for use with AFL
------------------------------------------
When source code is available, instrumentation can be injected by a companion
tool that works as a drop-in replacement for gcc or clang in any standard build
process for third-party code.
The instrumentation has a fairly modest performance impact; in conjunction with
other optimizations implemented by afl-fuzz, most programs can be fuzzed as fast
or even faster than possible with traditional tools.
The correct way to recompile the target program may vary depending on the
specifics of the build process, but a nearly-universal approach would be:
$ CC=/path/to/afl/afl-gcc ./configure
$ make clean all
For C++ programs, you will want:
$ CXX=/path/to/afl/afl-g++ ./configure
The clang wrappers (afl-clang and afl-clang++) are used in the same way; clang
users can also leverage a higher-performance instrumentation mode described in
llvm_mode/README.llvm.
When testing libraries, it is essential to either link the tested executable
against a static version of the instrumented library, or to set the right
LD_LIBRARY_PATH. Usually, the simplest option is just:
$ CC=/path/to/afl/afl-gcc ./configure --disable-shared
Setting AFL_HARDEN=1 when calling 'make' will cause the CC wrapper to
automatically enable code hardening options that make it easier to detect
simple memory bugs. The cost of this is a <5% performance drop.
Oh: when using ASAN, see the notes_for_asan.txt file for important caveats.
4) Instrumenting binary-only apps
---------------------------------
When fuzzing closed-source programs that can't be easily recompiled with
afl-gcc, the fuzzer offers experimental support for fast, on-the-fly
instrumentation of black-box binaries. This is accomplished with a
version of QEMU running in the lesser-known "user space emulation" mode.
QEMU is a project separate from AFL, but you can conveniently build the
feature by doing:
$ cd qemu_mode
$ ./build_qemu_support.sh
For additional instructions and caveats, see qemu_mode/README.qemu.
The mode isn't free; compared to compile-time instrumentation, the fuzzing
process will be approximately 2-5x slower; it is also less conductive to
parallelization on multiple cores.
5) Choosing initial test cases
------------------------------
To operate correctly, the fuzzer requires one or more starting file containing
the typical input normally expected by the targeted application. There are
two basic rules:
- Keep the files small. Under 1 kB is ideal, although not strictly necessary.
For a discussion of why size *really* matters, see perf_tips.txt.
- Use multiple test cases only if they are fundamentally different from
each other. There is no point in using fifty different vacation photos to
fuzz an image library.
You can find quite a few good examples of starting files in the testcases/
subdirectory that comes with this tool.
If a large corpus of data is available for screening, you may want to use the
afl-cmin utility to reject redundant files - ideally, with an aggressive
timeout (-t); afl-showmap can be used to manually examine and compare execution
traces, too.
6) Fuzzing binaries
-------------------
The fuzzing process itself is carried out by the afl-fuzz utility. The program
requires a read-only directory with initial test cases, a separate place to
store its findings, plus a path to the binary to test.
For programs that accept input directly from stdin, the usual syntax may be:
$ ./afl-fuzz -i testcase_dir -o findings_dir /path/to/program [...params...]
For programs that take input from a file, use '@@' to mark the location where
the input file name should go. The fuzzer will substitute this for you:
$ ./afl-fuzz -i testcase_dir -o findings_dir /path/to/program -r @@
You can also use the -f option to have the mutated data written to a specific
file. This is useful if the program expects a particular file extension or so.
Non-instrumented binaries can be fuzzed in the QEMU mode by adding -Q in the
command line. It is also possible to use the -n flag to run afl-fuzz in plain
old non-guided mode. This gives you a fairly traditional fuzzer with a couple
of nice testing strategies.
You can use -t and -m to override the default timeout and memory limit for the
executed process; this is seldom necessary, perhaps except for video decoders
or compilers.
Tips for optimizing the performance of the process are discussed in
perf_tips.txt. Note that the fuzzer starts by meticulously performing an array
of deterministic fuzzing steps, which can take several days. If you want more
traditional behavior akin to zzuf or honggfuzz, use the -d option to get quick
but less systematic and less in-depth results right away.
7) Interpreting output
----------------------
The fuzzing process will continue until you press Ctrl-C. See the
status_screen.txt file for information on how to interpret the displayed stats
and monitor the health of the process. At the *very* minimum, you want to allow
the fuzzer to complete one queue cycle, which may take anywhere from a couple
of hours to a week or so.
There are three subdirectories created within the output directory and updated
in real time:
- queue/ - test cases for every distinctive execution path, plus all the
starting files given by the user. This is, in effect, the
synthesized corpus mentioned in section 2.
If desired, you can use afl-cmin to shrink the corpus to a much
smaller size. This works by throwing away earlier inputs that
used to trigger unique behaviors in the past, but have been made
obsolete by better finds made by afl-fuzz later on.
- hangs/ - unique test cases that cause the tested program to time out. Note
that the default timeouts are fairly aggressive (set at 5x the
average execution time) to keep things moving fast.
- crashes/ - unique test cases that cause the tested program to receive a
fatal signal (e.g., SIGSEGV, SIGILL, SIGABRT). The entries are
grouped by the received signal.
Crashes and hangs are considered "unique" if the associated execution paths
involve any state transitions not seen in previously-recorded faults. If a
single bug can be reached in multiple ways, there will be some count inflation
early in the process, but this should quickly taper off.
The file names for crashes and hangs should let you correlate them with the
parent, non-faulting queue entries. This should help with debugging.
When you can't reproduce a crash found by afl-fuzz, the most likely cause is
that you are not setting the same memory limit as used by the tool. Try:
$ LIMIT_MB=50
$ ( ulimit -Sv $[LIMIT_MB << 10]; /path/to/tested_binary ... )
Change LIMIT_MB to match the -m parameter passed to afl-fuzz. On OpenBSD,
also change -Sv to -Sd.
Any existing output directory can be also used to resume aborted jobs; try:
$ ./afl-fuzz -i- -o existing_output_dir [...etc...]
If you have gnuplot installed, you can also generate some pretty graphs for any
active fuzzing task using 'afl-plot'. For an example of how this looks like,
see http://lcamtuf.coredump.cx/afl/plot/.
8) Parallelized fuzzing
-----------------------
Every instance of afl-fuzz takes up roughly one core. This means that on
multi-core systems, parallelization is necessary to fully utilize the hardware.
For tips on how to fuzz a common target on multiple cores or multiple networked
machines, please refer to parallel_fuzzing.txt.
9) Fuzzer dictionaries
----------------------
By default, afl-fuzz mutation engine is optimized for compact data formats -
say, images, multimedia, compressed data, regular expression syntax, or shell
scripts. It is somewhat less suited for languages with particularly verbose and
redundant verbiage - notably including HTML, SQL, or JavaScript.
To avoid the hassle of building syntax-aware tools, afl-fuzz provides a way to
seed the fuzzing process with an optional dictionary of language keywords,
magic headers, or other special tokens associated with the targeted data type
- and use that to reconstruct the underlying grammar on the go:
http://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
To use this feature, place the tokens in a new directory, one per file; and then
point the fuzzer to that directory via the -x option in the command line. One
good example can be found in testcases/_extras/xml/; another useful reference
point would be testcases/_extras/png/.
Note that the tokens should be *extremely* short and correspond to the basic
syntax units that the fuzzer will then clobber together in various ways;
snippets between 2 and 16 bytes are the sweet spot in almost all cases.
There is no way to provide more structured descriptions of the underlying
syntax, but the fuzzer will likely figure out some of this based on the
instrumentation feedback alone. This actually works in practice, say:
http://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.html
PS. Even when no explicit dictionary is given, afl-fuzz will try to extract
existing syntax tokens in the input corpus by watching the instrumentation
very closely during deterministic byte flips. This works for some types of
parsers and grammars, but isn't nearly as good as the -x mode.
10) Crash triage
----------------
The coverage-based grouping of crashes usually produces a small data set that
can be quickly triaged manually or with a very simple GDB or Valgrind script.
Every crash is also traceable to its parent non-crashing test case in the
queue, making it easier to diagnose faults.
Having said that, it's important to acknowledge that some fuzzing crashes can be
difficult quickly evaluate for exploitability without a lot of debugging and
code analysis work. To assist with this task, afl-fuzz supports a very unique
"crash exploration" mode enabled with the -C flag.
In this mode, the fuzzer takes one or more crashing test cases as the input,
and uses its feedback-driven fuzzing strategies to very quickly enumerate all
code paths that can be reached in the program while keeping it in the
crashing state.
Mutations that do not result in a crash are rejected; so are any changes that
do not affect the execution path.
The output is a small corpus of files that can be very rapidly examined to see
what degree of control the attacker has over the faulting address, or whether
it is possible to get past an initial out-of-bounds read - and see what lies
beneath.
Oh, one more thing: for test case minimization, give afl-tmin a try. The tool
can be operated in a very simple way:
$ ./afl-tmin -i test_case -o minimized_result -- /path/to/program [...]
The tool works with crashing and non-crashing test cases alike. In the crash
mode, it will happily accept instrumented and non-instrumented binaries. In the
non-crashing mode, the minimizer relies on standard AFL instrumentation to make
the file simpler without altering the execution path.
The minimizer accepts the -m, -t, -f and @@ syntax in a manner compatible with
afl-fuzz.
11) Common-sense risks
----------------------
Please keep in mind that, similarly to many other computationally-intensive
tasks, fuzzing may put strain on your hardware and on the OS. In particular:
- Your CPU will run hot and will need adequate cooling. In most cases, if
cooling is insufficient or stops working properly, CPU speeds will be
automatically throttled. That said, especially when fuzzing on less
suitable hardware (laptops, smartphones, etc), it's not entirely impossible
for something to blow up.
- Targeted programs may end up erratically grabbing gigabytes of memory or
filling up disk space with junk files. AFL tries to enforce basic memory
limits, but can't prevent each and every possible mishap. The bottom line
is that you shouldn't be fuzzing on systems where the prospect of data loss
is not an acceptable risk.
- Fuzzing involves billions of reads and writes to the filesystem. On modern
systems, this will be usually heavily cached, resulting in fairly modest
"physical" I/O - but there are many factors that may alter this equation.
It is your responsibility to monitor for potential trouble; with very heavy
I/O, the lifespan of many HDDs and SSDs may be reduced.
A good way to monitor disk I/O on Linux is the 'iostat' command:
$ iostat -d 3 -x -k [...optional disk ID...]
12) Known limitations & areas for improvement
---------------------------------------------
Here are some of the most important caveats for AFL:
- AFL detects faults by checking for the first spawned process dying due to
a signal (SIGSEGV, SIGABRT, etc). Programs that install custom handlers for
these signals may need to have the relevant code commented out. In the same
vein, faults in child processed spawned by the fuzzed target may evade
detection unless you manually add some code to catch that.
- As with any other brute-force tool, the fuzzer offers limited coverage if
encryption, checksums, cryptographic signatures, or compression are used to
wholly wrap the actual data format to be tested.
To work around this, you can comment out the relevant checks (see
experimental/libpng_no_checksum/ for inspiration); if this is not possible,
you can also write a postprocessor, as explained in
experimental/post_library/.
- There are some unfortunate trade-offs with ASAN and 64-bit binaries. This
isn't due to any specific fault of afl-fuzz; see notes_for_asan.txt for
tips.
- There is no direct support for fuzzing network services, background
daemons, or interactive apps that require UI interaction to work. You may
need to make simple code changes to make them behave in a more traditional
way.
Beyond this, see INSTALL for platform-specific tips.
13) Special thanks
------------------
Many of the improvements to afl-fuzz wouldn't be possible without feedback,
bug reports, or patches from:
Jann Horn Hanno Boeck
Felix Groebert Jakub Wilk
Richard W. M. Jones Alexander Cherepanov
Tom Ritter Hovik Manucharyan
Sebastian Roschke Eberhard Mattes
Padraig Brady Ben Laurie
@dronesec Luca Barbato
Tobias Ospelt Thomas Jarosch
Martin Carpenter Mudge Zatko
Joe Zbiciak Ryan Govostes
Michael Rash William Robinet
Jonathan Gray Filipe Cabecinhas
Nico Weber Jodie Cunningham
Andrew Griffiths Parker Thompson
Jonathan Neuschfer Tyler Nighswander
Ben Nagy Samir Aguiar
Aidan Thornton Aleksandar Nikolich
Sam Hakim Laszlo Szekeres
David A. Wheeler Turo Lamminen
Andreas Stieger Richard Godbee
Thank you!
14) Contact
-----------
Questions? Concerns? Bug reports? The author can be usually reached at
There is also a mailing list for the project; to join, send a mail to
<[email protected]>. Or, if you prefer to browse
archives first, try:
https://groups.google.com/group/afl-users
PS. If you wish to submit raw code to be incorporated into the project, please
be aware that the copyright on most of AFL is claimed by Google. While you do
retain copyright on your contributions, they do ask people to agree to a simple
CLA first:
https://cla.developers.google.com/clas
Sorry about the hassle. Of course, no CLA is required for feature requests or
bug reports.