-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
269 lines (247 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import gym
import itertools
from copy import deepcopy
import math
import argparse
from tqdm import tqdm
import time
from codecarbon import EmissionsTracker
import torch.distributed as dist
import pickle
from spikerl.agent import SpikingAC_Network
from spikerl.buffer import ReplayBuffer
def spikeRL_train(env_fn, actor_critic=SpikingAC_Network, ac_kwargs=dict(), seed=0,
steps_per_epoch=10000, epochs=100, replay_size=int(1e6), gamma=0.99,
polyak=0.995, learning_rate=1e-4, q_lr=1e-3, batch_size=100, start_steps=10000,
update_after=1000, update_every=50, act_noise=0.1, target_noise=0.2,
noise_clip=0.5, policy_delay=2, num_test_episodes=10, max_ep_len=1000,
save_freq=5, norm_clip_limit=3, norm_update=50, use_cuda=True, rank=0, run=0,
device=None, local_rank=0, backend='nccl', args=None):
if rank == 0:
print(f"Using device: {device}")
print(f"Batch Size: {batch_size}")
print(f"Hidden Sizes: {ac_kwargs['hidden_sizes']}")
ac_kwargs['device'] = device
torch.manual_seed(seed + rank)
np.random.seed(seed + rank)
env, test_env = env_fn(), env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape[0]
act_limit = env.action_space.high[0]
ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
ac_targ = deepcopy(ac)
ac.to(device)
ac_targ.to(device)
ac = nn.parallel.DistributedDataParallel(ac, device_ids=[local_rank], output_device=local_rank)
ac_targ = nn.parallel.DistributedDataParallel(ac_targ, device_ids=[local_rank], output_device=local_rank)
for p in ac_targ.parameters():
p.requires_grad = False
q_params = itertools.chain(ac.module.q1.parameters(), ac.module.q2.parameters())
replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size,
clip_limit=norm_clip_limit, norm_update_every=norm_update)
def compute_loss_q(data):
o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done']
q1 = ac.module.q1(o, a)
q2 = ac.module.q2(o, a)
with torch.no_grad():
spikeRL_targ = ac_targ.module.spikeRL(o2, batch_size)
epsilon = torch.randn_like(spikeRL_targ) * target_noise
epsilon = torch.clamp(epsilon, -noise_clip, noise_clip)
a2 = spikeRL_targ + epsilon
a2 = torch.clamp(a2, -act_limit, act_limit)
q1_spikeRL_targ = ac_targ.module.q1(o2, a2)
q2_spikeRL_targ = ac_targ.module.q2(o2, a2)
q_spikeRL_targ = torch.min(q1_spikeRL_targ, q2_spikeRL_targ)
backup = r + gamma * (1 - d) * q_spikeRL_targ
loss_q1 = ((q1 - backup)**2).mean()
loss_q2 = ((q2 - backup)**2).mean()
loss_q = loss_q1 + loss_q2
loss_info = dict(
Q1Vals=q1.float().cpu().detach().numpy(),
Q2Vals=q2.float().cpu().detach().numpy()
)
return loss_q, loss_info
def compute_loss_spikeRL(data):
o = data['obs']
action = ac.module.spikeRL(o, batch_size)
q1_spikeRL = ac.module.q1(o, action)
return -q1_spikeRL.mean()
spikeRL_optimizer = optim.Adam(ac.module.spikeRL.parameters(), lr=learning_rate)
q_optimizer = optim.Adam(q_params, lr=q_lr)
scaler = torch.cuda.amp.GradScaler()
def update(data, timer):
q_optimizer.zero_grad()
with torch.cuda.amp.autocast():
loss_q, loss_info = compute_loss_q(data)
scaler.scale(loss_q).backward()
scaler.step(q_optimizer)
scaler.update()
if timer % policy_delay == 0:
for p in q_params:
p.requires_grad = False
spikeRL_optimizer.zero_grad()
with torch.cuda.amp.autocast():
loss_spikeRL = compute_loss_spikeRL(data)
scaler.scale(loss_spikeRL).backward()
scaler.step(spikeRL_optimizer)
scaler.update()
for p in q_params:
p.requires_grad = True
with torch.no_grad():
for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
p_targ.data.mul_(polyak)
p_targ.data.add_((1 - polyak) * p.data)
def get_action(o, noise_scale):
a = ac.module.act(torch.as_tensor(o, dtype=torch.float32, device=device), 1)
a += noise_scale * np.random.randn(act_dim)
return np.clip(a, -act_limit, act_limit)
def test_agent():
test_reward_sum = 0
for _ in range(num_test_episodes):
o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
while not(d or (ep_len == max_ep_len)):
action = get_action(replay_buffer.normalize_obs(o), 0)[0]
o, r, d, _, _ = test_env.step(action)
ep_ret += r
ep_len += 1
test_reward_sum += ep_ret
return test_reward_sum
save_test_reward = []
save_test_reward_steps = []
total_steps = steps_per_epoch * epochs
o, ep_ret, ep_len = env.reset(), 0, 0
model_dir = "output"
os.makedirs(model_dir, exist_ok=True)
for t in tqdm(range(total_steps)):
if t > start_steps:
a = get_action(replay_buffer.normalize_obs(o), act_noise)[0]
else:
a = env.action_space.sample()
o2, r, d, _, _ = env.step(a)
ep_ret += r
ep_len += 1
d = False if ep_len == max_ep_len else d
replay_buffer.store(o, a, r, o2, d)
o = o2
if d or (ep_len == max_ep_len):
o, ep_ret, ep_len = env.reset(), 0, 0
if t >= update_after and t % update_every == 0:
for j in range(update_every):
batch = replay_buffer.sample_batch(device, batch_size)
update(data=batch, timer=j)
if (t+1) % steps_per_epoch == 0:
epoch = (t+1) // steps_per_epoch
if rank == 0:
if (epoch % save_freq == 0) or (epoch == epochs):
ac.module.spikeRL.to('cpu')
torch.save(ac.module.spikeRL.state_dict(),
f"{model_dir}/{args.env}_b{batch_size}_e{epochs}_run{run}_{backend}.pt")
ac.module.spikeRL.to(device)
pickle.dump([replay_buffer.mean, replay_buffer.var],
open(f"{model_dir}/{args.env}_b{batch_size}_e{epochs}_run{run}_{backend}_mean_var.p", "wb+"))
test_reward_sum = test_agent()
test_reward_sum_tensor = torch.tensor(test_reward_sum, device=device)
dist.all_reduce(test_reward_sum_tensor, op=dist.ReduceOp.SUM)
total_test_episodes = num_test_episodes * dist.get_world_size()
test_mean_reward = test_reward_sum_tensor.item() / total_test_episodes
save_test_reward.append(test_mean_reward)
save_test_reward_steps.append(t + 1)
if rank == 0:
print(f"Epoch: {epoch}, Step: {t+1}, Test Reward: {test_mean_reward:.3f}")
if rank == 0:
pickle.dump([save_test_reward, save_test_reward_steps],
open(f"{model_dir}/{args.env}_b{batch_size}_e{epochs}_run{run}_{backend}_test_rewards.p", "wb+"))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='Walker2d-v4')
parser.add_argument('--backend', type=str, default='nccl')
parser.add_argument('--encoder_pop_dim', type=int, default=10)
parser.add_argument('--decoder_pop_dim', type=int, default=10)
parser.add_argument('--encoder_var', type=float, default=0.15)
parser.add_argument('--hidden_sizes', type=int, nargs='+', default=[256, 256])
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--run', type=int, default=0)
args = parser.parse_args()
run = args.run
if args.backend == 'nccl':
dist.init_process_group(backend='nccl', init_method='env://')
rank = dist.get_rank()
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
if rank == 0:
print(f"Number of GPUs: {num_gpus}")
print(f"Using device: {device}")
else:
device = torch.device("cpu")
num_gpus = 0
if rank == 0:
print("Using CPU")
elif args.backend == 'mpi':
dist.init_process_group(backend='mpi')
rank = dist.get_rank()
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
local_rank = rank % num_gpus
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
if rank == 0:
print(f"Number of GPUs: {num_gpus}")
print(f"Using device: {device}")
else:
device = torch.device("cpu")
num_gpus = 0
if rank == 0:
print("Using CPU")
else:
raise ValueError(f"Invalid backend: {args.backend}")
USE_POISSON = False
AC_KWARGS = dict(hidden_sizes=args.hidden_sizes,
encoder_pop_dim=args.encoder_pop_dim,
decoder_pop_dim=args.decoder_pop_dim,
mean_range=(-3, 3),
std=math.sqrt(args.encoder_var),
spike_ts=5,
device=device,
use_poisson=USE_POISSON)
if rank == 0:
tracker = EmissionsTracker()
tracker.start()
start_time = time.time()
spikeRL_train(
env_fn=lambda: gym.make(args.env),
actor_critic=SpikingAC_Network,
ac_kwargs=AC_KWARGS,
learning_rate=1e-4,
q_lr=1e-3,
gamma=0.99,
batch_size=args.batch_size,
seed=10 * run,
epochs=args.epochs,
norm_clip_limit=3.0,
rank=rank,
run=run,
device=device,
local_rank=local_rank,
backend=args.backend,
args=args
)
end_time = time.time()
training_time = end_time - start_time
if rank == 0:
emissions: float = tracker.stop()
total_energy = tracker.final_emissions_data.energy_consumed
print(f"SpikeRL Distributed ({args.backend}) Training Results on {args.env}")
print("---------------------------------------------------")
print(f"SpikeRL_Execution_Time_(s) = {training_time:.3f}")
print(f"SpikeRL_Carbon_Emissions_(kgCO2) = {emissions:.3f}")
print(f"SpikeRL_Total_Energy_Consumed_(kWh) = {total_energy:.3f}")
dist.destroy_process_group()