forked from paarthneekhara/text-to-image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_images.py
106 lines (82 loc) · 3.29 KB
/
generate_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import tensorflow as tf
import numpy as np
import model
import argparse
import pickle
from os.path import join
import h5py
from Utils import image_processing
import scipy.misc
import random
import json
import os
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--z_dim', type=int, default=100,
help='Noise Dimension')
parser.add_argument('--t_dim', type=int, default=256,
help='Text feature dimension')
parser.add_argument('--image_size', type=int, default=64,
help='Image Size')
parser.add_argument('--gf_dim', type=int, default=64,
help='Number of conv in the first layer gen.')
parser.add_argument('--df_dim', type=int, default=64,
help='Number of conv in the first layer discr.')
parser.add_argument('--gfc_dim', type=int, default=1024,
help='Dimension of gen untis for for fully connected layer 1024')
parser.add_argument('--caption_vector_length', type=int, default=2400,
help='Caption Vector Length')
parser.add_argument('--data_dir', type=str, default="Data",
help='Data Directory')
parser.add_argument('--model_path', type=str, default='Data/Models/latest_model_flowers_temp.ckpt',
help='Trained Model Path')
parser.add_argument('--n_images', type=int, default=5,
help='Number of Images per Caption')
parser.add_argument('--caption_thought_vectors', type=str, default='Data/sample_caption_vectors.hdf5',
help='Caption Thought Vector File')
args = parser.parse_args()
model_options = {
'z_dim' : args.z_dim,
't_dim' : args.t_dim,
'batch_size' : args.n_images,
'image_size' : args.image_size,
'gf_dim' : args.gf_dim,
'df_dim' : args.df_dim,
'gfc_dim' : args.gfc_dim,
'caption_vector_length' : args.caption_vector_length
}
gan = model.GAN(model_options)
_, _, _, _, _ = gan.build_model()
sess = tf.InteractiveSession()
saver = tf.train.Saver()
saver.restore(sess, args.model_path)
input_tensors, outputs = gan.build_generator()
h = h5py.File( args.caption_thought_vectors )
caption_vectors = np.array(h['vectors'])
caption_image_dic = {}
for cn, caption_vector in enumerate(caption_vectors):
caption_images = []
z_noise = np.random.uniform(-1, 1, [args.n_images, args.z_dim])
caption = [ caption_vector[0:args.caption_vector_length] ] * args.n_images
[ gen_image ] = sess.run( [ outputs['generator'] ],
feed_dict = {
input_tensors['t_real_caption'] : caption,
input_tensors['t_z'] : z_noise,
} )
caption_images = [gen_image[i,:,:,:] for i in range(0, args.n_images)]
caption_image_dic[ cn ] = caption_images
print "Generated", cn
for f in os.listdir( join(args.data_dir, 'val_samples')):
if os.path.isfile(f):
os.unlink(join(args.data_dir, 'val_samples/' + f))
for cn in range(0, len(caption_vectors)):
caption_images = []
for i, im in enumerate( caption_image_dic[ cn ] ):
# im_name = "caption_{}_{}.jpg".format(cn, i)
# scipy.misc.imsave( join(args.data_dir, 'val_samples/{}'.format(im_name)) , im)
caption_images.append( im )
caption_images.append( np.zeros((64, 5, 3)) )
combined_image = np.concatenate( caption_images[0:-1], axis = 1 )
scipy.misc.imsave( join(args.data_dir, 'val_samples/combined_image_{}.jpg'.format(cn)) , combined_image)
if __name__ == '__main__':
main()