forked from jdber1/conan-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconan.py
220 lines (177 loc) · 8.43 KB
/
conan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python
#coding=utf-8
from __future__ import unicode_literals
from __future__ import print_function
# from modules.classes import ExperimentalDrop, DropData, Tolerances
# from modules.static_setup_class import ExperimentalSetup
# # from modules.ui import initialise_ui
# from modules.user_interface import call_user_input
# # from modules.load import load_data
# from modules.extract_data import extract_drop_profile
# from modules.initialise_parameters import initialise_parameters
# # from modules.fit_data import fit_raw_experiment
# # from modules.user_set_regions
from modules.classes import ExperimentalSetup, ExperimentalDrop, DropData, Tolerances
#from modules.PlotManager import PlotManager
from modules.ExtractData import ExtractedData
from modules.user_interface import call_user_input
from modules.read_image import get_image
from modules.select_regions import set_drop_region,set_surface_line, correct_tilt
from modules.extract_profile import extract_drop_profile
from modules.extract_profile import image_crop
from modules.initialise_parameters import initialise_parameters
#from modules.analyse_needle import calculate_needle_diameter
#from modules.fit_data import fit_experimental_drop
from modules.fits import perform_fits
#from modules.generate_data import generate_full_data
# from modules. import add_data_to_lists
import matplotlib.pyplot as plt
import os
import numpy as np
import tkinter as tk
from tkinter import font as tkFont
import timeit
import time
np.set_printoptions(suppress=True)
np.set_printoptions(precision=3)
DELTA_TOL = 1.e-6
GRADIENT_TOL = 1.e-6
MAXIMUM_FITTING_STEPS = 10
OBJECTIVE_TOL = 1.e-4
ARCLENGTH_TOL = 1.e-6
MAXIMUM_ARCLENGTH_STEPS = 10
NEEDLE_TOL = 1.e-4
NEEDLE_STEPS = 20
def main():
clear_screen()
fitted_drop_data = DropData()
tolerances = Tolerances(
DELTA_TOL,
GRADIENT_TOL,
MAXIMUM_FITTING_STEPS,
OBJECTIVE_TOL,
ARCLENGTH_TOL,
MAXIMUM_ARCLENGTH_STEPS,
NEEDLE_TOL,
NEEDLE_STEPS)
user_inputs = ExperimentalSetup()
call_user_input(user_inputs)
if user_inputs.ML_boole == True:
from modules.ML_model.prepare_experimental import prepare4model_v03, experimental_pred
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # to minimise tf warnings
model_path = './modules/ML_model/'
model = tf.keras.models.load_model(model_path)
n_frames = user_inputs.number_of_frames
extracted_data = ExtractedData(n_frames, fitted_drop_data.parameter_dimensions)
raw_experiment = ExperimentalDrop()
#if user_inputs.interfacial_tension_boole:
# plots = PlotManager(user_inputs.wait_time, n_frames)
#get_image(raw_experiment, user_inputs, -1) #is this needed?
for i in range(n_frames):
print("\nProcessing frame %d of %d..." % (i+1, n_frames))
input_file = user_inputs.import_files[i]
print("\nProceccing " + input_file)
time_start = timeit.default_timer()
raw_experiment = ExperimentalDrop()
get_image(raw_experiment, user_inputs, i) # save image in here...
set_drop_region(raw_experiment, user_inputs)
# extract_drop_profile(raw_experiment, user_inputs)
extract_drop_profile(raw_experiment, user_inputs)
# croppedImage = image_crop(raw_experiment.image, user_inputs.drop_region)
# xx = np.array([0,croppedImage.shape[1]])
# plt.imshow(croppedImage, origin='upper', cmap = 'gray')
# # plt.plot(contour_x,contour_y,"--",color="white",linewidth = 2.0)
# plt.plot(raw_experiment.drop_data[:,0],-raw_experiment.drop_data[:,1],color="white",linewidth=2.0)
# plt.plot(xx,raw_experiment.surface_data(xx),'r--',linewidth=2.0)
# plt.show()
# plt.hold()
if i == 0:
extracted_data.initial_image_time = raw_experiment.time
filename = user_inputs.filename[:-4] + '_' + user_inputs.time_string + ".csv"
export_filename = os.path.join(user_inputs.directory_string, filename)
set_surface_line(raw_experiment, user_inputs) #fits performed here if baseline_method is User-selected
# these methods don't need tilt correction
if user_inputs.baseline_method == "Automated":
if user_inputs.tangent_boole == True or user_inputs.second_deg_polynomial_boole == True or user_inputs.circle_boole == True or user_inputs.ellipse_boole == True:
perform_fits(raw_experiment, tangent=user_inputs.tangent_boole, polynomial=user_inputs.second_deg_polynomial_boole, circle=user_inputs.circle_boole,ellipse=user_inputs.ellipse_boole)
# YL fit and ML model need tilt correction
if user_inputs.ML_boole == True or user_inputs.YL_boole == True:
correct_tilt(raw_experiment, user_inputs)
extract_drop_profile(raw_experiment, user_inputs)
if user_inputs.baseline_method == "Automated":
set_surface_line(raw_experiment, user_inputs)
# experimental_setup.baseline_method == 'User-selected' should work as is
#raw_experiment.contour = extract_edges_CV(raw_experiment.cropped_image, threshold_val=raw_experiment.ret, return_thresholed_value=False)
#experimental_drop.drop_contour, experimental_drop.contact_points = prepare_hydrophobic(experimental_drop.contour)
if user_inputs.YL_boole == True:
print('Performing YL fit...')
perform_fits(raw_experiment, YL=user_inputs.YL_boole)
if user_inputs.ML_boole == True:
pred_ds = prepare4model_v03(raw_experiment.drop_contour)
ML_predictions, timings = experimental_pred(pred_ds, model)
raw_experiment.contact_angles['ML model'] = {}
raw_experiment.contact_angles['ML model']['angles'] = [ML_predictions[0,0],ML_predictions[1,0]]
raw_experiment.contact_angles['ML model']['timings'] = timings
extracted_data.contact_angles = raw_experiment.contact_angles # DS 7/6/21
#print(extracted_data.contact_angles) #for the dictionary output
print('Extracted outputs:')
for key1 in extracted_data.contact_angles.keys():
for key2 in extracted_data.contact_angles[key1].keys():
print(key1+' '+key2+': ')
print(' ',extracted_data.contact_angles[key1][key2])
print()
# LMF least-squares fit (was commented out before)
#fit_experimental_drop(raw_experiment, fitted_drop_data, user_inputs, tolerances)
#generate_full_data(extracted_data, raw_experiment, fitted_drop_data, user_inputs, i)
#data_vector = extracted_data.time_IFT_vol_area(i)
#if user_inputs.interfacial_tension_boole:
# plots.append_data_plot(data_vector, i)
#if i != (n_frames - 1):
# time_loop = timeit.default_timer() - time_start
# pause_wait_time(time_loop, user_inputs.wait_time)
extracted_data.export_data(input_file,filename,i)
# cheeky_pause()
def clear_screen():
os.system('cls' if os.name == 'nt' else 'clear')
def pause_wait_time(elapsed_time, requested_time):
if elapsed_time > requested_time:
print('WARNING: Fitting took longer than desired wait time')
else:
time.sleep(requested_time - elapsed_time)
def cheeky_pause():
import Tkinter
import tkMessageBox
import cv2
# cv2.namedWindow("Pause")
# while 1:
# k = cv2.waitKey(1) & 0xFF
# if (k==27):
# break
#root = Tkinter.Tk()
# B = Tkinter.Button(top, text="Exit",command = cv2.destroyAllWindows())
# B = Tkinter.Button(root, text="Exit",command = root.destroy())
#
# B.pack()
# root.mainloop()
root = Tkinter.Tk()
frame = Tkinter.Frame(root)
frame.pack()
button = Tkinter.Button(frame)
button['text'] ="Good-bye."
button['command'] = root.destroy()#close_window(root)
button.pack()
root.mainloop()
def quit_(root):
root.quit()
#def close_window(root):
# root.destroy()
if __name__ == '__main__':
main()
root = tk.Tk()
# quit button
buttonFont = tkFont.Font(family='Helvetica', size=48, weight='bold') #This isn't working for some reason (??)
quit_button = tk.Button(master=root, font=buttonFont,text='Quit',height=4,width=15,
command=lambda: quit_(root),bg='blue',fg='white',activeforeground='white',activebackground='red')
quit_button.pack()
root.mainloop()