diff --git a/examples/MEXICO_predict_example.ipynb b/examples/MEXICO_predict_example.ipynb index 4e461654..41e679e8 100644 --- a/examples/MEXICO_predict_example.ipynb +++ b/examples/MEXICO_predict_example.ipynb @@ -229,7 +229,7 @@ "source": [ "df[df['prediction_is_key_smash'] == 1][[concatened_column_name, 'prediction_is_key_smash']] \\\n", " .drop_duplicates(subset=[concatened_column_name]) \\\n", - " .to_csv(f'../data/tmp/prediction_rf_ks_regex_enrich_normal.csv')" + " .to_csv(f'../data/tmp/prediction_rf_ks_we_regex_enrich_normal.csv')" ] } ], diff --git a/examples/MEXICO_predict_example_no_embeddings copy.ipynb b/examples/MEXICO_predict_example_no_embeddings.ipynb similarity index 98% rename from examples/MEXICO_predict_example_no_embeddings copy.ipynb rename to examples/MEXICO_predict_example_no_embeddings.ipynb index 9c873d4e..8efd35ed 100644 --- a/examples/MEXICO_predict_example_no_embeddings copy.ipynb +++ b/examples/MEXICO_predict_example_no_embeddings.ipynb @@ -206,7 +206,7 @@ "source": [ "df[df['prediction_is_key_smash'] == 1][[concatened_column_name, 'prediction_is_key_smash']] \\\n", " .drop_duplicates(subset=[concatened_column_name]) \\\n", - " .to_csv(f'../data/tmp/prediction_rf_ks_we_regex_enrich_normal.csv')" + " .to_csv(f'../data/tmp/prediction_rf_ks_regex_enrich_normal.csv')" ] } ],