-
Notifications
You must be signed in to change notification settings - Fork 139
/
Copy pathconfig_tiny_llama.py
127 lines (112 loc) · 3.4 KB
/
config_tiny_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
""" Example python script to generate a YAML config file which can be used to run a training with nanotron. Refer to "examples" section in the `/README.md` for more information."""
import os
from nanotron.config import (
AdamWOptimizerArgs,
CheckpointsArgs,
Config,
DataArgs,
DatasetStageArgs,
GeneralArgs,
LlamaConfig,
LoggingArgs,
LRSchedulerArgs,
ModelArgs,
OptimizerArgs,
ParallelismArgs,
PretrainDatasetsArgs,
RandomInit,
TokenizerArgs,
TokensArgs,
)
from nanotron.logging import human_format
model_config = LlamaConfig(
# Config for a tiny model model with 1.62M parameters
bos_token_id=1,
eos_token_id=2,
hidden_act="silu",
hidden_size=16,
initializer_range=0.02,
intermediate_size=64,
max_position_embeddings=256,
num_attention_heads=4,
num_hidden_layers=2,
num_key_value_heads=4,
pretraining_tp=1,
rms_norm_eps=1e-05,
rope_scaling=None,
tie_word_embeddings=True,
use_cache=True,
vocab_size=256,
)
num_params = human_format(
model_config.vocab_size * model_config.hidden_size * 2
+ model_config.num_hidden_layers
* (
3 * model_config.hidden_size * model_config.intermediate_size
+ 4 * model_config.hidden_size * model_config.hidden_size
)
).replace(".", "p")
print(f"Model has {num_params} parameters")
seed = 42
learning_rate = LRSchedulerArgs(
learning_rate=3e-4, lr_warmup_steps=2, lr_warmup_style="linear", lr_decay_style="cosine", min_decay_lr=1e-5
)
optimizer = OptimizerArgs(
zero_stage=0,
weight_decay=0.01,
clip_grad=1.0,
accumulate_grad_in_fp32=True,
learning_rate_scheduler=learning_rate,
optimizer_factory=AdamWOptimizerArgs(
adam_eps=1e-08,
adam_beta1=0.9,
adam_beta2=0.95,
torch_adam_is_fused=True,
),
)
parallelism = ParallelismArgs(
dp=2,
pp=2,
tp=2,
pp_engine="1f1b",
tp_mode="REDUCE_SCATTER",
tp_linear_async_communication=True,
)
tokens = TokensArgs(sequence_length=256, train_steps=15, micro_batch_size=2, batch_accumulation_per_replica=1)
data_stages = [
DatasetStageArgs(
name="Stable Training Stage",
start_training_step=1,
data=DataArgs(
dataset=PretrainDatasetsArgs(hf_dataset_or_datasets="stas/openwebtext-10k", text_column_name="text"),
seed=seed,
),
),
DatasetStageArgs(
name="Annealing Phase",
start_training_step=10,
data=DataArgs(
dataset=PretrainDatasetsArgs(hf_dataset_or_datasets="stas/openwebtext-10k", text_column_name="text"),
seed=seed,
),
),
]
checkpoints_path = "./checkpoints"
os.makedirs(checkpoints_path, exist_ok=True)
config = Config(
general=GeneralArgs(project="debug", run="tiny_llama_%date_%jobid", seed=seed),
checkpoints=CheckpointsArgs(checkpoints_path=checkpoints_path, checkpoint_interval=10),
parallelism=parallelism,
model=ModelArgs(init_method=RandomInit(std=0.025), model_config=model_config),
tokenizer=TokenizerArgs("robot-test/dummy-tokenizer-wordlevel"),
optimizer=optimizer,
logging=LoggingArgs(),
tokens=tokens,
data_stages=data_stages,
profiler=None,
)
if __name__ == "__main__":
dir = os.path.dirname(__file__)
# Save config as YAML file
config.save_as_yaml(f"{dir}/config_tiny_llama.yaml")
# You can now train a model with this config using `/run_train.py`