-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlocal.py
213 lines (186 loc) · 8.29 KB
/
local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""local.py runs the app's code without starting a server, not used in prod."""
import csv
import os
from typing import Any, Dict, List, Tuple
from absl import app, flags
from app import classifier, embedder, model_fetcher, trainer
from app.models import (ClassificationSample, hasher, session, sessionLock,
training_data_from_db)
FLAGS = flags.FLAGS
flags.DEFINE_string('bert',
'https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1',
'The bert model to use')
flags.DEFINE_string('classifier_dir', './classifier_models',
'The dir containing classifier models.')
flags.DEFINE_string('model', 'UPR_2percent_ps0',
'The model trained for a particular label set.')
flags.DEFINE_string('instance', '',
'If set, force the given instance dir, e.g. "1578385362".')
flags.DEFINE_string('seq', 'increase efforts to end forced disappearance',
'The string sequence to process')
flags.DEFINE_string(
'fetch_config_path', './static/model_fetching_config.json',
'Path to the JSON config file describe where to fetch '
'saved models from and where to copy them to.')
flags.DEFINE_integer('limit', 2000,
'Max number of classification samples to use')
flags.DEFINE_integer('train_steps', 1000, 'Number of training iterations.')
flags.DEFINE_float('train_ratio', 0.7, 'Train / eval split of labeled data.')
flags.DEFINE_boolean(
'probs', False,
'If true, output raw probabilities, without using thresholds.')
flags.DEFINE_boolean(
'csv_diff_only', False,
'exclude csv output if training and predicted_sure match.')
flags.DEFINE_float('csv_sure', 0.6,
'Precision threshold for "sure" output in csv.')
flags.DEFINE_string(
'subset_file', '',
'If set, perform threshold learning only on samples which have a sequence '
'containing one of the sequences in this csv file.')
flags.DEFINE_enum(
'mode', 'classify',
['embed', 'classify', 'prefetch', 'thresholds', 'csv', 'import', 'train'],
'The operation to perform.')
flags.DEFINE_string(
'csv', '',
'If a path to a csv file is given, its data will be loaded, classified '
'and the results are written to a new csv file')
flags.DEFINE_string('text_col', 'text',
'column name of the text data in a csv file')
flags.DEFINE_string('label_col', '',
'column name of the label data in a csv file')
flags.DEFINE_string('sharedId_col', '',
'column name of the sharedId in the csv file')
def outputCsv(c: classifier.Classifier) -> None:
filename = './%s_%d%s.csv' % (FLAGS.model, FLAGS.limit,
'_diff' if FLAGS.csv_diff_only else '')
if FLAGS.csv:
subset_seqs: List[str] = []
with open(FLAGS.csv, 'r') as csvFile, sessionLock:
for row in csv.DictReader(csvFile):
subset_seqs.append(row[FLAGS.text_col])
print(subset_seqs[:10])
with open(filename, 'w') as csvFile:
writer = csv.writer(csvFile)
writer.writerow([
'sharedId', 'sequence', 'training_labels', 'predictions',
'probabilities'
])
with sessionLock:
samples: List[ClassificationSample] = list(
ClassificationSample.query.find(
dict(model=FLAGS.model, use_for_training=False)).sort([
('seqHash', -1)
]).limit(FLAGS.limit))
if FLAGS.csv:
samples = [
s for s in samples if any(x in s.seq for x in subset_seqs)
]
predicted = c.classify([s.seq for s in samples])
for sample, pred in zip(samples, predicted):
training_labels = [l.topic for l in sample.training_labels]
train_str = ';'.join(sorted(training_labels))
sorted_pred: List[Tuple[str, float]] = sorted(pred.items())
predictions = ';'.join([t for t, q in sorted_pred])
probabilities = ';'.join([str(q) for t, q in sorted_pred])
if not FLAGS.csv_diff_only or train_str != predictions:
writer.writerow([
sample.sharedId, sample.seq, train_str, predictions,
probabilities
])
print('Wrote %s.' % filename)
def importData(path: str, text_col: str, label_col: str,
sharedId_col: str) -> None:
with open(path, 'r') as csvFile, sessionLock:
newly_created: int = 0
updated: int = 0
for row in csv.DictReader(csvFile):
seq = row[text_col]
seqHash = hasher(seq)
training_labels: List[Dict[str, float]] = []
if label_col != '':
training_label_list = eval(row[label_col])
training_labels = [dict(topic=l) for l in training_label_list]
sharedId = ''
if sharedId_col != '':
sharedId = row[sharedId_col]
existing: ClassificationSample = ClassificationSample.query.get(
model=FLAGS.model, seqHash=seqHash)
if not existing:
existing = ClassificationSample(model=FLAGS.model,
seq=seq,
seqHash=seqHash,
training_labels=training_labels,
sharedId=sharedId)
newly_created += 1
else:
if label_col != '':
existing.training_labels = training_labels
if sharedId_col != '':
existing.sharedId = sharedId
if label_col != '' or sharedId_col != '':
updated += 1
existing.use_for_training = len(training_labels) > 0
print('CSV Data Import: \nNew created entries: {}\nUpdated entries: {}'
.format(newly_created, updated))
session.flush()
def main(_: Any) -> None:
if FLAGS.mode == 'embed':
e = embedder.Embedder(FLAGS.bert)
seqs = [FLAGS.seq]
ms = e.get_embedding(seqs)
print([(seq, len(m.tostring())) for seq, m in zip(seqs, ms)])
elif FLAGS.mode == 'classify':
c = classifier.Classifier(
FLAGS.classifier_dir,
FLAGS.model,
forced_instance=FLAGS.instance,
)
if FLAGS.probs:
print(c._classify_probs([FLAGS.seq]))
else:
print(c.classify([FLAGS.seq]))
elif FLAGS.mode == 'thresholds':
c = classifier.Classifier(FLAGS.classifier_dir,
FLAGS.model,
forced_instance=FLAGS.instance)
seqs, training_labels = training_data_from_db(
c.model_name, FLAGS.limit, FLAGS.subset_file or
os.path.join(c.instance_dir, c.instance_config.subset_file),
FLAGS.text_col)
c.refresh_thresholds(seqs, training_labels)
elif FLAGS.mode == 'csv':
c = classifier.Classifier(
FLAGS.classifier_dir,
FLAGS.model,
forced_instance=FLAGS.instance,
)
outputCsv(c)
elif FLAGS.mode == 'prefetch':
f = model_fetcher.Fetcher(FLAGS.fetch_config_path, FLAGS.model)
dst = f.fetchAll()
for l in dst:
print(l)
elif FLAGS.mode == 'import':
importData(FLAGS.csv, FLAGS.text_col, FLAGS.label_col,
FLAGS.sharedId_col)
elif FLAGS.mode == 'train':
c = classifier.Classifier(FLAGS.classifier_dir, FLAGS.model)
e = embedder.Embedder(FLAGS.bert)
t = trainer.Trainer(FLAGS.classifier_dir, FLAGS.model)
seqs, training_labels = training_data_from_db(
c.model_name, FLAGS.limit, FLAGS.subset_file or
os.path.join(c.instance_dir, c.instance_config.subset_file),
FLAGS.text_col)
t.train(embedder=e,
labels=c.labels,
seqs=seqs,
training_labels=training_labels,
forced_instance=FLAGS.instance,
train_ratio=FLAGS.train_ratio,
num_train_steps=FLAGS.train_steps)
return
if __name__ == '__main__':
os.environ['TFHUB_CACHE_DIR'] = os.getcwd() + '/bert_models'
app.run(main)