-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogger.py
353 lines (284 loc) · 14.8 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import logging
import pprint
import sys
import datetime
import torch
import utils
import matplotlib.pyplot as plt
import time
from sklearn.metrics import average_precision_score
from scipy.sparse import coo_matrix
import numpy as np
import os
if not os.path.exists("./log/"):
os.mkdir("./log")
class Logger():
def __init__(self, args, num_classes, minibatch_log_interval=10):
if args is not None:
currdate=str(datetime.datetime.today().strftime('%Y%m%d%H%M%S'))
self.log_name= 'log/log_'+args.data+'_'+args.task+'_'+args.model+'_'+currdate+'_r'+str(args.rank)+'.log'
if args.use_logfile:
print ("Log file:", self.log_name)
logging.basicConfig(filename=self.log_name, level=logging.INFO)
else:
print ("Log: STDOUT")
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.info ('*** PARAMETERS ***')
logging.info (pprint.pformat(args.__dict__)) # displays the string
logging.info ('')
else:
print ("Log: STDOUT")
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
self.num_classes = num_classes
self.minibatch_log_interval = minibatch_log_interval
self.eval_k_list = [10, 100, 1000]
self.args = args
def get_log_file_name(self):
return self.log_name
def log_epoch_start(self, epoch, num_minibatches, set, minibatch_log_interval=None):
#ALDO
self.epoch = epoch
######
self.set = set
self.losses = []
self.errors = []
self.MRRs = []
self.MAPs = []
#self.time_step_sizes = []
self.conf_mat_tp = {}
self.conf_mat_fn = {}
self.conf_mat_fp = {}
self.conf_mat_tp_at_k = {}
self.conf_mat_fn_at_k = {}
self.conf_mat_fp_at_k = {}
for k in self.eval_k_list:
self.conf_mat_tp_at_k[k] = {}
self.conf_mat_fn_at_k[k] = {}
self.conf_mat_fp_at_k[k] = {}
for cl in range(self.num_classes):
self.conf_mat_tp[cl]=0
self.conf_mat_fn[cl]=0
self.conf_mat_fp[cl]=0
for k in self.eval_k_list:
self.conf_mat_tp_at_k[k][cl]=0
self.conf_mat_fn_at_k[k][cl]=0
self.conf_mat_fp_at_k[k][cl]=0
if self.set == "TEST":
self.conf_mat_tp_list = {}
self.conf_mat_fn_list = {}
self.conf_mat_fp_list = {}
for cl in range(self.num_classes):
self.conf_mat_tp_list[cl]=[]
self.conf_mat_fn_list[cl]=[]
self.conf_mat_fp_list[cl]=[]
self.batch_sizes=[]
self.minibatch_done = 0
self.num_minibatches = num_minibatches
if minibatch_log_interval is not None:
self.minibatch_log_interval = minibatch_log_interval
logging.info('################ '+set+' epoch '+str(epoch)+' ###################')
self.lasttime = time.monotonic()
self.ep_time = self.lasttime
def log_minibatch(self, predictions, true_classes, loss, **kwargs):
probs = torch.softmax(predictions,dim=1)[:,1]
if self.set in ['TEST', 'VALID'] and self.args.task == 'link_pred':
MRR = self.get_MRR(probs,true_classes, kwargs['adj'],do_softmax=False)
else:
MRR = torch.tensor([0.0])
MAP = torch.tensor(self.get_MAP(probs,true_classes, do_softmax=False))
error, conf_mat_per_class = self.eval_predicitions(predictions, true_classes, self.num_classes)
conf_mat_per_class_at_k={}
for k in self.eval_k_list:
conf_mat_per_class_at_k[k] = self.eval_predicitions_at_k(predictions, true_classes, self.num_classes, k)
batch_size = predictions.size(0)
self.batch_sizes.append(batch_size)
self.losses.append(loss) #loss.detach()
self.errors.append(error)
self.MRRs.append(MRR)
self.MAPs.append(MAP)
for cl in range(self.num_classes):
self.conf_mat_tp[cl]+=conf_mat_per_class.true_positives[cl]
self.conf_mat_fn[cl]+=conf_mat_per_class.false_negatives[cl]
self.conf_mat_fp[cl]+=conf_mat_per_class.false_positives[cl]
for k in self.eval_k_list:
self.conf_mat_tp_at_k[k][cl]+=conf_mat_per_class_at_k[k].true_positives[cl]
self.conf_mat_fn_at_k[k][cl]+=conf_mat_per_class_at_k[k].false_negatives[cl]
self.conf_mat_fp_at_k[k][cl]+=conf_mat_per_class_at_k[k].false_positives[cl]
if self.set == "TEST":
self.conf_mat_tp_list[cl].append(conf_mat_per_class.true_positives[cl])
self.conf_mat_fn_list[cl].append(conf_mat_per_class.false_negatives[cl])
self.conf_mat_fp_list[cl].append(conf_mat_per_class.false_positives[cl])
self.minibatch_done+=1
if self.minibatch_done%self.minibatch_log_interval==0:
mb_error = self.calc_epoch_metric(self.batch_sizes, self.errors)
mb_MRR = self.calc_epoch_metric(self.batch_sizes, self.MRRs)
mb_MAP = self.calc_epoch_metric(self.batch_sizes, self.MAPs)
partial_losses = torch.stack(self.losses)
logging.info(self.set+ ' batch %d / %d - partial error %0.4f - partial loss %0.4f - partial MRR %0.4f - partial MAP %0.4f' % (self.minibatch_done, self.num_minibatches, mb_error, partial_losses.mean(), mb_MRR, mb_MAP))
tp=conf_mat_per_class.true_positives
fn=conf_mat_per_class.false_negatives
fp=conf_mat_per_class.false_positives
logging.info(self.set+' batch %d / %d - partial tp %s,fn %s,fp %s' % (self.minibatch_done, self.num_minibatches, tp, fn, fp))
precision, recall, f1 = self.calc_microavg_eval_measures(tp, fn, fp)
logging.info (self.set+' batch %d / %d - measures partial microavg - precision %0.4f - recall %0.4f - f1 %0.4f ' % (self.minibatch_done, self.num_minibatches, precision,recall,f1))
for cl in range(self.num_classes):
cl_precision, cl_recall, cl_f1 = self.calc_eval_measures_per_class(tp, fn, fp, cl)
logging.info (self.set+' batch %d / %d - measures partial for class %d - precision %0.4f - recall %0.4f - f1 %0.4f ' % (self.minibatch_done, self.num_minibatches, cl,cl_precision,cl_recall,cl_f1))
logging.info (self.set+' batch %d / %d - Batch time %d ' % (self.minibatch_done, self.num_minibatches, (time.monotonic()-self.lasttime) ))
self.lasttime=time.monotonic()
def log_epoch_done(self):
eval_measure = 0
self.losses = torch.stack(self.losses)
logging.info(self.set+' mean losses '+ str(self.losses.mean()))
if self.args.target_measure=='loss' or self.args.target_measure=='Loss':
eval_measure = self.losses.mean()
epoch_error = self.calc_epoch_metric(self.batch_sizes, self.errors)
logging.info(self.set+' mean errors '+ str(epoch_error))
epoch_MRR = self.calc_epoch_metric(self.batch_sizes, self.MRRs)
epoch_MAP = self.calc_epoch_metric(self.batch_sizes, self.MAPs)
logging.info(self.set+' mean MRR '+ str(epoch_MRR)+' - mean MAP '+ str(epoch_MAP))
if self.args.target_measure=='MRR' or self.args.target_measure=='mrr':
eval_measure = epoch_MRR
if self.args.target_measure=='MAP' or self.args.target_measure=='map':
eval_measure = epoch_MAP
logging.info(self.set+' tp %s,fn %s,fp %s' % (self.conf_mat_tp, self.conf_mat_fn, self.conf_mat_fp))
precision, recall, f1 = self.calc_microavg_eval_measures(self.conf_mat_tp, self.conf_mat_fn, self.conf_mat_fp)
logging.info (self.set+' measures microavg - precision %0.4f - recall %0.4f - f1 %0.4f ' % (precision,recall,f1))
if str(self.args.target_class) == 'AVG':
if self.args.target_measure=='Precision' or self.args.target_measure=='prec':
eval_measure = precision
elif self.args.target_measure=='Recall' or self.args.target_measure=='rec':
eval_measure = recall
else:
eval_measure = f1
for cl in range(self.num_classes):
cl_precision, cl_recall, cl_f1 = self.calc_eval_measures_per_class(self.conf_mat_tp, self.conf_mat_fn, self.conf_mat_fp, cl)
logging.info (self.set+' measures for class %d - precision %0.4f - recall %0.4f - f1 %0.4f ' % (cl,cl_precision,cl_recall,cl_f1))
if str(cl) == str(self.args.target_class):
if self.args.target_measure=='Precision' or self.args.target_measure=='prec':
eval_measure = cl_precision
elif self.args.target_measure=='Recall' or self.args.target_measure=='rec':
eval_measure = cl_recall
else:
eval_measure = cl_f1
for k in self.eval_k_list: #logging.info(self.set+' @%d tp %s,fn %s,fp %s' % (k, self.conf_mat_tp_at_k[k], self.conf_mat_fn_at_k[k], self.conf_mat_fp_at_k[k]))
precision, recall, f1 = self.calc_microavg_eval_measures(self.conf_mat_tp_at_k[k], self.conf_mat_fn_at_k[k], self.conf_mat_fp_at_k[k])
logging.info (self.set+' measures@%d microavg - precision %0.4f - recall %0.4f - f1 %0.4f ' % (k,precision,recall,f1))
for cl in range(self.num_classes):
cl_precision, cl_recall, cl_f1 = self.calc_eval_measures_per_class(self.conf_mat_tp_at_k[k], self.conf_mat_fn_at_k[k], self.conf_mat_fp_at_k[k], cl)
logging.info (self.set+' measures@%d for class %d - precision %0.4f - recall %0.4f - f1 %0.4f ' % (k, cl,cl_precision,cl_recall,cl_f1))
logging.info (self.set+' Total epoch time: '+ str(((time.monotonic()-self.ep_time))))
return eval_measure
def get_MRR(self,predictions,true_classes, adj ,do_softmax=False):
if do_softmax:
probs = torch.softmax(predictions,dim=1)[:,1]
else:
probs = predictions
probs = probs.cpu().numpy()
true_classes = true_classes.cpu().numpy()
adj = adj.cpu().numpy()
pred_matrix = coo_matrix((probs,(adj[0],adj[1]))).toarray()
true_matrix = coo_matrix((true_classes,(adj[0],adj[1]))).toarray()
row_MRRs = []
for i,pred_row in enumerate(pred_matrix):
#check if there are any existing edges
if np.isin(1,true_matrix[i]):
row_MRRs.append(self.get_row_MRR(pred_row,true_matrix[i]))
avg_MRR = torch.tensor(row_MRRs).mean()
return avg_MRR
def get_row_MRR(self,probs,true_classes):
existing_mask = true_classes == 1
#descending in probability
ordered_indices = np.flip(probs.argsort())
ordered_existing_mask = existing_mask[ordered_indices]
existing_ranks = np.arange(1,
true_classes.shape[0]+1,
dtype=np.float)[ordered_existing_mask]
MRR = (1/existing_ranks).sum()/existing_ranks.shape[0]
return MRR
def get_MAP(self,predictions,true_classes, do_softmax=False):
if do_softmax:
probs = torch.softmax(predictions,dim=1)[:,1]
else:
probs = predictions
predictions_np = probs.detach().cpu().numpy()
true_classes_np = true_classes.detach().cpu().numpy()
return average_precision_score(true_classes_np, predictions_np)
def eval_predicitions(self, predictions, true_classes, num_classes):
predicted_classes = predictions.argmax(dim=1)
failures = (predicted_classes!=true_classes).sum(dtype=torch.float)
error = failures/predictions.size(0)
conf_mat_per_class = utils.Namespace({})
conf_mat_per_class.true_positives = {}
conf_mat_per_class.false_negatives = {}
conf_mat_per_class.false_positives = {}
for cl in range(num_classes):
cl_indices = true_classes == cl
pos = predicted_classes == cl
hits = (predicted_classes[cl_indices] == true_classes[cl_indices])
tp = hits.sum()
fn = hits.size(0) - tp
fp = pos.sum() - tp
conf_mat_per_class.true_positives[cl] = tp
conf_mat_per_class.false_negatives[cl] = fn
conf_mat_per_class.false_positives[cl] = fp
return error, conf_mat_per_class
def eval_predicitions_at_k(self, predictions, true_classes, num_classes, k):
conf_mat_per_class = utils.Namespace({})
conf_mat_per_class.true_positives = {}
conf_mat_per_class.false_negatives = {}
conf_mat_per_class.false_positives = {}
if predictions.size(0)<k:
k=predictions.size(0)
for cl in range(num_classes):
# sort for prediction with higher score for target class (cl)
_, idx_preds_at_k = torch.topk(predictions[:,cl], k, dim=0, largest=True, sorted=True)
predictions_at_k = predictions[idx_preds_at_k]
predicted_classes = predictions_at_k.argmax(dim=1)
cl_indices_at_k = true_classes[idx_preds_at_k] == cl
cl_indices = true_classes == cl
pos = predicted_classes == cl
hits = (predicted_classes[cl_indices_at_k] == true_classes[idx_preds_at_k][cl_indices_at_k])
tp = hits.sum()
fn = true_classes[cl_indices].size(0) - tp # This only if we want to consider the size at K -> hits.size(0) - tp
fp = pos.sum() - tp
conf_mat_per_class.true_positives[cl] = tp
conf_mat_per_class.false_negatives[cl] = fn
conf_mat_per_class.false_positives[cl] = fp
return conf_mat_per_class
def calc_microavg_eval_measures(self, tp, fn, fp):
tp_sum = sum(tp.values()).item()
fn_sum = sum(fn.values()).item()
fp_sum = sum(fp.values()).item()
p = tp_sum*1.0 / (tp_sum+fp_sum)
r = tp_sum*1.0 / (tp_sum+fn_sum)
if (p+r)>0:
f1 = 2.0 * (p*r) / (p+r)
else:
f1 = 0
return p, r, f1
def calc_eval_measures_per_class(self, tp, fn, fp, class_id):
#ALDO
if type(tp) is dict:
tp_sum = tp[class_id].item()
fn_sum = fn[class_id].item()
fp_sum = fp[class_id].item()
else:
tp_sum = tp.item()
fn_sum = fn.item()
fp_sum = fp.item()
########
if tp_sum==0:
return 0,0,0
p = tp_sum*1.0 / (tp_sum+fp_sum)
r = tp_sum*1.0 / (tp_sum+fn_sum)
if (p+r)>0:
f1 = 2.0 * (p*r) / (p+r)
else:
f1 = 0
return p, r, f1
def calc_epoch_metric(self,batch_sizes, metric_val):
batch_sizes = torch.tensor(batch_sizes, dtype = torch.float)
epoch_metric_val = torch.stack(metric_val).cpu() * batch_sizes
epoch_metric_val = epoch_metric_val.sum()/batch_sizes.sum()
return epoch_metric_val.detach().item()