-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyreconstruction.py
544 lines (493 loc) · 26.4 KB
/
myreconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
"""Mechanisms for image reconstruction from parameter gradients."""
import numpy as np
import torch
import torchvision
from collections import defaultdict, OrderedDict
from inversefed.nn import MetaMonkey
from inversefed.metrics import total_variation as TV
from inversefed.metrics import InceptionScore
from inversefed.medianfilt import MedianPool2d
from inversefed.metrics import psnr
from metrics import ssim_batch
from copy import deepcopy
from matplotlib import pyplot as plt
import time, os
DEFAULT_CONFIG = dict(signed=False,
boxed=True,
cost_fn='sim',
indices='def',
weights='equal',
lr=0.1,
optim='adam',
restarts=1,
max_iterations=3000,
total_variation=1e-1,
init='randn',
filter='none',
lr_decay=True,
scoring_choice='loss',
results_dir='',
log_dir='',
images_dir='images_dir',
figure_dir='figure_dir',
random_idx=-1,
state='',)
def _label_to_onehot(target, num_classes=100):
target = torch.unsqueeze(target, 1)
onehot_target = torch.zeros(target.size(0), num_classes, device=target.device)
onehot_target.scatter_(1, target, 1)
return onehot_target
def _validate_config(config):
for key in DEFAULT_CONFIG.keys():
if config.get(key) is None:
config[key] = DEFAULT_CONFIG[key]
for key in config.keys():
if DEFAULT_CONFIG.get(key) is None:
raise ValueError(f'Deprecated key in config dict: {key}!')
return config
class GradientReconstructor():
"""Instantiate a reconstruction algorithm."""
def __init__(self, model, ground_truth, mean_std=(0.0, 1.0), config=DEFAULT_CONFIG, num_images=1, init_img=None):
"""
Initialize with algorithm setup.
Ground-truth here is the masked ground-truth gradients.
The same mask should be used in the estimated gradients.
"""
self.config = _validate_config(config)
self.model = model
self.ground_truth = ground_truth
self.mask = None
self.setup = dict(device=next(model.parameters()).device, dtype=next(model.parameters()).dtype)
self.mean_std = mean_std
self.dm, self.ds = mean_std
self.num_images = num_images
self.init_img = init_img
if self.config['scoring_choice'] == 'inception':
self.inception = InceptionScore(batch_size=1, setup=self.setup)
self.loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
self.iDLG = True
self.scores = {
'RecLoss': [[[] for j in range(num_images+1)] for _ in range(self.config['restarts'])],
'MSE': [[[] for j in range(num_images+1)] for _ in range(self.config['restarts'])],
'SSIM': [[[] for j in range(num_images+1)] for _ in range(self.config['restarts'])],
'FMSE': [[[] for j in range(num_images+1)] for _ in range(self.config['restarts'])],
'PSNR': [[[] for j in range(num_images+1)] for _ in range(self.config['restarts'])],
'TVLoss': [[[] for j in range(num_images+1)] for _ in range(self.config['restarts'])],
}
self.iterations = [[] for _ in range(self.config['restarts'])]
def reconstruct(self, input_data, labels, img_shape=(3, 32, 32), dryrun=False, eval=True, tol=None, mask=None):
"""Reconstruct image from gradient."""
self.mask = mask
start_time = time.time()
if eval:
self.model.eval()
stats = defaultdict(list)
# initialize the recovery image:
x = self._init_images(img_shape)
save_init = torch.clamp(x.squeeze(0) * self.ds + self.dm, 0, 1)
torchvision.utils.save_image(save_init, os.path.join(self.config['images_dir'], 'img%d_init.png'%(self.config['random_idx'])))
scores = torch.zeros(self.config['restarts'])
if labels is None:
if self.num_images == 1 and self.iDLG:
# iDLG trick:
last_weight_min = torch.argmin(torch.sum(input_data[-2], dim=-1), dim=-1)
labels = last_weight_min.detach().reshape((1,)).requires_grad_(False)
self.reconstruct_label = False
else:
# DLG label recovery
# However this also improves conditioning for some LBFGS cases
self.reconstruct_label = True
def loss_fn(pred, labels):
labels = torch.nn.functional.softmax(labels, dim=-1)
return torch.mean(torch.sum(- labels * torch.nn.functional.log_softmax(pred, dim=-1), 1))
self.loss_fn = loss_fn
else:
assert labels.shape[0] == self.num_images
self.reconstruct_label = False
self.labels = labels
try:
for trial in range(self.config['restarts']):
x_trial, labels = self._run_trial(x[trial], input_data, labels, trial, dryrun=dryrun)
# Finalize
scores[trial] = self._score_trial(x_trial, input_data, labels)
x[trial] = x_trial
if tol is not None and scores[trial] <= tol:
break
if dryrun:
break
except KeyboardInterrupt:
print('Trial procedure manually interruped.')
pass
# Choose optimal result:
if self.config['scoring_choice'] in ['pixelmean', 'pixelmedian']:
x_optimal, stats = self._average_trials(x, labels, input_data, stats)
else:
print('Choosing optimal result ...')
# accept nan values, which means the attack totally failed
# scores = scores[torch.isfinite(scores)] # guard against NaN/-Inf scores?
optimal_index = torch.argmin(scores)
print(f'Optimal result score: {scores[optimal_index]:2.4f}')
stats['opt'] = scores[optimal_index].item()
x_optimal = x[optimal_index]
print(f'Total time: {time.time()-start_time}.')
for name in self.scores.keys():
self._plot_metric(name, optimal_index)
return x_optimal.detach(), stats
def _init_images(self, img_shape):
if self.init_img is not None:
return self.init_img
# self.ground_truth is the image
if self.config['init'] == 'randn':
return torch.randn((self.config['restarts'], self.num_images, *img_shape), **self.setup)
elif self.config['init'] == 'rand':
return (torch.rand((self.config['restarts'], self.num_images, *img_shape), **self.setup) - 0.5) * 2
elif self.config['init'] == 'zeros':
return torch.zeros((self.config['restarts'], self.num_images, *img_shape), **self.setup)
elif self.config['init'] == 'original':
init_img = self.ground_truth.unsqueeze(0)
return init_img
else:
raise ValueError()
def _run_trial(self, x_trial, input_data, labels, trial, dryrun=False):
log_file = os.path.join(self.config['figure_dir'], 'output_trial%d.log' % trial)
log = open(log_file, 'w+')
log.write('Iter | Rec Loss | Grad Norm | MSE | SSIM | TV Loss\n')
x_trial.requires_grad = True
if self.reconstruct_label:
output_test = self.model(x_trial)
labels = torch.randn(output_test.shape[1]).to(**self.setup).requires_grad_(True)
if self.config['optim'] == 'adam':
optimizer = torch.optim.Adam([x_trial, labels], lr=self.config['lr'])
elif self.config['optim'] == 'sgd': # actually gd
optimizer = torch.optim.SGD([x_trial, labels], lr=0.01, momentum=0.9, nesterov=True)
elif self.config['optim'] == 'lbfgs':
optimizer = torch.optim.LBFGS([x_trial, labels])
else:
raise ValueError()
else:
if self.config['optim'] == 'adam':
optimizer = torch.optim.Adam([x_trial], lr=self.config['lr'])
elif self.config['optim'] == 'sgd': # actually gd
optimizer = torch.optim.SGD([x_trial], lr=0.01, momentum=0.9, nesterov=True)
elif self.config['optim'] == 'lbfgs':
optimizer = torch.optim.LBFGS([x_trial])
else:
raise ValueError()
max_iterations = self.config['max_iterations']
dm, ds = self.mean_std
if self.config['lr_decay']:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[max_iterations // 2.667, max_iterations // 1.6,
max_iterations // 1.142], gamma=0.1) # 3/8 5/8 7/8
try:
flag = False
for iteration in range(max_iterations):
closure = self._gradient_closure(optimizer, x_trial, input_data, labels)
# rec_loss, grad_norm, grad_trial, rec_loss_grad = optimizer.step(closure)
rec_loss = optimizer.step(closure)
rec_loss_grad = x_trial.grad.detach().data
grad_norm = torch.norm(x_trial.grad.data.detach())
grad_trial = torch.autograd.grad(self.loss_fn(self.model(x_trial), labels), self.model.parameters())
if self.config['lr_decay']:
scheduler.step()
with torch.no_grad():
# Project into image space
if self.config['boxed']:
x_trial.data = torch.max(torch.min(x_trial, (1 - dm) / ds), -dm / ds)
if (iteration + 1 == max_iterations) or (iteration + 1) % 5 == 0 or (iteration == 0):
if ((iteration + 1) % 500 == 0) or (iteration == 0):
print(f'It: {(iteration + 1)}. Rec. loss: {rec_loss.item():2.4f}. Grad norm: {grad_norm.item()}')
batch_MSE = (x_trial - self.ground_truth).pow(2).mean().item()
batch_TVLoss = TV(x_trial).detach().item()
mean_ssim, batch_ssims = ssim_batch(x_trial, self.ground_truth)
MSEs = []
TVLosses = []
self.scores['RecLoss'][trial][-1].append(rec_loss.item())
self.scores['FMSE'][trial][-1].append((self.model(x_trial) - self.model(self.ground_truth)).pow(2).mean().item())
self.scores['MSE'][trial][-1].append(batch_MSE)
self.scores['SSIM'][trial][-1].append(mean_ssim)
self.scores['PSNR'][trial][-1].append(psnr(x_trial, self.ground_truth, factor=1 / ds))
self.scores['TVLoss'][trial][-1].append(batch_TVLoss)
self.iterations[trial].append(iteration)
for i in range(self.num_images):
img_MSE = (x_trial[i].unsqueeze(0) - self.ground_truth[i].unsqueeze(0)).pow(2).mean().item()
img_TVLoss = TV(x_trial[i].unsqueeze(0)).detach().item()
MSEs.append(img_MSE)
TVLosses.append(img_TVLoss)
self.scores['RecLoss'][trial][i].append(rec_loss.item())
self.scores['FMSE'][trial][i].append((self.model(x_trial[i].unsqueeze(0)) - self.model(self.ground_truth[i].unsqueeze(0))).pow(2).mean().item())
self.scores['MSE'][trial][i].append(img_MSE)
self.scores['SSIM'][trial][i].append(batch_ssims[i].item())
self.scores['PSNR'][trial][i].append(psnr(x_trial[i].unsqueeze(0), self.ground_truth[i].unsqueeze(0), factor=1 / ds))
self.scores['TVLoss'][trial][i].append(img_TVLoss)
MSEs.append(batch_MSE)
TVLosses.append(batch_TVLoss)
log.write('{} | {} | {} | {} | {} | {}\n'.format(iteration, rec_loss.item(), grad_norm.item(), MSEs, batch_ssims, TVLosses))
log.flush()
if (iteration + 1) % 500 == 0:
if self.config['filter'] == 'none':
pass
elif self.config['filter'] == 'median':
x_trial.data = MedianPool2d(kernel_size=3, stride=1, padding=1, same=False)(x_trial)
else:
raise ValueError()
if (iteration) <= 50000:
if (iteration) % 100 == 0:
self._save_img(x_trial, iteration)
former_grad = torch.clamp(rec_loss_grad, 0, 1)
flag = True
if flag:
flag = False
elif (iteration + 1) % 10000 == 0:
former_grad = torch.clamp(rec_loss_grad, 0, 1)
flag = True
self._save_img(x_trial, iteration)
if flag:
flag = False
if dryrun:
break
except KeyboardInterrupt:
print(f'Recovery interrupted manually in iteration {iteration}!')
log.close()
pass
log.close()
return x_trial.detach(), labels
def _gradient_closure(self, optimizer, x_trial, input_gradient, label):
def closure():
optimizer.zero_grad()
self.model.zero_grad()
out = self.model(x_trial)
if len(out) != x_trial.shape[0]:
out = out[0]
# loss = self.loss_fn(self.model(x_trial), label)
loss = self.loss_fn(out, label)
gradient = torch.autograd.grad(loss, self.model.parameters(), create_graph=True)
rec_loss = reconstruction_costs([gradient], input_gradient,
cost_fn=self.config['cost_fn'], indices=self.config['indices'],
weights=self.mask if self.mask is not None else self.config['weights'], )
if self.config['total_variation'] > 0:
rec_loss += self.config['total_variation'] * TV(x_trial)
rec_loss.backward()
# show the gradients of reconstruction loss w.r.t. the x_trial
# grad_norm = torch.norm(x_trial.grad).data.detach()
# print('grad norm: ', grad_norm)
if self.config['signed']:
x_trial.grad.sign_()
# return rec_loss, grad_norm, gradient, x_trial.grad.data.detach()
return rec_loss
return closure
def _score_trial(self, x_trial, input_gradient, label):
if self.config['scoring_choice'] == 'loss':
self.model.zero_grad()
x_trial.grad = None
loss = self.loss_fn(self.model(x_trial), label)
gradient = torch.autograd.grad(loss, self.model.parameters(), create_graph=False)
return reconstruction_costs([gradient], input_gradient,
cost_fn=self.config['cost_fn'], indices=self.config['indices'],
weights= self.mask if self.mask is not None else self.config['weights'])
elif self.config['scoring_choice'] == 'tv':
return TV(x_trial)
elif self.config['scoring_choice'] == 'inception':
# We do not care about diversity here!
return self.inception(x_trial)
elif self.config['scoring_choice'] in ['pixelmean', 'pixelmedian']:
return 0.0
else:
raise ValueError()
def _average_trials(self, x, labels, input_data, stats):
print(f'Computing a combined result via {self.config["scoring_choice"]} ...')
if self.config['scoring_choice'] == 'pixelmedian':
x_optimal, _ = x.median(dim=0, keepdims=False)
elif self.config['scoring_choice'] == 'pixelmean':
x_optimal = x.mean(dim=0, keepdims=False)
self.model.zero_grad()
if self.reconstruct_label:
labels = self.model(x_optimal).softmax(dim=1)
loss = self.loss_fn(self.model(x_optimal), labels)
gradient = torch.autograd.grad(loss, self.model.parameters(), create_graph=False)
stats['opt'] = reconstruction_costs([gradient], input_data,
cost_fn=self.config['cost_fn'],
indices=self.config['indices'],
weights= self.mask if self.mask is not None else self.config['weights'])
print(f'Optimal result score: {stats["opt"]:2.4f}')
return x_optimal, stats
def _plot_metric(self, name, optimal_index):
# plot metrics of all images in one figure:
legends = []
for i in range(self.num_images):
if name == 'RecLoss' or 'MSE':
plt.plot(self.iterations[optimal_index], np.log10(self.scores[name][optimal_index][i]))
else:
plt.plot(self.iterations[optimal_index], self.scores[name][optimal_index][i])
legends.append('class%d' % self.labels[i].cpu().detach().numpy())
if name == 'RecLoss' or 'MSE':
plt.plot(self.iterations[optimal_index], np.log10(self.scores[name][optimal_index][-1]))
else:
plt.plot(self.iterations[optimal_index], self.scores[name][optimal_index][-1])
legends.append('batch' % self.labels[i].cpu().detach().numpy())
plt.ylabel(name)
plt.xlabel('Iterations')
plt.legend(legends)
plt.savefig(os.path.join(self.config['figure_dir'], '%s.png'%name))
# plt.show()
plt.close()
# plot all metrics in multi-figures:
# if (name == 'MSE') or (name == 'PSNR'):
if name in ['MSE', 'PSNR', 'SSIM']:
for i in range(self.num_images):
plt.plot(self.iterations[optimal_index], self.scores[name][optimal_index][i])
plt.ylabel(name)
plt.xlabel('Iterations')
plt.savefig(os.path.join(self.config['figure_dir'], '%s_img%d.png'% (name, i)))
# plt.show()
plt.close()
plt.plot(self.iterations[optimal_index], self.scores[name][optimal_index][-1])
plt.ylabel(name)
plt.xlabel('Iterations')
plt.savefig(os.path.join(self.config['figure_dir'], '%s_batch.png'% (name)))
# plt.show()
plt.close()
def _save_img(self, img, iteration):
img = img.detach()
if self.config['cost_fn'] == 'sim':
img = torch.clamp(img * self.ds + self.dm, 0, 1)
else:
img = torch.clamp(img, 0, 1)
torchvision.utils.save_image(img, os.path.join(self.config['images_dir'], '%s_%d.png'%(self.config['state'], iteration)))
# save diff:
diff = img - self.ground_truth
if self.config['cost_fn'] == 'sim':
diff = torch.clamp(diff * self.ds + self.dm, 0, 1)
else:
diff = torch.clamp(diff, 0, 1)
torchvision.utils.save_image(diff, os.path.join(self.config['images_dir'], '%s_%d.png'%('diff', iteration)))
class FedAvgReconstructor(GradientReconstructor):
"""Reconstruct an image from weights after n gradient descent steps."""
def __init__(self, model, mean_std=(0.0, 1.0), local_steps=2, local_lr=1e-4,
config=DEFAULT_CONFIG, num_images=1, use_updates=True, batch_size=0):
"""Initialize with model, (mean, std) and config."""
super().__init__(model, mean_std, config, num_images)
self.local_steps = local_steps
self.local_lr = local_lr
self.use_updates = use_updates
self.batch_size = batch_size
def _gradient_closure(self, optimizer, x_trial, input_parameters, labels):
def closure():
optimizer.zero_grad()
self.model.zero_grad()
parameters = loss_steps(self.model, x_trial, labels, loss_fn=self.loss_fn,
local_steps=self.local_steps, lr=self.local_lr,
use_updates=self.use_updates,
batch_size=self.batch_size)
rec_loss = reconstruction_costs([parameters], input_parameters,
cost_fn=self.config['cost_fn'], indices=self.config['indices'],
weights= self.mask if self.mask is not None else self.config['weights'])
if self.config['total_variation'] > 0:
rec_loss += self.config['total_variation'] * TV(x_trial)
rec_loss.backward()
if self.config['signed']:
x_trial.grad.sign_()
return rec_loss
return closure
def _score_trial(self, x_trial, input_parameters, labels):
if self.config['scoring_choice'] == 'loss':
self.model.zero_grad()
parameters = loss_steps(self.model, x_trial, labels, loss_fn=self.loss_fn,
local_steps=self.local_steps, lr=self.local_lr, use_updates=self.use_updates)
return reconstruction_costs([parameters], input_parameters,
cost_fn=self.config['cost_fn'], indices=self.config['indices'],
weights= self.mask if self.mask is not None else self.config['weights'])
elif self.config['scoring_choice'] == 'tv':
return TV(x_trial)
elif self.config['scoring_choice'] == 'inception':
# We do not care about diversity here!
return self.inception(x_trial)
def loss_steps(model, inputs, labels, loss_fn=torch.nn.CrossEntropyLoss(), lr=1e-4, local_steps=4, use_updates=True, batch_size=0):
"""Take a few gradient descent steps to fit the model to the given input."""
patched_model = MetaMonkey(model)
if use_updates:
patched_model_origin = deepcopy(patched_model)
for i in range(local_steps):
if batch_size == 0:
outputs = patched_model(inputs, patched_model.parameters)
labels_ = labels
else:
idx = i % (inputs.shape[0] // batch_size)
outputs = patched_model(inputs[idx * batch_size:(idx + 1) * batch_size], patched_model.parameters)
labels_ = labels[idx * batch_size:(idx + 1) * batch_size]
loss = loss_fn(outputs, labels_).sum()
grad = torch.autograd.grad(loss, patched_model.parameters.values(),
retain_graph=True, create_graph=True, only_inputs=True)
patched_model.parameters = OrderedDict((name, param - lr * grad_part)
for ((name, param), grad_part)
in zip(patched_model.parameters.items(), grad))
if use_updates:
patched_model.parameters = OrderedDict((name, param - param_origin)
for ((name, param), (name_origin, param_origin))
in zip(patched_model.parameters.items(), patched_model_origin.parameters.items()))
return list(patched_model.parameters.values())
def reconstruction_costs(gradients, input_gradient, cost_fn='l2', indices='def', weights='equal'):
"""Input gradient is given data."""
if isinstance(indices, list):
pass
elif indices == 'def':
indices = torch.arange(len(input_gradient))
elif indices == 'batch':
indices = torch.randperm(len(input_gradient))[:8]
elif indices == 'topk-1':
_, indices = torch.topk(torch.stack([p.norm() for p in input_gradient], dim=0), 4)
elif indices == 'top10':
_, indices = torch.topk(torch.stack([p.norm() for p in input_gradient], dim=0), 10)
elif indices == 'top50':
_, indices = torch.topk(torch.stack([p.norm() for p in input_gradient], dim=0), 50)
elif indices in ['first', 'first4']:
indices = torch.arange(0, 4)
elif indices == 'first5':
indices = torch.arange(0, 5)
elif indices == 'first10':
indices = torch.arange(0, 10)
elif indices == 'first50':
indices = torch.arange(0, 50)
elif indices == 'last5':
indices = torch.arange(len(input_gradient))[-5:]
elif indices == 'last10':
indices = torch.arange(len(input_gradient))[-10:]
elif indices == 'last50':
indices = torch.arange(len(input_gradient))[-50:]
else:
raise ValueError()
ex = input_gradient[0]
if weights == 'linear':
weights = torch.arange(len(input_gradient), 0, -1, dtype=ex.dtype, device=ex.device) / len(input_gradient)
elif weights == 'exp':
weights = torch.arange(len(input_gradient), 0, -1, dtype=ex.dtype, device=ex.device)
weights = weights.softmax(dim=0)
weights = weights / weights[0]
elif weights == 'equal':
weights = input_gradient[0].new_ones(len(input_gradient))
total_costs = 0
for trial_gradient in gradients:
pnorm = [0, 0]
costs = 0
if indices == 'topk-2':
_, indices = torch.topk(torch.stack([p.norm().detach() for p in trial_gradient], dim=0), 4)
for i in indices:
if cost_fn == 'l2':
costs += ((trial_gradient[i] - input_gradient[i]).pow(2)).sum() * weights[i]
elif cost_fn == 'l1':
costs += ((trial_gradient[i] - input_gradient[i]).abs()).sum() * weights[i]
elif cost_fn == 'max':
costs += ((trial_gradient[i] - input_gradient[i]).abs()).max() * weights[i]
elif cost_fn == 'sim':
costs -= (trial_gradient[i] * input_gradient[i]).sum() * weights[i]
pnorm[0] += trial_gradient[i].pow(2).sum() * weights[i]
pnorm[1] += input_gradient[i].pow(2).sum() * weights[i]
elif cost_fn == 'simlocal':
costs += 1 - torch.nn.functional.cosine_similarity(trial_gradient[i].flatten(),
input_gradient[i].flatten(),
0, 1e-10) * weights[i]
if cost_fn == 'sim':
costs = 1 + costs / (pnorm[0].sqrt()) / (pnorm[1].sqrt())
# Accumulate final costs
total_costs += costs
return total_costs / len(gradients)