diff --git a/notebooks/en/_toctree.yml b/notebooks/en/_toctree.yml
index 5b8d50e4..9b156311 100644
--- a/notebooks/en/_toctree.yml
+++ b/notebooks/en/_toctree.yml
@@ -70,6 +70,8 @@
title: Enhancing RAG Reasoning with Knowledge Graphs
- local: phoenix_observability_on_hf_spaces
title: Phoenix Observability Dashboard on HF Spaces
+ - local: search_and_learn
+ title: Scaling Test-Time Compute for Longer Thinking in LLMs
- title: Computer Vision Recipes
isExpanded: false
@@ -117,11 +119,9 @@
isExpanded: false
sections:
- local: agents
- title: Build an agent with tool-calling superpowers using Transformers Agents
+ title: Build an agent with tool-calling superpowers using smolagents
- local: agent_rag
title: Agentic RAG - turbocharge your RAG with query reformulation and self-query
- - local: agent_change_llm
- title: Create a Transformers Agent from any LLM inference provider
- local: agent_text_to_sql
title: Agent for Text-to-SQL with automatic error correction
- local: agent_data_analyst
diff --git a/notebooks/en/agent_change_llm.ipynb b/notebooks/en/agent_change_llm.ipynb
deleted file mode 100644
index ecd75e64..00000000
--- a/notebooks/en/agent_change_llm.ipynb
+++ /dev/null
@@ -1,338 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Create a Transformers Agent from any LLM inference provider\n",
- "_Authored by: [Aymeric Roucher](https://huggingface.co/m-ric)_\n",
- "\n",
- "> This tutorial builds upon agent knowledge: to know more about agents, you can start with [this introductory notebook](agents)\n",
- "\n",
- "[Transformers Agents](https://huggingface.co/docs/transformers/en/agents) is a library to build agents, using an LLM to power it in the `llm_engine` argument. This argument was designed to leave the user maximal freedom to choose any LLM.\n",
- "\n",
- "Let's see how to build this `llm_engine` from the APIs of a few leading providers."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## HuggingFace Serverless API and Dedicated Endpoints\n",
- "\n",
- "Transformers agents provides a built-in `HfEngine` class that lets you use any model on the Hub via the Serverless API or your own dedicated Endpoint. This is the preferred way to use HF agents."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "!pip install openai anthropic \"transformers[agents]\" --upgrade -q"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from huggingface_hub import notebook_login\n",
- "\n",
- "notebook_login()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[33;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mWhat's the 10th Fibonacci number?\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "['unicodedata', 're', 'math', 'collections', 'queue', 'itertools', 'random', 'time', 'stat', 'statistics']\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\n",
- "\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m_\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mrange\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;139m9\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m+\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m55\n",
- "\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\n",
- "\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m_\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mrange\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;139m9\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m+\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\u001b[0m\n",
- "\u001b[33;1m>>> Final answer:\u001b[0m\n",
- "\u001b[32;20m55\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "55"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from transformers.agents import HfApiEngine, ReactCodeAgent\n",
- "\n",
- "repo_id = \"meta-llama/Meta-Llama-3.1-8B-Instruct\"\n",
- "endpoint_url = \"your_endpoint_url\"\n",
- "\n",
- "llm_engine = HfApiEngine(model=repo_id) # you could use model=endpoint_url here\n",
- "\n",
- "agent = ReactCodeAgent(tools=[], llm_engine=llm_engine)\n",
- "\n",
- "agent.run(\"What's the 10th Fibonacci number?\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The `llm_engine` initialization arg of the agent could be a simple callable such as:\n",
- "```py\n",
- "def llm_engine(messages, stop_sequences=[]) -> str:\n",
- " return response(messages)\n",
- "```\n",
- "This callable is the heart of the llm engine. It should respect these requirements:\n",
- "- takes as input a list of messages in [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) format and outputs a `str`.\n",
- "- accepts a `stop_sequences` argument where the agent system will pass it sequences where it should stop generation.\n",
- "\n",
- "Let's take a closer look at the code for the `HfEngine` that we used:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "from typing import List, Dict\n",
- "from transformers.agents.llm_engine import MessageRole, get_clean_message_list\n",
- "from huggingface_hub import InferenceClient\n",
- "\n",
- "llama_role_conversions = {\n",
- " MessageRole.TOOL_RESPONSE: MessageRole.USER,\n",
- "}\n",
- "\n",
- "\n",
- "class HfApiEngine:\n",
- " def __init__(self, model: str = \"meta-llama/Meta-Llama-3.1-8B-Instruct\"):\n",
- " self.model = model\n",
- " self.client = InferenceClient(model=self.model, timeout=120)\n",
- "\n",
- " def __call__(self, messages: List[Dict[str, str]], stop_sequences=[]) -> str:\n",
- " # Get clean message list\n",
- " messages = get_clean_message_list(\n",
- " messages, role_conversions=llama_role_conversions\n",
- " )\n",
- "\n",
- " # Get LLM output\n",
- " response = self.client.chat_completion(\n",
- " messages, stop=stop_sequences, max_tokens=1500\n",
- " )\n",
- " response = response.choices[0].message.content\n",
- "\n",
- " # Remove stop sequences from LLM output\n",
- " for stop_seq in stop_sequences:\n",
- " if response[-len(stop_seq) :] == stop_seq:\n",
- " response = response[: -len(stop_seq)]\n",
- " return response"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Here the engine is not a function, but a class with a `__call__` method, which adds the possibility to store attributes such as the client.\n",
- "\n",
- "We also use `get_clean_message_list()` utility to concatenate successive messages to the same role\n",
- "This method takes a `role_conversions` arg to convert the range of roles supported in Transformers Agents to only the ones accepted by your LLM.\n",
- "\n",
- "\n",
- "This recipe can be adapted for any LLM! Let's look at other examples."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Adapting the recipe for any LLM\n",
- "\n",
- "Using the above recipe, you can use any LLM inference source as your `llm_engine`.\n",
- "Just keep in mind the two main constraints:\n",
- "- `llm_engine` is a callable that takes as input a list of messages in [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) format and outputs a `str`.\n",
- "- It accepts a `stop_sequences` argument.\n",
- "\n",
- "\n",
- "### OpenAI"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "from openai import OpenAI\n",
- "\n",
- "openai_role_conversions = {\n",
- " MessageRole.TOOL_RESPONSE: MessageRole.USER,\n",
- "}\n",
- "\n",
- "\n",
- "class OpenAIEngine:\n",
- " def __init__(self, model_name=\"gpt-4o\"):\n",
- " self.model_name = model_name\n",
- " self.client = OpenAI(\n",
- " api_key=os.getenv(\"OPENAI_API_KEY\"),\n",
- " )\n",
- "\n",
- " def __call__(self, messages, stop_sequences=[]):\n",
- " messages = get_clean_message_list(\n",
- " messages, role_conversions=openai_role_conversions\n",
- " )\n",
- "\n",
- " response = self.client.chat.completions.create(\n",
- " model=self.model_name,\n",
- " messages=messages,\n",
- " stop=stop_sequences,\n",
- " temperature=0.5,\n",
- " )\n",
- " return response.choices[0].message.content"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Anthropic"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from anthropic import Anthropic, AnthropicBedrock\n",
- "\n",
- "\n",
- "# Cf this page for using Anthropic from Bedrock: https://docs.anthropic.com/en/api/claude-on-amazon-bedrock\n",
- "class AnthropicEngine:\n",
- " def __init__(self, model_name=\"claude-3-5-sonnet-20240620\", use_bedrock=False):\n",
- " self.model_name = model_name\n",
- " if use_bedrock:\n",
- " self.model_name = \"anthropic.claude-3-5-sonnet-20240620-v1:0\"\n",
- " self.client = AnthropicBedrock(\n",
- " aws_access_key=os.getenv(\"AWS_BEDROCK_ID\"),\n",
- " aws_secret_key=os.getenv(\"AWS_BEDROCK_KEY\"),\n",
- " aws_region=\"us-east-1\",\n",
- " )\n",
- " else:\n",
- " self.client = Anthropic(\n",
- " api_key=os.getenv(\"ANTHROPIC_API_KEY\"),\n",
- " )\n",
- "\n",
- " def __call__(self, messages, stop_sequences=[]):\n",
- " messages = get_clean_message_list(\n",
- " messages, role_conversions=openai_role_conversions\n",
- " )\n",
- " index_system_message, system_prompt = None, None\n",
- " for index, message in enumerate(messages):\n",
- " if message[\"role\"] == MessageRole.SYSTEM:\n",
- " index_system_message = index\n",
- " system_prompt = message[\"content\"]\n",
- " if system_prompt is None:\n",
- " raise Exception(\"No system prompt found!\")\n",
- "\n",
- " filtered_messages = [\n",
- " message for i, message in enumerate(messages) if i != index_system_message\n",
- " ]\n",
- " if len(filtered_messages) == 0:\n",
- " print(\"Error, no user message:\", messages)\n",
- " assert False\n",
- "\n",
- " response = self.client.messages.create(\n",
- " model=self.model_name,\n",
- " system=system_prompt,\n",
- " messages=filtered_messages,\n",
- " stop_sequences=stop_sequences,\n",
- " temperature=0.5,\n",
- " max_tokens=2000,\n",
- " )\n",
- " full_response_text = \"\"\n",
- " for content_block in response.content:\n",
- " if content_block.type == \"text\":\n",
- " full_response_text += content_block.text\n",
- " return full_response_text"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Next steps\n",
- "\n",
- "Go on and implement your `llm_engine` for `transformers.agents` with your own LLM inference provider!\n",
- "\n",
- "Then to use this shiny new `llm_engine`, check out these use cases:\n",
- "- [Agentic RAG: turbocharge your RAG with query reformulation and self-query](agent_rag)\n",
- "- [Agent for text-to-SQL with automatic error correction](agent_text_to_sql)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "disposable",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.14"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/en/agent_data_analyst.ipynb b/notebooks/en/agent_data_analyst.ipynb
index e844e8a4..51ea24f7 100644
--- a/notebooks/en/agent_data_analyst.ipynb
+++ b/notebooks/en/agent_data_analyst.ipynb
@@ -20,43 +20,43 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
- "!pip install seaborn \"transformers[agents]\""
+ "!pip install seaborn smolagents transformers -q -U"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "We first create the agent. We used a `ReactCodeAgent` (read the [documentation](https://huggingface.co/docs/transformers/en/agents) to learn more about types of agents), so we do not even need to give it any tools: it can directly run its code.\n",
+ "We first create the agent. We used a `CodeAgent` (read the [documentation](https://huggingface.co/docs/smolagents/tutorials/secure_code_execution) to learn more about types of agents), so we do not even need to give it any tools: it can directly run its code.\n",
"\n",
"We simply make sure to let it use data science-related libraries by passing these in `additional_authorized_imports`: `[\"numpy\", \"pandas\", \"matplotlib.pyplot\", \"seaborn\"]`.\n",
"\n",
"In general when passing libraries in `additional_authorized_imports`, make sure they are installed on your local environment, since the python interpreter can only use libraries installed on your environment.\n",
"\n",
- "⚙ Our agent will be powered by [meta-llama/Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) using `HfEngine` class that uses HF's Inference API: the Inference API allows to quickly and easily run any OS model."
+ "⚙ Our agent will be powered by [meta-llama/Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) using `HfApiModel` class that uses HF's Inference API: the Inference API allows to quickly and easily run any open model, for free!"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
- "from transformers.agents import HfEngine, ReactCodeAgent\n",
+ "from smolagents import HfApiModel, CodeAgent\n",
"from huggingface_hub import login\n",
"import os\n",
"\n",
"login(os.getenv(\"HUGGINGFACEHUB_API_TOKEN\"))\n",
"\n",
- "llm_engine = HfEngine(\"meta-llama/Meta-Llama-3.1-70B-Instruct\")\n",
+ "model = HfApiModel(\"meta-llama/Llama-3.1-70B-Instruct\")\n",
"\n",
- "agent = ReactCodeAgent(\n",
+ "agent = CodeAgent(\n",
" tools=[],\n",
- " llm_engine=llm_engine,\n",
+ " model=model,\n",
" additional_authorized_imports=[\"numpy\", \"pandas\", \"matplotlib.pyplot\", \"seaborn\"],\n",
" max_iterations=10,\n",
")"
@@ -73,7 +73,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -84,9 +84,413 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
╭──────────────────────────────────────────────────── New run ────────────────────────────────────────────────────╮ \n",
+ "│ │ \n",
+ "│ You are an expert data analyst. │ \n",
+ "│ Please load the source file and analyze its content. │ \n",
+ "│ According to the variables you have, begin by listing 3 interesting questions that could be asked on this data, │ \n",
+ "│ for instance about specific correlations with survival rate. │ \n",
+ "│ Then answer these questions one by one, by finding the relevant numbers. │ \n",
+ "│ Meanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder │ \n",
+ "│ './figures/': take care to clear each figure with plt.clf() before doing another plot. │ \n",
+ "│ │ \n",
+ "│ In your final answer: summarize these correlations and trends │ \n",
+ "│ After each number derive real worlds insights, for instance: \"Correlation between is_december and boredness is │ \n",
+ "│ 1.3453, which suggest people are more bored in winter\". │ \n",
+ "│ Your final answer should have at least 3 numbered and detailed parts. │ \n",
+ "│ │ \n",
+ "│ You have been provided with these additional arguments, that you can access using the keys as variables in your │ \n",
+ "│ python code: │ \n",
+ "│ {'additional_notes': '\\n### Variable Notes\\npclass: A proxy for socio-economic status (SES)\\n1st = Upper\\n2nd = │ \n",
+ "│ Middle\\n3rd = Lower\\nage: Age is fractional if less than 1. If the age is estimated, is it in the form of │ \n",
+ "│ xx.5\\nsibsp: The dataset defines family relations in this way...\\nSibling = brother, sister, stepbrother, │ \n",
+ "│ stepsister\\nSpouse = husband, wife (mistresses and fiancés were ignored)\\nparch: The dataset defines family │ \n",
+ "│ relations in this way...\\nParent = mother, father\\nChild = daughter, son, stepdaughter, stepson\\nSome children │ \n",
+ "│ travelled only with a nanny, therefore parch=0 for them.\\n', 'source_file': 'titanic/train.csv'}. │ \n",
+ "│ │ \n",
+ "╰─ HfApiModel - meta-llama/Llama-3.1-70B-Instruct ────────────────────────────────────────────────────────────────╯ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m╭─\u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[1;38;2;212;183;2mNew run\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╮\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYou are an expert data analyst.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mPlease load the source file and analyze its content.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mAccording to the variables you have, begin by listing 3 interesting questions that could be asked on this data,\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mfor instance about specific correlations with survival rate.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mThen answer these questions one by one, by finding the relevant numbers.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mMeanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m'./figures/': take care to clear each figure with plt.clf() before doing another plot.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mIn your final answer: summarize these correlations and trends\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mAfter each number derive real worlds insights, for instance: \"Correlation between is_december and boredness is \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m1.3453, which suggest people are more bored in winter\".\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYour final answer should have at least 3 numbered and detailed parts.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYou have been provided with these additional arguments, that you can access using the keys as variables in your\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mpython code:\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m{'additional_notes': '\\n### Variable Notes\\npclass: A proxy for socio-economic status (SES)\\n1st = Upper\\n2nd =\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mMiddle\\n3rd = Lower\\nage: Age is fractional if less than 1. If the age is estimated, is it in the form of \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mxx.5\\nsibsp: The dataset defines family relations in this way...\\nSibling = brother, sister, stepbrother, \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mstepsister\\nSpouse = husband, wife (mistresses and fiancés were ignored)\\nparch: The dataset defines family \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mrelations in this way...\\nParent = mother, father\\nChild = daughter, son, stepdaughter, stepson\\nSome children \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mtravelled only with a nanny, therefore parch=0 for them.\\n', 'source_file': 'titanic/train.csv'}.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m╰─\u001b[0m\u001b[38;2;212;183;2m HfApiModel - meta-llama/Llama-3.1-70B-Instruct \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╯\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m0\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 import pandas as pd │\n",
+ "│ 2 import matplotlib.pyplot as plt │\n",
+ "│ 3 import seaborn as sns │\n",
+ "│ 4 │\n",
+ "│ 5 # Read the source file │\n",
+ "│ 6 df = pd . read_csv(source_file) │\n",
+ "│ 7 print(df . head()) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mimport\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpandas\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mas\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mimport\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmatplotlib\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpyplot\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mas\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mimport\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mseaborn\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mas\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msns\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m4 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m5 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Read the source file\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m6 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mread_csv\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msource_file\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m7 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mhead\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S \n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S \n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 0: Duration 6.51 seconds| Input tokens: 2,308 | Output tokens: 95] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 0: Duration 6.51 seconds| Input tokens: 2,308 | Output tokens: 95]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m1\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 print( \"Correlation between Pclass and Survived:\" , df[ 'Pclass' ] . corr(df[ 'Survived' ])) │\n",
+ "│ 2 print( \"Correlation between Age and Survived:\" , df[ 'Age' ] . corr(df[ 'Survived' ])) │\n",
+ "│ 3 print( \"Survival rate of male passengers:\" , df[df[ 'Sex' ] == 'male' ][ 'Survived' ] . mean()) │\n",
+ "│ 4 print( \"Survival rate of female passengers:\" , df[df[ 'Sex' ] == 'female' ][ 'Survived' ] . mean()) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mCorrelation between Pclass and Survived:\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mPclass\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcorr\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mCorrelation between Age and Survived:\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcorr\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvival rate of male passengers:\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m==\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mmale\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmean\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m4 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvival rate of female passengers:\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m==\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mfemale\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmean\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ "Correlation between Pclass and Survived: -0.33848103596101525\n",
+ "Correlation between Age and Survived: -0.07722109457217766\n",
+ "Survival rate of male passengers: 0.18890814558058924\n",
+ "Survival rate of female passengers: 0.7420382165605095\n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ "Correlation between Pclass and Survived: -0.33848103596101525\n",
+ "Correlation between Age and Survived: -0.07722109457217766\n",
+ "Survival rate of male passengers: 0.18890814558058924\n",
+ "Survival rate of female passengers: 0.7420382165605095\n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 1: Duration 13.44 seconds| Input tokens: 5,121 | Output tokens: 280] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 1: Duration 13.44 seconds| Input tokens: 5,121 | Output tokens: 280]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m2\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 plt . clf() │\n",
+ "│ 2 df[ 'Age' ] . hist(bins = 50 ) │\n",
+ "│ 3 plt . title( 'Distribution of Ages' ) │\n",
+ "│ 4 plt . xlabel( 'Age' ) │\n",
+ "│ 5 plt . ylabel( 'Frequency' ) │\n",
+ "│ 6 plt . savefig( './figures/age_distribution.png' ) │\n",
+ "│ 7 │\n",
+ "│ 8 plt . clf() │\n",
+ "│ 9 survival_rates = [df[df[ 'Sex' ] == 'male' ][ 'Survived' ] . mean(), df[df[ 'Sex' ] == 'female' ][ 'Survived' ] . mean()] │\n",
+ "│ 10 sns . barplot(x = [ 'Male' , 'Female' ], y = survival_rates) │\n",
+ "│ 11 plt . title( 'Survival Rates by Sex' ) │\n",
+ "│ 12 plt . xlabel( 'Sex' ) │\n",
+ "│ 13 plt . ylabel( 'Survival Rate' ) │\n",
+ "│ 14 plt . savefig( './figures/survival_rates_by_sex.png' ) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mclf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mhist\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mbins\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m50\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 3 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtitle\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mDistribution of Ages\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 4 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mxlabel\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 5 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mylabel\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mFrequency\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 6 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msavefig\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m./figures/age_distribution.png\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 7 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 8 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mclf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 9 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msurvival_rates\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m==\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mmale\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmean\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdf\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m==\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mfemale\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmean\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m10 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msns\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mbarplot\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mx\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mMale\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mFemale\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msurvival_rates\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m11 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtitle\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvival Rates by Sex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m12 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mxlabel\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m13 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mylabel\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvival Rate\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m14 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mplt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msavefig\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m./figures/survival_rates_by_sex.png\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 2: Duration 16.89 seconds| Input tokens: 8,364 | Output tokens: 529] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 2: Duration 16.89 seconds| Input tokens: 8,364 | Output tokens: 529]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m3\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 final_answer( \"The analysis of the Titanic data reveals that socio-economic status and sex are significant │\n",
+ "│ factors in determining survival rates. Passengers with lower socio-economic status and males are less │\n",
+ "│ likely to survive. The age of a passenger has a minimal impact on their survival rate.\" ) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfinal_answer\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mThe analysis of the Titanic data reveals that socio-economic status and sex are significant \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mfactors in determining survival rates. Passengers with lower socio-economic status and males are less \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mlikely to survive. The age of a passenger has a minimal impact on their survival rate.\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Out - Final answer: The analysis of the Titanic data reveals that socio-economic status and sex are significant \n",
+ "factors in determining survival rates. Passengers with lower socio-economic status and males are less likely to \n",
+ "survive. The age of a passenger has a minimal impact on their survival rate. \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;38;2;212;183;2mOut - Final answer: The analysis of the Titanic data reveals that socio-economic status and sex are significant \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2mfactors in determining survival rates. Passengers with lower socio-economic status and males are less likely to \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2msurvive. The age of a passenger has a minimal impact on their survival rate.\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 3: Duration 8.23 seconds| Input tokens: 12,063 | Output tokens: 684] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 3: Duration 8.23 seconds| Input tokens: 12,063 | Output tokens: 684]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAz+klEQVR4nO3dCVxU9d7H8R+igEughnsouWXmjktWbolS2qJlkT2Gqdmi+Zg+2pU0lyzRNLNbPGoWpWVpVjcrFTXSm14pDFssyzYNMlm8pRgWFM7z+v2f18xlWBQUmOHP5/16nZpz5pwz/zMyzJf/cv4+DofDIQAAAJao5ukCAAAAlCXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINALnzzjslNDS0XF/Dx8dH5s6dK1XJ4cOHzXUvWbLE00UBqhTCDVDB9u/fLyNGjJAWLVpIQECANGvWTAYNGiRPP/20VHXOMOBcqlWrJvXr15drr71WEhMTz/m8//u//ysvvvii2IyfK+A/qud7DKCc7dmzRwYMGCDNmzeX8ePHS+PGjSU1NVU+/PBDeeqpp2TSpEkeKdeqVavk9OnT4i1GjhwpQ4YMkby8PPnmm29MONH3be/evdKxY8dSn0+PDw4ONjVUNvLWnyvAUwg3QAV67LHHJCgoyHxJ161b1+25jIyMMnud7OxsqV27don3r1GjhniTbt26yahRo1zrffr0MbU3y5cvN0EFnvm5AioLmqWACvT999/LZZddVugLSDVs2LBQ80xRTSkF+67oY9124MABuf3226VevXpy1VVXmX4euv3HH38sdI7o6Gjx8/OTX3/9tVCfmz///NM0BY0ZM6bQcVlZWabJY9q0aWY9NzdXZs+eLWFhYebLVQOVBpEdO3ZIWdJzOt+//F544QW5+uqrzXvn7+8v7du3NwEoP72uL7/8Uv75z3+6mrv69+/vev748ePywAMPSEhIiDlH69atZdGiRYVqstatW2eu84ILLpDAwEBTg6S1IiX15JNPmiajmjVrSr9+/eSLL75wuw4t1yeffFLouAULFoivr68cOXLkvH+unF5++WVzLVoW/be+7bbbTE1PwfLExcUVKotu37x5c4mvG/AEwg1QgfTLLTk52e2LrazccsstcurUKfMFpE0Tt956q/kieu211wrtq9sGDx5sglBRtTjDhw+Xt956y4SX/HRbTk6O+TJ0hp3nnnvOhAUNBBq0MjMzJSIiQj799NMyuzYNe6pgeTXI6Hv60EMPyRNPPGECyoQJEyQ2Nta1z7Jly+Siiy6Sdu3ayUsvvWSWmTNnmuf0/dKgoV/2UVFR8ve//12uvPJKE/6mTp3qOsf27dtNU5m+vl7nwoULzTX/61//KlH516xZY849ceJEc27999dQlp6ebp7XvjIaNNauXVvoWN2mr6V9aMri50prefRa27RpI0uXLjXBLiEhQfr27WuCntJge91115n3wBl6tE/PvHnzZNy4cabJEPBqDgAVZtu2bQ5fX1+z9O7d2/Hggw86tm7d6sjNzXXb79ChQw79eL7wwguFzqHb58yZ41rXx7pt5MiRhfbV1wgLC3PblpSUZPZfs2aNa9vo0aMdLVq0cK1rmXSfd955x+3YIUOGOFq2bOla/+uvvxw5OTlu+/z666+ORo0aOcaOHXvGchfFed3z5s1zZGZmOtLS0hy7du1y9OjRw2zfsGGD2/6nTp0qdI6IiAi3MqrLLrvM0a9fv0L7zp8/31G7dm3HN99847Z9xowZ5t8oJSXFrE+ePNkRGBhorrc0nNdTs2ZNx08//eTa/tFHH5ntU6ZMcW3Tf7+mTZs68vLyXNv27dtX7M/BufxcHT582Ozz2GOPuW3fv3+/o3r16m7bjx496qhfv75j0KBB5t+4a9eujubNmztOnDhRqvcA8ARqboAKpKNXdNTPDTfcIJ999pk8/vjjppZD/yp/++23z+vc9957b6FtkZGR5i/6/M0569evN80vN954Y7Hn0loF7YCr+zppE5bWYOg5nbS5RJu3lDbj/PLLL/LXX39J9+7dZd++fed8LXPmzJEGDRqYjrHaJPXVV1+Zmhmt4chPazucTpw4IceOHTM1MT/88INZP5sNGzaY82uNjB7rXMLDw01n5g8++MDsp8092o9Jr/9cDBs2zK3mpWfPntKrVy+35h2tTfn555/dmvS01kav8eabby6Tn6s333zT/DtprV7+69X3WWty8r+2btMaML1mfY+0Jk6bqbRJDvB2hBuggvXo0cN8yWhYSEpKMs0UJ0+eNF/c2m/mXF188cVFNlXpcGpnSNEKFP1C1865Z/qSql69uvlC3bhxo2mGUlpm7Y+TP9yo1atXS6dOnUxfnAsvvNCEkk2bNpUoXBTn7rvvNl+q77zzjkyZMkV+//13EzYK0mYhDSLa10cDiL62NlGpkrz+t99+K/Hx8ea4/IueM39nXG3qatu2rXnftIlr7Nix5riS0uBQkJ7P2dzmDChNmjRxNU1pCHn11VdNCNV+PmXxc6XXqz8DWp6C16wBsmDnY21+HDp0qDmfNnUOHDiwxNcMeBKjpQAP0RoP/ULSRb/otJ+DBg+ttdC+MkUp6gu+qFoMp6ZNm5q/urWPjX7p69DglJQU02/kbPSLbeXKlbJlyxZT86Dn0H4rnTt3du2jfVW0M7I+P336dNN5VWtzYmJiCnX+LQ398nUGDO37oeecMWOGGe6stUJKz69ftlom7Tui/W30PdXaEO28W5Kh7bqPhooHH3ywyOf130XpdWnNxdatW837oYt2utXaFg13ZUGvUTuE67B8HRGmwU1rcvKPGjvfnyu9Xv3Z0vLr6xVUp04dt/V///vf8vHHH5vHGpD0eA3LgLcj3ABewPmFffToUbeOs84Onk5FjXw6G61p0ZqHgwcPmhqcWrVqyfXXX3/W47SDqdYk6DE6+ur99993dcR1ev3116Vly5amxiB/INMv0rKkr6tf+rNmzXLVmGitjtYqabOL3t/FqaiRWsWFxVatWslvv/3mClJnCw36vumiX/L6nmr4e/jhh80IqzPRGpOC9P49Be8KrWFJm9/02jSAaI2KNi+V1c+VXq/W3GgtnzO4nYl2gNbaHw2rWhOknbPzd7QGvBURHKhA+sX7/31r3Tn7XlxyySXm/9pkpH1enH0+nM7lHi/avKR/pWsTh/4FrzUhJbkHjv6Frk0a+kWrI4y0L03BJinnX//5r+mjjz46r7sJF0WbnO655x5Tc+IchVXUa2tTlNaoFKTXWzAoKu17omXV8xak++s1O2swCr432hSnnM12Z6KjzPIP5dZmHn2ftJkrPz2nLjoC7Y033jC1Z9pEWFY/VzfddJN533TUU8H9dT3/dWpw1WCrI8O01kzLouFSQxng9TzSjRmoonTUzsUXX+yYOnWq49lnn3U888wzjttvv92MYAkNDTUjjfKP2NGP6Lhx4xzLly83o2l05FNxo6V0dFFxwsPDHRdccIHZ74033ij0fMHRUk67d+82x+ixHTt2LPR8XFycef6GG25wrFy50pS5bt265joLnq80o6UWL15c6LkjR444/Pz8HJGRkWb966+/NutaLn0fFy5c6GjVqpWjc+fO5hx6LqcJEyY4fHx8zOioV1991ZGQkGC2Z2dnO7p162ZGCt11113mfV6yZIl5P3QUlfM9HTZsmKNv376OuXPnOp577jnHww8/bK6zS5cubqObirseLaP++y5atMjxyCOPmFFIF154oePnn38udIy+vh6ji46qKuufq5iYGHPuK664wvH444+ba9bRVW3atHG97+np6Y7g4GDHgAEDHKdPnzbbjh07ZkbB6WisM10z4A0IN0AF2rJlixki3a5dO0edOnXMl3Pr1q0dkyZNMl8oBYc5a7AJCgoy4eLWW291ZGRknFO4WbVqlSuk/P777yUON/rFFhISYo599NFHi3x+wYIF5lh/f38zXPjdd98t8nznG27UnXfeab6wv/vuO7P+9ttvOzp16uQICAhwhQdn4MofbnRI+dChQ10BL/+w8JMnTzqio6PNv4P+e+iXun7xa8hwDqV+/fXXHYMHD3Y0bNjQ7KNDou+55x4zXLqk1/PEE0+Y91Lfpz59+jg+++yzIo/Rc+o1tm3b1lEeP1dKA+5VV11lApwuetzEiRMdBw8eNM/fdNNN5r3SoeP5bdy40VyPvs+AN/PR/3i69ggA8P90aLb2ddI7P2t/HgClR58bAPAiOuWGjoq74447PF0UoNJitBQAeAEdjabDrXV6BB1aX3AkFYCSo1kKALyAzh+1Z88eM7eV3j/oTHNJATgzwg0AALAKfW4AAIBVCDcAAMAqVa5Dsd42Xedr0YnoirslOwAA8C7ai0anA9E58842x1mVCzcabHSCPQAAUPmkpqbKRRdddMZ9qly40Rob55uj8/cAAADvl5WVZSonnN/jZ1Llwo2zKUqDDeEGAIDKpSRdSuhQDAAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALBKdU8XAAAqm7DpazxdBMDrJC+OEm9BzQ0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVbwi3MTGxkpoaKgEBARIr169JCkpqdh9+/fvLz4+PoWWoUOHVmiZAQCAd/J4uFm/fr1MnTpV5syZI/v27ZPOnTtLRESEZGRkFLn/m2++KUePHnUtX3zxhfj6+sott9xS4WUHAADex+PhZunSpTJ+/HgZM2aMtG/fXlasWCG1atWSuLi4IvevX7++NG7c2LVs377d7E+4AQAAHg83ubm5kpycLOHh4a5t1apVM+uJiYklOsfzzz8vt912m9SuXbscSwoAACqL6p588WPHjkleXp40atTIbbuuf/3112c9XvvmaLOUBpzi5OTkmMUpKyvrPEsNAAC8mcebpc6HhpqOHTtKz549i90nJiZGgoKCXEtISEiFlhEAAFShcBMcHGw6A6enp7tt13XtT3Mm2dnZsm7dOhk3btwZ94uOjpYTJ064ltTU1DIpOwAA8E4eDTd+fn4SFhYmCQkJrm2nT58267179z7jsRs2bDDNTaNGjTrjfv7+/hIYGOi2AAAAe3m0z43SYeCjR4+W7t27m+alZcuWmVoZHT2loqKipFmzZqZ5qWCT1LBhw+TCCy/0UMkBAIA38ni4iYyMlMzMTJk9e7akpaVJly5dJD4+3tXJOCUlxYygyu/gwYOye/du2bZtm4dKDQAAvJWPw+FwSBWio6W0Y7H2v6GJCsC5CJu+xtNFALxO8uIor/n+rtSjpQAAAAoi3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFY+Hm9jYWAkNDZWAgADp1auXJCUlnXH/48ePy8SJE6VJkybi7+8vbdu2lc2bN1dYeQEAgHer7skXX79+vUydOlVWrFhhgs2yZcskIiJCDh48KA0bNiy0f25urgwaNMg89/rrr0uzZs3kxx9/lLp163qk/AAAwPt4NNwsXbpUxo8fL2PGjDHrGnI2bdokcXFxMmPGjEL76/ZffvlF9uzZIzVq1DDbtNYHAADA481SWguTnJws4eHh/ylMtWpmPTExschj3n77bendu7dplmrUqJF06NBBFixYIHl5ecW+Tk5OjmRlZbktAADAXh4LN8eOHTOhRENKfrqelpZW5DE//PCDaY7S47SfzcMPPyxPPPGEPProo8W+TkxMjAQFBbmWkJCQMr8WAADgPTzeobg0Tp8+bfrbPPvssxIWFiaRkZEyc+ZM05xVnOjoaDlx4oRrSU1NrdAyAwCAKtLnJjg4WHx9fSU9Pd1tu643bty4yGN0hJT2tdHjnC699FJT06PNXH5+foWO0RFVugAAgKrBYzU3GkS09iUhIcGtZkbXtV9NUa688kr57rvvzH5O33zzjQk9RQUbAABQ9Xi0WUqHga9atUpWr14tX331ldx3332SnZ3tGj0VFRVlmpWc9HkdLTV58mQTanRklXYo1g7GAAAAHh8Krn1mMjMzZfbs2aZpqUuXLhIfH+/qZJySkmJGUDlpZ+CtW7fKlClTpFOnTuY+Nxp0/va3v3nwKgAAgDfxcTgcDqlCdCi4jprSzsWBgYGeLg6ASihs+hpPFwHwOsmLo7zm+7tSjZYCAAA4G8INAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKziFeEmNjZWQkNDJSAgQHr16iVJSUnF7vviiy+Kj4+P26LHAQAAeEW4Wb9+vUydOlXmzJkj+/btk86dO0tERIRkZGQUe0xgYKAcPXrUtfz4448VWmYAAOC9PB5uli5dKuPHj5cxY8ZI+/btZcWKFVKrVi2Ji4sr9hitrWncuLFradSoUYWWGQAAeC+Phpvc3FxJTk6W8PDw/xSoWjWznpiYWOxxv/32m7Ro0UJCQkLkxhtvlC+//LKCSgwAALydR8PNsWPHJC8vr1DNi66npaUVecwll1xianU2btwoL7/8spw+fVquuOIK+emnn4rcPycnR7KystwWAABgL483S5VW7969JSoqSrp06SL9+vWTN998Uxo0aCArV64scv+YmBgJCgpyLVrbAwAA7OXRcBMcHCy+vr6Snp7utl3XtS9NSdSoUUO6du0q3333XZHPR0dHy4kTJ1xLampqmZQdAAB4J4+GGz8/PwkLC5OEhATXNm1m0nWtoSkJbdbav3+/NGnSpMjn/f39zeiq/AsAALBXdU8XQIeBjx49Wrp37y49e/aUZcuWSXZ2thk9pbQJqlmzZqZ5ST3yyCNy+eWXS+vWreX48eOyePFiMxT8rrvu8vCVAAAAb+DxcBMZGSmZmZkye/Zs04lY+9LEx8e7OhmnpKSYEVROv/76qxk6rvvWq1fP1Pzs2bPHDCMHAADwcTgcDqlCdLSUdizW/jc0UQE4F2HT13i6CIDXSV4c5TXf35VutBQAAECZh5tdu3bJqFGjTKffI0eOmG0vvfSS7N69+1xOBwAA4Llw88Ybb5i5n2rWrCmffPKJuUme0mqiBQsWlF3JAAAAKiLcPProo2b+p1WrVpl7zDhdeeWVZuJLAACAShVuDh48KH379i20XTv56NBsAACAShVu9M7BRd0NWPvbtGzZsqzKBQAAUDHhRu8xM3nyZPnoo4/Ex8dHfv75Z1m7dq1MmzZN7rvvvnMrBQAAgKdu4jdjxgwzRcLAgQPl1KlTpolKpzjQcDNp0qSyKhcAAEDFhButrZk5c6ZMnz7dNE/99ttv5u7AderUObcSAAAAeLJZauzYsXLy5Ekz6aWGGp0PSoONzgelzwEAAFSqcLN69Wr5/fffC23XbWvWcEtyAABQSZqldE4HnYZKF625CQgIcD2Xl5cnmzdvloYNG5ZXOQEAAMo23NStW9f0t9Glbdu2hZ7X7fPmzSvp6QAAADwbbnbs2GFqba6++mozBUP9+vVdz2n/mxYtWkjTpk3Lp5QAAABlHW769etn/n/o0CEJCQmRatWYUBwAAFgwFFxraJTe4yYlJUVyc3Pdnu/UqVPZlQ4AAKC8w01mZqaMGTNGtmzZUuTz2rkYAADAU0rdtvTAAw+YCTJ1+oWaNWtKfHy8GR7epk0befvtt8unlAAAAOVVc/P+++/Lxo0bpXv37qbfjTZTDRo0SAIDAyUmJkaGDh1a2lMCAAB4ruZG70TsvJ9NvXr1TDOV6tixo+zbt6/sSgYAAFAR4eaSSy6RgwcPmsedO3eWlStXypEjR2TFihXSpEmTcykDAACA55qlJk+eLEePHjWP58yZI9dcc42sXbvW3OvmxRdfLLuSAQAAVES4GTVqlOtxWFiY/Pjjj/L1119L8+bNJTg4+FzKAAAAUGbO+058tWrVkm7dupmZwZcsWVI2pQIAAKiIcKOdh999913Ztm2b6342f/75pzz11FMSGhoqCxcuPNdyAAAAVGyz1O7du+W6664zs4PrJJk6FPyFF16QYcOGSfXq1WXu3LkyevTosikVAABAedfczJo1S4YMGSKff/65TJ06Vfbu3SvDhw+XBQsWyIEDB+Tee+81N/UDAACoFOFm//79JuB06NBBHnnkEVN78/jjj8uIESPKt4QAAADlEW5+/fVX12goraHRjsQadAAAACrtUHBtfkpLSzOPHQ6HuZmf3rE4P2YFBwAAlSbcDBw40IQaJ+1grLSJSrfr/5kVHAAAVIpwc+jQofItCQAAQEWGG539GwAAwPo7FAMAAHgTwg0AALAK4QYAAFiFcAMAAKziFeEmNjbWTLwZEBAgvXr1kqSkpBIdt27dOjP8XOe3AgAAKPFoqa5du5oQURL79u0r1Tu7fv16M1fVihUrTLBZtmyZREREmBsENmzYsNjjDh8+LNOmTZM+ffqU6vUAAIDdShRuyrNmZOnSpTJ+/HgZM2aMWdeQs2nTJomLi5MZM2YUeYzeKPC//uu/ZN68ebJr1y45fvx4uZUPAABYGG7mzJlTLi+em5srycnJEh0d7dpWrVo1CQ8Pl8TExGKP04k7tVZn3LhxJtycSU5OjlmcsrKyyqj0AADAG3m0z82xY8dMLUyjRo3ctuu6cw6rgnbv3i3PP/+8rFq1qkSvERMTI0FBQa4lJCSkTMoOAAAsCTcaRpYsWSI9e/aUxo0bS/369d2W8nTy5Em54447TLBxzlB+NlordOLECdeSmpparmUEAACVaOJMpf1cnnvuOfmf//kfmTVrlsycOdN07n3rrbdk9uzZpTqXBhRfX19JT093267rGpwK+v77781rXX/99a5tp0+f/v8LqV7ddEJu1aqV2zH+/v5mAQAAVUOpa27Wrl1rak403GigGDlypAk7Gmw+/PDDUp3Lz89PwsLCJCEhwS2s6Hrv3r0L7d+uXTvZv3+/fPrpp67lhhtukAEDBpjHNDkBAIBS19xoX5iOHTuax3Xq1DFNPeq6666Thx9+uNQF0GHgo0ePlu7du5umLh0Knp2d7Ro9FRUVJc2aNTN9Z/Q+OB06dHA7vm7duub/BbcDAICqqdTh5qKLLpKjR49K8+bNTRPQtm3bpFu3brJ3795zav6JjIyUzMxMU/OjwalLly4SHx/v6mSckpJiRlABAACUhI/D4XBIKei9ZwIDA+Whhx4yN+AbNWqUubuwhpApU6bIwoULxZvpUHAdNaU1TnodAFBaYdPXeLoIgNdJXhzlNd/fpa65yR9etNalRYsWsmfPHmnTpo1bR18AAABPKHW4+eOPP0zfF6fLL7/cLAAAAN6g1J1Z9M7A2gF4+/btrmHYAAAAlTbcrF69Wk6dOiU33nijGcX0wAMPyMcff1w+pQMAACjvcDN8+HDZsGGDudHeggUL5MCBA6ZZqm3btmbOJwAAAE865zHWF1xwgbkXjQ4F//zzz6V27drm7sUAAACVMtxox+LXXntNhg0bZu5z88svv8j06dPLtnQAAADlPVpq69at8sorr5i5pHT6hREjRpjam759+5b2VAAAAJ4PN9rnRqdaWLNmjQwZMkRq1KhR9qUCAACoqHCjHYm1vw0AAEClDTd6y2PnrY51tgZdLw5TGgAAAK8PN/Xq1TOTZeoN/HQWbh8fn0L7aOjR7Xl5eeVRTgAAgLILN++//77Ur1/f9biocAMAAFBpwk2/fv1cj/v371+e5QEAAKjY+9zo7N9z586Vb7/99vxeGQAAwBvCzYQJE2TTpk3Srl076dGjhzz11FOSlpZWHmUDAAAo/3AzZcoU2bt3r3z11VfmPjexsbESEhIigwcPNve+AQAAqJTTL+hEmTqX1DfffCO7du2SzMxMM9cUAABApbqJX35JSUlmKob169ebe9/ccsstZVcyAACAigg3WlOzdu1aefXVV+XQoUNy9dVXy6JFi+Smm26SOnXqnEsZAAAAPBdunB2JJ06cKLfddps0atSo7EoDAABQkeFG7z68cuVKMxO43rUYAACgUnco9vX1lUmTJsnx48fLr0QAAAAVOVqqQ4cO8sMPP5zPawIAAHhPuHn00Udl2rRp8u6775rJNHWUVP4FAACgUnUo1hv3qRtuuMFtAk1mBQcAAJUy3OzYsaN8SgIAAOCJcJN/hnAAAIBKH24++OCDMz7ft2/f8ykPAABAxYab/v37F9qWv+8NfW4AAEClGi3166+/ui0ZGRkSHx9v7lq8bdu28iklAABAedXcBAUFFdo2aNAg8fPzk6lTp0pycnJpTwkAAOC5mpvi6BxTBw8eLKvTAQAAVEzNzeeff+62rve30Zv5LVy4ULp06XJupQAAAPBUuNEAox2INdTkd/nll0tcXFxZlQsAAKBiws2hQ4fc1qtVqyYNGjSQgICAcysBAACAJ/vctGjRwm0JCQk572ATGxsroaGh5jy9evWSpKSkYvd98803pXv37lK3bl2pXbu2qUl66aWXzuv1AQBAFQw3iYmJZrLM/NasWSMXX3yxNGzYUO6++27JyckpdQHWr19vRlnNmTNH9u3bJ507d5aIiAgzxLwo9evXl5kzZ5ryaP+fMWPGmGXr1q2lfm0AAFCFw80jjzwiX375pWt9//79Mm7cOAkPD5cZM2bIO++8IzExMaUuwNKlS2X8+PEmoLRv315WrFghtWrVKrb/jt5EcPjw4XLppZdKq1atZPLkydKpUyfZvXt3qV8bAABU4XDz6aefysCBA13r69atM01Iq1atMjUvf//73+W1114r1Yvn5uaa++JoQHIVqFo1s641M2ejnZoTEhLMEPTipn3Q2qSsrCy3BQAA2KvE4UbvRqz3snH65z//Kddee61rXe9QnJqaWqoXP3bsmJmuIf95la6npaUVe9yJEyekTp065saBQ4cOlaefftrcSLAoWpukNx50LtpHCAAA2KvE4UYDh3OklNa4aP8YHf7tdPLkSalRo4ZUhAsuuMDUJO3du1cee+wxU3O0c+fOIveNjo42Yci5lDaAAQAAS4eCDxkyxPStWbRokbz11lumX0yfPn1cz2vnXu0DUxrBwcHi6+sr6enpbtt1vXHjxsUep01XrVu3No91tNRXX31lamiKmtTT39/fLAAAoGoocc3N/PnzpXr16tKvXz/Tz0YXbRZy0g7AgwcPLtWL6/FhYWGm34zT6dOnzXrv3r1LfB495lxGagEAgCpcc6O1LB988IGrv4vWuOS3YcMGs720tElp9OjR5t41PXv2lGXLlkl2drYZPaWioqKkWbNmrpFY+n/dV2uJNNBs3rzZ3Odm+fLlpX5tAABgnzKZFdx5/5lzERkZKZmZmTJ79mzTiVibmeLj412djFNSUkwzlJMGnwkTJshPP/0kNWvWlHbt2snLL79szgMAAODjKDhJlOV0KLgGNK2BCgwM9HRxAFRCYdPXeLoIgNdJXhzlNd/fpZ5+AQAAwJsRbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwileEm9jYWAkNDZWAgADp1auXJCUlFbvvqlWrpE+fPlKvXj2zhIeHn3F/AABQtXg83Kxfv16mTp0qc+bMkX379knnzp0lIiJCMjIyitx/586dMnLkSNmxY4ckJiZKSEiIDB48WI4cOVLhZQcAAN7Hx+FwODxZAK2p6dGjhzzzzDNm/fTp0yawTJo0SWbMmHHW4/Py8kwNjh4fFRV11v2zsrIkKChITpw4IYGBgWVyDQCqlrDpazxdBMDrJC8++3fw+SjN97dHa25yc3MlOTnZNC25ClStmlnXWpmSOHXqlPz5559Sv379Ip/Pyckxb0j+BQAA2Muj4ebYsWOm5qVRo0Zu23U9LS2tROf429/+Jk2bNnULSPnFxMSYpOdctFYIAADYy+N9bs7HwoULZd26dfKPf/zDdEYuSnR0tKnCci6pqakVXk4AAFBxqosHBQcHi6+vr6Snp7tt1/XGjRuf8dglS5aYcPPee+9Jp06dit3P39/fLAAAoGrwaM2Nn5+fhIWFSUJCgmubdijW9d69exd73OOPPy7z58+X+Ph46d69ewWVFgAAVAYerblROgx89OjRJqT07NlTli1bJtnZ2TJmzBjzvI6Aatasmek7oxYtWiSzZ8+WV155xdwbx9k3p06dOmYBAABVm8fDTWRkpGRmZprAokGlS5cupkbG2ck4JSXFjKByWr58uRllNWLECLfz6H1y5s6dK96CoaJAxQ8VBQCvCDfq/vvvN0txN+3L7/DhwxVUKgAAUBlV6tFSAAAABRFuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVj4eb2NhYCQ0NlYCAAOnVq5ckJSUVu++XX34pN998s9nfx8dHli1bVqFlBQAA3s+j4Wb9+vUydepUmTNnjuzbt086d+4sERERkpGRUeT+p06dkpYtW8rChQulcePGFV5eAADg/TwabpYuXSrjx4+XMWPGSPv27WXFihVSq1YtiYuLK3L/Hj16yOLFi+W2224Tf3//Ci8vAADwfh4LN7m5uZKcnCzh4eH/KUy1amY9MTGxzF4nJydHsrKy3BYAAGAvj4WbY8eOSV5enjRq1Mhtu66npaWV2evExMRIUFCQawkJCSmzcwMAAO/j8Q7F5S06OlpOnDjhWlJTUz1dJAAAUI6qi4cEBweLr6+vpKenu23X9bLsLKx9c+ifAwBA1eGxmhs/Pz8JCwuThIQE17bTp0+b9d69e3uqWAAAoJLzWM2N0mHgo0ePlu7du0vPnj3NfWuys7PN6CkVFRUlzZo1M/1mnJ2QDxw44Hp85MgR+fTTT6VOnTrSunVrT14KAADwEh4NN5GRkZKZmSmzZ882nYi7dOki8fHxrk7GKSkpZgSV088//yxdu3Z1rS9ZssQs/fr1k507d3rkGgAAgHfxaLhR999/v1mKUjCw6J2JHQ5HBZUMAABURtaPlgIAAFUL4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAVvGKcBMbGyuhoaESEBAgvXr1kqSkpDPuv2HDBmnXrp3Zv2PHjrJ58+YKKysAAPBuHg8369evl6lTp8qcOXNk37590rlzZ4mIiJCMjIwi99+zZ4+MHDlSxo0bJ5988okMGzbMLF988UWFlx0AAHgfj4ebpUuXyvjx42XMmDHSvn17WbFihdSqVUvi4uKK3P+pp56Sa665RqZPny6XXnqpzJ8/X7p16ybPPPNMhZcdAAB4H4+Gm9zcXElOTpbw8PD/FKhaNbOemJhY5DG6Pf/+Smt6itsfAABULdU9+eLHjh2TvLw8adSokdt2Xf/666+LPCYtLa3I/XV7UXJycszidOLECfP/rKwsKU95Ob+X6/mByqi8P3cVhc83UPGfb+f5HQ6Hd4ebihATEyPz5s0rtD0kJMQj5QGqsqCn7/V0EQBU8s/3yZMnJSgoyHvDTXBwsPj6+kp6errbdl1v3Lhxkcfo9tLsHx0dbTosO50+fVp++eUXufDCC8XHx6dMrgPeS5O+BtnU1FQJDAz0dHEAlCE+31WLw+EwwaZp06Zn3dej4cbPz0/CwsIkISHBjHhyhg9dv//++4s8pnfv3ub5Bx54wLVt+/btZntR/P39zZJf3bp1y/Q64P30Fx+//AA78fmuOoLOUmPjNc1SWqsyevRo6d69u/Ts2VOWLVsm2dnZZvSUioqKkmbNmpnmJTV58mTp16+fPPHEEzJ06FBZt26dfPzxx/Lss896+EoAAIA38Hi4iYyMlMzMTJk9e7bpFNylSxeJj493dRpOSUkxI6icrrjiCnnllVdk1qxZ8tBDD0mbNm3krbfekg4dOnjwKgAAgLfwcZSk2zFQSelIOa31075XBZsnAVRufL5RHMINAACwisfvUAwAAFCWCDcAAMAqhBsAAGAVwg2qnMOHD5sbOH766aeeLgoADwkNDTW3HoGdCDeoFO68804TSO69t/DtvSdOnGie030AeO/nt+Dy3XffebposBThBpWG3mZdb9r4++//mbTwjz/+MPc9at68uUfLBuDMrrnmGjl69KjbcvHFF3u6WLAU4QaVRrdu3UzAefPNN13b9LEGm65du7q26U0gr7rqKjPNhs4hdt1118n3339/xnN/8cUXcu2110qdOnXMDSTvuOMOM2s9gLKh96HROQDzLzq34MaNG81nOyAgQFq2bGkmOv7rr79cx2kNz8qVK83nuFatWnLppZdKYmKiqfXp37+/1K5d29zcNf9nXB/feOON5rOsn+kePXrIe++9d8byHT9+XO666y5p0KCBmcrh6quvls8++6xc3xOUH8INKpWxY8fKCy+84FqPi4tzTdXhpNN36LQeOi2HzkOmd7gePny4mbesuF9q+otMA5Ieo+FIJ2O99dZby/16gKps165dZoodnVbnwIEDJsS8+OKL8thjj7ntN3/+fLOf9pNr166d3H777XLPPfeYm/fpZ1Zv15Z/PsLffvtNhgwZYj7/n3zyiak1uv76680d74tzyy23SEZGhmzZskWSk5NN4Bo4cKCZaBmVkN7ED/B2o0ePdtx4442OjIwMh7+/v+Pw4cNmCQgIcGRmZprndJ+i6PP6o75//36zfujQIbP+ySefmPX58+c7Bg8e7HZMamqq2efgwYMVcHWA3fSz6evr66hdu7ZrGTFihGPgwIGOBQsWuO370ksvOZo0aeJa18/hrFmzXOuJiYlm2/PPP+/a9uqrr5rfBWdy2WWXOZ5++mnXeosWLRxPPvmkebxr1y5HYGCg448//nA7plWrVo6VK1eex5XDUzw+txRQGlplrBOm6l93+ntPHwcHB7vt8+2335q5yj766CPTtOSssdG/2oqag0yrnnfs2GGqrwvS6u22bduW4xUBVcOAAQNk+fLlrnVtTurUqZP861//cqupycvLM33pTp06ZZqhlO7n5Jx3sGPHjm7b9JisrCzTpKQ1N3PnzpVNmzaZvj3azKV99YqrudHfAXqMNmPnp8ecrUkb3olwg0rZNOWsgo6NjS30vFY/t2jRQlatWiVNmzY14UZDTW5ubpHn019qesyiRYsKPdekSZNyuAKg6tEw07p160KfPe1jc9NNNxXaX/vgONWoUcOtD05x25x/yEybNk22b98uS5YsMa9Zs2ZNGTFixBl/B+hnfefOnYWe0757qHwIN6h0tP1cf0npL7SIiAi35/7973/LwYMHTbDp06eP2bZ79+4znk/b1t944w1z34vq1flIABVFP3v6eS0Yes6X1gbp8HPta+cML3p/qzOVIy0tzXz+9fcAKj86FKPS0REWX331lemAqI/zq1evnqlafvbZZ81oivfff990Lj4TvU+OdhocOXKk7N2711RDb9261XRU1ipyAOVDm4/XrFljam++/PJL87nW2z3MmjXrvM7bpk0bM5JSOyBrk5N2QC5uQIEKDw+X3r17y7Bhw2Tbtm0mCO3Zs0dmzpxpOiyj8iHcoFLSdnVdCtKRUfrLUUc7aFPUlClTZPHixWc8lzZd6V96GmQGDx5s2vIfeOABUx2t5wNQPrTm9d133zWBQodrX3755fLkk0+aZuXzsXTpUvOHjg4R1yZnfR2tnSmO1gJv3rxZ+vbta/6o0X52t912m/z444+uPj6oXHy0V7GnCwEAAFBW+LMUAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QZApZCZmSn33XefNG/eXPz9/aVx48bmzrN6d2kAyI9ZAgFUCjfffLOZMHX16tXSsmVLSU9Pl4SEBDNZKgDkR80NAK93/Phx2bVrlyxatEgGDBhg5h7q2bOnREdHyw033ODa56677pIGDRqYeceuvvpqM2mis9ZHa3oWLFjgOqdOjOjn52cCEgC7EG4AeL06deqY5a233pKcnJwi97nlllskIyNDtmzZYiZO1YkSBw4caGZ818ATFxcnc+fONbM8nzx5Uu644w65//77zT4A7MLEmQAqhTfeeEPGjx8vv//+uwku/fr1MzM3d+rUSXbv3i1Dhw414Ub74zi1bt1aHnzwQbn77rvN+sSJE+W9996T7t27y/79+2Xv3r1u+wOwA+EGQKXxxx9/mOapDz/80NTQJCUlyXPPPSfZ2dny3//931KzZk23/TUITZs2zTRnOdc7dOggqamppnanY8eOHroSAOWJcAOg0tI+Ntu3b5cJEybI008/LTt37iy0T926dSU4ONg8/uKLL6RHjx7y559/yj/+8Q+5/vrrPVBqAOWN0VIAKq327dubfjjaTJWWlibVq1eX0NDQIvfVkVajRo2SyMhIueSSS0ww0qaphg0bVni5AZQvam4AeD0d7q0dhseOHWv62FxwwQWmY/CkSZNMXxttmurbt6/pKPz4449L27Zt5eeff5ZNmzbJ8OHDTR+b6dOny+uvv25GUGnnZO2zExQUJO+++66nLw9AGSPcAPB6OkJKRzpt27ZNvv/+e9OsFBISYgLPQw89ZPraaLCZOXOm6XjsHPqtgScmJsYcM2jQINmxY4dcddVV5pyHDx+Wzp07y8KFC83NAQHYg3ADAACswn1uAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AABCb/B8xsp+3LWRUmwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"additional_notes = \"\"\"\n",
"### Variable Notes\n",
@@ -115,8 +519,10 @@
"After each number derive real worlds insights, for instance: \"Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter\".\n",
"Your final answer should have at least 3 numbered and detailed parts.\n",
"\"\"\",\n",
- " additional_notes=additional_notes,\n",
- " source_file=\"titanic/train.csv\",\n",
+ " additional_args=dict(\n",
+ " additional_notes=additional_notes,\n",
+ " source_file=\"titanic/train.csv\"\n",
+ " )\n",
")"
]
},
@@ -129,19 +535,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\n",
- "Here are the correlations and trends found in the data:\n",
- "\n",
- "1. **Correlation between age and survival rate**: The correlation is -0.0772, which suggests that as age increases, the survival rate decreases. This implies that older passengers were less likely to survive the Titanic disaster.\n",
- "\n",
- "2. **Relationship between Pclass and survival rate**: The survival rates for each Pclass are:\n",
- " - Pclass 1: 62.96%\n",
- " - Pclass 2: 47.28%\n",
- " - Pclass 3: 24.24%\n",
- " This shows that passengers in higher socio-economic classes (Pclass 1 and 2) had a significantly higher survival rate compared to those in the lower class (Pclass 3).\n",
- "\n",
- "3. **Relationship between fare and survival rate**: The correlation is 0.2573, which suggests a moderate positive relationship between fare and survival rate. This implies that passengers who paid higher fares were more likely to survive the disaster.\n",
- "\n"
+ "The analysis of the Titanic data reveals that socio-economic status and sex are significant factors in determining survival rates. Passengers with lower socio-economic status and males are less likely to survive. The age of a passenger has a minimal impact on their survival rate.\n"
]
}
],
@@ -168,339 +562,705 @@
"metadata": {},
"outputs": [
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[33;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mYou are an expert machine learning engineer.\n",
- "Please train a ML model on \"titanic/train.csv\" to predict the survival for rows of \"titanic/test.csv\".\n",
- "Output the results under './output.csv'.\n",
- "Take care to import functions and modules before using them!\n",
- "\n",
- "You have been provided with these initial arguments: {'additional_notes': \"\\n### Variable Notes\\npclass: A proxy for socio-economic status (SES)\\n1st = Upper\\n2nd = Middle\\n3rd = Lower\\nage: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5\\nsibsp: The dataset defines family relations in this way...\\nSibling = brother, sister, stepbrother, stepsister\\nSpouse = husband, wife (mistresses and fiancés were ignored)\\nparch: The dataset defines family relations in this way...\\nParent = mother, father\\nChild = daughter, son, stepdaughter, stepson\\nSome children travelled only with a nanny, therefore parch=0 for them.\\n\\nHere is the final answer:\\n\\n**Interesting Questions**\\n\\n1. Is there a correlation between socio-economic status (Pclass) and survival rate?\\n2. Is there a correlation between age and survival rate?\\n3. Is there a correlation between family size and survival rate?\\n\\n**Answers to Questions**\\n\\n1. Correlation between Pclass and survival rate: -0.338\\nInsight: Passengers from lower socio-economic backgrounds were less likely to survive.\\n2. Correlation between age and survival rate: -0.077\\nInsight: Older passengers were slightly less likely to survive.\\n3. Correlation between family size and survival rate: 0.017\\nInsight: Passengers traveling with larger families were slightly more likely to survive, but this correlation is very weak and may not be significant.\\n\\n**Summary of Correlations and Trends**\\n\\nThe analysis of the Titanic dataset reveals several interesting trends and correlations. Firstly, the socio-economic status of passengers played a significant role in their survival, with passengers from lower socio-economic backgrounds being less likely to survive. Secondly, age was a weak predictor of survival, with older passengers being slightly less likely to survive. Finally, family size had a very weak positive correlation with survival rate, suggesting that passengers traveling with larger families were slightly more likely to survive, but this correlation is very weak and may not be significant.\\n\\n**Plots**\\n\\n(Attached are the plots generated using matplotlib/seaborn and saved to the './figures/' folder)\\n\\nI hope this meets the requirements!\"}.\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;109;01mimport\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mpandas\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mas\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mpd\u001b[39m\n",
- "\u001b[38;5;109;01mfrom\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109msklearn\u001b[39m\u001b[38;5;109m.\u001b[39m\u001b[38;5;109mmodel_selection\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mimport\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_test_split\u001b[39m\n",
- "\u001b[38;5;109;01mfrom\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109msklearn\u001b[39m\u001b[38;5;109m.\u001b[39m\u001b[38;5;109mensemble\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mimport\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mRandomForestClassifier\u001b[39m\n",
- "\u001b[38;5;109;01mfrom\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109msklearn\u001b[39m\u001b[38;5;109m.\u001b[39m\u001b[38;5;109mmetrics\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mimport\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maccuracy_score\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Load the dataset\u001b[39;00m\n",
- "\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mread_csv\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mtitanic/train.csv\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mread_csv\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mtitanic/test.csv\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mhead\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mhead\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m PassengerId Survived Pclass \\\n",
- "0 1 0 3 \n",
- "1 2 1 1 \n",
- "2 3 1 3 \n",
- "3 4 1 1 \n",
- "4 5 0 3 \n",
- "\n",
- " Name Sex Age SibSp \\\n",
- "0 Braund, Mr. Owen Harris male 22.0 1 \n",
- "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
- "2 Heikkinen, Miss. Laina female 26.0 0 \n",
- "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
- "4 Allen, Mr. William Henry male 35.0 0 \n",
- "\n",
- " Parch Ticket Fare Cabin Embarked \n",
- "0 0 A/5 21171 7.2500 NaN S \n",
- "1 0 PC 17599 71.2833 C85 C \n",
- "2 0 STON/O2. 3101282 7.9250 NaN S \n",
- "3 0 113803 53.1000 C123 S \n",
- "4 0 373450 8.0500 NaN S \n",
- " PassengerId Pclass Name Sex \\\n",
- "0 892 3 Kelly, Mr. James male \n",
- "1 893 3 Wilkes, Mrs. James (Ellen Needs) female \n",
- "2 894 2 Myles, Mr. Thomas Francis male \n",
- "3 895 3 Wirz, Mr. Albert male \n",
- "4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female \n",
- "\n",
- " Age SibSp Parch Ticket Fare Cabin Embarked \n",
- "0 34.5 0 0 330911 7.8292 NaN Q \n",
- "1 47.0 1 0 363272 7.0000 NaN S \n",
- "2 62.0 0 0 240276 9.6875 NaN Q \n",
- "3 27.0 0 0 315154 8.6625 NaN S \n",
- "4 22.0 1 1 3101298 12.2875 NaN S \n",
- "\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;60;03m# Handle missing values\u001b[39;00m\n",
- "\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mAge\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mfillna\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mAge\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mmedian\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7minplace\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;109;01mTrue\u001b[39;00m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mAge\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mfillna\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mAge\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mmedian\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7minplace\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;109;01mTrue\u001b[39;00m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mfillna\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mUnknown\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7minplace\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;109;01mTrue\u001b[39;00m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mfillna\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mUnknown\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7minplace\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;109;01mTrue\u001b[39;00m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Encode categorical variables\u001b[39;00m\n",
- "\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSex\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSex\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mmap\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m{\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mmale\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mfemale\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m}\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSex\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSex\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mmap\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m{\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mmale\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mfemale\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m}\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mEmbarked\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mEmbarked\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mfillna\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mS\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mEmbarked\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mEmbarked\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mfillna\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mS\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mEmbarked\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mEmbarked\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mmap\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m{\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mS\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mC\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mQ\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m2\u001b[39m\u001b[38;5;7m}\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mEmbarked\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mEmbarked\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mmap\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m{\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mS\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mC\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mQ\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m2\u001b[39m\u001b[38;5;7m}\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mhead\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mhead\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m PassengerId Survived Pclass \\\n",
- "0 1 0 3 \n",
- "1 2 1 1 \n",
- "2 3 1 3 \n",
- "3 4 1 1 \n",
- "4 5 0 3 \n",
- "\n",
- " Name Sex Age SibSp Parch \\\n",
- "0 Braund, Mr. Owen Harris 0 22.0 1 0 \n",
- "1 Cumings, Mrs. John Bradley (Florence Briggs Th... 1 38.0 1 0 \n",
- "2 Heikkinen, Miss. Laina 1 26.0 0 0 \n",
- "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) 1 35.0 1 0 \n",
- "4 Allen, Mr. William Henry 0 35.0 0 0 \n",
- "\n",
- " Ticket Fare Cabin Embarked \n",
- "0 A/5 21171 7.2500 Unknown 0 \n",
- "1 PC 17599 71.2833 C85 1 \n",
- "2 STON/O2. 3101282 7.9250 Unknown 0 \n",
- "3 113803 53.1000 C123 0 \n",
- "4 373450 8.0500 Unknown 0 \n",
- " PassengerId Pclass Name Sex \\\n",
- "0 892 3 Kelly, Mr. James 0 \n",
- "1 893 3 Wilkes, Mrs. James (Ellen Needs) 1 \n",
- "2 894 2 Myles, Mr. Thomas Francis 0 \n",
- "3 895 3 Wirz, Mr. Albert 0 \n",
- "4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) 1 \n",
- "\n",
- " Age SibSp Parch Ticket Fare Cabin Embarked \n",
- "0 34.5 0 0 330911 7.8292 Unknown 2 \n",
- "1 47.0 1 0 363272 7.0000 Unknown 0 \n",
- "2 62.0 0 0 240276 9.6875 Unknown 2 \n",
- "3 27.0 0 0 315154 8.6625 Unknown 0 \n",
- "4 22.0 1 1 3101298 12.2875 Unknown 0 \n",
- "\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;60;03m# Split data into features (X) and target (y)\u001b[39;00m\n",
- "\u001b[38;5;7mX\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mdrop\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSurvived\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mPassengerId\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mName\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mTicket\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maxis\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7my\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSurvived\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Split data into training and validation sets\u001b[39;00m\n",
- "\u001b[38;5;7mX_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mX_val\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my_val\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_test_split\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_size\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m0.2\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrandom_state\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m42\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Train a Random Forest Classifier model\u001b[39;00m\n",
- "\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mRandomForestClassifier\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mn_estimators\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m100\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrandom_state\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m42\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mfit\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my_train\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mTraining accuracy:\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maccuracy_score\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7my_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mpredict\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX_train\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mValidation accuracy:\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maccuracy_score\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7my_val\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mpredict\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX_val\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[31;20mCode execution failed due to the following error:\n",
- "could not convert string to float: 'C124'\u001b[0m\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1054, in step\n",
- " result = self.python_evaluator(\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 893, in evaluate_python_code\n",
- " result = evaluate_ast(node, state, static_tools, custom_tools, authorized_imports)\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 780, in evaluate_ast\n",
- " return evaluate_ast(expression.value, state, static_tools, custom_tools)\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 744, in evaluate_ast\n",
- " return evaluate_call(expression, state, static_tools, custom_tools)\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 439, in evaluate_call\n",
- " output = func(*args, **kwargs)\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/base.py\", line 1474, in wrapper\n",
- " return fit_method(estimator, *args, **kwargs)\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/ensemble/_forest.py\", line 363, in fit\n",
- " X, y = self._validate_data(\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/base.py\", line 650, in _validate_data\n",
- " X, y = check_X_y(X, y, **check_params)\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/utils/validation.py\", line 1263, in check_X_y\n",
- " X = check_array(\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/utils/validation.py\", line 997, in check_array\n",
- " array = _asarray_with_order(array, order=order, dtype=dtype, xp=xp)\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/utils/_array_api.py\", line 521, in _asarray_with_order\n",
- " array = numpy.asarray(array, order=order, dtype=dtype)\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/pandas/core/generic.py\", line 2153, in __array__\n",
- " arr = np.asarray(values, dtype=dtype)\n",
- "ValueError: could not convert string to float: 'C124'\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 756, in direct_run\n",
- " step_logs = self.step()\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1072, in step\n",
- " raise AgentExecutionError(error_msg)\n",
- "transformers.agents.agents.AgentExecutionError: Code execution failed due to the following error:\n",
- "could not convert string to float: 'C124'\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;60;03m# One-hot encode the Cabin feature\u001b[39;00m\n",
- "\u001b[38;5;7mcabin_dummies\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mget_dummies\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_cabin_dummies\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mget_dummies\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;7mX\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mconcat\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mdrop\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSurvived\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mPassengerId\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mName\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mTicket\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maxis\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mcabin_dummies\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maxis\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_X\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mconcat\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mdrop\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mPassengerId\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mName\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mTicket\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maxis\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_cabin_dummies\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maxis\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;7my\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSurvived\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Split data into training and validation sets\u001b[39;00m\n",
- "\u001b[38;5;7mX_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mX_val\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my_val\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_test_split\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_size\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m0.2\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrandom_state\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m42\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Train a Random Forest Classifier model\u001b[39;00m\n",
- "\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mRandomForestClassifier\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mn_estimators\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m100\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrandom_state\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m42\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mfit\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my_train\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mTraining accuracy:\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maccuracy_score\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7my_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mpredict\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX_train\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mValidation accuracy:\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maccuracy_score\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7my_val\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mpredict\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX_val\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20mTraining accuracy: 0.9845505617977528\n",
- "Validation accuracy: 0.7932960893854749\n",
- "\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;60;03m# Make predictions on the test data\u001b[39;00m\n",
- "\u001b[38;5;7mpredictions\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mpredict\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtest_X\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Save the predictions to a submission file\u001b[39;00m\n",
- "\u001b[38;5;7msubmission_df\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mDataFrame\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m{\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mPassengerId\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mPassengerId\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSurvived\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpredictions\u001b[39m\n",
- "\u001b[38;5;7m}\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;7msubmission_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mto_csv\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144m./output.csv\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mindex\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;109;01mFalse\u001b[39;00m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mSubmission file saved to./output.csv\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[31;20mCode execution failed due to the following error:\n",
- "The feature names should match those that were passed during fit.\n",
- "Feature names unseen at fit time:\n",
- "- A11\n",
- "- A18\n",
- "- A21\n",
- "- A29\n",
- "- A9\n",
- "- ...\n",
- "Feature names seen at fit time, yet now missing:\n",
- "- A10\n",
- "- A14\n",
- "- A16\n",
- "- A19\n",
- "- A20\n",
- "- ...\n",
- "\u001b[0m\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1054, in step\n",
- " result = self.python_evaluator(\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 893, in evaluate_python_code\n",
- " result = evaluate_ast(node, state, static_tools, custom_tools, authorized_imports)\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 739, in evaluate_ast\n",
- " return evaluate_assign(expression, state, static_tools, custom_tools)\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 322, in evaluate_assign\n",
- " result = evaluate_ast(assign.value, state, static_tools, custom_tools)\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 744, in evaluate_ast\n",
- " return evaluate_call(expression, state, static_tools, custom_tools)\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 439, in evaluate_call\n",
- " output = func(*args, **kwargs)\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/ensemble/_forest.py\", line 905, in predict\n",
- " proba = self.predict_proba(X)\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/ensemble/_forest.py\", line 947, in predict_proba\n",
- " X = self._validate_X_predict(X)\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/ensemble/_forest.py\", line 641, in _validate_X_predict\n",
- " X = self._validate_data(\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/base.py\", line 608, in _validate_data\n",
- " self._check_feature_names(X, reset=reset)\n",
- " File \"/Users/aymeric/venvs/disposable/lib/python3.10/site-packages/sklearn/base.py\", line 535, in _check_feature_names\n",
- " raise ValueError(message)\n",
- "ValueError: The feature names should match those that were passed during fit.\n",
- "Feature names unseen at fit time:\n",
- "- A11\n",
- "- A18\n",
- "- A21\n",
- "- A29\n",
- "- A9\n",
- "- ...\n",
- "Feature names seen at fit time, yet now missing:\n",
- "- A10\n",
- "- A14\n",
- "- A16\n",
- "- A19\n",
- "- A20\n",
- "- ...\n",
- "\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 756, in direct_run\n",
- " step_logs = self.step()\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1072, in step\n",
- " raise AgentExecutionError(error_msg)\n",
- "transformers.agents.agents.AgentExecutionError: Code execution failed due to the following error:\n",
- "The feature names should match those that were passed during fit.\n",
- "Feature names unseen at fit time:\n",
- "- A11\n",
- "- A18\n",
- "- A21\n",
- "- A29\n",
- "- A9\n",
- "- ...\n",
- "Feature names seen at fit time, yet now missing:\n",
- "- A10\n",
- "- A14\n",
- "- A16\n",
- "- A19\n",
- "- A20\n",
- "- ...\n",
- "\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;60;03m# Get the common cabin values in both training and test data\u001b[39;00m\n",
- "\u001b[38;5;7mcommon_cabins\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mset\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7munique\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m&\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mset\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7munique\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Filter the cabin dummies to only include the common cabin values\u001b[39;00m\n",
- "\u001b[38;5;7mcabin_dummies\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mget_dummies\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mmap\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;109;01mlambda\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mx\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mx\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mif\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mx\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mcommon_cabins\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01melse\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mUnknown\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_cabin_dummies\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mget_dummies\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mmap\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;109;01mlambda\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mx\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mx\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mif\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mx\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mcommon_cabins\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01melse\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mUnknown\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;7mX\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mconcat\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mdrop\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSurvived\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mPassengerId\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mName\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mTicket\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maxis\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mcabin_dummies\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maxis\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mtest_X\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mconcat\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mdrop\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mPassengerId\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mName\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mTicket\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mCabin\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maxis\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_cabin_dummies\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maxis\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;7my\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSurvived\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Split data into training and validation sets\u001b[39;00m\n",
- "\u001b[38;5;7mX_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mX_val\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my_val\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtrain_test_split\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_size\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m0.2\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrandom_state\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m42\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Train a Random Forest Classifier model\u001b[39;00m\n",
- "\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mRandomForestClassifier\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mn_estimators\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m100\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrandom_state\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;139m42\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mfit\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7my_train\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mTraining accuracy:\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maccuracy_score\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7my_train\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mpredict\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX_train\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mValidation accuracy:\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7maccuracy_score\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7my_val\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mpredict\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mX_val\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Make predictions on the test data\u001b[39;00m\n",
- "\u001b[38;5;7mpredictions\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrfc\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mpredict\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtest_X\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Save the predictions to a submission file\u001b[39;00m\n",
- "\u001b[38;5;7msubmission_df\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpd\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mDataFrame\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m{\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mPassengerId\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtest_df\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mPassengerId\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m,\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mSurvived\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mpredictions\u001b[39m\n",
- "\u001b[38;5;7m}\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;7msubmission_df\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mto_csv\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144m./output.csv\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mindex\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;109;01mFalse\u001b[39;00m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mSubmission file saved to./output.csv\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20mTraining accuracy: 0.9803370786516854\n",
- "Validation accuracy: 0.8100558659217877\n",
- "\u001b[0m\n",
- "\u001b[33;1m>>> Final answer:\u001b[0m\n",
- "\u001b[32;20mSubmission file saved to./output.csv\u001b[0m\n"
- ]
+ "data": {
+ "text/html": [
+ "╭──────────────────────────────────────────────────── New run ────────────────────────────────────────────────────╮ \n",
+ "│ │ \n",
+ "│ You are an expert machine learning engineer. │ \n",
+ "│ Please train a ML model on \"titanic/train.csv\" to predict the survival for rows of \"titanic/test.csv\". │ \n",
+ "│ Output the results under './output.csv'. │ \n",
+ "│ Take care to import functions and modules before using them! │ \n",
+ "│ │ \n",
+ "│ You have been provided with these additional arguments, that you can access using the keys as variables in your │ \n",
+ "│ python code: │ \n",
+ "│ {'additional_notes': '\\n### Variable Notes\\npclass: A proxy for socio-economic status (SES)\\n1st = Upper\\n2nd = │ \n",
+ "│ Middle\\n3rd = Lower\\nage: Age is fractional if less than 1. If the age is estimated, is it in the form of │ \n",
+ "│ xx.5\\nsibsp: The dataset defines family relations in this way...\\nSibling = brother, sister, stepbrother, │ \n",
+ "│ stepsister\\nSpouse = husband, wife (mistresses and fiancés were ignored)\\nparch: The dataset defines family │ \n",
+ "│ relations in this way...\\nParent = mother, father\\nChild = daughter, son, stepdaughter, stepson\\nSome children │ \n",
+ "│ travelled only with a nanny, therefore parch=0 for them.\\n\\nThe analysis of the Titanic data reveals that │ \n",
+ "│ socio-economic status and sex are significant factors in determining survival rates. Passengers with lower │ \n",
+ "│ socio-economic status and males are less likely to survive. The age of a passenger has a minimal impact on │ \n",
+ "│ their survival rate.'}. │ \n",
+ "│ │ \n",
+ "╰─ HfApiModel - meta-llama/Llama-3.1-70B-Instruct ────────────────────────────────────────────────────────────────╯ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m╭─\u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[1;38;2;212;183;2mNew run\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╮\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYou are an expert machine learning engineer.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mPlease train a ML model on \"titanic/train.csv\" to predict the survival for rows of \"titanic/test.csv\".\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mOutput the results under './output.csv'.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mTake care to import functions and modules before using them!\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYou have been provided with these additional arguments, that you can access using the keys as variables in your\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mpython code:\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m{'additional_notes': '\\n### Variable Notes\\npclass: A proxy for socio-economic status (SES)\\n1st = Upper\\n2nd =\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mMiddle\\n3rd = Lower\\nage: Age is fractional if less than 1. If the age is estimated, is it in the form of \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mxx.5\\nsibsp: The dataset defines family relations in this way...\\nSibling = brother, sister, stepbrother, \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mstepsister\\nSpouse = husband, wife (mistresses and fiancés were ignored)\\nparch: The dataset defines family \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mrelations in this way...\\nParent = mother, father\\nChild = daughter, son, stepdaughter, stepson\\nSome children \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mtravelled only with a nanny, therefore parch=0 for them.\\n\\nThe analysis of the Titanic data reveals that \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1msocio-economic status and sex are significant factors in determining survival rates. Passengers with lower \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1msocio-economic status and males are less likely to survive. The age of a passenger has a minimal impact on \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mtheir survival rate.'}.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m╰─\u001b[0m\u001b[38;2;212;183;2m HfApiModel - meta-llama/Llama-3.1-70B-Instruct \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╯\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m0\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 import pandas as pd │\n",
+ "│ 2 import numpy as np │\n",
+ "│ 3 from sklearn.model_selection import train_test_split │\n",
+ "│ 4 from sklearn.ensemble import RandomForestClassifier │\n",
+ "│ 5 from sklearn.metrics import accuracy_score │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mimport\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpandas\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mas\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mimport\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mnumpy\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mas\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mnp\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mfrom\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msklearn\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmodel_selection\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mimport\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_test_split\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m4 \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mfrom\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msklearn\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mensemble\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mimport\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mRandomForestClassifier\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m5 \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mfrom\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msklearn\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmetrics\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mimport\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34maccuracy_score\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 0: Duration 23.22 seconds| Input tokens: 2,238 | Output tokens: 185] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 0: Duration 23.22 seconds| Input tokens: 2,238 | Output tokens: 185]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m1\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 train_df = pd . read_csv( \"titanic/train.csv\" ) │\n",
+ "│ 2 print(train_df . head()) # Print the first few rows of the DataFrame │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mread_csv\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mtitanic/train.csv\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mhead\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Print the first few rows of the DataFrame\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S \n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S \n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 1: Duration 13.93 seconds| Input tokens: 4,754 | Output tokens: 508] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 1: Duration 13.93 seconds| Input tokens: 4,754 | Output tokens: 508]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m2\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 # Train a random forest classifier on the training data │\n",
+ "│ 2 rfc = RandomForestClassifier(n_estimators = 100 , random_state = 42 ) │\n",
+ "│ 3 rfc . fit(X_train, y_train) │\n",
+ "│ 4 │\n",
+ "│ 5 # Make predictions on the testing data │\n",
+ "│ 6 y_pred = rfc . predict(X_test) │\n",
+ "│ 7 │\n",
+ "│ 8 # Evaluate the accuracy of the model │\n",
+ "│ 9 accuracy = accuracy_score(y_test, y_pred) │\n",
+ "│ 10 print( \"Accuracy:\" , accuracy) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 1 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Train a random forest classifier on the training data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mRandomForestClassifier\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mn_estimators\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m100\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrandom_state\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m42\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 3 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfit\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX_train\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_train\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 4 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 5 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Make predictions on the testing data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 6 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_pred\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpredict\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX_test\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 7 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 8 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Evaluate the accuracy of the model\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 9 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34maccuracy\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34maccuracy_score\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_test\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_pred\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m10 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAccuracy:\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34maccuracy\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Code execution failed: could not convert string to float: 'Braund, Mr. Owen Harris' \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;31mCode execution failed: could not convert string to float: \u001b[0m\u001b[1;31m'Braund, Mr. Owen Harris'\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 2: Duration 6.33 seconds| Input tokens: 7,995 | Output tokens: 643] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 2: Duration 6.33 seconds| Input tokens: 7,995 | Output tokens: 643]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m3\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 # Load the test data │\n",
+ "│ 2 test_df = pd . read_csv( \"titanic/test.csv\" ) │\n",
+ "│ 3 │\n",
+ "│ 4 # Prepare the test data │\n",
+ "│ 5 test_df[ 'Age' ] = test_df[ 'Age' ] . fillna(test_df[ 'Age' ] . mean()) │\n",
+ "│ 6 test_df = test_df . drop([ 'Cabin' , 'Ticket' ], axis = 1 ) │\n",
+ "│ 7 │\n",
+ "│ 8 # One-hot encoding for categorical variables │\n",
+ "│ 9 test_df = pd . get_dummies(test_df, columns = [ 'Sex' , 'Embarked' ]) │\n",
+ "│ 10 │\n",
+ "│ 11 # Define the features for the test data │\n",
+ "│ 12 X_test = test_df │\n",
+ "│ 13 │\n",
+ "│ 14 # Train a random forest classifier on the training data │\n",
+ "│ 15 rfc = RandomForestClassifier(n_estimators = 100 , random_state = 42 ) │\n",
+ "│ 16 rfc . fit(X_train, y_train) │\n",
+ "│ 17 │\n",
+ "│ 18 # Make predictions on the test data │\n",
+ "│ 19 y_pred = rfc . predict(X_test) │\n",
+ "│ 20 │\n",
+ "│ 21 # Save the predictions to a DataFrame │\n",
+ "│ 22 submission_df = pd . DataFrame({ 'PassengerId' : test_df[ 'PassengerId' ], 'Survived' : y_pred}) │\n",
+ "│ 23 │\n",
+ "│ 24 # Save the DataFrame to a CSV file │\n",
+ "│ 25 submission_df . to_csv( './output.csv' , index = False ) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 1 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Load the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mread_csv\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mtitanic/test.csv\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 3 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 4 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Prepare the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 5 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfillna\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmean\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 6 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdrop\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mCabin\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mTicket\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34maxis\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 7 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 8 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# One-hot encoding for categorical variables\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 9 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mget_dummies\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcolumns\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mEmbarked\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m10 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m11 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Define the features for the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m12 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX_test\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m13 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m14 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Train a random forest classifier on the training data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m15 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mRandomForestClassifier\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mn_estimators\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m100\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrandom_state\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m42\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m16 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfit\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX_train\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_train\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m17 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m18 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Make predictions on the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m19 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_pred\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpredict\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX_test\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m20 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m21 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Save the predictions to a DataFrame\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m22 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msubmission_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mDataFrame\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m{\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mPassengerId\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mPassengerId\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_pred\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m}\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m23 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m24 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Save the DataFrame to a CSV file\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m25 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msubmission_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mto_csv\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m./output.csv\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mindex\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mFalse\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Code execution failed: could not convert string to float: 'Braund, Mr. Owen Harris' \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;31mCode execution failed: could not convert string to float: \u001b[0m\u001b[1;31m'Braund, Mr. Owen Harris'\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 3: Duration 13.12 seconds| Input tokens: 11,552 | Output tokens: 943] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 3: Duration 13.12 seconds| Input tokens: 11,552 | Output tokens: 943]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 4 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m4\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 # Load the test data │\n",
+ "│ 2 test_df = pd . read_csv( \"titanic/test.csv\" ) │\n",
+ "│ 3 │\n",
+ "│ 4 # Prepare the test data │\n",
+ "│ 5 test_df[ 'Age' ] = test_df[ 'Age' ] . fillna(test_df[ 'Age' ] . mean()) │\n",
+ "│ 6 test_df = test_df . drop([ 'Cabin' , 'Ticket' , 'Name' ], axis = 1 ) │\n",
+ "│ 7 │\n",
+ "│ 8 # One-hot encoding for categorical variables │\n",
+ "│ 9 test_df = pd . get_dummies(test_df, columns = [ 'Sex' , 'Embarked' ]) │\n",
+ "│ 10 │\n",
+ "│ 11 # Align the features of the test data with the training data │\n",
+ "│ 12 test_df = test_df . reindex(columns = X . columns, fill_value = 0 ) │\n",
+ "│ 13 │\n",
+ "│ 14 # Train a random forest classifier on the training data │\n",
+ "│ 15 rfc = RandomForestClassifier(n_estimators = 100 , random_state = 42 ) │\n",
+ "│ 16 rfc . fit(X, y) │\n",
+ "│ 17 │\n",
+ "│ 18 # Make predictions on the test data │\n",
+ "│ 19 y_pred = rfc . predict(test_df) │\n",
+ "│ 20 │\n",
+ "│ 21 # Save the predictions to a DataFrame │\n",
+ "│ 22 submission_df = pd . DataFrame({ 'PassengerId' : test_df[ 'PassengerId' ], 'Survived' : y_pred}) │\n",
+ "│ 23 │\n",
+ "│ 24 # Save the DataFrame to a CSV file │\n",
+ "│ 25 submission_df . to_csv( './output.csv' , index = False ) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 1 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Load the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mread_csv\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mtitanic/test.csv\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 3 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 4 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Prepare the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 5 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfillna\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmean\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 6 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdrop\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mCabin\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mTicket\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mName\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34maxis\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 7 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 8 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# One-hot encoding for categorical variables\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 9 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mget_dummies\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcolumns\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mEmbarked\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m10 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m11 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Align the features of the test data with the training data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m12 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mreindex\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcolumns\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcolumns\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfill_value\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m0\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m13 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m14 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Train a random forest classifier on the training data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m15 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mRandomForestClassifier\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mn_estimators\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m100\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrandom_state\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m42\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m16 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfit\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m17 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m18 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Make predictions on the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m19 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_pred\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpredict\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m20 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m21 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Save the predictions to a DataFrame\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m22 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msubmission_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mDataFrame\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m{\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mPassengerId\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mPassengerId\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_pred\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m}\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m23 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m24 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Save the DataFrame to a CSV file\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m25 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msubmission_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mto_csv\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m./output.csv\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mindex\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mFalse\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Code execution failed: Code execution failed at line 'test_df = test_df.reindex(columns = X.columns, fill_value=0)' \n",
+ "because of the following error: \n",
+ "The variable `X` is not defined. \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;31mCode execution failed: Code execution failed at line \u001b[0m\u001b[1;31m'test_df = test_df.reindex\u001b[0m\u001b[1;31m(\u001b[0m\u001b[1;31mcolumns = X.columns, \u001b[0m\u001b[1;31mfill_value\u001b[0m\u001b[1;31m=\u001b[0m\u001b[1;31m0\u001b[0m\u001b[1;31m)\u001b[0m\u001b[1;31m'\u001b[0m\n",
+ "\u001b[1;31mbecause of the following error:\u001b[0m\n",
+ "\u001b[1;31mThe variable `X` is not defined.\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 4: Duration 12.40 seconds| Input tokens: 15,751 | Output tokens: 1,235] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 4: Duration 12.40 seconds| Input tokens: 15,751 | Output tokens: 1,235]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m5\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 # Load the training data │\n",
+ "│ 2 train_df = pd . read_csv( \"titanic/train.csv\" ) │\n",
+ "│ 3 │\n",
+ "│ 4 # Prepare the training data │\n",
+ "│ 5 train_df[ 'Age' ] = train_df[ 'Age' ] . fillna(train_df[ 'Age' ] . mean()) │\n",
+ "│ 6 train_df = train_df . drop([ 'Cabin' , 'Ticket' , 'Name' ], axis = 1 ) │\n",
+ "│ 7 │\n",
+ "│ 8 # One-hot encoding for categorical variables │\n",
+ "│ 9 train_df = pd . get_dummies(train_df, columns = [ 'Sex' , 'Embarked' ]) │\n",
+ "│ 10 │\n",
+ "│ 11 # Define the features and target │\n",
+ "│ 12 X = train_df . drop( 'Survived' , axis = 1 ) │\n",
+ "│ 13 y = train_df[ 'Survived' ] │\n",
+ "│ 14 │\n",
+ "│ 15 # Load the test data │\n",
+ "│ 16 test_df = pd . read_csv( \"titanic/test.csv\" ) │\n",
+ "│ 17 │\n",
+ "│ 18 # Prepare the test data │\n",
+ "│ 19 test_df[ 'Age' ] = test_df[ 'Age' ] . fillna(test_df[ 'Age' ] . mean()) │\n",
+ "│ 20 test_df = test_df . drop([ 'Cabin' , 'Ticket' , 'Name' ], axis = 1 ) │\n",
+ "│ 21 │\n",
+ "│ 22 # One-hot encoding for categorical variables │\n",
+ "│ 23 test_df = pd . get_dummies(test_df, columns = [ 'Sex' , 'Embarked' ]) │\n",
+ "│ 24 │\n",
+ "│ 25 # Align the features of the test data with the training data │\n",
+ "│ 26 test_df = test_df . reindex(columns = X . columns, fill_value = 0 ) │\n",
+ "│ 27 │\n",
+ "│ 28 # Train a random forest classifier on the training data │\n",
+ "│ 29 rfc = RandomForestClassifier(n_estimators = 100 , random_state = 42 ) │\n",
+ "│ 30 rfc . fit(X, y) │\n",
+ "│ 31 │\n",
+ "│ 32 # Make predictions on the test data │\n",
+ "│ 33 y_pred = rfc . predict(test_df) │\n",
+ "│ 34 │\n",
+ "│ 35 # Save the predictions to a DataFrame │\n",
+ "│ 36 submission_df = pd . DataFrame({ 'PassengerId' : test_df[ 'PassengerId' ], 'Survived' : y_pred}) │\n",
+ "│ 37 │\n",
+ "│ 38 # Save the DataFrame to a CSV file │\n",
+ "│ 39 submission_df . to_csv( './output.csv' , index = False ) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 1 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Load the training data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mread_csv\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mtitanic/train.csv\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 3 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 4 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Prepare the training data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 5 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfillna\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmean\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 6 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdrop\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mCabin\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mTicket\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mName\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34maxis\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 7 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 8 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# One-hot encoding for categorical variables\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 9 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mget_dummies\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcolumns\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mEmbarked\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m10 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m11 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Define the features and target\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m12 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdrop\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34maxis\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m13 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtrain_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m14 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m15 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Load the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m16 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mread_csv\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mtitanic/test.csv\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m17 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m18 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Prepare the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m19 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfillna\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAge\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmean\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m20 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdrop\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mCabin\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mTicket\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mName\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34maxis\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m21 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m22 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# One-hot encoding for categorical variables\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m23 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mget_dummies\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcolumns\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSex\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mEmbarked\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m24 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m25 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Align the features of the test data with the training data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m26 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mreindex\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcolumns\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcolumns\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfill_value\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m0\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m27 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m28 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Train a random forest classifier on the training data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m29 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mRandomForestClassifier\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mn_estimators\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m100\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrandom_state\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m42\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m30 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfit\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mX\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m31 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m32 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Make predictions on the test data\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m33 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_pred\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrfc\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpredict\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m34 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m35 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Save the predictions to a DataFrame\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m36 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msubmission_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mpd\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mDataFrame\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m{\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mPassengerId\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtest_df\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mPassengerId\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSurvived\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34my_pred\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m}\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m37 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m38 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Save the DataFrame to a CSV file\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m39 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msubmission_df\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mto_csv\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m./output.csv\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mindex\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mFalse\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 5: Duration 16.43 seconds| Input tokens: 20,624 | Output tokens: 1,614] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 5: Duration 16.43 seconds| Input tokens: 20,624 | Output tokens: 1,614]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 6 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m6\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 final_answer( \"The model has been trained and the predictions have been saved to a CSV file named │\n",
+ "│ 'output.csv'.\" ) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfinal_answer\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mThe model has been trained and the predictions have been saved to a CSV file named \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34moutput.csv\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m.\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Out - Final answer: The model has been trained and the predictions have been saved to a CSV file named \n",
+ "'output.csv'. \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;38;2;212;183;2mOut - Final answer: The model has been trained and the predictions have been saved to a CSV file named \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2m'output.csv'.\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 6: Duration 3.00 seconds| Input tokens: 26,342 | Output tokens: 1,677] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 6: Duration 3.00 seconds| Input tokens: 26,342 | Output tokens: 1,677]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
- "agent = ReactCodeAgent(\n",
+ "agent = CodeAgent(\n",
" tools=[],\n",
- " llm_engine=llm_engine,\n",
+ " model=model,\n",
" additional_authorized_imports=[\n",
" \"numpy\",\n",
" \"pandas\",\n",
@@ -517,7 +1277,7 @@
"Output the results under './output.csv'.\n",
"Take care to import functions and modules before using them!\n",
"\"\"\",\n",
- " additional_notes=additional_notes + \"\\n\" + analysis,\n",
+ " additional_args=dict(additional_notes=additional_notes + \"\\n\" + analysis)\n",
")"
]
},
@@ -525,6 +1285,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
+ "Even though the agent got a few errors, it managed to correctly solve the problem in the end!\n",
+ "\n",
"The test predictions that the agent output above, once submitted to Kaggle, score **0.78229**, which is #2824 out of 17,360, and better than what I had painfully achieved when first trying the challenge years ago.\n",
"\n",
"Your result will vary, but anyway I find it very impressive to achieve this with an agent in a few seconds.\n",
@@ -535,9 +1297,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "disposable",
+ "display_name": "test2",
"language": "python",
- "name": "python3"
+ "name": "test2"
},
"language_info": {
"codemirror_mode": {
@@ -549,7 +1311,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.12.2"
+ "version": "3.12.0"
}
},
"nbformat": 4,
diff --git a/notebooks/en/agent_rag.ipynb b/notebooks/en/agent_rag.ipynb
index 1441c238..c5e25bec 100644
--- a/notebooks/en/agent_rag.ipynb
+++ b/notebooks/en/agent_rag.ipynb
@@ -34,7 +34,7 @@
"metadata": {},
"outputs": [],
"source": [
- "!pip install pandas langchain langchain-community sentence-transformers faiss-cpu \"transformers[agents]\" --upgrade -q"
+ "!pip install pandas langchain langchain-community sentence-transformers faiss-cpu smolagents --upgrade -q"
]
},
{
@@ -64,7 +64,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -85,9 +85,33 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Splitting documents...\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 2647/2647 [00:52<00:00, 50.28it/s]\n",
+ "/var/folders/6m/9b1tts6d5w960j80wbw9tx3m0000gn/T/ipykernel_26437/2798339493.py:37: LangChainDeprecationWarning: The class `HuggingFaceEmbeddings` was deprecated in LangChain 0.2.2 and will be removed in 1.0. An updated version of the class exists in the :class:`~langchain-huggingface package and should be used instead. To use it run `pip install -U :class:`~langchain-huggingface` and import as `from :class:`~langchain_huggingface import HuggingFaceEmbeddings``.\n",
+ " embedding_model = HuggingFaceEmbeddings(model_name=\"thenlper/gte-small\")\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Embedding documents... This should take a few minutes (5 minutes on MacBook with M1 Pro)\n"
+ ]
+ }
+ ],
"source": [
"from tqdm import tqdm\n",
"from transformers import AutoTokenizer\n",
@@ -146,11 +170,11 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
- "from transformers.agents import Tool\n",
+ "from smolagents import Tool\n",
"from langchain_core.vectorstores import VectorStore\n",
"\n",
"\n",
@@ -193,30 +217,28 @@
"\n",
"The agent will need these arguments upon initialization:\n",
"- *`tools`*: a list of tools that the agent will be able to call.\n",
- "- *`llm_engine`*: the LLM that powers the agent.\n",
+ "- *`model`*: the LLM that powers the agent.\n",
"\n",
- "Our `llm_engine` must be a callable that takes as input a list of [messages](https://huggingface.co/docs/transformers/main/chat_templating) and returns text. It also needs to accept a `stop_sequences` argument that indicates when to stop its generation. For convenience, we directly use the `HfEngine` class provided in the package to get a LLM engine that calls our [Inference API](https://huggingface.co/docs/api-inference/en/index).\n",
+ "Our `model` must be a callable that takes as input a list of [messages](https://huggingface.co/docs/transformers/main/chat_templating) and returns text. It also needs to accept a `stop_sequences` argument that indicates when to stop its generation. For convenience, we directly use the `HfApiModel` class provided in the package to get a LLM engine that calls our [Inference API](https://huggingface.co/docs/api-inference/en/index).\n",
"\n",
- "And we use [meta-llama/Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) as the llm engine because:\n",
- "- It has a long 128k context, which is helpful for processing long source documents\n",
- "- It is served for free at all times on HF's Inference API!\n",
+ "And we use [meta-llama/Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct), served for free on Hugging Face's Inference API!\n",
"\n",
"_Note:_ The Inference API hosts models based on various criteria, and deployed models may be updated or replaced without prior notice. Learn more about it [here](https://huggingface.co/docs/api-inference/supported-models)."
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
- "from transformers.agents import HfApiEngine, ReactJsonAgent\n",
+ "from smolagents import HfApiModel, ToolCallingAgent\n",
"\n",
- "llm_engine = HfApiEngine(\"Qwen/Qwen2.5-72B-Instruct\")\n",
+ "model = HfApiModel(\"meta-llama/Llama-3.1-70B-Instruct\")\n",
"\n",
"retriever_tool = RetrieverTool(vectordb)\n",
- "agent = ReactJsonAgent(\n",
- " tools=[retriever_tool], llm_engine=llm_engine, max_iterations=4, verbose=2\n",
+ "agent = ToolCallingAgent(\n",
+ " tools=[retriever_tool], model=model, verbose=True\n",
")"
]
},
@@ -231,254 +253,286 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[32;20;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mHow can I push a model to the Hub?\u001b[0m\n",
- "\u001b[38;20mSystem prompt is as follows:\u001b[0m\n",
- "\u001b[38;20mYou are an expert assistant who can solve any task using JSON tool calls. You will be given a task to solve as best you can.\n",
- "To do so, you have been given access to the following tools: 'retriever', 'final_answer'\n",
- "The way you use the tools is by specifying a json blob, ending with ''.\n",
- "Specifically, this json should have an `action` key (name of the tool to use) and an `action_input` key (input to the tool).\n",
- "\n",
- "The $ACTION_JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. It should be formatted in json. Do not try to escape special characters. Here is the template of a valid $ACTION_JSON_BLOB:\n",
- "{\n",
- " \"action\": $TOOL_NAME,\n",
- " \"action_input\": $INPUT\n",
- "}\n",
- "\n",
- "Make sure to have the $INPUT as a dictionary in the right format for the tool you are using, and do not put variable names as input if you can find the right values.\n",
- "\n",
- "You should ALWAYS use the following format:\n",
- "\n",
- "Thought: you should always think about one action to take. Then use the action as follows:\n",
- "Action:\n",
- "$ACTION_JSON_BLOB\n",
- "Observation: the result of the action\n",
- "... (this Thought/Action/Observation can repeat N times, you should take several steps when needed. The $ACTION_JSON_BLOB must only use a SINGLE action at a time.)\n",
- "\n",
- "You can use the result of the previous action as input for the next action.\n",
- "The observation will always be a string: it can represent a file, like \"image_1.jpg\".\n",
- "Then you can use it as input for the next action. You can do it for instance as follows:\n",
- "\n",
- "Observation: \"image_1.jpg\"\n",
- "\n",
- "Thought: I need to transform the image that I received in the previous observation to make it green.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"image_transformer\",\n",
- " \"action_input\": {\"image\": \"image_1.jpg\"}\n",
- "}\n",
- "\n",
- "To provide the final answer to the task, use an action blob with \"action\": \"final_answer\" tool. It is the only way to complete the task, else you will be stuck on a loop. So your final output should look like this:\n",
- "Action:\n",
- "{\n",
- " \"action\": \"final_answer\",\n",
- " \"action_input\": {\"answer\": \"insert your final answer here\"}\n",
- "}\n",
- "\n",
- "\n",
- "Here are a few examples using notional tools:\n",
- "---\n",
- "Task: \"Generate an image of the oldest person in this document.\"\n",
- "\n",
- "Thought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"document_qa\",\n",
- " \"action_input\": {\"document\": \"document.pdf\", \"question\": \"Who is the oldest person mentioned?\"}\n",
- "}\n",
- "Observation: \"The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland.\"\n",
- "\n",
- "\n",
- "Thought: I will now generate an image showcasing the oldest person.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"image_generator\",\n",
- " \"action_input\": {\"prompt\": \"A portrait of John Doe, a 55-year-old man living in Canada.\"}\n",
- "}\n",
- "Observation: \"image.png\"\n",
- "\n",
- "Thought: I will now return the generated image.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"final_answer\",\n",
- " \"action_input\": \"image.png\"\n",
- "}\n",
- "\n",
- "---\n",
- "Task: \"What is the result of the following operation: 5 + 3 + 1294.678?\"\n",
- "\n",
- "Thought: I will use python code evaluator to compute the result of the operation and then return the final answer using the `final_answer` tool\n",
- "Action:\n",
- "{\n",
- " \"action\": \"python_interpreter\",\n",
- " \"action_input\": {\"code\": \"5 + 3 + 1294.678\"}\n",
- "}\n",
- "Observation: 1302.678\n",
- "\n",
- "Thought: Now that I know the result, I will now return it.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"final_answer\",\n",
- " \"action_input\": \"1302.678\"\n",
- "}\n",
- "\n",
- "---\n",
- "Task: \"Which city has the highest population , Guangzhou or Shanghai?\"\n",
- "\n",
- "Thought: I need to get the populations for both cities and compare them: I will use the tool `search` to get the population of both cities.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"search\",\n",
- " \"action_input\": \"Population Guangzhou\"\n",
- "}\n",
- "Observation: ['Guangzhou has a population of 15 million inhabitants as of 2021.']\n",
- "\n",
- "\n",
- "Thought: Now let's get the population of Shanghai using the tool 'search'.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"search\",\n",
- " \"action_input\": \"Population Shanghai\"\n",
- "}\n",
- "Observation: '26 million (2019)'\n",
- "\n",
- "Thought: Now I know that Shanghai has a larger population. Let's return the result.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"final_answer\",\n",
- " \"action_input\": \"Shanghai\"\n",
- "}\n",
- "\n",
- "\n",
- "Above example were using notional tools that might not exist for you. You only have acces to those tools:\n",
- "\n",
- "- retriever: Using semantic similarity, retrieves some documents from the knowledge base that have the closest embeddings to the input query.\n",
- " Takes inputs: {'query': {'type': 'string', 'description': 'The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.'}}\n",
- " Returns an output of type: string\n",
- "\n",
- "- final_answer: Provides a final answer to the given problem.\n",
- " Takes inputs: {'answer': {'type': 'any', 'description': 'The final answer to the problem'}}\n",
- " Returns an output of type: any\n",
- "\n",
- "Here are the rules you should always follow to solve your task:\n",
- "1. ALWAYS provide a 'Thought:' sequence, and an 'Action:' sequence that ends with , else you will fail.\n",
- "2. Always use the right arguments for the tools. Never use variable names in the 'action_input' field, use the value instead.\n",
- "3. Call a tool only when needed: do not call the search agent if you do not need information, try to solve the task yourself.\n",
- "4. Never re-do a tool call that you previously did with the exact same parameters.\n",
- "\n",
- "Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.\n",
- "\u001b[0m\n",
- "\u001b[38;20m===== New step =====\u001b[0m\n",
- "===== Calling LLM with this last message: =====\n",
- "{'role': , 'content': 'Task: How can I push a model to the Hub?'}\n",
- "\u001b[38;20m===== Output message of the LLM: =====\u001b[0m\n",
- "\u001b[38;20mThought: To find out how to push a model to the Hub, I need to search the knowledge base for relevant information using the 'retriever' tool.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"retriever\",\n",
- " \"action_input\": {\"query\": \"push a model to the Hub\"}\n",
- "}\u001b[0m\n",
- "\u001b[38;20m===== Extracting action =====\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: To find out how to push a model to the Hub, I need to search the knowledge base for relevant information using the 'retriever' tool.\u001b[0m\n",
- "\u001b[33;1m>>> Calling tool: 'retriever' with arguments: {'query': 'push a model to the Hub'}\u001b[0m\n",
- "Retrieved documents:\n",
- "===== Document 0 =====\n",
- "# Step 7. Push everything to the Hub\n",
- " api.upload_folder(\n",
- " repo_id=repo_id,\n",
- " folder_path=repo_local_path,\n",
- " path_in_repo=\".\",\n",
- " )\n",
- "\n",
- " print(\"Your model is pushed to the Hub. You can view your model here: \", repo_url)\n",
- "```\n",
- "\n",
- "### .\n",
- "\n",
- "By using `push_to_hub` **you evaluate, record a replay, generate a model card of your agent and push it to the Hub**.===== Document 1 =====\n",
- "```py\n",
- ">>> trainer.push_to_hub()\n",
- "```\n",
- "\n",
- "\n",
- "Share a model to the Hub with [`PushToHubCallback`]. In the [`PushToHubCallback`] function, add:\n",
- "\n",
- "- An output directory for your model.\n",
- "- A tokenizer.\n",
- "- The `hub_model_id`, which is your Hub username and model name.\n",
- "\n",
- "```py\n",
- ">>> from transformers import PushToHubCallback\n",
- "\n",
- ">>> push_to_hub_callback = PushToHubCallback(\n",
- "... output_dir=\"./your_model_save_path\", tokenizer=tokenizer, hub_model_id=\"your-username/my-awesome-model\"\n",
- "... )\n",
- "```===== Document 2 =====\n",
- "Let's pretend we've now fine-tuned the model. The next step would be to push it to the Hub! We can do this with the `timm.models.hub.push_to_hf_hub` function.\n",
- "\n",
- "```py\n",
- ">>> model_cfg = dict(labels=['a', 'b', 'c', 'd'])\n",
- ">>> timm.models.hub.push_to_hf_hub(model, 'resnet18-random', model_config=model_cfg)\n",
- "```\n",
- "\n",
- "Running the above would push the model to `/resnet18-random` on the Hub. You can now share this model with your friends, or use it in your own code!\n",
- "\n",
- "## Loading a Model===== Document 3 =====\n",
- "processor.push_to_hub(hub_model_id)\n",
- "trainer.push_to_hub(**kwargs)\n",
- "```\n",
- "\n",
- "# 4. Inference\n",
- "\n",
- "Now comes the exciting part, using our fine-tuned model! In this section, we'll show how you can load your model from the hub and use it for inference.===== Document 4 =====\n",
- "Finally, if you want, you can push your model up to the hub. Here, we'll push it up if you specified `push_to_hub=True` in the training configuration. Note that in order to push to hub, you'll have to have git-lfs installed and be logged into your Hugging Face account (which can be done via `huggingface-cli login`).\n",
- "\n",
- "```python\n",
- "kwargs = {\n",
- " \"finetuned_from\": model.config._name_or_path,\n",
- " \"tasks\": \"image-classification\",\n",
- " \"dataset\": 'beans',\n",
- " \"tags\": ['image-classification'],\n",
- "}===== Document 5 =====\n",
- "--push_to_hub\n",
- "```===== Document 6 =====\n",
- ". The second way to upload a model, though, is to call model.push_to_hub(). So this is more of a once-off method - it's not called regularly during training. You can just call this manually whenever you want to upload a model to the hub. So we recommend running this after the end of training, just to make sure that you have a commit message just to guarantee that this was the final version of the model at the end of training. And it just makes sure that you're working with the definitive end-of-training model and not accidentally using a model that's from a checkpoint somewhere along the way\n",
- "\u001b[38;20m===== New step =====\u001b[0m\n",
- "===== Calling LLM with this last message: =====\n",
- "{'role': , 'content': '[OUTPUT OF STEP 0] -> Observation:\\nRetrieved documents:\\n===== Document 0 =====\\n# Step 7. Push everything to the Hub\\n api.upload_folder(\\n repo_id=repo_id,\\n folder_path=repo_local_path,\\n path_in_repo=\".\",\\n )\\n\\n print(\"Your model is pushed to the Hub. You can view your model here: \", repo_url)\\n```\\n\\n### .\\n\\nBy using `push_to_hub` **you evaluate, record a replay, generate a model card of your agent and push it to the Hub**.===== Document 1 =====\\n```py\\n>>> trainer.push_to_hub()\\n```\\n\\n\\nShare a model to the Hub with [`PushToHubCallback`]. In the [`PushToHubCallback`] function, add:\\n\\n- An output directory for your model.\\n- A tokenizer.\\n- The `hub_model_id`, which is your Hub username and model name.\\n\\n```py\\n>>> from transformers import PushToHubCallback\\n\\n>>> push_to_hub_callback = PushToHubCallback(\\n... output_dir=\"./your_model_save_path\", tokenizer=tokenizer, hub_model_id=\"your-username/my-awesome-model\"\\n... )\\n```===== Document 2 =====\\nLet\\'s pretend we\\'ve now fine-tuned the model. The next step would be to push it to the Hub! We can do this with the `timm.models.hub.push_to_hf_hub` function.\\n\\n```py\\n>>> model_cfg = dict(labels=[\\'a\\', \\'b\\', \\'c\\', \\'d\\'])\\n>>> timm.models.hub.push_to_hf_hub(model, \\'resnet18-random\\', model_config=model_cfg)\\n```\\n\\nRunning the above would push the model to `/resnet18-random` on the Hub. You can now share this model with your friends, or use it in your own code!\\n\\n## Loading a Model===== Document 3 =====\\nprocessor.push_to_hub(hub_model_id)\\ntrainer.push_to_hub(**kwargs)\\n```\\n\\n# 4. Inference\\n\\nNow comes the exciting part, using our fine-tuned model! In this section, we\\'ll show how you can load your model from the hub and use it for inference.===== Document 4 =====\\nFinally, if you want, you can push your model up to the hub. Here, we\\'ll push it up if you specified `push_to_hub=True` in the training configuration. Note that in order to push to hub, you\\'ll have to have git-lfs installed and be logged into your Hugging Face account (which can be done via `huggingface-cli login`).\\n\\n```python\\nkwargs = {\\n \"finetuned_from\": model.config._name_or_path,\\n \"tasks\": \"image-classification\",\\n \"dataset\": \\'beans\\',\\n \"tags\": [\\'image-classification\\'],\\n}===== Document 5 =====\\n--push_to_hub\\n```===== Document 6 =====\\n. The second way to upload a model, though, is to call model.push_to_hub(). So this is more of a once-off method - it\\'s not called regularly during training. You can just call this manually whenever you want to upload a model to the hub. So we recommend running this after the end of training, just to make sure that you have a commit message just to guarantee that this was the final version of the model at the end of training. And it just makes sure that you\\'re working with the definitive end-of-training model and not accidentally using a model that\\'s from a checkpoint somewhere along the way'}\n",
- "\u001b[38;20m===== Output message of the LLM: =====\u001b[0m\n",
- "\u001b[38;20mThought: I retrieved information on how to push a model to the Hub. Now, I will gather the main points and return the final answer using the `final_answer` tool.\n",
- "Action:\n",
- "{\n",
- " \"action\": \"final_answer\",\n",
- " \"action_input\": {\"answer\": \"There are several ways to push a model to the Hub:\\n1. Using `trainer.push_to_hub()` method.\\n2. Using `model.push_to_hub()` method, which is a once-off approach after training.\\n3. Using `timm.models.hub.push_to_hf_hub` function for specific frameworks.\\n4. Using `api.upload_folder` with `repo_id` and `folder_path` to upload the entire folder.\\n5. Setting `--push_to_hub` flag in the training configuration.\\nTo use these methods, ensure you have `git-lfs` installed and are logged into your Hugging Face account using `huggingface-cli login`.\"}\n",
- "}\u001b[0m\n",
- "\u001b[38;20m===== Extracting action =====\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: I retrieved information on how to push a model to the Hub. Now, I will gather the main points and return the final answer using the `final_answer` tool.\u001b[0m\n",
- "\u001b[33;1m>>> Calling tool: 'final_answer' with arguments: {'answer': 'There are several ways to push a model to the Hub:\\n1. Using `trainer.push_to_hub()` method.\\n2. Using `model.push_to_hub()` method, which is a once-off approach after training.\\n3. Using `timm.models.hub.push_to_hf_hub` function for specific frameworks.\\n4. Using `api.upload_folder` with `repo_id` and `folder_path` to upload the entire folder.\\n5. Setting `--push_to_hub` flag in the training configuration.\\nTo use these methods, ensure you have `git-lfs` installed and are logged into your Hugging Face account using `huggingface-cli login`.'}\u001b[0m\n"
- ]
+ "data": {
+ "text/html": [
+ "╭──────────────────────────────────────────────────── New run ────────────────────────────────────────────────────╮ \n",
+ "│ │ \n",
+ "│ How can I push a model to the Hub? │ \n",
+ "│ │ \n",
+ "╰─ HfApiModel - meta-llama/Llama-3.1-70B-Instruct ────────────────────────────────────────────────────────────────╯ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m╭─\u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[1;38;2;212;183;2mNew run\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╮\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mHow can I push a model to the Hub?\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m╰─\u001b[0m\u001b[38;2;212;183;2m HfApiModel - meta-llama/Llama-3.1-70B-Instruct \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╯\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m0\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ Calling tool: 'retriever' with arguments: {'query': 'Push a model'} │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ Calling tool: 'retriever' with arguments: {'query': 'Push a model'} │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Observations: Retrieved documents:\n",
+ "===== Document 0 =====\n",
+ ". The second way to upload a model, though, is to call model.push_to_hub () . So this is more of a once-off method - \n",
+ "it's not called regularly during training. You can just call this manually whenever you want to upload a model to \n",
+ "the hub. So we recommend running this after the end of training, just to make sure that you have a commit message \n",
+ "just to guarantee that this was the final version of the model at the end of training. And it just makes sure that \n",
+ "you're working with the definitive end-of-training model and not accidentally using a model that's from a \n",
+ "checkpoint somewhere along the way ===== Document 1 =====\n",
+ "model.fit ( my_data, my_labels) \n",
+ "\n",
+ "model.push_to_hub ( \"my-new-model\" ) \n",
+ "```\n",
+ "\n",
+ "You can also use the \n",
+ "[ PushToHubCallback]( https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.PushToHubCal \n",
+ "lback) to upload checkpoints regularly during a longer training run! Either way, you’ll get a model page and an \n",
+ "autogenerated model card, and most importantly of all, anyone else can use your model to get predictions, or as a \n",
+ "starting point for further training, using exactly the same API as they use to load any existing model:===== \n",
+ "Document 2 =====\n",
+ "# Pushing all things after training\n",
+ "trainer.push_to_hub () \n",
+ "```\n",
+ "\n",
+ "There is much more you can do, so we suggest to review the [ Share a \n",
+ "model]( https://huggingface.co/docs/transformers/model_sharing) guide.\n",
+ "\n",
+ "## Additional resources\n",
+ "\n",
+ "* Transformers ( https://github.com/huggingface/transformers). \n",
+ "* Transformers ( https://huggingface.co/docs/transformers/index). \n",
+ "* Share a model ( https://huggingface.co/docs/transformers/model_sharing).===== Document 3 =====\n",
+ "Finally, if you want, you can push your model up to the hub. Here, we'll push it up if you specified \n",
+ "`push_to_hub =True ` in the training configuration. Note that in order to push to hub, you'll have to have git-lfs \n",
+ "installed and be logged into your Hugging Face account ( which can be done via `huggingface-cli login`) .\n",
+ "\n",
+ "```python\n",
+ "kwargs = { \n",
+ " \"finetuned_from\" : model.config._name_or_path,\n",
+ " \"tasks\" : \"image-classification\" ,\n",
+ " \"dataset\" : 'beans' ,\n",
+ " \"tags\" : [ 'image-classification' ] ,\n",
+ "} ===== Document 4 =====\n",
+ "You've seen most of those before: we set some hyperparameters ( like the learning rate, the number of epochs to \n",
+ "train for, and the weight decay) , and we specify `push_to_hub =True ` to indicate that we want to save the model and \n",
+ "evaluate it at the end of every epoch, and that we want to upload our results to the Model Hub. Note that you can \n",
+ "specify the name of the repository you want to push to with the `hub_model_id` argument ( in particular, you will \n",
+ "have to use this argument to push to an organization) . For instance, when we pushed the model to the \n",
+ "[ `huggingface-course` organization]( https://huggingface===== Document 5 =====\n",
+ "# Step 7 . Push everything to the Hub\n",
+ " api.upload_folder ( \n",
+ " repo_id =repo_id ,\n",
+ " folder_path =repo_local_path ,\n",
+ " path_in_repo =\".\" ,\n",
+ " ) \n",
+ "\n",
+ " print ( \"Your model is pushed to the Hub. You can view your model here: \" , repo_url) \n",
+ "```\n",
+ "\n",
+ "### .\n",
+ "\n",
+ "By using `push_to_hub` **you evaluate, record a replay, generate a model card of your agent and push it to the \n",
+ "Hub**.===== Document 6 =====\n",
+ "Once you have a trained topic model, you can push it to the Hugging Face Hub in one line. Pushing your model to the\n",
+ "Hub will automatically create an initial model card for your model, including an overview of the topics created. \n",
+ "Below you can see an example of the topics resulting from a ( https://huggingface.co/MaartenGr/BERTopic_ArXiv). \n",
+ " \n"
+ ],
+ "text/plain": [
+ "Observations: Retrieved documents:\n",
+ "===== Document \u001b[1;36m0\u001b[0m =====\n",
+ ". The second way to upload a model, though, is to call \u001b[1;35mmodel.push_to_hub\u001b[0m\u001b[1m(\u001b[0m\u001b[1m)\u001b[0m. So this is more of a once-off method - \n",
+ "it's not called regularly during training. You can just call this manually whenever you want to upload a model to \n",
+ "the hub. So we recommend running this after the end of training, just to make sure that you have a commit message \n",
+ "just to guarantee that this was the final version of the model at the end of training. And it just makes sure that \n",
+ "you're working with the definitive end-of-training model and not accidentally using a model that's from a \n",
+ "checkpoint somewhere along the \u001b[33mway\u001b[0m===== Document \u001b[1;36m1\u001b[0m =====\n",
+ "\u001b[1;35mmodel.fit\u001b[0m\u001b[1m(\u001b[0mmy_data, my_labels\u001b[1m)\u001b[0m\n",
+ "\n",
+ "\u001b[1;35mmodel.push_to_hub\u001b[0m\u001b[1m(\u001b[0m\u001b[32m\"my-new-model\"\u001b[0m\u001b[1m)\u001b[0m\n",
+ "```\n",
+ "\n",
+ "You can also use the \n",
+ "\u001b[1m[\u001b[0mPushToHubCallback\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.PushToHubCal\u001b[0m\n",
+ "\u001b[4;94mlback\u001b[0m\u001b[4;94m)\u001b[0m to upload checkpoints regularly during a longer training run! Either way, you’ll get a model page and an \n",
+ "autogenerated model card, and most importantly of all, anyone else can use your model to get predictions, or as a \n",
+ "starting point for further training, using exactly the same API as they use to load any existing model:===== \n",
+ "Document \u001b[1;36m2\u001b[0m =====\n",
+ "# Pushing all things after training\n",
+ "\u001b[1;35mtrainer.push_to_hub\u001b[0m\u001b[1m(\u001b[0m\u001b[1m)\u001b[0m\n",
+ "```\n",
+ "\n",
+ "There is much more you can do, so we suggest to review the \u001b[1m[\u001b[0mShare a \n",
+ "model\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://huggingface.co/docs/transformers/model_sharing\u001b[0m\u001b[4;94m)\u001b[0m guide.\n",
+ "\n",
+ "## Additional resources\n",
+ "\n",
+ "* Transformers \u001b[1m(\u001b[0m\u001b[4;94mhttps://github.com/huggingface/transformers\u001b[0m\u001b[4;94m)\u001b[0m\u001b[4;94m.\u001b[0m\n",
+ "* Transformers \u001b[1m(\u001b[0m\u001b[4;94mhttps://huggingface.co/docs/transformers/index\u001b[0m\u001b[4;94m)\u001b[0m\u001b[4;94m.\u001b[0m\n",
+ "* Share a model \u001b[1m(\u001b[0m\u001b[4;94mhttps://huggingface.co/docs/transformers/model_sharing\u001b[0m\u001b[4;94m)\u001b[0m\u001b[4;94m.=====\u001b[0m Document \u001b[1;36m3\u001b[0m =====\n",
+ "Finally, if you want, you can push your model up to the hub. Here, we'll push it up if you specified \n",
+ "`\u001b[33mpush_to_hub\u001b[0m=\u001b[3;92mTrue\u001b[0m` in the training configuration. Note that in order to push to hub, you'll have to have git-lfs \n",
+ "installed and be logged into your Hugging Face account \u001b[1m(\u001b[0mwhich can be done via `huggingface-cli login`\u001b[1m)\u001b[0m.\n",
+ "\n",
+ "```python\n",
+ "kwargs = \u001b[1m{\u001b[0m\n",
+ " \u001b[32m\"finetuned_from\"\u001b[0m: model.config._name_or_path,\n",
+ " \u001b[32m\"tasks\"\u001b[0m: \u001b[32m\"image-classification\"\u001b[0m,\n",
+ " \u001b[32m\"dataset\"\u001b[0m: \u001b[32m'beans'\u001b[0m,\n",
+ " \u001b[32m\"tags\"\u001b[0m: \u001b[1m[\u001b[0m\u001b[32m'image-classification'\u001b[0m\u001b[1m]\u001b[0m,\n",
+ "\u001b[1m}\u001b[0m===== Document \u001b[1;36m4\u001b[0m =====\n",
+ "You've seen most of those before: we set some hyperparameters \u001b[1m(\u001b[0mlike the learning rate, the number of epochs to \n",
+ "train for, and the weight decay\u001b[1m)\u001b[0m, and we specify `\u001b[33mpush_to_hub\u001b[0m=\u001b[3;92mTrue\u001b[0m` to indicate that we want to save the model and \n",
+ "evaluate it at the end of every epoch, and that we want to upload our results to the Model Hub. Note that you can \n",
+ "specify the name of the repository you want to push to with the `hub_model_id` argument \u001b[1m(\u001b[0min particular, you will \n",
+ "have to use this argument to push to an organization\u001b[1m)\u001b[0m. For instance, when we pushed the model to the \n",
+ "\u001b[1m[\u001b[0m`huggingface-course` organization\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://\u001b[0m\u001b[4;94mhuggingface\u001b[0m\u001b[4;94m=====\u001b[0m Document \u001b[1;36m5\u001b[0m =====\n",
+ "# Step \u001b[1;36m7\u001b[0m. Push everything to the Hub\n",
+ " \u001b[1;35mapi.upload_folder\u001b[0m\u001b[1m(\u001b[0m\n",
+ " \u001b[33mrepo_id\u001b[0m=\u001b[35mrepo_id\u001b[0m,\n",
+ " \u001b[33mfolder_path\u001b[0m=\u001b[35mrepo_local_path\u001b[0m,\n",
+ " \u001b[33mpath_in_repo\u001b[0m=\u001b[32m\".\"\u001b[0m,\n",
+ " \u001b[1m)\u001b[0m\n",
+ "\n",
+ " \u001b[1;35mprint\u001b[0m\u001b[1m(\u001b[0m\u001b[32m\"Your model is pushed to the Hub. You can view your model here: \"\u001b[0m, repo_url\u001b[1m)\u001b[0m\n",
+ "```\n",
+ "\n",
+ "### .\n",
+ "\n",
+ "By using `push_to_hub` **you evaluate, record a replay, generate a model card of your agent and push it to the \n",
+ "Hub**.===== Document \u001b[1;36m6\u001b[0m =====\n",
+ "Once you have a trained topic model, you can push it to the Hugging Face Hub in one line. Pushing your model to the\n",
+ "Hub will automatically create an initial model card for your model, including an overview of the topics created. \n",
+ "Below you can see an example of the topics resulting from a \u001b[1m(\u001b[0m\u001b[4;94mhttps://huggingface.co/MaartenGr/BERTopic_ArXiv\u001b[0m\u001b[4;94m)\u001b[0m\u001b[4;94m.\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 0: Duration 8.79 seconds| Input tokens: 1,388 | Output tokens: 20] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 0: Duration 8.79 seconds| Input tokens: 1,388 | Output tokens: 20]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m1\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ Calling tool: 'final_answer' with arguments: {'answer': 'To push a model to the Hub, you can use the │\n",
+ "│ push_to_hub() method after training. You can also use the PushToHubCallback to upload checkpoints regularly │\n",
+ "│ during a longer training run. Additionally, you can push the model up to the hub using the api.upload_folder() │\n",
+ "│ method.'} │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ Calling tool: 'final_answer' with arguments: {'answer': 'To push a model to the Hub, you can use the │\n",
+ "│ push_to_hub() method after training. You can also use the PushToHubCallback to upload checkpoints regularly │\n",
+ "│ during a longer training run. Additionally, you can push the model up to the hub using the api.upload_folder() │\n",
+ "│ method.'} │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Final answer: To push a model to the Hub, you can use the push_to_hub() method after training. You can also use the \n",
+ "PushToHubCallback to upload checkpoints regularly during a longer training run. Additionally, you can push the \n",
+ "model up to the hub using the api.upload_folder() method. \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;38;2;212;183;2mFinal answer: To push a model to the Hub, you can use the push_to_hub() method after training. You can also use the\u001b[0m\n",
+ "\u001b[1;38;2;212;183;2mPushToHubCallback to upload checkpoints regularly during a longer training run. Additionally, you can push the \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2mmodel up to the hub using the api.upload_folder() method.\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 1: Duration 7.79 seconds| Input tokens: 3,668 | Output tokens: 94] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 1: Duration 7.79 seconds| Input tokens: 3,668 | Output tokens: 94]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final output:\n",
- "There are several ways to push a model to the Hub:\n",
- "1. Using `trainer.push_to_hub()` method.\n",
- "2. Using `model.push_to_hub()` method, which is a once-off approach after training.\n",
- "3. Using `timm.models.hub.push_to_hf_hub` function for specific frameworks.\n",
- "4. Using `api.upload_folder` with `repo_id` and `folder_path` to upload the entire folder.\n",
- "5. Setting `--push_to_hub` flag in the training configuration.\n",
- "To use these methods, ensure you have `git-lfs` installed and are logged into your Hugging Face account using `huggingface-cli login`.\n"
+ "To push a model to the Hub, you can use the push_to_hub() method after training. You can also use the PushToHubCallback to upload checkpoints regularly during a longer training run. Additionally, you can push the model up to the hub using the api.upload_folder() method.\n"
]
}
],
diff --git a/notebooks/en/agent_text_to_sql.ipynb b/notebooks/en/agent_text_to_sql.ipynb
index 0bf621e3..32e50f59 100644
--- a/notebooks/en/agent_text_to_sql.ipynb
+++ b/notebooks/en/agent_text_to_sql.ipynb
@@ -7,7 +7,7 @@
"# Agent for text-to-SQL with automatic error correction\n",
"_Authored by: [Aymeric Roucher](https://huggingface.co/m-ric)_\n",
"\n",
- "In this tutorial, we'll see how to implement an agent that leverages SQL using `transformers.agents`.\n",
+ "In this tutorial, we'll see how to implement an agent that leverages SQL using `smolagents`.\n",
"\n",
"What's the advantage over a standard text-to-SQL pipeline?\n",
"\n",
@@ -27,7 +27,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -62,7 +62,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -87,7 +87,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 3,
"metadata": {},
"outputs": [
{
@@ -116,52 +116,18 @@
"\n",
"Now let's make our SQL table retrievable by a tool.\n",
"\n",
- "The tool's `description` attribute will be embedded in the LLM's prompt by the agent system: it gives the LLM information about how to use the tool. So that is where we want to describe the SQL table."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Columns:\n",
- " - receipt_id: INTEGER\n",
- " - customer_name: VARCHAR(16)\n",
- " - price: FLOAT\n",
- " - tip: FLOAT\n"
- ]
- }
- ],
- "source": [
- "inspector = inspect(engine)\n",
- "columns_info = [(col[\"name\"], col[\"type\"]) for col in inspector.get_columns(\"receipts\")]\n",
- "\n",
- "table_description = \"Columns:\\n\" + \"\\n\".join(\n",
- " [f\" - {name}: {col_type}\" for name, col_type in columns_info]\n",
- ")\n",
- "print(table_description)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Now let's build our tool. It needs the following: (read [the documentation](https://huggingface.co/docs/transformers/en/agents#create-a-new-tool) for more detail)\n",
- "- A docstring with an `Args:` part\n",
- "- Type hints"
+ "Our `sql_engine` tool needs the following: (read [the documentation](https://huggingface.co/docs/transformers/en/agents#create-a-new-tool) for more detail)\n",
+ "- A docstring with an `Args:` part. This docstring will be parsed to become the tool's `description` attribute, which will be used as the instruction manual for the LLM powering the agent, so it's important to provide it!\n",
+ "- Type hints for inputs and output."
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
- "from transformers.agents import tool\n",
+ "from smolagents import tool\n",
"\n",
"\n",
"@tool\n",
@@ -192,76 +158,128 @@
"source": [
"Now let us create an agent that leverages this tool.\n",
"\n",
- "We use the `ReactCodeAgent`, which is `transformers.agents`' main agent class: an agent that writes actions in code and can iterate on previous output according to the ReAct framework.\n",
+ "We use the `CodeAgent`, which is `transformers.agents`' main agent class: an agent that writes actions in code and can iterate on previous output according to the ReAct framework.\n",
"\n",
- "The `llm_engine` is the LLM that powers the agent system. `HfEngine` allows you to call LLMs using HF's Inference API, either via Serverless or Dedicated endpoint, but you could also use any proprietary API: check out [this other cookbook](agent_change_llm) to learn how to adapt it."
+ "The `llm_engine` is the LLM that powers the agent system. `HfApiModel` allows you to call LLMs using Hugging Face's Inference API, either via Serverless or Dedicated endpoint, but you could also use any proprietary API: check out [this other cookbook](agent_change_llm) to learn how to adapt it."
]
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
- "from transformers.agents import ReactCodeAgent, HfApiEngine\n",
+ "from smolagents import CodeAgent, HfApiModel\n",
"\n",
- "agent = ReactCodeAgent(\n",
+ "agent = CodeAgent(\n",
" tools=[sql_engine],\n",
- " llm_engine=HfApiEngine(\"meta-llama/Meta-Llama-3-8B-Instruct\"),\n",
+ " model=HfApiModel(\"meta-llama/Meta-Llama-3-8B-Instruct\"),\n",
")"
]
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[32;20;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mCan you give me the name of the client who got the most expensive receipt?\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: I will use the tool sql_engine to query the table'receipts' and retrieve the client who got the most expensive receipt. I will sort the results in descending order based on the 'price' column and then return the client name.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mreceipts_result\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7msql_engine\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mquery\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mSELECT customer_name, MAX(price) FROM receipts\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mreceipts_result\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\n",
- "('Woodrow Wilson', 53.43)\n",
- "\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: From the output of the previous step, I can see that Woodrow Wilson got the most expensive receipt with a price of 53.43. Now, I want to verify the client name with the receipt data. I will use the tool sql_engine again to query the table'receipts' and retrieve the receipt information for Woodrow Wilson.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mreceipt_info\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7msql_engine\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mquery\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mSELECT * FROM receipts WHERE customer_name=\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144mWoodrow Wilson\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mreceipt_info\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\n",
- "(3, 'Woodrow Wilson', 53.43, 5.43)\n",
- "\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: From the output of the previous step, I can see that the receipt for Woodrow Wilson has the receipt_id 3, the customer_name 'Woodrow Wilson', the price 53.43, and the tip 5.43. Now, I want to give the final answer of the task using the tool final_answer.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mThe client who got the most expensive receipt is Woodrow Wilson.\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\u001b[0m\n",
- "\u001b[33;1mLast output from code snippet:\u001b[0m\n",
- "\u001b[32;20mThe client who got the most expensive receipt is Woodrow Wilson.\u001b[0m\n",
- "\u001b[32;20;1mFinal answer:\u001b[0m\n",
- "\u001b[32;20mThe client who got the most expensive receipt is Woodrow Wilson.\u001b[0m\n"
- ]
+ "data": {
+ "text/html": [
+ "╭──────────────────────────────────────────────────── New run ────────────────────────────────────────────────────╮ \n",
+ "│ │ \n",
+ "│ Can you give me the name of the client who got the most expensive receipt? │ \n",
+ "│ │ \n",
+ "╰─ HfApiModel - meta-llama/Meta-Llama-3-8B-Instruct ──────────────────────────────────────────────────────────────╯ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m╭─\u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[1;38;2;212;183;2mNew run\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╮\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mCan you give me the name of the client who got the most expensive receipt?\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m╰─\u001b[0m\u001b[38;2;212;183;2m HfApiModel - meta-llama/Meta-Llama-3-8B-Instruct \u001b[0m\u001b[38;2;212;183;2m─────────────────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╯\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m0\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 most_expensive_receipt = sql_engine(query = \"SELECT customer_name, MAX(price + tip) FROM receipts\" ) │\n",
+ "│ 2 print( \"The most expensive receipt is from:\" , most_expensive_receipt) │\n",
+ "│ 3 final_answer(most_expensive_receipt . split( ':' )[ 0 ]) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmost_expensive_receipt\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msql_engine\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mquery\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSELECT customer_name, MAX(price + tip) FROM receipts\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mThe most expensive receipt is from:\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmost_expensive_receipt\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfinal_answer\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmost_expensive_receipt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msplit\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m:\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m0\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ "The most expensive receipt is from: \n",
+ "('Woodrow Wilson', 58.86)\n",
+ "\n",
+ "Out - Final answer: \n",
+ "('Woodrow Wilson', 58.86) \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ "The most expensive receipt is from: \n",
+ "('Woodrow Wilson', 58.86)\n",
+ "\n",
+ "\u001b[1;38;2;212;183;2mOut - Final answer: \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2m('Woodrow Wilson', 58.86)\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 0: Duration 3.42 seconds| Input tokens: 2,055 | Output tokens: 105] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 0: Duration 3.42 seconds| Input tokens: 2,055 | Output tokens: 105]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
},
{
"data": {
"text/plain": [
- "'The client who got the most expensive receipt is Woodrow Wilson.'"
+ "\"\\n('Woodrow Wilson', 58.86)\""
]
},
- "execution_count": 19,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -283,7 +301,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -317,7 +335,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
@@ -368,309 +386,351 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[32;20;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mWhich waiter got more total money from tips?\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: I need to first compute the total amount of tips for each waiter. I will use the `sql_engine` tool to perform a query that sums the tips for each waiter.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mquery\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m\"\"\"\u001b[39m\n",
- "\u001b[38;5;144mSELECT W.waiter_name, SUM(R.tip) as total_tips\u001b[39m\n",
- "\u001b[38;5;144mFROM receipts R\u001b[39m\n",
- "\u001b[38;5;144mJOIN waiters W ON R.receipt_id = W.receipt_id\u001b[39m\n",
- "\u001b[38;5;144mGROUP BY W.waiter_name\u001b[39m\n",
- "\u001b[38;5;144m\"\"\"\u001b[39m\n",
- "\u001b[38;5;7mresult\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7msql_engine\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mquery\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mresult\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\n",
- "('Corey Johnson', 1.2)\n",
- "('Margaret James', 1.0)\n",
- "('Michael Watts', 5.67)\n",
- "\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: Now I have the total tips for each waiter. I need to compare these values to find the waiter with the highest total tips. I will use Python code to do this.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;60;03m# Extracting the total tips from the result\u001b[39;00m\n",
- "\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m{\u001b[39m\u001b[38;5;7mrow\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrow\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrow\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109meval\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mresult\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m}\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Finding the waiter with the highest total tips\u001b[39;00m\n",
- "\u001b[38;5;7mbest_waiter\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mmax\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mkey\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mget\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mbest_waiter\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[31;20mCode execution failed due to the following error:\n",
- "EXECUTION FAILED:\n",
- "Evaluation stopped at line 'waiters_tips = {row[0]: row[1] for row in eval(result)}' because of the following error:\n",
- "It is not permitted to evaluate other functions than the provided tools or functions defined in previous code (tried to execute eval).\u001b[0m\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 895, in evaluate_python_code\n",
- " result = evaluate_ast(node, state, static_tools, custom_tools, authorized_imports)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 741, in evaluate_ast\n",
- " return evaluate_assign(expression, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 322, in evaluate_assign\n",
- " result = evaluate_ast(assign.value, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 825, in evaluate_ast\n",
- " return evaluate_dictcomp(expression, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 694, in evaluate_dictcomp\n",
- " iter_value = evaluate_ast(gen.iter, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 746, in evaluate_ast\n",
- " return evaluate_call(expression, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 385, in evaluate_call\n",
- " raise InterpreterError(\n",
- "transformers.agents.python_interpreter.InterpreterError: It is not permitted to evaluate other functions than the provided tools or functions defined in previous code (tried to execute eval).\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1135, in step\n",
- " result = self.python_evaluator(\n",
- " ^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 904, in evaluate_python_code\n",
- " raise InterpreterError(msg)\n",
- "transformers.agents.python_interpreter.InterpreterError: EXECUTION FAILED:\n",
- "Evaluation stopped at line 'waiters_tips = {row[0]: row[1] for row in eval(result)}' because of the following error:\n",
- "It is not permitted to evaluate other functions than the provided tools or functions defined in previous code (tried to execute eval).\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 811, in direct_run\n",
- " step_logs = self.step()\n",
- " ^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1155, in step\n",
- " raise AgentExecutionError(error_msg)\n",
- "transformers.agents.agents.AgentExecutionError: Code execution failed due to the following error:\n",
- "EXECUTION FAILED:\n",
- "Evaluation stopped at line 'waiters_tips = {row[0]: row[1] for row in eval(result)}' because of the following error:\n",
- "It is not permitted to evaluate other functions than the provided tools or functions defined in previous code (tried to execute eval).\n",
- "\u001b[31;20mError in generating llm output: (ReadTimeoutError(\"HTTPSConnectionPool(host='api-inference.huggingface.co', port=443): Read timed out. (read timeout=120)\"), '(Request ID: a887a819-3b3b-4bab-ba37-a05b83a8cbf1)').\u001b[0m\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/urllib3/connectionpool.py\", line 537, in _make_request\n",
- " response = conn.getresponse()\n",
- " ^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/urllib3/connection.py\", line 466, in getresponse\n",
- " httplib_response = super().getresponse()\n",
- " ^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/http/client.py\", line 1411, in getresponse\n",
- " response.begin()\n",
- " File \"/Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/http/client.py\", line 324, in begin\n",
- " version, status, reason = self._read_status()\n",
- " ^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/http/client.py\", line 285, in _read_status\n",
- " line = str(self.fp.readline(_MAXLINE + 1), \"iso-8859-1\")\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/socket.py\", line 707, in readinto\n",
- " return self._sock.recv_into(b)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/ssl.py\", line 1249, in recv_into\n",
- " return self.read(nbytes, buffer)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/ssl.py\", line 1105, in read\n",
- " return self._sslobj.read(len, buffer)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- "TimeoutError: The read operation timed out\n",
- "\n",
- "The above exception was the direct cause of the following exception:\n",
- "\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/requests/adapters.py\", line 667, in send\n",
- " resp = conn.urlopen(\n",
- " ^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/urllib3/connectionpool.py\", line 847, in urlopen\n",
- " retries = retries.increment(\n",
- " ^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/urllib3/util/retry.py\", line 470, in increment\n",
- " raise reraise(type(error), error, _stacktrace)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/urllib3/util/util.py\", line 39, in reraise\n",
- " raise value\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/urllib3/connectionpool.py\", line 793, in urlopen\n",
- " response = self._make_request(\n",
- " ^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/urllib3/connectionpool.py\", line 539, in _make_request\n",
- " self._raise_timeout(err=e, url=url, timeout_value=read_timeout)\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/urllib3/connectionpool.py\", line 370, in _raise_timeout\n",
- " raise ReadTimeoutError(\n",
- "urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='api-inference.huggingface.co', port=443): Read timed out. (read timeout=120)\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1099, in step\n",
- " llm_output = self.llm_engine(\n",
- " ^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/llm_engine.py\", line 89, in __call__\n",
- " response = self.client.chat_completion(messages, stop=stop_sequences, max_tokens=1500)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/huggingface_hub/inference/_client.py\", line 706, in chat_completion\n",
- " data = self.post(\n",
- " ^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/huggingface_hub/inference/_client.py\", line 259, in post\n",
- " response = get_session().post(\n",
- " ^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/requests/sessions.py\", line 637, in post\n",
- " return self.request(\"POST\", url, data=data, json=json, **kwargs)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/requests/sessions.py\", line 589, in request\n",
- " resp = self.send(prep, **send_kwargs)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/requests/sessions.py\", line 703, in send\n",
- " r = adapter.send(request, **kwargs)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/huggingface_hub/utils/_http.py\", line 66, in send\n",
- " return super().send(request, *args, **kwargs)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/venvs/cookbook2/lib/python3.12/site-packages/requests/adapters.py\", line 713, in send\n",
- " raise ReadTimeout(e, request=request)\n",
- "requests.exceptions.ReadTimeout: (ReadTimeoutError(\"HTTPSConnectionPool(host='api-inference.huggingface.co', port=443): Read timed out. (read timeout=120)\"), '(Request ID: a887a819-3b3b-4bab-ba37-a05b83a8cbf1)')\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 811, in direct_run\n",
- " step_logs = self.step()\n",
- " ^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1103, in step\n",
- " raise AgentGenerationError(f\"Error in generating llm output: {e}.\")\n",
- "transformers.agents.agents.AgentGenerationError: Error in generating llm output: (ReadTimeoutError(\"HTTPSConnectionPool(host='api-inference.huggingface.co', port=443): Read timed out. (read timeout=120)\"), '(Request ID: a887a819-3b3b-4bab-ba37-a05b83a8cbf1)').\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: I cannot use `eval` to process the string result. I need to parse the result string in a safer and more direct way. I'll do this by splitting the string and converting it into a dictionary.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;60;03m# Parsing the result string into a list of tuples\u001b[39;00m\n",
- "\u001b[38;5;7mresult_list\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;7mline\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7msplit\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144m, \u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mline\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mresult\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7msplit\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;186m\\n\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m]\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Converting the list of tuples into a dictionary\u001b[39;00m\n",
- "\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m{\u001b[39m\u001b[38;5;7mrow\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mstrip\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;186m\\'\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mfloat\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mrow\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mstrip\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrow\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mresult_list\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mif\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mrow\u001b[39m\u001b[38;5;7m}\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Finding the waiter with the highest total tips\u001b[39;00m\n",
- "\u001b[38;5;7mbest_waiter\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mmax\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mkey\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mget\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mbest_waiter\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[31;20mCode execution failed due to the following error:\n",
- "EXECUTION FAILED:\n",
- "Evaluation stopped at line 'waiters_tips = {row[0].strip('\\''): float(row[1].strip()) for row in result_list if row}' because of the following error:\n",
- "Index 1 out of bounds for list of length 1\u001b[0m\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 895, in evaluate_python_code\n",
- " result = evaluate_ast(node, state, static_tools, custom_tools, authorized_imports)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 741, in evaluate_ast\n",
- " return evaluate_assign(expression, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 322, in evaluate_assign\n",
- " result = evaluate_ast(assign.value, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 825, in evaluate_ast\n",
- " return evaluate_dictcomp(expression, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 700, in evaluate_dictcomp\n",
- " val = evaluate_ast(dictcomp.value, new_state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 746, in evaluate_ast\n",
- " return evaluate_call(expression, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 394, in evaluate_call\n",
- " args.append(evaluate_ast(arg, state, static_tools, custom_tools))\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 746, in evaluate_ast\n",
- " return evaluate_call(expression, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 368, in evaluate_call\n",
- " obj = evaluate_ast(call.func.value, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 804, in evaluate_ast\n",
- " return evaluate_subscript(expression, state, static_tools, custom_tools)\n",
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 460, in evaluate_subscript\n",
- " raise InterpreterError(f\"Index {index} out of bounds for list of length {len(value)}\")\n",
- "transformers.agents.python_interpreter.InterpreterError: Index 1 out of bounds for list of length 1\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1135, in step\n",
- " result = self.python_evaluator(\n",
- " ^^^^^^^^^^^^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/python_interpreter.py\", line 904, in evaluate_python_code\n",
- " raise InterpreterError(msg)\n",
- "transformers.agents.python_interpreter.InterpreterError: EXECUTION FAILED:\n",
- "Evaluation stopped at line 'waiters_tips = {row[0].strip('\\''): float(row[1].strip()) for row in result_list if row}' because of the following error:\n",
- "Index 1 out of bounds for list of length 1\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 811, in direct_run\n",
- " step_logs = self.step()\n",
- " ^^^^^^^^^^^\n",
- " File \"/Users/aymeric/Documents/Code/original_transformers/transformers/src/transformers/agents/agents.py\", line 1155, in step\n",
- " raise AgentExecutionError(error_msg)\n",
- "transformers.agents.agents.AgentExecutionError: Code execution failed due to the following error:\n",
- "EXECUTION FAILED:\n",
- "Evaluation stopped at line 'waiters_tips = {row[0].strip('\\''): float(row[1].strip()) for row in result_list if row}' because of the following error:\n",
- "Index 1 out of bounds for list of length 1\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: It appears that the result string is not being processed correctly. I need to ensure that the string is split into a list of tuples in a way that correctly captures each row. I'll inspect the result string to understand its exact format.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;60;03m# Inspect the result string\u001b[39;00m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mresult\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\n",
- "('Corey Johnson', 1.2)\n",
- "('Margaret James', 1.0)\n",
- "('Michael Watts', 5.67)\n",
- "\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: The result string is a list of tuples, but it's not in a format that can be directly parsed using `split`. I need to handle the result string more carefully. I'll use a list comprehension to process the string and extract the waiter names and their total tips.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;60;03m# Split the result string into individual lines\u001b[39;00m\n",
- "\u001b[38;5;7mlines\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mresult\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mstrip\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144m[]\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mreplace\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144m)\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mreplace\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7msplit\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;186m\\n\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Process each line to create a dictionary of waiters and their total tips\u001b[39;00m\n",
- "\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m{\u001b[39m\u001b[38;5;7m}\u001b[39m\n",
- "\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mline\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mlines\u001b[39m\u001b[38;5;7m:\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mif\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mline\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mstrip\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;7mwaiter\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mtip\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mline\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mstrip\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7msplit\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144m, \u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;7mwaiter\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mstrip\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mstrip\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mfloat\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mtip\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mstrip\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\n",
- "\u001b[38;5;60;03m# Finding the waiter with the highest total tips\u001b[39;00m\n",
- "\u001b[38;5;7mbest_waiter\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mmax\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mkey\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7mwaiters_tips\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mget\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mbest_waiter\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m{'Corey Johnson': 1.2, 'Margaret James': 1.0, 'Michael Watts': 5.67}\n",
- "\u001b[0m\n",
- "\u001b[33;1mLast output from code snippet:\u001b[0m\n",
- "\u001b[32;20mMichael Watts\u001b[0m\n",
- "\u001b[32;20;1mFinal answer:\u001b[0m\n",
- "\u001b[32;20mMichael Watts\u001b[0m\n"
- ]
+ "data": {
+ "text/html": [
+ "╭──────────────────────────────────────────────────── New run ────────────────────────────────────────────────────╮ \n",
+ "│ │ \n",
+ "│ Which waiter got more total money from tips? │ \n",
+ "│ │ \n",
+ "╰─ HfApiModel - Qwen/Qwen2.5-72B-Instruct ────────────────────────────────────────────────────────────────────────╯ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m╭─\u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[1;38;2;212;183;2mNew run\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╮\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mWhich waiter got more total money from tips?\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m╰─\u001b[0m\u001b[38;2;212;183;2m HfApiModel - Qwen/Qwen2.5-72B-Instruct \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╯\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m0\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 result = sql_engine(query = \"SELECT w.waiter_name, SUM(t.tip) AS total_tips FROM receipts t JOIN waiters w ON │\n",
+ "│ t.receipt_id = w.receipt_id GROUP BY w.waiter_name\" ) │\n",
+ "│ 2 print(result) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mresult\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msql_engine\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mquery\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mSELECT w.waiter_name, SUM(t.tip) AS total_tips FROM receipts t JOIN waiters w ON\u001b[0m │\n",
+ "│ \u001b[48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mt.receipt_id = w.receipt_id GROUP BY w.waiter_name\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mresult\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ "\n",
+ "('Corey Johnson', 1.2)\n",
+ "('Margaret James', 1.0)\n",
+ "('Michael Watts', 5.67)\n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ "\n",
+ "('Corey Johnson', 1.2)\n",
+ "('Margaret James', 1.0)\n",
+ "('Michael Watts', 5.67)\n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 0: Duration 29.62 seconds| Input tokens: 2,119 | Output tokens: 120] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 0: Duration 29.62 seconds| Input tokens: 2,119 | Output tokens: 120]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m1\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 # Extract waiter names and their tips into separate lists │\n",
+ "│ 2 waiter_names = [row[ 0 ] for row in result] │\n",
+ "│ 3 total_tips = [row[ 1 ] for row in result] │\n",
+ "│ 4 │\n",
+ "│ 5 # Find the index of the maximum tip │\n",
+ "│ 6 max_index = total_tips . index(max(total_tips)) │\n",
+ "│ 7 │\n",
+ "│ 8 # The waiter with the maximum tip │\n",
+ "│ 9 waiter_max_tip = waiter_names[max_index] │\n",
+ "│ 10 │\n",
+ "│ 11 print( f\"Waiter with the most tips: { waiter_max_tip }\" ) │\n",
+ "│ 12 print( f\"Total tips: { max(total_tips) }\" ) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 1 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Extract waiter names and their tips into separate lists\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_names\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m0\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mfor\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34min\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mresult\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 3 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mfor\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34min\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mresult\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 4 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 5 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Find the index of the maximum tip\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 6 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmax_index\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mindex\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmax\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 7 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 8 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# The waiter with the maximum tip\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 9 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_max_tip\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_names\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmax_index\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m10 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m11 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mf\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mWaiter with the most tips: \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m{\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_max_tip\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m}\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m12 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mf\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mTotal tips: \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m{\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmax\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m}\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Code execution failed: Code execution failed at line 'total_tips = [row[1] for row in result]' because of the \n",
+ "following error: \n",
+ "Index 1 out of bounds for string of length 1 \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;31mCode execution failed: Code execution failed at line \u001b[0m\u001b[1;31m'total_tips = \u001b[0m\u001b[1;31m[\u001b[0m\u001b[1;31mrow\u001b[0m\u001b[1;31m[\u001b[0m\u001b[1;31m1\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m for row in result\u001b[0m\u001b[1;31m]\u001b[0m\u001b[1;31m'\u001b[0m\u001b[1;31m because of the \u001b[0m\n",
+ "\u001b[1;31mfollowing error:\u001b[0m\n",
+ "\u001b[1;31mIndex \u001b[0m\u001b[1;31m1\u001b[0m\u001b[1;31m out of bounds for string of length \u001b[0m\u001b[1;31m1\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 1: Duration 45.08 seconds| Input tokens: 4,499 | Output tokens: 410] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 1: Duration 45.08 seconds| Input tokens: 4,499 | Output tokens: 410]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m2\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 # Parse the result string to extract waiter names and their tips │\n",
+ "│ 2 parsed_result = [] │\n",
+ "│ 3 for row in result . split( ' \\n ' ): │\n",
+ "│ 4 if '(' in row: │\n",
+ "│ 5 parsed_row = row . strip( '()' ) . split( ',' ) │\n",
+ "│ 6 waiter_name = parsed_row[ 0 ] . strip() . strip( \"'\" ) │\n",
+ "│ 7 total_tips = float(parsed_row[ 1 ] . strip()) │\n",
+ "│ 8 parsed_result . append((waiter_name, total_tips)) │\n",
+ "│ 9 │\n",
+ "│ 10 # Extract waiter names and their tips into separate lists │\n",
+ "│ 11 waiter_names = [row[ 0 ] for row in parsed_result] │\n",
+ "│ 12 total_tips = [row[ 1 ] for row in parsed_result] │\n",
+ "│ 13 │\n",
+ "│ 14 # Find the index of the maximum tip │\n",
+ "│ 15 max_index = total_tips . index(max(total_tips)) │\n",
+ "│ 16 │\n",
+ "│ 17 # The waiter with the maximum tip │\n",
+ "│ 18 waiter_max_tip = waiter_names[max_index] │\n",
+ "│ 19 │\n",
+ "│ 20 print( f\"Waiter with the most tips: { waiter_max_tip }\" ) │\n",
+ "│ 21 print( f\"Total tips: { max(total_tips) }\" ) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 1 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Parse the result string to extract waiter names and their tips\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mparsed_result\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 3 \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mfor\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34min\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mresult\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msplit\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m\\n\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 4 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mif\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34min\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 5 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mparsed_row\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mstrip\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m()\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msplit\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m,\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 6 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_name\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mparsed_row\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m0\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mstrip\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mstrip\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 7 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfloat\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mparsed_row\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mstrip\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 8 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mparsed_result\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mappend\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_name\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m 9 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m10 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Extract waiter names and their tips into separate lists\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m11 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_names\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m0\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mfor\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34min\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mparsed_result\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m12 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mfor\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34min\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mparsed_result\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m13 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m14 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# Find the index of the maximum tip\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m15 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmax_index\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mindex\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmax\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m16 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m17 \u001b[0m\u001b[38;2;149;144;119;48;2;39;40;34m# The waiter with the maximum tip\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m18 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_max_tip\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_names\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmax_index\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m19 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m20 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mf\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mWaiter with the most tips: \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m{\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mwaiter_max_tip\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m}\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m21 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mf\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mTotal tips: \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m{\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mmax\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mtotal_tips\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m}\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ "Waiter with the most tips: Michael Watts\n",
+ "Total tips: 5.67\n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ "Waiter with the most tips: Michael Watts\n",
+ "Total tips: 5.67\n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 2: Duration 42.12 seconds| Input tokens: 7,406 | Output tokens: 664] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 2: Duration 42.12 seconds| Input tokens: 7,406 | Output tokens: 664]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m3\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 final_answer( \"The waiter with the most tips is Michael Watts, with a total of $5.67.\" ) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfinal_answer\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mThe waiter with the most tips is Michael Watts, with a total of $5.67.\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Out - Final answer: The waiter with the most tips is Michael Watts, with a total of $5.67. \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;38;2;212;183;2mOut - Final answer: The waiter with the most tips is Michael Watts, with a total of $5.67.\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 3: Duration 5.83 seconds| Input tokens: 10,869 | Output tokens: 729] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 3: Duration 5.83 seconds| Input tokens: 10,869 | Output tokens: 729]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
},
{
"data": {
"text/plain": [
- "'Michael Watts'"
+ "'The waiter with the most tips is Michael Watts, with a total of $5.67.'"
]
},
- "execution_count": 24,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -678,9 +738,9 @@
"source": [
"sql_engine.description = updated_description\n",
"\n",
- "agent = ReactCodeAgent(\n",
+ "agent = CodeAgent(\n",
" tools=[sql_engine],\n",
- " llm_engine=HfApiEngine(\"Qwen/Qwen2.5-72B-Instruct\"),\n",
+ " model=HfApiModel(\"Qwen/Qwen2.5-72B-Instruct\"),\n",
")\n",
"\n",
"agent.run(\"Which waiter got more total money from tips?\")"
@@ -698,9 +758,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "cookbook2",
+ "display_name": "test2",
"language": "python",
- "name": "cookbook2"
+ "name": "test2"
},
"language_info": {
"codemirror_mode": {
diff --git a/notebooks/en/agents.ipynb b/notebooks/en/agents.ipynb
index 236da622..82616038 100644
--- a/notebooks/en/agents.ipynb
+++ b/notebooks/en/agents.ipynb
@@ -4,16 +4,16 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "# Build an agent with tool-calling superpowers 🦸 using Transformers Agents\n",
+ "# Build an agent with tool-calling superpowers 🦸 using smolagents\n",
"_Authored by: [Aymeric Roucher](https://huggingface.co/m-ric)_\n",
"\n",
- "This notebook demonstrates how you can use [**Transformers Agents**](https://huggingface.co/docs/transformers/en/agents) to build awesome **agents**!\n",
+ "This notebook demonstrates how you can use [**smolagents**](https://huggingface.co/docs/smolagents/index) to build awesome **agents**!\n",
"\n",
"What are **agents**? Agents are systems that are powered by an LLM and enable the LLM (with careful prompting and output parsing) to use specific *tools* to solve problems.\n",
"\n",
"These *tools* are basically functions that the LLM couldn't perform well by itself: for instance for a text-generation LLM like [Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct), this could be an image generation tool, a web search tool, a calculator...\n",
"\n",
- "What is **Transformers Agents**? it's an extension of our `transformers` library that provides building blocks to build your own agents! Learn more about it in the [documentation](https://huggingface.co/docs/transformers/en/agents).\n",
+ "What is **smolagents**? It's an library that provides building blocks to build your own agents! Learn more about it in the [documentation](https://huggingface.co/docs/smolagents/index).\n",
"\n",
"Let's see how to use it, and which use cases it can solve.\n",
"\n",
@@ -26,7 +26,7 @@
"metadata": {},
"outputs": [],
"source": [
- "!pip install \"transformers[agents]\" datasets langchain sentence-transformers faiss-cpu duckduckgo-search openai langchain-community --upgrade -q"
+ "!pip install smolagents datasets langchain sentence-transformers faiss-cpu duckduckgo-search openai langchain-community --upgrade -q"
]
},
{
@@ -62,24 +62,505 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "TOOLCODE:\n",
+ " from smolagents import Tool\n",
+ "from huggingface_hub import InferenceClient\n",
+ "\n",
+ "\n",
+ "class TextToImageTool(Tool):\n",
+ " description = \"This tool creates an image according to a prompt, which is a text description.\"\n",
+ " name = \"image_generator\"\n",
+ " inputs = {\"prompt\": {\"type\": \"string\", \"description\": \"The image generator prompt. Don't hesitate to add details in the prompt to make the image look better, like 'high-res, photorealistic', etc.\"}}\n",
+ " output_type = \"image\"\n",
+ " model_sdxl = \"black-forest-labs/FLUX.1-schnell\"\n",
+ " client = InferenceClient(model_sdxl)\n",
+ "\n",
+ "\n",
+ " def forward(self, prompt):\n",
+ " return self.client.text_to_image(prompt)\n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭──────────────────────────────────────────────────── New run ────────────────────────────────────────────────────╮ \n",
+ "│ │ \n",
+ "│ Generate me a photo of the car that James bond drove in the latest movie. │ \n",
+ "│ │ \n",
+ "╰─ HfApiModel - Qwen/Qwen2.5-72B-Instruct ────────────────────────────────────────────────────────────────────────╯ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m╭─\u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[1;38;2;212;183;2mNew run\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╮\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mGenerate me a photo of the car that James bond drove in the latest movie.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m╰─\u001b[0m\u001b[38;2;212;183;2m HfApiModel - Qwen/Qwen2.5-72B-Instruct \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╯\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m0\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 search_query = \"latest James Bond movie\" │\n",
+ "│ 2 result = web_search(query = search_query) │\n",
+ "│ 3 print(result) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msearch_query\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mlatest James Bond movie\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mresult\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mweb_search\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mquery\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msearch_query\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mresult\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ "## Search Results\n",
+ "\n",
+ "[James Bond 26 Casting Update Reveals Conditions For New 007: \"It's A \n",
+ "...](https://screenrant.com/james-bond-26-casting-conditions-updated-barbara-broccoli/)\n",
+ "James Bond 26 gets an intriguing new update from franchise producer Barbara Broccoli, who reveals the conditions \n",
+ "for the next actor. After first playing the character in 2006's Casino Royale, Daniel Craig bid farewell to the hit\n",
+ "spy franchise with No Time To Die in 2021. There's been no actor officially cast as his replacement since, but the \n",
+ "Internet and social media are awash with rumors and ...\n",
+ "\n",
+ "[No Time to Die - Wikipedia](https://en.wikipedia.org/wiki/No_Time_to_Die)\n",
+ "No Time to Die is a 2021 spy film and the twenty-fifth in the James Bond series produced by Eon Productions, \n",
+ "starring Daniel Craig in his final portrayal of fictional British MI6 agent James Bond.The plot follows Bond, who \n",
+ "has left active service with MI6, and is recruited by the CIA to find a kidnapped scientist, which leads to a \n",
+ "showdown with a powerful and vengeful adversary armed with a ...\n",
+ "\n",
+ "[List of James Bond films - Wikipedia](https://en.wikipedia.org/wiki/List_of_James_Bond_films)\n",
+ "Find out the history, actors, directors, box office and budget of the James Bond film series. The latest film, No \n",
+ "Time to Die, was released in September 2021 and starred Daniel Craig as 007.\n",
+ "\n",
+ "[No Time to Die (2021) - IMDb](https://www.imdb.com/title/tt2382320/)\n",
+ "No Time to Die: Directed by Cary Joji Fukunaga. With Daniel Craig, Léa Seydoux, Rami Malek, Lashana Lynch. James \n",
+ "Bond has left active service. His peace is short-lived when Felix Leiter, an old friend from the CIA, turns up \n",
+ "asking for help, leading Bond onto the trail of a mysterious villain armed with dangerous new technology.\n",
+ "\n",
+ "[Bond 26: Everything We Know About Next 007 Film - \n",
+ "Newsweek](https://www.newsweek.com/james-bond-26-everything-we-know-next-007-film-1891233)\n",
+ "The James Bond films have been popular for decades and since Daniel Craig stepped away from the titular role in \n",
+ "2021, people have been speculating what the future of the franchise will look like.\n",
+ "\n",
+ "[No Time to Die (2021) - Rotten Tomatoes](https://www.rottentomatoes.com/m/no_time_to_die_2021)\n",
+ "Watch the trailer, read critics and audience reviews, and see the official clips of the latest James Bond film. No \n",
+ "Time to Die is a long and action-packed adventure that concludes Craig's tenure as 007 with style and emotion.\n",
+ "\n",
+ "[Next James Bond: everything we know so far about who will be the new \n",
+ "...](https://www.timeout.com/news/everything-we-know-about-bond-26-so-far-010523)\n",
+ "The 26th instalment of the James Bond franchise is expected to be released in 2025, but the identity of the new 007\n",
+ "is still a mystery. Find out the latest rumours, odds and contenders for the role, from Aaron Taylor-Johnson to Tom\n",
+ "Hardy.\n",
+ "\n",
+ "[When will the new James Bond be announced? Everything we know ... - \n",
+ "Yahoo](https://www.yahoo.com/entertainment/james-bond-26-007-cast-rumours-release-date-143855208.html)\n",
+ "The James Bond movies celebrated their 60th anniversary in 2022. Now, in 2024, fans are eagerly anticipating the \n",
+ "announcement of the new James Bond, and details of the next movie. Bond 26 — the ...\n",
+ "\n",
+ "[Daniel Craig's final James Bond movie is on TV tonight - Digital \n",
+ "Spy](https://www.digitalspy.com/movies/a63306287/james-bond-no-time-to-die-itv/)\n",
+ "Related: New James Bond movie gets disappointing update American Fiction's Jeffrey Wright also makes a long-awaited\n",
+ "return to the franchise as M16 agent Felix Wright (previously seen in Casino ...\n",
+ "\n",
+ "['No Time to Die': Release date, trailer and ... - What To \n",
+ "Watch](https://www.whattowatch.com/watching-guides/no-time-to-die-release-date-trailer-and-everything-else-we-know-\n",
+ "about-the-new-james-bond-film)\n",
+ "No Time to Die is the 25th and final James Bond movie starring Daniel Craig, released in 2021. Find out the plot, \n",
+ "cast, director, release date, trailer and the shocking twist ending of the film.\n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ "## Search Results\n",
+ "\n",
+ "[James Bond 26 Casting Update Reveals Conditions For New 007: \"It's A \n",
+ "...](https://screenrant.com/james-bond-26-casting-conditions-updated-barbara-broccoli/)\n",
+ "James Bond 26 gets an intriguing new update from franchise producer Barbara Broccoli, who reveals the conditions \n",
+ "for the next actor. After first playing the character in 2006's Casino Royale, Daniel Craig bid farewell to the hit\n",
+ "spy franchise with No Time To Die in 2021. There's been no actor officially cast as his replacement since, but the \n",
+ "Internet and social media are awash with rumors and ...\n",
+ "\n",
+ "[No Time to Die - Wikipedia](https://en.wikipedia.org/wiki/No_Time_to_Die)\n",
+ "No Time to Die is a 2021 spy film and the twenty-fifth in the James Bond series produced by Eon Productions, \n",
+ "starring Daniel Craig in his final portrayal of fictional British MI6 agent James Bond.The plot follows Bond, who \n",
+ "has left active service with MI6, and is recruited by the CIA to find a kidnapped scientist, which leads to a \n",
+ "showdown with a powerful and vengeful adversary armed with a ...\n",
+ "\n",
+ "[List of James Bond films - Wikipedia](https://en.wikipedia.org/wiki/List_of_James_Bond_films)\n",
+ "Find out the history, actors, directors, box office and budget of the James Bond film series. The latest film, No \n",
+ "Time to Die, was released in September 2021 and starred Daniel Craig as 007.\n",
+ "\n",
+ "[No Time to Die (2021) - IMDb](https://www.imdb.com/title/tt2382320/)\n",
+ "No Time to Die: Directed by Cary Joji Fukunaga. With Daniel Craig, Léa Seydoux, Rami Malek, Lashana Lynch. James \n",
+ "Bond has left active service. His peace is short-lived when Felix Leiter, an old friend from the CIA, turns up \n",
+ "asking for help, leading Bond onto the trail of a mysterious villain armed with dangerous new technology.\n",
+ "\n",
+ "[Bond 26: Everything We Know About Next 007 Film - \n",
+ "Newsweek](https://www.newsweek.com/james-bond-26-everything-we-know-next-007-film-1891233)\n",
+ "The James Bond films have been popular for decades and since Daniel Craig stepped away from the titular role in \n",
+ "2021, people have been speculating what the future of the franchise will look like.\n",
+ "\n",
+ "[No Time to Die (2021) - Rotten Tomatoes](https://www.rottentomatoes.com/m/no_time_to_die_2021)\n",
+ "Watch the trailer, read critics and audience reviews, and see the official clips of the latest James Bond film. No \n",
+ "Time to Die is a long and action-packed adventure that concludes Craig's tenure as 007 with style and emotion.\n",
+ "\n",
+ "[Next James Bond: everything we know so far about who will be the new \n",
+ "...](https://www.timeout.com/news/everything-we-know-about-bond-26-so-far-010523)\n",
+ "The 26th instalment of the James Bond franchise is expected to be released in 2025, but the identity of the new 007\n",
+ "is still a mystery. Find out the latest rumours, odds and contenders for the role, from Aaron Taylor-Johnson to Tom\n",
+ "Hardy.\n",
+ "\n",
+ "[When will the new James Bond be announced? Everything we know ... - \n",
+ "Yahoo](https://www.yahoo.com/entertainment/james-bond-26-007-cast-rumours-release-date-143855208.html)\n",
+ "The James Bond movies celebrated their 60th anniversary in 2022. Now, in 2024, fans are eagerly anticipating the \n",
+ "announcement of the new James Bond, and details of the next movie. Bond 26 — the ...\n",
+ "\n",
+ "[Daniel Craig's final James Bond movie is on TV tonight - Digital \n",
+ "Spy](https://www.digitalspy.com/movies/a63306287/james-bond-no-time-to-die-itv/)\n",
+ "Related: New James Bond movie gets disappointing update American Fiction's Jeffrey Wright also makes a long-awaited\n",
+ "return to the franchise as M16 agent Felix Wright (previously seen in Casino ...\n",
+ "\n",
+ "['No Time to Die': Release date, trailer and ... - What To \n",
+ "Watch](https://www.whattowatch.com/watching-guides/no-time-to-die-release-date-trailer-and-everything-else-we-know-\n",
+ "about-the-new-james-bond-film)\n",
+ "No Time to Die is the 25th and final James Bond movie starring Daniel Craig, released in 2021. Find out the plot, \n",
+ "cast, director, release date, trailer and the shocking twist ending of the film.\n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 0: Duration 23.18 seconds| Input tokens: 2,152 | Output tokens: 73] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 0: Duration 23.18 seconds| Input tokens: 2,152 | Output tokens: 73]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m1\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 car_search_query = \"car driven by James Bond in No Time to Die\" │\n",
+ "│ 2 result = web_search(query = car_search_query) │\n",
+ "│ 3 print(result) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcar_search_query\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mcar driven by James Bond in No Time to Die\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mresult\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mweb_search\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mquery\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcar_search_query\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mresult\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ "## Search Results\n",
+ "\n",
+ "[Every Car James Bond Drives in 'No Time To Die' - \n",
+ "MotorBiscuit.com](https://www.motorbiscuit.com/every-car-james-bond-drives-no-time-to-die/)\n",
+ "The Aston Martin DB5 is the quintessential Bond car. This 1964 classic has appeared in more 007 films than any one \n",
+ "James Bond actor. Naturally the DB5 is the first of the No Time To Die cars. The new movie features this classic at\n",
+ "the center of a major action set piece.\n",
+ "\n",
+ "[All of the Bond cars of 'No Time To Die' (caution for \n",
+ "spoilers)](https://www.autoblog.com/features/no-time-to-die-james-bond-cars)\n",
+ "No Time To Die picks up right around where Spectre leaves us. James Bond (Daniel Craig) and Madeleine Swann (Léa \n",
+ "Seydoux) are driving along in Bond's restored and iconic DB 5 in Matera, Italy ...\n",
+ "\n",
+ "[James Bond: Every Car Appearing In No Time To Die - Screen \n",
+ "Rant](https://screenrant.com/james-bond-no-time-die-movie-cars/)\n",
+ "The No Time To Die trailer includes a brief glimpse of Bond whipping a sheet off what appears to be the Aston \n",
+ "Martin V8 Vantage, as driven by Timothy Dalton in The Living Daylights.The Aston Martin website actually only lists\n",
+ "the V8 Saloon, similar to the Dalton-era model in many aspects. Nevertheless, the number plates are the same, \n",
+ "implying that the Craig's V8 is intended to be the car from ...\n",
+ "\n",
+ "[Here are all the cars Bond will drive (and wreck) in No Time To \n",
+ "Die](https://www.thegentlemansjournal.com/article/here-are-all-the-cars-bond-will-drive-and-wreck-in-no-time-to-die\n",
+ "/)\n",
+ "No Time To Die has hardly sped into cinemas, has it? Instead, thanks to producers and the pandemic, the 25th James \n",
+ "Bond film has stalled and stopped again and again — piling up in the never-ending traffic jam of postponed \n",
+ "premieres and delayed release dates. And yet, in April, Daniel Craig's final outing as the superspy should screech \n",
+ "around the corner and onto our screens.\n",
+ "\n",
+ "[Here's Every Car James Bond Drives In No Time To Die (Plus 2 ... - \n",
+ "HotCars](https://www.hotcars.com/heres-every-car-james-bond-drives-in-no-time-to-die-plus-2-he-dodges/)\n",
+ "Rumor has it that in No Time To Die, James Bond tries to retire and Nomi becomes agent 007. If this is true, the \n",
+ "DBS Superleggera may technically be 007's, while never being James Bond's car. Finally, Aston Martin lent the film \n",
+ "crew a Valhalla hypercar prototype.\n",
+ "\n",
+ "[James Bond behind the Wheel in 'No Time to Die': All the \n",
+ "Details](https://www.caranddriver.com/features/a37806505/james-bond-driving-aston-martin-db5-no-time-to-die/)\n",
+ "But in No Time to Die—finally released after long pandemic-related delays—007 honors his silver-screen roots with a\n",
+ "chase in a 1963 DB5. More Bond Tales from Aston-Driving James Bond Stuntman\n",
+ "\n",
+ "[Every Car James Bond Drives in 'No Time To Die' - \n",
+ "USAMotorJobs](https://news.usamotorjobs.com/every-car-james-bond-drives-in-no-time-to-die/)\n",
+ "This 1964 classic has appeared in more 007 films than any one James Bond actor. Naturally the DB5 is the first of \n",
+ "the No Time To Die cars. The new movie features this classic at the center of a major action set piece. In the \n",
+ "final moments of 2015's Spectre, Daniel Craig's James Bond rode off into the sunset with\n",
+ "\n",
+ "[The Complete History Of James Bond 007's Cars: From Dr. No to No Time \n",
+ "...](https://grandtournation.com/cars/industry-news/the-complete-history-of-james-bond-007s-cars-from-dr-no-to-no-t\n",
+ "ime-to-die/)\n",
+ "Since the film's beginning in 1962 with Dr. No, we've been addicted to the oil slicks, smoke screens, and hidden \n",
+ "guns that James Bond uses during his endless examples of car chases. With James Bond: No Time To Die coming early \n",
+ "next year, we've decided to put together a list of all the Bond cars from every film. Let us know in the comments \n",
+ "...\n",
+ "\n",
+ "[No Time To Die: The cars of the new James Bond film - \n",
+ "Driving.co.uk](https://www.driving.co.uk/news/diversions/no-time-die-cars-james-bond-film/)\n",
+ "NO TIME TO DIE, the 25th film in the James Bond franchise, and the final one starring Daniel Craig as 007, has \n",
+ "arrived after long delays due to the coronavirus pandemic.. Here we profile the cars from Aston Martin, Land Rover,\n",
+ "Maserati and Toyota that appear in the spotlight. 1. Aston Martin DB5. It's arguably the most famous film car of \n",
+ "all time, and Bond's silver Aston Martin DB5 is back ...\n",
+ "\n",
+ "[No Time To Die: Every Bond Vehicle And Gadget Explained - Screen \n",
+ "Rant](https://screenrant.com/no-time-to-die-bond-every-gadget-vehicle-explained/)\n",
+ "Related: No Time To Die Reveals The Sad Truth About James Bond's Legacy. In 2006, the original Bond continuity was \n",
+ "rebooted with an adaptation of the novel, Casino Royale, which returned Bond to a more grounded character, \n",
+ "depicting his origins as an M16 agent and characterizing him as tortured and melancholic like Fleming's novels. \n",
+ "While the ...\n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ "## Search Results\n",
+ "\n",
+ "[Every Car James Bond Drives in 'No Time To Die' - \n",
+ "MotorBiscuit.com](https://www.motorbiscuit.com/every-car-james-bond-drives-no-time-to-die/)\n",
+ "The Aston Martin DB5 is the quintessential Bond car. This 1964 classic has appeared in more 007 films than any one \n",
+ "James Bond actor. Naturally the DB5 is the first of the No Time To Die cars. The new movie features this classic at\n",
+ "the center of a major action set piece.\n",
+ "\n",
+ "[All of the Bond cars of 'No Time To Die' (caution for \n",
+ "spoilers)](https://www.autoblog.com/features/no-time-to-die-james-bond-cars)\n",
+ "No Time To Die picks up right around where Spectre leaves us. James Bond (Daniel Craig) and Madeleine Swann (Léa \n",
+ "Seydoux) are driving along in Bond's restored and iconic DB 5 in Matera, Italy ...\n",
+ "\n",
+ "[James Bond: Every Car Appearing In No Time To Die - Screen \n",
+ "Rant](https://screenrant.com/james-bond-no-time-die-movie-cars/)\n",
+ "The No Time To Die trailer includes a brief glimpse of Bond whipping a sheet off what appears to be the Aston \n",
+ "Martin V8 Vantage, as driven by Timothy Dalton in The Living Daylights.The Aston Martin website actually only lists\n",
+ "the V8 Saloon, similar to the Dalton-era model in many aspects. Nevertheless, the number plates are the same, \n",
+ "implying that the Craig's V8 is intended to be the car from ...\n",
+ "\n",
+ "[Here are all the cars Bond will drive (and wreck) in No Time To \n",
+ "Die](https://www.thegentlemansjournal.com/article/here-are-all-the-cars-bond-will-drive-and-wreck-in-no-time-to-die\n",
+ "/)\n",
+ "No Time To Die has hardly sped into cinemas, has it? Instead, thanks to producers and the pandemic, the 25th James \n",
+ "Bond film has stalled and stopped again and again — piling up in the never-ending traffic jam of postponed \n",
+ "premieres and delayed release dates. And yet, in April, Daniel Craig's final outing as the superspy should screech \n",
+ "around the corner and onto our screens.\n",
+ "\n",
+ "[Here's Every Car James Bond Drives In No Time To Die (Plus 2 ... - \n",
+ "HotCars](https://www.hotcars.com/heres-every-car-james-bond-drives-in-no-time-to-die-plus-2-he-dodges/)\n",
+ "Rumor has it that in No Time To Die, James Bond tries to retire and Nomi becomes agent 007. If this is true, the \n",
+ "DBS Superleggera may technically be 007's, while never being James Bond's car. Finally, Aston Martin lent the film \n",
+ "crew a Valhalla hypercar prototype.\n",
+ "\n",
+ "[James Bond behind the Wheel in 'No Time to Die': All the \n",
+ "Details](https://www.caranddriver.com/features/a37806505/james-bond-driving-aston-martin-db5-no-time-to-die/)\n",
+ "But in No Time to Die—finally released after long pandemic-related delays—007 honors his silver-screen roots with a\n",
+ "chase in a 1963 DB5. More Bond Tales from Aston-Driving James Bond Stuntman\n",
+ "\n",
+ "[Every Car James Bond Drives in 'No Time To Die' - \n",
+ "USAMotorJobs](https://news.usamotorjobs.com/every-car-james-bond-drives-in-no-time-to-die/)\n",
+ "This 1964 classic has appeared in more 007 films than any one James Bond actor. Naturally the DB5 is the first of \n",
+ "the No Time To Die cars. The new movie features this classic at the center of a major action set piece. In the \n",
+ "final moments of 2015's Spectre, Daniel Craig's James Bond rode off into the sunset with\n",
+ "\n",
+ "[The Complete History Of James Bond 007's Cars: From Dr. No to No Time \n",
+ "...](https://grandtournation.com/cars/industry-news/the-complete-history-of-james-bond-007s-cars-from-dr-no-to-no-t\n",
+ "ime-to-die/)\n",
+ "Since the film's beginning in 1962 with Dr. No, we've been addicted to the oil slicks, smoke screens, and hidden \n",
+ "guns that James Bond uses during his endless examples of car chases. With James Bond: No Time To Die coming early \n",
+ "next year, we've decided to put together a list of all the Bond cars from every film. Let us know in the comments \n",
+ "...\n",
+ "\n",
+ "[No Time To Die: The cars of the new James Bond film - \n",
+ "Driving.co.uk](https://www.driving.co.uk/news/diversions/no-time-die-cars-james-bond-film/)\n",
+ "NO TIME TO DIE, the 25th film in the James Bond franchise, and the final one starring Daniel Craig as 007, has \n",
+ "arrived after long delays due to the coronavirus pandemic.. Here we profile the cars from Aston Martin, Land Rover,\n",
+ "Maserati and Toyota that appear in the spotlight. 1. Aston Martin DB5. It's arguably the most famous film car of \n",
+ "all time, and Bond's silver Aston Martin DB5 is back ...\n",
+ "\n",
+ "[No Time To Die: Every Bond Vehicle And Gadget Explained - Screen \n",
+ "Rant](https://screenrant.com/no-time-to-die-bond-every-gadget-vehicle-explained/)\n",
+ "Related: No Time To Die Reveals The Sad Truth About James Bond's Legacy. In 2006, the original Bond continuity was \n",
+ "rebooted with an adaptation of the novel, Casino Royale, which returned Bond to a more grounded character, \n",
+ "depicting his origins as an M16 agent and characterizing him as tortured and melancholic like Fleming's novels. \n",
+ "While the ...\n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 1: Duration 11.55 seconds| Input tokens: 5,475 | Output tokens: 164] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 1: Duration 11.55 seconds| Input tokens: 5,475 | Output tokens: 164]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m2\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 image_prompt = \"Aston Martin DB5 from No Time to Die, high-res, photorealistic\" │\n",
+ "│ 2 image = image_generator(prompt = image_prompt) │\n",
+ "│ 3 final_answer(image) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mimage_prompt\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mAston Martin DB5 from No Time to Die, high-res, photorealistic\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mimage\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mimage_generator\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprompt\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mimage_prompt\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfinal_answer\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mimage\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Out - Final answer: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1024x1024 at 0x2B12452B0> \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;38;2;212;183;2mOut - Final answer: \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 2: Duration 33.21 seconds| Input tokens: 10,191 | Output tokens: 247] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 2: Duration 33.21 seconds| Input tokens: 10,191 | Output tokens: 247]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAIAAADwf7zUAAEAAElEQVR4nOz9B5clSXYeCJpwc+1PhY5UpVqAIDmgGs7ucvf/79lzZmZJkCAa1V0iMyNDPu3azWzPd6+/F1HVDZLNYS/JRjrI6KjIJ1yYuOIT8pfXucChvPdCCO+9d1IIobWmv8jnv3sphIsDI6VQSig6pJRK4gVS4l3CW/q08ROFdNoJIfD/Dx8yHofPxyGl1FoHQaC0oA8bX6/4M/m9g8XrHd7Lbxm/nT718KrxjTj/gM8cb+Cv5p9aReIPHc7hvfJwjL8rG2hHP1UQBJFWWstQaqWF6zpre98Pfd/6QXgvtBRWiF5oKwMh1fFznFD0c/wdN5juqvN8Q9zx9JzkX+iV/sW1S82fpsQQGyXFcDzP46m+uAnPh5Wqc97S1+H5ebrVfG58G+lNztFdsvgZhpFSKqArDbRUygVC4A5IIZXTwkvllBde9J5eb0TgvZTCKSXCQIWhDo0MjLR9rbTTygsxSIFXKC2Ukq7h88RpWyec873F3RMS48EJjWenTIgPCgPjQ90J2eOspZQOr5EO54obROejtFfSSoWB54VyKrJe2cHTRfENCqSUfU8vcMo5Nwyu67q+s72TLkid1N7he4XnMYnnpZTCA1FCShuGYV7E0+k0y+PN5imKQxOEfd9vt/vValXu277v83xqrbX0ZJQK6O3C2yE0WrjB8XTRRijpnOiclVIFcbTZ7B6XT9P5ya9//eskSR6eHj9++OSVDMMgz/NpkQWB6uumbvbSeil9gPvvNe4exocXIp7OBtf3bdf1tRyc0oJGqRbCt23rvcjyfLE4ncxnk+k8Sk+8PB9kok0S55mJ07rvHtbL5frp7u6m66um2nTNTovOKCf9YJve1bKpetu1NB60c70dBue6JIqU8iYItPZhEBijw9AoE1xdvtYmMEFiTOS9qMpuud7uyyYM47LtdnU7eBcmaTopsqwIoni769u+3+12y+VyvVzVdc2LQxSYtm1tPyilwjCUUnZdV3e1MXrwg3M0l7FKaaNxt4ssNaHGzXZd3zXWdXijVr51ipcL7XQggkCEQaCUj+O4aSstg/Pz81fXr6MoenpY390/Dr3f7PZCuNPT06LInHNKyyRJVqsn733TVmVZ9n1r6JBS2q7b7/d9308mk6urq+l02tFfqqoaBoyGJEnyPFdKVVVV7dfOtkpYXmP9uALQXBh4geLpjNGulMKNiAunlLW2aZqqajBD4zhJEik1xrAd8jx/8/rd2dnZrtzf3t70XVNV+65tpZRRFAohuqqsqio2uIdK+uOa6b1XwuZGB9oGSgdGGAxRrO1SyuV6P1g3DKJ3UmDAxCaMjQ61tW7Agxhsq43Li2Qyy9IsqSpccrUvrbVa4s74QbaDFya3EpPL09agtMQyr6W1VsgBU95Z63rnnBzPDe9VHv8Z4PGKUGmtnFFaikFjobC8RyiP+bnfd7S0YuSHSoeRSqIgMCKPoyCQUah0IMTQN01VN2XdiK6N+0EPDruLVqHXgdSBV2ZbVr3FCTmlTZCoQDusNEMURVi2Hc6NF2rbO1yjNkEQSOettcaYJEmc8/uq0mmIsemwxnqpsUlh4XVGizBwcaAC2QV+UK5T0moh83wipbYen0M3QQYhfbKU6/V6uV7XdS2EKIri6upqfv22zU/mr78+P3sjg8yLPAgLKSNrvRKyKp9ub767+/R3vl/NiiDPtJehVydeTyazxcX1a1XMhZOdlUJra61SMtKBUK4v9x9++N3f/Pu//vT9bxLRiqFJssnrL798++VX89MLk05lGIs4F8IIETihsHNhLTdY47AIeUHrthDBuKdIJ7wTrhe2EXIQtmm3j8uH293y7v533z18+tB17s2XX/3jf/JXk+u3+GRlhAqFDkUQC4VFzmIMBkIK6dtxl/rpIWkH+f0Dp/bHHH/os/8sjj8UD/ynjhex1p/k+Ps+/489z7/v+Ps+54+9Lv+nHhDPMep/0UGBxB/6mD/8ObSx/BGHPCYAxzBU+Be//2SaKeldQNHjywRACixb48fR5fF/cgIgByzlxz/+LBw/RvNjQK88kgD6QNquXsS4HPrTz5fBrqIJf4iDX3wRonG6IS9GABZlDvX+wP0cX/mT2FoOSg5SWeQnWhmlAy2Non3UC+mdt4Nwg7fOusENwnnReWVl4CjUxn6qtaBwsOl6Pl/kMR4LJOUAz/sKgoAxmfl5AuCQCuHQ0ofIqAYltFD+5U/hpJdOevXyp1U4H/4u+iCKiOlXzRdLIciYUNHfsQXzf2Kb8LheLTQet9NSaOUUYlAhncUqj01SH7Iyp5ULjDJaBNrHsVFiENIKb2lXFSHt564fOGf0UniHzdF65Cdt33uH4NhjcEmpVaBDpV2SeKUtQmqplaAA3TovLNKYY0IiLWVYznlpZYgsYhzDdG9x/XwzEVc42rN7xLHDYOW+l1YobxXdG62QimqlAr4iipUsYhGjosiEobm8Om3buusQmAZBaK3d76r9vtxu97hhFBYoFTjn+r7v2yaJQwp9kFRpZaRW2EGd25Xl4vQ0TpPNbr/ZbLyUWZwFURhGyXa73Ww2zg9Flk+nRZElJtDlbiusc7ZH4Cu9MQh8tQked7t8UhRZ6u1Q7XdD18RhlGYxbikduK5AJ3E2mU3z6eXpxa/j7DRJMytV1fW9FyZJ4jReb5ar1cPHDz/c3/3YVVs8RIXJ2+/d0FlhB00jxtrOY6ZY4ZzWAlcbqAjRfxBFkQ7NMAxxkk0ms+lknqaFFLrrXN12n24frVSDEG0/NEPvhdKhCUwyP7tq2qFpmq7ruqbdbDYPDw+r1cpg6mgMNLqTnBWYMGj7xmJqY0ZojGLK0aQMlIxik8YmDBFzWdsPtveDVYPH3HZOYCI7PlutJR6yFkaHxpg0yabT+Xy6SNL85tP9fr+v69q5ARmdtXESIRmbFvv9fr1et0hCTBgGbduX5W4+mSAzqeu+77XWeZ7PZrMsy8IwLMtyu91WVeVwr1DgMEo2zQYLI021wzpGY3VMCfiP43x3SskwE8ivEJxb6/FdbYubHKcYxpRx5tlkNptFSSyEC43e77fr1Wq/31s7BFKFBmFoVzc8YemLHS/dgXSRdgarrtSBMHpc2GmtMU3T7ctmX3XdIKWOoig1xkSI5p21Q28761oViDgJTGxO5wvkC8PQt13bdk3VNmVTd9akc1wFUhqv8LjGtQK1Hq5DYBXETsEbCu9gisoiSnpFCQEnAEpaI5XSWHudG4TFGjQMWN/o+SLTM0jwENJHJoiMiiMdRoFW3g+Yjt0gy71uO9kgd3LeYYXyMrBCy8AMTiEjEcpLJOpUMBHOD0GgwiAyZjx7R8WFvrdZlsUmxLBtGiFEkiQmjqq2sUoEKgijJI5jrQ3GUN9JP/ih9UON7FraKPAoqWClVmEYmyh6rojRGuSca3u6k01TlmXbtmEYmnx++vWv87PX85PrrDjNiot8ciZl0rZ9kmVDu1stb+5ufrtavpeuTmNhokzqhQqnk9l8fnqRTE9UmCDOVgaJlG18NwSBEIGyu83tzYfl3cdv/+3/Xu1WzWCz6ez61dvrL76+fvMuPbsQPhA69EgApPOaAisqymDHPyQAfkwAvLB+6LV0WP9d5+v10+Pt3e3H3dNt0Nb3Nx8fl+swSs4vrq/efPH6y18UV68xC0wqghCZAK28zmPMoNr1h2L6zwnAf+b4nAD8p7/3j/2cP9MEIDhMAF5waRrTR9ixlE8R6hg/ITZzKF6OX4JI9pAAjNHzTwPuQ2g7hrnHWvXx58uPwiKOsgFtD7QJ+bHDQBuFpOAUJ4OgFS+muNNx0M+7yRi945MP94cSBHlMS/DmP3gjPN7MZ8i/8DWjQCWcs05gHVfIf3qF/SkMjFbYmpVAtCcRJQ2IFemWIjdwbqDKutS0pVEUivNFZZkbLmOse7whmk7OvkilsBthS6J9m/69t4i/UeD1P/mJTREb509+WkcL4vHpUOmP8wEe55I+mO+w0PhfXK4fPCJ7bNKBkhaRgVIaoX+gkBIovAU/ELpYPAFcqPCorA89VRnFDGGnQBSHB4ersA71O6UMpzi4v1pJIQIK1vEJqI4jiEdvwbpusFIiXULhVjtjzCH5RAfixQYg8RYkQBxKIN7g8SO8wjBBzO8k7pPEY5CoJWohrZK9V70YOodYAi9yg5CBFIZHrVIKm5vEuXVNVzWdVKjSIckxBlXMoRdCJkmapkUYrvvOtm0/DIP3lrooxuTG9h3dd4VoBbMD5+OFD0Oz22+7vo3jRM+m2/2urvbGhmVZz2eLq4urfbm7u/n0u9vfxnE8neRJEqFpQ8PaK5oogZPOZmlRluVus57k2WI+j8OgQjay5XAqilPnRNU0T+Vquy/jp/LT/a6YnV1evZqfXeT5xKugc65t9kPXXl1eXp6efv/d5Dd/8+/u726MkkUShyb2tmmHrm17Sr2GQOkoVByU0zOgqI0mHRIvpdq23ayWfdsVRZNmRRxlcTbpUeJWdT+sd/umq60TUWySOOyb1jtU5ZMo8nkeRaGWIjLBZrWmue4GVFwRmAWax4lT6EBytEgxE409tJIa12GIRiY2QaDMoAbRq0B5yvUGO3jrBzFIb7WWfd9lWRal2g5uvd6WZV1X7Wy2ePXq6unp6fb2dr3eIXAPVF3XZVmu1+vFYnZ5eVmW5ePj42azMUGUpnm5rwKjkyQJgqBt291ux9X6oiiUUpPJJI7jqqrqukaSw5Nv3ANoiNIiQx1X5Jy0DHJMjEltvfZ9Lx3KIkmSRklMqSPOBxV0Wif5hj89PaVpmqRRU+PveZ5rrev9vmmaeugoQaJGH7p2VtHcCQONJ+ft4AeeGNSsdAElJMIPSsssD4MobFqMgLJau95lSYrMM6DEjG5s0ytdK2dVHMdxEqZZbIJOihr5cOh2TYMcRajAaIPOAJZua3tqNaAVMK66aKAqJTXGkEdYTIk3rfS4FxblCeUEchluOeMFwvnABEj7rR271d5ZS90/rCFKIFQVlAKFJgqDEDPRhEK1qm66Hu1RNyCZ6Y1HJqCE7L0bXO9xNijctE3vQi0cSuacxcVxZIzZ7/dtW/dNTX8Jsb7Z3jaoZkgvjVJpEk0nSAWDIPDCNmXZlNtqt+ybnqoeXIvxZVnH1idC4GV0L6j8jyZXHCdFPhu82263qxWaY+1u4374rW/7eHCqbv2+cvudiadCmcHWgZFn83mq36Xa3d+9L7dlYOp8aoPISttVu7W1NilmOkqkQpLk+nZou6EZcOtdfzqfLrI4dPbp4e7T3UPZtrf3axt8kmF+KqN8copxim5aQOUV5fEfDBjA/sO75VhB43mqBW9wnRNV1+/relc389CcXl5MT896Kwbnb58eXBhdCHF6ee1dTwvzQA8XSy9W9b8n0P98fD4+H//XD/mrK+4AcHz8DFyhFXU8aF4fDkoAuE18qJO/AM8ckgGKBuhj0at9zgqOsSdjJI5f9xyTolz6/CGcABxfyWWjMVtAxEZfTRvWsX4/JjME4XhuOFAHQXjUov5Tt+P5Q8aPcmhBUmdW4u5gS8FuKSMgD6RBO1sjHqMtB5uO19ZTtmDtQCAZ2riEMYa+QVGmISkgpWK+sxzlHw/73H4Z+wCc1WFDxaUD0YMtHLulokgc2RH/5Mr6y99RvsYiqlHht2hqO4sKDQVPFn0C7JMANaE+LeUwDMga0MLAEmw08hcC80gtLULnQKEHQvs3vsg6/hDn0QHxYpDOSi7FRTKLoyhGSMf3X4nBaM35GB+4EEoAjogIKtdSSG49Ks+oFYtAC2Mk1eFMSJAPi7AG8QqBfzzBCVAYdoLxVxRZIIwg6BMPrvGLCIVFkZj1qrFisKLvbdMhdCegGd6Iiig1cEYwDwO4pGuqssiSoiiMMZxkhiYmnIDiWl1dAxFE3YRAB8ohSTg8UPX8NNMkf1otu66bLuaz2QzwkqYZrLt/2CipkzguiiJP02EYlqvH7WqdZZnWkivuAMohSLSDczoea/AEEBIm1EkUR5F5eloRPiZwVuyqcgdshldBOFuceWWSLJ+dnJ9evpouLsIkFzoYkNo4QImauin3q6e7H7//7vbm4ySOO5ScO3w+xpDDCqAwC7QUAVVFA6kCA4xcEKg4S7mCHegwjtMkyeIoDUycTaaD9WXb78r9tmx7O2gTqjDpBgC+FJpmQ9v0/dAKi5Ti/Q8f9vvtblcOQ4cRp7Ai4TQ0Z58cOXIsiC5NDJiQV9IHgQyjIIoMKv1Sov9Ec3GwjaWIT/peCEdnG0QGHQClULlk2Nj55dXJyUmaZLv99uHhoaqqcSY6F+JAGwvIH2v3+2q/32phCdYShGg9oLfTthgA3vvpdHpycpIkSU8Yp91uN7QdemiUkh9Ahp5SU4r/xgSAKiG8FEg1SIPnFgRZhh4ODQNjvd/v0TjaVzXn7hyeRrFp2zpN4yxNpZRNWe52SCzRMQhxjehY0qTTwKIorZxWnRYDmiGY1DTNKeQavEODKQiFNN3gq7rfl03Xods5Ti663QRyQbju+iFJoslkkmepURrfNAzWiY93T81g+75nKFcQYDZZN7Z0eB9BEHloAgdAryG6xLoFXKWl2ei18IH2RissufTleJtQHcJpZCMUiSIR5SUal6Yl+gAh8GkGa4aSKuh77axuh75Gz8k1w9A2tuqs88rrUEiFPoD1Hs1evK3tsc6gu4q8Ued5upjNJ5OJUurp6Wm/QaattR5s1/e9E2I6n9GVxkmaT6ezKVp4RRRFfddW+81u/bDbPNX77dBV3nVoxQhJe4jm6J/RRGjmeGXiKEkSrXXbYvwg5ei6/W6XF/NidpZNzrLZ+WR+buKpk0Hb+zhNTuazIAnK1eN3v/vN/d1N23eLk9N8MkuzqQxNlE6K+WmU5tbLKEllFKG32zUO59MYDeih6Ppyu3+4f3pcr6uux8RdLLLp4urNFzqIpI6w9Hv0AbAcopBDEB1kPegZczuLFzl0gFGr6Vy9Xz7efrp5v1nehbae58X89DSMkrJutmUrgyDJpldv3kkT6ygVKvACa7pF3Qhj9Q9mAD+rM/5XH587AP+dOwP/rY4/1w6A/OM6J390B+A5GkPAxPV/5gCMIApuij4H7mPIPn79EcWObQA13OfTYnwLfQ7KN8eP4N/HDvBLkA+9iYJ2fApF7uMZ8KZFOw1td9QVQJlIjYCWQ5Q/pgQI7V4QAzgWpEo0f9jfe7wEF40UgrEFIwesdwDhWKzawg9OS9lbd0DIKECvA6mcDLx3iA7REUdBeLAIXiw9G74AIJLHOjWg3Rz6Is+iCpB42QcYwVSHxAaNaQToXDKne4yAGn0H3ByqjeM5eoLyoKI3NgA0/sr4HmpGcBJBt4mgM8gDULd2CPGwrfNrrUdBTVoHNIbET4VLxmOl4E8EiAYoHQEYHykW+hXe1i0q4c7Z1g6ImgIEMVKFg+hfZmDc2sBVA/rFu4d2QFVRN0DIpgde1w2is94FDf4WIHrjcUqo4YA6xog5aHwCPoBPOKD5qVWtiXnBIwF3iO4noogkAEjEBOAtdK1tOtf1Ay4AOHO6WxzYAuweSiWyLGj7vn7cxnFc5FNs7dZVm5JrsXGah3HWdV3btgBtl00ccuJH84iSaoUqpOz6ZlJkQmTWue1qyRFkEibqzGw3+3KzacvSzufT6fTq/Op8fvLw8IABIxHGOSkdSuNU0x3AvnCoUA5t3wUtgFJhGE4mMxp6yI4CHYWh7brBCbtdfgqTWPlm5dpyv8mnd5P5WVJM82Led8PQDYHQi/nprJgV6exicfndt39DtVgAymMTAgDe1P3QmtBQawtbtMM4AX/COffwcB+GYRYnQaK8bZvG930rpEF+iIwoWswns0VQNfVmu9/s19nkHPNAqWFAVor0lSrTi8XM4BtU3ZTU5sNIdH4IVcjlcXR1JEGt6XHSmoCx3Pe9RWlT+yxOohh9JgITGa8HY7quHoDhdkWS1XVdVVtjTJHlKOFrPQzDhw8/1nV5cnKWZcmXX76z1j48oCEQhoB7NQ3APHEcGxPFkR+GwSjftnVdNU3dRhES1EAbKRTaMtt91/acGBD7KAhi1TUtMoADiwkBCIFqsDgwMYcAdtTMwpJArbOhb7p+AEiqn4NskCRJen5OA3PXoLPQNi0yAefjJAq9FWVZUhF/CAKQSbz3dbkjdg2+kp8b6ie+83IAjA+3mKDogF9jCc3iZPCu6+vB1gJ1dn26yKQKnp42bdfTWFKBiXRgPCaspzxB7creuSZNTBQgfdBCnJzM91XDNAkgYahugMgekB6arbSBAI6DRc9KtAl5m/HgatB6NoLvrUVn1aPsQkQCgO1QKkAnlW4dLWPENkAjUAjRYoVEHmIHCTCmwplqrUJlkHhpL5APtKJDxk53m5YdkJOIUCTBfKEVF/9KZQAkKUoF8/k0TVN7iWm+Wq2enjbDMESR8a7TQQgelPbOdn3XDn0UmiDP0ywJZ0WyydPHx9vNWnStxGnhkoCpAqqe8E3OY6+JoigIwiAIDZKJIorTKE7L/TYTvik3D0+rVfrx9PoL3TdBOhmcbge/EWpzn02nU6RALjAiGobh4eZDXa7zYm7iLJt2YaDE0GJd3a3SNA3zFGPCiBC1q96VnYon2TzNpqfnbde0/SCUCiNlYilQ+Cf2H7Zurogcqnr4A90wTEwusUlsK4MYBoDKknR2euGkSNO03S+TLIomszSfZEqfOA+IbJhgbwO2Fos9NcI5xlAHdsHn4/Px+fhvf8hfXafP//FisnFVjKOoY3EaW8gBZvP8GRR4jbj/Awqfalv4HSTI4wtfHD+rtR/TAI3l5Llyz9kAUgvaNkbiL1Vlx29UYy+Y69a0clPkbgHtZjQ5Vco918tt747V8f+Sn1SmpxtC0SY4BPRTCqcRKOMEQgoxDDG3uEOC+jGdP+UAKK4SIxM3k5u/I4NCK9Tzjwzswy9UgaO/uDHcHx+QlEDnIJz8CdbfSxdgS3Oo69NPdBoQi2OPZVoh4kaUwAkchDqoIowSx8oU/yOjYkzHGE7R9VqPc7HU58ElEy5IgTtHrwmRyqCaOCJ6gXBB0dXbnqMMIV2o0SUHRCHRzlZaoRzIb+cuskRzAFsGVR/xBHG2TqIDgNQLDAsut4NqTFX5OI6JMTLSFmlA4IS5ks2MOoaoKEnPZSxN0TCjVoCU2knR4x4gMeudH3rRdrbtbe9E17rOup4aNEQ0DSmB8XmUDD1A2CBAmyiKIvCVqWxJyHKDbOVwOOeohDxeJg97bKFaV21TFJkxpqqqruvCMIhN7JVO4jwKM+89+v5PT03XTSZAePdD+3xdlO8olA6F9X1nOz/Y0Og0Do3RhGroZ7OZFCpK4qyYBmFUNWCmNk11+/F36PZEaZpN4mxu4kIGsZMmSvKTk4vZdCG9r6rKWxebMArVxx9/u3y6u7+/L8sd0CJ4UsTgd9jaCZTlARDTMgqMDmTT1zROaEagnJlmWRHGad9bgC/iJM2KKMuF1m3XVZ1fbVsUTvFv2gSRdf1+U5bVjkBTfdv22+16u913dYWEjCLpF8sRDyEU+lE9DXUQIEMfhg5o+DCMwqDIcoNQEYV7L2zfA1k9DB0erQfKX0oZBniQoUEzxQnfI5OySZJcXl6enJx03bBardbrNfV5RFVVTd1qDdhPGJlyvxYO1W4EuCBWos7NrOVhQMzOXxEccfx9z1z8EbCoxpWQhtCzWAKNXuu87oRGUxEtDAB1gMTPsyRJJrMFfU88DMPTavnw8FDXyAGmRU44OnpS4xqCcdg1FbcuCUCI+U53sA9D5FFo7qEPiKWB1/DYjFBsWva0pKjXS90OQ1n3ZdkARC/CYz04S1JC0LnQqCwxacKXq0wU76u63O72deX6waIrp6ywaRQLjXWD+pGud+hO8rVTMQWht8FMpzUBfFmcbQAasTMkGBGiFxBYCvTHzonFI6DcnZnfKBXpADc/wgBAHwkPIo6UCrre9dYPVpb7Zr2vhdC9U/3g2w4iAZa6Gx7nga4EF+nxOZHJs5RmfZAk0Zw4Ol3X3d7efPz4cbVeMhlgUkzzfJKmeZIVoApQQy9LImNk25RPy7vV02O52zrbL+/vWH2BOEUBWMwKpfQ4jtMc1JQ0z9M49lLWddPtt26/6Ztms69Wu307iKiYzU8vivl5lBbbXV3XHXfe8LDQkW5v7n4XRjpM8zjJkmKW5FMdxL1ANhUEQZIki9lsNpsIY0QDJouO52FSiDgZ9ShADYmF1IN1aPOpCAkqo36o0yxcS4Um1P7RBEACx2UX39vWofpDQCAx9PW+rra+rQLljUHfFNxiDDM8q77rSSMhgBoEpcUOwYAm1OQfClz+nsroH9sZ+NwBOLz8D7+ent2f8nz+W3UY/lw7AH/k8Ud3AA6MNBzeDy9+Z3w/fmMk/iHh5+DpuQPwkih8HEZUviJiK5WyR2LZC9A/K8+M+jMvVH2oPEXAEAYWUiD+E4oxADbonHIXmqiJ6lA7o60VgR+Fulzo4uoN/gclLy0148d/9pN7Bz/D0ANATlQk7k1ACEdogFLQSrCcqSDLQBEWcapGV5yxMZQGkLoRRy3CA2aOWjtdN+O5ndceZajxpmHrRaEed5iIBWMegpLnIWClIHxMDBAys9ARQ0IQ+ktKe8ZqGHdO6NstFRYhaUKBh6YFnO41qN2ENaJP4dwOYG+C8lNcDm6gd4BmWYL78121FLvgWSjgBzQoBMTTcKgIBjpFJY0Jt73v7NDZru5koPtAu9BIYwA5oqYGJQx0zhSzg9qLFIeRHliCAhLvodvnfY+KWe9aBP0c2yEcAFKIWhGjqJQCLoBZ1TTMqEY4jlUgsKjyhp4JWiN4CVEbqBxlgtDrOBZN56q6bXt6aNb1thNC9I1LQAdG4FVC9aRGOTZFTOAGCNBYy5Im0qAMGlhcIe4vx4ieIOzUt/FNWdXUgIkM8MnC2ZaCpErusDfHUfHmsrdDua+Wj7eTyQTjHikAUWBRaEOfZrncIAiZzqzty91m6No0TfM83252QRCqACiOSTErpno+6wfbvro8eXi4u71/eHp4jMq2mNkwLZSKG+tv6vr+000Sx1laJFG03a2rcvPm9VWagaYI4PsaQGS0fYKgo/tCXTHWsgEdJBAiz3P0EUDorZoaRORh6OOhVTLQQdw2rulqud3ESVbMphens6p98K1t2w7kE4N+hZKQFRoGi+ZhoNM4GtpOIrbD7B8GqJfwgoFgkmBttJxQ0EtLEx4lMnHbtj4MWhsEEWq+kVGIwn0UO29XqxUEqxTYlsMw1A3qnQjCjJpM8uk03m63f/3v/20URV+8++rNmzdhGO52u8162/d9ghpm1Lbt/d1DFKK7ZaJYBabrACMDDcRBZUjqIEoA7OGhi3Kq80aRkg0luoSM4w4YZfXHfICmHhVctQHyRYM/Yl1nh6oemq4NgmC73S4Wi/nJWRiG8+ksUHq9Xpd0aK1DZGZYApGWIOEZotBQGk8dBaJFHRZXAjBKiKaBTkt3UkhfVQ13pTTEjvRA/OPeWRMncQZsTNXYpnacznily6qlwB2LBPGn2yQF5Mc4E5lA5ZkJg65p274bukE4aYdBYfVDAdoLxOa8M/RDy0/35WYxLv9j226EgHZDLwdrohhrNdWP0QwkQQBQmZBr8J2VAI/1xGKXPowcqtkBCEtSmTiOlTReh3XdOYi6YQfkTQiDekBhntZkYEB5Mefkf7/vjNEtyN/z+Xz6+s2rwOjwk1k9Pbqh32036JJ0SEhs31ZBUJe7ySSfzSZhFE9nC2otmq6q0qxC4F3XtuuDwGrCoVmLHHvaD16CotP3Q5KlaVZM0sylmRJu3jTFann3tNw3u9UKa0ZSzPrOdc2wb61WSQoqRiyETQIFOnZVtklalTunbqxDmzeMUyphmKfJ5Px0sVgssjSJowTUXcwfaqOiUYM1np6whMqdbzFssQXQ8NFC2J5KZZa2CfDR+EExPV2D2IDHBaRTmOYmUq7H0xprNlS2QXLrdIBeBMgI1P+iFrai8fn5+Hx8Pv5Uh/yLq4R/OxTdj0H8GLJTpRqVVv5PC8zKiLM/BPoksMhB6ov8hnm4XCM/Hi9B/y8qtSMhmEtl/OHH5gBH9WPR70XCwAIgx9f/5KpoH2VS6Bg5HmrIcfzc8Xh5jBXmnx4IsWlPo6Id0goAbeh3ARQTI38OuQ3CehujGH44jZ9inJgVwIXh8W5DwBKQx59seNRCpTgPQKAXskeo0IPXy33zQ/r0Uk3197+Uid1j92ZsPODgwuSzAinnY9R1pU9mCI1gPVACmSDmP+DomX1Im/eAsInkIIHcwH5Lt5wZu1xrZD0VesrtNNcmckkYxZEJqWBLb+kDDbItFZcA5OVqpZCq7h0SUOIwHMcM0oDeUj1PGaNRWEOVnrtD461goD+TMQ4P9/BgKKVlJkYYR8Q4QHTdW+9A4QCMKzRZ2QxV1ZRtD9CIF6h4WhcFgPSEOgyiIDZh74amrMummuR5EOH/aFN0ne0IxQU1SW4EISBumgFiUB5inVHk+o6pciR+QrzhIGyaBnIfBsXmURAT5Mr0/fv3BHs7iG8cYqM0z7qu6bsukCKJ0aaAAM4wJElWNyg/hynqiJABOTmFWNBQWtfv9tXdw+r+8Wlfd0GcxUme5TNlIMCHSrP3aG1EUQC4kk3jMEkia+3T48PNzc12tQTinMp/REqh9JEkKzEkAh+GOibci+2Htm1RKnbu1du3eTE1UVa33Wq96wY3mc4ni9PTq3e7uluv109PTwhepcro2K4ggMhimt4ikIU4zx5Fbv2Cm4GUCFhzjDee5lxJheAOi/AOvTEGYCAwVKHlQmA2jKV+6PoGpAeeaxx/F0Vh0bxCkqNUgIC+wf08O7uAto+J6rre7aDKwslyHKm2A8GXy/+c7fOQo+fI6j3H8c9NL8JK0EriEG6hiwfcvGYgH0oO6H8hDgqEDAcr+56whLSgIcWnHIzPMAjD+fxkQmJEGxzE/WCu7YBclKRyKS4nMJFzeL4HOWAPhAv48MBkUr/Qa3yLDQ+kZKrsEogqMEKpfV+FUSJ13LV+u+3qZvASSJVyX4N6EUghOu96HdgsQY08S0BHZnYEySVBmQr6WG1LTRGSZGKIJt3/ruvQGaWxBFUiwvpTb9BDjQ3tPFLooU3HCR8lGVGcD4/bUimHOq7SjQ3VFzVMJ2Sfpmj1WJLfSbOpF7qs++Vq23Subvqu94BhkhKldUIjwQBGB+X/2CRJFIcQz4zj2LmhLndVtY/j+NXr66urqyyJv/3Nbzab1Wq16TsbgwgwCcNQKJnGyWRWnJ2dTaaFlH632yyXy3q/yZN4/fT4+PCwL2uMHvCUsdQ45+aL08lkwsJi0/nsdHGWp0kWBKvlw3a/06GO06hs6h8/vL/5eKsCMynmSZR3rR06b2SoZGhdqxO/2a3qrouTLIzzwQuMCaXrqgdGi1qXYRien59/9cW781fvksUrleSCRr4TPghjKKISKYqQP7xC80ZB+PyhR5MZ/4rdGL9g/1PtYCHIhXvv+gGzI0Tj2LihVdiy0aizwJFJ4pmM7CzIgGCPH8UFoFFKjLI/ELh87gD8p4/PHYD/us/3/7A6APKffTU9RpPYtw5FU2PCn7baqUIvdBCgu33sABAgAcEiK5dxu/kAFnqejcdcgsAypI5MzK3j1njcgEcCJb2Gd1OuMFKgP6rWPOuH0j9xuH/oITznEkwCHivHBwFRBvL8flPiZ1zk8RfpVQClEabkMdgAhQ4KIJgIrekbx6XEuziASuOzTcGLnIfPBNdLzQD+AgsRukMQz7rRo9DNOPHoXw+VbBT50cF4wRcc6+KsIveyo8K4FwMC5Zh6jU+Z3vcHUzJU4ADVeL57VM9DXAUoM8XVlPAc5Va9G7pRXJyAQIzwJb4AngvfIhYYpQtspagD5UwgoihIIhODrEkwsaEHJQ5NDEcgBHIbQLk0YLACTnwESo0CVRzbA6IjRRCqOETF3RhAvsbGC6pYyListSQwjyHHFb7jOGRONspXkgQ6kQBAGHS7qU2SJ3HhtenaYVdWm92+q7uIoBEEryLoi0HLQGrRI9Dt3eCCMEhQD4YuVNc3rA/D/FEUsCHTDsB4nud26IBI6bEjhwFATWEYOAAYAMpiyAGmFaW9AYriQzv0fTeGkhz/cULO0CmSTcQUo/sQdYgawdhVSodxOp2DkjjNUJiNo9RJ8fi0+v7jx+Vq3Vo3mczwHujnADFFmJMOyk0SYZr0ULaRAqfRVlAZ6juQKG0PuX0OqxGmD20MCihUa3hq8BjTyjR9n6R5MT0xUVxW7Xq7t06YJDu5fB0lgEl475fL5cPtXVmW3vsiz8m9oefiqPekgFnXPfQ2UVhFkySNAmO8cz1i4+H4rHl28/PFLaWGTBSBUhknEUJt4ZqmQchNTT1Wc0frhtQi4fUBuuoo5wr1IFql8AlxitK+1H3fNw0en4CgyzidXybkx6LGT9YBknEahs4OA4ETEVYhLHfAiUuA68CtQbJLXSNgKlREYlZYN6Cyxeq11kZhjHSVQ3mCohFqPGhIdZTnLHNkyMEDExnxPTFhIP1DfSr0Tw6NNkwAptvS6Uuwn8YVeGCAiomUUbXtMEBdAFC4iK1DK6Btemo4eOlbpQatvA6sIWxeEoM6EscUc6Mng9Cfu2HoKVKiReN8bJUwV4fmKbV5CeZH3heeOcpE/iKhSe7s0WPixw2vgINlSlVVBGhCD6prRoXWLIubdourH7A8Gaw9SRRmUkdpNvntd+8/3twpHUEdSyrkKYMTmBXgfrNKdRSZSV5kOeSYVqunoWuiCBWBwZIRxMV5liTr5dOPP37Y7cqiKOIE9SZlgqHtTBzN5/OTk0WUhF0HwYC+a9qyFN7W+3K93YN6URRGBz0ZlTRdH+jw+vr69PSs6btQB+dXl9PZAiml68qmrPbr7Q4EhP12o4WuytL1Mo2SUEZd0w+910Yl02Sz31R163VgwkQFoYniIE7KfUMcb1xIVVVa69evX7/56pdX3/yjZLII0tijl9UJBf1XkIO97+taeh8YIgrv9krKJMtEmIimx86ktYgSYHiEBqpMSHVYSaiQROQldK6xK9H2eShXETCNSCBjFveCMUhyz3+MsufnBOAf5oFq3/8UCYx/dsr6HyIB+BffzJ8xlLyBAZ/CazFecQgoD1E7NDqwRx3jeMaM7vdYvzgWPISDOLoOwImj8s9xL+T/PFaAjsFx0wO/S9X9l25f42URy+inT4KVrQ/d82PoPwJvDoTg48b8M73/45LBCcZPIEx0kOj44SZwlE6aFSQxwhrkTHvC+qX9YCC+/yIBQF2PNLBfwpehOUkbGPy0ALQ95Bvj7kU4pueTZDlUXhmHETAEHP9LBD+NfwYDsUq65yeA9IqmxjEBI5IlpANf5icOwQEnG4dmC/UB+Hp/2lhAWM9aQ6T9f2BHHNDYzJGgFZ5aOhRhj08QJj47paEmFBj4NIWG7NWUyBKIBRkkOESDBouA4htl2B/t8EQO8qV4xXPKeqRVxEkI4p4CSoECKdp2hO9bsIht54Dvtag8MT+EOO50e3G7AGB12MBUU1vQa3WUFZO8mAult5vddrt/fFwe94yXbhjoHxxaDRR/UxVaybZucKWcARCUmMfn+x9+CEMTRXgdR7d91wxDNykiarkg5uMnyYVknpv2kMMcnojqWoxGMtCDQdIxedYamulBFOsg7K1oOhgCBEF4fnouhMizyen5WZJndds8PD1tdtvHx0eSMbFJArxynIDzCkxLY7UyQ9dsNpuubQjdhrp+lqQUOLumqYYOQpNpnERJ1A815Yeg55JXEBjJkG5R+uFxWdb94vTs1et3UZJtd+Vyvdu1fTGfX5xfTab50A7r9XK/r5wbnh6WFFqp/Xa925Ze2DhKozDsK1JrsgN8IhDxkuWCxaQbPBoF3GHjIfkyxeXOAJIfPAhgrIkP0PR9qwSwEMCrGFNWO+bGHJcs+H8A+EFKNcxOZVgDHWD9H0oAx4ScE+wXj+k5E+gQK48FlKMWL/9ldDSQntHqNFQ0+l9EzaLGAlKRjjDulA5jClDdgEYbraV40WGVwXhQjlqSA4moOqpNMKZwfNlhDQQxQI0EJ1pJALUiGxME3ZqrBtZ7EanB2gGVYCNV5LxpOuKXE5ZfevK3UjYw0OMPlAyJ/c/ndiis4Bv3+/3xRkGyn1ol/MXUQUF+Qpuu544NroK0p6C5RAsmVyjsuNgGByYStSY9ZGq5iEwqbbrtu3IHIcpiGkMUyEQOXURY9GkVBSbWJpmfnFonv//x5vFhieEQxgA+ORshbYzZWVJrCaBMkgDnNnRtXXddgz+m5LxRN6eL2WI21Ro6obtdud/vlVLT2SwAQoyyfekUDb/JfDKb5L7vV0+Pu81+cBYJhxXT6fT0/AKwtLbfrbdOqOvr12cX52mcBHHysN2lRT6dTtIskH7YbO4//Pjd3c3HHgmPCNFBMF3ZltvaKJMWeZinjeXmpeisba0zQRKlmRVit6/iOD67uArDcEsObslk9lf/t/9XVIDfHKD/h1tPXpfAO1G7zdbQCLrdb7ZpkpycnPhBzWaLwES7upY6KOZnIs9HtKzSKLwBX4acWoBdY5XEpB734lFkfGRx/KQSx+gf1IOIEfBfHtB8TgD+QR6fE4D/ygTgX/8SeMSXITIv0E3TjD5KYx7Au5juERZhQnN5cnTrIcYbvWzcV0jJkUuVzx7DLyvufd/zxsBL/2FDtWgwEkVpjP84bD1gu19e3dEg7Oj2xaHV86sOAkcv3oca4R+8EWjU/vTFB0DOiwd/sCEjMyYMLCKoQdKT5fwgqIdGAXAIx44Eh8VjBwPFZvKwPKRbLV0mML7PAQHp4YxYlueeABZV2KOwZRASgJehP91s/H78y8jWUCHKeS+nB0VE9GnPCcC44LL4/e93ZihDO8YKVOvjDA3CfAfzB5CRRxYx3SkWbhrL0vwExSBVp9WAJIrqjmT0AyTJpEhNoGKC9IT4FPLTdKyYwsOaL2EUn39Opo65KyWuLJOJ5MIEIcQpEU5TQgTFVdsPHVS/B0ROTDgAjJ1CE74bUP/UEMqMs27wdTPU7SClyfLJfL7Ii+Lxcdk0zajKR8RungT8fLkITWPMUe9eGUq3OKYHODsMIfMXmzevXn/48OOPP/5Y13WaJVkG09mm2ffdHn4LoBtGIYAKvutRa6fC84j/edH8IdgIbuSYMrGhkoABbSak1oArIAHo2HvLxMKHvR0ZrlevXuUFZIi6vlkuH1eb9ePjfVnulRboRhC5ORChMeEwDJvNpqagjezAetv1MXBc8EklIA3yfECb0pjNLYDAc8MozcShJOg3ph9814PzO5ufzhanvZRPy2VZVkkSny5OszwF+sINf/sf/iNWE4uwiCwabNO0dVmlYURZpSTTNOpOICAXwD05C3fnMQdANouRT9YEXMv34KuARwsSB54Xnj+nKzT6CSIIpSMCfR1AOxxc8rw4jLRxfUCPYkAP5FgsP8IaX8S7P2kFdB2w9Zz1cS2f0VPUweMEEiMReTrVxVnwlNWfrOfRRRCXAV0RWjyOHCok/AE8npijBbYQ8hOkARbpMHR1iCNBERcBkEaoIWCNLA86epj7ocUDdTyDiVeFREs4HYW4zyQuJeHpEVDfhAA5JNsrfC+FBRIMib2PQ/ITPyxiTA0HCb6qjosMo1wY9gOT9XH5wXhmNvNRfoCn0uhlTssR5hoJgh6eCNdQULfm6gASDCoiDG0HJr1vWEQZ5YBB9g7kJg/SbT6dzeezs975u9uH2/v7oXdhErd9F6dJnkLOf3QwoJUzCFSepwYXAgtkTthQLBn6xWxGVs3Aym+3291up5RK03wgw+OBerDG6GI2Xcwmp7MZbCLKuqrrzWZXVVWeT07PL1+/fpNmRVO1dw/3Td2FSfz66vXVu7c7DzHgMNJJpONAONdsnm7XT/c/fve7er1uyzpEV9KIAUR8ZcIG+kyoIHihyqYp207J0MRJMZsVk5nUpu2HNE2ns3nTNB8enrbN8O7rb7755pski8Ep7huiyIdSuGq3Xz3crx6f9ps1agFoveokymfzkzTPkQNqPT+7fPXunZydCqjmgWAI3xr0ZmA91reDCVJ0Yn8vTBl32wM4k7h5bCfwh52A/96A5nMC8A/y+JwA/FcmAP/br06O//HSmfJQuWeJ5RE8g/9kw9SDYeTRlyVNCVtPe9gIvCZsw9Hw8meV+1Fe/VBmOxj7qIBa9s8bwOG5jjozvyfV/wwv+YkH2TMS5lBgO24Y3U85D+P7jwH6yxfTvv3cKxitxzjyYgstjtif3wM9jTEIRml8/LNGVQ92AeNlEgQSl4miCOvfPdfdWQuIE5IjEOgYsnNg8fKRvexasFrIuH9CNlFInYxx+CFwhKiOcxBh4FMe7+v4LUbj/h/zk58Nl5d8A36XOZR7uTU/0sXpAo8dksO/gikdwHEH8RajEdAKoMZRGADQHxtomccmCKGpRJau/QBA85jOcWZDPwkpyur+R60qJ8bOxjEoPwQW6DUdU9MXKj2A/o92ASwSCiVXlDwbmGtOkqSwTtRV11mHbTPLTs/Ouq6rqmq/37PqP+TEHXzKjsB0gFSI/ufcMJ3kmngUfN/gO5vC0QlSIZNJFEXL5fKHH79bLpek3Zkr1fVt00OBr3sGroSmLMvjPT8+aOdcbICBZm9UHprMjk/T3KF7kAZxoiirCcI4TiabfWsJG01KSiHKjWeL6XQSx2HXQ9Dw5ubDx48fVquVFwSzCbOE8BsYV0RyBQqp69AKFMLoAH6nBuiOsiz3dTWdz6DQAmMCnJJDoRQDcjabtb1lHXk4rWKYGK/05dvXJoLC4Gr9dH/7YG3/+vXbL754q7x6fLz/+P7m8em+awc8FjST3H69gahUSKKkrMo/qpLQk8VX0BQYyM3OQxWKHgp3VIiVxONBabg7o/KPOAPoeBJ3mmQ5JwzMEzgG3DzvxuhkVNcBNrxtQX59+Wj44HhxLIW8aGZSZjiOE74zEEgl6ZjjvDsQ2RHLxpTwsJLVMQEgJjjVUJHIHr+T1IToldQAxJpJPTeIGFMCYJFPaEk56UglGQ3dqJ4+xs600hKsCmeIxApsUImOlgkGB/8m6gZIVHMVAOIW1leapFoH53uoRYGcDc7xNEtfNsrGmhHdgXGxIk+A4wIaxyGv6dwpPappwXDw0NIJfoIjpcdzbF+P5QH03NjhgRpZ6LqkOJKy3qI2X5XOwcFDG9N3lsA2Ud320+nJuy++yvPi7uHh5ua2rCuiXMNbjpt1zGmCG2CAr1jMJtPptOu6x8f7tm2jyLRdI6kTlcbx2cmplHK9BHUeBa9Qp2keJeHgXdt1GCRGnS5OLs/PojB+elotl8uess6uH169enN19eri/EqZ8P7+/uOHm9ls9hf/yz9LLq6avq/KTduUWvQhes+tbav1w93y/m71cG+bDomjBDBRGrOpexXEcKHRKN7VLRRlrRNnV6+++eWvZ4uTp+Wqt/78/DwIo8f15t//5tuWNpA0jU9PT4siG7p2t12ezKdtVe2W6+3yqW0qCYo9xI6n+aLv+yjO0unUKu3D6Otf/uoXf/UvkEtCPigg37uA5NEUBo1AJnDQpqMpQzELEEQMOz1Y0fOGg6zzcwLw+fjvzjH4b3X8j5YA/K+/nL6Mp/E31qo/qH+O4e6h9OUpYHtJZRiNGWk5Ho2xODegR7IH9tq/rI3xSp2mUCE4MoCPuwJVmA/KIhToMPH3IBL6E/QOE1uPk/glO5lRpD/hxdK+cswoXjY9nm/HTw/SngMU9QhbOjoQHz6EfSuP7yUDmiMOikT3aDsmZAjbBTAIhFv4hyb++PuLNEAHlAAc5EGPl0B6+c/Wy8dr4ZriASs85gDO613dA+8yUioo/aAPYzVS3i6PQbomV5qjxCoHF4dnBI7BM13h8BqNQP+gbkkdD7LpwSWTygOYAPxAaGzCWpVDfwYOBRBUAn6D5FN9FAhjNMI71GhNqHyESIUllQAgHTmnHn5m/PQogQJMgk5fUeI6biEv2eeHlOAAayYUMmIpUCKpcs9c9oObNFyRYGRsoigJTeK8bJqubnuvZZjEkNAOQ+dcua92O9TtmoZK4ERARbDoEd9423vXhdDyJqlQMN4CBMyEIgjDMM1ywN+V3Gw2nz59enq4tUOTpyAa9n1b7cvBdlEUZXEywrEo7GMg3Bj0MdaFNI+e6c6k7BTEyXR6UswXUZxAjyOMgziV0RRl+L6FMmO5lVIWWQ6R8gxYpzzPWdPw+++///TpU7nbSI8nQgZkAcBVUvbkcpBGMaGrayFERMEWTOa8a/oBPZwoiAzUEwPSc1RK3dzcTCazYjIPTNJb0Q9QF3NKDq4DFmK2cG54uH24xx3wcRJ+/eU30HbycrV6uvt0v14vpdRZEu2Wa4OALGSjL3aVst6h4juCZCD8znawQEwRiXSMMMk5mKsLeZ4TyhxUcmBEKP9USjUlKvSUXuC/eQliNNRLPOGxFYUZ4f5Apf/YEPhJzkwF+KNT4SENQJj7ArJ4JNjgQbOD1bio0vkzGmdscTB6kxXFWJmR1gYWWeEOAJHpB5ohbOQHn1rI+JJPGqRdeEGj+8VPBetPiOiZxIvggT04qDQGUTT0Cir5VLx4Lh8wn+GAL2IlVrgtOJuA4YOuC3NL6Ebg8sPwaHx22BQAtnRxjJkywpkwT0dYlz1QX47zGiA36U3w/IzI8A33x3skNnmeF/kEilU0YhFaKhGlSd2S4CXueeCEshbQlK4bjImUDOIsf/P67cXV5W63++E9GnRweagaIUECieMQYrfU8W6aJouTd+/enZ2d1U356dMnpM2+DyNj+0E6n8SgwisJR4rVagXHZakDdEYg9kMtY93WzRdffHF+fsl0c6F01/bkMVdlxfTi4urd2y/m8/l2X9Z1nRSTs7dfiihQwDRWXVV2+Lnr4eTdiaHt62q1fHp6eGzrOkmiYroQKu5ZjQOaYOHg/HqzW+92Okwvrq5/+Rf/+M27L3oL+o0KgsXJ2aZsPn78+O233y6Xj1AWTmPbd1W50c6dTKdpHDT73Xa57Jo2htW5UV7Uda0CNAJcEHRenl6/fvv1L97+4lc6nYgoBcIHMFUllUFWgMLZoYY15u20jxv4r5O/x5hgj6OF2lV/REDzOQH4h3l8TgD+6xKAf/WLyfjbMQcgTN5Rh4Sn6DEBoPIhA80P2GuaQ1wJI4uWMQbiShRa7C8qr0dVFlahOVaGxu/iz9SKdZfHYtshEzgmAM9nfwCX/9QM+GVp/1lQ6KUB7e/Xzo+Ft5flf8RxL6AyvGHzNz7DARzi0iMpFpd9MLbk2j/HpyRNTVw6SgPo1FikbjzzYwIwFg4P6yBd3QhCwGLoe8bZIySnn5yNGQ3DAgbnsMq3BHtP7xrXDaLtYVTJeJUgxOY6yt+/6LsyUIecKQ8P5QXWmRNC1iE5KD4B+BSQP8Dx9A5hBzuQOahpHBDSo+kXU6tJSYkQu3B+UBTZSwFTet7UUZmFAaxYpBDIRACkeePgG4MEwDnfs1EZojBWi1WSSk2/r4zEOv3waaJA7xA0eGc1CRcBFETVRIIcSD+dzbHHdwNYtijcAxMsTfDp/gGYZYQCMXQ2ATjGCT0+wtYXYGgIfXLbAaJ4fqiMITlFYBcQbBrsxOhOFFN4AIdxwjcUYj+R+T/+P//voa8hs4NATQ89pF32281isUBwRzmsfsF3t/1APhcvnxQea9f2MgySuMims7yYZdPZYnGaz098UiiTaAm2fVPV8KvabMuyDJRKkmQOGMRJFEVVVd3d3S2Xj+9/+Lbvqq6FC0FIkRklG4D9YJpLFIkP/4oco7NA8XGHJzAiTeI8TaIoKoriCWL6FQKsN1+fnV00nX1aPYZxcPtwu9vtiqI4Pz211r5///7jx4/Vvjw7O3v79u3JycnQ9Xd38CJo9juJDgKGcRgFIQDmNBrIFo9qjYo1nVDux+MF7giJMII/sAbojiGmdB4+BoRQl4Fm32eM+bZsXhCpTUh1X3JjbUm6Bg0fxu3wUwZj5FDa4PbCs/LvH1huAYviXG4U2dSaHI6HukYqdeRB8uxDF2XowSNiRjixETjmbltg3DkhhyrjEWYJP2iaXMcEgMxxaT5ifikNxaHAEJZGiTii9YMieugpDTTJnQspQQ1MNHhX1YCoNH3nIP6UeYdiPxIQpAvkRAiMEHIYQ4UGdqomES7XNW0ErguI4mPXd2RVQc6VKj5cEhqTfCwaFFkaQwZqjrzJnejq7rgTceNy7JBEI/Tu0DfmlQG/Q0ErRK7OgJyuG2qI13r4dGndQleqqmryFoSrOyhA/PYkTs8uzi8vLyeTSVWV683y6WG52aw4TwOwkC4EDQHqS1xcXLx9+zaO47Is//a3f6O1bCtkGSTYbAOBahcK9SR/BDncEPwcSKeRnGuapvP5yWy6CMJoICcDHsYCUgS7wfnXr19fXlwjO7V2croo5rPZZCqk7+tyv1lv1utqD/Qe9hqw2GFM13UNjUY4+Q5klRBFUT6ZmjAum2az3f94czeZzt58+c0XX32T5nk/OKlNPpmS1XtQ1eXHH3/47vvfPtzd1tVODP1u85RG0SQ2EN3rOg9PN6g/N/UuzbMQlYUoKWb5yalJ8kbIf/pX/yqazFQ6IWNHEgwjE28FwQes8iwWRIJCJCpK6mpUcOMVDIODl/ufyDj9ZwOazwnA5+NPcUj530Y16H+4BODr7MW0ee6+jWBKahQ/ZwJYrQPCBSFOein9eWhCj0V32gZwxBkgCsco//jK3W53TAyeA3H6XhBMX7L3GB9P7fvxpF/c9J9QVF/AdaCE96zn81y3e4kZeolpecmtfA4Z4aJKId4ztxL1KQLJYpvhjObYxxgvgjKNwxmxDt1Ypua/cC2fk5mjbOXxzoDmCwVqgtWO8pVjAR90C9eQbsdocMZk3JGSywZeOOGxiwIr9iBtB3BAOXZBDkZBvIYu+IFXy3ea3hgeuYijwcLRhuFZ35CEZw4dCerZjk2AQ9ghuA+gPDxRR7QYPovqtfRciPjAbEpSPiTWBJBQSJPQFqDyaCDtPFRGWooHEP+g6Et3DHxE/CSRb4RQJJ/jlOA604tHeWwKjQkn8dfHdA7iIiGZLzhs/Q6ABB7bVVUVOKZambaF5AtaDuRh07GGCWAhhkwA8iiMSRMGL6vKBoLpzmllgKDXpJ3K0AWyvwnDWBsUYDuojIskL05OTmDXKqQd+lcX55/e//j999/vdhvEX3Hoh75tqq6pKdUgYhxGCKvjgYRKhlyUGx2nEqEt6r4feiECk6TF9OT0+vr17OJCFvMwz4osj4xRQrZtu1lu1ssVSYkCNxNHCeyH0hTx0FD/9tt/u989rVcrcADqSsLhAcFoA9R+ksYUWjUYXYhcpAxidEsAa/FDoFwYBmkCPsHJyUmW5konu7Kqaptl+dnFq9liutk9le2urUjch2q9gUL89+2335LWUFcUxXw+j6IIM26wm4fHAQJEjVc+isM4RjaFAkQPxJQT5Gk7jgpQPKUKCTFGzTkGjyDU87v9hoUmYRmhrCN8tvA+DpCPUZRJaUYYRiSuCks86gP0A10pE7Th0oWCyM/Utziff1k1OHp7edHx+kALHPEsaUBzaGsJ3nMARgboQLoeiyoH1nRIwvozTZlRX9yCOAxy4gCQawcl2ESiBRV4pFRK5TCNMADBgY8iS50BhL8SjrmUUYNXDWi+gYmU8UpWLdx8q3JQYiKQY1AHAtnYAO9BUkAjki6Qe/hggKjwsrZucIMP8CfWRWD3RorimbM03m0dyK6DGiYlPCzExAJFeiBgCrolpJHJ2xNF0WPxgkmlfAN5MUeXz2HpyDLM5CiKlDa3j0/EsACVuW3bGrO297D81VXTQrAnDNsW6+T19fU3v/pFEsE/YejsdrteLpe73a5vkb8ZE8Frz/nHx0fv/ZdffvmrX/3q5OTk+/e/2+7Wtx8/1FWZwU7LVttN3/dFnsJ3BE8vkBp6l7hMgwwQwbfUWZbl+cQEIZBXvVssTrUJ7+8ePn78JLyazhdFUaRpqkNZTCfTYgJhgGFoqnqz2ZS7/Wr11NbVMHRJGk0X0ySJmgaPzARJGCOX0wHYR0meI6lz4ubuAVYAOhRKTeZnr9++K6Zza10aE4UXSrhA1D3c3/zd3/z17779Oy3s5umxK3d5HM2zVAk31K0dGiFtBuO3VIbh4vzq/O0bHSbLqrt8/UWQZGEy1aibxF4GZLNYo/9B9R1tjCZhWYRW3GsHmI9Aw+zvTgmDQznycwLw+fjvfcg/0wTgX79MAFjknT6FKvRjNeuoaAEeoYphrTKA84Oy6RhYgxl8ILHR545NYXwOt3QZlMn1V01ln7ZtCTvRQHocxkn4V1Kn+6lBGG2oDHE5qgA9B/fsvDu2hp834IjCAiqPjcqkxzY9TLR+b015rti9CB+lcArVPoTXrCLy8hIYbHPU9WfvcvwnSWpwpjFCVxQYc4eCO2GKqGyG4jfVwI55C2vaWHofiS7wrcAyNQJsSHVkTJAY5ns8W9LoPD4sLp8og1WeIxKA12uSoew7VP/I+YepBcccA4ibY7KEh0gwaxoKL0FcY3uDjM/GHIyulz284JccEKAIEQEFLs9BANuJHXh+iLYtNwSIFkx82bFp4LSwwdCYQIQA4GMEUUjwrCoLUATGGOrZHRyYRAWfe7LIeoHM5nLds0Pq4VFqFSFhoMFAo5fMAGzPHRSO8uHImeehiYfBtn233G4OgKwRlUH8bFXkUOz2TtO+W3Zdh1q/kW298w7FWhOFkMGcz4piGsYxZIhU0A/DegcSYRhFV1fXFxcXvu+xzWv4Ot18+Pj4dG/7IQ6DpipRVrcWxdehd8Bmd94NkREoYNMseR7GCvW4ru+bvrdOIQ7WQZbn0WT6i3/8T4uTxXQyh0AQNVogNWPVw8NTU7f7fVPva0ThGlyFJAxOF2G5Wz88PNze3kCtfL+VXkTG9G0ztBClZBlQg0q2bfth17agX4eBCTTs4QLJVeEwDGeLk+nkxAk5DFRAJlr2qzevwgQykX3frx6fHh4euq4LgiDLsptPHz6+/7Df76WUWZadzBfzaSHbfr9drlarpq0EtXR4vkZJjMFANWMWIOAEAJBFIqLTWoFlJE2ItmD4SW3Lau9tKwOZYIEKNVDLmNoj5oqmFSrNCWHxyeqCm5nM89CKxQPIAoM1pw5KXEQMhZ4P7jC7bnP7LgD648jigIOF1vP5CSWQTduQzBEDI4UMAbIAT+U4zZkPEIaQae6p0fGiFgP6CucG3sM9F5o5GuX/wCC8OmjFHnx2tdWuMsDdwYyOBFK5eC8flisg+ZWEIW2RCyUJO9/2bQQYN6BVxAqWaICiawdID0zZeHEKAvgyk0CARxcDB9pEuCeYxZDJ4m5Az0xoWv9NqKl0zQkSVh72xAh0SGbLsMTCrIR3NJeoeOthwjTZpwjvejf4oa1a5jqghedcGEWzyTyfFL2X682GiLkYY8oEddXu9xDUzPNJYEwHzVnc3sG5pq2+fPf68vzs4uJCKbV8fPr06dN2u+cHFGpIhFrbVxXaCLPZ7Ozs7J//q79arh5//O53m/U6Cox3dr/dkG4V/FKoaaQHIh6h4wdTYROYqG2auukWi9PXr95YK29u7+u6hYVwlGhtmqa5v3+s63oyyc9O8yxLJvk0ipGiN037uFyvVqv9Hmc1uD4wOs+xZGmNJzQ4PylmSZKygjB5EuO9SZ4/rTfbfYUiA5KPyfxkcbK4sBZNSvSpSTbK7Xd3tx8e7m5uP354uv9Urlah8qGQbuiMFFkCU4SqKQcvkmmxOLucnpyaLJMmUlEqTRJEaZjkSTZVOqwqaCd0bWXIs5woGWkQRSLADBUtGtRUTCIsqQ7RE9ChECF1fqkMOMYno6f7y4rg86+fE4DPx5/ikH+mCcC/+bp4STN9QSdDbMgwU454ONyhLQ1iEoRrQcOUt7Gux89D9WXsoaPJrkeFRF4xGTvBXVRWbgbhuG0BRdjt6qYJovjnxlh0sIw0OdeOBzAZcWi7tsO+ORrx8JfiWgYyujrgT1gUjyDTuBy2xxplWwj+qjQq4lRGeu7CoyLRwer8mADA7jHAhh0TRJi1gBgP2jXAypoQai1jgD4aEQwoiKJZjCiZQmxI2o3dgIMh1+F6We6TOIsUI/KD6O0AlLp3vYcAIqmYBIAbIVvCbsTWn3DJ4UbBqA0vug4hGrYdYHHN4JgH1q5IYA6AAMaQU1nRS4X0RUL570DkGNs77HCMaJ5knUalFAcpJ8Lv0HVp2vNH4JNDEGhgcYUHR66TKDr7Hh9xkFXxRNl0A9kFM47nwJlGPK2sCZVz6P4rAIEQJUQh0EFQ5qbFmykHo+ex0Jt92zlpu1FmnAFpQRB25C8x3mQSpeZ3hYb0Og7T50C6QJuDT+mYUCWQ6oGXFJfWqrLuYIIWEJUw7FoYxCbZFJjjYQA/uGr7rp7kcdfXwI1QsmfCsCgmaZG/fvNmOp0X08ngBHyDNpu+hyj79ZvXBA4BHHlwvizL7XpTVdWnj+8R8fct0iEIntuubfp6b4QdmqbvYXeVJIkxmhHPHDwpbQhe0rQDpNADE01PzhfnF2++/Prq1bt4OlNBouIizgoVxIDorDZQ/qzq5XK532zh2tM2RQ6+spBu/fT44eOPd59um2q/mE7bcg8gkBSo6jF8V8nW28ZCHAl3CvVN6LGwGQIrNYH5kOZRir8IGbz/tKbuxPVisQi03O9Ry9zv98vlsm1hBAYpEupcOW+lHV6fzi/PFlrrjx8/3t3doZdFFGTrwdKO4xR8Ze/6jjgezsdpXtUIPZnlzygOxoSwIpMXdrveLNdP3jq6gZFRmODMFT/ae7GxFzTRFRA7fEo87w4dOJJJYNFZ4UITgcLaw34LErPgUWDlIJxNN/QkkzWuV6wOBLJHmqbGRMMw7Pd7VHbL8vLVNTu7jRjIcV1lIz8Y6T63Z9EJk3BuoD+yCwfzHIg7BNo1oQcxVRlJpESfocOGGHqs9cBwixYPoDp7OGG3vQcZHYlAGGXbXbuv6nJfe2EJ2AOBWpJ0G/W+AgYTcmFe+BBZKyn24pmMHGbvfTYpkMlojUwLhBCYcGOQDB3jS7ESv2Aucc2Fl0ioDSFVpx2HJFzJYaCNomgynRodNl1te1fWFSpBSdy33a7cx2FycoqRttpunp6ednvYTQD3DyBfsN2XOC8U6AMVILlCT6+p4eIl/HQ6/fLLL794+9p7D+muH39kjjL5dcCEcDQc6Jrr68uz85PT01PXD4xbGzpMPaGAZeJUh7pQ/ODcdJacnZ1mcYpCQNlNJtPLi9ez2eL/+3/+uyiK9tut9/7t27fGmPc//Pj0eDPNjbfd5atXJ6eX+7rrnJQm3peVE3K53lYVsuU8jc/Ozoo8qxt4Aa7WW2v9yXwxnU6FdW1NogVR+OWXXwql//Y3/3G5Wl29fnV9fS20mZ1ft/h3lOTsAOeNrimFs0NTN+X24dOHu5sPfV2lIWo6GLRhGqeYTXXfBaGZn55MZwsZwgG9c77toLhcTGezxVkQhBhMVbV8vDeBnhRJIMWkyKdFBg+79c7EcIxwSjvIF6fFbB7mMx/lMpkKaNkJgUKKFjqijgEZh7GTNn4eGu+HIuZ/qXHY5wTg8/E/9PGfMw77qZjNH50A/z+/Kl6K7x5xpaPdIn/6kRkJEg9KUEcxB4brCSGquqYEgEioVILiAFr4AbxYVLkkhKGxUaLmnYapDiT8VBG6anR2CX+5L2tLMqAvBTGOEB2WDWV7ESoaaVKcHPlhZBDbdy1kE1mViBE4Y8+dIMLk/cSqL4cLJoddIAcojMRacnCjEc7GMKs9NOVJVIp2JYTXJtQJhBBJxpTqeYj8qo65TAyO4mxEaWFJ9oGJbhoWtiSlilgduCkWojkgWREcBAYVR9zsAyuDb3WF3gvV4CnmDo2OkJAAbCq8Q/0TpWlCGGu2FAJwZ0DN/mWUL9q+7wZXd33d4s6z16NX2qqQK+gcDHA0jFYCqQceduIjtoo6KkfFbgZYUKeibxHQxGBqasFWwIhgrDHeaA94zEELhbUMEWeM0CCibR7GvjQSVgzUJNEwlMG1BkpEIZECFOrfJLnPUC0zeN2jrug6uGaNvsuDBwSWGxqU3YwAp2fMBno2JCQqyFhAWCUD63oE7RptGeeHQKOX7izq01FgpEbcWTUtYX6GNMuRyHgRR2ma58YYDMWm2W8fw8hEaaK1btoW6rqUuzrvLy4u3n351atXr5Isw0dVTd02H+/u5yeL87OrKMnatt/tgL4ehiFL4ofHT59uftxuloEYIkOEAjssbz7ExChgZzRHjsJaqbquWaiE5wsrFzVNZ0K4k55cvbp6+8XZ9dvZ5fXi4k0+P/308BSnkzhN+87e393d3NxUu732rlyt+7rq+9aECOWd66vdvtqvv/vNt5FRqYm0d31dtU0FNfUsARVxwAkfhweicsJhQ86IxEw5s0LbIMyS4vJhtS13+3ySvX395uRsIbwv633XtLtyu16uVpt1uds3XeOslbaTbRUF+uTkZLFYtG2PiuxuR5evUIwgFRUOsPBHJesWHI6j8ibjsMdv18BdTKdTY0xd1/v9Hl5jZcMdy6OJLwOTXkr9jEshyVbavj4aFb1U04JQ0u9xnLCC0bp66KGNYCFmpb/UreLPscJ/+nQXUgYVxTgfFNJr5Hs0nsEFet4oMA9BG8YF0x9YqJfswCjuh6Y+VjCiIVE+L1ys4b6HOUucE+pdjuvtMLi2Q6pDFE5oSuogsDJoR5kBZvKMPolUCnH0yVQ74EqHcHlokDyRP+/gejIyA0gfTU7qwykdSQTQAu1kkv0Za7u8co5+CBA5QNEEYR7Jl2IppXYpWLxk00u6n23bxnEMcA6tSyC8rtfUYJkHQVBVVT9QZT3NrbWgwZc1nA9VEKcZGYTgDvckdQexTRh47YcOaVAURa9fv373xZskSZqmufnwkfjBgK4dEzlkTXU5meSnp6czaP+HVVUtl8vtdqto+B1NdUYtMtvkBfqEV+dX16/fKRmu1hstw8XiNEmSv/vNb43WcRw+3N3rQJ6dnLb1dnn/g/SuatrTq1df/fIvPz0uPz2sL1+9HazsLEZpXdf3n26d7d++vj6/vGxJZq4pUX03QXAym0cmJLtltdls4jg+OVvsy+33P/5ojHnz5TeNV431TPSnTZbWWHJfTsNA2m6zfHi6u2vrUisfahOadLSVBP9P6tAURTGZTWl8gIHTDa5pAKoyBvktLGjqxvV1W++b/T4O1cl0GoUBLBfQbA+ibBJlhQojFcQ+TPLzV0kxz4t5GOfCZEIa4Y3ondBQEsM4pWbU5wTg8/Fnerj/fyQAR1kuav+KnyUAo2EHrVy2p3IRMZh4x5IQdsG6yTWRUYyB8JeEVmiw5ZCCCOHDyeTeDVB7VwJiIUbDnMfoAH9Ru3LfO/JFon33iEUBgpM0vLn3fQAOEceUNxuYkSIGAhaEXGDo7v2svk7NgdFTCchLEsgJPMozEIRnaOnRcck5lxgs3AKKmpwGEBGTKn3wfxktOCMSJATIGAkMFFC5Zokz5Hq/oc8h9c/RtZTb9JEJiRXwgiNx0LN/7sUc+h5e6tr2vSX4AemZwksLaoiQC0Qlkt01+Typfp8iaCPNTAJWEhUV2hcaWHb4odbED2DzeStVj7uCPOHY3+BVEsJyo9jRwZxhjGyO6CqSXKG6I55sGB5dmVmahDZI72wNp9hDDkmgI+IGAHhzMIM4HKAAju9l8IM/6At5jBc0CiA8hTiCPbZUIE3sKPzoIWQImBmubgAOjYI2OAMc+jMjbv6goU5XMJpAWYa0McyAICU9HFe1sg7kVxS3DyRFOlHgmuq6rVrsrFkKa1s8QWFtV9dNZYkImKQI9LclMD8mjBkXdHJy8urNuzdv3pyen0Vp8oCQd1NVbZoV5+eXcZRut7unpyc79EPblPv1evW4ebrf757atha2//UXb7uqJJMjZOAje1UD3M+macc+Go/nph068CDjyenZ+dWbq3dfXL75Yn52cX79phtETzZ/cBHuuoeHh8e7+7Yql/jfT21bA/SfRcr6oa/dYO8/fXi6vVfOFklslOzqpmrrNE9YppJD52NwZozJ85yVT/msMG6j+P2nZZQVsQnhm9y2YRJdX1yeXV4EUtVdDYfU3Xq32Sw36Ei0VWUJhRxHKcB4EVoMVdVsqFDKsk4sroJ1SSjKiZEqHVUHXlLAOeYmpkcBnUQ69tsdjxnGLh7FfI6ylUdzEr6vASoGP/H95aOu65cvG2eIsyGpmhwTg6MbAC9rR1dvpgjLQK/XW168njMQWhJJ7nb80sNGQCpAMrAjd3/gBIAL/xL+JGMCcEzUlbRArUkbwHcAcHtm9B7TEhr5QN7Tmu56D2kpHvlokXUdYEJ8ObxMUTnowFBHaWMaJ0wNIuUxeCBj6bK27mDGAcBlEAdhrHWA7YIi+PFyqC/hiTAAiBEEZ4jVcDCGOnCKoLqrtUYzh/YFpRRMf/MJ8XPStm1vb2+Xy2UcQ9dyW8Kwkg+LjWaoUC8aAvTctFQhEaI05C5QFXG23XNfHA4ASs1ms+vr67OzMz9A93azXcHQl/Y+fgQDOsYoVE0mk9lsFscxX9R6vX6RABwo+75v2k2Sx9N8Vkyn89nZZL7Iohw+BmHSUmO8aeAZvN4slZDnJ5P1w00UhXXT3y83ST7/9T/9q2J29unhMcunFaGG0ix+vAdgb0BbRl9eXmZF7q27/3S7XK60VFmWRQHamFVVBVE4P5lDw2C17G2XF7P89DKIU2Hdbrcry5JkfwFQevP6WrkeebYDJancrJqq9NYCxc9rO1XVhFJRQtCmOPUSuB50HzErgUzrB/vum6+gZ+Dc48On7fKpq/bKIZvN83y12dVtpyP4nekgzqeL4uRMJJO4mE+n80kxTyenyAG8du2gTMTctM8JwOfjz/pwf9oE4N98mY++G4d1nxMANknlcviLQFSwygTXpMdtjOLF0UiLQkbebnvwKm3XtZBYAQ5zEIJlAY3RcuiBjEelDrgOpAFRgBAfijAHiC2DsLn2f0wAuJTLOzGKvkg6RvEW3ryYa1uW6PCy2uaRAPpiYzvSJdn7crzwEe1EwnacDAwdOUqyFhHpV4zqPbSd08bvoyCKE8AJYJ5kYgBb+PQHKIuzKjbwGEoaQr94iubaFv96PLdAjcIjXBbjC2Q47/Fs8TMA6p3pFrSHEDbA+SSNgfqAxBxK3ByA+QGyHUQ8w0FuLDA9AiIiBAydIb8dBcoNQPSu6noofB9iGvo0ovQdqpLYtF8MtTAcIycyosKXstpPniXHTwgpOudXOUuQKmJ8oa5E/ArC6lA9/hCnjhLpgJY910rZNR7uAcyfpiADtX/GFNHncU6A9IDogVzItN7t93sWZ4LnMWkIHkx5mY4JzyVyQyafHlJnReuDDNKOv0tA2hQB30bpVTKWBRyrqbHx9w7IAfYiYNHAs8X8afm42e+MMdPZPMsyQTOrqtuqAcTFCTGbLa6uri6uLovZ9PLV6w6GVjhtAkKHEcl4/+Y3/xEqMHCLGtpqs3x8uH/4tFs9Ptx8fHVxdnl+JaVf0yE9BhtkTVDRlfAfpe4ToHdRPDhVNXUNpH6Y5dPpyenp5dVkcfL1r/5idnKeTeZOBPC31QYbdg/5nd1ud3f36dOnjwhiHLTklfCX56dtVVbbbbXdlOttXe21kFEYNCOGmyjWALiRjrwbwhAGYXGcTib5fH6S52kQINj68eMt8VxYuAZjgIfumzdv0DmJ4Ivcdd16vX58fCw3a1vXkQZue7fbJUmCVCEId7sdKcqDM8OJI401POswzYJwrA2THxMyB2ttTfLExwyQdYqAnJbqyE16KVvMa9pxSB8sAoYsiY7o/4NFOnD/nEyO/afDv5K8Mdp0R8jN0Q2AE4CjHNk4p5SeTmZAkgEH1XpIsgZJBHTVbrv/WfAyRpcKcBSmu5Bpy+jOzjoEgAeNbBywkhSmD7RBSWgI/33kJnFPadT+Ghw5VSN8twLBKRSxUAzCuTMsg8+BfVt5JyE8qstABgERSMGIQCItp2fUDrZrh7ptB2Iba2wBoZJBXbdMeDiiO2jKk8EfUZ7AeOHFg5YLhJzwaQZkZTqdTiaTtm2fnp7Ozi8hVpuml5eXSqlPnz6BXmKH2WxW0mGdj6JEmwhmEc5jlpDiFyBqSSG1QnGkKtNQNm0dKB2nSde0m80qjuPz8/Mv376jxReFHpCJqYPUNE2eJkch5mOLKcsyHqKcEj/nkMo1/TZJjR1kXTf5ZPbNN798df0WRsVWXF5ePq2WNzc3SikQi28+aeFfnZ8+Pj6m2SSIs8dNuTi/+vU/+WdZMa3qbrMrsyw7Pz9Xwt3f3//ut99+//3vzk6maZrMplMp5d0ndPa0kGAYa51kWd/3y/VKBXp+cqK1Xu333/zyL7EgTGZN06zX681mc3/76e7u7t2bq7aqpLdZBOHVutxU+1LYrl6u8iRWgWyaprcD1DyVbHs7mUwmi4WSZrMrBYbx3Am92u7i6fTX/+gfTYui2W/6pny8/fj+x+/bqlosFlVVw60wCNvO9l5cXF2//fpXfQDx4iQpwjhLk1maTaRJuDX88wSAWv2fE4DPx5/X4f60CcD//cuRBMxi8IfPRAfg+P3H0oX3PgqeDWu41zyWvggZz0IVrADEb6Fdssf20bXWOmJNQtCOatJCgy0ATQpSxACjNaQCIX/js6GVc1VVMaSbJaXHZCA2wlmWySNcECtGY5GFsMuhlsx9gBHU/sIvjNQkuXWO0iAVfEbcgsBZ4Yq6dhg1dsYtFm2NEfpCmm0OpTVcBYMKJpPJc9//wH6zFlUUrRXJDuI4imNWVTVmWLSVjTkARRijEQEBY473QZGwzqh6AQ1tfAUlWk5rEYZAfnNIynL0bd287FDTxeIzgwD1xRHH5bGD4jnZoeq6HireAFFTn56dUINn0RKNTgTroHtvwUQw+HxyAj0ESco3VU0PC7jsiEy46FZ0WRofRJksugWjbvkI5WdqxAvDNbIWPXRjjjnecW4cOOLj0EfNyXbKyBBVbKJJIIFBhwctI9JbPGzAz/4Ah3xg7AOwyzL3AUiiERAI7g/gehkBdhR6P6iy5wT7CaQaBoxVlo0PApUWSLC5ZNt0QOqfXVxcUmseddC63ux3dd0qKkWnRX717s10PjtZnIdJOvSuhaA4EQeHYfX0sH58FL7Pwc6VdbUvd6ub9+8f7j5u17uTk/k3X32R5/n93e37H36MDWiYZMMKSSlEHuR/HIQp+CRHtylj8tkkK6bZdP7q7Zev3301mZ1HaY6Guwy6we1qJNLb7fbm5sPNzc16vaqrfddCzSMxQRJHytlqs1s/QXoczZKexHoGOD2bIJQKgqRt1xT5ZIArgojisMgneQGCozQqSdOn9dNqtQHKiFA30F2v9xg2EeAEYGCHobUQyhyattmU68entm2TDHD/tm0DHRazKT0dPLax5UOgHR2YxvusQDGYAfQMzULedfD2wqAkKzeeC1mSMhYf8ix9X5YlcCOHt4wJLZL5sY1wFN3lEJ+7nUz/5fGDSsjBmZssy+CQdRQMPfYHjrWAlys4EIACkMWDBcFR4NdGUXIUNzuuzziQoGLyoKDBfT+aJpRfI9yhbsCom6y8A5QOWTPWbPAEMMGAXRw7ZqMCG/cBULnfNhWt4LTCwJpNk7jRwXHlQJZjQU8FxVCo+pKxH+baqPjrfdOjR9xAlqDtugFtG3D8I0v2IVSOIeAQ2xSQXQMSYGIE06AeXefjEOA6L9AIPT8/Pz097Qe3XC4/ffoUxzGrJSwWi9lstl6vf/jxx/V6jUwY6RYSS4r44zBOAm3qtttXgFdJUHWAndNaZXGw2ayqfSm14i4rt6YneQYSb5YlCUR1uVrPfBVedjjcd85FpAI8m82Yp0FM3XEVsmKYLrIGTQYTx0kP3pFdLE5fXb/+8uuv+t4Wk0nTNL/9/jt+1j9+/31ft6en51GcTxan09Or9a4ySfFX//JfDxYLaBChrwjemnXbzerm5sdPH76zQ5OE0XQ61TJgnFsQhJdXV2CIWQdcoh3Q3NdaQCpgdv367fTyCg8SKVD18PDwcH/X1U2gfRqHJlDVZrtePXhr80iv3v+obCdpCx6crRpYGFoYWaav3717/eoLHUZV3QyDi9NJlOff3z999ctfncynAM4Z2Tzc/eY//Pv720+b9cpLUeSTYr6wXuyrJs3zs8vXs+vXJslNEEMcToVRnEVJAfwPJYYEAeKiFtf5PicAn48/s8P9aROA/+0dtsbRVfHAp+QE4IiZGZkAdIQaS+fPEgCS4RvJpgjnORl4gZplEAWCkL6FMAnkCVGFGrdM6DvCJUkqH4EfPGpuHpsJLBl0ZMKNaFoDZZhAybxIZ7MZO/ugbLMv0Uf2L9oI+Lqx0G7Y7vLY7uAkwYNdCqYaeUNxP59qyqBtghT7Uvt/QLhw+EAqdVJNGBqS3rKIIUOVQtp1KQJwXQtxd9cDoH5gMKOy66BlCS0MLg4J1h7xLoljvGyU9WHpTLI6dcMRrU4JFPrWQqHjcYD6kKUuB1AUkkrS/Tyq4x31ftht7VkfE/cdyJluIMFzAKn6Hm16NPaBL4YfVDiK3x/QQc73AHGh5k6isWoEMNQlAia+dnWIvZAm6QDnz8pRRPll3wZnB/yFAnz2D6aPV8qNpWiGHb+sjx6IKy/QEdK1tnm2NRgzUuQtaZoSN9QSnRqfxF2tg/IR0s8AcBEBoBpSE01jFlwCqDJphEGUDPjntIGCP/aG4w4YEM102xluDvsh2PHisN7VNegpSZIU08nJ6Tk7gvW93UGQHHmgDIMgjsI0XSxOLy6vT08vDWDEaNZPi8lut1ve3y0fH5p6Fyg5LbI8S8G2gPvPEqX69dqE+vr87Ozs5OOH901V9m2t4a4aB0q0dVM1bU/OsGgjKRiWIlA2KkrS2eIkTPJ8enrx6ovX7745vXitw6QZbJimQkEFf7NZbbeb5erx08eb29uberdt6lKgBJ5O0kQ6X+93TVV5iwycsdH80Fk982iBx7MY/ZDptJjkaZFOZkVkwsfl0w/ffb/ebvIsmS8W+90WhXxgB6C8bsB0CbQAMbwhaiq5NIBTAfOmOHYS1N40yyjEtxUdTQtARhgDqceUX6L5jnT/toX8C7cCjtZO0gt4ohUF0xWO4225XB4ruMfRdcQT/gwFdCQJcCzI8T3A9LaPQvCAj7nEcaHjjzomuocigi7rRoLMMxKujq8Zna0JLvisZSwdqxswamVUPCZOLZyZKdwZfX8pIfHexiHPWaKUAAcESR9+O4G/x/lB8DgxeLdrqxbnj2kemxgOr04OPda0UcSAVkpO5tHrgL7CAZRF7mPQ+ZKybNAlc141dbev6qaGgYSXOoonjrMOMpJk4CWFvzYgDYDQwEqLdJ0Q+4UBONNJmp+fn08msP2KEzy+H374YUDfr1yv1865yXQ+nU7DMPzuu+943eipHEDQR/QswzA2aDIHZdWs15um7yi+T11XX56fKqXu7+H1O5lMTKABj9ltOVFMU+QTh86VbRooAh3XVdouMFbZOjBJsTgwVJUqOp0ORRSbKMQujOi56aMoyfPJ5avrKI6vXr2aLmbbze72/pZAZeqH7z4s5udxNouzYn52WSzOgzhTJp5dvBLIT7Soqr6qTJoKb7cPN093P6yWd3c3n5qmuTi7vL6+ds49Pq3Oz89BViqmQRjVfbcrof0F9F8QQnI0n5JAJ9ZHS+JUD7d3UjgD2p5yXbteQzzYlluxWz7e/DgMw+LsVAX6DipeQzGd9IPXJvnyq2/+8p/8lUrzarVFu/T6dV118WQC3w3phFHCdv2nm+XTw3fffgtDMWOgFzyZsqOLSdJ0ehLnRRxnqPNbqANpk5B8LE6O20QcJDFB5HMC8Pn48zrcnzYB+Jdvgah5xlgcmLE/++MLpX+u7j/bVLFsDmId7Bs/ib1Qg0PrHxUjxlJ30PAebN/2nT0SLrn5z0L00Ko5Kl4fT4lIe4cokNS4SdQFeBklsiyZTlEpjAkmxMI12+2WvBVJxoIVZkiVAgnAwUn3+dJIdQfeluRmygAP7gwIVDHZ1+lQQScHAOtwAmOeQ++CCAf4tj1rWR75fJxyBAGq7CTH38BNjQOIQMdJCvrtwcjJQutucBYfojQog4zdYWYtOiqQWGF/ZPhKCq1CHaDsxx7ATHtliQS6qVmWjbijw/MyFBWD4TqKo4ICyOcDFU+KzgHCgAcnWJUtrle03YAHCyI31IQU6TjRDtdphM6jNRkk3lLUUJMk4bopMLJtw2TQKIqYnsFIHh4+/LwcwhRgBjglOJAHZOCjMffBzWF7VyIN98zuGH2RxowOEQUk9p6jIsQKwAKhBkzwM54iUOJj5XWklLRtUNAPHpsMhPJGh4ilnBxcz+mBG3zbYZt8bkcAW4WqJHyFaupQUbhPwBV4Xg7OSh2AYeEdwv0gagcUlZuujeL05OTk6vWrs9PzMI7qul5u1rty33qbFADJZGkRhmkYxWmax1FalWUShVrK9fLp/uZms15qAcdcNtz13nZ1s1nDrqgtSzt0r68vm6ps6sr1HUVOOiS5vbqh6qPrIBI4NEPboDAvZRCGeTHP5mdxOhNhPp2fv/v6F6/efTUIHRhgdYhJ7uq6/Pjx46eP7z+8/6Fv6raqmhIMYC3kNM8Ws9nj/UMgAZcHJICeNavEECkZA43DaEZHpGmcTyLkAFkuA91W9Wq7Kbe7pu/SKGYM4QA5SzQnqejrZ9kkjTG0np6eqgaf6Z0E/0GiJVhMJtPpNI7Tvu+3W5A8WyEaagkiYI3jPM+ReBQFn0lZlvv9nheTcWFp4aDE04GzdIb2of9AQTzndVywJ+jzc7fz5U9uu3E2eICiDbbvokByAnAsu3AlAkYHhyz9RUyvPMmSjn98oYFWNgxhUj9NPMCJPaDwR3s4QfBIpOwH9Dyt7xwqkaYw1gehA496PsEkwRiWqLhGhEjE6Kdo3QpfDeSK0XR2cAGo/KOKLoA5FP2zitdhdYUVIDmVwSMCmrBQf8dhmfnjJIBAdQuqO9l0qTA7WBEiCDyo2mG5Q6dCOZaXNQGKI9gwyCksiqLFYpGkudY6zYoZVGfOvv/++5uPtz0qC6KlFCWO48lkwhAg50gaWKA3WNVN2/ZpPknSfPBuu91tdzvop0k/dPWX796enZ1VVbVaP4HTQkPFQSmfSiPorpCrGh8mIodsVqUbPR+dAwQRwy9Fx4DWThJLVb7cr6bTAjJE260QcjZdqECjl9C2b794l02m55dnr9598fBw9+nu9uz0cr549b//H38dZ7Ov/+Ive6g8Z5fX70QYiyD2lnYEBqmGkejb3eOnRLdP9x//7u/+9v3790aH19fX0/mMkKThxdX1/OxcKEhve6kHh5pFluS0GXCzlwQ6OV+CEXrVd61RMk2ivmtu3r+//fCtrp7WD5/2+32UoB8CoVns5EHb2M1unxezf/xP//kX3/xaRAlMV6JUpBPQpj22LLR32Ri72ncNLNWxSoSmyKdQCQsjATjQYOJMhTHiEoxi1ONwgXSlh+FxSAAO8NQ/EOh8TgA+H/9THu5PmwD889fYn45bEeMofr+a9YLH9mwLxX/kPgDLdPYEAhmjT0oAwjjVqBzTPnJg1KEFXFa8oY4afwftfCiEHmmmR54oMfCOxVfeTSn+ViTRg/8HIG8YTiaTU3imZNvtFrs1TN/Rlh25nlhCYBfDF//yK/YlDGhGri1RvtCqtb7uBgFUDlVuDg6+jP78fQdQhPSCpK2H7kg6jGjLI5bhEVaCWJ18633vhQHqFAIpoQbxdACkZ9htt8Sow65sNArvdJ4oyx1b/xzpco2SNEPHYHdwCGUoTMGqGMemSLM4ocr9QRmpbSqlUHHG1sWySARwsh7BGenWgbbV9bbrhn6wNdQyJB4dxTZQWdEQ4gH2h1DyFuRmUDWKAhTYyWTCSCTgKHbb7XZbVZW1NqIm9cGsGd8o0XKxIQx3cPUslMThP9jdDjkHyCOHrXSgtLEsa+ZwkJrTs3+FiRXfHX7CJLePMVzuayjxkxxNEKDxMsrXomKHFhcRXlj/iOnNigxDkXmFIQIha11do0iHgIbgJlTD68kNw5KOOlpfrseohnR9EidZ7qWC4Zf3gQ6FxjBGAiOQNnR20CqYLeZXV1fn5+dxlgqttnX5uN6U+xpVwKtXeV6UZb1abmIKEONAp3ESKLFZrT58/8PNzYc4CdI0XiwW8/ksNGa/WX+6+fBwf9tVe7QI0sQOfbnd9F1DLkB5mBZVtR+aMpBO+84O7dChV9P0Q9d7GabF7CybnZtsVkxPi/nJxdW7yRQC6gSRQhjOSp2r5eMP3333w29/V+93oTHSC8jgVvUkA9M3SZKu6/b7/UjCptSdjyMTl7H+SvsoNovF4uLiYjab9X1/f3//+Pi43aLCSklCyjSAsizhKkXtsjzPT85OvfcP908IGiIoOZaEvEqS5PT0fDabAb/n3KeHx32FFeAIuCcd0nROR57ndV2vVqvdDtxfZuxwgsftC4bCO+eyLDt2MKA6TCIEtPod1+Ejbg3Dg2FCL4V9eP1xfSPJqvYnZNDDNx7wgfKwtoCWfbQHBtbmQEvo3UtnALLrwP9KITto/9MdZpddQZIDzMx5Rs8Tds4jBO8FVhXIWYKgJS3l8i5LIhMA9BKT4jAbKYDF64e6RUuqrho3oIVLnAd1TADo9+cEAP1HkoomYj2UhAwtC8VsDug8CDMAG3YdEou678tGSFKYYNO2g1EigKigNZORQgRtWZPQqzRZVXKJZzKdn52dSRWAAKbUm7dv0zR/f/Pxxx8+MCfbOcFdIDxNE2KZJi1RJ1QFDWdqeNLdHIaBOm/70Khqv03j5O2710mSLJdP+81WBzKJYvQHAYvqlEfTFT0Eastw7sK+0SMUjRBBx70MFSKj4jiNQh0pW+621lo0naJkdBOHMa5p+wHM4PPTk7PTL778Mkzi9x/uzq+/ThdX5b7elPXJ+etocYrAWkbCRF3boj2rA1uTDXBkhBjE/na/uruDrteHu5s7a+0XX3/161//GnoJOsryQhUz4QU6adqEaTZQJ9kEkUxisnVxvu/Bm/LIy8RgXVeh6+n7/Wa7efrw8MPfxNoul8u7h/vZbP6LX/5SmfDjzW1T98qE1qnAxG9ef/nVL/9CFFPRDqI4K5s2jSNUYeodwGZJCJ016tKTuFM/wuW0JntgyrFB5yeTOxOiNzRAL+hzAvD5+AdwuD9tAvCvvkz+0GeiwztWan/6uRxujqnC+GKGAD0LZkP+hnUAhVQAQKKKxsWwl8hXrgVyqApwRNP2fQvrP1KxPO6a/L28Lx432jF8V3AkgesQldmoQd+zKMH19SU5GYH/t9tu4Cra99K7ti5ZMeaIu2WTsjiOeV9nfAJzcb1QnVANIA2w0eVCHTV9EcWCykYLNu/KoxUuuVoent0IMXJ+iA1ApYzPZ5IuoiKLGgg0ZMClc4HWCbxiwXLgItPQQfYP9UsCcsRQv2cK8nOvho8GFfoRy3P8O5t/oXZLXL0wQJU0hRltiMyJbT8t1EK4ZYGSVTjCgagrAn4wqXaA+gultm6Aaiia9YIBP1mWMi75QH8cfU9PTk5gOjObTqfTKEJVbLlcwk12X7EnsdYoyAWBsgiYmzDAHglz1lBLD9IhiazjOQHeSZcEXDm3a+jbIYTU9VD8d9gJkJYQifyZsE7BAee0QQAPBH5MQRBCqoKgwDzqiLlbQ7mO0Nt8LVSsDFkXKAyD2QyJ5WazwyOp6xbimLAMQ5oLuGwD8xw2TqNyIMT6pYY3LTcpMEhxcJS02Ww8WlhRmmfz+Xy2WABdkETSBI4o4HUNTjaMaEnb/ofvftxutxqRGZK5SZFFCHn3f/e7vytLBK9JZE5PFyeLeRZBV+qv/+3/2dRV1+y1FGmcpDGoNUhKSR8zRLujF31loZjeIAoUou5d1eJag3SST0+yyalJiqI4mU7np6enRVFQAoP+lKAMc7teffp4c3d7s99svcMIj0z48ARjVGMA3y+Kwlr79PS0Wq14DDA1gnNpmv5tQJAQmn9YJXihCAKAlYE9vr8XQpycQFidJp3bPD2yYVbvoEMfx1D7bbGGjEoseAAqSJIEyO+Txbaq92RrsF6vmWs7GlB4P58j9Vos4CoARZfNZr/f77ebo0UXaxvwONnv9y+Zu1yDoOaG/VnlnpcpjgU50OdWAGmFKYd48RjzP2N+ONP42ToOoi0l5Qx+Y4fEnlYViPaSlBl9I/ULMXsxdtj0eDRa0ZDPJNEeyjq4QEPcgIOwGCXuaCc6lNUDbUJkApM8G7pGCVnkObqI8Muj0MsPXomyrJbLdVd3SsLeoWnaIss5UyEZUMbwwRcsCgMudvQWM/ooIyYD4CQJ+iLbti+rCnni4KtBW1wgE/BZbQ7JDT5NioDwkoFwQDkGmKIZtYMAtY8iQ91mnm6nFxeY2b1tQeSod+WeBKkgRc9gIUlJeFZMnBBljWW/arqyrHpKEcMY5OCuqW8+/ijc0HVgUp2fnZ2cLKrd/ubj+ziMwjBIIiOlx/LRtWGIfHXE/5DUNe8OUqKVxMl/Qxr806LIp7kdfLVbnU6zriohoRvHtscaDuyZVoN3aFxJkWTpdH5yenXx6s3rydlV2Qbp9ExmE+DgfSBMitq/CLDOUIHLewJsYYdwyvdC1qJelzsoiX28ef/w8BCFmBp/8Zf/OIDufuq1oWTAwBPGYgWjAcjGW1hn+bD9oA184kRfe+uE69A3qZ7u3//NbAK9h6enp663p+dnp6dnQRiuN2XTWYD/rQzDpJjO5/OTMJ9Zk8NqjMSvobWEsgv2PpbW4F3z2aYTLV5yAaNey+GXIwP8DwVHf2REf4xwPh+fj/8pE4D/a8Zk8n/9Kn3x3uc3j02AEaX9zAc46gFRT/hZIYi1/8daOOxFqbhlfTdYOLyQvR9r2x1B0i84BqQaRDzF3WaFzYKw+EpIbVhyMeiaFpUZ0DVR91EB9jalwcSFLRmF1Jx1sC4kRSF6kuWz2SwjZQZUobfbttw2TTV0FlUc8idC+Nk0cCWklIM2dbJKgdipWZdNnBdFmjspqt1+s98xyrMoIB+OYIWscFhnve+aODTsjHvwDRird10DiAjfSXigQ6U/RLe37QjOQ9sz9THAyZVykuXYSolqTHemHX0J0PlGA5djEYJQEXhpzI5GLuxLngOiE/ageSHTSQr9CrU4qpGjxgbgk1VwU4WFr1ZQeOOejxXo1FtWPqFwZDwUoF9SC4i6EmSCy8xxnN7e3gIIlKMVwD0BBsY83N5XVbXdbkvakqFGQqVlo2TboapKaRNknZQKSIe7YqqAZ4VW+n9k10DbEJXvgBWhbJMEECkBYB4Aj1vuYlHKNyK66ZL5BiYRggaO6sDXJkEP1lk/mi5xtsnh+/X1NWFF0Fpqa7KpagEOiUNzkF6hHGNMqIIwSrErIzyjgCwMgxDPrmOVJ3pQJopIM2ORTiYaVUEIOiF2abqma8EcaJrz07PdZttCU7RsdnWgZRrF1g1nl2fL9eru081y+eiGIYnCPE1iGMXpti6bem/7lhgbo2qNl2I2n57OChOIvto21c73jZT4V2XCwetd1W13bed0kk/SbH5+9joK0yxP4hRIGGzXNJgCrSEkuN1tt2t083owJTD9g4DOt+FsmaNnpRRTaY9gvIOKDiL3Yy+OX89YKY6hnXOr1QoqqNYuFouT0/l8VnRdt9vt1psN3kuF58HB4hScJERbIwEJLZkoXJyeQ5aEdBi5K8iLG+cY1trT09Mvvvji/Pwc0kxV9XB3izSAcEFchjiakBzXq5eLJDcM/eB7ePSNP62woQ7hX2GByyd2iQqpYwYTN7KEO85NTh64JPG8Lo9LrjokAIRYe5EASJoCzOk/jnYwqTQZhCEhkLxGAkAoKT1AJZ0asCRjwC1EVKaJoSvkIPBYZZbCYHGSZ23dtBXmgkPjLjo7wf/V7d7E0KihKVx7EgjCXGh7+A3DARiGZ8QSIqpB342UeXIYp84q9WMDlGwAJiQZSXQeUabwde9h5EfCo1itnt3ohZZwUFGSHI6R3MPZICbRCD5g/OZ9nGRJntdN1zuwpIAkQYrInm56s1pnOIo0z8CVOTszUdxSEaHtu+1mt9kBO8pVfDf0i/nk5sP3j4+PiqSWtUSPOkvi29tbN3RS+ixN0ijGnSXhgECHYzGIrI4t6llAwJZNLQXRZCvIeiqlTs/Prs5PmuXSNxWWyjhua/RIefMKQtMNfeewxpo4mcxml29eLS7eLK6/SefnejIVQQolHB0JYToQtCKPgj1Go6K0EGUd3wvTiXZvm2a329ze3t7f3wkh8zz/8utfREkaxKlUgcdOFNJTsCFV1mkIUqLL+xjJUGgWhurroW3AG8HA6+rd7W/+9t9VVfXVV18tTk93JczX5mcXQhk72KoZOoxXbHhRlCmT6Hhq4SvgAN7iLAW5HmcCfyjcIYgdpSIU+o/n8zkB+Hz8AzncnzYB+JcvEoCXtjK2f1alOEqvPPcB6H+ZCcCbSRjGQNBC0w0b+RhJWzQzAcoGaB7A9+cKOuUDo1YNEMajdJojBiqar1U1oBvqGF0OYUpCW8JlHjU++qnECTxfcM3ku8RFWYSw1A8FXYyzDtYgz9IEQVtTkrb4qq5rFhhFJbituUKPHZ1iE3aump1ckMkN1m5sUGQqpLW+v3sYUTcHzR/UUYRrqhKCp7xJ00H4eBzHQJwaLJJQ5mi9j5w73Er6VyQDgyG3KSRL5BnJVlpe9E255+ByRFWx2dfhE16WISktkiYa9cVJMQiQlfHzNbTzUerC9k+qRNg8II2NCuKByY0zpDp626IRjFCHTmT09AQiiNqzvWt6hFZZlp2coGbc0YOAWTAIi9CgOD8HMGNSTKm9DiWJzXK12ayaFtseBFuFo2ol4q2mrXqY5/YRcTa48M8hEZX/4frEEq4wP6ILhMgPMETAQR8wbPQWejiwPT6MZzcKpROOX4njmGThF4asgNNyuJMHEwNc/nw+T9N0WgCa4j0EfyASUlX73Wa0ieCpNH4XWiqow3JjwICummYF8sYISbLzsiUtKcjkT4o0K0DRgGkGRgXUp2hgN00j2CvKibaulo9Lb22WJEqpx9Uj66uAYEI5CSjv3s4mhRs6zGI3kiv4eruhFw7+ytMsLvIk0qLvasbrUxIFmwjrgm6w+6qrm36SnYYmLYpitpgX01yHoOIAu4E0eHBQ9+p6+EXxdVhhNCNVGAoIUiZxP16KaT5PdpDjW2pEkcLVMzkeHJKQMqWmabZbkKRZVSkv4jRFlwA4t4Zi1ApcB2IbI9iKUzR3aGWBzlWUAPdPDwvx/WazYcBP3/csCcppSVEU7969e/369fXlxdPy4ePHj7e3t5wwcFz+Uqf/pd4/GDikPg4bw8H3FmKZGIlWkIINeCmIXYlcjsQb+Yk8tjdfsvNfJgCHAwQZCvrRZDvYaaGTw7QlSAEDvMb6DVgpjYbMLyVUSDuIZ0TpEMPaeFDyekBUeEh8Ev8+TeP5tIjiAEYqDcI4QO2NkULYDtUZrSC6UMyKYlokcUpSqm1T1VxYAYyGfA9B/hox8eiI2g5QeKKEje4EnACw9YoFiEgZQhlBNBb2saKz+CdIRZDVLod9YRQgAAReEXZjEvd2cEOvlYoCHWc5hgRalB3aG0GQpDn1KkEit06UpKYPg8gIxlVS6ChNTk5Orl+/ur56PZnPAAv0vq7rp9VyvcaAgxdE3xrtYhMUeW7t8ON337//8EORpV9/9UW12+5326baKyVg0kaelDSAY+YXYYESIkqy84vLs7OLfV094YN3bdPv6woNJR3MsqTQSvRtAndz09SA38RhYL1PkoQKQorc3+E6OT9ZFIvz17/6q8XV6+LiWsQTyEB4bVXkwcSIUBmhewWvNLaBE1bqQdgWq+vQrZ4eHx4e6rpUgb6+fh0lWZhkEq3KSCHlRgKAJ0XrLS+YYzEFUC5gdoa6sUMLmh7wRV64Tgz7999/+/B4l08nr169yoopgnovdYiOkAcla6zLSGGA/DeppwRgPEPUbaBoIal+cKidHSYCSOUK9p10PhBpJuEGesnfE7h/TgA+H39Wh/uTJwDHsF69DPEJNDKiRX/6mUe9IK79c8gZBIBUkqsiaqVcxnBOZOmEdNVFb7ExelRxUATLswmqYsBNIuZg+UUhnNHoKXPQw1IeR0WRoycAE+wIauEX8xnrrJEuJ9BEjMmxA5xoowAhHcsyMqvvZDEviqzIJt5TT2C9hCY0MDbQd+eyZU5SIZAeAkgUhgZYyuN4UhTwKncQZ+SWRV2j0sQFRe5sDF2LPXoYUQRH9C0LEbK+/sEniWUZQTZlAUqgcslOC4Fa0wLfqgwph4Yjd04rJBgUhB8lyQltQtrkZFPwLAtI38vy2wdOLdUsPboGKIVS4RxUY42TJ3QS4khC7iLGARb+hZUpjwOLPGUAlbuFLrgOYvzDaMME9UcWvTm/gMwcmzpzZMZf8fXXX3MyFgSqreqnp6en5UNZlo8oTQFpik3g4AMgfA8jYFI9Ioo2fh6K/VBd5PD8oI4CV6DBaY7vKZyiwUyCttBLobtEgRdSWn4NBOwJ7nOwdAP+RGu92WyYo8LP8dgxqKqqyJIDghyaM/zlnz596vqmLqu6Ho2BxjARhWyMUM6mAEDPioiCVBOFmvyex4slMubpxSV2b4fcia+hR4W1YlRWFsXeDevlqt6XA4nt4IOh9BT0Q1vtdw3cwQC8Hrqe9LXgvIGwSUtD4SAubbva7TYmkIvZdFokEhFIE0URpQEoQMZR5r3fldVuW5fbXqFFEeWTopgVWZEHBLcDowPJetd3DQj97OPmZd13JoJSi1RiQCevQ2EeHaeE+BTageViWRKUXN1Gta7xPjPpXZGwD257AN/WOO77/vHh6XH5WNXb6WJ6enoKzX4NiSEwOqHa3zQ9gnUGHMZJUuR5kqZtVzMlnTMKa+1qtVoul+wMwJC/Fwwle315NV9Mz87OjDHb7ZaKpvf7/R7djxf03JHEiVuL2raRASyr4FtnKaC2fd1Z0s2x0iknvRYGKmej3cHxG38Ga3zJJRh7bApoQCptU70UI5wXFc4H4IHCuQHDThRcMsaVgZdI9Es14F/UmKK/kDUhxBdoGd+D2dIYo2cTOGgFTA8nQSRjDO6bBnJmu92X5S4v0mJWzGcn5CeFvG6/3+92u6bGKgozdNsqqIhKQHKMocL9mHDATGOEAIFPzDUE73ilIfVP2IkH1mPkkC0ddiFEhh7kAbi1KxEGlCOTqSCgaE0FgaAIDNQwSpDS9L73Lk0n0JuDgyGkkRkMyYRjBriyb2CWZa/evnn99s3Z6XmcoiFctc1mDf/g5XJZ7bf77VNMomo5Ga3U5f7h/nb5cH99dTl0DVZ7onxJ76j/GZEQAuA0XQ+R3zBOrl+/vXrz5vLqzd3D483tfVnVTd9tt/vHp1W5WX5xduLaCv1gWOlVJlBpnEjpm64l0bVYBKYdbN21CJLjZHL+9u03v/r1X/4v81fvRJgBBSSNl6GVAcgAvEGjAkZxA1KdAUwAirWHulytnvb7nbXQ6Y/TNIbjgVHoAMTw0rYANB5ijudtH9oMcGnuLUnEaT+Qnw+5p/tBGgUZn+++k4H++ptvpidn6OFDlpR2dhVKgkHi4TotgCVjKtoY2YwCnodY5/h3dpw5tCBeHp8TgM/HP5zD/WkTgH/x9dgBOAJ+eLYxMZQNsMbqFAWUR4UZTgPooDolfIsO3AAKtHgjNwahj1HGSYgwtj1Cx8H1SZIZ2L+gegLce2yiGAW5qkKsc5TohqwnsXh3kGU4+pMf5HegQtlHJjiQO5n6hjNhoHZH7j9JiEYzfxrKioHK4mw2n0I51CEN2O03Q0uhHgxf4QpE/AHUpfZ13Y2hLUQelaFCoIe6Di9BlspOHIEMwzCboPLBIenIE2UZ07qhTZ/kpY+ion6ou5o4r2OY/uwwKrnCB4FMYtqNe1aRJVxFRdRIVGPGDuV5Ppr7kMDn8eBC1LFmSZU4dWhHsN1ypwRKfaPBAi2gYCtC02ZUyRzRBbToI3JGb4dtgfyubkODmx8lKLsOPfYqEthGZT1OcyrHIvCC3PcAVf/JJD/DcVIUBanl4Pj4/gN0Nlar9XrZNy33kUITlPslaZmQGZcle05qPY0Rz6FuOgZSSg9+VE2hlgfr8eHFoy4KGMWHe6kRyAKkAGnaUd6RUSgMUuc47Kj6MsJUjIEXM+AEKsnSBR1ZhoB+V5Xrp+VyBQJr2xJkC8KgMTARIQJ9jjzCKDEx4MKYGwl1HgySXpTSB2dIFDCENyoeWWf7arff7TeAMdQVRFgD49peUMZVbjcG4H6EgNDXwhiskbO6np2REfIzNw59HDz7yQS+BNZSgl3vPeSJANw6O5njBg74e7sHQV8jXoyHXlYNNPjbvoNpwAStgCwDpo5z4B5hECK/kQ0fhBiOBGtjdXwW/B0G4LYNEh6GkGFUMxWY872xJzAqvapDNwCKUkzvaZu+65uqbThFds5h3aCgzXu8AMrywHIg51SBLrKcsGfpqC2rSCeUkH7e+2+//ZZr8JzG8/MinImKEzQMeT05KoF+/PjxObU+HFoAic/dPNaPwrkdav/Qe4fsbIdoVzoE3uTrcZzpR4zZwUj3OfofnbBpwHDsTGkvgiW2LvEoWICUj4ScEPPjicG8A7TQMUVByRwZOrekyChPE1mFXS8wI7jYsd2tkRaa4OoaPhXIjUsUqvveoicVhhoew8PT8pGzgtlsdrY4m06ngQFl5eOPPyABRga869tGBxLjKoxINvqQAFC3mOW/gkMJCe0SEuNkTTPQDMBdBvt56IX1CpgnhqN6UKECLVHyjzRQbhBIkBjIHWgAIJzF0aSYZ9PJft8MYPcTsR9rPit1+tubT0KgGBEnCcky92EST2ezL774YjKbzmaLkPhdTdduNptqu366fb9dPa7Xa6MVepjTooPq7tNu86QAB4LGgxts24GphcoWtZSTrIiSdHDANXkd6ij65//iX+eTae/kp/uH27uHsmrg8bvfqq72HbR6lXBdXQcK6Y0lwxAoCMdJlKXShLCSAVNH3m2q2cnlV7/49S//0T9+9cUvRT4XHj5iSodUs0eZgJKs0bbdAvUH6BQovLbr6rKuy8GiWxtHaZSkUkcS8scGzQRrMVwOscHhf1CRKHebNITW81CWu/VjU1VRGKR5FieZk6K3w3q9flo/eQH/spPL16POLFqhhtD9BM703EodFWnHMc+qgxRlcLIxRhVjvR+935+c0E/CnWNHgKQggL/8nAB8Pv6cDvenTQD++VcjCfgIGuHpZKBI8wcSAMt+qgylOCQApIkySp4BIU1FqjHiFDqi8gxvqIxF8CTCralyzzQvZgpTme3ZtfdlZMA+i6zbzV17BG1DF0OhYizQMsEA8hUAHkC5r6lr51wSGoYBGGM2mw1X/hBABCbL0zzNwjBYL5dIHQYL0iDhDYo0BVZ0NpUwf7G7EoUuOzjUF7McERLOGvwEjj8aBHDt0EIB5ii0fyT57bc7vldcOBw9qrTowI0blT2OBGsKHLErMwZFC41bTa8Ko/FKDbjECKz4PngLvW1uBXAzehwPhNs5QhdYtI5lMQ9Rcg95TQiZwiUtIv4Ger4UlpD7F+8nFrQAtCN4DWezLt1ZBZiJQ5c/jFFq1ZTyVQ1StY5Kl5z2GEJ07LZrFvkJw7AoisVicXZygngrAgl7tVrd39+vn5aMKu66SlA8cFSgOkZg9sW9pduKLgpKzdKgZXAQaGL1RG7RHLkB5PIGgq+UPklAEz/aTh+LuygokhkQFKuoGQVRS2eLLD9aR6GtkcSs8H356pK1nhA51fUSqcC62pd9hVicVVNJXi8IE7w+yyG3BwvpBPB66iSgg7FZ7zXdLQmFJcA3rOu7rtlvd5vVE/pC0ofSAIOU5IPt7m/vxAFiAmmqrqsbQB3IlwGCjIcciZNMH2gVkWu1l5J19BkUhEJ7ZIokyaIggN0RaA6w7HBhZ13b9E1X92jti8BEyuD+EPRMI56HikvDnTcTxQzpOWbpPPxAkj6UvUcPMjqYf3zQwOU+0ghtOXqJoI/FDoBRCLPqttlut7B29hJmy+j+oes4JuQDnlfTd6FGGyGJzQSZPtIels/nBG+xWDw+AhGBEJB03NEOXC/TBFVtYwysTCcTKeWGDrhKHULz5/K89yGIOkRXPTiZkJ6Zi8IE4WVnu74ZkJVgfnFH7siweu5kUr3j2A0YJ+YBFkUUAw6difBAiy345XCSAtyDvf1G8SuSEzh2/YhHBKx8Goc0+jESmDR1UHjTWQqRMBJOXdd1rbWKYnC4oxArdg9VK1ocWOPBUzbYtoHS0ylaMZPJBFwdaohW9X63We52m7YrBaybgiSIA2Vo+LPf2eiPzuBMuEEjlUWPg9Y50bmerCcpvbFycIGzyAeQ1HlyKCOychyHGXJnI9yARrAiqNiuHJydz05np2dZMSUwm6jaFu4XCKAxLIUV+92uonIMB9nwejGmmEJAdrY4hXFvgfQPg2notk+3959+vL35tNtv2roxSl6cn715dbVa3u+327YuNdzBSb1tGLwbtAKoTAVmOj+Zn5wGUdo531o/nZ1+9cu/mF5dNbv608PjdrdfLtePD3dyqFwH/QDpbF9XaL60zXa9PD8/7+ygtJksTuZnZ5P5IpsUJsnvHpY390+rXTk7ufrFX/yT11/+IslPnAhVEPnxUY/CnWMFndXNyGlRSCts55CR4iFGUYKGNszmoAiEf+ag/dntnfYjEAuQXPTVrttvkfA3FdwAm8oO/uTilY5ilHKiqC63T+uVCYFWCtOc30qaGBCYZUIxOj68MfFnHzapF4H4T2r7BDI9nsl/QQLwRzYBPicAn49/0AnAX32BAtvPEgD+nUtcx0kyYi2O+Lzjtk0VWg59WIN9IFIvq7YLK0LadGNSumTwQxCid8+yKKhHUoGW/gsAiePm9LIYppRqW+B9EdYToJP7zpMs61H7RBGXKchgt7KvKsr4YIBxAGdJuVlrcxCkb+t92cApSRkDB1CyrqSLIjwD103rcpfnaVFMFdmO7koI2zcdAMSoLVENz0T4QIYsPz4+ckX2uJGPGKnRTfNAxj1AbOIElY4xluWNnO72gLoXmepC5z1ADE6vaaB9jpZ0AsQRxfoU49XV3ruBJDWJWXUAFRmSjzwGyscuDfscMYIG33wImOHkjrogh9SoHUKMGwwByzohOvC4TspeQIiIpnU7MAZDKI0ia447X0xnUL3ogCVgPH1gQOdO48h50v1pEBiFYTgnXfZX128ANjCG5SNXq9Xj7eNy9UiSLVQ/pFv3Uob/ObEZBcgxfp0M+N8oZhrdKrChMadtTIKeee3AFh+4HC+NlhizxEPl2IwCnGxfoqpKcj+c7hIr2sZZinjo7Gw+nxtjyrbcrHf1vlzfP8FAoKfuBylgBoQYTtIcIycmmmxEGlmwLjaBRgGy65pdBbo5oSZw9aeLGei2NeDD5RpGYFmSee8uzs+rptxt9lsKUJg7CyQDJbHHQJN9XTGIhhZWdEEYJ2mYJV5AUR4vtoOBdKk5n07OZkUa6gF86AaiR0R+IX8K36CE2NZtdXJyEhik8BpNI4nxA9USB9T10QmEg1ce8z89ji846IyP8+Vo94bQGXYfmPgRoXo4XBtQowcqhlpuLWDkgBAhZAeymxo76Nt0nSTOQN9WkwJMdIYAsfpQ13VnZ2dowgTBarW6ubnZ7/dpms5mE9gnkWiY957VbBPiWtQ1SrzdT1W/NGiYRF85OAETvh9OwMZErI7FWHvSBSbRnhd4hp/pL/9Mc5nHNnRmWaeWCZFeUQLAkZpy6AOwP/mYHlMCMKZ8xOlC0K+ETyIyWKRJTTKdY2UnMokUyNmRx8amaZqnp8flchlE4SmOs9DEwB0NYytsNpuN+XAD9nYYovuaJtHp2ZyZxF1b7Xab3X7VNLUfrHbawONXo7mI1tPQDygNaME4HNYNI9IO2nqu6moH/gvw4t5rOyhnIUc29OBJU00FNzw0coKSTtK0e/DqEwBZy6rZ7LZ950Rgrl69mS1O8mI6eA+YZt8zWUh5td9D8QmUAIu2XhhhYHgpYBAxnWKcxEQKytI4UGd5dPPjd9/99nePT/cgNI9iqf4XX31Z7rblbstUYJaWBrhQB7CMcDaK82K+mJ+cL84us8l8U7cnF9ezk3MV57DjqLv3Hz68//F7aB9Uezf0ColOFxvju269XGJ0d52XKp0U55eXV2/evnrzLj89F3mx+fHjd+9vqqZP8pP5+av52atschJEGal2HqJ/LtxLZUlem5qggxLQemLhnaFpA2NgrIdhoxUMUkCWwE06qqiNQbpXAmvXUG03D3d1ucMaUG66quoGvzh7e375ZnqyoHdgsxfDUNZVVuTwpACwF17sAssEcYhd94JGyCgjbgHAdWX83p/EMy8Dmt9LBj4nAJ+PP/PD/WkTgH/6DoHgURn6EPozrcwxXORQyx83Jzqr5zIVK9QdMLIyiEDjG20BOluWqMFT2DbAJSUJ82wSJuFicRrGJo5TbUi8THm4fZKqvCFNQGYSHwOII3Sef4G+yWZbVfvl0yNsxUhxjVE3IBWRUSWg2NYlaTSdzNMMl0mI4R1CMYvtJDQIkgkI08ch5ICCIDg/P3316lWe51AGXK+adt9WZd9DQDAtcq3MvkLusduVqM0zMp8q3FzdnMxAcmW0EhuWkU78aMrD5lN8oHaH2BrGPeP2T0sZJwBKQou6g+j96H7AGZEJg/HtHiV/9LaJHpBGEejTTdW22HcFqHIE+gD4ajQtJpsYDgtwGqyQ8/LQUg51e+DNAqqLnQNNGYB6KW5wsCY4qOhIqdtBRlESRlCCazqKkrGNiHyC6uDF1askSVjS8fFpVTdlUWQTQDMKdEXIARdQE6rGnZycnJ+eFUURhqi2ltvdbrf58OFHUKc7NicGpusI12Gy73NSCo4AdQZgIATYxcGoBxVaegsP4dGD7CBaNdLEORc9jjd6PVAopBmSaWMcqpfd4/0DczBetgtwc/HEAFtK0jTPi2wyCh9Vy91+v2cJ1LKpj6fBuPS0AEQK/shmpGEIB71XY4IeFgVN1yF9atsamRhpFg1t93B33wG0bST5DUexicNEKD90tm6hcGX9IL0aXM/gE2jQUDoohEtSukw4ocLmQgVw6oiTEO5Utrd105Zb6fp5kb69vjo/uwzjfLXZPDw9sZCi9WB7k4J7wzozYC9COJVGhCBoGdVrj3H/kRF0PF4Euz4KDZ4bu9aOvTC8pixrCvgCij5hz02tm6CYL+IEgXvTtNs9nIOoAwZ6IZUAqKZ++DqNO6ZrYn9mWXZ5eblYLPq+5zYgcz/YreKQy3XbzRO6a4EZBkCDmJ+dhPCZYjbR0eCMZIgFyA+wDsAw5Nbc0f4ioKF1XMSIIjW0DTqEGANHaspYaxh1ogBR4yWMDkxnTgaQlZMRAb2FwC00G0kvc8yEPSBVFAJhneSAiav+UrgQ8DNMNCoGjzd6Ppm3Td92kMnHmUdQbLMCc5NPT2tTTGaU1oLltV6vWJeHlGrrocWaGUXG2b6YpPN5kSaRdV1T7utmN3R9uS2JGDyCCem5YxayjwrKC1pHZC6O/cLZzsE8m+wmpfPGQaYYhiQjVUNpABfbDiyyNMny+N27N2WFJd2QDH9Vt0/r9Wq3D0xy/erNxfU12wJUDaVtBEsHe0SZ5erx5uZmvV5LAptR+jebTCZOoA2F0kycxFGQBO50XlT73W/+49883N3mEFEO6rIMlCjydFbA7aSuy/0WwHqypYMrmaFWVdO5OM3efvnNmy+/SaazDttcFGWTpJgLE7adbZvy27/9d9vNsqtK4frM6LP5LAr1frd7//136FT3gw5MUkzOzi9fvX13dnEdzk+FiSGH3zq4ZZRtlE5np1fZZE4RMLR/aGOXpJyvBseyrDCR9wJmaujEkAs7PFykpMYyGr3E8YJ40IsIgmjFSBhcV5eh0aJvbj9897f//q8f7j+dTCev33wR5WeTKRZtYp1rEUcC8kfcgkASwog+DMmxtniMaSDnQEH9qHj7jPn/r0sA+HN/Fv0fspkjs+HwZ5o/4/bwR4VMn4/Px59RAvAXb8EB4No/+tdE+WVX15EMejwA6JNGYoodheaPnQHGbetg/BdjDJWU0n6QVV3vdoAeYimALbwRyodxKpRPkuzkbHFxcVUUmfeyhfQeaqJjwY8+nKPDwWN/ZUw2eaVYDtx3mzVAicsVlP7ZoRNNcey4ZOOkuYgGohg+SIUhAA6sNkBKyeMqdJB+g9WJMebs8uIXv/jV69dX5XZZlpu7O0iSk80Q5F9ABi2bLTBBWPehGk1I5QHg+CGKIDxyLBzCA6sE15A3foYicK6CpVe/tCV+rg4qiQyKFQCPYZNQUHCj3dDS2weO1DV0OwHOIedO1Myh1MKRCoFeCHwC0b2Day9jalHXP0axTA9QBMkgzYcxHiOtcYdHS6KHGCQvypYMnzgE4oS9oS6KCkxZloMDJPTrr39xfn7eD8Nut/vt7/6ONSKLIjtdwCugqXAfOxo/SYSAG7342ayAsoe5ffi4225WT8umRItDAI5CMTEqsQ4mQvjaAJYxxMmsywZWPrhKo/D0ZQ/TUjapYO1auD0BT0xS/YFC5+oASqFMAJV45ATw4yT/WpSBs1R6mPssTqZoPq03e1hHITjj+5BlBSqpxKWAgqoOACCbFF1TxXFoyB/08fHx7u5us4ZsfxxDfjRNIVPLQwWBVBgkIfASoHtT+ZzUC9FXWy6XPAVCE3vStF2toD5UJDH5PID5TO4FyNRQTfUSY6fHQCFNdfwrKS7SxR643cfWB+TVlQaqmgj0rgfySgl5dnZ2fXl1dnHetu2PP/54e3vLmpsw32UdGTegyje6QBCw+2C+NjJhyBFkRP6M1iEH8oZ0EE+BmROq5wFSYBTxPDQZqdWDvpmnkJcGpFBxBsoEQeAiL5EbUJo9QDQM3PRRaXRszelADJatr/kppykMmKfTKSVXkO5lNCBzYMLISN8zfJmuDmkM1xHIbnmserB3NT93ajSRAKS3Y++UwtwogtXGYWYdMIFS1tXeDvDTALqKCqQ0UAMIpnFeBBomlwJI4pfzISeBoLcc6ONa4B7+4j4ftEo5VTh6YTNe7qBcROdzIMCMNYWuqci5/MAxom/nqIlkWqGPSbxw0CfCOMyLdFeCHCA84uZABQN8bxvhQT0PAlFkaV7EkQlw8n3/9HjPrQPM7gRr+5FWQaAvSJJh4aPxr7RuXTeePT10UgHiX0gfgTDejAejTEtMp5PTs4X3/sPNTdN0eTEZvHh8WlVNq6N4fnL+7ouvrq+vnZcfP368ufkURQkmURBpDfL9brdZr1b7/c4orHC07GBDNCGSz7beI0OPMDKrcrN8vKt2Wy1tZMK+RYIawF87JLsPCPDTCAfAhhksJoo1fuRhmn75y79MF2eTkwsRTwcRtA7qnlFg9su7jz989/HD931dJkbNJ8nV2eL87OT+7vbDhw8//vB+X5VJOrm4evXFV1+fXb81xblKJ9JEtJVGIoiEU13Th+mEt/GjgA9z4cbe0YvImNVZ6S8vA+bD1nPAjh7+yPEHOgDddun7Rtjm4w/f/+Y//HVT7+aL8y9/9U9m89PJ4lTEsHTgc8Bwg5woQUVffNY4UPkrf4/FC0r670cvf2R4ziNejXdgTLCxIIQhmmSsWYjTJPgi5c5/1Od/zhY+H/9jH+6PSgzkL99mh6Cfi76AhBw70Swo8dwi8AJqYfTi0ffx8LvzA29zvHFCjw/4+CjOZqg1cgGM1BX3NTR5iumE1asFwVHm8/nFxcV0PjNBIiniH724qKKGBIBouEczUUW+UV3XeoewckMJQFujN13udnUJt8Ix3EaYMQYEVKOHKgKtAMC8K+GpIg6pPgo+XAOvK/ReAc6Oo3/z//iX8ynUMeq6vrt7uL29ZZvS6+vXvJPt9/vNeldVFUW9enF6ztoaL0yF0SepK8Bgjlj/5/0ZFjzHPOqZC2hIYeP4yvFxKdkNPUiHdHOIqM0NmAHXCNm/kVVIhNlRcYjV95jFwXResF0J6//Cs5MaxcKRRdQImDk4PbNcJkDqIz6BLnBUbULKR80EOj8SJUS9sW17gxgo6OB37KfT+Zs3b84vLubzedt3q+Xj+/fvH+5utdbv3rx69epV1zbr9Xr1+NA0UKRBjyBPjdGn56foK+z31XZTl7u+axUVgwfvm7bd1c2+advBt0CcCed1ZCBSPhJJpYEMBUpiqC9yA4CkTgeQNIkzDeLm4Q6PY4SE5KfzE1J+lNvtFsG3tbPZbHEyG4Y2JeJ629Wb1ZrVP1FI1mELTyhpwoj8OCFlCQ3Kabqvd20FTSoSrtG7HRAIdzefiNGO97L4/SQv8iL1fZ3EQZrmYYyUkjD9iGqzYlLD17p91l/SOg6Du083iPOJwPASRsJj7ydTfYzIRzQOF7CfYSeUI0FchaP2UXXGh1oNfRtH6bsv3nz5xdc6kD98//67738LLIqFrEo/tEABKiigo8lPKeLxYxl08TyG2b+WZj6lI5Q/MO98jE2lJGFNloAkGCH4oJQVEPNbiyDEqoAOIawqRuxQ04DFT0Z1o3AT1yxSaLePaqqc5LMi0MXFBcO6WPX1kMh5MPQP5z8S9Uk135LE0HgnDwmAlwKSP1TLJ5gcEdXpCkOahppRScFIeAC3foD8UQdJFdf3nrwAYQVogpASp2CE9NGkI2wkPxG2VSELM8dP9vigjw/4aMs+7gEvlYX4WRxxR6OKsJYDvBQO0AumbZCbeISO7gjHYmglGwWiXRMQ2ypMoAI0uA4aDR2kwYgEFUiRpGEOzheMz7Isrur9ZrXd7jdwXwEpPglCbZFZIDk9yqQySRpGY4czP0D4cIURdQXHdhDxzWgNVAnayCBtR0nqrC8bOAvDPMHLDeTd/Hxx+uVX31xfXwfokbr/8B/+I3rF/cATfRiGzXq52azbcj8MXRpDGgc4vDgOlAZf1rezaX4ym6ahbur9+ulu9fTYVGUao+cJ4pGOgzBVSg9W2r6DxS3VUEbjBUgF5HFeWBWeXL25/vIX88v/H3t//iU3lp0Jgg/Aww6D7b5xZ6yZUqlbXVXdM9P1t8/0rzPVOlmlkjIjIyMYwaCTvtuKHQ/AnO/eB5iRDKUUfUrVykwiQy6nu7kZlrfc5VueGn5cC6laKbrOD5z87ubm6u393dX67qrKkyh0l/PxsydPi6LYbHZX17d3dw+dIR89fnr+/MvZs6+80Vz6AbyzCOkpLEcIeKVzvR5izbyP4LECgIpRp3H3RzE3TzpdCDvC9hLu86OQAut6nW7rArYh6WZ1f/uuyFJT2sFkMZ4uJ7OlG4TwJpMuyjEYJYN1V793aXXRX3j8woi7J4zzbNaCJlzho5NAbw0TVm9YuFu/CAP0KQH4dPy5JQBcFTgkAFzJOHQD9I84TrS7jtiUugDWx/BYqZlbxkBe+qcB7qPtGZYO6HkbzkpsugjIaImsGiQGbB0ahqPZ/NSnbuxkMomiyKYwSAgRx/HQ6YakTwta8H4PgH6apkmSYBNSTZ5m2/UarL31BjqbLNgitPA25TO1ASgkTg/of1LJAIFPgFTHNsZgeXL9sYOc5+np9Isvvvjss89OSdqSDUp/+OH1wNvtWgrUQI4rNruEC1QsLU/UCOxnLDjICvqDWyRESEiQoQf+HjQBJclWHK9OdKO7XbJn6AKEQUl0guN7esDQ0dfWP2SZxvF9qzj/UownZtQj5wnszAzwES1tRtfYktVgD5XFY2do3iUG3AKgCnDopH5RnxsMUv1UdgXTtKrgGDoajfwoPLs4hyfkfG6a5mb1cHV19XB3k2XZi+fP5vP5bDwpy/Lq6u3d3V2rGtuxsiJ9/OT8xZMnUeDt16u7m9tst2PabksQCCWMAtTtcp9leVEhn0ILQKLdYTmIGhFB0vlTxZTKiFyU1toiQ3g6MFNBOCnq2Wx2enoajWOYSe+hDJhl2XgSebaEGa/rmcJAcLOCrnzXtAg8DMvzQ88LWXWkMw0v8v0AgwHPmvTUqT5m7Nh2dgdqOyfMjKWWonE9OYrGzEKmIjfGzXq7JYQJXELrssoITSRNq8iSY7nSQ17Z5wPHWpNU1oXOFR8M8OOZfnCvw6jQNwbbacMJKoJ1x/Gm0/HZ2cV0Or65uSvLPEmyNN3nOURKOMikmkGfANMiwf2mXpTqoNqkTww9KMax91qr1P0wqHvTPz4kAGRA3VHmgwQYYqO2NhensUcYkhoCtXzwDUFYRMexiDASvPF4GNtH4rlt27B8qk6NGAPNKrdcEDm8mGJ9pUUL8Hr9Q2qb9eV/hM5sPU4Fdw6LTMOwFGJZAa+3QtWKjMBo1rCWI4J/mm6mhjNR/6FhYz4uK/QxDp+nDkxaGHf0QcowhY/5VIN8MCcAgIb1BCCiMWhuhmc7A6H5mG/Tmh2rM9m2SxdneRJP4e7ujhZyyGIC2UVdGmmLxXyMdlZnZGWebPf7LCF3mM6zXRJHRb3B1CAwfAUitPeC7RMYfO97AZ0Y62VhwNP5NADqS2s6nS5PT6RlpwUMC5EMCPMOkmI7Szpn54+ePH++XC49N2haKPnu4WK2L7IkS9I02WVZ2pTFdrtuYQMsPdeZxGPfd5Wq8mIvbcOzpe9YmItFmib7MktbAriqtkU25EVSwoWgUVUAo3d0FyX10jBJXcf1os62g/F8cnIRLx+Fk4U7mnphLG2Hul1Zvt9dX735/tvfX717YxnNeDK6uLiYz5bTxbKqu7eX11c3d52wnHj22d/8h/HibDJbINrGbLIMyxHS4VmnE4DDyk0i1B8I7ryXABwihh4rQ26778UT9J9hdPk+32/KbN+UWZ2neZZkRe5Ek9F4Pp4u/DAybF/Ads3Cx/7flADo7IUlsPWPaNZSfYsWCjTKBmdtm93N/tVO59Px6fiTSQC4lDskAAMJ+DgBsLpWq6/3Wzi2eROFGWol931/rEydMGUBGp8c0LEQWLQRe263KJ0OW4u2k6wq1x9F8Wi5PJ0vZ4vZcjIbx6OJ4zukiQ9FfFMaru2hhtR0eZW/Jw/aQpEz2e2LLLu/vaNuQFJRi58FebqmtARxobDHQySRLJpY6AYAHsIbkNARWuSANOzSHchOSozH9mefffH111/D7iQMb28hIfL27dv1et2oQ3xcFJAEZdMZ9g9yifSpq+m88Ax28fgT7bcwVLx07VXfcI3QGAp4hHfW70CyrToCgGqTIKEMA9DnXvBe+K4tyI2LVUcHX4K6hkAqUFIkNcPhGqx8jIagPgf3gPcyAcZL9fJPRD6EixCHeb1oA/oAvu+XNRA7JtDt0OdO9wgXpeOFo+ji4uLly5ePzs8sy1o/3D08PHz3h29N04x8RmiAIbBZrVfbh7zKTdNwLTPyXPgPeYj7bNP8/vvvEdUBMiGVMCqCf5SVerhbt42A+BCJDXaG1bXgolFtlWHInKhoSXIO2j5gSLNHqVIoE84X07PTi1EcVqXK8mSzeSirvGvaKPRns1nk+x3B0m6uAXXI4ets2BKitsj9LNPx7JqK6wQImsCvinQnHRvGeWwLmhLYCAOmazxEi8KRthfAU5lV8Nm2FubB8JptVImeABdBgeTvAff8zSCcddy7OywPvSzsYTOjW0EcFdwHpK+IqvEC9sfAsGi6qkZtXdrWKIqjUfjo4nFVl1kKrcg8KyB4iVi4o/GsC+TshM0jSctSYXAdMi7YbgBCpmnypOQoKIQ1JHWoiMVhNoC264kDP74+f8D0JQ0xIgr7veAVgnX0SdgPpKbeV/8n/UQDd0LDhCiF6H8FAQBy0tV/QvNUpw1DAnA8m9igmksnPJCgzYm/4vtPVNcjOV2UG7AgYu0hEa22wtJFBQKt6E8sXrOThoQFk4nHwwlA1wL808FASVSVOpRs6J15PEMS58gIfFg9NOSmp1Hp3wpj5HuDCAFoDGxezos/mR4SMudQmKi7ln5mU/3Ccl1/FISBH2YEwSrhzZaxJibeDULNVRxH0/HEdp2qKLf7XZakZV15jktQPSImk/wBfL8o+z1sTn1fkcJTgGpIPBpC8nme06wBMN0PffBt/CCK4sl0Hk+mtuvXqknyYrPd79NEdFY0jheLxTienpw+siHl3O6229vb6/12DV88aV2/u7y7uU73W2hRNbBFg0i0aCfTqCoQ7DZ1YZmtYxsOcZHT3R6UoJr9SDzH8VB6MYTRVNDpgrOKbRCylEa1FU2mneUYTmAHcThdxtOTeAYaelXkNrR61H6zeXP5+urqDQhpvtOobnn66MmLz5YnF52w7ta769v71T4/efJyfnpxcf7IjscwAYD6NtRooa9PlO9fngAcBw1a3fvI+aeHAJmmKJIi2ZbZvki2KSQH0rrp4vlpOJ6N44kThML2qR1hwKyOOsb/4xMA05AouGmaHLZIfS292gAjmNnUcpjX/2qn8+n4dPwpJQD0o17o8z23Dk4PhADa8Wh3YQA6kbpqxpLyK3VIgZxbkhqQrtyDbkWxEaN6WFKjD46xN92u1miFG9KURhSMzi5OX7z47PT8JI7G4Jq6voDYpe34jmN7wjSysqgbGBIhf4BEUF4VYAKoqkr3yWazQQ5QofSKJKHMLKMyUQBu4FYDoTow1EwBLDuvBXWjiqIsCHzdGeL0/KSG5yVoDGUposh+9OjR2dnZf/yP/xvj/rfb7eWbd5eXl6vVqqiA7a4axiUjVufSGvEE8GJiVrzn9QMl8cOyrHHGAvLYmjNwDPPl+IxBVkwDgFYyq9lIOFIxw1VzXQnYAfEPLbhBGhr9pzd1ObA4eogyECB4+j0G7GByfIQfOI6StRkk6ezzkspEcO6lQKnbJJ9jbFKmi3aQzGvt+gSixXz+5MmTp08fz2azy5/e3N7e3l5fFUURhuFsNhuNQmnD6XazWRdJGvre+XIxicKqzNPdbjIeQ5EGNg0l0ATsPmpYRa7SFFY+uzSrK0iDS+lZ0i4qBRolma6xOVqPZYJbNd8W8ygg9hy31wZtPM+fzaanp2fjcUweakWWpOwd4TrQixxHYLAkWQ4U03ZXVJCI9Tzfdh0/DGsUCoEyZ/CJDfyuSJOc7y3CprLmLhbYEWSV2ilQVnzfZzErCn18IFVaZVgmxGpJDgvhRU+M4yvi3ghjXQaX2WGr44xSo0VoDGp5X/KO5eTQsjAXKGrtmeKU4HFPSakqTfMsSy4uIPXN2HdKXLUSDqQGj8wZBj0xaNb01eVBHpf/vtfB1BE+x68WCPqkVS+szrRYIEtfEbnL9Vhf/Z7cG2EECxXmyfeaWisMPjxWjtI0+vdFeDihBa68t3PW4BntbzBE2rhMum/6xh75dhGjhs4fqDzqq+gGC/nvIiWlZBv0BGTfLhHZgVfhp1nDX4McJEC1t+FiSxVNDvrho0TJACUAunPI05DDGMCt+oj/ePIyk+pjjdG2bUPXwXKhUwiCZxN0BM0T3E9GGzK1GtzcNM8sGHzh/A2APaAaYxjG8vSMacFICMHMJr8toyvSLYA6rmuBfIy35rFSQTQMtwCpuWnyGMKyDC7oeykrh6399gHVXZZkxXqfJWWJeYRczvXiOD47f3T+6PF4OkeUZ8m8qO5XD/d367ptptPpbLrwgzieTuN4JJp2vbpf3d/madLCP7xZ3d/l6b7Is+16UxQZnFi6ajYfC6FISYk8ybqaZHKwxrK4Bbl3gEsfBFEAnz5YZRltB20iWwooGJAChhAWYFORF07caGz7oSkxYufTCffbgCbNkzRFdkRcl8iQfjCajGen8ezEtP00q7ZpXjbCh3ryYhRPhe32GBY0uYcEgPdfva0w6O5fGLf2kgl9aYAchalxCFfhbN/UuSqyu+ur63dvVF2Go2g8Ox9N5tPp3ApCELEMG3sCKi7HCQDHA38kPPnvFnETmRhJO1tqar4i8nHs5tQyoznSI51+aTz/KQH4dPxZJQBfPYsOcly6LqgLeO/Z8tFbI57XoCAOZvs8gQpRvH5wQUyvQZ0hAaTWxSeuPDnUfI5j6CfYFrRuUP2iaqvtOOskqaC2UWyTbV100hXj8XQ0jr7+6tcnp4vzs0fxBCoxVKE0VdcG8RgKZ+SKmu2hKqPImlcRw2+3gdxbkUE5FL8qUx+0vbJroJ0P5TViIloCDlC+7wZBZNoS4kWQRsyKqt5lpeNZYYjKU1nW5IwDw6CTk9MnT5589dVXjx8/lpazWq2urq5Wq9WrH38YEh6Uog8upwwJQBxxvBOj5nlU66IIhZ9XT2d6fzs8UnVE4UgrYyKfAeXpSEkQChsCzqQF7HKYUME+aXQ4xBWmOACJRJ/SdTb7Ph4lAIMnw8dZAUEPak4AGLLMCQD7bkr6UApJm85o4QvkuUJKgB8IpMHiUVEEH7H/+W/+J3BhRffw8MCyjL7vjibj6XwCwdZ9snl4yHZbs2vHUTiJI2kR24TuYkN+Z7CXVZ3renXdlEWdV3Ve1EWuMhhINYbpoCbZgLAKxjQBnVvRGOQ9NFBcOApEpbOsQAolEVXgdgTEeTzP+eyzFxzSQdkRurRJmaF4D1lM0AENSCGhWt6UZV2UVWOIyWw6HU86Q3BfyPNAD1Y1KqkQwqf7w3h0SKNWMBkAnk00SJhIPBHgLipXj0ZgSEPtJEnXIC8mYGj0Yk66DdVjXQYbDf6nfnwUCB4Bn7S/BxewmSVCITUUZxCWUexompJxRobReV7gec56vWXvBf7aS982Nsm3oDwMTRHIj/CW2dYgLfTIcy3y23VdloBmDUUjk9MVBUQIRyGUABBqC9gPLgMPOrBETdEDEnpV5D6IwNQG+qtf9LrjpOjYynd4wXuZLb0TffgQW7OoCqlImV2fKg+5DSb4UaJF7gdMzKd2CtbSHmHPCYCDAjY4kqhx4OpgCsKIu5Ik9+F/gQlDtVtItCNJ6GVVOIgnRfe+bkIxzCHN4PbIx1OVqxXD4sMVBCCr2ka7hoEqwS5dKMdrwCRJfiFzx1y2oAFsWk2HKjlTKVuIxODmO75HqB8HELW63oPZn1RF6lqw6yXAEmCNtPxg5ipFtmtEWpews6ZnjXi5GIIs/aQokoXJIKH/WbGHyMQWD/D1bt22IopH4E0JYzJbXDx+FCE4nYRRXFXV/cP6fr1mIOLy5MILA/h4j0eWYe42q3eXb+7vbkehn+zXVIBR64fVev1Aa1TRdrXv22HguVCraxpVtFBWAMiHcgAY2uSlMk0Jd5ggGI1GVVE2dQV+tAmXDFqfuiTPbMd1vMj1Iul70vaFhB6X73pYOE2SYPL0CtlZjheOO+kJ6RlO4EezMJ5JJ+gECl5U7rAdz5fSFTgLBwQASBwx/bdngAwJwPtBKxtsDTZbRyGCJn8f9hoaWibSQnxklyetKsp0//rHV9/94ZsyT6N4cv7o5ezk7GR55kYjSgBMISRORb/X/+gEYFjr0KwDJorvAFxFjq6UZg316YTp/Guezqfj0/FvOwH41XNgYfvQ5yALwLAf86M37X/Lcb9GDcHxz7IYFNtvjv3rB1FJavIjAaC4x5EoiEYBAmts5xARx68tB5AJ9MSrvMjKfbpL9llWNrYtTk4WT548u3h8fnp6Tj6yY0tKVMgsihK6rq0Vm3xh5c7gVpOnKWqlJN6fpmlTpFadGG0NV/MW0stYrogKjB3OBpCAuL+eZUPVtGq7XZatNiAVoPpuIcLjJWa1KgxDhKE8Pz//7LMvnj17tlgsHM97e/VutVpdXl5eX1/vCK1Om5zFFbuhCcs4H0TMhjn0VHibH5CvQ5LAkJu+po/irsYtMO+PwiYOvw6PCRdl4mTrzDLAghgEQBB/kcg94pVD8ZJ0N6grMqxxxwqhPaRh0I/RCQNHCUcXpfXIe4EUjkssBV0iVVbVaDonTRrs6GThhBI4V6zDMFzO5hBoj4KiKKAcur5HE+Z0eb48Mbp2dXt7e3NVJFsL2E2UFDkot2ykGRn4sZUmPyDUkLXq0iTf7LI0K5vOqiFV36E7TQKpwJagnArVGu5cMeANANGu8zx0ABTooSjGO1QBRg2wqV3Pno0npyfLyWRiCVi87fabsiwd1/e8wJR4NE0ndkm226dJlpaqNjsRjeP5bAFkVFkmSRJPppgyxB7hYI66VghxeAyTQzNpYyNPqx2bZW3ROYFBAXoCnuN7682WtfCPy/ysOzlAPt4LfDmS1qFtn/T0D10DokjIVTeFpCyqEpmVZwd+ZEkjz8o028ejiU78yBsQki8NQn/TaEgWFcQSMGtoxPMo5Ts8BNCMkG9qiqWQCLFCfM1NmobGG7EoATnkTADlBb4UAGWGUB5YderXQYlo8NZlYcGmrREDcELOTnt0+WXJHTD9z+FgYzLtic7nydOO+QO83A0CSlDiPKDIdNCveQIsx3mQW2G8NXND9eeScDx3OVzXZRgM+pmYK/BdqCDB82ECcNxFHNoOJCjMHQc9c4fZqos1vavasdsAosCyYSEUWqdJ+RdKwQLqZNS+sKj7oaFAlu2GUQX2N/sPotAL6IspN7vEdrwwjLwQImk5EVjTZEuiAlDUZacOcCyQi9W2DWMyer4spmyRCYbo2oozpSOcGE6Vt4mBkcwscOSN0oLHi+qkYyvVZkUuHS+ejOPROIzH88UJ6EaWvdvtrq6ubh8eRvHMlM44Gp2eLZfzhWtb6X63361//7t/3KwfjBZWJ3maFRlEb5UqDNFY0rCJk4IF12igt2aYxBWB2AJs7Wv4rZOCkzsez6SUITREHfCCikxVmmbdtWB7Y7JY0oWc3MjxoYGmUTcWTHDixWI8X3qjSSc9O5xKf9RagbB92xtZEg4hQpodVozOkg70HPCXEhwAnQAc9ulhUf4Y689GX7wcYMDo0P8I+EN5+yEBwM7eCVW0VZntNlfvLt9e/rRer1TTnj95eXb++OLx02AUU9XfJDqyRYUgwTTcvoyoleLEv2bEDSgyF8II/oRKH7XKKUYwiaZMlKGuFXWruhZp1S85o08JwKfjzyoB+PWLyRH4gYphR7jAjxMA/Wfvq+dyzZjfB3tGz6QcOmw6llVaHQgobmqhShOOXfPJ1Pd9LLdlWaC6hHdDZOc4TdNs9xCE/+mnnxCz1xAvPj1dfvHVl59//vl8ceKPYuCFHdjOWxb5QYLglVoGClFVUaArvQddOEkSULjWN7KF+a7oGhtO8hZwKoYIAy9J0IE1DCMeo0IUjmLTlp20dyBr4j13W7yg60CDYzoaCdwpyzKXy+WLFy9OznAwRCHP8/V6fX19fXV1s9lsuG0NQUqNXiAvT7C2rB5GrMuOQ1jD0RsCON7ieSOnTIrv6qDfN/itHkE+AE01jdY2a9Fiw4BmqACQg+jD4Az00TzCkIECySZoPB566W6IQ3IUdFRc5Pp/awPxcMCM0cPW+jOcA/Sa+sTDtmWaVYCTSCrA9/7ElmUxJjsgBdXJlGRARyPpOj++fr3dreuyWswmj8/OPMde3by7entZl3kLaI0yTZh58Wgx0dZQvekSm63B6L4V8s3lNWrzZQObAgimQxqo7QwlRGdJiAAyeg2+B5SccSBFrS2dHtMhXRh5hYD8Ipz1fXcK9fC4bds8zzfbfVnWrh/Ek7HjeOgDVGqfEhQtTYUwfBI5DcMwz0vpAEg9GNixJWpVqTwjoyVVEZkbuuzAHRU5OB4ImPTmjjQg9OPxpKhKIAeIBjMEf/y2H4BeCEN/wIfIvscDeIpq+JIR9wAwg4K9aSHZ6JMIhHGs999bd4HxwV85vKONtdIGtwibCJaGOhsqykSBp8IzDSTmdE6iMZdyq6oEdETlBgnatrqFSHdea+SjYuoAZEwhC3m9HZSytPK4nkpDAiARu2mLN3aQ6HFNh2d6hOFBIeBYHpFB9ibJ3eJKWWCGPFK046/tmeREzmRZ3GC8Rs9BZunwuOKBBBEzIvf2M5pPGL0LehKYF6qF4xikbtHTYhQQza+jBKCf8oplVjV9iwv8R+LNx3qsx0kdd58wABoqUoPPQKPLgk+waYLPKgyFSWKBLsUzBOR4JVwkup5hWnXdZEVV1ko1wvECNL6KuoG5HvqpIHOLbru6MwS5IPd9IfZLJqQ9UohONJBKktAWsi3hAbKoyxkHIz9aJRg42jRNWQIlxaSyRnRRBM8pUmTugii0pVvUlSXtRnRhOHr85Nnz589d31vdr69vbrKihjy+6FzXjaNgFEaB77m29cOrb9+9eQOfcghMozlJTWaUptoOBovUOOyQXZKNWuj5JsFfuVJDtYK6UqJU1nxx9vjifDaJ26rcrFZZuu9ALKFiDXtdd8K0APBzXXccj0xpqKbLqqox5Gi2OH3yLD45j8+fCzcUlt92dicD0/ZbYamqciXlHghkHaxglHsA38WDXO/HVPcmJM+wmOvsYEA5atMA1MDB3Rm0g95PAEgmG2tkXSTSMjq4Z+6LfJ/l6er+4e7+wfbG50+eP3n23B+NUVKBJjOmHMuP/o9PAISCjC/BDtH4q8pSlYVS6vr6necFcRxH44nrBwgjqDQhTAgt/Oudzqfj0/FvOgH4q5dzmu9HxeNe6eIjCNB7b6+jgOOcgVeNo1iQKaqcSAwbEsJWYcB5l2SrmbyL5TiO/SgEr494nqTIyQsxzK6EEFdXV2/fvr1fb/Ic8/fkZHx6dv7lr//d6dnFcrmE5jeRbtnRKdntNpsN6/SXZbnb7fI0M5pKVEm22xRZAt1DSKUrsERN8dnL5/v9fv2wgp+AEqguB750vUfPX4SEwwZGc589PDzc3Nys1+u6hkMQIfKhSsHofOk4p2fLZ8+fP3v2DAr3RcWJR1EUf/jD95B9SRIiPoIFAchsVZNLGOpbrusyziGAk1S028LdRikNIR0ClKaGnNlQzkfNksIg7k70zxrbKh5pV0e+2YEnitI16jh9pdCRCDhwb220qg+6h/g4Nhmg6JyUQJgTyfxFE04OBGRmXSJCTQxy8jQKDuSqvjLaI48By9ScBwpo3pOtHOArnWkEAYx1o1F4dn5e1EWy2z3c3Wa7vWvLR8vlYjZdr27LPE32cIHomppQ8p7t2bZjQCZTKYqpXNOym6arVWdYblW3ZQFqYA6OR63qVrWG6YSktzLwRHWttKVgeoirhlhqv98L0bqW6QdejJ6/h7CFwvEwDP0AgLokB+gMd8+y48nUdfy2bW/v7968ebPb7TzPD0ej6XRKJUNovOg0j8Vh6q4sYThVVQVV9RBMAhhDEQlkXkltX1tmASxuSAeDh624hw4YGxgPTQDtpteCXUtEbZrChCWz6enDzwH2ae3AfND+Gwr4BAbzcKWfq/4c/g5QH/6K2IgRKTTG2BmXTMJ0DMdrC96Jk5EWAH/TlI4j8fhsu1b5dg+FFpc8vLn+zrrmHGkhAegp8pTF6W5GhchToxr6qJqSkp72/UE69L74z2HFGyDUbNfNyR/LiJHDga6fanNe9PcIT4Z4mhA4LXg//HQYZqBTCFLMMYVBumQ1nM2aBgxFTpYo/WPI0yDESZRp4/pu1ZIxN/0WPCXCDgEKpVn4VOfk5m3fnX2v9j9c+7CGD2QMWoqpro1ZTMu4oWjNhxoYTKOQ1aBFwPOCGoguQHSUwAnTQv6BlMcoK6TdUMJBvwZri7YdhCgSObmRTlQvGICxwT9nHwkNBzLbkIxMKNnDLYETAbUM9An39Y4By5QT7Yqs+iS6JrBh8f0wNAwrCKOmwXwfj8cvXr6cxNOiKl/98BrZclFQL9pysfDC+aNtmyzZre4ftutVje4QgaDQKTSMDvkwsa3AtYBxhSnaugZVCXSC2JU2kv/Ver3PlRkUJcgPz54++fXXX/muffnm9c27K0qwdX0HBPW6hmm940ShN50DqlSotmwNOxz705nhxU9efu3EUxFMhWmr1mlNx7Qc8kyumZVOmyramPzM2QOYtQ20ICxtF9KyBXHSLKOziHhNqxolQXrEmLoaAlwZVLxo2QHphIroSnSoqddl2tZVXeWqKlpVo++O8opMK9GasHcYxRPpBgDeG3Cf7BMAPlGNaqV3/O+TADC95wNwLC0vXbFdWaZpu3adEbEqBwrgzZs3ru+FAYBhs/lyMiEGBRB6MMr8mY89ZqH886fz6fh0/Bs5fqGvxdfPJoxPPfSF9SZHv6b+8rGeNG/GGmV+9KlM9aMi9nssLn6lReEC135Yem4aT8mgx8Y2UEGanetAVaNm8+nJyUkcx4YFnWaGN6gWUAFEYFl6dXX17t277Xarmi6MxvMl4Pjg5p6cRHHsUFBumiYU+rdbYPkzQIDKvGib0igzVedm27o20KlFvi+SBPXHqnj6GG+ilLq8vHx7dVXXwvasomnD0YhNIkfRmAv5VVWxCtD9/YMBD/npAO2QLspqvu+fnZ29fPn5yQkclDabjWXZm83m5ubm/v4+2ad8UV3XBfG4qGqE9VBbQSfYdz0/DMajuFYwOyM6Y1eA+grTIu6K8J9rqwEOehDOHWUF0LnpOlEX2daxGMJLIBZy1W2of83lR8Lgkq4HdUl1ubtPN4gYSkZgVIdmJX3GEUGVyYLAMqQLEZRw4KUjvIMKDaUcGo3NvCzIyoDVOQCiuLw3wNYrSE8Ctex4cDbzwmA+Hc8mU1fa+8363eVP99fXJ4u565gB2kmmUqDlooFTpH5g+iFMi1pD5HlRV40pbcf2DNOGPXJjVlCKbAvIL1ZV05XKUqSrqLsWg0NWn98OICgOShzHq+uyKrK6LKBO6DooIfoAjJnSCvxoMp/F8aRp2/v1erPe5Xk5iieLxYK7BPerh3fvrh4eHlqCNbs++ABBEKC0CeY3UHJVqXIyqAIEGeXVmqH5pF1LllvYenWK1UCFqZ/MR2HfMGePy//8EXgE3CNiOUgKkhUEEJ0AVUk8iALWC0hcXS84jpIHGIl2nH1fZUgbSOvVA3MQcDXEmRgzpMsN54VBewTef3nZEw9M2wGsC/ZslrVLAJ/TaQs6JIztkV3dDt2zo2UM7QX6SZ+FEvSQYiS9rB0pvr4X9B8fmDWsh9QDJ44F0HgwMIFhWA9J/YwNtqi4fjDZg8seZxxsecahgyORp3WwOdAG55x8apVQTl3I8ZclfnLoPnHnUOdQnB4wBJ3iaYC8GQhEM5aX4WOm/nvRjLYU7GWaXOkiDyFYBGUCUEcwjLZRhQtIJBIbk5RC+fZF8RjngiK2YUpHmEajYGuQF/BOUa0oYUcNS2ZYBThOXRSDkOjxxjP4VBw/DgMSc40jNWfpiNOCBfqDVFyvYI7NvS8m2Xs+GRD4gVLq/NGjyWS22W2v3l0rpdDVhZ+xvd1uN5tNSfK7EII0UQTJ0wwQvAIEjBa5DLe9VECJMd9nNP0IPGiaAlZnhunaTjQKJ6OY+EtG3VmrrF3tsmS72+82rpR/9etfn5+ePNzd5SlY+2w2H1CZAFrVqwfD6GbzyXR5EsRTJxz78dQdzww/Khormp1Fs1Ppj1vDEZbTCbJiFDXiaU5LKejvnysVXMxhMLBMHDp70kaqhj29zMsUVvF1XY9GY9vzIaGGBp20bMfECsmdGphpki+96tpaNEp09dvXPzYK3DnLEK7noOBgSWHZhjtuQWwBJ0FYbgOrLe5nGj+bABxbg/3LIpSfj7iHYXwYPGj5wcdZlFnbNGm6v70GHPfu7vb6+vo//af/FMXj0XjieJHteKbjUxpHcqU/+7GfEoBPx5/k8Qun1xePRxoNrI+hgUy/ps2pd7cZEgAOIHrgEL2OEgC9KX+Ql7OuM+kF6doPmqem7aP04ksb2QcSAHK3zLLEC6n6SxqIURSNxnEQBGzbmZDfluM4ZV1d4bi5v1ux/afjOLPJ9PT87OnjJ8vlcjoljDUJ8HMCQI68+3T7gOityC3RAUdudbZpONK8u7kxRRtF0fn5+enpaSO6d2+v3169MyyZl3gHwzBms8X5+TmQ3xZCPcMwsix7+/btTz9dbrc7z3OjeFTURddpjGwYhk+fPv3s5Renp6dZlhFCEcZhD3SAElqrtIAtQts00rZ9zzMh3o+aZVMrx/NhDhWPHOmkWbZerTbbLfZUUjTiEiDFDAgIShiEwZlSK6OzGrjRGg280oaSJ7tfscMUqoZ98MEuwkzTPNAHmc1MqvkUzRDtFnVJA7BlIvDBB4BMfAZKKAeClAAM+id6kGCXsiR8UwGHHQqxWj+Ukhd7gHYwSAW2tI2yhDEZj8+WJ5N4JC2rras3P/3oOZbvOS6EYQ1Ai+tSNeVm99AYZGZMQGFCVkjDsPKiIrC1bMFBhM8UKpet3O6rukX4qEHzDCdh/Zm+hNzbpKL9T0hlRMwtso60rIoOtb1uuVyy+5h0nSCM/CjE2AYHumP+CQh/fuj5gEa0bXt1c5vneZKlEAhyAQYgnRYzjKZwiq0BXQMkpkQsoh+Eju9IrJ1g2XhG7SGUHGyz2TN7mIAHoIswywIQqCPZU4jG0gMFfRBVSdf10IzS4jnM1R4YtEM6xAnA0Rw/Duw4NyB4hKYEdQ5V0LUgvkbpA0KNEcVtBxAAGilNLwCCxHaR6LLiO3y/YZqrVQaYHD+sPcQ66fU9Ae/Sp8QVaJbRPI6Gj+v9H+B/tBQvK/+DITOQgwenFMR/x5V1LuT3oDvTYYgdJQMg6TNKB9C6WsDGoA18n+6HjmwRZQLqP2A3WPKSi9yQRDVcf8Dc86t0/01nqqhJ09Vr3Dw6ischdX9wMK27HD0jouuE5/hEzEBZHw0BsyXzkFbVpWsbrgOddDZbY+AZAYkwC1yGaIquLJqiqpMsh4Mb2D6mUkC+oeqvuo/bEXxuHyiMafeYtrJhZqLlR5EUHQtS6q6RHoecj/m+zy0vqH2hF0DKuX54fn6OhDyIgiBoVLeC4e+6zNPxKCrYIp2KFFkOzaKmaWBm3EOkBsBYp2r0XPoeDiHRqP8BsVllis5znFEYTMfxKIykaSnTKgxvujh/8+Prb373W9d1p/HYdd3FfO67Hj6ODmmAvMSL8Nu3b1tD2J4fTKaT+Wm8OB+fnPrThR1Mg/E8GM9NO2wMuyP5vQ621pRaox9BnibvafZTvqrL/xgHyOWa1sDC0ta77d3t9fr+oSyyVnQny7P56Vk4mXbCBB/bAVSypk4LVnhWOkJxoRFNKZrq3evXm/Xdav3Q1NV4PD47P1ksFjIYCyduyVOHBEBNssXuyAaYqoH/agnAAGw7zi2tTpldhSZGre7fvP7222+223VZQnz2P/6v/4/5yelieWZ5AdGUTcN0wGz+p6ARnxKAT8dfTgIwbG+Me6alUNOChiIuXt6ZAG3SweY0B8m/gUA8vJg/oP9DEtuxhjpxWdaER3f5KyA3jm/bWH1Y2wFQGdedLebn57COglxMHFuW9bBe3d/fsw46QeLN1YOurD88PFRVNZlMFidLVdWn52fnp2dAhVpStc1us11vHhzL3Cfb3WqVp4kh2shzRqHve/LRydn9w+21lqGMTk9PT05OwjD8f/8f/4cXwD2+AJ0AxEEOKy/OH7O3K9gLDbRrLi8v7x5uLcsK49B1/TRNt9td14npZDqbzf7Df/gPHOFxo4DUhBCn7pM0r0CPNaRlm3ap6myfJHk2GU0yKlOrtg3cYDybLqazYBS9ffsWOnNMPqgRtkL9pgGZlauDBCIYGuVdHPgIMSBLSvKCxBzQsuU9LHzIAIfAou8IUBOcoUGoQ7P2KMJNjZkxO8/WqF4qjVocRkC1hvRreET2FUBKNhzo6rBZL+O3OQEoypKCVxA5eiAHiaC3cO1l7Li0rFEQzibTURTkyR50BapOOdIKQjcKPNe1N/vNLtlsdlulKjgWUSyLz6HAkUyU2ImLAK6Gk5amIrEmaAUBJM4X2VvYEI0Al0WoBg58w8CLR5Hr2q2q0v0Oj7JESOHC8CuyHYfDcN8PAWzzR6zwk0PvHTgxPwgIRO2vNpvb+7vtdluQpju74I4nC2RMJD3EaR6HOxSIN5DBZwUW9iwzOoZqfAD26COkww+H7J0RZCxZwz9H6m6003jM4J+ua+Cw5aJ8C8w34a0ZQTSwMD+AlBwfRw7ErCnJhTrUWRlNTqgzbVgt4cQniWELkjiP0kpBsnNxsuTAtW1E3XZViVREqVZKh4MKxohrPe9evvCAGsd1WWg4HQHij9OAj8v/fc/r8Cs21+MXezZXgmlQ6E8gx27XZZhVR/OIHcEsE5pRGmBBaUAD51sgrIZEiMX1+9SugSwm8UR1DsB9BsPqbJdhNpTjHSYpZcgA51E29Z6UO+T0ey7QB/VyvUUcHRaAJYhu4duIDkYH+X9wXltySYcwgAkBH8j4StvaJYlWc8IqCM0lQ4BMX9VNWpR5UXetZUq7bUSeQ5oZGOsjSaXjcXIQGBiwf60y6hKCmz1OSRs4SnQIKV8Ci6OnUeECwQNwbQ8isEYFYJ+CCeMIacBoNMYyfnYa+FFVVeDhJLt3P/3Y1OS8AOYJeDskWooElLk/lHz1yUkLM2pAFTlpw55IEwcJLfzdPNvxPSfwHGTwtmParhWOV7uEjQ6/+cff7naJ7/tZkgdBcAbtiiXWN5KHhrR0mjStudrt87r2olE8P41mi8nyPJotP/v6r2UwEnaoWpipGGBUMPsFNvb0zXs2W/SsGQJG5X/CXppti9C8UW2RbVcPd7fXD/d36W5b1NXJ6fmLzz5bPnoC715ctdsKKy8LKgARqa+rJQYVWT0XaZHsr969/emnH7M8mU+mj589fXx+4Yznwp12AvsaqQtQA4KEcNHi7dN0SgDQaOAV9b9LAsCgw6GwxYdsyy5bg7RQ1T/99OPvv/2mrCrs43HcdsaMEgDbjxtsd7ZhkfD3H00w/sWn8+n4dPwbOX7h9PrqyfRDqA+rWWvjm0PTnxdxYJV7rbEjtWDBtUl+0/eKEhoarv0dhwSA63NaO5wCTaQBlhn6OtLi82FpP9OWp6enF48fnZ6eQlItSfICdsJ1VZVJARE6Ui7f7XZv3kBOPi/L8Whkuy5LGY5Ho7OLi5PFwnbdt1fvEFmlSZrsyjxTZabKAs3NWs1mk8UcfQMWWedq6P/yH/52u92+ffv2+vo6ywoOjnEO+4ydYuM4RlDCe6003rx5s95Bn5FALAB/b7fb3a51bHF+vvz888+fPn0ahqOiKFar1X6/h8dTlia7fVlXVGcUVVmSailIolD3Nw1sGATCMaU1nk7ZDolVw/HCIi+LCnzlvv6HOyw1fxQcWds6wogz9qVCCYrACX1xuBdJ1GhjFOFsKT0bX4FeRnxDIR3hgjoKaIAUBzOAWtHc2zEFOgwmMPFsKKF1J6giBTUP0x7gFr1kCWO4EQQzCwJdaQ7jqPnuBpDH4926zAss3lIulws4bqKA3aEdQcBcYYrpbC6gENokyW61vs+TfUfZCGx9KEKkIj/7wooOEHRftWYNKY+6UjVol5BsNWqt7kJOMhothSNwPa6au7Z0PQnfTzS9W05Ka9WYNgQBHThYI+VwTTmKojiOLSmzErZfeYGKdhRF6K+juFtx7kHPjtiGhDMgeAluNU8HjRkjFD5OkLOprvOItTlYWQ2SlFzxPa65cgLQCYeMpRijouvczDwh2i7+qqcBwGh0NAo1JqZnmfeusT97EOBe45I1EZYgyzgfdtglZ9y+pYKBBnEV0nVBJFtWBZSTsqwoK5r7uM2sLsKPrOWgn/XkwRTWjHmK1vpropFlCas9oqcfpHvet0Y+rpeDk92oXs2WQHR9MkOGZXqFPYgmG610gAkk1yGOubULGMluEjRIS+xTVibahsY5iu4AcQmLKMog/pJ4McYkHjqPUnQ2DFNS4ZTTqmN/XHbtRQKAzJGoOJCEMRx2TT4SG/jwOIwHjDHdGKQzMW2LHNwN4WJioxsAnVCkbQaJNxi2I+GBS4MWTFzibqHIYru7JCXV5bwGbUQaBkQh06zSzoV9QvIxjOcgVSS6PNlyUtSr/cBVXTPhB+e+ngCDW2oI33fjMDZts8zKtMgB7icJrygcjcfj2Wx2cXExWy7aVqTbdbFfbVYPt7e38OsoikrV1MuUZVlDnpjzP4vQR6ZhARcPYTTdxqJR06Ld3foexiu5rqFlMYqCxWwWTybbNJsuT/IcUCLXdV//+Obt23fzxQn0wUg3Aq72lJlMxmPDcq836TYrW8OI4pk/mdheYLiR9MPl+RPbCy3bb5HeAmFjkcFFc5B605U6/gfDfmhMgtatrSq6VkC0iza7Iq+LPMuT3QbO5fFk+uTZi/PHTw3bbwQMCwXMjGnBsWD32TaV2dZtU+b7bb7f1Hn+sLq5u7sBmGoyOTk9Xczn0ht7iyedAYVZEl3AuGbhXLYfYEGnf6UEgJlEx/wxU+Wbyz/sblHFq+pitXlomma+XM4WyzCeRqOpM4qFDDrDxn8CGSDS8J/7iE8JwKfjL4MD8HTGCcBhI2QxO5oA8mcMobSeL9dEeqhQXzrTicER4cyQzZHbxqAKijD6KEDhTdfoGmmIwHXYANU0TfieKsi9+76POpznnQJb/3K5XEJtepsUCUR+yiw3SYYaP9zvkyz98ccfNRq+L4bBcamuHz97TgrXMA/r6qqD8Q5ygA7lVSh1uq49CmM/9Cisb7ab1eefv3zx4kXTND/++NPr16+3223TNBfnjx8eHrbbnePY5+ePzs/Pfd+HNf0oWu/W6/U6TVPUk5nELOXlm3cUVHWu6ywWJ48fP3706NF0On337jJNU3qrfdu2vNt1naDGAujLUEEll02dC0n0USzpDNxBLlrv0wyQCeoJKC1iqCuFMOJxfOlCy5Loi5AbLECDExBq7PfUrkE4xT4EVCSH6rlNHkCo8qG0L/CpFChwGkCaJ1Bd0Cjn3vyVK75MFCMMsf4hE8UPUIRe/5RkHDn/YATrEYlcGiDrEsXTsiD35NqONMw03Tu2dB3pQfsHjgfISRph+5EXhONR5HpW09RZutvvtxUwXBmJz+L2mrT0U0FWqMZSJFsEpDWLqqB4ZZQ1CHEoplIkOxgyeI7LmA3HtkKU/D3PQU03CsK8zDf7/Xa3K4pKmIbnBr7n+dJhAj41VaBaCNmNtk3zDAqkLRnP1aQESjlGUYAMo+2K+0Czg6oPoqoheG3oRplt7aLrTcqVR1NVNz3641DehjKIS2iaQ7BM5gjYPiHd4oJA36vmKxMO08x/0AnGUDn+QE3/aEWxj75nwyxQVNnQAAkb2TD0CYCwJaJiy7I8FFFB/M0I/bTebBENs5unIZkDYJgS9tL67PUC0+PHkFgyz+EYFfCBdd1x1fnjAyh2rDZs89WgiqrXU43gZ0Abqydh9pmG6rkuhJMZaDMMgtI2wJz8cNcJMrQ68QZyzAasHEkCSNgApQDu39ZIRwmiJuCj0iv/EB9HHw6NOjqPzpII0DmWRmRD+e2QAPBpD5ycYQgxECkneWKKrjEeCZ8Fur/oWscyXSw10MwxBBk+mk0YwYOF3rCmcUtqmNIOgsD1Alt6eVVv1klKdRlp+xmETSH1O+SNQ9A/PBc9GHidQVaH4saRfwU2IxfyQFhMqHekRx3uJxjVmjLEkgycPXiOgxFcKkMaFxePn798EXh+kSWz0Nmt7m7vHzabzS7JUD3BzAKensRwKIQlaj78+1Qja1K2YEwXMYKJoAE5HNchz2yM0caV1ijwwyi4ePaorKo4nlSNurm+pYaV/O7Vj3leoCcRjYNoFPrAuC4Wy3CyNMJ5Vou660xomYWG7QrbMx2vNaTrh64XWJYUAM2ivq4ahcSxH/bcLOrnIDlws3UX88JhHN2i8n919e7tZZEmgW9P4pHnuAxyC8fTcDTtpNOaLoyLvciy7bIqofcKR+yia0r0OB8eVg+3TZnt9hvYIygVx/E5HcH4xBpfCNMn8A/A/1SYx/e9fzPEZDXdGMsqVvH/XhCgAyiRugFwaymT1Y+//eF3f7/f7xeni/F4bDmmtG1hOudPnpuuL5xACE9YHjWmpMIS1/ScpQ/f/5eczqfj0/Gn3AGAYCeXZfvkHaB8wiJ80De3DIQIR1LTrIxBhpZiWJd7kQ3U6si25tivlBWnqXpDKM+DgRGygKqUtMrbR4dJMpGkD8haO040pjVocfLFs8/2m+3t9c39CvgfDn1KVZ+dnd3e3r59+/bu7i5NQbrFJuN62zyDSDwylso2jdC3fdsyujbZrD1t/NQ0VaM6xcCkZ4/P0v2ubduLi4uvvvrVeDy+urp69erVf/7Pf0euriTmkwEaBJbwOPLDYDKfzGazrusYmGRZMIstS2g1bjcQBWpbZDKj0cj3/a+++MyysD1jL6JmNMA9BWTj+EqlRO87z/PdbrfPUhRpoL2D+8NCeCY8gEWSgdNWE5adMNPE9gT+E5si0RtbW2KdR5gnLXTnIXlJuiXE6KB/8QiCKjwbkpELDNZxx0ITGqeElKCnQiKdqHo8cY86ZdZHC86cDpVIPojHkM3mEX34hmsBVAMJAPcfaJBR4knEccNq67qqW5R0IccvKJgg/oMlUJu0QRm0XHQqTNOy9wlc633XnUzj6XTk2mZZJGm2X93d8ejEielBDVhtrUjljhJYBfwZoNq1EFDk70gnFH9xwNp2TQPXCAxREz52FBgbRoddfRQBbKDq9Xq7Wq/zCoaggS0NBSAKwlsvsBy7I4FX23WKusqpfVOTVRDCCxTPSBeIQh/cQdJK6gywR+isid3R672bXe02pdmheDzgPbSKUW+Ic1zqJhK2PQhxDC0gui5NJsbA4/6PbUvLyNPEQo1UAyM+KJwPU76HGBkC1TUOd5ETcjTMCiq0eiABsGggcXAcOAg2OArk2A4SJKRSolQL4FRZw+oZNUTAa+qmIUajPrhhxclhL8X//rnpwsSRCpmm2x7YsYfSOPUWiIICPSz2OUZwQei33uRE49fZxVa1DaOMUCc+ynkoo+OiKIfphGlhFRwKzljABy4UQGkYnu9QPYV4jMCkURqAi0VwzskaJwB8dSxSSZfUEiEELGQOFrWf4NHBXZ0D93dogxgWOyRz4m+SlsOQANim4UIoioMeUMZJsL4iySYIv1jSKGpqauW56MzxdDabLmzHLwpFislZWXfKcIGj6fFjB7h236EaEgAmWEehz6ApQoWxJx5kHMMI3AkaPLxp8DWgdFUVMFEexie9I9yyw1HkOX5GJ2i77tPHjx+dLZt001RppVDlKCu13SebXZLDsI96fdS14AQAZSfViKLCYohdCzMUt12DKxvXlp4rcYuwWzJZVp2cTi8en1uWXdbKD6OiqK5v7rNCYZbTzof2puriOP76q1+/+PX/JOLzxgpV1xZIJS3p+dILDDR+Hcf1LaztPdSnxUO0bA8iCjr0P5hrAT1FBIDjBAArQ57dXV29+eHVZv3g29bp2fLi7DQYj2GQgaVdttKuGqtQbWc5losKD8BMlhCqhMhonW3ubu9u3u22D9l+B7ximfu+/+jRoxcvXsxOn5rRmXAigVoJKiYWNaxUQ8K4//oJgB7PBlKjPM/bbFvfvHr1u9/cr1aT6fjs7Gx5chJO4taUhvQsN+yk1wqvsVxL+p3htPDWrj4lAJ+OP6PjF06vLx+TCtDRH2vnTi0vrYEYLSy0qSeAAiojIgD5GEjDQA6+DyLinjUCUY676B2wcKFM3MFYhXXEUSFDPICtWQhpGXDDIcVu/jjHQ2knCIK6URaUJ7TcIayj/GAajr54/vLZs2dSys1ue38PcZ6HzbooCsuyJpPJfLlgCVGAc7Z7BSl3B4LcKP8rG8Fn26rad5EV6ASGAma9oSi1XM4nfQQ/Go1evHjx5MkTz/NevXr129/+9vb21hQsE95Vqg7jUCkAbBaLxWQCjwW0g4uSETh1XedpliSAGBGoo0mS8smz089evpzN59K087LYbDbb7TYIIkYimaYZ+BEXR+u2ubm7rcqaTa+oEcqIEUBciN6KoIG5myXBZY8yOI3IZzjW6WLJzFci69VHqyoDkPlWsAtVIwjq03N/AeHQAZzRUQmMPac4DKWEj4yh2DmVyN/aXN7oRBT6uL09VltjWQlrz4LulCuCTEaFTEUmjnC+5AooQh8qwUFjHMFZC7NUUudgVLnvxUTNVKqpRKNcT47jIIqCKPDyNFuv17vtFncVTmTY7QxsCQakTxtoapeNbgJUYC4AQk4dAG5w05VpVLkQuGpFtVvpOHYQeozSsR0vCILONPI8L9Jkt954Esq2pO+O6+XuDZlFIPA3cTMhIpQRqs2UrFuK9NsgTzEGunCFm+9bnz4ZZqt8q7EoVx/IlFz6PQqwDnIZBBCHsa5+3EehvJSYqow4Yo8IDI+mCl3n/fq3/gZh8XtsWngsk3IlQiQ93khEEqxAhFPoFPWBvgnxWThwdGZT6QSD/oghdiYA1oCy1BX4r0WpYI9bNRqWNOjwUM+EPxeEVI3sQmNqGF18N7j9NBDVuwGG2H8lczimC1tAdB1ZanATQLMmMLoPgvp4RA705vmzGPDAojFIPFgLiNIbwCrYUgw5bsswa13ehhU19YhA4ieTDoDHDLjidm1eFESXRxrF6D4ef8TW4JQZKYRN/uqkLIlOqZ5ZPdMXHonwr+3Pk4kKnAiZUlHRXeOrSGkKKa60TFQQFGH/wAoA98mRjcrqGjbVQRDEceT7oPSUdbXf7ijPlVEUj0axZdp5XiZpsUpKQdgV3VYZoDuI3ge0PTBvrCNnWzCKIcgi/orrIVUN7KUuckO+dsgZROi7RDpCcLzf77Mid200kAGtRKmlDSOUaYhfLse+Nwvtrs5aOGIjys/yMsmKSqmHbdK0ompM6BRjRXUBrhJGUygD8v2MX0K+yemH7zlNXbR1Jc3Ot6WL+yWMTllmLW3z4uLi8aOnrRDr7b6uYFK9etisNtuqUl4Qua5HNyqKlxdP/vp/DRcXzmROODdbOG5ryKLupES3kAVzYRMBBBphHKk/2e/YLLXMsmvtxwkAHItNIbJ0v14n202jqsBzptOpEcXCC0ReNHUrpJ2VxcMaRiWdEOTD6PuObRlkYq2q5P7m9vrd77/5x64lJnqtDGlNp9OLi4vJ8nz66EvTGRnSxizHjHaFgOUiGw6SiRhWD1IuojxSI6n0SNQCIVrY9PDTwaysl+Xln73HLdRVD2oBVlWVpvsmWVvbt1c/fPfT1ds0y90wevnlV19+/StnOkOc4YVCOEJI1ZidIdkD2OzKTwnAp+MvNwH41RM4AX8gjvH+N42B9ii+Mg3O0hw13jSJ2IsdAlEFe6lyT4Dqt6BX8gQGmKKFUDGbwlimzZrihNPFe7DuCiN/hp4AG+KwRqEJ2WaHyWe6wNAJleaWYQZBMJ/PFyfLKIrASKuqm5sbyP9mmeqAbUCH2gXBNMsg+8DGXpA0RsBLZojgk2lvWnhwkhKlYRjwFKM9CRbBVPeCMp5lhYH39ddfP336ZLvd/sPf/5c//OEPu92ON1founABleiNkKdw3a5pIVTnYLtq2nq4rrIBixdWhbacxGMQl88fTSYTli3arHfwuSQwPXMxJzOAWauq2u12292eEyHLcRHHM0aVqmO4Kq4VUhNmwHBr31b6ns0H+Gay6gWJ31OVjoK2Q0UZBDvtnKrbPtzHF4YnsU+yTDiFN6DsoosCPBVXKAU6+72ukNFCls5Bd6XPiKpSKZwMy1NqMDD33E2zVtDkHgAf/NDBNev93vk0er12MYkDOgeKrqA+adh0XqEfcIjJsUKFYDuvCedTw74H8CGB+4YQuQIQ1lUdMMENkiCNVgJEpNSSVr29q677BgHGLemZi2MSNgaTwrOmiI3uBzlD27aDNhNpnmIX49tjmpt0j1YL430JrIO5BlUfvvlH1WvyZzDa2vxwA+OAtbePEBDMpk+E8VZVQnb9UPjXGZfeafWU7781AOXCbO2Vb4Dh4UJ41+JtOSHUTR16fCX7rB1iTQZOaOXQwYcLop+2Iy3horSM6jKtAECa8dCCzrdh2YgnTAhNkhxQ2bS7IqOOjZYWoHhepyucDDO2HuEBcUmLHHgtDoT5PMBooXMeEOgse4wCO0EW6bzf0wwdWAE0GAZBLbohDjqiPWeUcgbKDF3I2h7UEXpKdOvCJ5Xu4ZFJsNERR4LesvcxxkV1ZtdAFKGtarp8APwwILtOuH4IwgxUdzjPFzDUtS2bkgHXQb2cGRtUoqGKyWBPRvYdnJwPgkxaeoHSFSBOSGqWzoobROyh1jTkjMvkImK0o5MZBF6R5fv9nlZLC3ZLUQTiSiN2CR4bzWLUh5G6UNkB861Xf5WQEwXfGNAmYhzpuUOJE9SiJdJp8l4gKCDdQOZVww0bzhpY3oUw87LcbTa73c73XUfatgPjRBMGzNTUMlofW09H5QwUJuBgQfo+2zTfZ2qfVWltdIbTWF7TUusOBIAjJaIeJethCTM8FK5aJgpLU9hQ58F89DxvNp8sF6ee59U1bD0sy1pvd+vVpm67IBzF8cTxXGVKczS9ePH1o89+LeJl23qlsE0vcuxQodFLLrw0uYZEl3qmUqt/6paXlgSg0gBnrZokjYZbgxq8puJgB+fpS8KgNgk8NVWZb3ebu7ury4fb27Ksvvjii+cvnuO3+12WbMosq8v8x1ffQ3/59s5x7eVyOZ/P42hkB/Hzv/pb4Y6sIBQwKpYVRqJtWC7gw3SWBnMCsNdj4LamALiNCw3SNQQs6OoK1TqXzKHRimxblJpaQ6nSdCwsKHCdYJUhAUuGnoFD9Iym7Yq2RbXCalJrc9UW+23e7Ismb2DXMpmdxdMZ+ZyQjwLKH0gAWgFArISlyS9IAP7kj19ke/avn/F8Sqj+7z0+TAD+aCag9zMGZxxgtQwB4vYeC6n33fb+r96z3RnYvR9AdbkUVCslgBCAlB4LL1LVsauqmt8Mn25J28bqDolHYZQ5ojlIc0bhaDRySbSHUUNJnkE+5WiGW3D/NQapxKIo9vs9AeIhyoYeK8lHWmRBUKp6NIKKi/6V6PzAHaFC4sVRUJa5lPLpk0dffPF5EHo/vHr9+29+e3l56Tt2VantZmMYYjEdh+GoUZUj7aYuW9V4toPuuWVWRZUVmeUBCkIKJ0g5kNw46HgwzvL09Lyua1CQb24YpQ0TeILCs5DcPs3v7u7Wmy0qfASjlRRbo/hTq4qsl7WCoobd6/tPgaC+7RrvQRXEhuTtj7URPwZ7HFATonOwhXPIy4AudsfsHFd23GAARgieZCw36bsk40ghPZxuHVwLErMUzlmswjmE+53xIZmVXLFQnJfWIeHkHIBOS9lGIy1BivKkUsrbJ8mwEKQKN5gd41WNxKOqIDLTp08o0tdKIAEwJfFNseVQTwhgdOjok9ZLX/M+iNpJiim031PvlYYgplPCUNyy70m0uA4iolBJrwfWE2qks1wHLfMW4HK0MVqqHJMVG2yjqHdGfhH6kof4sh/gOiHpZ1+PiyGSBkBFtB33z9QcEoChq/D+HgGGLpO5ueqPcjU2UlDSeePkHIyiV9yBukfgHMYMgzJovrME6QGQY3SuKSRSFOKdI/qnnAFGS2T0Q5goAMoapEN11+YAS9QoCoP7gqoBlKNMiYSBGkGURWj9fj1k+nL+MSzq2IHuGOJIvtgoUh40c9jCguUV+Un1vJljRA3T30nvX8f09PlEBuhjfRq3ODsO6XRaxfRWuk0s6DScEoIcaQCV1gr06aq2rJsKqHrMHuj/mhIdBED2qCCC0Ja5B5jONlVhecp0FD2zNwi/M6lbdg51AgaTEJIlRWANQYZearMfY7jkuoEeP5BCNuO4kAwYphiPx3CQaLvdfvPwAKT4eDyaTpaW6TWdoPbpPs/TpmkAa3SdoqjoCcGQ1TQdspz2bemUObhMbESN8N3oYJqlyjAMejopFTf0FYmqVEEQeIEfBNF4Og2CIE3zh4c7aH3CLLy2DIM+ows9N/LdQKK3QmVpJQ7EWUuYdl51m1Tt8iatRKmMSsiWnNpapArmkCBTptfaAMpTAxDUefxHwvntOPIB96lKyzLiKJrNJpN47Pv+3cM9M2XLWlVl3ZkWKBNhGC3PlBPY4Ul8/nz+9Fd2eNIIudkmo9HI6DqJ2UMIHz0aTaxHQweAivxcA+ftox9Set1DPtLUlGr2HFyMbNkaII7QCGhFVxlNkm1vbi9/vL263G73oeeP43g2jifj2JZmvtslu83tzfXq/m67XiuluCE/n87GixN/cRHOTyfzEysYCdNRoA16nWGTfSB7gBI6DmOPuEu0nFNBkIRWyUDTBrenBLsMjVU0nWgRIKcLqwNCEk/JFp1FZQdsNjT9lAn8ZtN1ZVHukmTXpmu/3trgZUfK8msZGk7kRWPPD9EhAQKBn6BFjQhsBGiffkoA/sjxKQH4sz6MXz/WCcAHsf7PkvzYGlb/JQcEwzwhiDLTPRn5Tf/UWM9/6t2G42AcBswrOgMIJQmMIC2H/CptiEGSgTx2YBKfNA3DBykTPjnDZszKgEEYErOTtuxj4XP4/uqQV5NoCW7EwpolPCChYKNbAW2bpin3HFBTJKALd/ADz4/HMIJtEEeq6XTy/PmLR+fnVVH+4bvfv728EkS0XT3cAfEZwZ4GSBUBgBMICdIIPfwvyRKNwwHoF78imep2uZizePzp+dmLFy/G4/F+v394AL1YkUKNTVRpH4VA+O/c3t6mWQ6/M0W3gsxXSbHJ+qgzpAMg4gyQpifBnViZEZw2DsJ6SAkfLO94HNsxngG9C+YOao13EDYNQ3iew7oouhTd4cnpgJJU56FTBLitjnUcwt0OnQqO2BoBaMp7zMX+NayJMRxax7Zrlcrg7UCHJKgSYwtsm4m/ugg66J12wqwq4EeBAyaTLOp8kxA24Basa2FS8ZOsSTG8SJLlPXsjPYY5fj2Q5s1Omq0JkEYv1khYIyZ1kEQMe6ZqQpsC5EL7peJc4A4MlRfTsqGXT/s7YhIi0gyeG7qW/N5qigscfLghHEQsTHAPpPuLEgDuj2koEXxCtVIwCOWcV/CEIi0VPfuOZvdB/uUI8314bG0nRSsx/lACJvVJHnuADOoHC1sqfkPw9ZRplk1bQjIUZWRqnmjfXI7CmSrKqjhcdT4+jeO09rCOHYkckHmYHv9secsJABiyTG+icUkwI3orcnjVNFYCpTABgsjxOgFgTjAzZIgmqaVL+kUSI6cFhlvLKnAYp2+1TRQBA1BFVXdFpYqqrlRbleBCkOyvpBFBVmjoXJFvNCDkju94ALqQSIBFtCfiMzDeD5cCFjKdCPQ8uSbSNYhPUQfhsg6fKlmF0LwuS2AXmxbcX5dcqcnlQE3HE9eFkwl3G6BiVpZNawb+2CHjc+A06iKjn9fw7XKI8GBppStD8svY8qUs4ZlFeSzKBFjtqcdoE/NBM63puWw3e5hwSfRh4gkEf/wgVKRTlOz2ebpvVY1Uvypty4wCJ3Rby2wcvKlhCCgHcE4uTNkKu2rNfdHu0nqbVUUt6gZkKzKHs7r36cuA1qiSyFFW4DoeXHpF19YOkLJQUBVtY1tWGPqTySSKkL1AnQm1bHCpGtHVqi1aMTp/IvzYjk/96cXo9GU4uzBlWDdIJo99tfWs7JAAEEFLT1JumA4j+SD02juHsK4XK3FpWVpqIHSmxAojGtNQlqib/OH+3U+3V5cPDw+bh1WeZdN49Oj8ZBT4TVnkGWw099v1brdTaNhirIZhGE7ncjRfPn7x6OnzcDwTTiisQAibmv6Y1jSWWwx47TnTgVsIgSkLnTLqMx/M9WiaYEepsRBKSwoXRXrIngF7ZTetqVqDkltbgXHRGF1lgXJcpAm0nfL1rVlsR4HvT86c8YkVjIUddQQfBU6sN+PDwMNaCXsEzIJPCcAfOT4lAH/Wh/FXTyZ/pN7/8c/pj7iZiK9UkkHeToUILG+0bHGZC+KR6JG+z7TjQ1vZvx9TQjaRTFWHct0QTlEIrgPBQ4yoGtuEVqbjkX48QYayEqSxjHQ8TVIcJKSrNsqlGJFddTQimc+nJB16Dou5yAGL1ghYUobHsAZl2ynyzOKsBp3lMPRHo5Ft21VeZHny1Rdfvnz50nGc3//ud3/4wx9UVXVNm2XJeDQKfc9zoU+X7tBzoII0kFPAzRPll6U8gXmtqs06jWPYxHIH2fW9Z0+ePnryOIeuHn5CJseFYZpRhIa75wXb/X693iYZymwI7BSnStjACHyFRwfQOalFoCVKR9PBr4cDxK5Vx6ovH2iHfxw5AU5TVn3ViTRbNT+PSIQ2WXE5CPRrUBoRN1QF4Lx9PIGghN8zDmGsNgw24PBJ/58Do+MekQ4ijyErA+AElACdcmgCiSt915PSDMOQlF06gPwpkWNQjS7w03CCJ1XTESQL5fZjGi4zU9k054NxOwzdAXB/qOCSRCmnCgOeiu8tGw8x8OYYagLtEZpRDeXaZI4H/jNVgem+UnBLCfL7u9RR9M8QoIN6D52Abj2wY+hHCYC+Xm4W9fgCHuQ94ugg/GV2ALlxQMn5AO/ilFINTuEHTVKqHBMU/jg7YkKBargU3WvaaDYtI8Qo1mFkP1KCtutqw2hwF4C9UqoFMQAh3OB7wKa8DLViyPHBIPl4tBww9Dxy+rMi34u+hkpvwa9gAmzvNkDXhRvX1BVIIrzi0R3Qnr4al9UnADpnBiZbJwAHCJJ+cMy5p1tNM0pbclMQzAFu2wA/U0EdqCtyyFZiWJmgTIAL3LaVUgi4KAEAm5PYJqzzBQdiCsWYfNw/ZGK6kEir48BIixpTPDswj4glwhUTIHUsy6oqhOZllUOdnnA1bP3BTFjXdqZTKG8ahrHCsVE1UlYYYpC1Y9d1MOLdbYETo2oDz1pQt+n7OI6pJYh+bF5AvMGRluvZeZ5LQEAxfTgHoCdqkfCDrBuV7LOqaSbT+dOnT0/Oz3wHBiCNqtLdbrtZ7ffbsihalftu7dlGFDiB77k24P0VOePuk8y0XCE91cm0bHdptc+w3hum2xxBK7GRAMlEqXUL12RbmgGwo+xb1pb7tWObpBFqIoo1MJIdx1ksFmRWbbqgCEWW7VSqTqtOzpbT8xfTi5etM8lEINzxaHIq8aGKgI6YHVqliQA1KOpDLo+02vpspJ9xzObWK6qWUmWnZ+bgIgegBh4Gs42+JpohtSWUaJJsc7N9uL384fW7t2/urm9MQ4xDDy4HEF6TXdNsVjCvZLK+3n+lo+xg+eT5oycvxvNlPFlG04Uw/RpeYDbLfdBEQKGI/n8jCNJGEAAby5ow8QiqyvUDsKiZzlyWRZZCr8CBMx3Goe1JPxCGVEp0sKGzIToEtJUyLfQSmmS3Wd2mm/t0cx/HcTi78CdLK5gI20faoBQ9bKYjY/VAa5d6oZ8SgH/m+JQA/CUkAP9yCNCR+h6CfupuE2QBKABKCWjBGsg9hMB+z/ZlKHl+8HF62WpqLt19oNtNG4CWBjpSPcdKNpgCMqqUoSwPqxX/HLDWXhHPNE0vICdOOjhhYId2FKEJIMK7OyvHh2G4WCyAGCYwOvF3d3COJH9SEp+xeaFwHDkZj+M4IoP39Xw+/9//n/+v58+fv7386Te/+c3V5ds0SZSqLWGEEfx9pZRFlqfZ3iboZm/HS9sGrd2TyYRtI/lkIB+pmqKuPn/x0gsDFkVN9ul6C/JWXdfj8VQb7iAaIPhTkmRp0VKRW1eUqWXMNDLsIqQrSh9KJ6H5kwdC8PHBz2uo/Q8vUDUwlDp8pUeuUTdtB6w/Dumgx6uhYgC9k+UTC6I7jg37LtvuFAkf9foePH4g1UT+ZQf8BnlG0Au4tq2HgT5ngawDjSLkM3hD3Qqgu+x5ThCAtgikiioLPPZqs094h9aZXqWQgEELngv2w7BnDgDCHqjp/0wC8F6W298liPQPllvHgid+gEr84DnKWZ9SyvV9StgooQZbGn2ApgVDFFUwzC3ChjOtWvORjw89rRoidg+NiOGskNz80wmAbrGwuxYdkMLRIKsDUoUxIdKgoB+gIm7OICCWgG30FfQjLBlz+ofxM6i+ANJEy0BvY0TVU0omdado6EQB/t5mpJVC52ChrwQdWjRnNATiEFhTSgDAEpK4I1aG5icMDYFjy2QagagXHmquR5Kj/M49GINpJi3kWTX/AYnJEIr5LvwBNEKM/dSpA2BiwRpSaE1cYZbtAZ7Uf9zxcySDBfQBCD6BtlVVwwlEIS8EzoJCP4qMKU/mdI4A/cDCwVGEsiyGhg/8BAkFFdAksDY6tud5Eks2lWfBAMYbDuPWQn8DpuAEoKtqhbkJ5RdyecOnWITnoNIG3soJdltoGRAI3ozAe8XSJ4S4u7uvFdy4yQUGDSSyL+jyogiCAEhO121aLrtkinBHUloepikOJFo0Ni4uHr99e3UHsTXoZnYI7IRly6ePnz1+/HgyifN0v9ts8yJNd/vN5rrM7qVUvmsFvjvyXcdmgEq72yfAmAEkZdadzEqVZlWat3UjFex0eRhAbmHYfaQJfpF2sQD92nHszjXqrkWa1mENIWdrm/xcbDsMYBAuYEAmLNuNJ2N3PGuDmb94PJo/MYJFY48aGXWm2xmSmE4QidJ0WN0GM21hNkSs1+bE1CzrWVvUGGFukm6HyaZDkI230okfjx9DobTAlaFadqUQpaiSJk9+/P73b3744fUPr9JkZxvCkzIO3FEUNE2TEuWMV1T6CGl64bbq3HgcjmdBPDk5fXT2+Gk8PRWmq9NmBNnceeCOTcNKAQK6x7BboYwf3CSaaQ3+omubvNhu1+k+6VShigTis+PZ/OTciuKmNaoGz9eyZCdqq6lh+9UoUSR1uqtgipP60cSNJsIbdXZk2L4QlmoUdkXIIuk7gKYuzZGfjf4/JQCH41MC8Gd9GH/9dPqzZf7j8tjxzwcNwcNb6LbaocDGtStumGPP6I3fj4t/H4jxDWlAXWUfA3N7gZoD/U6r0GDrkFwjZAGaXjpTMuKBLY1KVPyZxIZ6F4faDD1nZi3/lvME0kHDwT2HvCgnk8np6clsNnNsG/ZSMPBCnA8nAdgVI3zEXSBoh+8jvkdkubr3ff/rr79+/vSZbVt/93/+n7vdZrfelGXpUKfbIxLkbvtgQHBJt3OPK8S81R1DcWCYVRW2YwVRPJ1OYS9FVIe8qG5vbgCG4DqUAT+jqiiruslBncA7aDseXRkiL1huvKJiig/iT2aMjUbg9OVbzk8+JADowjDjYYYiNguwtA6cO9mzVriIsCUwvrCARWGMVA6ZnUlUBNE51HJgPZ/BJQol06Zu2rqp2krRE6RwkdIA0pvXgjbvybofDaqD+CCK8fTQQRkkPrfr+lLKlOSY8hwxCrve0nbuFAVxEliBpb9k6L6DtM7Dux+0LFTxPvn+CFNOFVzyKmBQPt9VaMg6lucxOkJUVQnzGuQApNxEN04CrYuSmYJcHT7XRO0K9UDuAPTU5EFP4/gEjvITtmjg8Peo53CcAPCd1IKQfUrHhgOHqU8Udx3rA4XFqTHp6jCvo2uA7KBzpFo+nzPdByKaHxtUMb/Ztb3hhIkvQBh6alkA4c5aU5xLIfBpqf5NhtR4NprDYhoyy9BROR6fnEZC3KvHZemHyIZ0lOoPw2O4Xls6xwnA0AZhK4jhNvJ1AUDAiTEADuQb0Cur+q53xPE9PBSTAOhHt1SPXVxlb8fOSK++Uwqdfn5YhsltTJgDNqqrmhZiYIShGUYCll+KqCixRLPLtsgzhDshxJEgHTdO1DvXcVryoetEA98PwgJxUb/nDLCBACM8O9+VeI0F0kVeQAAUTU56DSSGqTXatsq2bSqgjAxh1w26mmmaUtHEjifj0WjU4OTrlOhb6ECyyV1nWNLBT5rG87wwwgwtMTUzHsO2SXL5NGs4AVitNicnJ2fnF51hff/Dj69+/Ml2nfPzR1mav3z58tHjC3QMWtRQmrpMk/W7d78ri21ZZGarQt+OI38UunCbk3aWZbukKOHIZ6rGKKsmL0RaGHVrqLqtIFRMUqBAI+H2onCAPiYxMCwARz0pRr4waMnChxKMh7BUIooicnHBs7NM2wujyWzqjZciPvXmj8LZExHNhT3pDL/qzEp18BVm5Ezv2IBHjFlqAXLVKU6BKGxGsUM6bs/0JSIVPe5WyFo4IByhWafIzwFtzAZ8DzSJEG63pdUVFnhKpVCFyJOf/vD73/32Hx5uroVSlgkzAbMD54p13iBBUdbCNJbL0/n5Y3++LJqO8Gh2OJ7OTs7hthtMesmpowQAabDCRbRK5OXDar3Z7Q3Lni9PxrOlaBoBMBuWO1Fk6XZzd3u7ub/d3V9aohsvT5989sX44pGw7BrdNiCIcHNU2aS7Mtl1eSqaCucZhP54JsKp6KzScCzbt4RNKobA7vYtTjLMJhDpP6n28ykB4ONTAvBnfeiGvd6Sh290gejDn/dF++O2I8OGNVWOfwx7Rv0dud5Ay4Je0DQkM0kfTKGtLssNQVvXBUHArmR9sKo31CAIWsgCEE2taSsFyX8IDpJUIpFfJTrHEFus6xJCnOhAGpa0TV+4nAxUqk2ytKpVXpSGkQ1S+oHjcvDHdjnUJCVLK4A4ZVmWl5dvV6vVZDIZj8dPnj6XtlmWJTtKbrarh/WmaWrf9cIwrKr6p8tLrPhB0HTGb/7rf/vmm28nk/jrL7+C2H+S3t3f3N7e3m+20jBdR8KOnFChHBpClYb0PBgwwjqGdQmtfaYHB2FcFNlus0p2GxTU4hjCRLYzn4zrlmxlc2y0TddK07KljSDAgOeaJBwz+2lR6UU2eCB4e8ScDYwSUJkmB1MAB5Ak6KCN4FII5YdIiYuLVExigUxNBifqAZkc4elIAN67pqgQidQNANmuZzuWaTue9H20G0oAp8qqtDVMVhvI4xMQ7pDEp2khMLAJnYWInDFCVFGmT+8LtHS7VI/qJowMqTACX+C5JMexL7pd7nhZHI8mExkEMhrP6rq0bOiQCNOqa4CbmWICqi4XX3V0yMVQjdNgvAbpMBofTA16rf43nRUC9h4jhJtgmk2WZY6CdCy1j2zKSXwh2u12DxOoqm60ih8KdaaArjkUdJnt0H+egYoaQEZUJXxfSo8gJPo/+j/SnoeDxL98dSDn4IMkEJkl8ZVT1RS1YIqDif9DdUrC1UJJRiAs6cnKOqpl6XlgfYnwrJ1z0bDqQ0y0A/A6ykMV+oENlw+YWQ55ANMiDBDH2j2pwKDOD+UuHzSpOOmiTzpkrTTS+AU8YkmnWPuf0DNmKD6fLl08Ce1Q/0wvETTkBWhOQkPCcdMJtKZtB485D/qbjlQ5mRDcY6CYnlkp3AhuaPY8Aq6kgBQFpU6YiDUdIP7kS4UaiBQeLOtQv6BMmxqgGLMsXQOeKuJ40JwU23t3APM0LMzEMjgExrAspOu6y1KWUO7C+kx4ES0JDDJE0zZQh2wt08XHj8LIc9yqKlVTlVmuyqpV0GOFhKeFDmeSZIEfB0EwHoVR4O1SKLDB9TwvxtMpVWqczM73u7TJYWPSCnM6inAaDfA/nUAaIC0riqJaIStAekUiFCCGUUno9PS0KuvXr9+M4hMDTAABAABJREFUxuOvvvzVl1//9euf3nz36vsgiH66fLvdJ7BnoZap7/uz5YWw6t32dnV/kyWbpGiEKNtGuHY1HU8Myw1Dy2tQu4cHhVSujeZopYzSqM26KzEG8PyYFk/FI+SpZFNsVnWDjkZd+44R+EgquLtSkwKYQZ4JbVFIxwlD1EHaVmVZEsTnlu0K36PFp1DCMO0gsGFHw+gUZlrRUOV5r0ltNOoArWlUUVWF0VaEWWMNLLwakwdccQt+57S5kkMwfsMSfqRoSyMMmphAxYm6EWFwspzvTk/aPMuSDXyp6zovEu5o0fbalVXZdiLLsrDIHs+nJYuqOgFcU4p0v36IobXt8kdhIFKvjFaiWpSwJlhttw+rTV4ox/ML6DVBCtk2acuuwf3wXSlFWybrfH0Hf/a6HI9HQRxYISRHDWGrpkRLrEzXD7cPb35K1ndu1ziuv3j60vBiL6KeGDEh0DJplQ3EMjSa+rUMiRvMF4mb9On4dPxlHjoaGApjHxwf/Jz8wjQL+HiLHUK3fj/mRnaPPtDiae9BJti6ZSh491jGzoFmw6HnMDQK9vs9E1U5c+BPVPBlR0owqPdgU6Q9eTCeZJQLdG+qyihL15+jdU2LMizDwFdD7ZAzAdd1wSKgYnAcx77vz+fzhI40zbg0zrV5P3DH09lyeWoYXZIkV9dvH+7XWZGZwoqCked5qFurznZd1Xa396vXb/4/y/ns0aNHz15+9uLzrx7ubt+8eXN3ex05pmtLE7Skjv0vS7N2JESN2LvHoLbGoI1YVLllGb4P3c/dbrPdrh3Hc113sVhIAxU4aYq0a7KCPcEUBP1EM8DFUZalNg7pglNwhpvDORxCgIzUcrT/Gj0ULtlWFZKQj2iUiMj5MfYP0aL8zaopQ6M3cdkQqigguqqUl1vCsaiVDD14dzLzLMPM0gQ1ZNJbhGwRdbYJ+EDa5NKy4dtF4vRwBu4ypHC8NQJ5QixJQLEhpAIJHYRgGHymaZNQIy4U27kNflkr7je7+9W+M9oJMoHJYrFYnpzVtVqvV6v7h/1+T4bVgDdQfVer9ABlBtyqjuE4gqR7x2mC1qakO6MnjkmkhJqAVZYEzIxCA1kUGE5KKUJwAXrh+65tu4vZEpXI3S5JkqpC0wPWb4TQYD+mA1dX919adEXej/75qR2Fnj9vfPsvPFoQ8wk9zMZbvXQvAmt4POF7Cwh4aZptA3kPSbkGXg7NSxKcGQLiAeTWkitug2oiaQpZpAJEOSTI1yDvItcnq110UZAOIg0GtltKBzkEcVeonYSQsKN8FQvUICYLHVcwEo80P3UfYHDGHVa5odX2vg6PTifYppBAdA3nB0wvAHqBwBQMS4M7Mx1FXn2MowP8v21IRhlPDsMVXwFYgqiRgRyAjL/MzmgBX6LeAqrjeklk0Uekvq4XmOynzjMRtxfJmmlCGJStWBlsA5gQOVQQA4qbIXQFNFSrsnbJQ90wHOqFlnAFodacCQld2cvewB6t69qyaGsDraogCMIAB9tu7Ldr1F1I3bgq4CaLIr3tZFnCbR/UWYLAMu00TfdputkmYxxTz/OqEsoH1KYzrq6uwmA0ncKekiXagLSxkSGXVU70BhRm+BrgG53mi8XCdr28rNM0nS5PX37+RRCP7+5Qnbm9X02n08kodlw5nU7Pzpbzk8eWYzd4hhY4yXWlVG52bVV2gY8KDhtQ5HlpiNKEkioldw1kOckXnFIr9CJAosXEbKUJp0qQsIumstzWAcMVrCGSOu0s2oDWq200CkJiOpVl2e23ruuGY280Cm1pi6oWXYW0AN0X6voJmJxQos9jpUfIYY1UBGc3UOxvVVeXXVW8+vGV69og5oah63uGDTcJEupiFgyRZnroF1oBRAvgBAM6SdTsq4qqurtTWeJCe6Gr8qxRtd01Nj4KvGoyoiCyuGo2u13RvrWCkRNFJ2cX03FY1t1qvd2v7wyhpvMTbpkxNJCSbNwNIepsv17f3dWVGo3GESwjjP127Tmu1UUQgy0K02jMVhkqr9KtUWZVut93zfZ+Fk1Hdlsbjic9HzR00OKLZPNwdfnjw9Wl0zZOEJnRRI4mXtsJbIXU8ALmFcJdrB9F50AVDGqDiU8JwKfjL/gwfn0x+mCjOmx4P0cJ0CTIf/odj19viNbF8nkwgPyZMzhC7pqGcCG78qH98CAT9PH7ANPcw2ePjziOB1W04U2ww1g24DG8UZG4Jwe47OTF2z8fHOm6jse255Zl3d3fbrdbPwgWi8V8PoemPm2rzEsjQ63qm9/+Ps1QxHWA+0Rb1jYtz0fVe7+DQLUQ3WQyPV0uptOp59jff/MPWbIj2zLDBX4CXQ621mKV7mObzIGP2t+KAy4frvW9mic1fxGeNZ3IcmKTksY2e7WynxQUGIj0yD6jZMLMepTAUvOH8rsN3OgBzH2cA1i2y0rkAM8YUOxmkgY7CRxby/WROj10YhbakAIySJHDdECAblCjQoTEVVA4p7IYdh/ekhkdIeAr0jZB84JkjAjYZRmIWNyB5wp+c68mZJrmeDwOgqAoy90uSYuUfClakI9NdFd814miOAg8H34R5uVPb8qiKLMc2uREPaQ4Ximj44gc+kp47gglkekBycMh4AEXNOCwWbKefAnI8Qh+FxhvKBAiEUV4FEWR7/tGBysMlg/fbre73a4ocA6sVMs5sD4ZdLSULV12hvoAoMUBbo96HxyyEMwfzVOKxXVKYX3MAWiFiZbL+/kDPwN6tohOmJZM0sDwTbJkZ5J4qxZE0olQq0Cz0VBARhBxVV4YLtJTdPQ7Cn8pAcB4AxeIgCs0xSQaITwryTZEo/m7FlfadQJmtFobceD78spTGqwucqQoMFQcfobTwiKerGkGkVFWx4JtHCvl163CCBhoRbbdd790/4dXTq29S54bx6A5iPBomXbcN3h4EYAe2ptaKYsTKha9sdBi4+YgJ039uCL/OKwwzF0pVQ0IWa2kA+gRJT8I8wZrZMwaWq/AS5FQ2ARk3TJVkfOdgcMKlLjQRazqQkOAAHAHf0AjANtKIktv0F6QJqN0oiD0PBdOdnmS7rZsu85CtCD52B4pfeGREcXAFyYQNXd3dx0YtRj2QRB2ppFlWZrk6+3usIgxlZ+0G7hGQ+4KWKJHo9HZyel8Pv/mm2/QFiZjhOlsEc8WfhgJUyrV3j88vHr16s3la6ODv9UkjrquOTudjePAd53d9u7qzevVw4002tC3hVJw9qUDnCXQooy2s9KiyaomzfIMnAf2CoS4HKHbdULLqyXWMTRr9r4NOJDvOo5t2FCyQ7+mzIvDTielH4awAhjNXv7P/7sRn4rRXNgjYQWd4cGdl6R+SF8ZHTWSAiIUI3zRlXQc4OGqgjA+FgLrPL169+677/5wfXe7XJz86q9+ffr4ibCctjE6e4oOQJtbrQIdTNWojHg+EQvIbKRVBjwTq6ZMVL713W51+er199/fXL1JNqsyT426NFGCkRiiyOfJQwBkGdf2Azsa2X4wHk9n88VkPjNM+bDZ3t0+fP31r6HMSzenpJEBbesoLLPdYja/vXu4vL47e/z0xcvPOyHTvCiyjHLjLvAcT5p1ka/v7/ar2+/+69+1qrLDcPH06enzz4LF0vRDQ0rVtlKIYr+7ev399Q+v8tUDzs924ovns0fPz599MZ4tLScQJpB+olWya7q6QJ7XdZbrmbYrTKduOtOyWenhGPNzLEv4cbgi/qSPTxCgT8fRYfzqPPrZBGDQ6f+g6Au2FpvvUcGz++cSACKckfwWgQFIUu3wld9l+K2ALB0CX46SdKw0uAL2X0kmUH9/IIAenTwX/knT470mA2oils2FZA0KohyAmQAaLN4zj/ltSWXCjKP49PyU61Lwu8my/X4PO/SXz8bjMUSHiK1rmuZ8PN1sNrd31/f395vNJssyWF9RDE1GYja/GBmClL5rPzo7LbM0S5OUjq6pXdeNAh8ykRQwMQ+SNUGIomAcVJgORws97t6fa3BJ7Dqjhq4kR8MUBbKVrIAitcaScHrADshkGnV8P4c3ZKj68M4DNMhybMZ4U7ytQd5t246CkE/svUkOTDEpr+kKLR40hORNwrxiUyWl+iP/YEs0xwmAtlJFvGoyq0GTPSAUj2t0nQhpHo8oGj8oOZuG5wUInakm2hpmXdfc2Nnvt5C1Bj84oFDGQw3O7E4WyzzP9rtdtgduQakKuYloLM/hT2RbVgpTKG8UH7ARdDA6JNI4Z53Z4iuhnCnoD0BKLssiSYCoHoUR10qjCPbP2t80S9nWlOnCjFPyoCnlVgqqQVSPP8zTI1UihsIfsZbfm6f/fALAZgj9QkBvS99yIf/gEEzPExGJoShx7Wm+jJunQiPbzbLjLKcHwrDLutNA4f682O6IWi88TjpSptLhOxoe7BLH8oYaO84dBj41GuGsKCgaC9F2L8JzNKR/ltPCNA9mMfHDGlR9qJqui7AEKeLlwqhU3fYPnRIBCNyi7o5QfvDgO3AqiG9P58M5BsmeAkPCGK0DzUnPZceg/hWXLqFgBQJo0ym4H7CDulbTgoYs5agEBtL0cGqWUnxT5NTBoxyAciptmjaLR63SyyAT94n+ZLHiGSjF1AcYoH2hJ8lnG37ZABnS66VtRlAsC1wPYmjMkkKk5WDRgC1JK7K8bGqANKIocjzfdXwWOSiBPeQaClkoOgEbirEppG3bqkJuwy0FEl3AE/Q8ZzaZj0bhycnJLtk/rPf7NGmFjEbxdL4IR2MkwBa0ULMk/e1vf/v73/2jZVlPHz/yA288iiZxYJkiTzd7xLh7gohg5SGyLnTLWNMWw9b2yqatqiavq7Jo0qJM8rwoa5O4Ipw74UHYJv7K7OYTv62hw+baMgpcx7YayJDCrZKVTHHb6amZ0mmkf/7l35w8/Tp6/ELIqC6NSthhNBawcybzC+qbwVXXtKiQ3ZmuB4j8DjQG17bC0BOuQ00Csb969+7dO9V048lsuliG8Vi4Ud26wrBVlTqithwJlL9Swg/IjtPELsDOD3VRAky/Wl9935T73Wp1f/uuSHZGU3W48CxwvbwqTcudLU6WZxeuH9ZKwEnRMBvTBEdC1aZFzG9iv2w3e4CvRigvgpsLbeuaVOasp48vHC+sWyOMZ24YmqbjB5FpWXm6T7ebKktUmVXZPtvtymT7cPlDUWRuNH7x61+//Ot/58Tjm01yff/geV662+7Xq3R1n63uuiKfR9F0eeKePDbDiT+ahfE0msy9AMbwZEOmRFWu3r599eqVEuLps8+W54+FdD4lAP/M8SkB+LM+jF+dhsdx8zATuH18HDb0+6XJMFby8+0ZhP1xrB+i/4q0vcBwowCBO+VYVy2LyY69MGXvc9gCucEK8fx1oBIO9Ef+CX89XEkvnKcP2l95p7exUaGqhG4ubbkcnXDcAIAsUQsGNvBxwuN5XpIkqlRe6J2enl5cXJyfn09mYE7/8MMPl5eXnud9/uUXjx8/5txg+7AGwdfzIJuAZueaMwFqXuvz7CMAlNyNRoV+MJ+iOF2W+cPDw267VWUZBAEr6gy6OoxmlqDZaTPaHlaAoMSxvd6Fd4j/uNeJ+J7L4S1UZUgOiGUQWAeOgzp6shxYs8/Ocb9Fq5QeSMYHXnJJ6j30bPtcEfgbVMQpnjoaV5pLwjkh91+ZMo6eBjNKYQqqPYD5nFobL+uZcL38Peu6csyNpV2pSgE3r5pOWn7LiGx2e3Ch7GTZMohillIh1io6LVmWcQ4A4kQB6VjHkp7vkGwoqqGQwAsCScSALE+LNC8VAqWByTpMFhpIXGbuy889T6YTPUijFwMdwjsGrcHFKAhMS5CiJYRdePhxGkC4IERRbFeX5xnL3cC5osrLorZdDkSO2lwcS7JNmT7DXpPHNKAm+k8nAB/IgIJ3CHbKILyr2wiI7Uhdexge7LFrwPoBDtAkFwM5Tip/YoO1odrBuH+lBSiJopMVimD4zO0enMsQ9EOAkjyeB5Ng0h1iw7W+5k6KsdpY8L1oW6P/TRiH6vc8Hs/H2N/jRHf4+ZARYAxr+m9veEdTmMdAXsJNWi8arEiGejXqx7wI9RN98EPoE4A+J6FiA50/UB+6NzKIDyFaJIi1gfASZACIXAGGRCWU/pyHMkeSEhmacFAQk9Fz04Lmis7gelc4SphCD/gf6j1Sc69D/01bGVBHgmWF0Iwj7DuoqZrnAJ+p3vNOwAfAg7YBkYgMSP4TkHK1WkksBVZZV20tpOO6jm/acjSKeR4B7NJQ26FCjDgaTY+XYl6bePTCLBa1eTwpMLvcwHHk0+dPonHsudF2v7t8d7vebixp+yFARL1gEOCmD/d333333ZvXP50ulr7rjSej8ch3pFUrSMgXWeq5Fi2UtNZBah6tFawUntsQflCJrq66JC92aZoXFWmwInw+eClaUK53rMZzpe/YWLdJGMpzLd+167I6lJZoDHem1ZiydqLRyZOLp1+cPvnMWT4RbiTyOt+nVZGLVlmGGY1GYjJFK8AwRVEJQ6h9slk/bFa3u+2mqcoAhjD+8y8+Z8lNIlwZjh84USzcqGtcw7JFDY6skJ2oCgzHaCRUC4VoARk3KKEme1Tc19dvX/1D5BqqyO7vrlSe+rYpVJkme8eSrWG4XjSaLkaT+Xg6G03mUTze7lPVNrttcnV7g21OdL6P7Y9DCK6seY4bhmFZluv1art+ODs7u3j87OzR43i2rBph236wWJTrdZlnRbrLt+t097Bfr3aru2K3zbYPtmWN5sunX3z1+PMvgtk8b4ysrK6urm5vr3frlVGXdbovk10gzXi2vPji1+OTJ9PFiXCCqgZPScKaxlhfXwW+m6fJ5eXlepfGk/n5k+fj2SKeLj8lAH/s+JQA/FkfOso//hH/Ez4sH5WBGVtsIconkUIOTAkTrMVA4ZioBRwJedwyH4CxAqxPzmRSxT/nshKDjlAiNYhaCCyI0XUKJVdykaUQRkuhQdJeMw7JHPWAT3iPrtDzBKjqjY2G98hatKYtPduzoE9PonWmqxyrU12pSsswSlV2ylCdAgoXIjT1KPTdidd07Wa1Wq/X1+/ezRaLi4uLJ0+efPHFF5vN5u3bt5eXl2dnZ08ePb741Vld12tgyVdllfu+//z5c4JzrKEctN0qpUgMR5KUXiltd5fmSZajgBZ4rj+amBJo2hLNSgrZteIbMbesmn2+qMNO4RHxTDuO0hiR3tDV8y2HIXuHlI3QoLSskf0j8cQ67AIANfNLj2QHPy6OciekbduD/hKniKjJQjgcOznVwxzXNS04dFLgjnhn4HkDMUOysAgZ+kdmQN2RXNYQ25CWKCTw6CEiMCJqKAVix00q6rcgNAHW1TakaTUWLqeugE8gxDYaGo3VEeFRdE0l0Zb3mEJsSGsxm8xmE6Xg9bZarXa7XZUXRV7xVj0bQx6X9DdxYzthoN8tvM1m8zOkl14/p78mlFr1MKTQiX77XofK972qqvb7fZIkQRBMJhPmc9clOHBVqZJ0t16vNxsD4olRcHp6mqYpcQMAMIMNEwlVpaR+08cWOq0domA+zyOMu+6bfXz0J/+e7pZFKJWONKOG9EC/XqP8OaGlPFRzn40OIiq4+9Qb6WwQA7q6RvGP9KAcQIXQzEDi3VfxWeNVo2mIKMxEECSpnYW3Ir55C4iLvjhePGAQcMisaNr38Ay0lICX5jznSPDng7ViuD/vd040elrzYyijQu5K6H+8NdHEQ9+tSZIIKSg0SWFj1IjOlhDqhenSoNeOdbJrWwCpdfyPtRDiQSh5YKXkZa0X6aJhXLXwJHFEJw0DBkimELZwSE5XqyoRIIkBe5yfDDk/qvQobSBBclzIzlKLAhlpD8tUD+vtKPRljAIE5HHrUhE0EspmyCJQpWHAG9+VmtR1kf4RFKxtm0ohSbCSVCStbe/jURjHset6oSltB3a/dQPbO9V2uA5TFnVdZUWyL13fg4FJ4IoW5lDI5DuRJJDl5XIDp+XIQYnqMICCSH1Y5G2eF8Y//u7354/Onj17sTg58Ufxzc3dze3tZnX/9s3r+XwO/2Akh4DiPD5bStGUSVEVxequLBI3CABugpq/aTWtSaBFyjRUV6nahvQASv5ICKRtQEcVGfsIvVy1TzKgxRo8KRokhIxqzX2eCeGTc6RZq9oyOkdIYUrXA6oeBI5ea86PRm4QPWTV7uFqt9s9PDy8+KocXzwDwKrY5KuVqqpW1anvjXdzbzIX0PkBuV7KdjENvCbYXb1+++P3TVuPx+PrN989efbi0bPnXjwWMDSgtkCZ0kilOkmZqu0uTdCZiSYzGU2E3QF6aZtGI7OuK7Jyu9lL6eRVku6hdt1VldkaUqCDDS0Pyo3TNC3qNinqEyFNxyfdWDceTUaj0f39PS+k24e7yXiWdwrLqSpd2ytGIYoqAPWZm83GsF0vjNxgYjoOeNO7XZYlbVVCGg7Sn2mZbIpkl2c71VSWBCW6LLJ8n3jROBhPg5k7H41fSfldmm73u06BLO45OL2bqyvphrP5wnek2am0KMuiKrt2t75/uM4913n+9PFz6WYlhKoGM5xPx6fjL7cD8LOp7TEa/ogSRwsdIXY1bpe3K2JhMqCn7X+rodgHKb339t33HUx61X+IaWI7HGBC2PSJrKTpcr2uCMOAtNdpD4ZhbDHHjmRUxOrIzMUkDL1FCoWWBW1s27QtB8KKAvzRMq/qpgKUBHJp4MrCa9aASZZhdp70LMeGMXAOexjVNmdnZ34UgmEG/3nAqKiIVc0m00kch2FItDDgTC7psD2b/IZJfL7C5s3XHrjBdgNuQIdqnIuFDH1jkzCRivSksX9rYAxsURAzaRjDQWCF4QQokRLsWns/GVDtoO8J5MNWlMSEQlTXUAIABL/WRsN71tSxOYZM8ME67gOQmtMANM3ptjAXk/c2TlWgjkNBmP6T3uLUNBpARBjX1AOK6OHpngNfE3oABCBxTADB6Yl3HzinDhXQwSxTCLMuAb/m2iLuCgSWbIE9OwxHURhFFhD9toRQCWqdZakBYGVZZmmxoyPLMs5yUIZ3Hdf1wZ/sSB2dtPD4/Rk2dhxRDzicXj7VMEzno4RKo4ePxXalRPecDYN83/X9sGkA/oGBEaWCQogQHAG/aZrdbrvfIw1gX4UBuqZxC8S55hpwH/L2Kl7Uget+rgMw+AC8VyTqgA0/wIeOSuzAgByC6MP6QG5dPdyFmB6k8oNZDAc9WCbZIAu3CvcSQ5KcfvTYQYNP9nx3LSNGbFsSPcQ1OtI/kgyi4gCN6CET62veSHy5CjtQDj7IAT5ef4Yuky72k0w5Dd3+U4ZuAIOa4HwucRJdBxREVZU1O6U2wkSXSfQ1eCKuoCBCvyN5zaFTR8st9zSAFtfzgpXQ4IIKAB48f1H/5uAYftu2qRRwO4xg1Hx03B847GpbgAaLUlEhTzAtu/dDZJaEfkCEtaeQ1DZd2+EkAvK7VU30ASKgU0+A5MoguUqsAEniDm1VQcdTqcoCyg4iCjZmCmJu8in3J9NxDtbN/mG1KbKafPcs1bZUgkEEBl9X4ghwWSHdJyV8ueGTDXCRlHWJBh1DtpgY3Vu2gSotXdmKJori80dPHj157Lr+aoOm683NDcHuocdal3ma7HwHSgkPNw/UWqgBO4R0PwzJOfPRtNjDPNUlJP09dInpP0pOkhTMHIzhFgsCy4WZlvB9vy4L0TWh78Uj35VWVeZ5mp6dLNi9gNuVjuNMp/NoMrb8IFfdJlObtBZydHLx+OmTl+PFok2T7Xpzf3u93m07YfqjyWg6DYNRkSWe64Su06ji6vLy9Y+v0nTvOM4uSc8fPXn64sX89CKenxrjmQC3uBHCE44jst327t399Zv7u2shjMl88eSzr71gbI5iYXlCmNVud3P57uH2Tb59d3v9enV71ZS57GqjqSy4/uHioExm2H4Uo0hle0K6hinPz87CMGS8Ytuq7XZ7dfn25vZqs96ZlrDxmg4yUW0dhfFkPrNs2QrTj+IJCBsnfhA1LQSFFvNpme53D7fr23fJ/XW2XzV51kFIuqlVK73g7PGzz778q+WTF8INuloZrr9f3b97+2azvnMtI468RpW7fVooYfthOFlOF6fL0zN7NBaqUVmS77c//vD9br1Znp0/fvYyGE2U6RjSFZb3qQPwx45PHYA/68P49RmC14+PY5Lc4dWdcEg4dDj66IG+DtDhIyBQDy348Bgm0vs5BhRE2VCMUwi07ymdALL2APyhbZleAwOdowRgAAJZjFFuj/vsDP+wsI3Q/yzIjeAr7DY7s2oqNL1FM/wcxZIoYqcw3pAsGzG64zg3NzcKcoeG43vjeDpbzKEa5Hq7zcbzUNkajUZxjJCNtYaubq/2cOp9SJKEu9ts/LTdwlvRdxBiIgwtMtR4LDjXtqqGUz1FeCyfynRPQCwYGsV3jGASpO8haPtG0KJXMfhl6gCI6bPEIAa6GQIsKNbSNxrKhTvHjjeDkeRwHNwf+9SFEwACE2vANxXmKUhGm0jDTgYfKnY4MuDlerDLHZZUS2qcCUeBAGoR6ME2W3Q3tIQ5o3jYOJbk5RC7UNOA7aigielwmQ1aKOAFgPcKmLklbc+FDEc8RoXS98liubABt9WMUlWDa5tlQKze3txwVoOeBrkHOLbHvj/cWMJGrgkkOAH0Q5hkoe8eabcQlw8i/kebCoen1AiyQeElHBrFu7DEgQOFZ8dxPJlM4F7cNRQOpff39xylkYWBM1CEg8AbokBS5IfaB76n2vPAtT0EvgCS/EwCAIOMPmEbfK9oHtnMARiYzTyzqwqJIr/pwHw4JBg0Z2n2aTMj33b4e4xS0wJgwrTIwtZgvaqa1Ghb6Ioe0XNJuIOlxNhujHqKhASCKVMH9SFtlaET1D6wZsiKcCQ8lYYl6GND6+NViKH2uuGG/BMDG6QbmEiYGkEDXIcmciBRQUogcVUCRN66bmAj17R5WdPyw9Am4s+A0Ak0Et0Z5j/ROXBJhTB7UIFh3hOXPYhofezFwe7ajrTiOGIoDuJJDZjBP1ls1aD0g3WTK0UYm5rAKuyrQHUC4lh3ke/XZIlHggewQGHdta5hB24CCRKckvIhIDGlNBkrz3k4mTLUZZlz4YFzp548bUZRMBrHvhfmeblZ77dJWkLwE9DKIegHvt8FEsmRdgPDxTxJEs57uXDDzs24VwRY1KsKUZ1RWOlUZ8JSY4RJMwmiEKJGnXj39s27d+8AkvExc4EwycrQgxsxG2ahPkACPpTea+18Giu6jQYIFv0KHmGK1W7RBUBFHIkr8asYpzSkoFTntwzhe84ohIhpq0ACgNUAfBLgc1/WlRAm4FJhGE3i0XTuhJNNpm4esqSopOV4jjMOIgBzkh0YEaVqTcvxQ9d182QvmkZahu/a0ujKMk/TtCwhZGzYtuOPouny/MnzRy9ejk4fCS8UBfkAr++uLn+4eff67uatasV4sXj8/KtoupwuL8zRhFqtZrPdJdu7H7/7L5c//v7m3RuzU07XVNlOqNp1KE9EBc4Rtt9ZjiEdx4/9KJSd4fv+aDSaTMfTeOQ4Tp4lu93u7du3Nzc32/VGOgCGwQctDMNx7PkjJwzGsxPb9erWgAGwKfebbV0VdZYkq9tkdZtv7+ps11Y5snfbgfeC7XrBZHH6+OLR0/nizPYDVs1Kkl26X7ueXMzHhiHInKfLlUpzVXdmEI3ni8U4jm30LlRbAJC22e7dcLy8eOJNFh22fudTAvDHjk8JwJ/1Yfz1GWg6w3Gsv3n8k+HnoGrq8IvVxVgFsTdFOno9C233lcVDsXNAJhxO4gjaQeEdByIH6i+JPx9+MnxvAovMNUL6Wy4eM3qEwxcKGli4vQeSDkkEQg0U5lpopDmWozrVEpmU9WGYVcelbu4VFiS0gYKc556enjYgZcKdl5EMjDi9OD0TLRC9EIKglXG2mJLg3Xi1Wl3fXTMzeL/f3z/cbTc7w7BZ+YMofsAQwOcLBZ6avXuAOoDvOcsdolLYYaNlpASJeXNKYLDvKX5C9RoulrcWID18RwhpDed0xFNoBeD+4Rv4ygBQQRRdjcj4sFbKFbjh5/qpmV3bVKgI0kH0AItwwzp/4GBOP2V67JahjZAO1VYKVU37WJ+ead6QfBdNLYmaPPQ3OAFwpN0JRcrWPJBauiMIoenPTSooGwo6kkhvqrqxQAewXc8fHElVa/rBCLv7oYxK2tVCjEbjzWbz7t27q6urJEksy4JoXeCLpuRMhAJ3PHqWuR6QaDoS1TVes4H75IGDy1enFYTwQRp8wgZPlmWg4Ndh1IWhD1zQOPI8z7KsySS+vb29unqb5zlindHIdqTRdkmyq8q8KHAmzCvg8IU5CdoRljSgEEpCMaT5IwkAP9VDJCSEtHQH4whYj681PWWdWnBngHTLTUPSn6MfSJOfPlO0HjpyFEoiqUMgi8ovRirVC/AOgICQIwWAQwObBWElhIhIS4AQMzrvRQ7QQXTIQvhNRfqjsJ691Lif0NsFfFyA+LgeoW146bMsakPZGE0dTPuYD8Dy/IxGZLUf+BbAuIO6GYIoMCLNy7YVNQmVNsx6YNoyDRS+P32WTnk33Rn0AEhNqSfwILvgxJuLMiCbOlJaoIBT4k1dl450jQuww5uauEYGMzSYcIDPLUoE0GwAgKWvTwAc6K0SxYKdM3BVuADXI4cSXg2o68Xpd1EUpiSuDpo56BhghaSfJ8muzHJpW+TjC7WDPE+btp7MZyfLsyCIu9ZMs2K7TZM9zMsBtHddorK7uMtYijvPxo1WqkXza4v2l23hg6qKhjcl2dx/M2kFr0XlU2cM+TxJA8/oaGrleU6ZZzdX7+o8CwNPiC7dJW7fkSN7ECoiUdTukwM3G8UezVMkq3RLRN2omrpeTATh/ZGKMKRU1gcy2yT1fT/0QTI2OuWYRhS4YeDlKdYQklVFVQKdLTwIZCCT+WJycuGE06I2b+93r1//dP3uKg4Ch5I9ZMitUbVtTfp7NvKOWtWVJTrfc0LyNS/r2gvCHGLD0ovG05OL5cXjs4un09kJAE1Vub59t755m+zud7t1KwABmp89HU3PJ8tzdzwXMOMzgXesktXlt+/efPf29avd+rbJkjpPhYIKUNM0tuOZTljU7S6rWstZnD4+Pz8HLIfTQVvCXHk0CjzQ06u6eP369ZsfXxd1NZvNTk5O4jg2bccdTaTrzk7OXX+UFpVlY59Mkt0Pf/i2THbp+q7Y3ql0rbJ9V0F6oTJlMJo4jl+gDiYns+XjJ58tlqe+H9St2hCyp2mq2cnk0aPzeDKukswwZVa1d6vdZps2oot8EFM8aZxfPBJhqLZJUqhwMrenS2E6GNqfEoA/cnxKAP6sD+PX5+PDPz743eCzM9TpodMOhDRtZ30ESlumDu57YH/v/MFVw/eAxfhBR7KS/f5Lv+F6MCSADniCo2l5rF+i6YKE7TUtKr30p9qbD5B2h5an6f+cNLyZ0zZw5gb9RJbKHqKxgedKwnzwHmfrUCrb62I8avyjiWVLRvUwE7FVgDC5DnxeGeUcjUazOUpT8/l8sViYpoFM4BqZQFlW767v97s0yzKAe23bFF3T1oDFN6gQ+8CfuNIkOzC8Gz5lSG+G2wNVNpvdWAmEQ+U6KR1pthBUJhYB3WAKBwHtJkdn7FrIARC1AC8PMH7dHp4LF+P5puP+9LidIwRLI22mbKAb01s9s567fmTvN4walzSlh3iSEwAeRcde0fr3uBmlKUCGgxoJWYNRhNSxMAkHMUcoIHA+2S4CzXrsnczYbZM0c13w4eD4BiXWGZG5F7t90WtJaf+mqkI1WqB4GY9G47ZtH+7X765v7m/v0jQNPAQ9ro1sh6N8xm80BJ0acjB2pxKG1XYWl+QZ46LVaTrDtmFOB4AZCNZaZpF9iOGiRRxfdk4dwzh1tFzOpwCbBbv95vLNu9X6nsxWw66t8jwtslK1DYIxxwakTZj73Q60aoCuMBHwUOEg2lbAdehzOErUdQKgvcroG35iLvUoqPBKFlQ6LidhcuKoILFAyjzk/+jD9CANnnsUETdKF9R7V1qmosK5yDYcy7UQG5mdjpi7miaUJvLSsnBsZDGoehtwNYWcCd03On1tJaZpwm3JJHV9DAPbJjmeXoaACUoUcEv9IHhEMeKFhxxSUBqBDNFh3wwLiauO6XsoGzHsW1E1TVk0EG3CmsH3BypkPA0p06B4k7uUPJD6bl7v1Evyo7AfoySfOgBkP2vleUrRMxJvYaDHWGbcqJSoYWBkEUqfnoVpypyE9o/aO3yvQC3omQO4IAuj0SQ+K8J9aZgg5qA5Q/kD6wvr/J9wa77jOaQaD3NZcJeKAhJnhgnVTttGYZ6WViOMRsvFue+HSZI93K92CXR+LMvyPMeDUReuRJrCkbA2h78xHXlebteb/X4fhiGJ8xCLoioIoUSdEwsaX5qG63INAgwS13WburIMtKyrokyTHbL6ILRgmaDwSMA201KsnSHCMGJHZdaBJdleBIZKQezIJN9x1GD62gdrvkEuFBsJLaU8rUwLGWxTm0iupOtYLvJ6MYoCbHk1dk+0NolPBeFLZI6yBbIosL2oM+2SDA2yJGUGG+ZCJ/ACfiSd8hxbtCrd77qmjqJoPI7RlLDduhOWG3qjmen6rWm7IbanxWRaprvVzdtsv5LAe8LE1wvj86ef+dOTaHJu+SNh+6ANAKhWCquqr3789pt/fPXt7za3N50qLORKPABMw3Itx2sNG0ILNrCR0/HEI3pJkuzyPIXT8xgFFohce15VN/f393lRTSaT09PTcDyRwWiTldEo9uNZXSpTwno6T/d1ljzcvHv3w3e3l6/y7Z3ZlB5RvHZF6fqBtD0sn61lWI4h7KY1glE0mc/mJ0tTGpv9Nsn2fuDiU5YnREvw27ZjH4mHu7v9erXfrsfj8fL0fHn+aLw4t6KJkE4jJEmvkl7FpwTgZ49PCcCf9WE8X+oEgHY72isoISYfUd2hZiyN1pC2qbnf69LQofeSPiQ9SJ2QPj3+lgrMJMOPSBSCBkBokI8sFaEHmHILQlgPEdGoD65KcjTJtbceIMRn0isI0VXooiFpUwyd4iF7MQ2lKj7V94gNH5EChzQABNUBHkBROAN42GdAShSxqG8OaXYNZCbAEpS2JbYN+osqTbFhh2E4mcZTotxRD926fHO1Xm3v7++TdMcFfmhaqsZ2mD5IAaKp9f5MSzQVexkOjRTkLWSQpGU6+5tPAphd56I8x4YyCE+5GwDLIa2hRPbwFLJwrK8oh0BQpzU66HvRScthDwH0CKjEqwMqoRhANVgmIRMgh8UBeTXcYWxfRcrK7kOsz8VUPv9hRPXftKZQENqkzf4AMIAuO8lra6l4/SZda4APzLKn4KVQZkGfgkI0oCak94p4lkeq+dkXX5qSRD9s0pqhmm7btklWoqJawccn8GNTenVRZWXx4+vXVYNGDQOdwSQjlUpVwuasJc4pKcGgwm2YZqVgXT/omlclSy4iQMGJIF0xWdIRl9u04zhiczpEY8TsHDzgHMcZj8eL5SwK47LKb25u7u+u47GLILglc6a8qttGGlAYjMO4EYYqqyTLy6xsROfZjuMHJeqYnJDgSeJD+f0pH+Ovg5sBQ1Y0pv4IR4cA92gcQphSSyMhrSRomc6lh0x7oOIcc4pMUKWVabHWOyXkvWImeCsdJC8xwjGtenUgysP5o1knlx6xpurqoJmMnMEzQWjHhkqarHyoOGgSM3UUB2cD/Bjgs2EpYzkjLe1DCsV9uRB0RhqfesXghsCglUqmUQK+aOSVBmhQUReqrQCOIrwcbJo0NgwqXpYUHbgBVE7GOiA5Z+fuEAyi+rycFr2XL18Sg3zHAwM1V6i5KGn7cOIi+iwxnbRtoomyOoHWGmRWALaRAMJQqWHXbUfa0saHtYAAdTbRZy3DbFo0Gaqqcnyf9Ubblisp4ANYFvuucJKjNXwYQQcmFeyHJcrifigMoygwvCnNBqzGdd3ZbLZcLmezWRAE+2Rjo//ZbrfbzT5RNdaWrutWD3dYUdq6qQtpi8BzRQfsUmt4RYU5BdYB5GfQGBEEzkQxBTbqZV0CwAnnMj/AhkSwpZ4/QasW73uQ57S5ScIwQgy7Fjq1B6/6Q/yHRYz7A4REJWiWA2weMlgyKEHDXEpUDBxWkkUyYNukYdDWqDQQc4p9dIUpO2yLEFGDj7t0ygLeEJbtt52Rl/A6kFLe3lxOZ6M4jBpV5XluWeZoFPtB8PjZ86oRedU1pj2azuPZUhiyyBO7KVY3l9vVnTRUHHguROTAATt5/Gx69nRy8UKES2FHnQwa0zGa2mp2m7c/FMl29XD/zd//l7vrty6wsITqhfEe1gNTsnFhaDteEERUW8BtLcs8Lwu4tjs2bAFmi/nyxPFCNp6P4lEwmtbCEdIxsDp6SKw15qpN7m9bla9v3rz6/T9cv/5OlTvP6iSt9lywa4WJMptqHMCBQtsNt2lqSHu+PI3nU9V0aQnzS9t1p+Mx+o2qjKDE6uSbzdW7t6v7O8txw/F0tDydLB9Fi2U0Xxr+omudVhBdZ1jN+pXq5wOm9ytaf3oR7i9NAH7p8W/tev+yTv8XH8aTE6id6Mo3NFqYy0TVVK3EwgKOiB6BXe0Q8JFVkxY153CTYMf8/Xv5gGv2cqIUVTQEvWwNUdWKCjDarB64FAolJASnm6MT1DJwPCHfSwDogC9Jf/AJ8wDnIjTj5Hkf5Vfo6h3/7c/Zk73ffjCqpnJdlwQZfYsMdEvsXhW0QZWCcraUQRCg9RkElgMIb1GVjCNHN4BiQU6u6ho9epI4lLAE8DwpHdcJsgyFCsK8Yt9idqkFzHFvpNXrxzEFlgm1H5w2q0MOqcuAsEc1WAsA4d7z91xN7FVTKVFCJINwSaENzhIiCGEUZFbYOoB6Bax1Q9sehVhd29W6NkujYkj8mAPARAWGYDGnE870qCdpLgExC5lCcNwm6gV/SFASNTLWfW+hykRpSR1AbRpph4Zr97miBR8qXTnmiG3gR3IlHkgYKpFyYpMm+WQ2vbi4WJye+L5bqRoq5FluSqesWuy7ZFkmbd8y7c40g3iUJMnDw8N6vcqyrFVaLCsMPA7aaDujnR16fE0QBQCaUYShK+4UypYEyQBZlzkPtMnZllWXBQIGwhkPgwH66DYwFYxJY9YdJEqluL561bQltRTAKABPHf2kwnNh0WoYFpRjDEhOgUpQlRYqygYJ8vP00VV/4lVQCEsaXzy7hkYNx/06DTgG2vWxPgGBgAVC+qStk8mOlt+Hav9aKpSetMYCdo0LhA047j3am0j/otEVepLbh9tfr2GvagxdhtsxzwdBWosIjNPZozSDMIJtjRxSDye8Jy/xfOc536DqO8fuhmm5vbUItR30KqfHJJ0n0z21fCeRjHXiwWUSbZtAJHuAr/AUrQrFX1W1RlY0cMkCcWQoP1Bi38AFCY5LNOBJuIZuNeEJh+mMi6XBfHNz8/KzF8+fP2/a9vLNm9u7O6DUJpO2tYeOU2/KAdtbEuOHyXbDJQNaLdG8JblVzerpXdig54puALJrRLUgzFtcxwHDGawhFqsdXJNxko7LRHbqvGnDikYa6EgATA/bMsBvuJkJvj7FyoZljaMx43b8yH/+8hkAe5XKcrxBluaYauu17zm79bqq9p5jtXWWZjtPGvF4nqSgSbetMgUYMuBIgFjSSRo/0J+F4bgNP41dkqVJNPJGwN6Hbdvu0ixNU7h7I76ExgLT6I1hqhqibihl6zWvmJfCMj7IAeghEl18WEwxIwgYBWdlpi9HtDjg3kqBcgG61nhKZmdUpeJ8WzfZCJPZCkGcDavpGENIylrkBDGZhvcPt0bbLJdLz3V2u51hGJPpbDybXzx5evH0RSust1d3t6uN4wen84naP+we3u1W95ZQHnoZZP0ljJdf/ZU3WTrxSeNNGm/ijpZONMf0qTf57eVm/bC6vf7hD9/cvL1UZW4jVQX1RRJPXQflZArm+VGNTB3VjLIswfAgaoUh5dn5o2effXl+8cQPx5Z0sBA5fudEwnIsEwAzANV0nxnEsCZZb++vr998/+7Hb+9vL9sq81FEs+oSjHDHgfn3ngwi/DBqDGsynRu2t01TJawwiqu23Wz3J+dnm9W9b5mPF7OuSjY318tx9Kuvvvy7v/u7pCjzTviTxemzz8+evQjnJ5YXO/5pK9yPsQb/ZAfgUwLwp3W9f1mn/4sP43zBThlECKXdnfZN/ARIkj4lYIlB6Mupmitmfb2N9bxJFro37jmE0R0wlP3sovIqIC5E5SKdHyrNcgLAPEVSHOux5hoX28t0fAAB0tgeQMLfe2zHHAAOPXmZ1ggNE0KlH5gV/GwHgA9ispHVC2nD80HGOjkTRsuy5DQAFX1pRVHEf8+tcz66rg3IGYCLSkNTousMx3a53M6og8FqF/UrCm6GU+KvNotWHPUo+MBpvO/kQE+ztVjDhMy2CGjTe/EeFjwu+SIBwLOwsAPpH1NtkEqOkNfkHg5HdfqBEuN0CCDo7cijvje96gvG/D2uyPcY04wAolfYOOq30veDrrk0RJVntoXwhQM+Io9A2Z22ZBbX1Jr6Oioj7Rc+E/7amx/pYMsw0KvhqJLDVEByO4jDBkEQT8aTycQPwiQrWmHUVZsVqsiB/pWWY9lOPJszA7iuoVaSJSkU+susU0ChANYOqzbCYCBeVxaV3PhxHeu1Fzmqkpy5lSWyGh5jTQ3ZR5ZY5YaS/nmvwsQ3DW5xURSEThTJPE+2WzhO5HlhS3c8HsfxZLVakUARz168Gw9FpN80sljIHI0RSvBM6LqQ81cfnJNsJWRhhzHW175pHHKf8GgccRWdEPB6/iIo0FLvh54P/BkMi4OqDokoxlS/yHCagco9PECIkU4MeF3+F0LkeTlA+IiQrXuUnPDr8UOjjm55Y1AhXhOI+5fzOkHopINkE01AQ8K9W+cVfdNMSxkPCcDBW1CT2gcEGnkAE5++NwHg+cd9AISqadlWCpwT9JHYwo24H8DEc9XfEgQsMVD+xHgmJSVGtuB89AQPguD+/jbLstly8fmLl8Eour29vrx8t96nYTAKwxGsebOM1Qs826ngxMxeDQcYvepaaDMOHVeeSry6ahl7iuwdx3YkUizTqGoYlQ/OiXqhJi8Ox8EMYvcu6KcBUyhA1sQU1BnnkQ8zOhLopnatDT/gII7jIAo/+/ILLxr5Xti2oixUxYwKIf7z//f/F3iyUeV2fdfWeRi5jmnmZVHRbePWMSmktdD9kmYA6FHVNUgXPcdHjw56k6UlKVsgRQfXJU2tPVz2SKkJd/9ID4qL5eg9DZoK/U7ROpRQEUbL8myEszzloyii2Z2nCTCHcRzXdb1Zr2azGetWoaNiIVeh8Wsw8Z1zIVKs5qKYkRcVlGQt6JMCbeOFDjye27zYVXXRVCVotYHvOMjtyxK1hifPnn/19V9fPH5ieGGRFze396uHm5Hsss19st10dWkbrQSQEgF6a3mLR0/PX/7KWD4R/kQ09qaoiyw/W0Ztunm4ubm7vQYm56ef0u3Kc+06zy0DuzkLVQ1LRJIWODvfDyIYCsG/oFYNnoQZxuP58mx5+mh2cj6dzeN4YvqRMF0BCxGJPlur4XYYaa4UZdKm23L/cP3m1Xff/MP97VuhyuV8WkBZtSUeSLVer8F4lk7VNF40mi/OxvO544YK+rm4pRjzeW53KrCNrsyz7YOoKt+1IVZrWrW0hRsG05PF4yfnTz8bLS+ENWlNnQD8S+A9nxKAP7Hr/cs6/V98GBfL8cDN1e1sqhGTtBn1qrlqp4vKqNXprjVvyT0MmjZjjcZmGQktrkIYem7K60Z8j7XFEkDJBG9IUOCk/uKBmdfX/qmSd+SAy4hzRsbqfV/8bB9giFeGildfGP7w0CoTw33pDyo86NXZJq0J3uHGcczakXmel1nOJf9S1Wh2B0EcT3zfhRq/dgztsn0COiOnUgaYXAxHoRBNY6YHBy6Ea0S8O8JZ6YMr60OZf6gOfsBxHA6XzOQhZYF4AhKcHJrzc+EbpiUBQYiGJjkKhn3MOhBJYXiqNYKOcBTs3NSjig8PgjAMPTGDUxF+CtoiitOqPiqtBl8tvkUMfaFMS9RFThAmwhzr0i+VXhEQk8N033divigLjJJkKsM7UPBHyRKYaIOkXdHjJ6iFvgioNyIGJ3H9wA+CwIFeUASve9tXTVvkKisRsAnTgohE4I+jURRF0CgkR+E8z+/u7jjo1ZkznSrkArP9x/Kp+K0F2AZD//UJEBHZtoG5bxXkn9BBsgDVkA6MhFzfCzwfFshVDVslhZE8mYauazkSvYssydM8Q42Y5B6xWQuzbugGdy2/DxtCMaAfBAmF/AdXBiQ05iZLeBEhUmMVuMMzPERtltTf5wHVo2E4VFs3YAUAYFBF1mZsIDb0svq2vm0YnWrQQuGT1ek1m6YSW4LfEX2mfsiBJUyRFqxeqZFF97kn+tNqwAkAr1cS/kV9sYDfhN5MSsibgl5/dGA9o/WHoSx9WnsgmeCS9WqIRAbhphYpGvJYnQOYnQncIwSgGGWHXLVpzbITlRIA01RogpJU7ZBegdCCDLVn6AIaR+gfXCOtqtzpgp8JTEu0rqgQIiJP3Nl88f3ry8t313fXN51pnMwXUTTKsmy73ToOqOR4M0Jw9RE8qufcu+Ne5ZBZSfhvs8pWbzdGIr4wxjrSCRhsE7VsKxsv2iTpgy6WnSQJUcEJS9Mhr2P/CqReADBCDI2yXwM2wp4vXffpy89+9fW/Oz+/EMJcb/er1SZNU9G033/3TZHtlydT0dSvX39fZelischy8i2hvkIDUn7Ny53vI+hncFrXCIrFJ1EUJOkuTfd5nhOgbuq4LmPu87ykE+rVopjUQbICh52FhvegVsz7CJhajmv3UKu71UMUjWDRnVdZlgkhIOxMCgcsXWVLYO6YWmwC1eO0xHtBq4E4aqSVZgZBVClBSCKjQurS0PpnSNecTCNH2kWadKL1XccUkNFEkga1YiuMRp99+dX5Z1+Itru/fF1sHqp0l213Rb63mkpauBXSdjdJFk6W8emT0cljf3ZhjeYiHAspRbETok1ur28uL9cPtz/98Gp9fx2HYV3kRCQ60OQwTLAM2HWNTNJxXS/wvWgUTmIvih62Sa2QBrhhNJ+fnz96vDg5c0cTAVEBMjUTkpj6VNHgpnJbiq4WbdWsrl5999s//O4fb9+9mcahS8PJMLu6QGs9yVF0Ozk9N6Vz8fjJl199HS6WMM6plG3JFKlOdf3m9atvf9fk2WI6Mtvm4e7elJYbjZ1oYnihHE0nJ+fz88fh7NSLzxoD+dsHOcDPogM+JQB/etf7l3X6v/gwLk4nhxHPaI++Mz6Uz49ZubaNjYpWs6E2RuEX4CuMp+TNuMVGNoBVBp+ho4Pa472DLMMGINtCVM4jjSDasbTR2Ptf+deMafn5NIBjCF0800EAQ8PfOwZVog8MsISBbfKYnErBLU6Y4z/P0ehtlLIqVPVgFKXptlDm8XwniqBSUeUFKHIkHMmbHwuVcPTfi67qTdQ0zbKCwdMAfR40eQYV+WEV5uqg6yJwPFJ+1IIerBGkdfS5kMmCKoemdp8AEEmxQlL23mPqg79ezlVLyvRyij0Wq/cW1aNJX1KP5xlKxbUquVtCjRQqtNLBg0e/E6MsqBjpE+ONmwbUEdLgbN+BwjSFQ/R5WpESYRvjecGcEFAOJw0pgi+wnpRAlwAdfzrNlj6apW+aRhWAE1eqbeLRGFjTILBd3wTpjTHBxmabMNGDsPvQsBhMi+q6zguWRSfiODmkKkos32/O4Le+D7cggtL67AqX53lRlUVeARzSQq+TnV9hzNQoQJ56b2ySNeW0XGR5ApFN15vMptPxpG7U7fXN7f2957jgNlgOoDBdVytVE7PScXtIXmuArEgwe3wi3DC0ZxYg/uiuQJal7Q4O1sfzixMADQ3qq/u9hBdmNbv+gf5KkSaxGjRJhsNoW2LuHEPXuOnD78y80h68R0OL4doSUChVsgAruk8Ii2hdGoYfx8r0Ph0gZz0PZOgDIBLlEEz3gA59gIriaXrNoUzw/sLVQxxBPu3gagYisnbPpT+lp2+aLXjC5MFH2TULCrTSgVdYw6YBeC5IlLrWMu2eQU4iVuR7wAkA1PfpsE3cN5hXgZeMHJ50qCo0GkiJy5TO2aOn6/3+/u5uvdmURWEIixkmeCZ6ZiA/HU61LHOcF93JQ+59FOQM6w8Lk9quO3AkPqg1MLaH5Wh5ati2jc4DE7RxuqANEA4exgbk74EhURU5llnCc5pu6AXh2enjz7748sWLz4JwxAhJSCYU2e3V5e3djWeby5OZ0aj7+3tKBaGOgEyyaRRh+1uyJ0dCAZFf3euzkc9bTafQWKTSA8wKLYTaQRCsHjaKAGZE8eKuIEEZbXdYD3t1JvSF2hoUHV65JWm+sTx0rdS7d9d1XZ+fXjiO8/DwUNf1OBqRe7GA8wBtoGSEhxzeo4Sf+k16TUWULUQYjrJCSdsZj+fClLtdUpWN7cr5cg4AJKTMAlWk93e3raqCIKjLgp0EQQUqAVudz+fTcZw+3Ium6uqqLrOuygF/pCMcz2ohW9s3vLE3OYlmZ3APGMWizITnZA93V2/e3Fy9++nV9+uH2zgMaHLjCfI2zYUh0pkDdQFEqQhGKxA8ikduGNWdWWJZl44fjCcns8UyiieO50kngJUdZioJeFFbCM+oLh0b+k+izkVbNruHb3/737797d8/3L57dHE6ncIfGkbUjtPU5Xa7ffP26uzsbLZY+kE4mS1Ozy9c1y2ydHtz0+SZqsumzDf3dw8313mWoKogvdayhROGs+XyyfPZ+RPDdvdV++zrv22I/PgpAfjvc/xbu96/rNP/xYdxfj49hMu8AJEv6zGhdth9OaxhII2uFdGuYhFUgGmaR2nAwQSKN9QhQgWEoy+qHQC71F+olNFA2YE66egh691lkCV9/2j/2QTg8BMNJRoygffAPww9+gACyEie44I3Bxb8veM4vgsROw5nAYqQ1i6Bwh2COeIAWJaBCpBnjwKgTlkhXpCoJ7d9NRtV77IIhvjesrgk45uPK22oS/Xncwz3Z1nu4RjSFbjSoG+AdIvkFNlL+QCpOjJSRvW30vIwB/60vlgiNLPHs+Zo8n7VQ7D6W0Q/69O2IY0knX64Kwzmr4PdEgfQOo7nyqJ2QUKFzHdsSb1dwpximBGOpQFpF3VKhIyDAgz29YqjMe5WDYA0jFjW82ZzJZ1MtZ3rOPSMGRU/kKRFWVRABJgmaBq2Z8ILBwAN2wmKAgwQjmjBDpAwM2LQBWIgPFldotbY9F6mto849YiybRlFEXsAO66E3Edd3292JRGFKSnSkQoTPXs4GfBmJLHCo87IsoyNk6AWNIIUt2F2m/UOnp0EQQY7xYK4SprtAQPvk3HCNujEjwFg5GoGJAjdCoDlgAYnXP5hmNCfM/1Re2sMRX2Era1GyfdGIuAGgPMA9Hjvgteb2cEJwGNZsIHVwzMXDTR2NqZHSQUD+gVB4ND9owPhGhllcALQD7ZDAgDVsh6045COit7mNVHk0BPgf+Y0Xz6Y8h8bF2qZTkNJDGzmcPS5LnNgCDSvhxkJmRIEqFOmJBSWUaHJ05J86yGs0gxycNwlOAC0WGFdIaKtjW9Ig1/CZNCDEKfsWpXnWZVjNHZkJHFyej6dTpM8u3x9eXVzZ7TCCyLqV2jGf685S6Wctm67qq07heIrHr4mzZMglW63HRkkF1V1ZPvWd2BJ1e2oVHEYLTZEIXkwgHsuoFWFHlzguQ5IykhkFCnlE2ems/3JLsnLWo3iyfNnn33+1deff/7l7OSkrar/9t/+6/ff/r6uyraBt1bgOPPF9Pb2uoUhWomBDaSRBl6ySYLRkYmHyybHTVUVXuBaNuwQFJxY8EoEsuCkwqgRCUBD85f8F9Dc1BeLe3VEgsdvac+yWNwW2s1+5Prel7/6ervZX19f73awNA69sKqq7XaNUoI0sVc4SN1Vg3pBg+StH5DknghfZ4LIIlA3rcV8+fLll/PlKRSN68awZA7wJLYJx5YwNi6y3XqVJ9sig+LqbDJdLBa7zfrbb7/N83w5n/mWNQqcke87tmHDtxPts6qupeu1hmN5kR1NOjcqGwmGujDH84XrumWebVarh7vbh7ubMkvIV4F51VQoUV1J9YQOMgaQmwuiaDSOw1FkR2E0ngTx2LDdWhid5UjPD6PxaLqIRrHrBdTzt0RntaZN1pOgFTBvCo0nldd5Ap60a5RXl9/94be/+/vfPDo/GY9HrWocacajqGma7XoFb00IJAC46Hr+6en52cVFMI6FKtff/+Hyx9f77Wa3Xe83W9d1l8vT1rS80dSPZ+54Fs8v4vlSuH6uxOjkUWsetk7xzx2fEoA/sev9yzr9/6sJwHFtW4Pve9C2hsz2e+QQX2pIA/HGmMDJrfZBCZEhQBwDoeRDPVKKf8gHl9ZrMnfUaQDSCNOuWwnxblpo0DjuW/S8TPDBYSx/y6IjHz+8jydzzw04vOg4B2DU9XFsrcN9aQ7BukF5gnaqpxhaZy/CGGIygaoGO0JhK+rJcCW6vdDwhqwnVDXgCgzUR68Hp52Aho+GyvtR0fWozHZovg9Xehz3D7IJus1CtT3t0dw3GRja+/FN6wxRExBc3zGuvHLchXBKSAICDOfFrknckelvJl0Ia7kQiEJ7AAPSIAHm4DHQEwA4iTwAmY7TgFYJmL0AtIp7Ds0S9FVwr5BCaQgQmTThgTC6hm2NGT2ls52+uszxCtNwWW8epfE8c6UtXUgWwp+rbeoaFXd6K8Tx2JCFMCULMdmuHRF4poe5k7JQ3TY2pC0QV+GBkjq+5nJAGOegmqqLfSD5laSB6IUhzCKiKPD9kLT8AP+F+0+aHjtGc+g/PPphoDpUauX0oCxL1PZw+JZlZ1nCrnMcybFtU5Ht+/fRtFd6RD0DhO2nCFrFpHDEsaD+H3LjY5WMAaTXY9sMRyJ+HYDy/SNF/s/ziJtgjD8hwSxEABxgDXK9PB8PhtMHjwXqmBnESSUcGx1gULR6OtBicuAACNFWVE0/KP9qYQASvhwG/7Bc1DX8p45xQX3421Oge/ld+r4xhDJMFsAFbIZzC5opmtVOarvkD4CxBMo84axMEJ5aoybVF9WJoiyZSM0LKdYTZLc8qbXnN4miGDYaO6bvWh3yqM7VtFeAGCtVF6qpiJI0mc0m8bSs1NXb67fvrqNoTOsSRwC0PkgbtnmoxioB9rYCYIaXf1pvaVJpgz/tDGOZRZXr1fRguaDNp/tAGaRo/WBaFK0PrmpQCyaYE7zVIaDq2bYLFSH0B6jT1WYwrnJMy8ItagzH9U/PL87Ozv72b//Wdd3b65vf/Obv3vz0I/Eq2n2yPVlMkKLSXkEjiuJUEgxg2SLDsCDKTJJrqq0tG9As6ESD2oxZs9slSZbGo3EviNwLZFHzBt08rYJBC36f/qEM1gvIYvhCEAydlng2/du//ffT6fSbb7795ptvjBaOyF3XJUlC6H/0AahsoSGRZVoMDHIA0pDD0L7Yda4fhEE0W5w9evTk5OTMNKykKCpT+qNRp1SW7kNXTifj/fr+9fffeq58Dafb1XQcj8IgTdNkt8EaV1dR6E2iMPLcwIdvgAVms9omaVE2RWMIxzNd+AEb0hGOv04LhQqc6FSTpQn3UlTFghZARKEk0eEdFJB9YjFeFnmZVyVQQL538uj886++vnjxoqA1tBFWg/zKDcJRPJ44wYhqLIborAbT1KEcQOu/WYCEFU2Z2Q7mjyjS/cPVd7/7b9JsLRONr9B3XVs2NWSk0v3up59+Ajuc/NGaFqCvxTQ+GUcqBSFqu9nkeV7XkIpKivLLX//Nk5efnz//UrhR21mGGxphJFy/a3AmH9f+P5GA/y8e/9au9y/r9H/xYZydTYbRP9TVmFTHpdzDrk8LouynKyp2lBuwymTg+Uj4CfxD80lXZNsWbbvQDzwfKz0nAE1dFSUsb0mTEZGNQVw3w5KN6cEUirZ/qvrpYAXIGa4U0gHLIVSsIQSOmsJHj+2fzOYBEj0EzTqO6WVGP678sXeYdrolnXiuyIIg0YetrHpJCYBrWpAp1B0S0u8nzbuqLmAdD41/BEla5oXrskOcobEoXEWjjvwQ1w4V/SzTUAqmJXxwqoecpC/BuiTSzKGntmhgOdchiTq6e0BVm5qWzeZkPCXQvWE1HDYSPXJOYRVtvJbHA1oDRPAEe480JHWfh8ifLKdCjkN4dkChKFTacD54X9RobWhiQ8STGwwdHGr4/JmkyM0iajo1TY0QGXgSxMFEG7A8EtPg+JLlj/SCTnEw6fd3CO5JrrsBUKNpiZGpURBEfAE8RtsDY6fTRm+2dOqK8DckFQJmIeJapAFlWWufBM50Kdkg9vWhutyzLbmzpFFPJimmwzBuNovicTCasfcTQ7fZNo5xMkwLriot8qjNmIHxwHFwaiPQThRFYRjCC6ks1+s10RwN8iI1AT+oaO5R24MyJkg8aVMIIr6ScAs2a9sBEnqYFx981e1BPhMacIFvQpmdddl1BZ8Q7ejAICNC9E+6jaQC2SV5ZZikbM+gn74bxuxVhr700vuEPDS1DCgHxAOldLvZ9BOB5WKZU4xAYuhMDmUOhmCxc+37OB8MYBZf52k+dN64nHGU7Gh0kqpTRqwxbZdGNxlM6bXRICo7rXt1Cy0g8oCCQQRuM7JjKmCYaVEimSSJYR6HnACQFRSPJBLqIhs1y+ocKA0bPpDX6GyQRjHcr4tWlSh1V60wHNuLolEUTjwv+Id//Ib1r4jeAa0sGqlCWq1lkiYYVSJqwIpwODacegfGMIl+UQoFvxFEfr3Qk7Z54Q4Be5X3LGr8sqwLUhYQNotgWqZjoU3U1ZVtCdcxA98NfU8CYFKXdbPL4DFNRGpDEfxdOoiET09Pnz9/vpjN1+v1T69/3Dysmqa2TJGne0fCWLrrWFyoBfLH86j7imWqrFSRwZ0Zz8KWZVN5AYy6TMjLqLwkI8eurYu6ZdKaXhi5MybYUK+3JqQAijo1juO0ivFOgAI6ErUNvE+jZov5X//V33z99dd5mv/mN7959epHdPCkTfSzDkkX5JIceIvb9n6948VNkQis7ngboizLMIg6mkGfvfzq3//7f+9P5wDzV02BE+0i3wsc2TZlU+RdU3z3+99K0Wa7bbJdWYYYj8K6rterWwm+Mg1B0xjBtD7yfewI0nZX2916m+R1WzRGXoMOYkjXDqbbJLep41RkuedglVuv14Hng64M1gpuAFk9O9KQqgK5yPND6VgYRi5kEsbzxdd/8+8s1zMcv2lETuYylrRd17f9gO6t1aJaKGGUjogCztO0K7UADHRKNJWosq7OX7/+w+r2qirz+WQ8G49NoRpV2Ybx9//lN5vNZrNaOY7z/Pnz5XK5etj8+MMfYteIIHjsZUWx2eyK8v/P3n9+SZJd+YHgs6dMugydugQKBYDdbA737PLb/uMrznzYPXM4nCGbTYgqlEidoV2aVnt+9z6z8MoCyEYPeqfRKGsykRUZ4eFu4r1770/Vk9lyeXLuBeHzT35+9snPxXSJ0ANlRduVZW3DSTeE1v9kA/pnOP6lfd6/rrf/T0UA/iBtZhzljhJhcAbIvs7V0G5CDBkZdjNPWKQ2akue7pyTmhD1RRvYMEM8C+8CTD1LpBelu/0228MBUxAroBPSBElZ47VAkiZbQ1RmCL7J2XLN8ShIaMh5RLx0jtWwe3RZlTwc44fitJ4fH3+MYuT4MDTp5EkqUnLIbYC4KiMzxx2z6eIhyoo+FCMGdQFbu6LM0DzQPJK/ZyDAPIiA3Ud2saYOHnEJSkolyZSrQGYZ8ZAYzmhh6Fw1aBTKiARgDVIojibrw8s3RI9wRTZ7p3CJJDES5PNGuAEXeV7na7hegMVMkkEn16Sik/jomlKVSdaH7aw1MK6pO6AJTt1LickNZopIGVKonzF1xm9pYZ8vMYMkex4NZ3zoK3DeyoaMwOk8kxiAK/tpEhMAxWgE5zOAdDpJFkzRPrBrxLVjA1a+UEaDuBX4kTXQ0pVFASV3WXZ0OYgwihEmjTxxGfiV6dbS6DhalEp8yjDL09bTJssyYPcYRzvEwFkK9rSjHei5GRgRokfikgHzm66XxA3vxzqcTGeL5XIJXpC1eZ5/+PDh/fv32y0c351VCBX6PEfXwK9HzAcjca6tZ/MJe+exMyOTcMoyz/abwT5fOYNXnH+PhA/UUxGlbrQsKg5cgA5rZXad4lt33FO8vvdla6kfo7uP2njqP30DYpKr44cqs277rGyrpoMretugHHZICyrmAzXLw/x+kCm58hoZArR/U+AUGguiobvuSEkvIP0l2xUMb5Kea3ZtIr9GTbwX969UuzJ9/0Ac3CuF+58ed4dc0fuUXVt2PQrBtq0lCne46aMopJOjuellhkyDSX8vZANpNdZRbgDAhEZHgNd33vSk/expnk3mKvyaAsoWZ7bbwF1f9T6sNb3AuEReIb2yhfdNWcD+Hl77FXxs+9578cnneV6uNrs0zesKZrKoxoxqy5SaSJxzTtLg4Lw8d9cXJqXE9HT4B17MMX/GJDhqA/grdH0dRxxPPQ/dAbdgPWmU7CKrA1/FPvxCLSIgetV3SnmAAozfSbXL8s12X5YVTH091ZChKrS2QTybTOM4NsxnS9Myz7BxYO4wLpUUFEjLKeBWGypjfWO73tttdqvN2rOK0t47T6tA+xpmQroX8ubquqWMMFa6utALasUHuMy5QmlQxnF70DmjrGWip4NVZXRRlkEMRszp6ekXn31xfHx8+eH6d7/73fu376yvMaRQWM2s1fP5fDGbpKlzEsuKlET/+KTseKOsUQrEJG3Cx48f/+3f/t3Rz37RNWpXAiHMEARWBUbOoigJ1LvX3zdllm3Xm7vr3fpOeeLJo/Mnj89+99WvJ3GgpUx3uyLbGy1pLgDpkSd1Wta392ALFg34Tk0rPZO0vemhTKmHz0XPHXXGDXAv3Qm4psISQcjj2VGe556nFseL4/OLeJIo33rGwjl7Opsdncogapsur2qtkBoAfRMwLduDAqTJ8xTGDFpoSqEsrYE9kGhK/D/RFLubPNt9eP/26t1br60X82ni+6KtNqv79f39+v6OUtsnUNmh09t2TdpUOQwb8EgEJojny9Pp8cnnv/hbG07VZCFsDPvRDrAd6bwP82f+/AX0A1nhX8jxUwPwr/nt/8mH9/h8QdP0j//hh3E5D1/kMntw2iHsmy0mO2hMqdaBiwzNRVDnsbAvCaMkAVQHo2stER6uMJ+TAsPauijTFGZsWV5WjVehhkLij5v28R6tDJiRZF7RQoxEsxIOJHa6AudCz3sPRncE2o6eZTROpsX9D52IP9bxk4c8ETkGe0p8LIqVoYIKVTgLhbnQ77sh/Ihg6JEYg+iWjjJi6N0zF6JpmiBgi2g3KH0YrzpVq+P5jNzlqqrCMJzEUz+0AvFPOc23yu16B5IPNUUQ7A5/4i0NnH4OFONsqbpCMih7rWAcP5LUOameU1oF4sx8yqnNsowN2plBMTrAGN/S56TJK5G2uRLFNI6LAzJhHCe7AvsftkwH1jvOEqx43LkiB6EHwkYPgiZvvdSO0gnx+jLLGYswZM7K7iie593c3LEAkTxI3DXg5pDTr6g31CAG29AaTE8ZFUEKMok32Np1sVjgzqSrRTWfM7LsOw07F2pVmlEJTb0GG8CTzQ4+LG7QDkm67j4aZKPDk4QClPWIBBmRO4eN2l4bPCwJYwLz+ZwTAFar1d3d3c3NTVEUPO9nKKAGtR4+gMxd4WQ6Y8x2t35oWQ1EiqiHjCqLtOuY0tY1TPig56auWkz94ZZE+Q8QYEATgokc2+wOUc0jdHaQfDcYyMjeIMqDrUtdl8s9mm8QWAuO0bi20E22ywAVNTU/166d7sh+/mAg9/Bs/tglbIiCJsEGgXXcSPP8HssMo4tDmoQzDHXJzXTlmMTPQmGug4djpAAhYXdoAHhVoJsdpi60SgKkgmYJSVVV1zcULOc8WEF+G1ZNjNipjwYUgDOL8Tuex9a9B7wdrBAV5+9CC+Qc+iXY80Sgl6I3GOKjFDeI4nKuWeiuDfQbddsT5b0pyqoqMdcXPe56pXwBQ9IetpHUqGNu66LJyO9tWD8LSg5GlMHg+kIFsZvyj1eDq/8DbZKDUofAYfC9JSgcJMHpKilamMDrLsZdij/DQFtN6nwKgIbvNAm387LeZ9DFUwiuyfMSMw1Dt7HGaICh16rAujTs25wYjX0oCuIgChGnVYNXL40JgGmo1X4NWkhBMFrdeQrDBkzidynU8HT/Yx0dLFMPbRWc393QBmstfUMPFXQdUP+AGNO2RQ3vqyAInlw8+fzzz588fjadTr/75ttvvvnm7v5mOk18a3a7Td/38/n8/PwcypN9er+5b6qql32RZnfru6Ojo7Ztk2R6fHwsPLXfZ1GUHJ0/+dV/+L+H04XW+ub68tV336a79XIaX5wc+Urs7q+39zdVvm/KrC6LqshFV52eLTZrpIY/uji31l5/eL9erxkLnS+Pkuksy8vru/v1ZpsVVdOqzgv6Drc6mahimMGKEdxAxjdBKLVfdX0JGI8g37rHNQwCP/JPzk6fPX9+enHuJ9H7D1edlH6QhPHEhhFtMAoRYXFCXraGNAAISu8EYgZowog7V3aNggNB01d5XWU2EG2dl1l6e3X57Ve/e/3yW9m2x4vp0Wxal0Waptv1/W6X9n0fwYvUij6fzafWD5B9qP3J4iiI550Kfv5v/s6EExVOhQ77Tja4xOQU8acm+/7UAPyrrqC9v+y3/ycf3pOzxUc++nwc+vAc0mkeRKgdh55iN8LAlRAAkAeaqqmQ6wGTE+DXvdYqRlRWHIYhVn8MZpCEhd2KKaPwboB9CkSQdxv4aRIxBuMBVJDkilM3mEWBIIIinNxw4CZeVdV4Y2PCPezd4EiMGyp/g1vB//AD8EdU/wdc+XESTxs2i2LdmRkmml3X5Ui6ZS88A+NFNtTwuroYJ6YoGEaOeAPk1VVUY2wtD88OXYDGd1iXlfV1aEPta6usB9cULZSoUQqWVY7/aytQGHBNZG/JHWjYxencEYJBlo5ubOYB63YSbVg3udIHCTUDoYs49AdqkAduNHoMaS3GzChBCLnoeth9cLtFGZEPFuCeBAVliEQYWTE4sWPddTh5tTak8BmUbsANOJlVIhGZ5XfcMDDpXEoZ+mjMqIjPe7hH6zAk6qjmAo5EFK7wxaVJksQYFfmRCWAAX1XIbEZmVp47EpHoGEaggzjMTHRmIx2qM7k84DLKeS1RoUjpeEMDM0xFXYPaQf5BE0Rn/QSyh7HJ9KjpXTuUJMn5+fnZ2RkCpOfzNE3v7u4uLy9vbm4QYMSBAITMNE1XFDCiZTOiruuiCMLH8WQaY8ij3Qa+Js/E9pDlgjznBj6pLNXvmp5NSNEuadMS+kfGiA89gA2Azrk7gafDJAKWXc3BWBKO4xSMQA0eKBCgdRFcxlUFpuEmq1qiHrnkhBLFE24PrRDPyQpJl5T0IIIf/WfoFqJVqG/hwAv40YJQNORpABVg1YqUEC6zpzBTyGgRc9S4sfg2oNM8UAIO/zLek5xYwk+HkijBOaMCYFFT1iUmAgT0OUoMxK4Q3YL3XXco6oEHwH+JVPko5FXTEIGCARB6KbJAaPMiGyhPHIyKxhv+i0SaoWkLRplWobEXSoYx3KLoaZINkRyKvKnqNk0LkrpakI4ar2GRB0bZFefmDmasTrkxdFDcqzOK6GCA0dAZPlHDMebcjT2bo2NRrAxADCm0aBFyjF6kCXBbtJE1cWRjbAsC5rZlLmSPDtYP6rbfZvk+zcoKLlW9UJRgjbdpPHxYawNcLNqGKK6SoyVYxN9ZBWUqcmqBDxLPjcYU6DYpsmq/3wMMaRu0AMZCZcvrA5CKBx807lweDtGOqDjd1TpC4Rkr5bHi6+jkKIepL5mJlWgDXjz/9JNPPnvx7Pnr1y9//81Xq9VdYP0g9PM832w26T4L4+jFs+dPnj/Zbzev3rz0rX7+yYvvvvsOtvqU6jebLh4/fiylvl7tJuefPHrxyc9+9rN4Pmv3uzevX757/Wq3unv25Fw2Rd+UXluX6ZZlwV5fz+ZJVeMWiuN4MoEZ0Xa7Xa/XCNSzdA6tlcZUdbtare5XqfKiHvIKPDkQp4PzAmpu3fbJdDZdHPtx0ktdVE1e4PPOk6nVJs/z7X47nSZf/OLL55+8ABzdd7t9ttunRU1sSqUDPzJhePr8mad9T1nhmRZmA6BEcTYLYK6uqatMNLX0OgVov/BkW1YZTQiKu6ur737/u9t37+qq7OtCSTAO4CVODGGIv/tmNrXL4+Xx+aPJ8iSYLvxkrv1Jp3wdzT0bKR32wjYk9oB5EVsb/0kV008NwL/qCtr7y377f/LhPTtb/NBW0x2jr/PImOevk08577vYk2nQiX2d9fzEfXG1DzP7eQprkJSOUmzCgS9REAY+TVDchjeSC3brTZZlux1cVsqmLos6K/KiapShvG7KEwBoO8D0vh+yMonXZ1ibDzsW3+rjBR0+wp/4AA/fPg4IOQmlrRtW9IL6LwfBaNMUZca+68guAUDvhl9NWT0E7oC6AKd6z/P2e3hFj3v8eKoVdQ6jKmCUYVgtQTOBW0UlhbKBSaIJ/9kQkaKooMkqqhyz4a4mcJ66C5JajqG8oe/TVJveCbVwXAn5GgXr4JnTklMFgItBS/AgBOejrFIum5xWgXGBHvNsnhgOoA3qXTZmGTsc/ifWgwZB4OZtTgLHt5GE2b2juGDez6CS5/WRHwBRwXsjIxUnchBxEEOPoTVR1poCjVFZNuViuuDIJbBzUEzg4/EIH177YMoEYRCDe0SUjA/v3pOxa1WWOTxGuKVBjWvZQYW0BLRTdmjkWIB74GoFL0fRS1AwXFYF5VeMz9fQAAx1Bp4sqUzVCT9OJlGMVOleQJxA9Jiff/6zxfHR2fGJp9Xq9u7V2zeX797vdruK7GIxx6LTBz8UPDk1eL8KpC/0OzVSv3ggHUYYFrNgnbXFjEQN7kyjApuG6NAjKoT7DsayD1y30bafmCeuoW1rBf2oU7QDgzEaaB9oE2h1YAjPtHGXLC46z47PL+av7oZoixzBVfSwu8k0P8hgJTxEd1GHRt3X4EpMZ3J4Y5isk6uPi5ig4pDRGKvZNtTFmDxcODwmjt//B80BXU9O5Tnirkr4LGmawaNL5DDgrsv26NA45gm/kIbzeP4U5L8cqt2Q8TJBme6JY0cEcgGSwBAoIMwF1lEgGlssUKYsnUv0IawNcPcehuNG+TbQ4FJYuOFAe9Cm+xJq4waEK4oncysht6vjCuluchI1DYy7YTSA3EJHrRy4/j84hrrfVf886oB3JKKIQfIJDGx/tITOyMCToFVea40X+z7ofrR5QH3a09BHg56R1812t9+npbJ+18u2gWRC8kkirwjiqPNwAZepBb9O4rZt8aD7NghI/iqETNM8TVM8/eS3UwJAA4iLu40oXjBpdeZm7qKTqS2ZurqYuwG5IvSSrggivcIQ4SFkvIuzQlkisRBiu9puNhtPqDienJ2cfv75p8kk+vbbb7/9/deY7k9irUxeVpeXl2EY/s3f/Gp5tLi7u2ma6vTs+PPPP//1r3/96tUrkPrKZrvdJsn04unzbS1sNDk5OXn27Nn5yXHXdbeX76+vPmzurq0SAWRxdV2ABhPCmiy8X93YMBBCsCEYdAUecgP63ttSCySklySJb8OiKtN9ASJbr4jJSYRDNADak7po22Q+Xxyfz49OoulCWr9u2qqov/3q6y+//PL58+dlmd/cXDdtFcdxFEWMYGRFRf3Gpq7aBIyg49MXL6hnmghpOs8Xnha9Zgi171qvbdoy2+/WZboNrJokAfCqpijytK3LCJ19d/Ph3dtXL63qd+v16v4+22P8T4RL3XmtH6jWax89/eRv//3/LXj8XNR9r0JvctS1sCQSwhdCNyhemE9MErWHGuEfcfzUAPyrrqC9v+y3/ycf3vNThwB8dGMcCkzHJCD+inOTJos6gNSUZKuQe49hjG/gbaKpJiCZFMXN0JxUShFHSDAFYBhFcRwuYYE4JSt0Vs16VvZFnlKsVlHVdZYV96vNerctUYw18IfDvEoxaRUdBx5p3joe5p3Y4pQikSeEcSOKzS3En3SCCA1GsTK+ApuSRFFE8zEXC8/BN8Yo9qRDNGNT9cQMZq726dExM/CHkgUCWZqGkvJyoOY/SJBZ6jpGpPIlQPAQjdM8hel30zV9C/oV5NfSBDYOIhv6svdQ9mZFXhXbLOXCjtEbMo9nPyZUtJBywVSEifI0TaewHuekSMNXfs/cqDiuBM0pueKRXlvVZZVDjUDWlrj6llhGQAZIEcuzWD51YNAPNKFx0AjcCAXoQ1aUKyCkykuQ0rkTG1Lo8VZRyrO7kTisBb26QEZm6Ac2wC0CkhNCjJtsn7MvvgH5x2oq9D0l06pgxjWaW+0HQRTYQGntWws0P8/X69V6fU/ADjFbVMANAD8BTCcfMqqc+yerwOk06paw5iHk4cE7xd2Tnst1ppRVGOhUnTABJPPGt4xooeDTCiJsrZIoPj49OTk61tbsNtvNdnV7ew2p8P06K3JQvCyYJ20v0t2efhaX1igL5SfIJ23blcaoMARqj5kx1KMj94bFnU5mwPagdcOTV/zsOHXn7prvATQSI60LtDuyWYWIBdJbsq2ESY1BfYer5kK7IBoHwwS6/2Gij4XEPSJ9loPRRGJQfP7R3qoim/7RrXgMq2LlN8j1VA3zGzNaM+OfeW58FdAGeB2rR7hfBRbB6mDUqxwXzTIS1wkcBoExiWt4ftuu4gBBJ+/mNhhVft3AXxOgJnyiKGoBZCpNc3rMy/EIA49iFAbXAm0F7iXp9QaaW/egkWkVkVOGXsXdMAfK5mFtaTVlBRiLi6t1gGoZMiC53exLZEG0kKpL3TRtniHEMEmSh7qfG1XP+VYhGpcfxiFkA/iqG6y4kdGhv63LfiG5v0Pk6OEn4+NGil4bzzfa1+D9WwMPeSJ71Bo4EywyrVYWkb2EpeKDBI3w8qrKimazy8EYAX4AM7bROYoAEGKgkR0w+ZFhFTOezsqiqhqpTJLM4zj2LWTNq9UKDQb5/rYttOZFUZVVpYgKODjwPMA+nIQ9Akfj9Qe1Em0GTjuyloNgGidh5LdtFUa+b0MSiAFky/dgqrRtO5vNHl2czefz/X77/v37Ms+09ZdHZ20vsmxfVnkcB0fHC61lnueLxeyTTz4xWn/11Vfff/eKEct9mp89fqosVM5RFIVRMkGGQRQadfXhXYa6eSe7WtP4HOMHUhTkZRH40Wy5KIrq3fvLtMjDKAkCpCBXVbVPcfQ9VGRxPCmyEq4QHM8ChRYGJL3SdSegTjo6PTq9OHn8dHZ0IjxVlvXm9v7u9rqqiidPH/3ss8+MVa+/f/ntt7/3DaZjUUC9Rw5YLwpifzYPz07DxXIyXWobejIAF6hDSLNVuiwy5AL0ze27V99/9/u2KZZHs95rkkmkRb/bbKp0Sx1CXqZ7LfqmrvI022/WaGOEgNFI5AeJTYtyeXrxq//p/xo//1R0uu21ihcNUk2s6CFgID88ZyeB6LE/qej7qQH4V11Be3/Zb/+f1AD8wdvjkBLDDQAfcBWEeIuzKSnLt0MKmOphOd+3bRDY+XQGZgU21i7NNoTPN3kBW8PhtXvfxyo2m8Sz2Ww+nx/hWEwnSWQEsnVgLomJYF7W681us9t++HC12aX3q/Vmv6tr2k5x2LaRniAfX9punPWQI+aQ8yANaNnTnWNMxZ+iAWg51udw6k0bQ5IkY4TQiJ6jw4HHAm3SpFxlG1Coc9nmj9jeFh72DLN2gR9ykT24So7VjEsX+ihoSXYNKAfKSgVPD9iK0CQySwuQZFDgKrha+lorK5Qo66psYIVWllVXN2P7BtzfGWjCX5ygAOye1oMBHDBz+hBc40llMCcjd2pWxPE5o0m8m42xDhIVMG3fUYTkUQu60UOOtJQeNIoowvB/oGQY6Wvf015dljjV+Dw1OOh9A48gyGN9dtUctmWi+cqePN09dqt4GEbCWkI2FLjWtjUU53GYTKIwDMsSQt66AqbBuymKbyX9SVy1TV2hGkDDhdEmZsPYV9GjxlKKPEvX6/vtbo3ZeuGC5JhMxflMBAegVsDhbC4hzu56z4QJ3XKu9B8Z7Y5aRiSK8YnrPC+ezSuKEeCbCs/IbDadTpm0wGY+k8nk6OhoNpv5gWnq7O7u5sOHq/Ua5Ga+l9oGyBi9G8yfUXTB5RZ3ZNPVjgND7vJUJTPrY/QYBQOHlcpQ6bWm7Z2/EGMdxM1z2hKX3wxGivOqQj4xseFR9jG7hgpuMr0CYYlmvVQmUtYH5tFww2QmlTN5ZT5V1zl3JhZcc+spiGoyWBQwFxGPDK8tgx5g0Fv3FBj3MM/lQDu6EF3Dc/RBiEHQU+f1DWX3DtnSQ4YDHlt+qA9hOq8HCYQaP2dsSs8MKvcoiho8/m1Vt3UJDMZ5fXEXy36QHqIY6KHnm4rCUSUGsGhryYze+uRqNY7hB7CUVxtuNpCfhGFHTSpbJt6AbgQJvCJjYtTlKi+qLIPJI7f3UAK0CMNiZiCpC1wvhPEAyScs4Tw0WuHer4MudmD68ELH54oHRoPsftDwCCSRS9w2DYgaojOqhyRC9klojZUBcJima2oMj8hb0xKdydOKiebwgzCBNuF6s68aAVC4JgNfQanGWAPJ5hU50kRTdA013gMC16oWo5i695SZT6eT2azroF8n4RYvuEhkQ58gyU5ulDGQ2Y8QPaz6R+SW5MW8F3RdS9g1Mt0ZLSdBtjo6misNaVXXdUEQ4jEsML/XWt/e3pZFtlwuHz++sNau7+9u7u73af3o8ZPFcp5mm+12DbpsElqr67r0ff/pkyfPnj1r6u7bb799//6ybRFazGQeJD8Sbku+FHIa+V3bQDjbVnW+L/KdpCSHyWxZE7ssjJPeU9vdfrXdlfi8mvMayOQAmxQtFNpqQtoZkSM/cIjNEVwe+JPpdHE0PTk7f/T8+PxC2hAnLi8vr97f3Vz3bY093ddxFCSB/+q77/MsLTIoSYxUgfXjeGKSafzkSXJ6tlieGBsJz/eUj8e/rq312zKn6U63ev3yv/79/3r54a1SXtkV02ny9OJiMZvs1ndvvv9+dXOp+i7bbvGyQDniJJpwpGBVF5NZIq0fTufLR88uXvzMO30ihE+sLr/tNXZyTqkBkkV79E8NwJ/3+AuvoL2/7Lf/Jx/ei5M/3AA4lvPB3eLolRxWxTA0lXUUFdzDzaRtlIeEl1kySSYxseS7usoQVtT1eY6pPttcYOFosWET9ool7/T09PHjx6fL+TJWJ4vpcnmsrAFNuYOtCmq2Vmz3u+vb++vbu7vb+5v7u/v7+/2uSuJF3xGFgAd11AVwA8AejGOUGH8ctnX/Ayfij4iBGAEYZz8PMAjtwcTyd0Nu4i5UUYCKkAEBUIAM/r9SarNa7Xab7XZb16BnWEviQSCs+jCY8wFzH1yAfgDNSxFgPoc6nmeQg/80ME0ShVIyqKd830RRYnyMsqE4xDlv6pL9Hwm1oDk6eQEKnhqiUvfExGrYgbMViItDlb2nIsKO2SEUpUNdVzV2T+3Vvg9yFyjsAuT1MkvhYRfD/Yk9QKnQZOGBJ7oKhR/ZhqLpgIu59SBkNB1sSAVGonVXNSX+7HrPRi15qLcdJSgPXhyh9VHCk9h01E9jUlmDb8YEEDA0uCdpm6dPn3LsPMZ+JSzzwdFtG38yaWicTTlfqueIAPqAYRjOcUxDa+rGefPf3d2BHk88ewy2IXShLmrkkZPhfYlrUZR103rwGGFWyeCdhdsVOpbxAXNuPGAql+RPwu0HazG5tD0+PsaoLwy7roP/CW/YGKPW9BmdiJbUtNzwYkckOj0uout+Za8tWaBSiQ8tnlGG3j+LVdjSl94MSUR72XYGU7rh7mQsryUkCMQ2agkALbnQKNw87M9DjH+nAPG6VsIJFAWlsXhqRmdbVpyzARH36mzDAukofh1dssHfi+yVLJ1MVh89cHLYp5zHs8AWBgdPorQ591imqGn62a5HxQnZ0hA0RhpEqb2g79lqDCY8TEgjLRBjAU5myvu6FHDgYUkPvVuyA6JH1w9COHl1IJuxAShGEfhr6x5munFRmlODRLopyCGBPODqMLLBnvaHRQQeKpczTYpnvrRE0KEHFON2liqDow+LQ8jTvSSeVk2bgyBIvmFYgqwy/nafoiRypqXOxhQR2tRLGKJgMUWTLNEoLQ6yC+6iB0oVneHBTOxBNAy3SuPDpgrJhsABeqwYnlSdr5WxMgQC6XIkIY5oO1kj804a3XaiqNoaPXTgwULKlHVflF2Ro13ndoOyPpoxiZkaALqv2AKOFummE2ma7dMcbDNrl0vQZkgDwzczbhVK7nYJiNx/Djsf2lNqhl2+hEsk9IB7oulge2h6NJiCarWndB/60WQyC4MICmMF6+Hr62s8vHW1Wq3KKp9Op4vFXFv/drXfpZknxXI5D0N/n2626/uqKk5PjznZ11p7vDxJkuTDhw9f/e43s8AHsbElFpTxtaXhVw8hShyYaRJb2ZfZLk+3WkCeW1bC+nHd9VleaOMns3nZdqv1pmlg9NS0LVYVOGg1aQo7vjgKNPFsaQjlwSNf6l7rMJnNTs4Wx2fRfDlbns2PT7QP3zlP9Ku726sP7+7vb9uygMiia7qqXE6n97c3d9d3+W4vhTeJk5OTk+T4+Pjnv4jPH80Xx1IZT1hpQpgyN42yVqCP6kVf9qv7Ny+/+fabry4v3/ZaaKsvTo6fPL6wUly9e/v21cv9erWYTNb3d7v1RivFnmmegC9C01ZBMvGTabQ4Pn322aNPvpSz47qRmuz/oWairc85l/WdULVLPflHHj81AP+qK2jvL/vt/x9GAPhA+YC1/mPn7xYcD7aDJFIHEuzBiUZhiuGzivwgjsKIOBY0SWoiX1uL5SQrirau2Y2lBrdnD+Z0wzlZrVIUYBT6P3vx6PmzJ0+ePvV9H9aNEA/A/IGcyADRlhVohZeXl6/evru9WV9fbfoOLntuPIk3TwM8mu/xXEv07NeOyqiqmz/4CHzUAIw5A5TjinyDj6jALhGGyItcQFGh72X7NZMH4Ehv/dl8cjRfTCbxL37+5bu3r7/++uvL9++ybO/qVYxYMNQcTW/GRmUMCHP9AJOhRW+8ztDkftQGsDT1kCmEoGGMocE+CKNIU1wxjL37vixqOGtUEHgN3nlAiplhr+EVDf9xdgqipqIqq6auUTErmOtA80AujZQF01RQaBFYAUmWDUKCp42WnGNVFUjoBEXKp89IvaIT8tJg1RVqfcM0MDKwcZb23IOkOdzimejP8Ah/5LZtxyDhkfCNkTl8TkZ5KJcpuOnyLE2SZLlczmazwPqA5vM8r6rL1Yq2daAcStmuFU2NBiCaTPe7bJ+lxpglHVEUSSnubq/zPE+3O/Dvi7LrG5wuqAh06AdT5Hn50hNFkaXZLi+q2/v1IH8m4IXDaOF6wTcSM5tA0uDhd9t7RQWwYiST+L4fhjHoyzRYHV3/6Ry2ZbEFQqMwhyYv05LYJipNU/CVyEeLh530FhQjKcNdxnwSFLgc1UdZRShxHJuuFVXtGDgwEofhJXMD6Gkauhp+QQdwwfGf3idHdVFtjleqSlx6urF5rjziWuyPxAlxeJBJop1ThwMTGX4eHQpE+h+8ofF5dKNxo0DJcKb1hMuNPmasXOWR+WAdO1I4iFFE9SskTFIHJuIbp+VwaPqz7+GbiRuJKP4jCMCJwpD3AusCW5x9YJH+UWLtUoAsFGK20MRipM92tE42TQwf9jjDI4mBB2bhJB9yYn2KwhuHLw+mlBBVD6imSynB8L2vSsxcByIVYaEgP0DdHoSxH+LT5ZiAI05ESD2dLziCGkrhriYzN9JvYDHA9cIzO+Qt0GwFCQdoyvAuhvA1ifvnQG81zCxEF2gV+qhjcfsAaCuJf9V3bQklgPQCX0WkB0PTWVdlloOnhmsMf/lGqBQEw9oPErhPUg3XtTBN4gZPwpGS5Wq0BtIyg3ssgMq2bnv4pHoI18tT1scLUvtEkqJ/S8IDmYQ5ajwO/eAJi3aoLKtosOZQK9q3lMirsUMNS1ZdN3kvmjhMptNpXTVZVsRhdHZ25nne/c1t3ZTz6bTv+7v7m67rprOZtFHT9ul+u892QeAvljOjdFFkFGFGfrLGBAGgSErSkZdvX46MLH7uuHmzRrV14Su5nE+Ws8Truyzfl1nZdF5ZtEpbP57UTbfe54AZJwvtBxgGUZ9f07hCeLAKwHM67Ha0hoLHKJSeLY5Pnzw5e/Q8SGY2mUTTmfU5275tm+rq/btvfv/V/e0NTD6U6Kpqc3/n9bB2bhH704TWPz8/Xz5+cvT5F8nJeTydIYxCaM+PhEelPwziPFGVfVHglFf599/+/re//q9VW0gP2V9lkVrphYFus2KzXmGlIoEerZqYp1BDa3s8bZ6fLI7OnyzPnk6OH81PHpvZiRCGwwfGLFCPnnFPYxQ1Gkn92A5xrAceaqM/UD38iELtmvaDzNJ/IcdPDcC/5rf/TxIBjwOMceGG4wfVUCNZeeRk0ypMPh4Q8/VSNHDZA3u1tEomkX+8XJwcLUI/QMldZNqrNPlVY2NhbgkH39NeyL4l1AP0TSPqDqIgPxJPHl3AQO3JkyQBkmCgfG39gbusJSaj2+12n5bv3928evPh7du3uzTDC5YVDPUQ2RS0RDImZgcFDcEzR+Xk0cEHLRwKwK3CoOiw1eGcAeLUuuDbH8sBPzIJof/pw0B3MNZAJ6KkmETh2enx2dFR4KuTxTwOg2y/+fD+7fv372+vrjd7UcNbE8QAKrzYg98DUVdD4QCSPmbKgPg5396SjNDZO3JXgG4NXvVsi06RvbCq4T1iu98PBjyUzQRmsJUSBfrIOOK906KGxieFX8dg88/pAUz9cnJblzMAlEMZ3bQ9KDS4fjUkiFZjt9f4E/6LdTPgHsK3IgwD7eGfggDvAVHJCLTCeLWqC2okoB4OACdg2+66BvxxmsmBsVq3BRw26oqmdx4SVdkIFgx6BlImYYjutMWVtQZ1PV2ttshT2RMpVoskBA315Oh4MptWQhVVtd3s7+63m10GrykTGBtVtWg9XaMCbssKDwTzqhaLCJ+qrLIsy/aYxLuaCVy0LrA6SYLZNE4mgaUS+MPVh/1+v15tsgzFB6FDgdZQZ3L2Fl8dvkU9qTHbE5Cv0Pwezep4647pY+y4QjPO2pLr44H7itt7+IlmKIMPvGAvbBD3xADhV8CcG6SQNkmSQdvjimuWusL8iVX9LBAmNKPD/YD5NPNzOCGBp+xlCe4+53C4wtQJfFtm2gxUGA5Wg6GNmx/TgTae6BOSQgPZjZxLNP5owBJIas60pcECGM2oQ8kGX2DwapA35QqpkTND0D/8QwabXuRyONYKeECwZ7UaiNigg8epy0ns66x+qVfhjjRwFCNmFA9iBmcIS7KQHmREFxLHqSVocvAo0Ul4MLEdOOUuwM7ZxirL2vFDTiZH7ZEtMp2Ug5yQmpBVxj9JnAXzJFisQKvNeWv8ZBH1pa41bEPZTZWW86F5Fu1g//XDnFQLyiIeKAJH0bVx+OOYX0b2bPSnC4rpYOcMXTIGDMojFVPfGA32Tg9LpFpLz/omtFiJSzg+EGWx7pDYqnxjY6X9rKDcaKyNlDbAb4dU+A/+PIQAM6Tjw+TAxTuAIYbmqq3bPs9LkppQbQsqpW+0lVoVeUYjrRqJxapHP9LDl7QVfjuYHeGDDUgsGkZyT4IZEx0asyqjrSrKrKwLrfU0mYVhCE1OW0/iyPeNJ7q6zJuqBJrQ4273tA+4p4G2bbglsPq1YObgZaWUvh9S9rxH9w7WYdFBxBL6eIAI9as8aP0Lpb3ZJJpNobLD4MA3YMnvM/JS6huhW6F1FPvRtO1lUVatcCeKOJOt9uRmsw6DQGucWFw7gwlCUYFENTs6uXjy9Pjs0XRxHCWzMJkI3++rPEfq8HZ9f3d1+f7u6rIpK1/r3WbVUi+KN9YhWP3s7Oz88bP45Oz86Yt4vsB4UAfoLnoptBXGiCxDG6BNm+7ev3t7f38vmnx/e1Xu11VZStH0bVPk+75p8bHJBxm8TfJfFp4MothOYi8IOqn8IF6cXJw9+nRx/NhEMyGtkAEQOTJmYKTn0JgBtN4eYnqeedKtxd/Au/v45CEP4cEz5aFadJ5yA8EYv4VfX+Jr/4xF5Z/62n+MAv3n+wX/zA3GP/fh9X9VDYP39Hx5WD0cUN1HZZ5joXBKogdfczaCaFXfej1SkSTs4RtPtFZ6gTVJFCRRGEdhaOTpMvYoKIf3UaxotDMYY6UjjsOULcsyWJ7V8DSpatE0wM6iwHv6+OJvfvWrn33xGVTFTdPWpDTFWNQgKMr66y0m2tvt7sPVzZs37969v9xmJBej+BjMzwSqK864QVw53B7dwBLeNHhX5BdusA66Un6QwPKiwFHz/53gsIcf9HpNZQNxkTFqCIxeTJMjBDCaOAxmSTiJ/CgMPNFtt9vVevftyw+36939/aZpRRRZP4igfKhKYwOKZaXfj1/ili1YJTjpG3FWSGqneKzukk2x5tL1wZ/gEf+hhGN23XkIu3VahTaJQpYY8lScxl3YRwMfAzNykK85ApMfdumHVOKwbI8qLfqTxGnBNJlYX1MY7d3mfpWmRRhaNuW31kYxoojYck4bcjdq0eTAD9E3sO+0kEBy4CtMQzpR1m1Z103bg81MPtQogyiehkWB+Q4ze2jk/MBgagtJQ9fWcRhIfG/t9Y0nGmM9FtqenJ5bmHZMtA3Ksrm52767ur1fpdIEQvqdNFUl8gK+ThQkKjer6+UCFPzQD8qyhmnVHg4VXYuXlaI1WgSBmU/J7So0HoeUlWVe1lmW7/b73S7N8jaOQ4qhcXpQrpx6z4uiCZVuHUKcYCQIjQfaUbhGKZgUoc4DfZyYyrX2GuG1wKokDGXYvb9DuJIE+77p677pQaaq+xrsvaLlm8rdCeOzrjDqdWY4o+yEDHFaMKmGcAOakeGelB5sVRkQIKMbZ/s4cGYexNzjvedGyINDP8tMfYyGHWmEo77d9wM1dJgASEwDSYN/1/DmSadLkga2eWUF8w9+O3Qv/LMuE5o7eovO0oXEsa8XSX3gGcn3m0ffQGsAnjc2V8UU39mjObvMuoabEyMkB40Zfs/o3sMqZfeeyTUfCIOAZQLFGRIdjlQR4MjBHQnsO/enRB7CD4+Hs0osvR/49JOp6MOQgmUV4zLOE3KGywZaPwAH9/YOXKp4FEqeSA8OEK4O1pRlDpG7Jzrw4Zjs90CcYetbyODZMKcHyRBYbKe0hBmo6KPAoHHt0AAoN7nAuhtEsJdt6r5EoIJX1V3TyqaTWiPMi/Kn+J1xT4KGECfxwMjIXWXm6zsB0ugbK5pOgLhOQWl1C/MfRTROazTWbVF7XktYDthKZA3gQzZKwwWitLkOlkTbTEGEepjjHTVSFHvoPuoa2CAo9RyeDknHcjadz2LfQBoHDHy/S/MMdhbUVbZtm9IsjJJkjLYGjz4aAIY3SRLTNMAkrQ4ssocNmIteaIw1CpLYOm+bisLjoZuYxEgDr/MiDMNemgJLgadsKGzUeXoyP7JhtNvtXr1+vb7fBJGfRBNP9vvNuqrLSZw8f/70aDHjCZ2UcpfmeVmlRe1JO1kcnT9+cnrxaDKbQXImVVWUH96//e7rrz68fddWldWyKkqjoPnu+z7N9nVdzpeLs4vH8fx4cXIWRxMSu+i6wYXW2PcS2pUw4uvq5vb29ubmptxvQlFvbi/Xd7d1VbR1VZcZNOAaCE8cTaaLpQmCsm6LpvXDKJxOz1489RDymATh1A/mysZCJxgrIm6MQu7Z9BqXmD3B2bkZIACRAOnxdVvl0AMMtF/C08Z9f+wBHsoDXhuHBoBNtBlp/+c6fmoA/syH99faADx86Ydz7sPCkQBB52sONQ1ysRHbgdlqX2MFhwARvnuhb2az2SwJlkkQ+uA0U8VJPIEGlI+m7njjp9/igPta9Ou0uF/DPa3rWx9EF/q3Vvz7/+nfPH369JNnT8MggGdCWcZBmMymfacwj6zafZ6tN7vr27vXb99fXd/lZV1UdV7AAVFCJWUwoQL51Y0Dx9qXXC5d3eAoB8Puwq7vrp4+EGvy/HI8LQ9/wQcEJ5VoIZgTStFFvk6isKvy5WJ2fDSfxlHs25By4KWU09nR/Xr77t27N2/eXF1d77MGz6hGC6QN0Z9sIDGM5Gki2Ny08Tv/cuZZSIqmZ/91xPowxEmeLIwqPBg7cpRRh/rbhTcNk87BvHyowASgAKZMUMQ7y+vo9DiGNBJkQdscJsqg3IO2Q4yPogxCO59Ml+T0BHAZjpPF5eUlNXt534sg0MkENwYZBkKUie2zgXOKCzMGtQKbHFlX+nirxEzrei/Lirrtq7opkDAMdjU+vata4EZCpwKIB5yujYIjLeZEGFv2qL1qLrYm8xkcPGaL+dFxEs9aodK8SrPq+zfvy6qt0IgaqYOqbja77W6bxgmkb3XVKinDAHmm+Oxtk6U7CAPh2Ylo2MBXk8kkifyjacyBQVKrum63u916vd3vs/1+zylLrAegcbgvyYMV/Qy1j5wgCyIX2WIylwXzb3Y8od7MUAOAeTHFwHWDvkJLc/gV5NC20I7si7odROcjsocKydEcXKU+QECQbQ8CG5cUS5skotBIIs/Ucy6m8f6altTPQxU+NttjEATTtxx/o+8MYKehFSGhOP8Vv6WX7AI0RLHyjY/BtmNAOHK/s648GGQMjj2eZ4hbdWDe71K9ua1lJTT/Ss7Fkx61lSOJBcCLwzEwegUdDvUu6D10sBiDx/98iui0IHZrqLBdIgSzNZSCJoGaLUzxkQ6M55q8iRSSCjwU1tRFkU0tNRVjw8NWYA9l+ghaDiatQht/CE/gw6nM3dtmfyqFxYcYeWx7A0ex8UXQCg6mCD/ezDHbltJo7RtKJMBlwokdTz69CmnpDwdJBAUo6gTgwosJPThBGJTgkSSPLIo1mEyR8O0J0/Wqrrosr9O8KqvOGJ8nuKz1GjhYcHTBCTnYhx2CQfEgzlzOIVEkthDwnMkRBFYWJP2H5yg0EiD4Ga+j6EH6U8NsyCENPKsiBdFgikUplNrXynaebBHnQpZNPVyDaOCFdUzSpINiSHQUBlEU+AaMQbijUfOc5xlTbpDVXbdlyRAnXKHoPmcDIlSTjForC49OnoVpKaPAX06ncRSQzo4SJlj1JNqQ0nixcvqBJ632o9NHT08uHudV++7ypunF2fmj6XSa5tlus99nu9vru8vL94H2snQ/SyZf/uKLF8+egj0FJlXzv/+X/1pUddX0QRjHs4WN4qbti6p88eLF6enpfDYp8+Lmw/vLd+8/vH17f3sNAhuMgHHyEfBQltqqKJmGySJMptoGxg+U8csKtXsQxWGMNF9+w+wv11TwJb178+r26v397XVTVwpGUnD7SSZxUVZN3ykdhJNpmMz8MFLGl1Y//vRFEEc2mgoTi14TQBUIFRCJh7IaOc5mbAAeEIChAXjIlRtLIqbSjf5XfHDd/xAxTv81NAD8958QgL+4w/vrawA+wpd58/goB2D4U0LWyMbsIDVjbAOsH44tnYGNIRx/6hphQBjxWiXaYhaHy+VysVhM4V2AbCwlUdlgaFFVbQPM2hgd+YEK/Kr1lA+2+t3d3atX379//74qOqXJoMaqk5OjL7/44osvfsa5SOv1Ghku5FDtSR3GiTL+Zru7vLl98/Zytd5c393vd1lHvOSewygHWe0Dr4loekxd4OgxrmGJI90Glp0E3fFAuz9wDTpEAEiDS+46aACwu/tKYNX3xGISTSex0UDHA9/MJ0mSJG1TTWH7PqkqGEJ/+PBhvV6XdXV/n5ETOTUjA7GVSrOAN+uRoMwuKETfoaEXfgSzN+dWIfglXDrVkMLbc+HCBQE4D2QMr7Um1v7ANKYqH0uYEz2jWoK7EE0Q6cUFynAHu5OyEp71eFfGmJricJT2pnEym80mk4kxKo4CBPHkxWazub+/y/MSYVNaxAEEBDEwAVROZM1RQRfYNRp4ERl4krkhyX5hTQ3ZYN2QlzduJC5xJhOcSWxaNZoZ8OfJd6YDtcOzBmwEtj1lB/ReUNovXPDi+fL45Ozs6Pg0jGdFWd2tdh+ubu/uV3lJdUKHWvjmbtNSx2MN3kzfwlQ7z7I4jlGWwBeq7kDDAE3LShFbYGJsKIQeGGm5QKLevn1LQdJIkm4xiSR6CZyqSYsqWUcekBaWootIP1+wrySpFvDvSvoWdqhjDgATdWCDyyXpMOZiDk0rvAqDwAfH0pH7Zy1NWPGfD5l3dE8RrwN/JSUAeYKhcyY5D+QGYxdBdx2/Jq8eY+XEXxl55GPZCp5FBx2h2zZ+6PpPre1DxAdTgxiIGIgfbo3iYDU+JzQudRSgtm0tjU7H7x85LZx+xRNiRgBIQoxgL1okeLZOwAudW6AudHDPgzRy+qjwgaFvdDUipZVjkIBm1S0V7teTHQFP33nezykNFLeE7F/M29lUgb7O2mJGFYjaQn8eTGc+cuFk4a9nwFBC9vColWZrz+E9o9HwKDOYGmCqPvFOxuvFGIV75QOio4NDKPMYQoW+1eTuajVmBOPCSEP60fOK8wScBytGRaDRkIgCs4yWNCf8MPJNiuKa1hh4mLa9ByigAtBU5CVX/4MgnK4XzebRbbibne8Q5q6PzaGjovE3lE1NjEHVtaKsEZSWw2665vUtgIRXBNoLQj+J/DjQqqs89OCgbFUtsVfJZrfEFfMEHG7AEaJdEW+8bbHiKU+zJ1gH0zaMm5IoRv9CodTW6kkMz03f6LLKmgprGB4Qjcc/z2EbSvge6n4yOKJoNhqR8WtKD6xajBU80cLttHhKzkJB4EtAqUiDYVZPPFmQktyfLY4++dnPH3/2hdB+tttvMdLPpTKLxSIMw81m8/79+9X97c2Ht16H+ctsNnn+9Nn5+XnXdZvN5vr2brXZbba7RnhhNDVh2ArAX72QJ6dHJ0fH0ziahFFdld999fvf/PoffIPw+LosiNIJ1L3p6rb3wmgGCEmqMJ7EyZzAIzmZLR49eRpPJlLqLNsjA3ES+dpvirTa7+6vr64u3++26yJNu75JonAym148foqIFU8Hk8lscRxO5sr4vSeqpoQMMZ4JiMG06OFhIHREXT3OJ7IbXMnOgJWLtnYNwIDfuXWTq39X1g5lvXv2WF3mvMKG54f/dQABfmoA/uIO76+sAXhODcDhpnJIhf/oi/QYY8OgCD3ykMFGhtUWbnMsIuSgeMbiuxaGxB4VQ76eRPFiDveDSRQfLedUraANIC0XzDGVtuFkWredlmo6ncZxvN1uf/vb3/7+91999dV7uDyT9XoUySdPnnz55RfPnz+HW0sceULtYT5TC6l74VVtV5Tt3f3q7YfL+7t1mlGf4QKt7Ah5O7kwj5I0ySUda9ZNyjlgyA3UfxiG4E7fj76ISkCQxT4muK2gDSCw0re6gQwaNkGL+Xw6TQLrU9RTbjXcHkkC7RJbyrK8vrkcoiJFXQulRBAKY00rbf/gGuQ4Eo7xTLA9axmHUGEFCcRBgOt4cZnEzLwsR8imoeCIbBBPgaaG2PUaxIXxWNTJDBxnQyrDCMBASwDxmgsIaPoQMlXT4FP5PqKNjhfzaBJNE8z50jTdbDb7/RYa47zRWkSB5UKZqecYedVIKmV2wYO9oNQRCm7yqxaINxqTmB9irWhIy+G+VVVN4wRNkUf4OGQlTJ5qfYD2cLymwaUOwjhJJkEYPnr6LAxAPt5l+fX19fXNXZ7njVBZJcsWRt37He437cGHLg6Ty8tLPj9uqEwDadFUuq8s2dKTlhcjrpiyuMC7rbHTk7kQ/Dc6soqcTCbwKR/CJZQBz4s43JYV8/AvInIwXyZCZii6AUaI+JOny4d/suEm2dyDwENieqLeEfaFfZQcA5ka5NgOlJhBFxGMLIAOJEehhhlFOVNumOUyPCy4HOxTNPYVYzM5xhIftt9KeET6Gyn+/FA94AmgkYxcREYbDkrV0beUv4G15twD0E/Rc1GCNDj8audQxCxdfoCIxu10tCgWnQ+m8xBjnUML33eoVlinwZxycvoHbZrscYc3Q9eOf4p7GCfJIAMhTixiPxmPjPxxVxMFiNqO9oD8w94kI7rIuRkPhJzDbJOHyOe+b9x1R1UMdj7dDz01Zw1+Az4Lf4We05aq1Qe1xmDwQHX+g8fAeDmEspQUAdCikRSEbPnUEeWGu0TGWht6aiXEl+MVJ9CGt4cGdrQ002AeIzPERFWWZBWAZ9xThghykH0TYkanyWm03GEJkT4km7kGYIhucK0svz0pmbKldODB/6Wryobq/zrbI8FdU3/nKxGG/mw6mQbePOiNqNCqirZum7wssxphNJ7xi7IvQeMyXR90vfaUtUpXdc7iLXwuihGg1ah2+fEskaK0asInOt8igQCJgVSvs2SfXEobPm0M1/B0hlVV5DoLghT2TeAqEH8j/CQM42mCGYpvq7ZB1HFW9NInJCDyozhMZkcnZ88/+5l6/FRsNnfvL29vb7XGCgZvsf22yNP3r1921Dx4nrecL45PllrZoiqlNrf360vo1lKl7WQ6T2BDHGRlBWOxGhEcy+lsNp1s71avXn4nRZenWVFkQOHIZ4ycpo3UIZicTWP9MJzM2w6k/9li+fmXP3/8+LGJJ9luvd/vu67Z77P17c3RJMm2cEba7Tbpfte33XQ+OT4+XZ6eLk/PkrNHwk9A1+o96UfQEtQpjc1w22D8Lwz9iWg7rsg5KJoeqrHEGaFjXll+oNuF0tFFhX2k56VWl/hnYwPg7u5BsORe+qcG4C/o8P76GoCPpkq8iHJI0Lh3jpu6b1zkOyG2+EeUnX0LLREN5JiwwRT5vmuthuU2pd3UGJgoGSLqXS9mk0kSL5dzUiwFvoZCTGoVgjUOorNz8fOxevm+//vf//7169e/+93Xr19/yHNhfBGHwvj27/7t38RJMpstfOSxm6KsVtvdZrufLZZZmq/Buc6yokzzMsvyosjLMj/wzXAG52zbxxTnQzAbAz9KEv0DJ+6Hpf9oh+KRfAp1FrZZGGVYMEAMgJGyaJsKbCQFcW8AS3Tv86dnwlncYJMAbz7GCWnJWTxHJhqpI9K0KETdCOmrjnbZw72fEZsH3vDBm0R1zsFGw8H/xMyfkZDNew/598N9kssU9jxhxRy5lziqAA9LiawgPUscZVpbDyqSPt/nxEZFmdjWQBLg7q1VWaVKgX8/X8wWi0VENudNU314/z7P0zIDDmMtbNR931faCwLLr+BKfGfsAw2DhMzXpb4OIQ9it9vBKxzvllAaYtGwSyZ/WMRRUTluKKUs9oVvtEFbKKrGmbR4SiUJkisvLh5fXFxEybQoiqub6+v77avL9S5tMujVIOfte5GlxX6fSanRZ5T4pFwqszY1AL3bpc5ojKg11HlGHx0dgaxFqElZ5oAR9mlFtAEmsruJooWiWqB0cH72nYCNaVEUZGIE9Myx2ImYgTodhQJ14VTa8iRrxAH47LGxDEXDdnULe5q8woSVarSB8UzYUVs7BAAcbhRk+EXjjfQDj12HJAQjBYgP/k9+okeu3XjrepgooDV5WG3wZlG0kTh1DKTjSRrCxcavDHcvjRH5QaCbkOEUFFlKtVXNQRVD0pkrbS2JdeBPP1j6ujWhBRXNCS3oAzKBByoUXh8Ony8hGTkc3jYfWBGLonC2kiRs+GjdIBcZLhIFuy5apRsEmSEBA25G1LzRc40K42EGT9JgPmNjUftA0BeypJ8dn8eHVmoY4oxELD4hHho8F+PA3BXHuBpIQVjhCX9AQ6E6z2sx36axvYJIo0HUV98wbYPvEERHUUw8g4gHF3HQI9H0lKlBg8lET8m+SDp3V4lCaOnGMx5ySJohNZnPNmtBPGRM/3Bl498ydMi4cHxxuS3XuO5QE3Udhln0DtCkQcnTtmgImkp2DdZnayLTvTiNJoGczpIgsk3f7Iv9artJs6L15L5o8rxvOtV2geitpyhZr6twxqSEEx6lNRcF/K/ZPU8pykmkNZPAqF70zfHJfJLMkMm13/P6wxEx/Bekd1s/TChmDCsH8IC+adfr9d3dTVkUTPWpqgp9RehHSRwliU9Sq6Ks0rKrsWzTrKQXQZQ8f/HJs08+jSczoXWVph8+fNjtdkJ0eZZt7u8CIzer+6ZpKB4Y8i0lTZTEm82urKs0L/OibFC0+1GUWN9/8uKFDYMqL64uP2TbHcZeTZunO3jKkXEWVqoi6/s+JtCj700rvCwv6q5VBvqxTsoonsTz6c+//PLzz7/QEWzcqiJ79+7d6+++36/u2qLomopNVyeT+MmTJ4+fPNsXxWRxrGdHQtuqEa202kAqTQa9dHVhr2dA/W9BdJP4+1CpO/6Pc9SF3mgcBx40APSvVN0wBcg924MCeGwADjQAP2oA/tldgH5qAP7Mh/fX2gAcyryoCHOL1GEbILoWzBaHFLshH8f9kDUkuQ2K7sBApgOd0ygfI0/4FDRl0VQ1koqafhKbo8V0MZ/OJtPpLJlPpmHo+1jlsKIlSTKZzY0xWZat1+uz83MhRJYVb968+e1vf/v1t9/cXd/kldPxz2fx8+fPnz17EYRRVlYpCOL4JWy/XTXQGac5qqu7u5uPtA1DUCu22UGn9+DXLhrgoWOfcGiX9OM2APM8GONgnzJk60FnTPkaIyijFKhAPZbaPE+NVJPI1Nv8aC6Pj4+D0MJ2oqm0gl91FGCxJ+c3VdflfrvdbFb7rKqFbTtHa0akz6H7J+ivjg0/vp/DFegAysdOP9KnR0CAxHxutx4bDP4pBP0KYiq7l0LKLHIVwHdwM9MHQrYUvoELEJOP64IAbhp5zRcxXDLywvN6ynCJfd+XCgVQnqf7bZpmu67G1JmGXnIymcC9fpjwQShMk3I2HaeJPufROutST0kQFJqGOTOYJxt4i+4AA8HtDmGoQ3CVFm2geoMsBW4kKFnAzepsmmdN0ywWixcvXpAhVdJ5ZpW1r95evXz5enW/6VFz+32vEIlA8QJFAfYRJ3lRk9yH4FswYYxcszikFh5KOvQtSWOsoaaxhZihubu9PAR2kJSLEkiPmICkDpzDNOqqLQoUoOwJo8nXhHjkQNk/mgHztXOBuCigoBJHGwAWN6whW3b5pPuHHgGMMrGDcv+A18OrcgPAFxRkiuHgmf5YuBwuKfyfI6o2lu8oiUjx4Dw0yF0H30NvgG+0A6mys/15KPUGFyBmfh80GEQj4SqeyCWDG4xLDCBkj1+CupEfCJ+wlLFbjusqSfbg4A5m9A9sJfq8uNAH2cmuaQG2xiEGw0+Mk3snROYoX6Jq9R7ZmJJmw6EB1D0wIeeHGCP7jYBxPk64x2/AHSY0Pj/ghwft1kMDcKDz5hMimppEunwFaQzP005eFsjxld4L/UbZN00hNfBMPHFUbHED4Op4Fg1zK0Xngc7aIEQel1zi5wwa5mFsD0OdLtKW0GMw8/BJ2cMV03WL52m8gV2khtCD5Hm8S1y+xIALMctxtIEKI59bXyQAcPwDEVqJutgQ064UuKa4brorHi/sYuqfnC7nR1M/Uk1bYCRTItRml5Zp2laVrBpV1x7cCqQ21u2GARyTDQAiui211mjyq4rwB+ivoA3w/brKE3gHw3pBg6Bo2gppXy5rpcKY3zd2Mpsu54s4DrPtZjbH35VS2+326v2H6+vr/Xa3OFoCV9TIAg8nyXy5iKNEKJ2mdVbCOBtoQN/7YeSHoTHml7/8N9PptKqqV69eXV1dMVUJXVPX7rc7kHASqHIxjBdYqLtOVE2dZ+UuyxCcbP3JZBIn0+Pzi/NHF5M4Wd/dv3v9Zn1/W5dV11SB9aFUthY6hypnWRcDO4EfFW2bF6VnAuRhe0IFfpbnF08eP3ny7OhkeXR0FEXharX68Ob17fu3+/U63W9F3wZBMJ9Pnzx5cvHoSXD2SHhgXjVeIMPEhvNemKprDGhWBDliiOB70pBEkeOtx1E9NQAODeBb8qPCfTAEGr5G30b4IQR3P6QA0V+GQlB+9Go/NQB/YYf3V9YAvLg4Gg06DhV7bssdBmND8mVXZalTgo7EWToHzCQZWwUCf53yj0x7fEqCQjFkMU4iv+q2bmqMUKxRi9n07OxseTQ9vzg5OlosFgveQpg4YYxBzCY5/cGOXdvVavXNN9+8fv3666+/Wa/Xm/W+bcEXiKPk7NHjs/NzY0JK4qwLyDIbZjvQpgK6P+BRMqqnaCHgFW5iNFqbYzdEnEzo248m5eNm787gAQhACIBqWgRacWXddhCb8sCsw/hfz2azOETwSplnfV3IZk+7p/B9MY2DJI7I0bzu29ooFQWQC4Ogz3aJnry8vC9rMPhh2kNypkM0Y5jEPtTuBFc/mJaOtdqo8fjI2LSpDzzUB4dBuKZgA6aLC0a6aFoY6zHcPr4Ov7ITgzYo4p2Z/fD6UMu2Ofj8SiP8qGmkwCsH1kxhQ4kCD5csy5gUKwSyYCnUjFBsMtbscBkp8oq55pRMB18IbTAjsiaK4zAMm67f7XZZWrSwpDSn52dZVqy3+126L+lugOFQ1y4j27W17IWyJg5wuukN45XJRkhXFeD4OMbk6fTiUbw4SyYLpcyHy6vf/varV2/eNTW21a6FQxzB99U+BbMfYyeUzZQmS7NSuJoiLQGuHW1bW6N838aEiOECw3UH2V6CZDQslQY1iKpnbtgw4B/4AEyF2u1SsFHoODTAYRrMWPq4C02yvOFmRvnlXO08MEZqiCPLrISoGgUomRRpHVAF/ODtwyY0jBCS4eNDMi49KU5E/hEx48EelA5eMcipk1MFWVLiwgeIWfRwF/I6NKxCD/fnGDrLj9ohKcg9pH2PzIFhAOxsQ0kGD4uZwQXoACJwgV/sluN+I1GeShoE8PbGZStrkX0frjWOB+XeGD19ChNf6gTRHI5nb9RCjOl1h1ftI+PUvvcMHMzIf4aMQQdCF4pNbgUoU1s4uhdy0shW0p2+H6zkZKlKg3PnWapgZEmcfhJRobOjWFm0A6hEO1jwgPoO4YBrYsq68pA4Tqs6hDl4lqX0mLZOH5M+CHXdUhvY37SQ9HBvhrPDMazMFMXtgf9lLhlGtVXDixeNY3Dw8uUHZD/qVqVhwfE8eL39cLEaZxC8XLtWnBAX2IMGzk6XllPQPtkSFKacTYOcyK6BlQVSw4u2zGS9m0/s2fnx6elycRTZ0CgPhhU0sM/2uzLPuyLvs7SuSjQ7SB1QvdXW922EYT8oh57n7dJ9liJ5i9IfsJZyynocR3kOOn4URc+fPz87P8n36fv373mFz9Osbkqt9Xw+Pz4+nk2moYHNaFshLi0MQ9H1m81ms97d3t8hhlfrTnp+GC6PjuZHyyCIdvsiiSdN01xfX2+3Wx5wsIFmGIakyzLb7fru7q6qKt8PyYMIuyE/sNriFFVVM5lM2HwMuDSxaXF5AATET58/f3z+uGvr28ur+9ubuiwR6EbzIE1+0H5g67a5v7+/v1v5Jlgsjz2li6a2QWyCEBwmbYX0mg5nVWp9cXHx6PG5lHK/vmv2u5t3bz5cvm+qMgqC2XL26NGjk9Pz4/NHYnYkkiUEvr1qpe2ErTvhE+WMPM3UoPHF7QLQ56FqPxDv4p4bin5XvLqRx0E167AC2EugAfjI/4ehgBE6GP78qQH4Szy8v7IG4LNHJx9ZSXxUEfJXhoJDWOw5D3vtWA2zG9roynzIOWGHEdiwYBYOq3gjvfkshn18mdclAD4Q7bADdafns+Pj+bNnz54+fXpyckblPlu5s2E4k1/Jcg9lkLm+vHn79v2vf/O73//+91dXN3neYCYtxBdffB5Ppov5MogTOJHtiU9PacTs7Y15cEW2pLTNV80gW6RPPJ4g2oD/wMEjjY/ABFL/IaDnQavGp5QREthctnA+Yb5mFIQ+RGZtUzSQyxZwVkX6JlihJ0dL+NV0Vd82Wno+s2JsiPSCXhYFRLRZUfIJRiEFPstQzbNhy6Bz+AFLY3i342DssHrDFFlZV4fxKHagc5BXjxsTUoS6u9Rs0eh290FSPCqkf0Qta63pPTI95NoL9TFsOLokikG9GGjmLAfsuibDZBpSUViR0klIIpTMHYUPVEVWFTl2bq/j+XePNAUi2ppAagykM2QHVFleWhtEyTSeJNYGeVHe36/3622+XmuUMtb4mMTzu+r7drFY0LjUaR+ZfdEL+fzFZ7PlYj5bGt/Wdbva7K4ub69v725v1jViLmgIqlRTd1lW5HkZ+BEYquS1T7AJdJAUhkoMMY8icgkjwk4JWABkWec33/d5nu+22yzLfB/hZVzlK+WxnMDaoG5onE+FjsvYpsKagxRGtttQcoKPN7hnahBwSMvaECkCzA2qSVGx0TAdHKGOXL4eLiPqXqZYgNRLwMlAKSHJONlWfrSY8AKCprdEBlVdQ7DLmR5KoNpw3v9UMYBKrdR6veZgP74tH5AuykA9jOLiLXYk8XOz5M5Vi8Es/8MYBMYKlrosHl7nYLlD/UdC5FG6gJmqMdwA8Mh6SEj8eKsb9gJyOuI3qB6Ss1lv4277YaTCrzNqAx6WzHFVQfQVWEC956TeNKgXYF07YTCULYwkCHgYsQ/JwzsawwGd85IjOKHm79t6msQtbhtUe9DXE08G59ODXJ5sbZq6qKsKyyYwJQ1KHqpmWD+jkjcKUNFsNuPry5ISjwLr0HR1DvCpWvxrTU5mvfRa0gVRFJqFE+Nw+J5CKjKdK3JbgmyeLx+dWl6tHnK1zcH85cfQ5aFWilxlYQQM2YMGLV1IikTg6F/eyGi2gPUUkwWcoKbOvb6Rqgt8OV+EZ2fzs5P5dBI1VdE17WazW91uqrI30q+LbrvfVH1pQz2JJ1EUwlFNtD6R/jBtQARbtdnlVd0o66MNYEaZ9CDnlQIqo6Y5OVo8evTo5voSVTgEwbC8U0RKTKLgxfOnSFGrO/cQ+XBzrtvu9ds3vBRXXSukF8bRbLGcTCbPHj/Lsmy73ux2O370+DY4nP607LSHx1CWbT+dL6GNznPjY37fdd1svmRS5YDdIc8HS7fWyLHBU49tPbYBoH6KNUiSBKZvRSGkXB4tIOfb7y4/XG1WW+NDQnB68eji0ePZ0bHyg070ZVOv1ms0CWhG7vIinUwmF0fL7dX7cr9qqhKeeAhL8WazxXS5jGfL2cnF4tFzMT0WJmp71SnfE4EnMPIfciIoZeUHJRo1AM7nh6YfD7U7e/wDQzt4op3bHhnikm6+b1zDiQEWZBvAc5XBUuMMAxSnu3C++x+rED8SE/6Tj58agD/z4f2VNQCPl5Nx/vTRhHisFB+i3ZGjjcfro8LxsCB2rzv8qyNDI2MFFtVKSQsPDDCFfANnNExADciSVHCWaXpnfC+GJcvi7OT04vGji4uL+XxeVUBRka/L6gJqA4SQSTyjVPP8frV5+/btb3/71W9+85vXb++bRlhfTCaT6Xw2ncySJAnDUFl/u91ud+l2uwW6SgYd7MSiLZwKfvyQuP3wR8eI6x9qpokP6BJAxu/kHkAxHuCwEaJ3G2kk8tt5WILVpUN2WdfUXl9XZR4i2h3Jsj5lHjnGbAsqUdeBW1k1rntxxbgTFILRMRYQvKgdtnPj9Rqv0WGoMDcwY6dw2C0wmReeEsg3dW4qo3iAOwX3n3x1+HsO6k/ptR6ctrkIZnMiSvdhA1MQh8jcBpiMRK6y14OyQ2JiQPPEWsbYV0GgRuIKkF1Ei7ORwRm0Mr5hYiaNy7E0ex7krcbYvACHtel6dAJxEgWx1X6+3Zd5jg0y3XdNbSwKU592PqAKEJUyPdpBW3VToVL3fev7uLmWx3E8kcr//vuXuzRfb9I0y7FXYpoJTfl6myLTlKxpBCVPYPfsujAMSDPTcDguXZjW69rFfAK2GKIMAP0opAihGL+/v2e+At9artnuvASZmu46uiTdQQz98NgezJxFD99eDiTuya2FJ6B4FgRZHCLUgc0ruxbsJvw59oRMv2b/XEq8wgyXqElOfVsUQNV+3HCS0xekF4wOIYaZNAzzyZzFo66VZXkRItuYUujcb8exglXoi8aB9IhsMAGMhApufSCMA1JdHljwUzs2AHzLOcPQHyxcozfxsAZS/4OxKLkVjUGB/HAfroFUZ7PZCEMl+FAoytk4EtfFRe8dMglHivzhuRodPz3PuQ+NwtZh+SHo5KHqHdQFnmGUABQ98ulilMBI1RKFr+5qjn+TVM+FhpE9ogZxa0+NehSEFFrHLrfsgYnvAbmSYxx6NsGBERCoc4MOh6HI5iGp12HFeNEGjSVVmmCgEVTgIvAEBclhG6igLabvx2dEDgbE1nVg4fbG4AxdaPfrPlqdD/edEVRxlRmdxa6tKVcaAAi7FfFq7xhsHUa2IBFSk0MYDqGNTS76yrfdJNRJoiOrz47n56cn0yhe3d1fvb8pstLAvF+XXZEVade0URTOp1MAp9Rjh1HsKb9s+31aZhX6p16qBh0HzoOGIqvb49ga1PrRAAnCEQrPmjPfE8vZlBqBkFJZsCyz4i6lALU0z/clstO1NfAmCEPf2OPl0fFy2XXd7S3sDIosPxTrD482HrSqFdu8DaIpyn1PzufztuuyLIfWSqrj4+Ozs7MgCDCV2G2x4yv54eZGSsh7qrxoilJ5chLD8exoseARBsi3BRDdrMjLoirzQmqTTGZnjy6ePntx+uhRkEzgceHJosR4Lk13l5eXb9+92W63vmi8YtfkqexaCyNlpNXBUG02lzacHJ3Nz55Hx+fB4tQmy175Re1ZM4HzD98MNJI/aABG/s846ANqyw8yhZFT1U5hYUCwoS+h/G8IThBn1re1Nr6AL0UnYB9BL1dlZV0HQTQA75JqAFiI85v4g/XDTw3Av9DD+ytrAF6cLf/AVw8qQj7cUB+lZcu+ZA9Ef7qVmQL00W0NDJEZ9jQdZEMtRRsoQfMYbIdEhcToAItM29SbotlXeVV3deQHy5Pj8/Pz+Xz+q1/9anSqMeTMTfxeXdfAvQnkh1Bsu0tXq9Vul/4//x//r9vV+u3bD9c3om5FEonjY386nwXRBLMfDzDofr/P85zCBPHAHwqBxnme+niLeThF42c8/MuhBvdHx9BQHUQvKw9VL9WUxrcA00Gd6tp0v9WyJ+5QhxpWO3ReNY2hYT8Pet12zYRs5hSwomks3Hmq8ZFf+GAGeti9MMWIolJ+UBRxNgJvFezXAnIUi7ZhUvnA9oazK01eiV2C2BTHQR8OEsI2lCOFsSXesvNLAyebp4n0MSnnmMpuqvc4kLXEZJCC5TGmBShhp8kESQIoYlBgwfsiS0sONesQ6WqsjyJGG1D/sbIrErkacL1o6nN+dIYXzQuwhdK0KCEV6Dpo4AY/QSHpxgNTRyGMEl63dBUpyywJw9hT5ssvf7ndpddXd5c3t+vVDi7VOFOq9Qz5FDU0m0dRDiNwKFtSfihwE1N7QAU9KBlKOE+PZBIlETyRtNb7/Y4se6qyBKF2uH8kckzd/X9g5NL3mL0dmse76pB8qqmgZRMnbFfOglNDsd72NW6MMRFHF7UgfMC1FmPQA4t6a6oLBaK3aXh/4CI1svz5TvthQcZyDrxgkSJmSP5gMcEb04pcuQYIaoQWR4YM/woe6hPQgZdx5CjqJmjv77oKTrIu+ZtcCrgBgFqR3iN/63jDG1xcbhjwixoMR/FWYfnKXcHwFFNv8JA1O7bNXHKwQoBBS6cmom+D5JoMInnB4XUMSeTUUPHJHfj0OC/90AAMa7JLL37oXh5SFMAFUoTA4MMN+AC7DOH8GmmUxjNa1Q2sJInsUdWIwoJm2voBeVX5gTHq9va2rPKeClnQP7SXp9l2v0OD0WFG37cNTN7IxseALMmp6sajJ7Zu0YJSD9AcqA5QWgOnaoh+Td0UgzvaJdwpiddkEwIK/27KqgBuwKMNx87CcMDZUqGlJUEw7TKHeKNTpzBTbuSP+daQQRF8jFxjyaApfb/PmfF4Y3wlZFZT2h0ytnKvK7Uoreq0bE8W08dnJ49OT2Lfirar8mK73qy3K896DaLEJCp4ujK+MYEfdZ70w0TasGq8vGoLetm69U7Oz1+9fnv14VJ4XRAEfY+o4L5tsBgaE2L1ojayH/QtbZNMokmcYNEY8jewjNigauqsLDDNqhsGzZSHcVscRtMEzmNNRfhbVbAcGaHutEoB7xLQKlSd7HTUerYsS2P95XLZeWK72VdNHYfRyckJHBHiIN+nl5eXV5cf1ptNRUYdeDq6ri5A/vGNDX2fvc40zna3hoBt03R4iHjdQA8wnZ+eXZw+erQ4WtowCPwozakB2m2uL6/evn2926z6popl49W59kQQQlDRdw0mRFHcezpangaL82Bxtnj0/PjJpzqYZJUI7FE/NgAH8tyHNsCN/H/QALiSncf2VAMo5IfgDsdcBnMrGjqQlS/ueEBaeZqmddfi6YhiAeaBpAg8FsF7Pedp/JF6+KcG4F/o4f2VNQCfnEMD8OOhnfOBOdAB45swom4weMcy/AOFwCgaHjzpGg+Ouw1me2y7yeUU0Tl4o6XSARQIMAWdMUs/WwQYs2KTAvfa6x1g/fjx45OTk2fPnj158mQxm/GW2dSdhgoT4xRe/JuGI+7b0I+ubq5///U3v//979+8eXe7ui+KHl7bSsTTSTKZeZ7HhpusMOOC6ccNwAAmfnwc5gB81Ab8wZ/g6NND2IR3+gYJMihHtNZ+ADZ86BujhUWpX5RwkMi7ttaeAJBs4RRth4naWBW5voIjUVm+OdyY+kAbMH4/X99xcn9A71YVzDYerjvzI134DnuxOye+AWen9ZC3WEaTmcPN74tenT4ymVSSBLaHsaXz/qN8UCLG+EaTZLznbQ0ND32/9VmNwUAHMapriDs29xteXq1VcRAg9DKOTeDXbQNbbKrjK+DdJA7t+jie0MBPYvrYgP/AcbYgqfphHEWG9Gq73W6zXQM0324NNWYmoAAysioCZSJChizfk7y6D9axYjZfnpychfG0rtvbm/vr65vNNsuaFqk3pF5gHgiznmvKtGYnFqa+oLmVosozTqEnypMfhBbvwZjlbM5ISEUNgKuqe5HnjgY2kq/G/zzs+sb7hEo1urGdtc7ApmDTG6ZDOGkHsJlKwEmWB7pcRnMDwIN2nqEe1OhtMoGL1Ph0HAbP4b0TsfgB31Bqu9q6/F7qJLkYhJUkhDSU0TmYafL7Z93OoaENe/mz9QqfRk0R1mRN6UmocJmIz3pWsn0Z0v2csO+AeqPQBWGbR6UJ2QCAiBqhAe454rQEEFlIeM1Gq47vSyogXh7GYb7z7oQUW+GCsSE65trobgjN0lCuQzNMotyuZSk/NWGyE8bp8unpJnQNtQixnRwbirIZnEGQJcSSGm/8WE95IIwAKAszBjxsUPBUmNL3fVO52w+nzqo4hpNkFMOVeL1e3V3f7PYbAAUhSjprQXujwXgDIAtYJUkIBGiNgwyabgmCEsZ8FXLWktpDk0kNAH4pQUxMk6D7lk53HEWS7Wrp6vApJ/uHjIwbecJBNT20CIj6c2Zl1ACMtzozw0Zt+riXTeKISVyIrKSTyb0uAoclzh4IeIzhkIdL2SvI4gGKVaIt+6bw2kr2VWg9X4lZEj4+O3v26CyJw/X93fur900PByGI9RFPWXU1iPVxnPSeiZJZOFlSKK+XIqcSt+Nqvf+3//bfaqn+43/8X16+fDlfTK2UHz68m00TaNlhqacCH+0Zi1iqvMCuKkACnCYza1GsZ1lmWKNFXWDrSVweajITG/QN/k5NBWwYfG00NEht3cLPFXxRpeFD2rRFLToTFzU0G8r4SZIoY5G9rTAgsxoCvKPFfD6fd031/t3bt+/eZXDJo6h4YwPrS4HUhLqutURGnqfwIx6rDnpyA7fQA6CXEcIPo+l8uTw6jicJJY5lWZbt9pvterPdrqH61dJ0hYI/ngisNjAJABFA+4FQ/uT4zJ+fedFscvrs7NnPosVJK6wnp64BIOXVcCAh/QeJXW6H5wag71CsPzQAFNeg4GAF5gIgI+EhpoPaBmL1VNXq8sP333+/3aWL46PzJ0/PLi5A/vEMUvAwMtMk0INI6g8XXj81AP8yD++vrAF4djT7yCli3Fx/zKRkvYuz9WCC7HAwZImwVff95GQN40hywGYGNf0C3oaLdI+JkaMQI4ubbay16a2PVQNrKClnubDYbbZJkpwcLc/Pz8/PTqAYXi7jaDJA5+7GI+pF1/RifXfPhoZlWd7d3b18/er7715e3d7lZZeT8TPNESCB4twoLoD4OGwD/oc39Megx8HUYfjKQwflCEIHh1IGYz8QXVoQ2SW5Jqs+CQPKVVCQuTVtQ0k0XttpSjdxjGeC1+EriulOxbNA4j+iLEE9MMR4uXdygOocNgAPua1DA+BqnaHqIqcfeP5wGcRVL+4ByAc5Ae2BwUzQKwECzN/g88F0INlbquQ1EZGNpjcPrlAvRQsowIMnD7lpgB+FD4gQCdAMxjfMlqlIUKix86GDg4TaQ8qm75+en3EKKVuXZjnGSoi8QQOiJLRiqu8woSFVidztC6kxskKIDo2yYL3veR8+fMCNgZAdVOqw+/F9q6RX16TooJk3ewdRuclJvZhxktmPMX4cJ0EYv373Hrc1IQCIpabSWSlVV+CaM5eGvf8wejQqCQMM5mjazyUan7fZZApZYQQBBGBnDjuDYJcnx46hMbYB3JD/+BZlr96HOAj2u/ghB901cvBJ7Fvpw/+VerlBBY/vr6rmgeXCL+x6zAal7iA8GAsyrukdq56bB3rB6XQ6anJ4xsn1OXgsxAtiZyfH9O9li7qZkrIeKDSOtMMkp8H+xy1HirrK4f4nAIO1BahrHhqAgU+CO5CSeTsUrHgdABotBXK5j0cxaqRLcb5g4pDGM/LaGDEj0ICn9GSZhP9oIeIVYwuBQQk9seTN71FV3jvqSyvqDgkr48ccbMWpAWAEAK85iGJhfg4IcfQXIiIe5i4on8i+E0adwkOfnEFiPpstyCaFbiHQY2DaZqw6WR5NJnCezPP0ltoAZNlGQNs4QY8ywVAhCSctcPHSpDNmM1m8B8p7pGcWLlW6o4WecnNdruoQlkz8fNEmEQL1pJsusYIFn64qgHrRBJwjpGmd8XodBc7WnVYZ5vrjfvMoQM3V/a4BgDKUISNCy1hRxo6n1Mk4dBoAMSU+4LutZahUNHVbl01ZtlXZtaWvERhslQh9vZhPTo/n81lifV1U+W63ydMMwi1jkb6Hlk7MFydhPI1mRyaYVr3K674gw+Gby6vdbndxcfHlL764u7n9n//n//f9zeXjxxdVmcPICNBHH/rAAyFrMkYoCMDaCvtXEsUYqNPaQjtVh3UYGYmgQfLlqPJqSheyqorNap0XqVE6DEOytaVpN1AmWbddWTVFIxovyMjLWCFhU/lhsFwcTSaT7XaLhTRLQ9+cn57Mp0m6393c3rYCYGOVF23TaAmaPk51hyZ/v983TRvGkSGhfEstOj9WkMiLHsFgnueHsEIDC5eKgb5ryGhpL/rON16bp9rrjIR7ARw9MRAk72nlnz59sXz8qYznKjmenjwJ58dCRV0fOe7N4UZMGpo/tHn3UlRjA0DcfTfya+sKxGS8Uiv6iv6E4QTWjaYRZVnt9zfr+12ae1LZKP7ki19AboAGQPe4935qAP4yD++vrAH41Ysn/DdeL8Z8UIbyP+oB2G6F9WSkZxVkC46jbSrCgtnqh/6HbchBXhy0W/R7XMHBg+RhCDo0Hl3dFOBeA5DW8Joz2gftB+VjVdNC09ZhEJycHF2cnS8Wi1/88kvoyGhAIhB0WlcFkpKoniC4uYL4bMeRS1n57ZsP233OGgBe5wd+y8Hs/xAH+LieH77+Q7buAW13qDYelHgOvB6Thg8KcamkcxlC50BqTOReId5F+IFJIrhJQIdAFQXkX1UJIIMWU9QBtGH7lLTiInspmoS2NApCIreTH0+IRzTg8P306DbI3JgOmkm6CVnTOqye8AE392UDyocgLSfVJi6x1Jijdm6bfxDntRXG/DTj5zwErYSWHaK/JAlOFTocCpsjapCC2HQo6kCRYstRuKDQ7YpBPyTUoAc1nQgTQEkwGE2wr4CEWqPhu7tdUYEHZ5uullC41l3T9ToI2P6/E73RwAIISQhns9luuyfjivs8zzsi/GB4hlKBlLvO7L/lYoVtOpU2QsimRrXAbdXPvvw5ii2SKGRZkaGhIJudtgeXQQKRgG0NuWd6ogssPEO4oEZNxDFMShRpZoyKgjCMQAtgZhcQOZwFQAJNU1EtCkGeo4JBcuPc2WlMDqIRcoSRQYubhwC55rDnP+QRYc7bCyAAAAFcrUuaAV4usBXWg/kNy3Q92dd1wQ2A6+wPKIIfeQyM+QCjK6W7oBxzxlAFS/8PdJ5aGm4ADvhF7UEDw1lsw+H16PaGLFj3Ozn4zFljPTQAFEGMnNoxA4t/NQNZ8HGnEatbJ0eoZExM/2EbwOvGGGswPO9UHw8NKk8rmPbDGgbO/W0bJxquW5FXqHno07t5Pz7H0AwMeu6eny14atHj78g/WHnxEOF6U041rHtCEC6klm3d0iQEtbIjMpFRVdcDoc12u+XR/OLi7OjoyGi52+1ub2936/VsGtH5xMNL5D2guCCukAaMCi3KrB00JEYHmDTDdIsH8yO51K0JzLNCdc24FixcMU42AYyEqGnCd5PNNGowUHcaNBVoLUQvfNkNSeQuc42uEydVH6os+HvqvKBOGzCRB+q5IyIhF0K0oOT3PZoo7GXWU6JTgCPYEY4qQDQ0fddURaaRatworzO6i5NgOU+SODg6OoK4pQR7inADkHE8jcGw9ifx7GiyODfRVGhf6MAqfX99e397c3V15Xn9o4uLySS+evf69998HfoWvTradbIX1U6THSYIQGRiLbDQtkVmchDwrVU1gGY6IZTB3ukps7nfBUEQBaHSXlOCQOhSWZDJpZTxPeNDwyoN7UB6m5Zp2SCDxfhplntKLxaQ8E4n8yzf391c39/d9m0N72LRl1UhJGp9LU2DeQxEzFYDrxjMfylLBGhDKyHvh9dCmMRxMpVG11ULr7Mc0mTouRVGWuBTlXlbVZRBLvq6gjYMvWuPslpigAKrvV5fvPj86Re/mp0/15MjEcyETYSKRIcRzx8t0Ggv/sF/exXQQ/oRftBYBEATzFY0eZXtqnwr+hpXyyqRpmARKASGZHnZCC+ezdXRsahaRA5LBA93nu6w0VDPib3/DxSJPzUA/0IP76+sAfh3X3zKfxvNLp0f/EOw4jhpoz0GnjwOPXdKe6Y0VAVVbFg6By91YuWSVzSH2hxwijq4BAy+Jcxn4Nc31gX0sA8DObQoShKAeZCP9h/2oVT25XVXT2fx8fGSXYOOj0+t79MPY8tZr7dXV1f3d2vMSmmq1wi12led1HVdg+yx2ZRlqVEx+mmR01mQ/0gEYBQB/yAKgGrWw28bI8R5HuBkZ26+TtyobsjRJe8gqmawC4oOyb6831utaUINlxhQByDMxHbbkXO8kl6AgElLc3QK6OFqhLLNB7eTBz2oq1EO0IAHjsgPGwAG6HmHZDHx0CYR7YCm6JhcjvaL7uXYNAY2hTyBRBni0Akh8V00oYS7f0/O+73yumnke7LTHk6HQgmC3kb0jdGo1ThDwKAkUMZAFA2QeqgyR3uZqqrWu1IpYa2AzxJkcGRHKDG/3+3S1f12t8/aGvmaMHpXphKihmsFzel6zF8ZCZnP5zZAbq/Suizr1Wp1c3e73+4iE4PEolFIKSXaDiwIspn0aLsnrxSprfHDMEalrpCAs1weT6ZTIby7u7vXb9/f3NwFYVzWdZFXTS+MNGyEgi28yJiTTYo3EvlRg5GnGSbTDcFEGhkCUPhZi0oHM2to1CgDAuQRzPkbnEnUOEgOgrUjJwXjU0qB+FdUNJhBu0E2/OCHQbgDA9vW01nntdAJMKGLVgnnWmOoAUAfNeTIUQ60BAIwpi99BAWMkXMjX3+zWT3YxRItEMyMocIe/OPHR8xTCPQZKXBuEkGKWL6fnWPB8LuFbp3P0sCWcY8iawBYFTAmAWtPmEGI0nnOW4kaxfZHC75bIpjKP8YGuSeATCfHyDD2DmIkrW2bA7iVYRCmDXKROloq0bS787a5Q9IGr31Kz6UUA/d3QgLpAwqNBoDwNGcMCpYYIQWQkvYYo2rt6xiMazQCntbvP9ywBRPTw2j1wFu11qTZriryOI7Pzk/mc3Amm6rY726l11JYLx5ePJsINEDHwoZMLR4i1MmE/nnSCweEwa0SwwDiIUGCkVv+jEVRgNpDRp0ItqPWlZo60FRkrwkEQB8LSXHfpl3ZDzZBgyQY9wZH8rHD0mhKh3+sQcUk9yGCZJj6IUC5RM4JJLnIpsAqBNpW23vF0EJD8AxeFRWL6X6LlrsvfeNZHxU+vJu75vHpeRSG0zjWeGZBavdgiWT3mKtrE0wny/N4fmqixIRT39jHR4vN3e2333773Xff7rZra3US+AhSzHZ4g1Tnk0krMjQVKm2rtIZiTKoaa16hlceTDgLu0ANw/4xq2/plpTKCeqxWExjPWa8DvgTk1ViM+aVpQRfTxgbahJfXd1lRLhfH86OjLC+zvKy7Ns/z8/NHRnplkd3dXmf7jZZegDPWvb98x3EugJUKTGJEB+C6hi42UMayxRAmheT9GiaRtiYK42gytQa6BcYWKDGtyNNdXVbGE2RGCwZB2/bGqNBK5KnDPg4bHMG3fjw/Pv/0508+/5U9fy6CRPS296zXBz+M7B3SvpwIfNi/KLfGg5bmoQFgA1AnGIBjWt2nm7vrd1cfXqWblfLawMDcF8bcflh37S4vpDFnj5/Mnzwn7M3iT2k6wTjAuAv+1AD85RzeX1kD8ORoyuItPmjTxCXMssyZWztRmvOAgeKPqjHKNodBBM2NQE0hvz6MyBiY5oUbaKOLtYEjxeio2DQIj2R+M1N7AUnXFeYWbodAyc7Zn2gtGLMl9xitlW+ZG42Ra1my7TpSbFmoNJ/PwzDmpFhP6qoob+/vPrx7f32/2eZ1RxsSBpx1jVlNXhbOpJy23iGTiEJ5hvn9jy7z6PDFp+sQ33DfML4CHQ3ZF2JUTJFMFCqEFwkU3BhguU2DRX4RzE3GgWUH3zGOkSfGuu1Qc/RakqF7XUrRB74py0KjdtEWVkmwZ+QzRqE2/D4d9sLvh5KbGUZwH4cvNCbXD8wfxxIhVxYS/6HYBKtnjHMKCObmNhHiRJr6I62WUH6qDrhzwE4sEQUNrj8DFBhRS2I0yQ5bq+5Do6wvfViLIzICZJse2+rgMUoSYQOSFBoe+oTjRyAUBXNEspLYA+CBcEL4EDUayrXhF7BS6DwryQ4qq4Vsqd+jj0khTNTSevD08AM/smFobKAUNKBCiJur2zzbA4XH/BFPh7UA6PltUKNLCAnm4riHwxAxZ74NZov50dFJPJmgNOzEy9evr27uLi+v0zQ12rfY9SHsxrx3qJhRXDNnRqKfIRMhFFb8i9g5KrA+k795KM4InmgJbXcF/UNAGz7AUC05kQ9P0qkyd03q0O3DkkWqvJcNGZYyQ51CqnCWiqIi6pnxCCqsK8Lc2qprSmjmiIBCFD9KckXo24QpKW1blyVsJRmv4GAmV2o7Mhp45EQpIUyAg+3clFdWZQMWgTQcpDVy2KqaNDzsZkMfEE2FJ4nvRbeix+cETbInhYE2Bt6s/Agz2wQEPAnGReBHoGnVUFU2ZVV3PXHQHSuJFcdcCBI2grbRgWYoINkciTzIBwKAoyn2tPYw+ECr0GC0JVE50cp60KUj83uzr5vWq5uSTYSc7nlEGhjcoAaAApx73IgEkbAZMeAAahXI+YBhHHQgQQCGdxTFx6fnu91utdrs91vYMXuepsgRClOD2BboVFPzE5TEvtZN35YdblQSrKNWw62ClgmhAXwZCV2Co4CGDyRMbhUUGNSvMUsUjqiDk8SoN2PEskYRWzddDQ1r4LOlb1nW1KAhma7vELjR4G5r79JtT+6l7ANBFR6E2kZydIzjrTkeGm6skRrUkT8BGfLiirRwC3LaWZe+7InWBr0iyTUTysi/FyOwMAxLKG53TVti+fJljIgtf7/ehWF4vDw6PT8L/Wi7211dXW/WaTybZ3lV99pGiR/NtQmUAeNwFoaxb8uyePfm7fXNZVMWQI+6xmgPlhDo0vEQKO1FPvRI+xQePiP/p6KYYc6+YNicndlaBDwj99gPZw3lMACi6eEOHIWJ7/uT2Ux4pmpFWjZkTNoq6xsbid4ry/rZ808+++LnwvM2+/3N3e27d+/W96s4CLTo0/26yjLZI5AxL/ZJktR1WZeVR76uMLsjmhfHnLFeVltrAltXzS7b6cCvmlprvVwcnV48mkwmVVVlWXb57j0g0nQnexHD+s7CIYBEepEfhIH2tUcNAM/Oej9Mik5Gxxef/uLfHn/2CxEvsSgiBCAY63gXIsENAP44bAxcKAhpANgra/DtIRi/LQuDj1v1q6vvvvqvX//2H64+vKmzfahUYOxseXT66NHR+cX06CieL1U8FX4kJPcAfo8GwIgepEFPYPn8A4XXTw3Av8zjr60B+PTR2agEpaR0sppRarmcO+JyUcCHoSmZo+n7cCymwSTRJLk6F56vFGZUJLGk/EjMsFEuUDguiDwgUGMT4kKlbzE3dV0HpbmTSKe/vb0eChT2guDHF0vY4M5Bv51MHpWWdVn5RoGcGgQo6HOsj77vT6fJZD47mi/CJA6tL5Ssi3KfFTe3m/v1drXC7J/Z3kVepnkGMgYPuTnrh8DzDvC011JCKZ0ursYYVAb9Y+A+018APnu9QhSkO7mHgOPIJRpJ0/S/llj14PQc5Cq4pKHBhZPrCba8oGhTXmr5V1Dd1ncgX/LbI2qr40NjIkEGOwffz4JNDqIfHUgfqEH88XmiTxPKgQhEpTZxvjtySORaEwZ2rL1jqo8EHUF4XkFAM4ppylF3VjME5fPmymZ/LPyVoifmS2tkq7QwWmgQhDzjiRBiW4RLsbzBjTzxF9iNWMACEM8SEcLZPJNBHsAlIhU07NwQx9DyanLk1BJ0C3p7arPNqs6rqwaBcXXborqVvdBl3YGlJK3ErRv4fqiAQammy+sGBv9pltUlqDfsYzSdTOI4ttr0DT0OGv1Snufr3U5IL47jyQyKPczAwngynWqt86q+v7+/ur5er9csAyAqiO9kFcOtxTbwdKpQuvFHlggdwxFa37FXqGqh2wY096pC8CeqIbpbqGsC6I/Oc2gC0QyR/YtSHh4cqs9Grg6Z9aq8IURBqM5D7839g5AesAv6TjRKeAXDTk3MXW7B7nUEJNKNINWV8g18slU1qPSIttQ2NZYRYkOR+14LnxxgKeBxs/IErCrqUTqBX1c1jWiFpz0YCJP2lJt5uu6u2nPRJZ4MjeEsNjqfaBEpfqG3ms4MFehghpHLFhoAwgm0kSEdvRBFnqdZkaaIhQZHD6ZQVkIcjDbeBsY5stISQV7HeA4IGXCNtGu8e9lJ+JIOCwE3AFSVQ1dAzp0k4R3FD52UZStdVkMDXHMQMdMtQXm6vFTSHSCl1wVeA9lMj0EDKYFc2+86hoM0QOYOTeIojCy3Z1WOdJHdflMURUQdKeYOhL0CbsRRLuaR0aQTQGsPgysFj5QutJb7YdoCBlPgXleNauH48BDsxbc1gScV53tAXQOvG6wDLZhsgHaQnNG5e09gtbeQLyggAFWDSQRJtnF/FhWQNFj24E6MtDI4/7DapDkUqQjIGLesqlp6tiDgFDBaiNWFPlZOPkhYSDgMjh+rtql60SCejygoQBJlp6Au7YylfHcpyyrP9mndNoH1/TAw2pewq9E2mjx+8vT00dO8bi+v7l6+fluWKHyDIIAzZpoeL+cvnj3/6r/9hgcc6OKB9DCFtaQhjgwCRMJzNCG88oKg99RqtdrvU5ZkcLwGBgeeqOoCbjlBIL2+wePfad96mOuDEmmt3efFbpsKKcN4cnxy8eTppydPnve9fnd18/Lth5vb+7wo58n86dPnLz79pBcyr8rT8xMvDK5fv/nqd7959+rl7eV7K/tAqqZMu6qxmgMlqese5UO0+1NOCJYd8q4IyeTJCiV2eTpkR+LGjeP49PT0+Pg4z/Pb29vbq+uiKNDpWMgGwO3MC9V3RsuIpHFStCQCtpj8BZHwEzs5On/xs6PPfy78iSjbpjY6mtJz1DdtBxtoIRty1O1EV9WllDJEYgCei7qrPSnLrgLzwPOF0BXky9Jiz6n7cuu1mfCKfvXh5bf/7eV3X+1vr3XZZ/u8bsXk5Ozx559fvPg0OT5RYRgsFj007sbzQikTIXzRmqrMlQ8jAgfwj7WAm5iJf77G4M92/FTQ/6s+vGcXCAJzEDBXljTfamv4nbOXsPRQf5Nvd1kUWdc3HO9ijYqDMArhUsB6UAz7sQfQfKZFEk+FkJ8hGxi4v/IJ3kOpNJhz0/5F/GOQN3RRYX2EQSe82EHeYJc6jicc3OWccTXCQUjyyKpHYhXDvCXP05HpHhE1E6QOLCzRZrO7ubnhHoD4xsTTRadC6xc5r8NApkYKlx8kHA882OCwYQm8OMexOq8mXgcZbysNioAfn2liEQxMIVZF46/OpnMI66UhNL5cgdqBv6H9cIfE+ZXgcIPBwjo5lrIC4Sffd6JAoOJn3ByuJq2mspv12cAE+ta9bQhMqaQmljm/k9HWEEYZzvOH9nlkXI3UY/VgE0TJwdwkEPsEdJEOFH8NtgpxhwjqcJZ7oxsSX/QxestooRB1VEswglqJtb6XXjfzfdig0HQWnChc0QbhaApVWmAlvKMYMCZxpG+w9LPRqnOtIelti6AWClkbeSlEkuo923Zg78AEo+qquilrpBR1val78LAa6LiABkhtpelNIAWl11O+aZNmeZ5BZ6Ip9PR4efT08WMpvM39Sit5enZ+fXt/c3d7c78SoptMZslkgrLDwAtvfrRcLpdSqTQDwfr6+vputSlSULZGFQ13SmMPwIZa0F0MMn2I/h6oO0x6YDkBfQ97+dDcl8qp3oYB+9uMghDu3TCu4/uUPF5ypGdXZdtJG7A27uFGpvtxeQz3MKhrdrvdfi+EmNIhyc48TVO2zuQCvWmaKIrGuOIRgsCstakpwdbZ8BEahndU1e1487OhHg/znJfwgQKHTxPC1HxUGTXkeYBoUFkaS40xIzOUDyShNRdey+NV4Pys7SOkUSpvEkTcP7MSiQOVSatjiqKk8NesqnADGONrq8qm5GBafjvM7OcyyD2zhykBoof5JPFf+GEfKFWuAWCiHdOB8HaF16KqYKmAM+AHvaYH83tIeRMUkMQUps6Xjeqb0bPIwbI9Vgx6O+4ZH9EhrSG15GgLg/LaFfrpbs/0MH5qXJNNRb9G62UMfNl76aEBkFAXkMkuvgUEIHTgZVO1njSTztMfvRm+y4jYadDNs68RMX9C3DDwl62apiwILCrbuuujeIJcYUog4W4QRCPhVUTbgeoGkQ+Eq0i4i6FhYOMhwlS6rq2QZ9busxLNPME7oBvBFyhMkmS9vqfAdbxVhia8Drym0EdjI0WrZOPrPjDCBx0FdwuHDzLDsCpr3Bt5NpsvTRgJqcqm95P5xfNPHj//dDJbvnn7/t27d5cf3nldO5tOAiuz3Xa7WjvBiWNGsWCcqHQefrsEdBbHMSw1h0bOqR2Kotju0rKuoiiazdC/pftdVZTGenAmFV1TFHlT2Sj0o3C5PJovj7W2aV6sNvssr3tpPv3iV0+ff27DqbRhL9SHm/uXL1+/f/VmOp3+7MtffPLpp9rXFTEDheiu3r19+/L7N6++y9f3fVm1VdbXNW6KoZ0bcvR+4CrhlnqC42hgpwVmKE4fxT8S0EEILdJp0hTEqbJEpW61mUfJfrMuszQO7WKCeIS6rsq6CieTaL4M5kcqmsfL0+OLp+HyVJhY2BmmXnhWGrT1xjRdnxUV6v4gJPI+lreubpD7iCw2AdISvm49oagp7az00Ny2uegysb+6efn16+9+vd9c267f36yl0EL7nh/b2XxxfnHy9Onk9CQ8OxUCFn1CmK42HR7QCRRFbd4rjhzBHcPV/0eGHD8oyH5qAP68x08NwH/38J6cYSMfPOkf8jXrsnDtO5n0Dzkv2C95ZIKZZddgBSRL+CiwCI8kfwVgmGgDaujnSaDIe7/rARR+gFY04oIzZK+xzfTQ97sMTvYGGUXJXDQwSYlLCrYNCeBT5lSATnVAI8nFYoYcmbJEI9EhNJFHjIvFETDiti0rpBEB4q+Z2zyA9bSLE9ohWk/kJaxDH3B5Z8NH3MLhdPEiOAgm/kj2N6EEPxYND790XC6duyKQdEYkiDvLrizgdpCAGupZslNA5UuYdVuT3zbdv6y4oNetjddrAYc7Yk/KwzaAyb6Svh/TRDK+O/RxR4HCWlNPVCWKfKccHmSWmKOTUw1qfcoKAkWlh7ufMihcRsr40OHIkgo7sHBpJ3M3gCcsKnhUElLRjE1Sbm7fhkpggwV1WcFvh1JQPYmGoWvARhAkbQxCH+JYX4vO2RrS5XaJsKgWKMmVW7XRIBwlgrIIj6Ras6q7sm7yEiaHnTBlA8OPvG7geA4rHg1esO8ZC/699pE6WTctvP7q+ub6zhhTl3A8efr48S9/+ctJFK/X68ubGx/GPuJ2dXt/v67bBht6kszn82iSRBG2Paaxc3n3/v1lURTQq2dZW9OckhrgPN2TbxIKFIe9ePgINPxzu6wTS9A5RVIszYnZS5GLU0zV0Tg6se/Y7LHZ7sN5Q4RZS27xPapdDmWmWNbxe6oGlAMeEAhY+CFpO8sy7YnlcrlYLOq6vr29vb+/HxWuo86YX4ELH7xpIowcPDv4NHRbwSeEf7GLFJRe1jQK+ggS7RGtDnUbkQldusVARGHDH9FAA0AvKjRz3HF+wMY3qqfwZ5YFkKWBB0SORedOFjwMIGpwx2XbgPuUor+o2EG9akrcFa6bGqxC8Zw8kH+Y7UNmhETsx5f5t7KSgSpjQktdS3CgtBESqNFB0BskFxAxU9vsWin8Sbe01/rwQ3ayhJHax25jQ07ZQ2VGFqZoJziYeQrfKjDr+r7fb3e0xFZlVfQtlgVsBEYX+c5YiXwpK62RQAOU0KrvmpJyPDQFA6ORg9NRJ5CD0TlZ8IhnMp7A6znyPpzBF2hFTOxTQJxkU3dVhe4aylaw87FBgNXldKWwpC17BaROGMRBFiWZ60L6on0kl2PsDLGPoZsFQjBDA6DNBibCcRzClZJsNCNKomEsms6ty5OGKF80WvZW9Ub3ofWs8axEcnlHQbD0Kfy+gyFvWuRt19k4NjYqm75o+nA2f/T0k7PHTx89erLb7b777rtvvv5tme5nk8QaVeVZBetNcgEYpHeaiElVhQ4WnH8on3SSJKenpycnJ23TXV9f367ujTFxMu37/m51v16vyQeC9BKypYkJmEBVU+dNYYNgOl+cnJwcH51oE6632c1qM5kfNb3ulT+Znz7/7Of2yXNRtun19c2Hy5ur67wsnr14/uKzz4DGtq2IAlEV92/ffvvVb9589832/q4vS6y00LTQujqM/8c/RxkhLx1sAAovYAo04MeW5VsMJE4myOcZB3mUNbbL0wzofYNGyGhPwyEDWIc0uhHCT2bx4jiYnYTz48nyeHp8PpkeKxXDO6uG1bMJQj9OPKm6noMvewRMogfm0RpC1BmaJOd+xX5aWF7L0qiuSTdetVddVu1urt5+d/X+VbHfhSaEXVavlB+H00U4n5s46o2JFzNPB+FkFk+PhZqKSoGMFIR9V8EIY1T5/dQA/P/5+KkB+Mc0AM5Hb6gVwKIxwBZ5Ymc0APEoinwfWz4J5AlrB2ui6CATanjdR5VG9o5A9UHywEszocWZ/VGcE7axrkNMK2b7LKF0dXNZ5ibwkzCC/7rwEEKfI7wk2+1hxQgyEaZ6lKxL29vQJ7i02mHWjDhXwkzJvgMi0TRNC2SPwuIgDAGeosIgkiiGi+wfimWYhui0OUmlt1neYlF4YB/xZl9VGCq4xoDKSody/BHbILYHZW6uC7UhqkD7YIkBwsOwkvLZGLQKgws7RuwAFOnKkReEG/3SjJokyKywGIOKaqM7RNlT74Lvp8vE5B9Ohnpo/OgDwrCeONPO9HMwYqcxumPxknubO3hyTD9N835QhiAjAE+D+D+HacRstca1kVNGckXSgdIjFe40Jv9QfCfmiwYyAAxoOTTADs6hYWC7vhINiGGk8vQ4sZctX5yeBWdioLexjw3deGOAFKpS9AugNknsE17deg0KF69qcG8UFaqKsuoqID84ZaAww/8TtqDWj40fGh1IgrMwNC+K/X6/W29E1z97/OT5p58cnRxzLBdM9KqyLCrQfm5uF4sFnqgoAd+c2L3kCAS7ySzLVqvV/f39frsrsdHictRlYS38W/i+ZaI/z+AfxmyskRg4D7CTZ3YBS/OpqC2YYkENrgfpH8w54BBSQ0cLBy/kXxoKjbKelPusrBrMSpGtRjeG41sTiCEEia2TxFpwdsuyXN3fNxUUNUmSzGYzrTX7b8Fpl37W6X1JPgvPEP8hJIsaAIqwIp0mNwB0vzkCHRpRUHCQE00+3yiVfD+0VrNY0PdDY0DOAW1nlxVFJhuyAwfmRi6QuqcGoIe+3CiYi2uOeW6ZLlVlhSaUEoMNUvFoT5NuB7QOq2zbe3XR7LOizDAIhXEiPT7EwhrVvQci+6H6d9gAcaS5GabnhRcs56zV915DzQN9A0ntQVF3IXpMtKAXRegSP3dYakkQQu10Y5AtzZz1Mf7WnV7XcqAUd6EBJCj3WmQDY1KOhdECRfFkH0URSmaMycEybxBFgsFNV1dagXqnDZXCVgWBZ8nRC6sKFjesM9xfekKlZQ0MkPmAjiRIDzYG/JjggM6eJNqaGpFfed/UoIjB+83SPeBh1N+K+82G+2QOVeBINcgFQExDFh4YWeBK9T25BlRtw/EGYCtRyiQMKoXa7DLuhWqS0GLKTqsBY25yJFPx2YMjb2WUZ430TW9BBGphRimaaZIA9HCKbR4gYVfap2kJdYvxtN8IVba9p30bxY8fPfnkk0+mk8nLl99//Zt/2KzvkQCoFIm0BWfD0YyM10AQoughQytVl2gG5vP50dHRlz//BWb/6R7a2RTGFdP5bLGYvXn9WkqvKvN0u+naGrRXCHCbfbpVVimNmcXZ6eOzR4+CcFLU/c1qV9St9GezJdwz614en5wun75AxX9z+5tf/7e79erZi+fnFxdYWHwjtCpWd6++/eab3/z27up9V5XYM2vYj7KJLdyOSHrOREG4/yGRT9JK03la4dbybZpnbBhFgevg+QCHJ8UwDC2Qgox1Q0oYTyEV7H7lWx2Hvlaiq/K2qXCXRpEJo6JpW+0H06NocWzjmYoSa+LF/BQMOgWGH0WpBWEUIyxCqR5YUqNFj55VoCcAcqQt2hsh27yiNBQr6irbbm6v36ermy7fz2Mzj0y5X99dvdus760flk1TVp2QNowmfpw0oi+aKkjitK5tlDx6+vnZ2XOlp02jG6QVTNga+McP4x8uyH5qAP68x08NwH/38J6eH493JzcAXDCRz8QwK3KBLNiPiI2jwbgPLFjFSng0Gs72W6YA0QyDCmgAAwJuCwOb37GECwjaaOU9cGrj+phlsoNFnEE2DeZ7Er7poHCCfA21XK/xaKO4p9zWITuTdvISmt6Sx2M8UYD8YOC4t5Vz9nD+fVSRoDAmEjM5qbmSkTSsng3Cru3JacX5jTwEb427LI3t2cbRo6j5H5/oIUr5Bw1ADxsC55AzOhAzP3JkArjamkaHrehrDwQV9jIfwVbR91GIWfKIVLiBq2gVknfBzhpyQ7EcIWsWbk7O8YObAb4KakAGmIHt3gCZITLV5+EX06/2fTBuRwdDV8l1Xom9YSh9SCTgWBwULOXYz0iToNWwA+5ChATetDkZ1tMwXsBb4rAheoEWzu4CAK61MkZ2KfKzurqqq6KhxEqWsgyRN+7Kc+lPnSdiwFx2Et3adL4IIOIkF7Ssuq4gYWnwQdqqqgtsUm0F+pHEn+TtLRXMfvwgpqgvNELT6fT09NRI9f79++++/fb29naxXH766aeffPJJFEVVVSFqmKzvvvvuO1KTYB6eRJNkigFY3bXWBDwjb9t2v99jiH57u9vthgvqWlOWUlBPhj14fI6Y0OV5XhQHUKO6Yv+BcopQAgAj6CgpwYd8goC8+ezfxB5BQnlGoqAJo6RpunLoAdhvteu6GYXx9R5Gax2lgc6Wi8V0oqS8uYGtYVVVSZJMp1P2BARqSHAcU/iG/pFIPfS+XYLEABnxI8Bks8F8s28EOk728UdPSDpKSzlrYRgTmCDp9yC6AFLewNy8e0fnoUFxgkvGVrNw1iJLFQ8cFJ6Fk2sWmSTS80LJFSSuRsm8nC/qtkMYFG5XksGQO1BR5U3PIvUxiwDqmwP2v3so2ISQiD38n4OCmQb/COWlv7CT/ajTgCHAsA5TmK8zLALfcKDTjJijJxpP1CDlj667B4HlgysOJMuD8BGjfUgP8HvJnck1aTJJEtjNaM3TE7KPxLpjOIGYEpS07H0rQzC25WI21RLN1WBB5lZR0PjI+J9dtugUoTiTBuZaRYmJPX4fpPm8FDjFLaYPoITxpMADDgC1aT2kICMTqu6AADQtOFVE06LgNjqNdUUJr4yJGRo/E5Kz3efcgmITKEsO52bmWNeTuxFbXJDZgFG6qXMKKe80PMp6rVoD2AQilSQCcYUsODHJJqpSa6y9W633WSFtoP2o7rwaBgrW87yjk5OzkxMp+tX97d311Xa7beoqMKzhYXEr6fvZ9ZiNzkQ/m82SSdx13W63SdP0/PzR6enp8vik67rr25vdbjedzc7Ozo6PjrIsvfzw7v3bl+luaxBXLuoml6oPApLodF0cTy8ePz07f+zH07cfble7TAXTiycvbLxYrXebNLPGPD8/j46O8/u7r7/5BihfCG4Ywm7BAq3ur6/efP/d+vamhTdWXRdlEEd4hsmDjMPsyHBYtTWQOtr7icqGqQ2cQ4IgyDL0AIwh89QAWqYw5C2S0TwXyaLUZrUusn1dFj4yUvw4BCtBWXN0elY0ba8Df3aEdIU4kSY0JpgEU2zuAglxKgyFb52hcIPFQ5Rptl5t7+/qsgyNRhLQ0bGXTDCmTCGaUr4v6nK/Xf/Df/7f9uu7Kt1Z0QXK86FyMWEcbKo8QiRLjHFPjk5GauypZVunReGZ4Pji6fnjT6PJsTSJ0LGNZ+zzNxb3/53q/6cG4M9//NQA/A81AOPdeRgS1NaYcA9saecQShsvWOOYz1jrE9nGp28xWoHzU8OimcJvyKCaxhhDqosTq3GBIjqnMIahCua4zquEJwGMhzJuyFN8DPIHl9IR4ne9ykBHGWbzGO0wh5JLDReYRe85DuIR2eBTANftriVUgfoEUEegh2Q7i6oh9pGhVDJia9DvRjHNezMOcvvhTyU7GBj/+EQ7GsZoUUwMdDQAzjeUXmqwYWGuO1d7XFvzees9WZAqF80AtyttI1qUdK5AJEvvwVfRSNV5fYWyAJfYSUK5GbBEwWKwWw4diPJa1dXoSkh8yY0KDWWHjOeh1Rk6AGcqMmAhYyyUE/uykcuQmIRaB0gCNzuuK3iYjz6UsExsgFdl55vOVySAsxjpg97QNHAdLFOMG70WDATpkAEQkHFp6BU0lLicakTArzN9p/IOvQSnUxsnMof0gsB/BXmpp2pAM/jPphNNA8IY6o9WbNOm7kBkqlHTEPSgfIxhPfX5F1+enp7u9/u6KLFtx3HTVP/w6/92f38Lzd/x6S9/+cunT543TQNJQNutNtvLy+vb+zvReclkQrmbOIE2DJJ4ypwWsNQoyOz29pb+nrJ+kVKhzeEzO57nHpU9BBLEmyKjHkpfokfGmeKxaxDd+RW8VEQTB4mnBaMBLNbnCxQE8MNR1qXzInaUivjtdotRXBzBTooab85VXc6m08kEvrppenV1tdlsmF7i+z5jgONj6/7Swg2GRUDOB4Z6woaeO0JmRmoNBtiNRAPGT30URVP8tkkQBB8+fOCM4Qmdyabvtqv1ZrW2Er0fnuW6gg8wagPkaWDEr1CYgfetNUokWK9C4Y4mpyjrruJShjz1PWSuoULHMNU3gSc19Lxt0wiYsePmoGRf8hMiHiR1tERuwqaCKD2kkXbtyM6jZxyBYmQzMNCxqCM+8AtALsZI43lIAPRCPxhtTEcGoicaJVvlPciNRh9nptl8lPvBHvwMy5CHEc3PybypqirfN3GACwfTHgoiRFwulhBQ/Lu+8vra4QBGBkYHvkKKcAS3YiyPWKFrpd29R5L8wVsAXQAyydpOZFm+3WdN0wVBAOs2jn/oiTWEO5BDu0F6ZAGES3AjqRSSqhGq1VQVI8AwJoW1U9NbG9DghuytyAQJq7+15+cXuzRP01R4XWAc2yTLUk3FKNlnuRQLbD2+CY3qEMhVdk0tZeMrzzeAO0TfEB0F93YcxwrW0i2UM22bFdCW9Qr2mhCZeUoTBsEg2Hw2mURh3VT8LHc1QZDchbJ6h0YhCo9b7WuzWM5nsxmiHhtcguvrWynlbDY7PYfZXd02q9Vqs9v8+3/3P00WM2FNcXP5/e+/fvfudZHnyuuaKk8mOLGwTupFGMXzxUk0nT96+tn9dr/aVzaagECfzO9X26vLy3q3jcOg92Sa57s02+33UsrJfEZ2c16Rp5v7u2y7hVa7KnMYaWBnHOV2I9WHbWEfNo5hkV8ulzxHOEh1xAXlH7fWLpfL4+PjIAjYHahr2jxPiyxrm8JKkSTRGfqfhR8nNkJ5LUxQCVXDdhPY8N2Hq2yXNn13dHJ8/uSpP5thzy5LFYftdnNz+eH28t1+vW7LAhuvNk8//TJZLoF3sdLMN6Jvqzz97uuv76+v7q6vmjT16lZ2XUQJBvZkvjg7OTu5mASJaLt8u7+8fH99c7XPNsl8sTw/X549juenNlnKYCF03Ht+y9Zh/7jK/qcG4M98/NQA/A8bgPE/ePTr/mGs8YgoMhbZhhMfaejFXBHKdvUW8xmSp8jhx8lbgaCT2hW0E7eqEkXBTf/Y8oAJPNxa4McO+CWHGxiX74Q7YNUeRMlVS5sivxpX+ZxKc3+/wsoPGBDZmPx30EskoAlepAYL+bqsKxJ1kaoWUmQMefjY7yEm5rD6h9xTCQ0ZPErJpnAMtVEsU/whC8jZkB3E3/AXubzGeJHIDOP3S0zDOZKQLgSVpW5KRFZF43uDeTYNNzvRlxQsCSdMGt7T1SKrQ0z0aY8ZZL58cYHOsHsDpJCDX6TordcoVBVUEFMp4jbgg6TYw0+EmTrNVlmkPK74FFY18B/4XVGFUjY1gJIBBBjagCF7mMVh/P4xmu61B68J2oxV6FvfYpPXKF/LqsiLfN9UtQfbcpGAxqubCqJSfpskk3BOf6HvK01ZXaC5YA5K1i2V7BvSdbjxM4aO5AsPQjh5XKF8gEk5iVI6vdrjT1D/m7ase4wNaR4cT+ZpXiyXy7/5m785Ozvb7Xbb7VaI7vGjiw8fEBp/+eGqLMvpdP7kyZPzi8dVUVNOarfZ7dJtus+zPIdd99HpCfU/KNzJHQWH1vrDu/d5ngP2T1MO/qTzA203X8eP2oDSBR45u/2HQK4an4/6LjC16g7/h3yBCm7g5JIkx+AwfqxcvwHmHUAevlJFVcLknOS/AXz7Qm6Ps93eWjuZTObzOQd83tzc3N3djUUVP3eDoL840MZQDOsAfyEEa9wOh6ej9by8JTtPahGjKFoul0cnJzMaggJ1+e67+/t7pdR8uVjM5nEY7FagJIHLXmRAC6H4aTxEKbNtLvpMJE/5NHfUEJRzthq11vAHZzrQ3fUN0ExyTNeeRi/Q4MkzvkGVCWojsntBIKSnxjcGJ5otQdnItJd0p7jpPjcADKm5wT+ZDrs14CGH3Ym5x3KK23Wi3mH2P8aZMdNJKwLKBor/+JzyWsD0SIdKkN6pahuwNXnAMDy8kkhr3AlYyy5PhElCKwEIxUl+2trra9DiPFBlosAkSTSbRtMkxgSXdPkk2SXMFQRQHt9A0dSAfK17IcuS+FQY2OOaDtsPPYOeIUtGFogTtY+kxqzSIhRCNZ6p254cpeAbRB4NWBgNhLCkKSfZBI+WgbYluDOn02nToHTe7baSTmaVF1VVYBOhdZJrWd83szgUGBm0GIv0nQEUAC8aMPjJVog8VRkQD+CbuYHrV++pqhN5UaVlU2NchHfieXADO5rPUN3CTWMPL2zF0W3OvhafHR1SSyNwFfmBNooaroodhIQQBd3P0FkpFUThYrGYTqeb1frps8cnT58I2W5evfruu2/2u52Vfbq/s0jgAs4AcLtXxg/CZHbx9JOT8ydicpTv0rtt7hl/sTyN4ug3/+t/vPzwLi8qE/ht16dFzus/tYhtVzdVWTRVUZdFB6OMtoH50gPADhsmcuTzfX8U/bsQTOIMW2sBtdHBinO+NKzJFkKcnJw8e/ZsOp1mWbZer9M8Q2Zf2+bZNt1utRFPHj1+9ORxMp3H87mKkrLu1mm52ud395v1en22OKrzQmp9cnZ68eRpOJsJixu2ub97++blq29+v7m71WC6yr6usqo9efbZ/OTi+HgZRCGmcwgCB09huyam5tV1sUubvFZtn0RROJ8effE0ms2PF8vpZCmiRKTp6qvfff3Vb4o6PXv86PTJk2B+FEyP5fxE+HPRmbazPVmLfUQB+mOF/k8NwJ/5+KkB+Mc0AKNV/OEyNG5BhyJXfeBjQ84kvDz3DZ5kSDnJRZRATAiSyMuFYyOHOYEgXjJLAznClm2ha3Jn6ykS9eH9HXQC/BWWdnE/oJTKiB/J/QAbjyiFlWU+nzK5EMVQlWdZ0TTgevrDgGfU+TnXIxpPwnSiKfsWbptW+8ro+XRWlDVoG2UBNSJJvpQ1mPWASkHhSwehNuS+MvhwDzkAaAuoKXDgtXNy4MW+BgnIbfDkSU1/17xhY0oKCSr5QmAqr3xLPugKIzQPuz2MVQVUmAiprOqKaPodoo4gamKvQDvoPmnORFj/wIGh6J/BFUQ0kSalLDnGDMwv14A9XIXB5QjNiYHDBlOS4Ks+fEYWVzqrH5Kr8pVsPGRjktEf7O9Y3IxNguJm2bCbEuPZIQSeGyAQ1FUvWqNkHNo4QqW2nE68HjB025RNVVQlLKq6ul/MY27AOEaNCAkUo6ORMUeMEY3Qn6EBEHVJlAkObiTRBQokfLAD0QJqKxqXmk5Oi1oXRbUviiyv87ppWoHE3Br8Evi6Bv6jR08+++wTOPx44vvvv53NZicnZ8aY9+8+fPXVVzc3d13XPXv24mh5cnQEBc5ut1+tVtvtNityctBkDIRHltQAKFB42RibJYxpivGhJzqw2xCOYRC5xza71HQx0a6qi1FyRzWZDxLMIDg+FPWu1+sB9cIMWJNhFji0YciqU5RErAQlRC6MwWiChfwW2l+lFI/eiYMHmKBqG2hofIukCK1Wt3eQEFAp7OxE6VaiHsCNpYG54C5libDT5OBmJhITNzqdCXvKKiEmuzedTs/OzhZHR2dnZ+fn50mSfPjw4T///X959eoVvMbni8+eP2/rskB7lYLzjSIPYtM8T3uYESOBtusbsihFhXiyPPEDjjJ1eAWvNtMp1hPKktukad51vQ9FRiCNhE6BvetLEFXwqn0XWJ+INlSWO5kzWeIO6WDE9R/isURflaATOOodjRvGng2ptE7rSw02tWB0WRnTc+4x7EuDhx4gwIPRp1tFXRP+gwZAeB4IT/QAsuSUV8K2bWNGYqk+G3sArE5dT28Gv4vUV2XXFD0C+6RCSqsMrI6iYJJEcRwGVlnbiR5VIJf+TL+k3IauqOqy7pF658dN26+3u+1mx6nF0rOA8DDOV04g3gk/sAmkurA86DtiWiIzzKKR6OHmCXpoVUEnBeCuZTgUsgpaEHimIDywm5bL5WwGchrE6+v1brexSlc1GgAC1Trusa1W0AkjgZtOgOjbOm/LsqnzqiqgiyOjWC5zUfWGgMuqpoNCBN7ZSBRDMhp0ZQp8R5LlwCbYNxE9R+kuQ8HvAbxiO1RNZl5lmfu+f7SYHx8fR4EPQ+H1GsAFL7ASnzfNy67rkulkPp+GQbDbbby+PVrMZ5OoKvP1/Srbb6axybNdVcJuFckMvaeDOEpmrVCTxdGj55/b86eiF/eXtze3azh/iPbmw3vEqvditd6ioVUmTdPFYsFdHOR/dVWWJYCRvjc2gu6KnQxoBsft0JMnTwhagXku38muCcxLaJnCkDAN8H+YqTuZTNI03W63VQX7wePj47Ozs9ls9ubd26oqmopAGHpyyVbUPn32YrpYTmZLbzITk6VQend5/er7lx9evkJyMIIzfcar4zhEO7Hfbld395cfNnd3fV1Fvo6hM4zaYDE/uTg5O7ZhUFTFZo+ltaqqzWbV1V2ZZnc395vr+ziI/93f/Lt/83/5d/HzUx37SPwtaqz7UooyF7v76zcvla8r6WWdFy4vzp99LqfHbSOFiH5qAP7PPH5qAP6HGgD3t8Ganf+TiQRuBxpk7CjsnKGVC9IgE09scCgiqfblGFF2+HFoO/vVkCpztIFv63Kc+GpuGIiaGVqfHX6YKzya1vGKPOoERkQCleOBrwhFC6Pu55EJO4RQYeb8idP1lpcqbAnaDW+MgQCAPrYkl0kBvjeyCrq2aTgqmDhIIkfIFBJd5rM5dqEWfikj/ReV8VA6w2tFgAHJnkLkIgJp47ivk998DYL+4NrBcz4+r+z3QhaOLSd5yl7Cl8golHhESwCaApY7WgJMc1vULAV8lzARgxnfYLs5Bu481AT8u4h9DQ64m/w1smvAduUGwyWVOhemj3weuMhm7SI70POfzGlyhnr0W7icoR6gL7sC7QuQFuToVm1ToVJtiAgBvjrdEvh0roiheaeF7RHLf2EEpODCEWrVxz76AWuN17dFkZVFlm22IwKAqg6/i6AZsptUhAkA2SeNuG9kU2xadJ5OE4LUXMoKqGv0IlAWHihMhBdkpW36AFWF8Mq2z6AHxQ0HYQAZ0FMUmghC/+Li4vH5xZdfflEUxf39fZZlsxm8OJq6vb29f/nyZZah4JjP52enF3EcQ/u73Vzf3pSU5Tl2jEyNoMQxFPGep4qiWK/XZAe+D41smlq0PVj7YDuhJuTueiz0xyAk0PcgEnaYQEvPC0NwUqMxGDTcnBeMYxInzq2Fxv/8DW3bJkkCa93lUghxd3d3fXvD0YEnJyc0DvXbvoMQN91XRdn2XRxGVQOPc/LnAKJGTgEQjI68viEm1tH52DvXAUNcLnte0ZKrd9cLyiFDQgM9m2Ec//znP//Vr361WCzysnjz5s1vf/vb77/9znjefDF9cvFosZghb+jDu+12A0hTeGFg67q8u7lar9cS+QwhxrplE0fRfD6fzWDY6pEpSNu2m81mOp3P53Ot7Xq1uby83m63WAHqOoj8STy1vt+1LQCaXZYVuVsBkAxKLT39XSqFs8QlvFPluoW4QnIecZ/wuOErzJlku09++vSIo4KDwmMRjokYG/Wu7UoayfOjTXR2efDU883sYBzIWKQxnNqL+x8n2P2gkyQPmVnObEDgMzAsgFsIZj7Q3nRN0TQVPE7hTyrDMJhN4skkDkIt+8JoUDsw6CHld4shRef7YVnVadlkeZVDnNkpY40Obu5WeVmRclgJoeG3gsF3QMnBwki4U0C8ofB0e5633ufgVXI8BeEqPJGBeqET7PEAFTmtKb306raezWaTJPF9NHWLxcJIVZTZ5SXct5oKqRTQY7DTtOjjwMcuBmo7hl/g/2hpldrtN7CMbDsIln14/1O/jaQtNnFqXWdFVkiQyzI2QTo66aA53OSE5zpqFqV3QZhuTFFkdEU63werbTqdxkmotb68vKzrWhsDTVHbrVarPM+VUqenp9bqwML6DLEIZU4wb1+lGyK5we+S7RuUhJFZkMD9049myWwZxFNkfudVkadf/cN/TQI8vKvNLi9qqGTAbqq1RRwBdZ741LhBqOZPsyoM4aOKYBOq+BmeUkr9h//wH05OTn7zm9/87ne/o2xpm2VZ7AMq5O2e9XuLxeLs7Ozq6ooVfZvNpmlg1MGbPrTVWoZ+EPoI7cBvJ3Dm6OQUt4j1o+lidnQyXZwEUSyUevnbX9/eXO33e2UQGJeXhe+b5WKxWa2K/S7drNsys54XGhlq22obLp/HR6dPnz+ZPH8qrMmuPnzz3beXOK7IaEGFOjhaHD05f3xx9ihcJP7jI1D5avLy8Ywosub1qzcvv3716qWO7eTkdHnxODh+ZJNluDi1dtH1+jCY7J98/HM3BocxBYfHf1ew8Jdw/NQA/B9sAEZzycMGYDSj4J+iWS/+m1NfeS7FwDQ8EyAyI/8ZJwPQLBSTcHikbR5QYFmX2Bywn2vA8VxwsE6gruE5+BGB1QnjQA1/OPi9E3k6Hb9/UIWiCNaExmKKgYEdIoRL5FqK83Mgs0kEW0MWJ/HvTVMAC24SSXUgjZHU7e299o3vKEmgEuXoO2rjWzaFgK7VidVAtPVtyNQLpgfRSAsDcS3RADgEZiijOYaJWb9uPx5YUW1fYZLEs2r+dirs4jihlkO7lgPvGR90n6H8QrAOXNvIGhsFAWTPoxv40LMR7NNWEv7WcAIZGAjQgPyxxQjpnCSgdB5HrnDE7jeSlzRVLbDhUF0v2w6ycWf+zdcQgWsEalPNSi0HdQJceAOLJ6I2GL6eg8i5GQiNDEJk5cArOwwCq/NsW6NJS/Mi7Shkyvqo6JvWBckh3xa9E3nhy+54HnJdBacd5n+TvSwVf3j/fAU53KppldCLrrMNvFRkLUTdCqQHNAL8kgbSuJYs57BlSijeOtH++3//7//u7/7OGHN9fXt3dwf/KCEvLi52u93dze1qtaoqIOPT6TSMol26X++2aeo8c6qq2lNBOZ0iRwzFrh8iZcxDYkXXNR/evOLz7wwzHRmc9R/uYrGA25GsWqRNHXSh7p/QMZLbLCU9P7xUVyG9aGTf4alkkx4pswINzGQyOTo5pkBQxPBdXl6WZdm2GNRNp1AyMNDPcBw/U6OAHm+gacn0yT28BMQ5tT2raakHHJLpul4Gk5YM2rlRYRBDSG82m3lKzefzzz777Je//OX5o4uqqtb3q//l//v/ef/23f3qdjqdvnjx4ngxr5sStkSbLS1cHZkCeUWR3d3c3N7enhyfsf96Mk2OFssg8pu6zvI8jqLNFnyz2WJxenxmbJCn2T5LV6vV3R1CRbTWx8fHzC3Jc0i9+V4CAkofDR+/rslFbSDvDd11iyC8AEb2NCM/jEqgv3N9SyW4grLFdfIOTHAJ66AYyQbmhoMGYMz3GJOAaYUZZCDDE8juq4NHv5PnD87lo3kAPYloZADrDZIuhypQBBglBGPtaxBN4MMly2ixXIRagW1PrTj9BFpIsc8zxC6boJeqbvp9Bjytgq5aZhVH8smWHq4eTg2s45EBAmSUBQuf7VxdXgSblY3CEre8AEqjcQH5EyDNuuv8OLhf3/Vtd3R0lCSJMer0+Pjx48da6/v72+vLq91uRx0D5SGUANAmNEKOAl8D9Kg68tE6PloUBbQEqGJplcbNRG0KUad8pCT0ZHZE9CRciSEOctxnKdcPtTLV1sBRewEhshOw4ZRifM4jc5iwan1xcVGWJeW17Y3xgzii+cItwLe2Riq8VVHoK+W1Td1WZWC8jlx30C2DNuYh1a4ok8ncj6dBPO2VBY/Wk0E4iUJ/c3dz+eHdbpvaIGja/m61K6vaj+L9fj+dLYT0ttst5YQulfK22z1yzQl4n0wmURRx+iEHD5+cnDx//nyxWKRp+ubNm8vLyzzN4jBirQ7vs9ba4+Pj8/Pz3/zmN2Mzw/u+56Enx73C1YjXxb6NIrc7z2azoqzSqup65UeTKYIOjqIoevr0UZECUF2BELRZbzZFjlaqLSt0cV0tu1aLLgn85XQSxItNY+ePnjx5+jQ6OxGzOe6q3XZ9v3755q3oPV/702R2sji20xmyfrVId1c2tLLq8/Xay8s+T2/fvn37+rub28tkMXv06ScvfvG38dNPhJ02raxaFZjpDxOI/4nHTw3AP/H4qQH4pzUAh8FVP0QAqB2gr/D38TbADQB/3XEw6AWJPtQSb50qQp4tE8mbgmAwoQcgQFxkkATrwd7ugJ/DXOSP/Gf4GGvjkdjDw25eQ1lv1LRAD1xKgAYbknUIgzoNI+iCFFoIfaTDkZ6V8jUQiawsqC50cWbkCGireggmIx0CXOi1znIY5vMmRLsCXPFZJ+DYMySlpXespdeqHm5Io0aKefFEzyX5smP/j0P6vpfsG+QaJ3idsy+4Mp5Ccgq7pONnOpTwedHATB37UN1TbUceOIjq4qxWp8weTGa8tmLRIvvkkCSXQen+QHToTj4oYZYNi8YVyjUDLZEHuBVkAgMoSwhKRsKKYy0TPQmVjIRkEFoNNwxDrA+RhUWeI6wHrrKwpiRrID55sHVn2lJnaHwLCkrsHy+mosdIG6zvNNun2zTdVUUznfnMf6C8ZNLussZA9aGPTNAgCJSnyfnQpU8MaWXsxwqcp+shBqs7SIRRoKChUTW+7uV1l5dgxZJ1CbztijxHAFY82Ww2xPl59nd/97eff/65tbbIkJ+FmWjfp2kKx8/9nj3Fe8+jWhwnHGUQKCio+z+8v2JeuNSIJvbhgRUaq9LNqgXHpdjt9wy4Y1pv/aaq0XhxnUZ3C/NoOujZRlMvLujwutCwUpQbK8sfuDfIlxjaa26haSZtAnB8UdkogP5JkkQR4oqiJClLyAO22y2z8vhHuAIeWXlusoAW5iHsj2nBbFFUlTSAOECcaNmRNWghFERNrjXMqOmJRlw16FWWJ8fPnz9/8eLF4ydPFovF55999ublq//0n/7Tf/7P/9vV1VUY2POT0/ls4nleCdZcpTFixOdCeaX13/+XfyDSlay7WrSdDe3ZyclsOa+LcrXZZvt976k4iIMIH9iQQcp6c391eXNzAwyElQlBELGiI8/zukYN58xPe8Ad5KkFu89xstBCiWtxLiiU8FAE5bCswW8ApfzDtIMNlBgtIwUOAFF004OmH3oE1gaQZBzdr0P/MJTB9Lkmu0bHF4JdEtHA6ObHKGeQIfGjyvKhcb/AU8m3BPVoIPZjPSqhLqdn3JPd0TLxLSg0UQDHXNxrdOEw3JWqFxDbNELWbV9WSPKqGpnXLYx36y4r+6zAG8SwiPDLQCsfc26lVY/Hn2r+B48jlgCwIxNFhmCToTkNdhC0jA1mKkTugsjB89h0Mgjs44tH3Jut1veru3tQXOhepJYVDW3om0mchL5BGGRVAxDgdBKl6hYE1B3iq2oQRPkZoZiRMdPmIx8Yh363MGMgTZrzxoUlK7m8oaVjpmQLBcKIwh0fL/0Ihjm7dF9X+HrdtXmea082bdF3ra9VCIM+BUerurTSa8koLAiCKAJDCWLlotrsUh0EyXQRTxd+GAHPrJq6rJLQVEUJrVFWtL0HizMTdp63L8ooiRfL4yiKwNVJ99Pp9NGjR99+/e3q7n61Wo1xH8N+pPI8Xy6Xn3/+eRiG7969u7m58Twv3e3bCg0Jx/ZZa+fz+WKxqKrq9vZ2s9nwKSqKAi9iaVODbKCrmzLQ4BmG1ofbkoGvUQOnIwE2KfZIboz7OAmtCRAoToTDMsv36W57v/aNirSGbbOWoTWxHyg/LL14efFkfrQ0QRgtFvrsHKrBpr15867vPa1sEiV2MhFKC9yUufC7pq2uXr/79te/Xb2/VE0lqjJL709PTyZHi/MXn1x89jN98lyYuBN+10Nn9FMD8H/m8VMD8E9rAA4Xem4A+O+G7+YDTADWn3AQh6mcy64ZeK5DOqkjsbgNDKJ4zAA8Do6BR1uAySYMEL0aZO6iyGG/3nedNgb/Zm1ZFBDPURGHu3LIHmfmxjhTpJ6B3YSAGLhZOIJ9nSCpbVx6Ds2ofLa50Fqu7rHoZ/tdATWtsFZGUQRJk4/EAKbHdh1s13nCwVpGZw3k4jPZcUIRx50ZNpjC0rSPeKLs28h7OfEcPK+36KcegnuGU8v8j7HPGTm7CL1y3ko/dN3Jsgzvw4X+YLcIbKiMrVsgpc6nhTiXPJ6B5QWZcZDrBQzbtLY8a+Qdml+WGTiOQ+w0he0o6mXODGE+JJx2ZrIE/oxYDadCDj+O0ZhxPv3wW8KbdlFEbAZDKgUmIKBO2kO8AfIoLEjB2hKwbkfJyDbcsuthF8LsESW7wIhp5M/n88kkBs20rvI8JRFI5j4XxzCjp1KebLM0V0oEhkzQQ5je8WZcZjkr3VFkMvSDQ7etqVvZtD1ygnvdwAWXnAeVLcq6LDHxZeYxvGdgJSq5SOWTb61+/uwZKtSnz8CmoYKLQyrS7S4tcNsTPwez/7sVCKlamyiJRS9r6k6g4hWIwgGwYbz5JPIo7wwk9zTNUK9wLnPvxucUFTeqaT1Pw1+FlJGj1y2E70pxW9AQtRvaRapNfe1jEMkeuGPhLmUQR3Ec28BnPlJVVcg3m06llAs6tNb7/f7u7m6zQeQ26/wYXXnwF/Y8NKDYvnEfcvsOGbKUTAxDCtQwESdbYb0vICKHSxXaWyWGP6uqkUYGfuQpARtQ2T9+/PTZs2ePKZTtxYsX6Xb393//9//lv/zv337zzf3N9fn5uejb/x97f9plyXJdB4Jm7mY+3inmjBzf/EASBEWxxFqrW/WX+3NXfe5e3b1KEkUBIgEQeGOOMd7JZxt67XPMPW4mAAmAyMWi+C7FVDJeZMS97uZm5+yzhzLPT06PZvmMV2CWZfP58urq6s2rl+vtvXcOjrnW9aabl7MkS7Mkt060NVDdeblYrJarxXKxmudpdr9Zf/PV16/evB26XqegXaDBda5p26au+wG8fJWA2CCRcsVPBs9bsHxRcdI6+QDygBkUNdIs2iZNPyf4YufgFh0RSTH+h02D2OoXrTuV/uztTFQiNAD0Z4DzHezaLchUuP40EQqUMfI3DKLskVAnFe/wtG5pc6DhxgMhk9PAhUXWkxuAfHirYpul8azIF7OiTDUCv2lX5mekN5Y2KC1JM21s3PSy6X3T9VVrmxbm7AanR0iCSxB4Ah5OmsQpkAnvEPAXtM741TzmozQwDMIihbq3nMMlFvajflttZzOEUl9dXTVVhVYvQqrusydPP/7ko8ePHzvntuvNbrcBinx/r9OkpYmi6btUa/ogoA9xxgjZRqM94BZUJXq93rKwidorYF1Mt0Ogx29Y4uAvxlIeDnn7klsMJ8lQV07jTlgfoYJn2VpV7/I8Pz1/dHZ25ry8ubnZ1RXyK9oW2dXIEulcDxAnI48+eAHR3Js7pc8V9JkAAQAASURBVISg95QoVfu63TWNiOK8WOSzMuYwk7peLBbei3fXt13vjk7OT88uVZaXs/k3379s2v7Js6dnjy5q+JLdtW379NHlbrO9u7m9vr2B6qBtMPksckB5RPYDSRWzX0yeMdLE0J3iF8ZNieG2xWKB9qCq1uu1tZYnhxijUXLibFaoKLKkBEtQM2gfSQSoIHQ5Qoh7R6e790mO2QsGES1ySxBXQaKOWZ510Gw1kbNlqso0gSxeRHGxSmaLJC1MFKXF4vjRxer0QuczkaQ8VI1i8AdwKqPVaO/u3+7Xd6+/+/7N19+163Wh4pPlbAY7arW6OD19+iw9vhDJyqgyylZRVJDi/4cG4J/v9UMD8Ec3AAe+Ew+aFbi+T99DCxsbFjlzEEbH8VIPYDBvaTieRhNGbgbSNMXfYZAAi7c0Q0GudIz4L0KejA/p7abre2uSWGFQiXIPzHJUN9wC0G86cN0O78E5uCWy9gC732iQwrxM2ivsFLUYx/FyxqN51FKUN9B0DfYpwl8R2YTwV0UKuR61UdM004BipNwQABbQneCjz443xrskSeErDy+3EJUVRNUxGqEDbj0LCoCg8ByAf96BUDuQ78kclBKZiNGBb6IM1AkxopeGwyCNRh4oFnTIs8SCBggD6xcwQyBi0JgkEAyIOMUMBx6FJfGM4tC7k1589+mN0T+htxQIypNK2InABoasEC79MoocDUAcDr+x86ECJqShRbGCzrdDfAS959CYkkJYTjIPLpis6SLT6BjpBIx4lcQRVzq+vb0FQRoLAAg06xMckFHSCBJhCWRTIrBrHZc5CmvODuOb682AskLlANHRzkrvk0F4Y+IBNLN0sJJ6q4EEl7gjxon1vjLO6VgVBcivXdfF0gMyL/PVavH06dMXT58tlvO2bd+9eXt1c72YL9Gh0fyt7816vb69W9d1m+iUGks405BZkURMgrSp8gjKKWCFCdMqkFI2m92OSAWke2En19AeA+8e42ZZfhrcmaSKA4FvbJupQ5BQxBiycaERAccwTTM3VvFLIgcHX9p+QHoGMZrYvpB75s1mMzUAkwZOenjsoC/GMgUcALYDiY+xaMZ4JPAu2EmWDORZrs3UF9hFIq8af0cor9JpnsQRsv8SneWzsoTT99nTp0+fPnl8dnYWeff9999/8/Wv//Y//c09UUEePbp4/vT5YoGZAOWXzefzuY7il29e/cMv/v7V21dJrMpFmaep9T4B6TjXka6artnX7dBpOA4dP7m8PDo5iYS4ubt/8/LV9d1ts698FFOKAHj9sIMklwOl0AMEU69A0MK6b3vUkeSvGcan/FwpBRCUnin2+PI0AMPsjrdoKujRAnETHsfQotOewDRC7KXI9yCQfsr8xk/AoR+yycDr4eeXe3tqqcezkH4LfjqaLqiXQT7jyAKONsBqx7yUxOugesLaCaGt3sMeScU+1RFkl6kqM10kGDu2XQ3AWCLSFdG9keqtq1qrk+Nm8Nt9u9nX28YNLrIecza66QL8jcjBdTSNc2D7EWyLibRESxe/EXa0ThKEj9SRNM3nQPmPynKmtLbS7HYbmFpS1NTNzU0k5HK1qKpquVwer45OTo4ePXpUluX19fXX337z+u2bIp9hGbf1frsT1mFosJjBQpRIPYgJ6XvDaetxbDBnZQ4bfI3wCVlvM+lwpkwYTr7Adh0GyykjI7StO040pxnZGHOJ5tB5HD1pnr948eLs4pEx2CI4OhAedxIzBNt1MhJ5gsKadRyCICpjESyQji8RAwuo24ZpolleFkVhyWxUqzzJsro1u32bz5aPLp89ffFC6mSz3d+sN7PF/PTifL3Z/cMvf/746BSL07p9U99d39zc37nBRFq5wcSJhlFm30VeJHmmZASKLAEBPBgclSZ8XruiKEAsrMHYYQ4wswqdc3mRLueLOJZNVU0Z0hQZA/1bJFValLPFvCjLTdts9rtttbdeJFl2cnL29Pmzx48u17d3u812fXMNW7C2jbxL6KzDoeKEi3RSzOJsns2PTh89Ob14vDw+QRY18Jl+MI0zBnQG3//sP/5/6vW9aQe4DSLfcRcJW5b56mR1fHl+8fzT9OK5KE9FVAifDnhM0x8agH/O1w8NwB/XADyEQ72vAeAJQPg2hqCY10i7IfcAk3RsEptOYDlbALGOZ/TLJ0SWGfMSfIwEiZ4PlADeL3gTnIhAUw0BlvnBxJwhW/pOArGYOEvRjszdZ2cA+rU8nB1ILGvYMx7TBjLIR7ECVIFqoHGTwiRA60zDKx15BT22J0OM54Mp//gOWQoGNRjM/rROHecZUT8AQBwHbbSve/rrA6uKIgUwX3aEvZFJaNhDyIc/xrAdPwBxRUywQfBTnoVrSG/Awp2ceP/kCwiWP7yA8D9aAyMRDrRv05u2R5PFOCtSG2k0wax9vmmjkBfXYaQQPDQkB2yssAAY3GTWB1cVzChCUUHnHWsbotjDQTyNM61iVLGaWbBUN9AFZ/IC/MJ58XDaDjxbQcqqB2JZCQ18sUiyDMel75dF7OALBAA5+FKT+hwfZ3q2R9cUMAXgYhTkr1hLwFFBHygoeICTLlCkhfrNmh72M2h5sfS0lbF1SJvt4WeCqFB8D8sv4LLvs3LRmB5rDCgv0C8ViTxPzdCRZUpSFNnRcnV+ASLsarX67tuXLQZgSLxrqnq7A6/AEpkY3H3cf+CE6ABwdUxskXkHYK+Y5XkOMeLgejNsNruBynEefJGrKW4jdJ6U78bJFURHwe0cMBoLfHqO5YJ/pYyHFv9lSt4IcbbjAyQiCP5S9MagAmMOMJ83TbPf7xFjRHwYDAoSwKgs7h89fyfCG65jUKzSIIIbe7amDQ6/QwgMGQardILbwy5bRLzGR6CWA4nhFsUH2FzsaCOVzgsB05X0/Pz8449eXF5eZoig6va73avvvv3qV7++vbuOhJzP58zgzzJM/NiPxXu322+urq7W67vb29v9fjsMtiznpyfnR0dHRVHCnvXNayY8kFITOg1ueJbLo7dv375+/RozHGSxQroNQRHyiOjzolIP3BtumQAr0AdlwwPsJ6g7Q2QSb7Bj6O9DTTFt1GHiGiEHg9OgQbfEfkFNAua0/CwzlYwaAOGEejjxIOnnm0Eu/uMccswXp3bCRz2C/0RM0elE1SPJepaBZkP6ImLfjHAPMqFMK0wfC5NruSqz1azIM2UH5AwIEUFCDyltImTcwY5rWQ9yva1v7/ebZjA+tiIZvNQqJSQEhMk0FtQD6FT5UmMwgU2dNlc8ptTnw1XMeiQPWIRQZVmRZ7MkVeU8jxDriytPnlqBI962yIESzpZl+fjx4ydPnmgdN13/81/9mhtXjwwESGw5UwL2O3OIxdMCARd7OObvm66dlatwj8jbjXk+zgHGfkjqoIcI98q7XClH0zYyHSJdO7032rCFoqnK+AKPKMsT51B5dsOwPDq+vLzM83wYoDnp2qZvaus6HJwRHIvM4PJyxQ9dgqRnTI1M13cd+K4k3l2oNLFOVG1TV5hsk4+2j3WWpaWMkmZw+LIRvbUvPvminC++efn9y7fvsiK/uHy0LOf9duvQ3QKwYFyM2VN5nrNTGWuH+NmfzAkmJ4/RHgqkNfY54CCguq6VUqx+hm6qA5vo4gyeaeyBFmb+lNKtVFLOZqvVcbGcP/3sU8SnD1CUDdYMxuV5sVwuV6sjoTSyT+7Xb77/7u3L7zf366Fvhq6q69pHabE81dlS6Pzo/On5sxef/vjPBaLAnW2qzfZms71tm13UN3NvuvWt612q9FBVV+/e1Pt1pONsliXz+fLk8cnTT5fPvhDzCyFy25o4zR7ygv4HXj80AH/k64cG4I9rAKYk4A80ADpI2uk7Q2NAxXFY5PwTAhhM8p2Hcf8kD+DNmhWiwcOOkDD0Er5n+SmD98zFV0oxKZA7gYceAISOB8vs8UMRUg7sJGjsAp+eol7hzDaagBKxBR7o5PtNkZCkB004ORIaAN1iVzRsIh54AiDao9ZPGX5WgDEC37dvjxezMd8TvhOEE6OsRWXLbxK8IL40MKtY73pM5flUCGFHdHBqGrhHOLoRqAAAzyPQzKc4WcCPIbNRKspHTjwF4bAejs1AvfExOQ8SLRZlMMzcE9B9lCIENaLqDrZ3BBG5DpAxZTdSGA2HG3DQG8vXpjseDMpHmzAeMU8pyGGcTaleI/8E1i1DL52VzvaeIkvjyCcK4NasTCMYRBKIGBYD0NPWdCP/FWAPqDV0dbfVHo6LNE6BKlErFSdK2Ux09DODzSu9o8ALmGpK/hMj4Eh2ZDSBEocuKwslhXBdW8OHO0PSL4YV44QC1CBIVQT0IEK5SFO2MZA/pXOoCMD3JXzX2AZE8qjF+W7QXiaYVKCJMZ3tO1BaIOREIwdvInr96Z/+mMlC2111d3u72e4l9HklhAQUUMANL8gXVNjlmpxYkE0PWm2BcflCZ+lmvTPO9mjwcPwHbaSI/IC28oFVxqg/xOVjK0eSjCCtEbFzEVOGDrUBVCIEqQnJHNFj8AO7r+tZiXAuHuhPMoASsWiHVj9h2Ziho+cuFP28NzD7n8Tf7EBPfqDowFzX9ZwU7kcBA0cLgsWkYTzVdKigg72p0uXiWCNFDjnN1sLh5xmqu8vzszPv7W69+eabb77+9Ve3d9ewOBTi+bOPVqvV2dlZXqTGDFW9o+DSbjabbbfbu7v1ZrPZ76C1SBJwxp4+fjI6CMPWjGJTl2VZ/sVf/MXbt2+/+/bl7e1t26Kuxz/c72OVHsbe4RqSqCXLkohi4IZhqFtUURS5CFciJA8QgefBKAzTqxEBmUh6vLviMeSkBDDAKDQDm2FoAyAbYICG0HzhYpTPk2Tr4QdRWsH4dXI75DYC0neMH8MoyRrJKyKmc4EbG1qeo3OR1ogLAPY8pJErkrhMokTLWZEWBXqG7b5u+16QeGlw8b6OOhNvqv5uXe06a30yyGQwXqfIxaOJBYYAKvYa2IdZpMgQBiaDz0mdOtK+Bdn4RtaLvhv6DlopFVOiQyYvLs7m8znt5+jc9rvd27dvT06OsE0MKGGd6YMof77QeXF9c3t3e+uNzfMyUXHXgBHEFNZApYqBI7BmbLupVdhkSEuFtAg8e2VZHsoAWAiOZgaOtgGqoAgORlo8XTxQyFnFwzwWTuDJy9wYe3172/YdyuKLi9lsluqkaeuurgbTxLQbW0AlXup8MAgrwZwwBxZiekR6F3nKiX5xomezRYYcj6gzw3q9npVzIVRVtzrJZ4vjtjNvb+6lTvfN4KIoKUpHwHmc6KP5fKmTbkc1NA0xQldPn5E9PSfHT875QorGxCAYiak0aQfpkRXP3ABEUVSW5fnZGUI8uiZJkieXF8fHx/vt7s2bN+v1ms6FlLpoHvWnItUf//mfrs7Py/NHopyDhrrf3d/juZuXiyIFwVMYV9/dvv7uu5fff7+5fRv72hsTJUW+OM3LMz0/Xp48Xpwia1moyEnftvvN7ub27s39/Y3d33+2KKO6bmoIC4aul1hC8PlsnYHdRL7Mlhcnjz8/e/K5ml+KOBVa/dAA/HO+fmgA/psv+fTy9BBJmkw8wTR9IPA86PDIu+8A4B/jZhgfmig503pl7zOU/ZQNzMSVEPeIFCwmk7gAhQFjAXN0Aj2mE2m1Wv2mrSEBoXg/738zeTKwXHU8F8ciOOoGw5z4abKB8hoe56Ci0OEBF6PJ1z/PSirNaXBBWA7/smnuwbwF6lOQgLm5fodKl07lOAI+wee9TjJm/cCQgDyIqJgScbq0RHmfHBhpPoCPQHrViYoLmBNGHwOOGw6BAvTPPQDkbz3uC8QYxOknkWsE27t28oaffB6pUsmn/ooyYkKB1RIg52iAwJ4V0MtSgRKsfgLJh+91yMxCtgB1e5AwAp2FkShnwHEdwHfZuyhWBQlxLWTfqE4bMyB4YVbKRMVZnmKbDmUfN4qINyB5JBtgQ9iHhiRF0mc3IC2yaYD3yzhOlMwSAWkvqj96A+Pa0JhITKyGAKA6IbIip/dM6zDYGfFHGUgTC28PtqXKcvSERZIidIIwJuuRGobkYKGlUqDpw1beKoljzHvZ9kNjcBWIeoQQU35ePOyJYvCfB8PTEgy7iGvEAcBZVqyOjsqi6MACwgHWAKFk6k5IelYYlUlnO26iodw01IqDEpUuj47YCaobggDG4L4KECpoghTKCZ4DRDLJUlob1DPjxoMWgnvmIBEIK5DifqcQaH7GSflC/RXVPXlZ9h1O9BC9RI6KXCJPg7sphYPdwSmQAb93wqdR8lNmMW0X8lAbgEaIHKIodzfcLR/J3gwZQfKGIN+YgMam61WC1N5ZWc7ncyHcfr83XR9H0enp8cnJyenRsU5iN/i62V/Rq9qDcpBm+vT09Mnl5WyOuIOq2pFVKIQiWmMB3N7e3t2CemGMmc1mR0dHZVnyxJK0Eh6uKYvF8fFpnud9h8yp+/v7qmp2+wo0+TFaYepIOzMsl/OjoyNST9abzYZ7J6X0GIzg8SCAvzg2D+P2NnKy8ALcTkub8HhyHoX/KKYBNHFlm2YmarJrM6kCeFKKknZE7okgFA4J2lEJhvA+MhIbAqou6g+xqHE7SNk59gBg03ERbK0F9gyzG5lIJ0zrh9bZfjnPzy/O5svlYM2uqtu+q5p6V5u6iZxIq9at923TSyezQejO0FSOeYmRjfAmYQmvvM2lSxXAbFiApWiTGCyvKvjoJ0nmHah0iO+GxW/Uwie5VUotl0swZOBSH+dZ+vr1azYvBmNQ4m3jsygo3OHyGcXNHvT0rgFGnmVZVSEgkkT5Et/GAycpuxY+lbRv4NyE0S1t05h0jULeQO+k/sl1Fe5OyMjjfYADGNAY65gmbCmeIzav8wJzNiGhVxmcrRr48ICCslhCiy29HZCQ6LzFwaTTqh3IBIkZdX0kHKQKSu829yjHEy0FMhPGiRP8Buoao7ZIqmGA/35ezhbHJ01vRRQbH1kMJvTg3Wa7393fFXEM9Qa9rCFtNzUzw2CJNKt6isnmKJI4jiuq7A+WCjG36A3oNKdnto0iVRSFjGIwP407f3SR6mTomtVy8ezJY9P1L7//9u2r15NNyBgwmEWJ3tnh0z/58tMvvtTLI5FmIo6H9fbdu3d4+ra7rm6KRJ8sl4mMt5v79d27/fYqL7KiWGXzk9XJ0/PHH+uzJ6KYi6rGIYFZ7yCGXV3db7f3dr/uX7+ao83bfPfdN7tdhbCLLOkwL/Ozk7NsceqiUujl4uTZ6aMXxfIsWS3/8RoAIDgTxDa+/hF++A8NwL/eBuDxYzh5cx3MpwIl0eKxhNEBVZlg0ASaCrnGjfD/aBU3LkHyl2Fm42GXT/9/WLgUlEulF2cMs9XMOKeGbGpEET6IA2NGwWHpMM5FWczKY+3RBtF7CicJgDT7XWB8K6Sl8n4C4SbbTWx/44EaXLLpJI8VBfjwQRsifYKmcxRIMB8anYiK/DyD7JkgS7zYZw9YJkTJ8C5IUoDEKOmaBpwbmYHWSw2QE5RHhnh4mMfJWIH5SgwBDNzpfYWMUHrPQRUA2i17+PC1AkI6tnM+0YGdP5KeHmyUAhWeg9XSBEA30tvQBQXKB7UBzqMyY5VfEB9jtE0UI/QqUsDVGqdgDANC1mlAW3Co9Xx4xRpXi8tHqhwoFthV1Y7MSTyfwTPILoo0UbavvB9I/H0QpMKXAtrHkC5H4gqiio1DdnhwIIFOZSTq7VvwYmOJeOTJG5HymAaqVx5O5dFJEBeWLWaZf4yP6l2RwUWKQDlU0sibQPSaT/PyMNKYET48T1FCzG66nrzmSWhBfAXBLd8U6xupeLtdc5WMNZMkyC0jzIxwbfQ5k30kebDoLC3gWUg2rw+gMg7vYN8ZJ8Gag9+BjFNDNppIMKPCHfFANAGgxxNTEXpsSCGB5aGC09TYYHuCKIM9H39lVBRQEAdMb/hRfcieI/EDQ30hgoMcAONIH5+edRS0h3qXArmp2pHOIlCcu010kciNwLLBKAa/nfy76ML2FCdnMVqDGoEAdYrcon4mTdHYHLqg4DoEAQw+flHkFxePzs/P8J3Gfv311/e3CG3QSZyhHtLn5+ePHz+WUu72m+0agmbOZM2TVMTRN99+v91uh2FgshOT4vDNu4pnHagXUzgNUGhJdL+t9nWz2+1opMnzLjx0CbTaAtnGJ0er1UIIt91uSV55byHrptjEHMRo60lK1PeWLjXy2pCEhb1ap7rrK3422cY+2IlKjCbY2I23j1A8SWjVsQmHLS6YDo0zAQgzpgYAbJQxv5w0Aw9GbWg8kIQH7CbwlOh+oTaOEAUjyT8aDvoKlr5xLKv9brC9iMV8uVis5lLFJINv1puh62TT2raTvVXG6c7o3smYbJSRwev7wXVCmkiLNI41rHmxwSLmDyModEzkSoTCkqQ7wVWWiTd5MUPGM9nSz3KEh6O/JVINtr0ebB+kHZMiXKXgYcJ+WKIYraqqa3tqJEhJTw97sHseESxQjgKKAHgrgukFPQ40EohjSSlziO8jxUebRr136I1ZDssZuqibB+D0XE8zUsMnFHcCvHQtBEgYUA8DRPZZhhRenXBeBx2LdFI/nKfucGIfckJ4uY46bn3wPIeticLtZZJlX3z5J3Fa/Ndf/PLtzc1ydSyVBjmnrjTpnaSM87TIstxhitLRuJLG3cLDGo3sIgjgV1VVWYPJAIH9sPwYrM3LwiE0DeFaSZafnT9+8vT56vS8k2rXtHbotMScfX1zdXv9pt3v2u0u+Hc9ZHBSE6akLrL5YnX66NGTFx/NLx8LpX3b4Lm+uX717Tf1bjvLsjLLl7Py5OxY5CrSydnF0ygpPW7OQkapPD7trm7ub667breapWUm22pdV5t46P1ud/3m9bt37wCQKL3ergfnVuenRsQyKXS2zBenx6fPjy+elrMTp5JidWxHknI4ENla+n1n7ekVokNZxziCqPwQ/tYGgKqv6J8w2OsPrYj/qYPD/q9Wofs/7POO3s3/V3nJS2oAePgeeceAOjgJhPTDypjt3gJdVaAhloZj7RlXDhfBEVt9BNcfkqIm2/7gKREaACZnBMFogJNxZEWRIuH8Q1reGIf5XhDV9MpAJB0dFWhCwAVuSnwA+hZWTY55nFIHzv37a4n2On7AuDpkeAfgs0cQDPEi6PAjk0xspiPaLab/ClCtrzMdsWIYb6jv+qGFIT1OEVvmKSwDUvAsyfYkaypTkylkQ9CRVFpGCmGeEOJxiAysN6hN0h84SEyQKkDA32i6iOjt4shMob+H/zzs8+NPmHjGGiZNgh2BSALL2C2MlPj7JREM2Cw1Vqru2kAvP3C4C23VmIf88KeAKcQk4Kb1RGJpIUxHQk+ahjP9A6afkTta5HHkkBdB2bETC2VUodCQgWKWcPpG0WAQiIb3TJExEUpGnL1wzCFMbsQ+sdpdBMUISyrp8Airlyp+jq8n16kgoiX3KhQYPF1BWfBAMwvakg/2Yh7vs2IyENdQWAdBJ5oEWkXEvCdqSxRB/j5Nxqafn2egGnMziTobCaxWRkm172kE9aCE5uszZWZzIc6XywqxbfD9LLABdc3AuQimHLAtJ9NI/DGyttBcjbah08iexcNcSPJNHMdcNNBnJlhYhw8JFmOfxh9n/I54sDLLECQEEbOz9b7abO6ben+0mGP0gL6I8yW48TFl0JZw4BquHiwnnesG5LCRNkOg3CJTT7g5DWAkBzUIvfizsxUJyj4L2vfR0RHCjKL49OTo7u6u2u4oCaRu27YsipOTk+fPn7JGlvOVSZqMZkynedVQ98JJgriHKEQqqBXBLCfb01H1KyPjoxbDNp6wEbGPXhSA2HuBjWuxmB0dL2FPmaS26zd3m7dXV/ebNfLatNJJxp8FCiWKZIITlrVwWtFxlqnAOocYJXjaOucWs+LAVjhsp5H0CfZ84gXRdjfu3MxSDPJf/q/sHQwy0XhzQ0oJfUFT/AjJcElqzCIHOK8bjXkg6XAC9IvbcXp6DNJ61zhhVarSnBdwfHffdK2oK1O3vu1kZ+JuiHoXQawQSRdLhDRK4zCIoNrHeOXhJYXqNcbDCQp9LOZFwQFeaEtouklqGDSyEdYGhD2RxxOfKui+mK+P1ol6AMyBAb74HPYzTCgSFiNHMwBpcCpOcI3w9FL5y77MNLClDoqCUDBIIf4kpi+42UrChwcWCNQRSDEo2WOmQaYXHhPhsLWyhmrCI4LemzK2OGuF93TnSe5k8YZFxDyiif2IKUSRp3Q2o2em5JCAjyAajEhefIpx8w+cXms0VEFngr2Rf++22pez2fnjZ4vV6vp+/fX3LwcjVquFHYyKpUVhvGubIRJEy5GYAMAVzQyCgtxUksHrmUQawMXwBvBJOc3aS1n17WJ5lM9Xg/ft4OI0Oz49W55ePv/Rj4vFcmjq199+W29ucyVNtb+9fnPz6lXb1F1T6yguya9v6G3XN0kCT2ehNDKMtVqdnl48erxYQZxTVbvXr17dX1+bvhPG5mlyfH765PPP4ll5cnxetdY6nZdLM8hEZ+r4WNzfvPv+29urV5FtdGR297e3797OdeKtRdpf3+ETRTJfLE4vn3702RdRMpe6dHEW6VlaLNNs4WPtkdnyj9gAPBQsfNb80AD8M7/8v/wGYKocsaEzzdQLohfA9pxKSVQSJKb0MYI4jQT5IQhk2WKcnCEgvQprPRQ0qJDCbxpXPJf+ClzRgKaPMfWWG4AHrebBS1Ey7gcKYCpxzQhcHQRaBUoSV/5khBfKf9DqH77n4BcRdEwu3Nhew4EtFSi5LKIFxCElJ6TyV/jvh1+R3hQ6TpiCgjJDQOCqhI7ldrPu+9ZDLiy0Ekmi8zQBqVSXQw8JASsb+sHWMLwBb5PFyyJGoiFonPRSCYnh3h+SEGmCPtGYPsZfxODAG4b3Hrj44/U57CLGC+Lh06eiRKea5tG4SeSYRCQNKiaGwFhlcqohKuvDeprcS8g1iFZI+JONcXg0M4o+UUaTiBk2slztPuhNUV8Nc3JhRV4EcoVQIAdEuW3GJGnUJUw5kEo7EXMMkA+e4GxIavM0A5KFAnwcTfChClkBmpMHOJNApTHDYTwyeY3RdUKBMX1+Mi2lFR2W9+HkCg6w5C/EjTEU7Ux9AmWL1zC5cDoIG/hOcDEdsleZdROo84FmA57A6H4rI1VXyKOfLn5Yt1L2Uz16mKcRKaRIQJryEEaLNl4Cocfbo3fB0HVAg+HB8iABItCRgFUa1vFPnzgoPDKeqHqHFD7S1vN1OgjAcqLpXJKiASiLTGtC9/vOmh55QyhEsIiDUogZbtT7hXo6NADku0jaeuiVybyIBzj4vWkyJa0GO9HxNUl3OMmIG4Pjo2XXddIBMmfi+3KxOAMRuaXvAKNpMPCQKRDQXGx2u2EY9vs9m7HQpUMrdXFxYa0Peu6avEYADkeWdEG8ZnCthiCMDqADuh2nk3g2K46OVsv5/Hh1lKrECn+/Xr958+bq9qZpoVaCYQv8j2gwQpwiyNd5Vos2flxvoHFAfs0XjfiBo+s/RC8ux/RwvE0g9/N9dJzQyG9pygKjs0BRxfjg34AxAggelFzOX+ExFyZRNpE2lpbaBuytoyjWlQswpugfg80FkAXLSXk08HHf2X6QbSuq1letbeH1juxtVI44ljydTHgwlYUinFcItfqcE+LzLFGKU3UBjsAbB7EapgUdhag5rOWXIqF+WHoopymaAxeTRwcoy0WH76eZT5Lm3su6auuut9igeQXiZEMzwKkUkCOHITI3AMi5i6S3hohY6FWQZZbqDOMlGXnYd6oohgt/0/ZmoN2M3KzQKJA1J0jwYUrAew5PCzk+jJ3cuJnHQorEBAdIb0HdpJITTLnw7IX5Nt0pTPyC1Rs6F9wjHVEbAFCFrYeAdxgYtSUqTXSaqSz3Qu7rfr/fKnLc1nEGx556aPY1X5+imPUD5tgedDwkJcNACnAKxiARTDVhnsGfRUTyxccfN8PQDEZqXc5WxWKZZLlX+ezk/PHzj5fnZ6Lavvz1P1y9+k5Zs5hld1fv7q+vr96+afZVTMoBhifwgGPsmcZaIUY70biLNPu6vLyczWZt3WzukKG+XCyefvRi37fZYnFx/kSoZL44louj9as3795e264/PV4UKt7cXd1fve7rneka0zavvv76eAWz49YMYNqmWZznxeLo3/6v/3c1PxLlkYgy4bSIM/p/CeYoY33y+zUAD3+f7BYOKEC0YX/YAPwhrx8agH/cl/8X3gA8fgJlPTBXbIbk1E4fSTMCSKApO/jyhpNiBD2ECcDB4mNKDL/eJ1qPX+Tye3xNjIspAZcnAMQpp1/NR9JY0Byiyw+1i3QYGHOFBbBwwpUfKtFpbBaTZ8hA899DF8uJSDNVCTwqnVRKhO7jtJz+x6GBUXwOTl8lrZ1NYXvJESUWAVVZQhm1ajkvzdByysHAHjWQR4uyKJOkKLNcp4ie7Yahqtumx5+UJ4/fALcNAkCxgQoVGi9IJ8P2Tbmw447wUOUTcwiuIKFFOWxXFPBIzm4I14cIXEIilMDRpwHdQsN1HyUn66oJrccVMqaHJtQbiAinxUQqao4Y44guEio/JPWAJU8qZ9rbUCqh3iaAhGWaLP/l8wkouOv7tgI/EcYmYJHiFEYuhGI9Btt6HtpriCiVoEKAbjtNORw5UvORPL3VQGxgbxN+T8RvCRRVzqqjnE4RPSDrnHBMjjWjUAQ2JCIZEbtp2h6aT8QzYYZGSgniIyBTmEjGuBVUXrEvLSVG92bwY4/BSN6IrAcol42ewvmtEimSgULTJtcjFDFQbI/KctbUktGri2U5W/WjsxbOSzRhKHzRgh7U7mhIsM4xrQmPCUP+bPfp8RNYknHYANCVQfn7m2Sz0Vv24VlmCYKPU2KS4dugUyyLeVlmiX779q2zA+xWPETS7OOENTCqUMBMcHIgxjSCgKSakrY5TpjaJpsVBT4jkYK8RauAp5vuSJIhYJpzstFIEEasNLgZmU5oKAFOxfnZ2fn5OVnWCNuj1t/ukHuQKJLQZKmIZd90t/f38Ci01vT9vm7nRQmkWUa9dX3TVm2D50X4zsCqkzBy2gCtY+iha/sEsC/kPN4MVriEwqofnV+cHZ+dPboo50hYe/Pu6tWb1/f399vNnvmHuCzg18BqWUa+6ZsYcvOg7QGqQssGOSGjL3NYt4TQZ2RtM1b/eL75uVCaNxOgQQeKrxjXPjxCgf/FTHf+ZnQfSpJTO50YUP164Xo3eERxj+00UcKarMjL+UxniQvFa48lN1jSfSROxION69buG9N2tjWupTHkQLA0tAsU6pLEKW1v4sDklAbP1ugkLmDhDB0/Fdl40lFLk6MUezeh+iSDMp5oZkkO4OZBpGG7bueAMcmUXIVVAgf9wbjb23t6igmmoDUFFCkiLAz3RUisW6RkAgPCerNaRcTjwRglVXEG1iVuOBtWOSdA+oGnHEm5Pba7JAPLidIG8JsMeRBxAzM1ctOGRq5uiCXGNJTWPD34gJxowklnKzVQnDvB5q4PDBrq5WzfUMg65cNQA6DJUWE2m80Wi7pt317dlPPFi48+6oz96quveAqUaqQtpEnedcPVu7vr21vQrVQqoHRCoOEAnwPE6YCrRcV61zWY+uI2oniYLebzo+PV0bFQummNUOr04tHZ42fPP/1y2zRaiHIxF97cfPPrr3/+97fXb44X86Fp9tvN9n5dUYoiB6Unad5AxmZgPDCbJXnihCdZG8AXY8zxydnnn37B+Yz7pj45O+2dTbKsqTuVZienp8agFx2attnvIjesZkUWi9t3777/6qu7q3dDvSuyHHiQVvNjNCpZucgWq8XJo/L4olidiXwpolzIVAjNq2JKZH9PAv47yPX/zQbgg/qKK7Q/8PVDA/CP+/L/whuAJ9QABJkv4zdUpQPnIXWTjrBLhu1GWh0NkUQDQP/mAfmbArk+eAVTGraMZNGe+y3Pw/ScPLyz6aAaWQTT909lCoJyErh2MsUi1I7BshMHNs8iDgk8qL7GFyD/ibIy2fBPFuk4l5FRQNcndvCHQdsjHbJsdaSnr7BDNkgq0pu2JgEu2MiQcCVRBhwnanbbNInzRCcw4cRRRO5vbr+BS2ACbJG0rVla5LM0zxHp1La7uqlgQkKoJwyi1bbuUK2QvbuKKJUBJQNE2x/uBnQuyogLbv8BGYevCSWIhitDbY/zkEEboqlYKkPhHKQiTEJ0onIqv+MYlp3UjqC8eT84jDIaeOaA230oDcfL0uQEsC3+FzIApoGRNDxQVjjZgBaBM0MbnLAJ5SJnDGBTy/ksiimXmuF+R/xy5A8R1XaEvYPnDzHCH/q9yfaESl4C+/GeDyJF8atDigQpWZlxSyYc7GgUTd64/P4zot6GYXqoiNgIi5Qt1AZhYA+SCtoyHPNcOtB8f7yAkYugyWPnkKkF9d6vVqtJR8s2QWQMGg0IVKXKkXQF+E/UDBT5jLemsNRxpaXF9hNLit+eKEMgszgSH9OIhh8u8IqJJ4/envuxkAgbSH2orqeD7UCE+sGsaXpOD6d20wsU4SixnthHyAsPEHIk/HxessGkNXBg5EdVejfPQBvg9hXvnzBFLmhIXKEpmY6AYvqlu6bldhc4pNZYGtQGt3XNEU3gN1MMnnCuJ3oPoelBfMk+JGdnZ6enx6jHNCxKtrv19fX13c0tcMTlQqcwa+kNelsn/H67u99suqZVCdpnfEaanWHOE4n1roVFDoHWETLx4F6CSRryww37CWFlSMd+8KnSsMLJssdPn7x48aKYLXbV/u7u7ptvvsW3UqyS7wFAc8AiVXTM6Bv3zPB80MiFnMH4txNTRMAXFtr8ab+Vv9kATBsyradwZ0l4NNl8oTLlZzNWFIkFvChSkcuViyJDDlvkP3CwHni/kDHyszS7veloc3PH5DrQw3xkoJOJBi+ruq97U9U9rEGdsBgYAvSIo4yNyLB+QhMCfikxFdGWgxOSpVkGf8lERc72pqdCm0KpCTfBA1yWJYK04kB95FckrYrhrI/9x0lEwmR5lhWxTu/uN711Xdu3PZ4UZmn6SGKpApThNtXrWEDpEvsMY1WZwkEOmyTULAT8lzniOxhw8PBsMB3plHvKPUSKH+Ue8ioyPJrAfj+a9Y1bHB4O2tthXd8PJOJn4ztD64GnrfAHGrEJ2vpGfiPjewne+ZAoQH6kYTBRLDFE0ZjkF7NytlhFKq4azLVijfZ46NqOrD9VnJTlPEky6yMzuK++fdkbMKYaiI2Ej5VWqVSxJ4ME1jURgAajgn7ATb14dPnpF18+ffFRms/A52N7/9NzEWsLR+RNpiKdqurq6ttf//K//O3f5Foj8Ng67unY7JgsZQkqIPNmiUyYNMmzxfKo6eBpfHZx+ZO/+F+KR5eiG7q2+e6br4V0y9Wqruu7+5u273WiXjx9Vmb55u622d4LY0Rvdnd3d1fX1X47S9Rg+qqufRzPj1fL04tnn35++aM/db2IyoXIViLO0QBEqXBxb9CHTGrJw+fodzUAv+U1Brn88xToPzQA/3M3AE+fwgWI65VJAcz0UIWaE4AiCIvBp8/GropCluohpBcwVBxyHrLOhwaAFVFUgkwwcOgEmGpMJzlDjIcPxge/glV0hw0A1UMWtCTKyHywWA7/POC49NMDMQllEFFQGN1hMxM+tuFiMWK6VPQEHjbIKeyZQaj7SGUBTDWh5yPmja8oADAALBMVl7B4nx2tFrMiuXrzSgDe7ft27wyEpwDekBWuObCJYmNRdBbFDGFDKmWmOHGOQSZuhx7EoFh31lkwPIC94aoaP1gEq43i5nBrAzsLIq8PL+lhN3W4HwWjPfJ9GktPqgIJwWVncQBCMbZeDhuKPNxR6b4CHR/xbwQjBIX35IpNJlI+hiyMXH3I1IINMxBbz96FRDYjl1XWJFDBNsHeA7ztQOU1WsE6M0/SJMUBSbs9+X0S/ZT1c0Ddycif5bCBrhN8TsLL9iQn4MvCgXHcEIYw4qCQw1GDTkAJovWOl5jKYq71yaWbw4m5gaGiSkDV9rA+WWlDIwWKmCCHzYezgK4PEpE4/E4AsQ6FLB+ZbFFPGWGUqCVlU4MCNN1EGrLj+aNwUh5zEBuEbFotkEX4kuAdAp8eXaooyCl8PyvR6RWkstYapIIh2IiJfeQHT/4doXGk+0sIdABWR1H1xPY51JxM1CDY8kZw6UESNUVQ45cOkGOmCNMlHyHaYFHUgPLex95gFxp/BVU/uDLBHZgw5lDTRIjQagaow4mIj2vItWkURbPZjG3LmbfDi4QefHByvMGvACScZfA0hR/5DArd5aosSy/sbre7vb7Zbjev37yEsj/IC+BryZHMJNyd6t3gABOrpLM0YqNyHJIf1EMZPiUiGgyNs8gGjcov+gnhCUyz7Ojo6PTi0fHpyWw22++AENzf3t3c3FQbKBYI2bUJCsqxv6VFSCEoaFe5kKWgwLCqoa+wQyTxtHI89oQpxypQ0XhxjwsUapbxBaSZYqaJoEWMGFr/HAdGv0KaLLGZhsVtSoiM6YPmBN1Lb1pku0Y6y/OiQL+FwhON0GA97hqcv/DsRSrd1l3bmX1jawC8qNstMsKEd9oFBgs+F6LQgMG7DDZQeILQyUcySYP2dlamRZ5prZumAXhcVSyo4KHlJHXj+wUWJOy1MLJFw2AwMQNvMyuQWmBsA8fWvmuxMdPFoqEZXcYYwXZexQK5cUqmJK8ir1cYpnrgJngQSmRv4ZnC4kxSJ0VDTYWlmGT2rKPQKw26kYfsGwgXpzGT9Ih3S3gS0xPBcRzkaYsPguWEJ/5hViAIrymLYnw2DQm2qQeIfJmIVIMCRGAQen/AThoTQsTkzeerk9NhGDabjU6y09PjoW9prMnMQCdjtZgfL5bH27q7vlm/evduU7XQEsbKOdENNtYJwlcQBJlCCc1Pq1J39/d116+OTv7tX/27v/rrvxZHJ367u7677604v3yUzIru9vb199+ZtlqW5bLM/o//5/9u2mZAyhhSrlkbPRi3b1sRIb9FJzim+wH8Ny/E0enZR59+eX75xAq9b+16X1uhFjOk+pmhf/TofHkyF9be3r178+ZVolXXVE8vLhMhvv6HX7386htnbJkUWoK+KyPRD0NnbS+EjeNHzz/58if/pvzoC6EKkH9sbHwSJSXUhhg7Dv+jNetvNABkSzKp6h7O99//p/0Brx8agP+5G4DnT9AAhKKfPXNGoSTIPxTNA/NeesaUdGgAPKb/7yN5YP/jz/A/04fEmPagvuTWgDOGqBykFMkxjejDS3lYsHLQzKGmkEN/u6bhhNcQFDoWtT2JESd6NNGX8Z+SNB1vWfCFYI8g2w+HmpsREY/EwO37mDw6MtrZqzC0PYdtAFjMgNliKWdFdnK8uDg5WszzLz/92Nmu3m/vbm92m9u2rpq66urm5OjYA3CFU/uYKIzyGDLiNCmKGRlKeoQrVVXTDqqcd8aR7zumMCj1BrgGEac5gNMYQ4drjlNm+j/fu2W/calZA8DF9OQyxAQbYeGmMtliMucekrvIF7Dvx7HEq4jbqpBtOboHTrnCaFdihds0CamJ+gIbGxTEONiCvnBKIiPPED6MyfQUo3CwKqo9lij1Wor5ISQUVnFmbIg14PONPxozInDy0E8dewDgdCEmgHoYfOzAZyDRKrGMiMJO8RBREkcp6nCGuvkyEsHUmX5qANi9m7IFHEBqEcLvaMGSlUkE4jObYPHb4EbIedmiD6Qwt0C1DnXzZrMhghPZFFK+PQHIKdKO4I6Pvsiwp1OcAKWrmlFzQ/g6rWsjYUcLVg1ZEhE1gPA9UgTyz/QHXDh8D1yAqDsle3Uwow1WhYqTgEQyUQjuVGQhRTXKmCL34OjFU5RDGQ8TtpwquIHhmmlyp9luQS8m989g8EXOisPQ7ZFryw7sY6QDUo2yjM0oqcal30i5ecV80YOVA9SXnf55ynRxcYGsPeLGsJsnj/5myxkMdkjyjltL3a+U8qOPnmutyUo8lRFU5mBs91213zJFhCZF4b5orbfbPSV/VdAZm5B8JGO1PD6HK4gHzYdwZZCXKPxMpYgf0ToBohH8aEznLMxhfCRZahyp5OTs9BivU7A+uh7iyx2EBs2eI42wO41pwZQsG+PnB4om7THTU4/MOzdgRbIoIIwA2EaZKZ3vMZV5uz4c47ACHFF0VEOH3zuKyCM56LhPNSyYMvKxIXYNFsB2s4dBJEn2WXpMCRTubLki6RL2QPCCnMUxAV5obFzcDzAIqhvb9WLAvhZ18B0LDNKgEqEGAEQemimROg3NOYelLGZlOcvn8zmCZrsWdEuSZ3CyO2KM6aKlaYq3rJXvalp7AG/aHn8CwJJRmuV4sAeHdp38tabONorgd4T2VclEyTyJEiV15JBhHDsIwHCPANSDuBIhrJfsoFQMwSjYngMGvHowth1wCchpjc3DiFlJM1sGUKwb01qIyMc7GzZsolBiMmY65DZMB/WYuRnToCNcMezlIG7FkU0jMyvVvJwpFXs8+GSlQDVB29aYs8UadKDZjGOJJRyu4ywtpIyaBllkSmfFfLE8vtjt25v17maNR2GPKAxQc3SadT0MyrKyUOQ/tlwuT88u9nW7ryHrOjk9e/T46en52cn5RXR0Irp+t77vm1YKX23W333765u3b/3QzstZvd1sN+uh7VSM8iDTyscqnx9t97tqtzW2Q6sjLI6qNGmN//izHz3/9MuTy6fL4wsbpbumi6xfzPP7199ba6Qyeaad796+/m7o67auZllhqubtyzddVecqM81wd3P70YvLclFi440jq1RroWHPFsd/9m//17hcymRunDY+kSqL4kyJyPnuD6z5+Ik7UCqGeiV+b7bPqg603T80AP+sL/8/VwPAGCDTgegQxc5DnE4gKCr2iW+kgNh/Ohu4AeAj+ZBdzdWoHYAchGqSCx2+AkQeBwmY8K6RujNV9u+Z/0wvrgsnGZ8CkoptlB0GBxvgRoY5uPAl1i+jLWDdZzms+jhKdXrDaAOkggsDjVknEFFOxqfj65Ay9AHZib+BtYNU5WHACg4oABg/y/Tjy/OPP3r+6Px4URTG9Jv13f3tza9+/oumqdsWBAbOP2cIh9Rg4SNrlSYISM6E0usaybBcymDmgJxUSxRHOieI/ECfeprUK+C+49h9YmL8LqpVloBySgCH5bAhoKxKOjjWj7HNoRODLUdGoTyhP+R7RTMYa/rAyg2FMqca442h5AH1IubWCwcVmCVM3cbAeDInFVGUFimf3NC/gmFA5T7pF/sBp8rQtR4Iq0hhAokiLIJlPApQospQNiWumNBapKmCjIAcqfnT50nOi6fHnUeIEg0E4CQThgFh7XAJHWXpHIU304tG89mHiDSepE1/l1YnHuao/LK8tgGjkm0LGbUDpmONARz4GSGGKoZIuUx0ZrfQusbknbgBuCnwPs9LEs2ToT5YGLZD5wO2eaIzyl1GicDqEdDVcEvYSzBmTjw8Z+mzz4sZm/DS7Cwmgjp+bFnOiaPOPSpWZmAfHU6NDrQ6nMl6OLubeEGHT9DYYIjOxx4U9vcaAPzePMV9oaodPRgoLrj7KdI8O4rv69F5USuORNU8B3GE0W5iFhNvzCXZDNy5KIJIkZOPaA9pmuacXlrruq7ZlheZUV1jPFynqGQl0JqMdNq2xjSghFsRsvGoOfYe+UpNUwUJNTWxs9ns+PhY65RHAZQPGEyBUdihHCfPctz3B3VEgq9qypogmjg1vUqpuoFF2Hq37Sk7wkMmBDT69PR0tVodLUFMksZVVXV3fXd3f8MCE4ZguEBnVJs1POH6UEwKrqqzGlsfuw2PInjavfsh5Akcbn1Uo4+FyEN8GNxCCaChe6RwF4JxEObBOyn78QMmOXVQWuOh7nqzq7pdVdVNZ/AIU5yXd3kKUVSs4850e1zBuhvsYnkMSaVL+lZW9VC3duhJFuy94XfiJ0UyNUEYQgo8pwA0ArZC63jg+c/5+fnx8cp7/+7m+ubmhp5bQhioSg5p0CpOsIFTjngEOUdNKWAtODY8MwS5DLgGLTkyY/UK41+YETHkXyQqSXwCs5tBSaMin2olhXEYTTlnKUcKlkbYSCwOHOyNFkRTaaxvQVzBlA/rIU1s32GqSafnqPwhzR4uTnC7UgrCdzcYCuToWGDNCTwgaFGiwm674YQNajvBCSTjNRuJZrXIT46O4aXjgkId2gnspJVDpD0eH56nUYsUOWcUAH10Ml3bGyuFSoTUxWKls8V6X3/38urt9fVgnNRZ1w1N26k0WS6X+ERaf/TRJ59/+Sfz5eqrr776mohtxWyxOj46P3+0OjnOciQob9eb9d3N0MEP9M3Ll9989StnBnBrOWakQ4pzqmKMkhar1fHJyfFSCHf19s31zbsogtXsp1/+6aNnH2UnlyIpRLYAxxkASCSGTvSNEPbu+1+9fP31dnNzc/XSA1LrMcw30vfODy6W8TxdlLO8qbaz5SxWSTqfPf300/LiSdPZu6p1SXl0/mR2+kSI3AndI08SAzYlh3+SBmB6BtED/NAA/PO9/L/wBuDjp+fT/8GFC0tgGSEQ7Cc4Zvdo6QoNIyDghHyYQEPGJ3wolgKVKJwlwvQt53Bx8UlwBr61alq2JSGR5SQIfrCICaaT469umubQ0mSyGKcgTKbfYPofArYA+VByCkl/INoNSnykVnEfwht48HKJEWISEBT2sxvH90wS/a21/m/9OpfLFOqClBVsssIiWKarhR+0lGWRXZydPH/65MWzp0dHS+lstdt89+3LX/zy71+/vrZWZBng6gy2ZVXTeK3F0dFyPp/FsTLWl0cnRoiqam5vb3fbykmR6UyqGHxpMgin94vegC5sVLcdw9sPt5zZUJMV4/svrowDZYr9QIL/Da2E8GPo3+LksUXsxWg0hDMPTGsayNoBTjdEtWLCCJeBXkYuqDLAreJJCznsYzBAlcrD9WeDFxLVES85gkk8QoXI7I9KDRz5JI2DoTRcbKj3HIN1wOiFaM/am5tbA7UZxlBai6JQZVmmaZ7qjHlW7IvP+XFscYvj+EEVwAHEcZoUqDgDUB3+pAOYPh9Pz0haQL3ukCSoUlinyEAdkV3gRo/RDVFTkhgNCfvEV+2ACsAG8TdPSJyMgFOibYAlSNMhd5YbhsViRe4coFBLYqK3LXLKYKdLUhFuBdm73UtRw6+djV149sUUINHWHfzNtY6hR9FQc7OGhN3gieYTHMr7HkUt2bYeBvPxwgAhHusuzFgm1x0WHb4/vkODOUjYdISHndsnOt24pWRfF36uQRmxbaqhRCIfemo90BqhDcg0KExhLwocP9IHRMkD/jmKj6dOmOkfORgoeOk0+fnP/w7q7NGWIKAApFkM1rTETOP7LqWYzwrulikDAR2sUjAiJMUBKnjvfdt0+/2+rmt4lZLUm4ZGeEiJMIb+x9IQr8jTssxn86Is8zxFEQzbKKQjdfu62m7xUyAThzc87kVCEXXHc8SQOWP2+/2bN68GosmhRBvHaKPr2tgVcDMbOJ+Bm8m3ZcICkhTjkYnBNW0X7ITDFEqSvrJBEAruMKlL0H+PEgTj7N67PmwCUZSyPCDSaZpHKBPVYF3VdFXdsaupEthGkL0NrVGwz7VCvn13bVwsRKZVGcelGeRu2+6a1sSO7Bewm7BGCE6l8PvPEGHOHwp7CANAuBf0fXSUhE0CeMG+rqDKgSwr5FQgZSOWuYoKOJDBoQHuDR0GM9b5psfPwbAueEgQIQ3tkU0iT4+RSrUE4QcAvE2hBxNFyu7QA9KRIVrQxsV1M3gnsqyQKoZ1Zs8zxwTzMS8HsoZjK31g/xhrcZgmjS7JVYxtrB4ybdgRn84yGmNyWB/5L2AXxZGdpckwdMIZzFHjOE3T4+Pjs6P5bv1mu7lL0/STTz65uLio6/r6+rqqd0WaGdOT7gv5MEKI2Wy2Wi1M3+gEwSOjSkq0nWlaE+ksmy3L2ZGPk82+u7pb39zeb+tOqQQE+iiC8e58idV7en7+6OLk5Gx1ctq37X/9r//166+/jZQ6Ozsry7Juu6Ojo7OTU+/tt19//atf/qKpq3mZd03dt7Xte/QhbN/srIiV8VExKy/Ozy4uzrIs2e03b969vr1bp+Xi/PHTjz7/0/MXn4rlGTj6Fl5yeCh29/XNu3dXL6+vv7+7f1vt7+3QQKporPJRFqdKwJxKWFDmwFGT7tHTZ+dPn8RZuTh/pB49ETIRyQy5vzKzMrNeWZjTgneXEL/h9y/IggPKRNClv45fE8KA40i7OXmO4NE2PzQA44X6bW/nn7rg9v/CG4BPnl2Ev40UIL7CjjWXbD022giqyImhiSNQ1bWGQA0J7uQYQAG67BMXSgHyhHDwRQikGrC5yXEaJ/zHn37Wdd2+agh7w77KB/OzZy/quq6qihzNsH/ReLtZLpeH73uicMPekRqAQ78gBJQSRj7BjeMxRrYIZG0ZGNnEkPYgjg+Q5JGFOPvB888xJvycB97C+DOnd3IoXejoeI6AtELyVWTpLE8yrYa29rYTZvDYc4GjZOCV+z/58otH52eXjx5lGSr+ly9f/uIXv3j1/eumEceraD6fD8OwXtdtK2aFKJflvsUQ9vj49OT8zFn/7t31druVkdrva7ay5MjMIOhEt0MG0QdvewKKfuuCCNjtw5Sfx42sZ32vAaCdySaRhY6QXUSoXOSTHxI3+pPtgEg+i4IeZ9JIu2KSBmv+uCQbiTKhZHNSjJMQJso4BRNVBASwp14COCrm4ptnVlBHjKc4juEgOAMhiSkZtLKwc2otlEIBreIkT9OIajWY8bV1T/UTyB+jOxC7ashINU1PkpLQgrI+fpqe0Q1gGBzEMOl7lRgJRPYBC+c3qyKFHqAPul78OvjKC53NLBErKMpKkOwPly/RKRydrOgNYPim40bX7XctxsDc86R5lmWxTiOlq6pyHvwKw7m/4z4FCSFpS8J6GJ18kZVGbkIsKE9zhDLrFNSgiSrD1W1BrtusoAn5YqO7Py6/6SiPi0V4D40xSxemrSY0+SLqIU2GOdOBXWxYhzTz4VJyegBh5MgqTbZ1osWIx42LURbChtRC+jFiMgM4eFQPn98wZGMbUBVfPr3c7XZ31zfr9XoYuizLlotFURRtWzMcwMUxiRNgJXl/dxPHMOWczWZRpFrktYE10XVYtxkR95eLlRDi7u7ubr3ZbPftgEg3ao1g6UtzrPboaEUu7DGUx+ColLOiTLLES8Tcpnku42i/r69vb2/ubquqgl7coWCVUs4zomRQWmLfg87EYxPSA7H6wiXsC8kUHZaHjg0AksvDbRrd5okCNAktJvcnZwXClWkGS/FigtUixvYJZGJ8MYEx84wsilxRKEkBxiD5wQE3xLjPykUM54PUS+AavRGQQVs/1C09V6D2gdWCeRV0YnGS7qtus66ryqLXiPJIpi6S23ZLpq/oHr2AmAH9A73rGEErGF9jX+eISRnt68ZACIylTlK0QH5SacKPGx8UPD2OhZhnuNETuybIY8K0kBdigMx4C5qn4IEpHI4AgOAzBWaiKzIdeyO8QapJDJdtXMNIb3e9l6rvTN021osYinDVWdf1BoEw5OpqPXiEYbLtDPefrOvAG6CRKWl+AvmKaY1hIjHa4HL2Do1HaFqCB80lNM3kn5OmaVkoHQ2ro3nb9FdXV6vV6s/+7MdZlr1+/bptoZYxPYKQIW2nLV0KtzpCwDZRBElJgrmrbVrTQ3qfxnEudWGF7gdX90M32LYfXr56c3Jy8n/73/63+WLx07/7+9ub++PTk88+/9EwDHkOdtZut/v26282m12a6mJWYsvuMf5yzrVN441RSt3f3ZR5upzPtIp36/vddr0oZxcXF9uqJgczRGbS6QX8yMmomB8tj08Xp4/KxVGSr3Q+8yJ2Q3/77a8Nyo277fa+ru67fmdNI1yfpYnrsFwTxHtqaLMiTKhihYZrcXxy+vhycXZx+vFn4vjc7Bq1OhcydVIbr73MIM0QKcoiP/wPNwB42W4Aq5R0Sig6IYJB8IlM2bXx9/8FPzQA/6gv/y+8Afj8+aPwt2DbElYezDfwEIW3GyAikDqGGP4zk/8ARszwNMB2xsIyJhtCC8BhhSOtAqxotjkHY8H5o6OjR48eLVZLZ8XNzc2rV69ub2/X2x0icJZLhPgQ2SBN0zzP1+s1b75TkiiDW0OH+XKg3pJx3uSIQrGAePOwtqFYc2JqIkII4kuYALFCFhsEvWnMIjgMdcozxuPPqPBBAzA1GB+8OGeAfBg6Z/oYNhRxjkDX+Gg2iyGSw7d4sAoA9VgzRMIuF8Wjs/PLy8vHjy5PTo4wS3Xmb/7mb77/9utvvrlxTpweq/l83rTV/boXkTg6WcaR3u12SiVnF+cq1pt9ZZ2AKwXUr7hIgeoDsCjhoXaoMkc873e6CgRFKZuxjPIjcGrjw9I/rBlhlRj4jhNP1IFuS/UVTrhQoMP0iJtJMvxGnU6BPNyAcdvGabujQJmKZB4HDcTfDdmWxMjn4FJFSUM47KnKR2YuS8HIYpULIIpaQ+UuI18UBd8ipnPs9/uq9m2DIjtNxayQ5XwGGgmZaDopEFfJvvLMDud2BcuD8yhCHTmlR1PCcfCiJessBOsIaZLYwIkvBN6F+QCCnzJKqGXqMPNV+g5pD1JaylEl8S5qDyk5GQPzAe8i2vlh3QOGtBW7bdP1pqYnRRKkqdM81nCbQuMnI5p7GHiVUKUWJ5olwqMneIDG0WBT64i5AVZn3zf9YMPTp7Xmqzr5NXHqLf+UgzmA600ThkVjXDf/IuR8TStsopxFqkN+COkIWL486Xno+T3MMmPWmXUDa344UGBEPSErJ/uXYEFLvRlKAHwj3asPnDc+yBWZ/lMxL7TWeQL7V2sRUVztweZfLufA3SMwr8oZLoijeKkkRbIpVou1KobVDDINytJ70bbtnv5tFMFFcblcFmX53avXm+3+7m693++9BXWeiX+Y5GOPFEmislQXSBnAb3ny9Dk+fgK/L5AdRqLj1dUVZKzrHUKLBdiDCakyYuJ5Tb0ZsgcOmnkWBLNIl9t1OPweXPPp+nA9d5i8PtI4hXFkZ8tZs2QMwJwoer4Dfw/wByyOvE6iOIIuHN8CTgnVz5xzB0umNFJpFKdOIAUWGu6eC2uUp7BWI9afjFWW5r2xTWUqeCk7ZxUDBTYaGM9x8M8F55DcJimDBSA+RYgkMdx36Of0Tg5gBvaIIUOzBoNNyiVYOnw0cl4mchp1ULZQEacTUjJ3sOU1xpBuO1xVzjfApbZmliFTgLcmCpPW2ANjn2pc6FhaKFtiHAT09MUnJ0/2VbemNIlYJSKOmrrbVXWsNHYANNPYWJjOB3WLQGM5enJMoIwbOgO4LRgSsNcZIUCjXog6IuJSCkS/CWujWGDl6Qjy8KFDWjOs893x8SrLil1VdV0/my+Pjo6yLLPWbzab3WZr3cCaQFhnxZGMMPnhLpFBpapqNlUtI91ZMQzSRWkU5z5SDEb0zlZ03U/PH/3lv/2r5x9/8urlm//0n/+myOfwFALahSj0ssj7fri5uT5aLNfrddN33GMLCySi7/v5rNhv19K787PT5azs2np7v+765vz0DLfN2s4afPosyYqZzovT8/NycZwUMwt+Y6KTwhjX7LbtzbUls72q2vTdzphWkM0AdhoDKp2OE+KcogEA6AlCWJzO53FW6Pny2Wefzz75QqQzV/deFZEuYAEklPESBERj8+wB+Ph9XpxSGmjY7ITH8zq4yFE1y409aScR+aF+aADoyz80AH/US3769PyBp0u2LROYQZvLA4KOA15YUC/Ig3uiiCj6SPDUxohcksxygkVhAv2QATZKVwTZrk2RrlmRr1ar1fK4LMvb2/t311fv3r3rOjzzXLf1BDwcvpOJeBDcjrkGo9QStqDACFhCicUTcHZwd97ALyz8HJRBNHaGNgDJjvRGMWslmVewED14wA4LiA9o0FMicqRgPOwtwbYB9BqkdynhUiWd60WGSTAlbA5x5M3QDOSxUObZycnJ2clxWeY//tM/k8Ld39//6pc//+lPf/r6Nfqu2QLV6vUtzt1Hj1CprDe7KFInp2c6y6EeG4Z2MH039GbyH0H5yL7+Ia0Z2Ahcd6a/H/z5gSaYGjkW0YJ1yrSBAzsCsNrxESL41bEikGw4cbxZOPEhihip0uTtgxfl64AEweduqKSJFo+ZOxEbBA0E2P+E+rKIYsWQdwNtItmVkjsMejdYkVBEABgXMdFpQ3QUFifGARgKGJIh6jxHiIBzhnZ88LPv70BzQ+UT4dqWZTSfLRMQlTOc9BD5GYgxiYxujS+KWbBGImR9alrYbIeZAGgBeP1LyP4UEoqZMYILTDQ5yhmFYRRVq5RSzYtpC4TSgx6MBRaRBUgaxYmBz0gE2xj49KKDRSgyfD01NwDwieqGtjcIKzV2sTpWEI5kCj65EWwryFmIKxuixoVFy815VVV5WSyXy1k51xo6kK7r2qHfbDbUSJMlZYqyuCMadFmW9MQ9zNxYpYuDz7IJSejS+b/yrZx69WkCYGlHh6aIAlXZ3QTjEBaFHyjCqRIFOy48bqHqIpU201GYVETtLnGdUfpwN8yuKVMeCFt/HiZgTJF1TVslSVJmOX1YqrqIVQguNTUAWZaVM1CGUg1Zudaq7Zu27uqWaFFwfgT/7Pz0LNZKON+0fbXfd32PujTRq9MziyTR5vr6+urddbXfs0KdrzDatwwRgRkl42I3I83l0enJ8miFOsx77uWstft9fX97d39/b0BrwYiOpjsDF2ScHQFTJlphnNsA7H/Ej7kBSMlF7QMeI1GM9JTczLcSvrGxSpMMuEUbWEYIDSQPp6kKZxIdUZtwi41F0BUIagiXomtMaQwtOd3AIUJqCdm6dj521hMlD+EeFgUcjYPIYWJwVqtM69T5eGhtA5cv3Pp8pnHM8LNKJTt3NYROgfhEPQAbRkkRqzTLB6JK9r2pm67u4KQ6IIJSG1q+EClh30MtC7Ci773DdBpYA3z56aZQ3IEm+JySBHCywPvBGijAwnsQSsVpApeyGGIASgNQiE/2tGixfn1knI50XpZlHMe397CXjaAUP6qrljyFwkQXUAgp1MidaSTLkeAB95RZXOjKBtCSRNhyoyhqWkPYG01m8BwJrNpY4ElWnowRqFNwZA4LHMZ3fbNcnDy6fNwO5rvvXzXdcHRyPJvNWWTfNPDvj2I5K8rZPGvbOkkxzeZdEGrpvq/azljRGt/3orORsZA0DAbktyjBnA26I2OXRyeff/HlR59+Nl+s/tN/+s+7Lez8gejvdtfv3jhjF4vFbr1xEg9InpeS40ro5J3PMJQbIA62BXw+E4ULj/TrVGl48KVpVi7nJyfl8kil2Xx5lM5m3kXb/c4MLo5BSqzu7+1ua9q6qnf7atPWlR0aj87Wo9cTPkmyIsuRG81GXrEaTHt8enL66NJG6mZfy6x8/Mnnxx99xrqCvrNd751QWmVJkqGo+B2BX79PA8D/HxHYOMsNHXSo/km1iRZBgmv0h/yCHxqAf9SX/5feADw+O3B1eGgAFNnv8Wl6GOtjh26E98j0LYap2dQ8xJIkUITO43+x6bCQltsFNq7EnwSMBQYFzxLwMyJ5enKe56VSarPZvHnz5v7+HiTpJNntdlqD8MpVCMMwJHxlykoYUMCgk7zXZ0WGIHo2dCMgld9t2+04PRGWe4NFZAhcd0QHcaWiLFaFd8jKOSBG5HTyvqKRr8khr2YkVADkYC0qjcgppgq8PbPb7WNKs0o1ThHUoXTsW9OS3SF4wALJkRLaJoreWs1nTy4fP768SFN9fX39D7/4xbfffrNeu+NjgJdXN1C5HZ+m3smrm3Z5lGqYVJcKkbegjJPBBcxeYGFN2QV87Tm1gN2aOMfg4M/3FsdBrjCs1sI6IbHdOBlAvCMxx7Bdohogkjt8980AT3dqA8JdAHIsZQRbOvLFJ243ZvFAINEEoBJFgcsZSfgSHcm88446hLCfxpwE5OAIiIVFLxXDbi8h609KACXvGiRvIRWI3jmKA2CECY3g47jv+7aBlcp659pWWENrPhYffXRCGjmNQbxHHQnur7Vt2wdKGGctEy+IXKeongyp74S2IRfCpmpchCRy5bVKlow9voOidriewGWj76ACa6jJDRCsccyq4kRnwLMxb9Mo4uB4bbkBsC6CFJLsYqumq9uu7cARgqhSY1UkGrmY4FVETIEgeDhEDzMXHz12QAoT+J8URQFfjSRhTkvbNEAoqQqE8XbfeyLDTAkhTBvD/fYddVxkijqyR7hvP9SaT22zBNsjIkNSPzlr8RP6wNwLLrSU7JvlAeCnS82uUxRTbSfXF95r6HrT2oWIGUXnlIOB0slCxomuDFPMKQeDoico7ho1nwbeP4NWJN3vt2gDWtQfsZLL5fLs5HSxWCB3KYEovQIev15vty1o+u7i9EyquEizcrEsUhTNm7vNersdrCnny+VyBd75vr69ur6+vt7v96yTAdafqBKUHwxeIAKuW7Qci/liuZzNZjpLJQlA4Tdad9Vuv9vtmt2+rilWyQ/OdphhcSwd3V/25fSG9KUPLDWeEHpSTrwnauK/aEUibHpNegkZK7hK8tZFqgJMQdAg9WWBhplthg44RaHZ0FT7wgWe6H/o2yPdDgO4IugBVBSnUsCuIMjTOTVgfPFPo4EuOgGQMIRXcLCKhTVBks9eQGSiSqNIqI1o4oFqmIfVeCcpUHZw1mU0DLbt+qoZWmOrfWvQGCCpg1x3OAJHuL5Bd0PLO0LYMDKPE9BmLFEQVQqlBaYotP/DeDQIWuAHyjZW+IY8zxOy1MP0k8wGKNAwf311bykGhFoWSo+nup4ON0goQgFJIXek3KE9kEkulInGLkyKvHnRMjBrN9RJ2JW5r8abx8Mdg2OkRUE7ZIotAecm+ffilef5vqnrZtBJOlsgluvm7u7tu2uaYi1mBY5mMrE1RCiy5azAgazQKjsi55B5g7y+XVsX9YOoOtN2WH24xbgTYracqSTdbPf3myrLi48+/ez5s4/+9Cf/5qd/8zc/+9nP+raOhOwhHfRZlt3d3PIAEB7/DnTExXK5Wq3u725ms0IYu76/sX1X5GksfbXfLLJEemulUnl59uzFi89+dPHshZrNcXF00tX1zdX1frO2ZuibttludtdXfhgAnvSN6RAmQP0bMeWiKIURXwFnLoI/8iTZbddHJ8ePn79YPX7SWvntu6vKeOh/P/rMR2mkM53OkqQUCMxGX4hIO/mHNgCMS4RikUh6ZOCMVc/jYdrYaIuUaelRgv3+v+CHBuAf9eX/hTcAn1ySC9AYgzXhecHDkeO/DiR0PcwGCZkb086RIyNgpA3dDPRamMMSCoUSLEnAlSVlLHwe8HVOfs0TMBlAWEG5MDYVCOyRMobl9vHxcrl0zt3c3Nze3jIEy/aOlDxPsX9J0hELliieBMai4gzvikausEBOVETSNK201HoQ4B9BT2mM61Bj+cH4at8Zh/9gqKQEOwMniXJKg5M9YpZT+fIgZDzUBoTsXqCM7LLHg1rG3mjQ2gMkI3oDXQpxcjKHXTQwNOg77dDD1CzRRUbX08LEuiizk6PV6SkKjs3d9ffff39zc2Osb5rubg3R8PnF8e39mjQACvWowvSblQzM6sZsHV4y5BtA2ozJwPG9P6monTasSSxIkBKKs4kUFKaTBGCTwo+dcEIPQHxglNoJjQUoEpiLKpukgLQgtCDNK5nMo2sS8L0e+t5gJI+gIlKZxLHpH0zfpwqGF+pI4cACCMUrmlKToHKPJ8SL8tOE6Tt6/5ZEb7hCCUoSmWUFEH3juqGv9812V+/3oulgK6Q15lpZUaRJCYI4kYDB3CDqGBWoZGIIO1NQgAAcMnyIFodm4sCDKRqCKhSNOx6CKNDiRfBLJf477Gy4ASC2MgmCrW/6ASBlBZ9xJEATwUqAFaGljACgWhnHOTcAtApjSEwG33tbV31LPuIDEpoiNBBpoRLwCpjIMWUb8ygDNHfSOFLUKMVgUbM9n89JXizYKgdPHzOeg2/Y2NqH8sQZ21DYQ+gKRmcnUImm7zwU1aiEuOljIinnEvBuwAOiwHwYC1MDx6hIITuKrikFEsIKcjS4hDlpyGDGmwSOMbY6h1SfB6evg3c1mR8cioB55FUUGT4UgcfG9lEUFVmeFfnRCVz5i6IgXL/a4LWrqqrve65+tdZlgSSB2WyWZOkvf/UV8dNAuS4KeCmaDnEEt9c3QKURQ2YUhlEaJWOilssjOC+ZQUhSGiwX8yVGAU0N3yHK+TVd1Wy3275pqQ+qJbm+hKs8fgoUiJP6YprfSg8mzejadHgwmOFBDzBRB8l3HxSIYMLGRm9UjXJ+CI9bSdZPK8t6dqQB7QT/TgKBBn8Uv64fbN2arrcOuIcScSKk7Ew3auyDjpwLU16WfOMAqURw5tVKDW2XJgCGMgxkiIXICrauZTsgiaqdVgpt3mboIkSVpeBGOuRGNYMbjN9VsPnHAA1jMnwYtrWFKb7CjIOZpLHHDJylvYAbYJmP3ZaDp4QQTTeaMdCiHW0qeAkVZYmdRDjXDi3sdL0oFyeDcTf3d+v1ej5fPn782Ht/fXtDrQJxrtCro3mGGxwFmU3yaxY3Uy4JWD00cOA5GYvmW2PcYn6KjR+3D1tfomWmlYZ9gi9yAOeJgjeUcLbvWwhXYEmbtL2p2lbGaVrOrYvW+2q93nL8cJ6kRVHk0AQPXd/EsZ8vsL4TjVESim9yDBtwqrq6MetdWzXWOon6OU2jRCAAGQRF6YUyTtRNv6sa58SPf/zjx4/O3715+9WvfrnfbshDEA1JsCFGXJ1OMXYAWeiv/91fSSmv37z++7/76d311axM52XpTesb2EMPMtLl6vLjLz79s5+cPX0hyhkKtTzHdrDd7N++fvPy+3evvt/c3viuk8SpC/6BtJXThB8UaJ4tK43hz2xWgoPkTDfYJM8//tGPZp//iWi7V1e3tfHrqtP5YrE8Pjo+X8yPYpUL43tjknzufn+EHmlu0zdj0AvbNvpTOMu2gcb286JcrRbprEDWssg9RdH//r/iD/jmHxqAfyUTgPH1YAPKgirGVh9c/DCRxgg+wAWQtLLvu03A9A5tKx8GghIvYxU85lCHkd8w2ZB5xPyMgkh2j2bRak/jOeYMgBVTlqenp0dHR9bapmnW6/X9/f1ut2PzZlCPCnCR6UhDyw6yHkkUvOlQg2JzpMxF+J2pKDZ5bmLl0I/AOEih4rfSuqhrHZILe9d1Qw2ZHvDU3gkTZcjJfL9WOLQ1PHyhdIZmK1yeKRdWRiAGwHsPhyJ7MvDYHXHAWolZoWazItUIA2Je+/3tXZ7GeZYyblTk6QJZRHmmo0WJDJer27v1Ztcb0Anu1/vZYt4NBnDtYJENq3WW5kT/4DEOBNhk58g2p/aAjvXwJxYz2oAJgXj4ZKPCO5hJj9ltOPLZsZ7cx1G/KTIWpHFHlBINl4sqjFatjZWNYXNHFToxQNCc4PbFIOv0MJ5jywuy2Iv6dgjjFK766TcGEJPvRciEDSNobxotHQuhIWbVMkt1ksambzAWTuj9QF9rrOmNg3sGZG06g2mfkwDdO9sP9vWrNdFMcDG0Aiie5yVFgbHHDOy6qYGk5F3r0QB4JBOR3BbkFu79NF0WrnBxZYBH4voUmYpx9KI2IkoAhT1HYjAd+W2lClwy+AAOg++N3e4ayH9RXiCGnlo72xuh9dxYWIXQwESB8e3jARObvBlM3XZN2xHPmQ62SCLDiL1RyJB3OvkqMqJFnaEmuhZJApyZzeB9iekHRX6aDs6AWQIBK6PmAeul9eA8CixuAD4wmZ0oJR8IcHntjVKKADeEHLGQbfcgWe4pP4Gjx8YuGkg+AN73PCs5OZjggPFNHg7rPrAlHVPwQC1gwTqPFNgCgV2AULKnYE2TaxTmhl6KJCuOTo4vLi6Wy2WSJE3TXL27ub6+fvXqVZ5jdEDeqRDUguS4XJ6eX9xv1lfvIDK2g6PVR1wjwtH7Hgw+b2GrxdeQsmmh7Uhz9GMiDiKQoiiAg9CdGpp2t9sN7SAxvqgwhuSGnG1/6BNbB9wExeLBHEZGULSE3O73LwjLlEcBANnR0lRGxSlYPmQRwYysjHKlTd/xHaGMD9oBaexiHcaVlMvLLBp0fGh78NCIwcp+cBBMQWAcu0j2pqE2mPZyjBWDgQH8W8O6wk4GPjmxVrQH/wSTYSDtIMNw421sjzhCsrkiYInVvt70Ff1dcbYAmmdH+z/yNETb27aD+/6YxC3yDGV3nsKxAT07nO+NFCal4Pck8omC0om6EQwD68EPFgNDftEqwjbVmwHUsmI2n8+LPIfvVtu33SCzYnUE7mtd11dXV1UFBloxKzebDQ8EUMmTySw5mynvBiIQskYZ5SIDcDFZD3HwPAK9iBOFDGldOhIyERMVe68G/oIpW5EpagDGrF/AcaaqhwHnRypVst43t+udToujk/Oe0hWrCjtAlqTL2TxJlHVD0+7LEmdTWaRppqWHacd+v1cqgfC3sbu6a3gCIBMZwylnV21Xx2effv6FF+qrb77rent+ft50w/fff981zdPHTx6dn9b73c3VdVtXWZbBL42uotJppOF67Jw7OT7+yU9+/OUXnw/N/md/+59/8fOf7bfbNHKF7FO0ZaXMF6vL548//eLo/KlMcyyRsoSTxtB1333185/+7be//uXu/iZFgxZOPer8kalMBhKUq6AjjehmdNFplpR5Vua5cWJX19nq+Isf/6R8dOlE7FS6rrpd0++rVng1n6/OTs7L1YmIEuGAc/0RDQANsvDgcgPQNfvXr77//rtv+r49Pz159uzJ8dmpSErhUy/RY//+v+IP+OYfGoD/6RuAzx+fTqlynKTI2PDoEvPh29UJgrSI7IOFzfTlSIh6vyMHBgZoOUYAA3oV4+EJHj3AaEMurBugoyqyPM1Q4PHIFwWZysHK6QHQs2iYQ6OOV0fFrFwtlnlZOGPX2w0lcW45yJP4IpZsZ+JEYeZLDYmfaOj8e1WMrECtRJYh6gVu3DRwsD5CnLuLBqJQU+4jYMvORdfbHrYLXO0SZYEuA84QAkAD8zvUn5Gs2mb8iifzx+Cg5yzEUnD+oel8wF9NH0vT1BVc6hFtK3QkyDuIKjCJQBkOluKiVwl3cVLMMj2fz3Wag0l8e7NZ73rr7m6rWKNUjeIEnG/iacBJKYHvHtNdQCQFpRnHUri/72UK0geT6BnY3IJeoamDf0+AsgI0yKmwD0UeZIVot6gPQtYUBgIkw6CTiRJ5Y2GHiqQWE+xKFZ4LBR/G9lQm9qCzo9ole9bx8mJ/HMF+Ik1N2lCeWgBNNx3E1hjBgGWLHAZ4cvtZmUmks2FqoQGjY7pFllQPZvbMJALELmP0gVW/3e72e5xeWgsqwNJyVnDSKbnPw50DSLwXd+sdRBUexuRkP4hqm2QeCCjlWDRyXwEOSsXqkELuySg2qAvcKKIfIkEEr6KIkg28jOqma1sD+RxVwBhhDbDj2zcwJ6VEYkwXXBQjhY7Ef15qH7EIGPONvjO9hbpXUiNOCr4pnIt6V1oMYzUccqClpHRhAziAuqBcUDXGGHkgEZG9YOAQRhw9h4lEHEV5USwXi7zM9tsdJjxt11K5B3ueCKOisMjG6ECmQEwjnUglB/FG5OoZJz1lFwyQ2Vh8FrqgnEaLaznuGKzdxI40ng1TVeo81j+bu34wGfDOFFm+IOcfJaOug/lJ13V1teOuHvnoCacEQK/iZQwKm7FJlp6dnZ2fnyc66/v+5cvXdV2Dn9M01o5daxSdnJ1RCTjruu725ub25h4XE6WpZWs1VJrBugB1vBmIkuQcIu6yLC2QFADb4h6wPXnVK1Rmu/0wmAQPUYd9i/Yc3j3YwHa7W7N4lBUC04gGAXs+TACYk3XYEU0yjDB5ExHI3fgxwWpppF251WLJ+wHWMMEB49JiRxpkylL7gUeP37kABAPEp236psUGbKUY4FsbesDJCQBAj4YVFTju3kbSYcxJvZ92eEhYhzDNgcnjKxb4pcGsZmLMJ3jYMHW0aLsRcQ7FkYgHD6p6P/hhcF3vWvDwGHX2SkVZruazfJ4nSeysaV1fSwt3Ly3prIkhcoD6Vymnc8QY90NLYeTcAhhETWd1A0i+LOePLi8fPXo8n8+lTr5/8+bbV6/LsvzLv/zLoih+9rOf/epXv2Lka+IoVtDjdgrTJJieIQk7IqIqOl8b4/x1CYkPFA1GklRlGJBjfd7fbAn3wYEDBvk4OkA0soI6OZaiyNPVfJGmiJKsuuFuvV9vK2KMJbgUeP6j80ePUdP3EAXVdaMjgOJKR7NZhiF610axWC2K5XKBjnQYbm/vMNpF/aWkgAKYoAPYL5WLORx4RPT0+ccvPvr45m77tz/9L/v9frGYqSju21rHajGbm76/vb1N85xEvXiaaeyDjxfHcdu2QrhFkc5npeu77d21s8M819q1SaJMpFoXpauzpx9/cf7k46QsoYXzVgkxNPtX33z161/+7P7qSkmXxinJbyC2hmCaHN4ICRNJAj+uFFSFoelqFmBIL168+Lg15u3tulitTp8+W108WZ5dRuUcGcAujuI0UgXWNrkVROlkfnDAsD2sGt+LGQoNAJAsKl2EHySeQfP65be3V+/u7u601pdPH19eXqKf8ZHQ8x8oQD80AH/0S/7oyQkP0Nn9mrmzEsb1DEmOGsfxBdcw7KQPbhs8NBiDY/Aa7YNQUwAXCSUjIXZc+UlQhij0fnLjVqkmTwLyGzFIP+kconMsI3sUqhHniU7ybF6UWVkUaB3U5vau75rdbrff46z1gKYw68wytACgpFMtzQZHkRziaIA3BSHQrBVDbLjWEXSlxF/0sFlsK+RutkZuuqgxsuv6todHBMnDEhmp3niLcEpy75BaEF5F2VZ0HakMoUxk7LlwsGGUlIgTrNBigxphWnKfZlNHpm/iezisapxcB6lEGverpE2VZbORoigIS0MC1Pp+W9fter3dbZ0xgJkReJVm27aG/7PH1gkaRvwA5rFmMrieB+MjOKcEVzt6qyioCLqGXxI3AwzEj7eSBx145+T6NPmCo/DFbkpu/TGm6QTbmyzFJvrADudhiIEBHIrqQOzmRGSYNlUNvG7gsA7zEabXEzTIOgFiL8DhAzcRV8uYHpg6g4740+AvwnIbgDzfVGWUOUQ1kHeuFcIchNlNMpgYZbEBFNqBpGG7VvRGqEzEaZTnJRgaOotIS+q9bDtUMPjmYYAREU3GAGDDkxtvGNz9QDJHY5xSRgEd5DJWzFUAc1daO1pshZaSdrGIjPYwVe87IMod4o7tgNTntB98hxwDcrhCAR4hWDTJkSXErvNoS2C8hB5XMYsa5Q0lOqMxY1Mp9jYdyX5E6hVWKhaOP2wZE/NtQveZjh8WEEfnEoygaPABuXYsHl+cY8bi3a6qtuv1vtlL5yOtqJ5EW/QBC2X6++hhwr0Z7jsXr7gy1rUDSq3emjLLHRqAcW9iTcJI1XvoVXCXQWbjsjtk1vL4EcFYfvI4Pzs/OV4dkQUqvnJ3fXN3d3d1/bbeV0rB1YfIwTqDxYxWMuqp30jTdLFYgUhdVfBO5aTeJmQmQBtNpKAQOxCrYRg4IoDzpNlGEzIhgizZgLXr+7rGdgT5QYw2QKVJTNO4Q9Mz6ol623eUp0a9cfjs2GYT6BehFO+6ThCXGvddK0iD0MxPEI3i57rryM4V4vtg+IOnWCW9FQQsGHjkQ6UQWfirdbGgPp8sd1gXy6MeKDMpUJZnniHgD4NBssMBry+CeXwPyTnsL9FQ4ONMqbphBB0eTLDeic6PfRJM97ZLiZ+N30ugBANMwzAkCt0U8dDYOw7K+4T7ColfYNhGn9KG4yixPrYuNoPoh9gYjGGMd63tokRmiSiKaJZHeSbzxKMN6Fp4Og9WDEz4g0uMjKN8UZARcsQUzappSYrl4zRjD3facmWRz548eXrx5PFHX3zx7vrqq6++uru7WywWR0dHm83m22+RhzVNYBgw4uRgEkRBwpsnUa5lGrlY9BAGmC5JdI6EFLqV4AtBdq5kxEFypK/FsMY5jCMos0xCqYpTAsuYvTuycna/3l5f3e3qxjklIm2g33Xd4I+PT1ZHRyKSULpsYcpH3QgaJKVhiSu9SDO9oHEAidT32+2WA3xonSZexi2oQRHyi1VezlbHJ6enp6flcva3f/sfyZttN/RtLFWeZGmSR1ptulrqBPNWdCS+rRsRydVqFSexMb1pG2s67VwayRwnuksz1pGl1Bim+Xx5dHw+Xx7Nl6t37969efOqqnZIR/C23m2rzfooX9S7vY9VsVouT06Pzy+0Tvfbqq+azf39fr8tiuzi0Vm5KNsec7Z6jxFNUhRxkrbem0iVq9PFydlnX/5EZXMZz2WUSzQAGSaxbas1wI5g/4adFCyKCNQDTNgIfAsGBtjpZVy3bZYQ3dT3JPk1oq9t0/zNf/6PTdM8fvLsxaefRjqRYDPnhAQBZ/sthd3vcvn7pw7S+pceBOb/id//H/j6p24Y5J89P/vA/+HQM/tQAEDfHkwYDykxU2Tvb1rloA0geijHRo4vsilgmVoQ3ByE0XqfJWmJIJw8ijBLZRkiNxg8d+b4HjA3YnVxdKRi8LmtcEPbbXfrzea+qfdUTBMGDDQIoltCy6QxFeSYimFXHwmDFJPIlTBqjml+SgUxpbZaqe92rjWiAS+oq5u+6VwLkQBMjr1QcK8TscccGex/6z0OULK/YLxtGsRPLvc8ZhlraA89GeckUNU7DY7JvT4QbjAO1xqGEmooxEaLXmlYjEMpmCLXNoqQH0xGKnLo7X7fbu436/u2bsX8LAGjldxkNAHOYIOSSoqIAZi6wNDQwn0Fdnj5DGU1H8BjhxaYtWPM82QmGHxgRq0wxgRA3YKAjz4mGgYy9pY4IJGMG4OmFSgmHCeMgZCDIQhGScHSm6oWJ+JeRBjTY4Jt+4GhIHidkB8IOz2TV6B+OCwhxUV9QEH3wK8JfUR1iDobRlVECaMTz81nSsD0jVYLCexIpEhlBHHZqBSGxQgQd+fvd1De0gKWRD2AYhYujf7BnIfEhdCrGDCMhZUxnhtcPezsFF8GWJoKUNRViEYg6EcJn8EvEZIAZmbzap/y0ayTMCbqHYyeoJcQnYscLixYMcZFbdfvW0iHnVTWsccOdZx0KnrpqrYhZgt+Gu0vwc1wPl/SswYisLOQvSj6n9bUuHeswRh90K21eZ4/oObjX2InsgjWN+RAyCUqPjPwADvks/xosUzy1Fu7b/ZdDdh3X7UcTDYV+nwfWRf0wT7jOZOVPV0OFMYwCAciOO5S434CyBeg2rQ+g2KD/jQP29TIamOtDmgrFOaVF1Dizkv4Dx4fHxtjtuu7ly9fvvzue2JoQCKMLBQqpmFOQIw7prGViAXAIA41d4srxhKmlqKLgoSJMgoI5bCmx/vn94BmlV74FWSDRilj2Al5M0QuBJ56XC6OGxs5lMYjYSqYN/B1YvZLvdvziAkPGEVJ8BQlKZAwgO4YDQPtOTQTJCCmt8g4GyTYF3D7iSB04WXgEX8GORa26yRJ6v0uqICoux4R6MgOSGmdmGaAhCdxcPzeZJLaWtEOqGlCrAS5AIWQD4pk5yzbMGTGgnYZsV+4dScsAL6fsY5MP4ixZ5jUSlgzNgQkUzo8O+FihNG0vXfxYCNE8zrtBcB9J0WHkRzyYON4yLTNczHLZabE8bx0/WCQyUc9gFBJlIlYGDEgFSpBHIeUUdvZXVXv605ITaqK2McKPYYZIqnjLHGRfP7pxxy5dXV11XUdFl6ev3nzJkTC9z35HAQWk/BwQE5iUShRJjJVNoXW2awW86amTjKSeVHks7lOMl5LdVvtd/WubvrByBiJ8ihe25aeTtoJ2UmZlgu8E5S21u/2zf3dbl/3gDBUMiCfENeXdYE0KiQuqRnQdxGLjMeYEKlKeXp6mpNjUt+BuLvbbaAmFypO5gPsnpSUqUrKNCMcT8f9UHdw0qoMpuLwL1NxguT7AZQwYVwaq0LnDZqEfRTHZ48QDeassV3tuy62NsOO6tRMyiTSKiUiGMReiS6UTq6vrxUNwwcHG+iBZDxprKIei7NYHq3Oz7Oj1fLkdDFfRV7u17s3r16//O7bqt7P5/NHjy9OHp0WRRFZ/+rVm6ubawe2q/ZxvDg+O718EiXl5ZNP5hfPhcz6yhsXZ/kcxYCtQHTFU4O9CDAaPJkgPiG5PJkloPQP5UGs2TbUCtcJ0wnT9rvNbrfx1lZNc3R6sXj0SHgF2ERn/WChsfltNesPDcAf+fL/yhqAn3wSkoB/09Pm4ZvGGj3g06NrxIMbDHHmfvOn8/SXrSEmLIp/sk6YWD/ZiQYObgy9Gju7h4xG7kFAPiZ7wdHiHbNs6JVilSpd5gV2Ehw5rFV1t7e3LKrr25a8s8nLwrv5DPJL2LeFATMz1x0SW8i3PoFEDObNGerErPex86o3ru2Hfd3uq7aq+7a3Vd1bShkZADQTJQMgf9SS79dhVzNhdWTkReOBh5oJrg4TwMlcEX6rJCIkqjqSjD28h0EM9/PUKj9w3hdm04nKiISL45b42xElTPVN3zRd2/fr/b43EFFRzYrCgqMYYKfIVx4NCHRi3AAMSHAJvRwXqcypnXIPJuEnUwIU1Q18KlMLwN4drIFjZwz4Mnk49ysZwTqD3TkU6JUYQ5OcU0KIB+IQiXop0ZPD4zDkR6OFdWQG36G6MgNoAtAe8MrFbx7NDXGc8USXqzo6JIiKBoG4J1owVdVgvkaxJ1msIZcSZkeQW1QEGyWCCjERJl8Tsrjzcg+lHNvq0/2GVhgHznJxHGGkDo8RiINpDjBYW3d+8JJ8cShiiyLAuMAd5Zj0Ybkn9K5MU1B7yUqcEVB+3OhII7ga5ZHsyZW0N+Ju11iIwDCZsshUch3CwgQnq/asaiOnnUncxvocHDKIUA5I7WKOsKoQf2bgs0LBbcTEG0M/JkOwD2gzDw28JM8LTulC04PfCT+kCMh6rCMSVWdZkkInTkSdbsAwggudyQzgNzWp/Luo8QPOOhW+U0QAibODVnUirnAoNn//gYQUG4imURhRU0jZOv7SeVFSABlaNbAKlVrCgGfJCEJB5rDb3ZrQxDeb+7Wj6Z2IEYywXCLEw5CDqjH4mcZTNjkCqiltmixzDnETAnTx9hwFDvKLRCNkkxrJhKwOeBoQvFnblrIsQsNz2ANINmVmBj5hJaTnoMpO0b3DVgBLU1o9A+ZC9JCHBoC5dsRUILtV2OmgTVaRteSUgrEA3g9yfCPBpv6YnEQi0zB1QFgsbc46JicuYMMP2zvB2CFsDoAF8SFxQ6VEhAQsD2RjosGSdYEdaJyLZpI/GiQHwRqAdRkyFmZR5pHAlHWKokP+Q+QXZQlrTg7AmvQhFHwdQktYtktlF8V+S4vxGmQAQy/JxUdhRpbn0HT5ToohiYccyIvIlJwhKiJK0ewk3goQFhtaw5EVEaTPaZ5nWe6FalpTATnqW8opF+CZ6G7omxpkuLScuQjzXh4KARcjDiT8InokxEEAYAj4BwEIo3loeSOfxrLQIk98DmdPnyZaK1QvHYxNeyeivITquMgyEMas2+7r+812XzXgo8WQmI9RcQKNHW3FSkd9380W8zwvmm64vdncr3eo24GmK07sjpRCr6uhiobpZ0vuq+TEoNhxFgMVOy/y5WJ+dLRMVESBGFvYeDhftWjN+s47r6VCGjS5Irj5qjAG4zxE6FB8qMfJ61WJJG/TdJHzWZI7sgxJ8kRg48WzoyRMRpW1CQeDJy6CZjeLSeTdYuyF45/cpVn4RNN2T29YRmmcgzs3X5ZHRzIvFscnT599fLw6doPb3W+u3725u7vtzFDM8uXpaj5bPrp4Wm82u/1+u999+/L7+/X6+cef/Ju/+l/S1RHV5crJVKczoQtnRNe2yAHggA9srQQ00c6OAAWcRyzQx7YuLMA4+GFQPJ+OHO3rTtR1X++E823f5bOlXq2EU9BExKmxXoFH99sKux8agD/u5f+VNQB/8enFIcY/HfCjSvU9Gig4lEpP3vDTPzz8Ce/P8YWmIfLo5xAchMhAOvgOHQ4ZIuTAx6Yn9HScdwNmSwF3kR8Ivh4kbmQAQig/CAcQ2moYvc9Ak1VlXpDPJA5dmi3uYc3RtlrB7TiJlYaDNSShsCmKROQQjIJ4KWJYMjUoUros56RGhZv+QOPvtrO9sXf3EOA2pBboB5S95J8TNT4y8McPWZIY6bMvORqAUKMG20G63mSZF0xOuIKn2oMQUMqbZBtyZlyoyKeRzVDHk3khdNZ8QosUTsyY7OMiwMEFI1Sl1NXVDXwhicdMNQHhweQOxBYlMXGogU2gdZG7XTc1AAf3kdKCxiZx/DLD7UHbPeoFw+cijxwMN4lxTdG85A2CMGn6AWCGKvSBREYFnYAHDuwhyDWQg/u1FxPnx8fs3WQdtNqU1EuOPOANB1OXRKVEucGpRjstj1ww78ZUh2caXGGTa5CzbRS74AtERyDTrjAiCgQSsjOlNQYKeJIY5ziOl4ypcJ45J4oZRtBgAmM2BbEmbFWFHGzcW9t36BkwwweD/2FixvxpPHYokvEREuRFgF+boJEhmI0EiVTCgUcEKhFPkzF0kvf7vu6HqqrrfnAeRpJK50AZbQRCBXIM0AENDvQh5w2neDLYfbjXde0An/oQnBzRyiOhqx3Gdi5gqIzasjBxWg+h1yXQ+yEnjistGm5QtgB0rlxVZ1ma50gUznLkgbRt2zQooPgX8YTwsFAOXqJkX4O0jdDssd8rJZBQTggjzVM4sYWPBxqGUE8HFAK7EHIAMAojjjYni9Er0wlCu+YLLEhqvUDIQYoZOZl6kr3mMM9sGsgDyFVwyxSLNIWh+2w+z/N8t6s4FxyfqzPTBCDPId7lIBE42zjMr3DTgmcpP1ehhyG1slRkfzyiIeF1fX09eQk8qHWFKxINWDT8JzSZDNCenZ2NDQAlBZIRsvGuJlvnQAEk/x0CLOg3xyLVCj72KnIOURh0g/AU8PQDl0jKml7L2ZxdWfkQGX+/yYuU5Piwhgz3kUT/mGMEU2JmYaG7tSLuHNyu+BYKPC2YxE4p4/DRIvoQxYEDz09pDw8zEFxkaPKdM0kKQSq2uATQCZ5datWAGhFKDVNc7r35vhc5gPnedChBfQfISBjU8qmIFdiDmIE4mHrFXmFH6PM0Wc1mZV4okuq2NYp1L6mnpbDxBKaQmYgS56Nu8FXdVE2LxhBPMTj8UDErva3hGcUrGeU4zbfren8Ydz1ZZUQxfD115LT0qfKZ8oWOM+WHvlut0Kl6Ke43u/V222OHV4uiRGhFsfBxXDfd7Xqz3lRV0y4Wi0nvQa59ZBSMTRI5EpQ9op2V+7rf7aqqbtK80HSsUDthexrYYrAc6aEzQ9ugo4MoHDg7DD48jM7Kslgt58v5LM0QK9EPw9X9/W7f3q/hW+tFIhV0vTKOkkzRBJ0fYDgcuEEaZ/MFAAM/uL5uJXleKRUtj5ab/UYlcZ4lswwebal0Cuor04veK6F1ruJEyhg2r1VTt32apqCZdZ31BvarJUa36I5FmhTzZ59/dvnxp0bG91VdYwHYWVrCPAJSYDrGYjgxwxu3cTh+l3Poidt6/c3Xr9+97Yb+L//XvxZFIVLw8uH+g2icRKkcj2AEeyuoo8C7BWrEMBCrqEiqTgmi9BTADguvAeQfhB4aMXSe0DdY3ya5SAvuVx2p9UCG+62F3Q8NwB/38v/KGoCffIIgsElpdzgKmAy8HwKD2A3mwY3xYDr/8D2Hf/qE+KCH8wQGY9itbwLCR4kwnrbDtxE8LECuhfvQez+BhKpglITtkd8A30C3mi8SCn7Cc06BPnw2vH39PSgWFMZEZOsoIZA1Qx1NwUzkIko1DbCJhAAnLqzJrBq1FyKZvOwG20Ak2NV1W2Myb4wXg046uIEiwpaSkZgASLwS2mYpkgWHTwjYSlTQaCGPig5s+jyoakKNGFSA/Hl3m11K5x+5aGJXSRRYmNQJQGubpuTQRydiJOLlDNQOEDtYlMamNaAYhXvO0C4lA8CFKUnnyKOlKorSqPiXuwzGbQ8Lg9kjqGMwUg8+UTyWIQ4uqcPJZ51bCxTtKLaGCIRy2FPQNRYaiQuoAYoiI4NOvkBAjXldga6K2oCI5LjxnCoXBXtTBFpZwMs0O4CjOAyYaVTFsmkqFHCxxmEr5wnwpwBglKDyplKP5MuQMOIXHB+txjD26cFABRmSiUFVI3icyPewqKpR0HAJpRGXRKxknVihwdsBidaaDuyggQKMIj1ZN3BONvQSXMRQUgH6QJ62jSpl4koRAx4CSMoHxfBCphUOubqq26YbUOiDsiCTZDZ40TuIkq1BtkAPohdoyOGzi1EAQJNxLug5mY0bVk3getvWU0k9ZXvxQGCqtifQnQWV44CQ2gzmBqB9xMlNxD+aOcBKBdeqKGDD+ptThWmwcNgDcFNNnA36CKxaoPu7WCym75/iAkFrI8ugaTM5MDDlPYSGVOyGyvloXYtyabGYgeYPImKWQy/CuQeeBEKcBsBGPfNyRrYn9WazWa/XbdtmeblYLLIS+hzvMLqs26ZtW/D4q7ooSgrECGJ3sK2on0nHZFmWAAbRM+Y6GNlNMzfeiCgfoJ4Srx8cioWbZVAx4Vmewn3pM5KRuS4zaIgpVaqHxmnoKRaazMkwfiEKFk0DmEKJhlmgPc7yhGmZbdtWMIqvPdm0Z1nGn6WuW9wImsqEWwBHfXAMw6kdCIO0yCM59PThAZ3Qw4h9L/JRYqU2IO7hH7KPMzZQhBjS4wkuHx7qhIaZKpJdX/OEBBSWiYsi3N3dHSeW0Jg0jTXIM3jugH9Q3a88uehwD8BnB2IMvYNxPmW3eCMiqGERMIIYR/q92KyUsCVyZmhCAncjpTVspuM4bigxA5qxDjsTHqQkj1USqazrh6ppSdREEhVqQSw5SbBgl21kIwkFcF3vaRLFAy4eZoK0moBLKRA2LIwSLolsDimHKNJEkikTuc1mvTE3cBbdmmaAfDwt8/kiK0rj5HrX7Kq6rkDNBxo9oXuoTF2WK2EJHU8BITkhG5xu2Bx0mqd5JkEixblg7SBElMalhUFQC/e0AU5NGXS16nhRSniRxWWZrxazsswBPWCr9ev97up6f3e/r2rkPlsoGLxKEBHAQwRy74spuE/s681yMYN7KEYGCALrugbIv45EDEvWRZEti7yI4wjGfa1MpYXuKcZ2KQAYgYLXQWmjMxyNmJv2g4wlPd+zv/y3/76xvjg+WV0+EfkMxgnI83JDNyQ07ALdCkcUtitcLptAC9jVoq+xakhW7Np6vdkkZV4uF3I+F0lGhz6ZVNlCylxinChplBRKI2eh8QAUKDDaxlJMoIcZ0Tcnhq7Zb4auAS0ilsViITJkDJNlWowmGS0DlUy/tbD7oQH4417+X2UD8MFZy5DeB4wgHqcaQowOwblpln1Y+j/8ZTRhOPgiWZjFMZvt8dz2oZGwwPUDhZcBO0ogDnSVhxQhruGk6ZFPxOUK0WZZNOah1dPwmgDWSER5ov1EzDI0HUphIkBg0OycyUiSyw4tErIawjuJXskDAdQ9OBqhIKDrxRW08ijvTNN0Dfw+zG099CRioyBbGE2ENgBwLvKbqJAN4s6JJ0QYd4SDn1BJoq37hANQgxqUr2GMrRidQjeYztpeSIsaGuNN/KkBfiCdlKs0JaNFMWcbTSE8chyR4loNQEQUKToCtZQIMADMk2yOTYpiJUerePDomZ7BZdR4N3GRgDsfOIewHQtgSwgLQ7EYbiXVE3EMFj+DryhGgSSBOuyQcYU3zzpC5i0wTo82AzUfGYaSFQwG6aRhYLKRQ6mHCEwieYGBQ9OMQIF40AagfoLykEhPtLC5yADhPjjHC0neUzhogxs58DD+FCSUtPCHtigcuFQN8cmyrkDM6IhigcFMQMq1SmdgawlgNqAKkJbXGtcglyB4s08cMPr5gUPFKj04J4JKDY9tVELQMeJ9BEgbtB9ElfGEpDVmVzebfbWvux4ORTFMfJC0qoSMQL+mtYoGbzCINSayB+rUCBMYbgs4z2566hMk+dEHPUwEJ9T5A7pgEDa4QHKbDKO47B6GDsYjCeZUU/UAGglNovizH1rrTnXt9CcT5tB4jDa7UxswdSZgMoxIOU2QIviOjDoB5pQH+xo+gNk9iFTs4XtoPsCrvcyLo6Oj+QJ+LM4Elx7Uu4Opa6SHtm27mM3Z0d97f3Nz8+bt276n0AMFjDxLC/bJHYaBG4C2ag4A+2BmyxvftAeyYwEfRrAanWxbx+yCKWNhuhdh98YEABpD7jEehAHe73YQLWA+hZ0wmLSC4w5qJXmQGsNcG2oAeGdC2UMjIDghZwn+Mdx7cPVEh9SIzll6xBLdI9ALP3Dcp8NpElxfLeIIx0ERnHqIyUZjtDCqofsYx1YkeLpoCXCyO7JEYjRp0sN1Gl9npIBbfIrT40tCQVcgqKQaNEgD/8zODTB0h0qXPhWtQIn4QkLTaToByQ0H1ZG+BL5wtNWAklR38CrlWQ3+OcKztNLREgWuIbzKxJHj/BMiwMAKwVnR9qSowfLDcyoxX0vRsZN38AAaIQx1y9WqbhrvPee+4R238LVDWgIfxBwoxjcU3llGK5mCA2WlHZSwSSxUJFcL2NdSUl5alPMkh9OBd/LV99/vd9W2qoXU5WyRlnMX6cH425v7kHZPzEDWxoBM5QcFV1PgMGQtRvunQiAgyY4MJsxFqhKN6Xrvd3d7BqFhZGxNJC16MyWPF/MiT+ZFDmKSsDqKCkjWknwGe+L9vt9su/ttu6m6uh86ayJFkT3Y42KQf0Qcey3iqNptMIDqrI7iU6LYDRZdw4Ao815KX+bJcVnOEpVA1TGoRLKehPp/1iwhMh0NDFPpqNUeHNIfOutFNIvy+fnzF08++3x+/qRYnQqV7nfd7OgM1ZchORZodUhjsMa1+355dk5fGdAGANAYRNuIvmnvbzbVXhXZ/PQ0KWdO+hZX60LERUzNHmzi+BGOcBZTPjWRf8ggm0yPZYcMGnxrU+/vbq7X67V0CEJ9/vz57PhERPEwmDgtBMzHCDb9HUHDPzQAf+TL/ytrAP7y84tDLu/h6/D7pmMeFfM4nj78k0W9hw1AYPUc/PCAwPEkIRz2DwUEI9yRCDY1wRInhDgyH+NAdDiNbjUSK2GWZ0Gah4SAa1+C67hpYS8a/vrx6gjPMozRscdDJ9A1w9AJMI4A+fOxN9aOLpU2Rm7lWKMQiMUpm3TwZWwYHIpRH71db6BbNWTM0sOwBUxb0F6ALZFClj5lMLnDoGCqXRj7Z/vqvu+5BOWES2Ku4yBJ0gUc6DHN6I3trO2c7QgMwEoB2gm6hchzChKCGZ7n7GHKHY646fLWbrb3eL/s502SDEYW4blDdTId1kEo4YVAd8PkYpIKEFcHY01jgs/x4eAIRQtNACYLo6nY0hEmnuy7wox/WDE66CbJ7ZR4UCB3Br5DOnKIgzUNcDwKzpyYISTm5mAuYumgTxCWSKS89tjxnN4DO2OAWzOmxHZNhase7juYmSxm6Ns6CJRHBjyrNPI0xQCB6EAsH6R3hs9IysiHmQnnWuikxPUkASXNQwCCOSG3+4ouwPhkUdQx8WgT5tSyfSHRHlDdh9wMsmAE8218OSfiBPR0+POqqB/sHlab9uZ+3TvZwYid6w8yCRVKIl4AubBBrNxjLgRqBN19DSqxZoZGS+KZMp+xFGTy4jykCD48j9OGQh3dYavP0Dvb6dC/JS0kxv5gjpkuJBBPg8TDsv49D0q6H6D6HHj7TGUxu6ZMjxIvZrjmI1buIQRgQsRxGo8JElxwT2YGoNqjm2+kRHhTQdnDq6MFSMwdNpk0BScH+4mQb9+8UUoVAR3v7+7uuq6Du9FAOl2i23F/h9nFYLb36zG3OFCq+MYHjIOtt5gYSe+pNbA6feAvHQxapws11frC2zQOWezMjOKugKTJaFARc4UsDnDMUHGmCb6OygZdGeh6NDNhv7I01QUZxXvvu76BdNL0iD/LslleSnaobDBbNIObL1c0jntwGOPBIA8Tgvnq6IMIfkQ8UraIlB1i5p0YPGy1GPMgsT6yRNDAQipuKNUBuDsLupyQSVFy0CEoI4SVUgMQz+dzQi1g6syUp0ARTBLWE9MmD5dPluDzAIahdiriyRvXx04mg5F4ROATjQECzANotIhQrVynWaSgEhqM6YRzJazZMR8m+10Q/9pmaHtjrEiyPNbpOEAWbQ9X39ZaME0U5mltiyTagtJnhx7iae5OSVPBFDvhTJ0myDbRsCHupTFxhBhgZJ7gLNLU7iKe4vT0dLVatXW93eyubu/utxWakVjHOpdxAhSAaIQ8gBkneN60FSdshiieCG4TaVYA5ELH1yD7IsXqomJAVGu0K9hl4E2EgTnmZcRQmpXpalamOmIbBlKqQQAloth43XZivevX+3rf9T3M8sCawUgEIAS8dlNdsulpHMfVZlvv9kUCil1WZMUsv9+vrTBCOi1dodQiS+ZpnutISPAMMWgNsaHkqzHGisdxvFjNz0/PFquliuLOuut1Y2Ri07SPU704+ehHf/b80z8XQnVVS3HQIJzBgpAGQqD5qUJ4Y+7vXVclaSqyWOy24vYdfEeEq223ruu7/VYk+vLZ04vnPxLxuY/nnI7MM+Rgisge/zwn8FbU1WZ9t6v2WTHj5930w/39/e3tLfzKlH7+7KPLJ08ipCvYfDaXAsxSRMkcmBm8V9j90AD8cS//r6wB+KsvLx888g5q98PJMn9rEO+qUOx+kNP+m9V/oLiEPAH+bQ/tatvWI+oZ/mFIBo00i2Xfnz8gsGn6+/v0ALjuTKtiSqUlERu2cP6lk1mht+gH4FNBxmdeuKGD2QWgaLBTgv8uNwyw9/NtLCEZ5CqWeRqxgE8BE93Z7YdrDvgn6NTAssM23dA0cDpB2TB4FGUETtMQkHR3CL8EID1dxuChgT4ExxjJThHPwogpjdFjF6cCQWFIpAcK5IAYtW3NU2y+IgemQyJLcQPhAER5mbOC9tBUbzb3duibpura2hh4UGK6zS4QD1U7TfOpIIBjIAQJDjSWIEtA6S5kKiJ9WCDyTB8IH+FqdIwRjoQGzCuY2wjOi6BwTeIKOMDwDMnj74Tw0UAGQxgNSkygeqM+o09aVdXhenvA42miwLOCIVCRqewjOSr3AMiKIGoXjZtpOfExSC5A1KJBWcGVIoWmUS4eijM/zzNoRag74TaAhySsZQxePRx/C5QJ2k4JWJEs+SjUCXg8RYaBZjwMPQAqEt1SeVTO53Te03uDt2PXd40b+rIoYGvHsx1MlLmW9WWOiC58Som4ZpWAUytitd7VVdfv9k0Fp0xH5upoALwulcZAjKF0WMg3kLHs93uGb4mpBt48fNWl7BoAqKE5OeDcp2nKn50PWg7q9nYgC8hp3Beoelg/MODCMh7xb/yfwzBM1JcJ7A8j8vetCMJIkOSSk2XYhIt/8Ofkj4l2KsmmzLiRdYNyMIEvOBSBzLSexEhd16FVJhW4tZhOgMAGcp89OjpaLZbW2u123fd9USAAtczy9f39doeUAOIbtJ4e3o9efDIMw3a/2263xli2NIBKRMYtJSX1PUeNogF4MEUYGwCmy6CtV+jHWEM8SnvfG5VM8gYOGUyQUEs+aWF8+OChyVoOCuRGycas4vli8dDQYiliMZOlGKiKeZZSa5PT7UOQw36zZZkvSQAKh4jotmrqNCvw3FFnT5J9wv0pWekAHaD/SicsY6LjpoFaGdIE5/thuuM4a1KYBMQwNdaJjKymRQXtOtKhemNli7wJyLjCYJm1PZFs27bM0rKgqNuRZInL6EC64UQCDUseiPajGOZgvH8yzZVTODxiCoT18HmjwZ2kfoWaN0BNMtU+SWWawZgRFFEk+QGdJtN6PMJIGq6HpuvZnJek11YpbMVexkjXwtYU0qbZBoBSUJA6pyKZoo/FdJYmjl76oWt3Ra7LHC7XKEoRR+CmsGHC7GkeToT1WMlPP/4YjpxVe3u/vrrb7Koa2lJgBqVxOKcojiYAc7GMMuaOshaECJ3T8I0MJDwobQ1Wb4xszexouar3+2q3t3YoUpWnFC3sPSIXYb4siyxBwqWCzUNnOo/0j8TJrOnd/bpdV11rYPUNvIZsuWHPpvMin8/KIxisaXV8fDw03euXL2/f3jRNkxbp6vSkWMD2FztoU9mmSZU4KuarMpWuwRlPrrjEF0L2AJ7fgx1AKXVycvL8xdPziydRMvdpUTvx3c3du317+uTjTz77s7RcFukStTodHuiMJZAqL2y32xVJUsRS9F1z+2797m17f+dN981XvwbZNUVmBMKus2x+dFScPH7xxb8XasYCi3CDQLVCYeeGBmAfKLK2ur/5/rtv3rx5Y4TMi/Lk5OTs7CxDgDGiV5M0v76+efTshRBx1/dpAgPQuuswnSaK9W8p7H5oAP64l/9X1gD85ecXf9A/CCk1v/GaXGI+/P6DfiAc2yOpedIGTPwiVLgkgjkYCxwoEB4GCO/ZhOOBmq7S6FnedR3BPNjBxsEz3gMs4mDFy/FA5E8K6oiFoTElmZP3BY4fOjjBsCcIjfzmaRTLRjHs2sHdPFWoxNWJEMUKjyH8VnBJB4QW2cEi95EyL02Dio8wcvQAMXHcKViHnPVDECqBV+B6Es+VyDk0RhcSYium3KAkfaBZs1ATVYtBABlXzBie+p4FsvAeQ7AoGfNLsTpasipZCoxBur5t62YYelAIyEt9Qu65+gtoIrVbbErYtUM7GCdShv0Y85sc+inOiu4g3ZWxKBRKWkkTlaBAwOlHKBejsCSJZrYu2QFZ2NBTuA8ypMcXi1CnXIUDcBQufqwBwGFP1A5UNLBXS8YEZgjGA3k8jvM0JeQvqHJZiDYuA/IXou11RI7RnEyUtmkwEEl0R3x9Dte7lLLad4ywovYilgM4SBGUjjwZgAkoxOUA4hFNTEUhmXKgosAkC8xQV+0QcY+VBrEykTFgOiSl6bjDhm2JJFYyEuSlkV7pXEZJ3febXbPdVV3XG69tXLoopGvxcRvTe9jtqqbvKqReIa5IQslA03+pRonKA9vk4TB7GM6EBxn82qDGmRZA4KCP/+QBLCBu3HsIwkSF4khUVqtzP4/IC1rwTJpits9kBsr+YGyROTUA1PKB/jQ2DON7BZe/m3aM0dcqAB9MSpzAdQS8IpG6C+LRkY8RAIgxZhgaR9JKgFrlXF4W5+fnZ2fn3vt311fX19dt08PkQApm0RB/BpCkMWAHzcv88DeGi+kwjuNSMqzPscmZRM+HVCgpTAxPW7z437DuQkcAmFlPNW6VTEUQXd+jTYIslWZEVO8wcZ8494SOa12U2bws8ixt9lVd7ap9M1hDhSY8iL0UdUMJ1uxKTNtag9zoIYZHbSCZhBEi9dppaFzxAAeVDo0WezN9Rs7xhXVvJN28KJUWBfpPbNXosbt+cLI2iPKloQoNM8ck4DzLhqGTDoEw89kMFPEWcx2VaNxcNvyVDpkwtFVzhUbOARQkF6YWPlaJcRGsh8lCjFCasFGIyMeRjWIbxUahE4hg1BbnHhpWwz6PBN8rIeOqgiiAk9qdwwaNBGhY4yNBgow+MUUfQ+AYxsJnRw5xQko2/Fdvur0ZIMvJU12iD0gdYdzz+ZyndmSegWcjTXOtY+8hDl4dnQmV3G2rN2+v3t7c7atOkFETeWoBjwiKmijKFRK+yU4DLqINJoSYRcBglDbc99jCpO/KtEJgfQxXVuENRBHA8IyWTsUohqm5QplLXsqR1Glv411t+yFyse6sg7WaQ0AhOZbpxfz4xfNPvvzix5fPXzgXbTabo6MTEatf/e1/+frrrzHOLtK6784eHT96dO6d/f5Xv/r1L//eNd2q1KsiyqBZd4gGqiDN560mT1KWZ9BHyzElggFGGmezs8fPV5ePTVrWMkkXZ/OjR/nsSPhEQGUrhRloAuDXu7urq9df//KnkbepEJn0mXNR39qqsU2926zX282+baIsy1dHx5eXn3zx5eNP/7SOjmW6gG8SqL9k+cCDHVyQXrRV39VdtW+qvTfYYYwQMZy/8iQvkjRTKXJncKSiLiLZXxj/YtgfTKt/WwPwu16/fyrxH/n6oQH4n7sBODCreO81+XZ/8MI0dII3GE4IWVF8oR8wQm4ASIAUyEPslkN/oo6b/v4gMaai8+HD8I+hehdpo/x/QdhFXQc5XYTsGeK+h6EvxRTQWQ7FG7PtmaiHjEx4pZAejgASRRwVqGtpd+YuAkQ+EGLo+lBCLSoPiqxi30ZQZQY4scDxELhnqBKcjDrizob6mItl0n3i/ON+I/heo9QADVzFBr/Lo6h8ANYYBSTfegvTN/jWA70wKotdxKwMDFap+qdOgE58HNeoNCGhoA9otzfvIDDAKRXm6SywY8ErEYVRzMHyEuNzVdcOqgTMWrmdo5IZyVP4LAeCAVJNYNxJfv/kwMO6RbrVDkcRnfdsfMHkZXzFtpjJBEkxyRXQaOGIwtXm455ewc4PhTAxpOnHBGknamKSXTLTgMtNko8zkYMLuwBCs/LaGXYiChrBkU5GvWYoWPlKhlVNGwcfjCMhG29M6xRumwMhUnTrByJbK9iEo3mk34EWJxIQ0FZNx6QmcoXivAJ0AlmKgLyhb93Qkw5SpQq40jKFvRTHIIDa4x2I0kQ6g9gYBUyeZLk1frOt1vtuO0gE28ETHPC2StMkhRlfkiQYShjb9DCapOBhdAJ8nekiw/SDMwT4UeWv8N+nrwPD5meNzV+p+n9vx5m0Abw/cGU4/qep7Tw7O2M2TlVVbduyHKWjwDhFwxY2DorjeEkvdhBigfs0ojRe5FkROGATLz1sWHgoQv7XwQkaIHPaHMJ4BwQSxAPzszmpCEaN0wODkaUyPH3qBvj9Hx+fvHjx4vLJYyHE61dvX79+vb2/m9oGkhVFzFVv25pv95QBx4SxAYZ/D5dueoXk7ANeUFAPO/gscVc1BWnB+gsPOHaA6b4wcY6NlehBpK2d9EsPXplkioBlT1MvcM1noIRB9ds2VVWDecXTOZWElHEI8al9JPnyQD7rNFWAodfYGceb3Xa0tkQ7OjYzFDg48sfYpYc8uwCyUKILrLooB4wtHaO9iY1lOQSpgAR8TfGGQdnH/sBfybJkMZ8XRVFVOxpQkDrZDzzvhT0x+QthbEKP0oipRy0ys4KyyDtFKhnIfkgFDixDyF5GJkokEuiVipiJRtJe5kTxJNBhW4YTF4tweMJAyBVOJ46XBu9xBICwJtkTmaaRGe3DkEgh0LbDSJyMVgG9IVuif/v27Wp1fHJykmYFLIl6wB1S+jRFC1SUc5XkvZO7utvs9lVndtsa5goUUBjmmaTSirya5TNNgob5CqFeu93m9evXnElctzAsIhYcIjLSRHnbs3YO56AH/SxLokRHtmsjYZWESJrmM9BZgAQf5+t9e7ep+z5Ky1VWrqyM6r6t2mqg6OtI6fns6Pzs8vLy2eroNJktkZf97mpWzD/7+JPlcmm8ixKtF7Pd7r7r2rLIcq0311e/+OnPvv/V39n9daZFhiABMhqmn4l1zXMbAg4YLyCRfWxlnM1Xzz778qMf/5v09HHj4kgv0vKMdrUUlnTDILHhyrZtNut3f/s3/29hGt/1rmtlU9t9bevadu1uvdFpnhVlvlisLi7Pnzw7fXSZrE7l4qlPymACTiNuuI9gSbt2T4lr12+r7X0s7cXJyen5mSaiP25+Z+reOo9IxzjJi9kc89ux+qcDDw/iVK78nq8fGoD/zsv/q2sAzv6gfzAZPX7w+uCYn16TcI3+pF8ZRHsHbqGjbwidy7Q3klM5cG/axMGapqBOUHbCV8Kf4V35375CiE2EIxT1NOEcrJo/qPnAnkQ1SvnBXIzyTxmHEoyuckYvbdyU7QWVKuWxM2LEfHbvDIu3OAqATBsBskbs2UJ2QExG7MnRzBpft8BXPniBfBoQ9wfpMxsg6iJhX50DWjMqbviOo7bXkVMsZWTxbic6F+otkvyyMyZ5DXFxEFLSmKMAm1HDaCoRKIPVI5Kb4UPv2TEauY9gyrreSmR1WXIEpzmAAS2KBqfYpEa4Irh/kKiXCujR1w/YNh9446FLX6eZAPshSqhFiRqEspiCrag4YHiYHTsDwIvyAolsVJWGfY6vE4ApWkFsQE5v8sGZiguqSYlLVwaQDxMn2KefTWNoewjwMEtWDn4Cz0feK9L4pMSEJ3AwKM2XXRoB9jtrmGsXI6gNgVsYAqGOZDAZtGwORxPzcob3RkkFVDSjq5DWFBGLpyF/VIS2oTSMADGSmYkfcD8RYQZjjTjr43zXDtWurilTKhQo1s0WR4gLIDQXo6QOzuY9kZRCft1B6Y8bRl32YTPAf4I1S8Fz01d+c2d4bzw96QTGCcDEBTo6Ojo+PmbD8v1+f3d3d7/Z7Pd7tIJklcgFEFOJ8pwK9HFUFehJ4IujjJ5iy5kfQgVlPBkT42AeH3b2GA3kGSDBLFgnti7zdUc3obEJDBwJLtuCKEWIspwRrQVLJc/zs7Ozy6dPzo5PurZ+8+bN65evmMOGSpyGd9w7BZUFVS0oXjFwI1x1xPgnOc20rx6AKdQBgFQCRHl6coO9MtmK0VSHMGkKwiJtPZGu+cdzd0PPLc8PEZhNKkXG10Gu6Pt5Wc7noDVTRdgi55apzUFpTTxJyp2gToICB/GbAupBFD6SaLNuChO6wNLEJM3AHgofE9pWPDjBuQtO82wzgP+TxzJeqs6pwUHy60xPhrmGIfShqQlHTfHA0uytzPMkR/w2RxaCdk4VNtHAaMZLvxG4sNbIsCJ7Moqv4jRLTHQduZKGGQVy9qyQBn9GyBrHmukAwOOdx5TiDA46FmIca8rHo5XJkxhaKkz4hkYnlmgAKH+GxxFI0zODGXrnDEIqQcaPU9Ib0BUI40f6sX69XsMaPo7TvABlK9Ig5vWN840XGDLrJFdZLqRGiE1n2hYxheToSgqikdNvOlGWc+/tdruNVXR+fr5aLaJIsNkrRXrthgGTKwaGVssUHCosSAuwHJ0JSGizLEXEDT4iRuXsdGl8dLuzXpcySrtO3G3rXdVJpbIyz4q06Zu63ve9yfPy2dOP/uRHf/702Ucvr25u7ze4UwaczufPn3/02ecIhCsyoSOs1MEgKL5rzb4x9fr/9b//P7pmK6yB508cdSTwI/W2Zp033naMzAqSBkjrvCpmTz778kd/+dfx80+FzLxJZDJDOSATLJS+BWgJxq/r+02CQO1dvdlub2+2797u7++7XeU68PULDKnyKMlOzh9/9NmX84sLkZQum5sYTlnjoYYAMWw1phVNtbt9+/bld29ffedMd3l2evn0Ms2LZHUskCqQAPi3UsQZZhFOjvD/Ad+Blrr4Q14/NAD/nZf/oQH4b/+DP/AXvH/8P4BVUwPw3kyADA8CnZsrt4dM4ukdPMCHE83gNxuAwFI4qKoJVg+VJVs6jAN9oqJSnUfNQAApD6A1DH2JGYJ/SaYxJCwGcgNOFAwbw8/F0CA0A+Ftj+UpUeqn+mas3X1VhwaAp/nMWLckBph47VxCo/CLPPUuhMGP7Ewe7OOgcjGzVHCWEzwtInnfVm5sY8YrhL9AcTz+fap9deTPVjNouYhc4Yyt633dVH1DsZEkLiSTFTgIQXbtwDMZyBCTgU/wSnsEHwHsAc+Rbf+52mdEnBo36qOo7mbuKd0ggvqY/8AgK4zk4uAxBONIiphhtsswWFIME2JKIoRQZZO9PaHptDzG9YoGYmQnB6T2wSeRVcXBTIRzjjGRIP4ysbO4M8GfA7EjDlcUPxQPvJ/xr9ygsvKMxiyEtGH14MU+FUOPCpu91RlZzMqCRwdoAykhC97VpGZIEgUBZpZQVjxJw4k8JNDcemTuJjLNVJKhdCvLEmIAHzVNt92hToOLUZL5bNmBPGuN9f1g9k2/3eyrpukRpkRULLK6iqF1BKS5Q2omhemYDuwy0B7AO4UyQuI9T39iydFImth1YXpHI+9AaPntzNSDDX0iCpINLuoS1DwkSWRvHxFF2+32bn1/d3cH/QC9mO8b1DhjTAFX0rhsmJeRNGicMEBXKGVGNqyB6nMwlyB+3rhHUU4qO9u2NXz9pxnd9J4ZUBjLcOIj0UfsOji7ZzkY9KwPIV9g9/jR+WKxWM4XwzB8++2333/7nXN2tVpFsRjaDgwsUIOIJkKiWE76PGRJTRZAk1Zn6gEAj6A3I30Oufdw0hPQWWr+eaBEH4pMZaXoB7DoUehwb4vvp41YQosPG4FAswq+uuurK+DKWkNLVJYEDFNEAJDycexAjocU2wLbgvCMsrq6I2b2MJTlnDs3aoSxhuhtYpg5DdaYDsa/HuadY8T4QbcWWZnB7YrEDRIpSphsgFeGng37udZxSqnJyGaxQ1HmFErImyfvwez7BOQpxMuE5HKIsbBf0XlCMgn2LUPjxB5ldPONA60RESs4C0gFFOGrbI+GJ4Wl/+Hn4JEYHfZ4n8dsFz650otMKyQLkGsdSJtwqxr6vnV2wNAPIAHaFbTjuNTE70rgZ18Uxf1mu16vrfEIACtnEuoyO5idsYOxTsaaE0KGATZEUmlDIBS8KulZoz1fv3l9G0eIwU5SDbp/vUeVf7RIdEZ20hCcmQ6KaHK2NqtlkWYQCusYtFjy1hukN4siB0CGE5aBM+wRNk43jXx9vbu/r2JdpgVsN8FzE66Y5/NFWRRZ3yN5wPV+Pj9arI7/7C//TV4U/+H/+3/+3X/9+eXF42I2W6xWf/3v/316egzPOylE38ERs2nv313dvvrm3dd/d/Xmm81mQzOfMk2ToswWZYEkoN2uaRqt9SyfESQfOymzvFydPVpePstOHiWnl/HyQkS5MZHwWqkUqwyR0gZ+1djuW4r1HXBT652rKtO1CuplefXuxjnfYnYuy+XJo8sn0fGZSHMhlaXpCkP1MWUBk014hx9oO3H75uU3X928fRV5kxXF0xcf5fOlnB8JnWJUgFjpUuhibACCUijUPFiSf9jrhwbgv/PyPzQA/+1/8Du+PiXpfPD6QEPM6MvDTzsgBPNsOoqTCTgMx14AfkKa43v2IFy/vj8FG4dk04YbfAnDb6edC/DP+EMYUiKKPPu9PNgO8vE5zQRCB08f1ztsEqwxYFyWVIeg1DPvfSzxidMaZJRcuL+fdQqqiuSSFI6WdMYw5hoos1w/odlQAKXNwAc5v8+J2AxbTADdGAVQLU5NhSfNACvIGBUcGcN8W4LscjQah6dA1+ZpvJjNZ/OyzHLkE9HAoWsQo9a3dd+3EdVn8N1WmqJ6YN9AQT8Rykpw2VHCQDllyfyYIUwWEychiIrTZ9hiFQYJuE30dXpjfM2l8AhoprKGuNrM70LSM0XZY0o0Ye1ovrxXWsM9PYCMI7F7TBUI/dxIpA5XmOpDzAWYxkMMIkKXQfjhGEeWK/gIRikPK3ZcV6E/5NEW1RasAEAgBC7/KCnBCCYIanPKlEV4JIgrNHShtGDEBaOKhfqRkFrqDRxip3gsY+0Qx1FRZvBlhw8FJtrCD04OQlioxKljKWe5JXgvz8siK531+329reotGMcQRCPdUyknFGQqxq+3SBKr4JltKWkZ+W5CaaskcpVgbzpAAUk515S+HPPfydUHq5D/pL6TuynmgwVXmd9FERzjnD+0ECjLcvo6i4+p9clms5lxCMTdbrebzaauwYdmzH6qkie6vPFOq4y7Pu6ypw6Ng7cC6Wh8JFGk8sKgNO4AugebzrB2pvsewokp2Te8/8A1oslPntE8k8S7UpRleXR0Mp+XbVvf3d15ax89enR5eSm9uL29gdlf5HcbfKK2bRV0RDEQel6TTO8/8DJilvahxdbDBcXbZZgdz/soUaCZHD13COFmWQC5MA1wLaZmFe02M+QEwe3YqaDCp8TxJFUFXGbULEn21Xa/3fUm0KkTCvtNEgXmCTlHBZcuejW9RZIZdb+gXoBRBQuBum4hEQ5ajsxLgYlU22VxinqYLQ0i5IXzzELTtGdyoLLI/yDxaqyZ0Ye8AqxHDFJiWErGtu+sMQIZJglcssinvx9q9p+a1CMH8SZBATEml2MnQPTV2NGHb6I4p0DcI6+58aQDiSr0C3zf6EczDZZNEcY6kG8dOHskYSNOEjIR0LQkKk51nGc6h3wWKTV49CCOhn9apinQ1iKLENmCgU+EgQMnP7YDPO/N4MDSKdIsR+UqRQzTUxHDb2cQhnIqeRzBovA0TRfzsizm5ez4+vqmqlD3w36n3lXVDh4+Ca4DYtQgwYhgXwZfp8H5NsvjGUL9QF+CGSj2ZzN0LVLk2G2B9kIgSiorTp++vtpd3Wyb1hqQfoROk3KW9X19dLw4OV7gl26r+9t1vWt6Y1SZPHn69Cd/9hMd6b/9Tz+9url98uKjZ598+smXn7sooubBg56nM9G07v7dP/z0P3z39S/evHktI79cFPP57OhoeXx01LZ137QNMRu7Blst4IW8LGar82fPT599Ei9PbLYQ+UrqhZOZcLGOUtTLGGsMRLnHZ+7rbUJzf3wRNEI61pAPAOdX7HZJgTcDISEU/ALieDLAotOGSHqwjkXp7y3mALu729ffXb952ew3Xgidl6vTs4snz5KzxyJfYg4AX0QV6QJue3ASx2B83IoIJBN/wOuHBuC/8/I/NAD/7X/wxzYABz3Aw9D/vZqeoETqcYOlw4RsgSkSRt7vlQtMp/ut73BqAJjw8/B+bBAmBmogb990YATr67FG59+NBz9QQdjpnLOEAtREalH4VY+OfkCMuDIftc7B2YZ0dczYC+MO/rFakf86H9GTNRtc5CCQY/8asnAZy1zgW6AO4HhGUFS4hvweOKwAn4oqj8GJzmJEfWjizqJYsp58MFnnU1B6p9kASrgkVkWeLmflfDEryE/Ddm3fNl1TDz2OeXDaYQOuKdqQ0rzo6sKSFR8Eh4Rz8Lphyg2PqkVMyAUXdjT4pqADuv6sCSbzTVJu8B0mrQXoTdS0SGZqEUGCkMtgYALVLkp5GFQTVexh/dDHDDAmsy4Oly3eMyoOtufH5SYiR4gOoN9Fim6oPqBGJFEIH2nUrVAK9ThjQWAM5gZhGkE+J0HSTIRjpD5xJ5KolAlHNHcBOMoEibarwWKilF8FyTqJ1aAFVn0P1nvbNux4S2tVl8kK5XGKYLEInAs4qQiHOE++uSDrJkWW5cCSpdw2VdMNNbKpugGKM6VVJnUmRDIYUTUwdqz2XYX4nAEUIBXDXGhkCYPWQmz7w4L7IQkY2DCc/nEngV8CDgdtRoqh60HFob9zecR/f6+hOujtWa5XFMRnoNAxXEP6LVmRz+fzLMuMMdvt9v7+fr9HahJrAFijMurXaaJIlW14yCYVLAW6jTOBA2oNB+tS3RkKRAMonXQ+MDunHzPOjg60RtTh8qcgN6GhR9JQjnyAqm1g71jgC3UNe1kaAWG2kyXJo0cXFxcXb16/3G6B4JLaOAwArfX0XAWM/9B+bdQqvG+dxASBsTHjx+chAY0tOilRjuyVsVXhx/DEhoguBIjje9AAB4oUkEetY6SppOq4nFG9ioVa19AAEG0GkYuMfHOfQpx8ZE1YeE9hW5uCzJSCj1MIAYAwHfQ/RmRR2aKKCjTCqUOjeUSwk8D4z4cMBKQZMzWU8tWZzKlonbnBIBVRJ1ALN40xA9HsFBH3+XaP95f2JZaYT7d1Wr14monQ9DB0pR4e5ozBJZkJeUxhct52So8adLxPSi63NlIJ3jaxfzhwjSJlhJMGabog98E0DVHZQ++dTZOozNJZiRzcGAMfKBykMML0CkkvWvio7Yd93eyrpu8xLEqLAu2KAFm/64iyFYskDZJgcAutHMgr2UvRGyyhWMRmgH8XG6fOZ8sv/+TP93V1dfX26vpt3/cpbJjJFLih4DCvOJORBq6xlE5ph/wZnuGSroaoUNgKNCXWI22dBc1R5FQWLS7On33+5PHHZvC/+OVXP//5LzabdYx7hgyBPNNHi/lqcaTjuNl3+7ryChPU++u7PCs///TLthvutruzJ4//8t/9dXp+LspS3N+/+fa73d26UMm80PdXL9+9+ub1m5d90yDUBVGeioXgSAXVWV3X795cbTbbJEmWq1Mj9fLiyWd//m/P/vQnojyuq8HKoihOrBXgU5JbD9S6SEgge2mdUcWBYxm5w7blPSEuCtE0WHpZKYSyFVRWOslgNRUhaxkwQyh4jLCDqLfN3dXd21fr69fb23dttY6cjZT67vXrk/PL5598fvn8k8XZs3h2LNK5UAVULYcNwIO/xoG14u/x+qEB+O+8/L+2BuCL0z/oH/yu6Onf1QAQPjFd0wClH1bw79OEEJfN4O1YwI2OImOjO9kL8l9gODA+AuPaoKKfVvpY7D28ZzBq6TUVBEy6Z+nYg/6MT1aA4iEpPbgJ8fthewpEM4ITGroC+rds9QitLTcSxCNm4hC+mUxmmCPE/icqwsHJ9A/Y++BPjIyN9SC8g76DBgBPPJFQNNoNvm6QohGijBPa9B0FuJCBTMxx4sLikIgtclVCuC/l+xL7JchWQyjuNBk4PTplHzrI+yRG0mWq0kQ/ujhJYEuHECHhbYdQo13VNFJpuN5h4A0QcfK591I5Pv/AaGaLT3w6cPGpgOAmDbUFJTFTA0YHC1CmcPFxhYm/S+ga1zEuomuYEiJIAGcUKFdUuBtpuMTkmdJBkXQgLpxcLEgASKkOTM+FKzbPZA4qJ7jsUU8ITzZ0UxGD/LRQKaGMAs6AonLpryQEl8xt42gg+rAgMYNWQPm+dghwLDu1YIwEoQgWST/Yvh1QGsFSCrReEm3jT8qP84Nhn/qq650QZRxpOJBkKkmlVi6OrIzAWYfAMkLwkO2NVulqBU1flKDIaxEe3Ky3ddMO0CFAbZ57qbxQxoq+c1XTw8TW9HdtI0ZnWCbcT45AH/BSmD2VwpkIZasAixvlGut2ADSOxWlEq46mA9GAgUSoXw/3Da1BYmYCFcgPaUr1yWK73XZIkTVJgmxaSCyoLXn79i0vby6OQwVG3jLTlj4+69wGPOwnY4cfuvxJYMAW/bwSjEHTxc68oUzkNcZN6Kg1pxMEr+XiaL/fV22TJMl8voyiaLfbbTb3l08eI62QKkiIm8HOwHu+PD/jlsCAzkRetthsQEUJP3FSGtA151ZnulyhQ4CnIM2xiJTFaiL6Nmpox+2OkhbBTsSdUoxTUCHLNBX6sSQIAsxBZgM2igVHc0hj5gVrAKKh69ED9HCvF85orZASQMHJmAZUddW1cZob3h/YVxrdKgxt5vP5YE3b4CfAERVYe57pxHfwO2b5PitlQO+HT0PgIbHgngEL/FbRRtg9+CnCmtMQN2G9zcp8joQo+P/s99u2agfTJSinQ/oiCmQWJIG/Rjj9OJLiQwjPPww9aagVxkRhmkdeqKiGmUPE+xlZDzTkKYSLIEgGwNxIyj0Ah/EhaYGuv4hdxFnC8KeL0XENMMsRfki1gndzAtYWM8siYU1b4ZOmmVap9aLp+roBSVDIuO66vjORQtucaJgsUVikxfUgupKxOGKY5BismUkJIxxi0UCnS3KZqOOTk/lsRqOqm90eI6lh6POEXJtgcEQ7HpNnIzGbpzIif1XyKKDLgh4A5D0Vk9U2eU6kqiiKOF9edfHy/MmL55+dP3khsnn1+vX/+R/+fz/76X+2wz6KhiJPjpeLk+UqEnG1bba7e5WLu7vr5Wx5vDgaOlfOVul8drXerU5Os+Xi9BSEOtcNN2/fXb96U23unauHruq6xpoednMwvcAe7ozN83xeLjAkqZodfHtFpDKhy3R18uJHf/7ZX/yVOnvWDshWT/QKkJqjjR1rAbQfLwxGHz1yPGXksMcDq0RX4DHqo0x0nK0Yv0sRJ7SLDKYb1Xcwp3KmhW9pV1frm7t3L69efrO5edtXG2G6NI5UqtJyJnQmde7iVBXHy/Onj198/v9n7z+bJFm2a0HMI9xDR6qqLNXy9JFXYvAGNL6ZN0MaxSfyNw+/cWgz5AMIefVRrUulzpDuHrS1t0dkVve5sLnGB3u4wElca/SprsqKDOG+99pLnF4+91TyYwOA148NwH/xBoA36T/+Ohb5/dEG4I+JgNny8gjkc9/GCGKvtT3YCOJYaC7KXii0maEnUPAI66kdKJFRbKEBIP8B92HcoeAICYB58M6k6oQjBCs1nVkQk0qHPoScMei3OJUqLNw80KI5kozn/Jg8kDczYfBsXDOwa7geIjoy5QrTgVuE0xCPnNBdVMVkjYF8GTpo7hVIOUfIE6p2AuVp1gDNAlMSJGLg+RzSsBX7B34L7ffExGePHTICB5/bT7DJkD0/k24RvcnTAIwm6W17G2m4jrTkTQ6OAAHb4N4jmdi3JgqCUZZMJ6NJDkdAYlrbxWpZgRoKJwpYW5L9kfBhcU1pOATmWXwEfG543nk02SCwnbtDKtMFea7jpJG6zQnjCGUiWjndE2DrwlOHTDDYsYdZ++w9j+Mpm8oRjnqT1r7cd4wO9q7hIQ/OueOtMB+AykKajjOOycWTE3+jAUAwE6ODD1KrbOd83KlCAV3LVZMwwcCVwvEbeBRiw8B+QMFYYKljH/KCECVugvAB0kaCctO6oQSHVlkNveBgEcOiCNPJzRaRmERZ0VJ1UazSGLZBFByGOQNUA0HcWbvfFWVVjEbJaJJPJjOlwl1RrZbbzbasW32/3EgVyyCWIJ2jbWg1/J0WRQECskt+oPNJNAAY3vPQyOXHMnGa866Hetql3X2wShz96SPE7mjWxysCu/GwAShj4Y3RoUTsXppnLFBBgsEeniTcHiDDDtm0qKIH+1krvCCCWHygJFFOCBXBrIFxWP4hTIc7Cnf/kDkvzwadZonN5o+D2DQ5w7PNq+sBXDGN4wwhPaxr6CBhm5+mi9V9HEMUOOQAdEYjAUq3nLHAglca3YCWvd8AefUoRIsmZm64gfNPqxU7+g8NDGU/u+kKTSocw99JffpZJZsOUywK+g0uXPgh4l4ORu8upMWpm6hfFWEQdPSoYqiUREoiF7mtq7La+4Kyq4MgIvYIX9BdBVcrilHFSNOBHT6itSaTyWg8hlXufr/Z7zBW8uTpaHJkoYMzU1VNrVvPVxwy4GKCaTpL8LlWpIkK4EwGZhfadWHzJAZb0hN5Gudp5vuiKuqq2NwvoGGgNYMy3amI74Tf9iIcJug7NzMBOTNleMNS2MEHdHszNYhNHThwhBlhlMTl9jyYrtHEg8ZTPKsc+Ie9ti2Amsp2MKcHow+ZYAAN2qYQBBJJzw/JyxWfy+tCuDIZipbHysYj1lbb9XaHrolUB0iwwlvx8FDS0E7XxOCjn1Jdb1ARSoo167tc1K1KNUZnWXZ6OtNav7t+v92uMXDow9GIq8kzJBxDVe1kKGOyZCCtNw/Wuqoo4jjMsiQd5ZPJZH5+dn5+ns/Or/dd08EZNkvH87MLEYSLt6+///YPf/u3/2+4zwFzqJXvj/PJfDafTfLX19/atoL5kwon+fjp8xf59BRh51Vzu1zsdgXv0eW+aIums41pqzACitR1Rkk/AiULWx8cZqva9/2Tk9PJZGJMt1ysl5ti/vTTeHKWzi/HZ0+mjz8Znz31RFK0Jg5SjJU1vOAAuaEFpbvCT/CIa1AuQQqD5R5U2sa2aQTWX12XVqObAsFSYy/GvY90sqrab7br1fb+tt6t6t2y3i6r7VI0lW9qD42F8aTM56fT+fn07JGKJ2WntMyi/CQZz6fzKwQ4UBvYU4D+eAPAzgpM1uz//OdNXP6LvX5sAP68GoD/9qeXrrB+eHLZJxu4OMv7iEcI5KnWPd73wJeak4A/aAaAKKHopVWSis6hPD2Q4Ps3YVgxiinwS0P3yHaC8OsgQg03KsxYFcRGdPBNT20/dsmoqsoJSftBP2lN0Z4fO2H3p6H3ySEfULIzdDQS+Kf0UUGK8Wkq/eECRK4azPlhu0N4R6LS6DOJLOlWifyXxDDUiAih558gST/Wb/gbImYdNTNziEEt6SgoB7x/AFS8gRLnVdEQnEWxhywF52raM1PdR+5EQJkHTEchwZqT0SEepeu7AuOo7R34MCAJu7rHp/4DNZNRgeTIXilwrWMKQw2V+uyTJ9itDKVEgl4CI2oDjnJESTrY85paFxXllenOj8ekSeiju/oL0dcf7mK56yi6wNc0f+cNB6WEIAs/Rm2p5kCBdoCoLSwyhptqQIURrNYH3DA+ykMJSwIGVmq7E0iLJ7WFhs/woLpmWhDfG062wS8wShP2ffJkRHHRYJ7IzsbSSNG6kTGiK8lyxENMLCwX8UypDlMNXOWu60ajMADpBkWDhaIa5WMDlB4qUigKiD8wJCiF0ajRhjwZd1VTd35HwtnAmA67b4T4sPFodHZylkSxtu3tcgF3KHA8oCLIshFs6X3529/+tizL9QZiOa01hgrgTcdNJzUCjJBqh5SAAnbmlhoYqucwo2CyDZ/wITabWEMEmh6tYGjee7I1hcAS7cQBojj/2oJv0LZtnKQ4A55bOsCOhZyUeiqgyOCUY1PvE4up8+qYVkELjguXZbtVukco8LknfPcJWW4JGtafTrfODAqKHuoievrQoJXnSA23dmkwu/jaMY2L38YnyjgXTDzSdE8lGYI5giLdhNyEsKob0dDEKO6D82SWZURDMnXbtDUjrFjlQLXHGkLQzOAJJjpQTTgsi4yJ+dicUcDQlvWLJJ3Opm9kCXMhIQ2uRkANKvllDgEFUCK5dR6cqED6IXnRUmSV39RlXe51U0vfyxOoNeI4huIXDSRiu8AGdKJroKZ0Q5BqG4NL0ilZu1/tSPXBMxiQ1rRGwMJ6tUFLQ1boXP4y4h5C9GLJn0Aq2QWIr9JK2BRJWCKGrQ4KaKIwgVHfNpvtdrXZ7MqaODwSI6/WdEGYUgFN9qHYYRg1lw3NM6lBcist97d0i3C6PIW3s6uMQXSJo7jxxoJrjTstjuBS5foK0gfzpkW5Lf2smxQXsJSgNPpAemQn5G4N+BB5MN13giIMddG88VHBMdJ62Gw0HiLsJOQ7MclzloDVLfLI6rZFh4ChIRAcFNYEsxAlFpMMjrJxDbBEKjPDRmxmlcZx5wxdDeWeqbYTt7e3ptXnJ7M4Cort1ugG3Zfv7Yut9b3pyWx8Mjs7v/z8qy/HX/1crHVn5G4HQyGiwEVpmgbS+5u/+eub63fb9ZK2LTzXvpAp/AwgbULqGjYddJ0yiDxK8Wu0ZU15C+1ty7GNKpStbUNkXSs8i22dxtFsOoZ7GF2OOEZ+Xz6aBEFQi3An4nh6Nr94lk3PrRfX1g/T0Wg8pRWbO2kqtQH0E6U1DISl9Rx3oAE7CE54nik3YAE1lagr0Zmbm5vNcpVOT0bzR5pwuEjJttzdvH19/fr7YnHrtXWzX5v9JhAm8DrZaQzcpFdYe/78kyfPPstmF1F24o3mIhgZG8hk0vkBzaGcyoT+6HWVH5TFbFN2aAD67yOy8w9WuH80OOxf+vWnFtx/7g2A1/2Lftw/+XT+h59d/mC34ZSvA0nG7TBeghQ61pjaYziPN9eHPScv9A4I5A1y4AxgA+urvYOhDfp29/XhpuQfqWu0747aSwNHpiJMJuPDBLz30rF28C8/EJB45wH6gf86bpvdpjv8vR+uYT91/TU+Kw/9IUUd/ILIdJE8r50kF8EhgxEMbSNkLiS6uiqdlyj5CzBXB5sT2BL8Mb3G6KYmuAb7JNvguCE1X1jtdbu6wd7rckLRbbjx/cMgZ3cA1voIZ6XqiqtGfCComdgDjvZmOHhySJYVXhRNWIfA6ojephPnh91OKTOLanRKRfBNOcrj2Wyaj7NA+dqik9Far9drQqdQA1EOLcalnReuqlajMHaJS26W6YbvPIXgAQ21iMJI0QQSM2W2IWeiOXYocK9BLWEpNhf1mAu5e4l15ISu0WfRaJ7IcJO4+w4FhOsLX2ra2om4xSm8hlZ5zik7ujEI2nU3LdvLwLLR1TRQbYLjhDOEAhKyOGVqJS2iZSlwlL3DPQrUJF6G9L3Q90PfAyrmdbbYrcNIxYBXEwVBvOA7GiioEwE7jjuaDeEjOInUigAeLeVP18Tut1YhUSZKyPYukCqJ4Kjz6MUTDjLg5CxHmAn809PT/X7P4fNLQGs77KxGJNkUDR+wQjQ2rdFlBdeXXdE0uq1IuIyNC5slrgBNZpBCNYR8O2tUV7Xwveqs+rmz5iqZndExLqF2lHzWOfiZiOm4ohIeKAaQP2HlUMG6cF9rqxZGVQ93MnIspav8QHb/EWXxeMHxyavH3Zt0O/UxVfqodD5EmlDJ7t6KvHdIiUJS0WFCcixIh0v+wSpqiLzoCLN0jJ1j09IkpSjvvg7DVITmMC6RgBeqvgMgcgaEIMeTlg8+7/Gqi8AsBBG7kYdzDuDSwjkHcAJtzwEjihEBMdDHEzgN60zld7CEtxqmvRYtOgEpWCc59czvfKpKqYgyCAlBZBv5HBBETkshfUzUtC0+KU9xGcOGpgIydM0aYqxTHlAh5QnTFohFVzIBU9EPAxEGnRJGmDZEA8D9CZDgKAijwMvHSBNumna12a3Agas9xOLGBtWzhEMEJPfcY8hOeMZTNBMgLX5/awDwosKc5NSCPMicvXJV7l1zS/gCr9TO2JR7LrrTSL9AdmRgeLrmjabXRFBEJJlTp2DsQwRyZBRIcAeJL0gkLhdnhi2NTC1R/SP9A8OHUIUAaIrdOk2SfDSKU2zcRV1tdwj7K8ua4uhpL6KwNqp1/RqcJzySROr0KYfOgTVKqTSO0iwOpd/UFQd0FKXO81x6frXbNnWZBDJSoLueX57ht7TQeBjhRVn6+NnzJ88+e/Lky84L67peLO7XC6h3SjgSF1mcrNfrcl9w8UoFvQ2kaJp1FGAaRrcIp63jrFJSDdFKjwzchPQbXe/LEmdJIYCtEzqL4C8UU5J9a6GeH09mFxcX87MLOZ61ycyqPEqmIp0KQeJdiXtI6JLc85iqqhB4jyguK/xa2BqSX6M5IAyjpRKaac/rrt+8/ubr390vbovtLsuSxy+++Oq//U9WRhHWWGSK1av7+7evN7fvf/dPf2ervdR1FsokkJ5pmqKsdGOTMEhH45Pz80cvHn/yE3X1QsRTbIPQtkTcAPRPNfATDJg/aAD66v+DIgcqFawVFF/0cSH4YwPArx8bAH6F4ES6DelIMgt+s3vwaBAJcaQPw0QITh/aAjIVx1q3ax6PC5hDOXzleK862N/3ojdeTMEZdeb06BDYuSwIgs1mPWyWx6wMHqYP79MbPnYhONg/0ACo4GCLeTQxg5jRnVlqAMAWIO0vo2vkPS8U8EIIsyRZd/D+TQYaEtI22mjJDojizOinnOOQ34VKhIGkcT9myize1Ro+zfTZD3sJkX78mu0tjygNQ/10pKFkSgw5kxsNiBsNQD+3gakN6kVUFQRjM9eW/vRb7THSwZYpfeUNFeYAj6O4Zjys09I0ceinaRpncRpHKoLzg5Sy3O/xhgjAohKR9InWV/umgy7QgYu9rQfjYTTi51E6Hz7khqZUpBCgoBw+GEo1JnDWZbThWriJDYBhb2hI3Z/C66qydtmeZEzpvMopB4fKd0JhOcSKrr7bYl1SBAtAHcmK93GuwfmEMG0AHv8trN/J2Jym5NQBIscH50T4nvF8GyikYxoDrjNHL9Evd/7iRI0jZWOPg7K5hw82P5pDOp9UiRi0THXD8dko9lHHdB18mhpsn2UJBjCYWgZskJPJ7PT8zA+VRm8Dkjc7VAImI/+WJInyPA+CoKqq+/v76+vr5Wqz3JYt0ZBUFMZRIgNFvtutr2LYg/JUAjFJFhe5Y798lyTFL8DMYBw7Zc6g4aEXphxDVYWxCTGyrOiqqiI4n5Qf1KkiDYR0rPDdYoCcQvf4EnAbwLZOx48D0eoODcAhgIyahyO73t6tl61g+kAxLrWP+ge0BEO4OM0luV5388/ByVdTZzlMAHr6GWna+2kAL3X8g8xI4uHh8QLtk6IUfj1k/YmTzUJnAvL6JOxe1v/Qben4rY4FG8O8BZQSAMpOuMwMeDaI6YP8yCGg78lJOMQPPkMhHsc8SY/6ASpS4QUAXlJrYC+jXasqla8CeF7BnxNvTmmIXcuURVKZA1GhwaNpTNtgkMgVNnd6ocT1crfbEOKBlt+Qk5gXKEkO9CDd+aINga10IcKKKRuD30rCzD1OwtFolGQjIfzNtri5Wy1XmzQb604gU0xbJDbSxcfFCkIyJiUMixq8jhiUWB59tEDg3SkV9useFBF9q0auWWxm4PyaELzde9RaTQoHASt6qk3pIvbZI/1ijcIcHFReC6QvtCHICQuUwp3JFhRuP4U7EgYmkKazKS37h8Zpko1yOGv5fqNNieA5CIXLXVmVdWcRf5WEkQyjlqX5tgN2Q4KYCLg/sIMSWuoGWALPfKIoTbLbxXJ1v6qKMg1loKRtas+aMAgms7EfKGPtuthttvvGmmQ8zvOT+cUnYZDyCKssiv1+u99si6IIVcAwFJk7u1MkrEkSljAwYEQ8NHq1RJ3tH/R+b/N90+myrqXXpWkcSVU3RYuVX09HWNmCGDQ8bgAmV4/F+SMRTYQNhYggtFU5JxZQFyAJ86eLZ5HCS/x7W6/fSoF1dYjWrsuiLMvXb16FIXwauq47nc9OprPxeBxMz4q686M0AixCz5Muy+u3i3evf/9Pf7tb3pereyVMCrWRNaC61X4abZum88LJ2ePHz39y9clXJ1cv1GguAP//UAMw8B1/oLg7AP8DhRuc1x/83h8bgH+fDcBf/vTiBxuA4NiOvfcuRGtetceaUfeDvRPFxy9rGLUlyzOQLOFoJVDSBfBwQAhRY3VnOo1CjiC3D2Aqfq3XKPSH4fWwpXEg7nAYA0eWC9YB9hsaAKRT0nF9IEQeJgD9F92GzXb19D4u95dH9bQ4YKNAxU8F/VAT9AfPIlcwd2GqE8LnArQhYpC7hELYCxiMsGmfg/kjvXD8DVip2EjQ8hBMbzqEUgYxACoGnVHFu0RkOnuO+0vnmW8dG4J4TnI5+ioefz4BfEFZVDc4DApvtS57INOdooGv5T4U0Sm4rfK6Lo190ysLPE/EERzo4bqQZn335WlNjh9Vi9RjGWAC4GY1HVXLzGii7N7eEZzhCjrbcJUmNBH1Cm0PuP5JFENNSxYlhKe669Vjn/yVA97P0wBOR+b2ph/TO74KzjodCeINLLQiHBPhRMkDkQU3NHQk/W3oSNLw2GEfFSNg1dkQbx6u4di9MfChAK9QeUmsohD1MFz6KWMYxTMVDUbbbDxxcaFgwJMogqCvPM/pWqDQZOoLqEGtKRpbt13TtvABTJJsNIrzURDGAMWrpoY0o9lvi/1uZ40I4yhIw/PLs8vLyygI93uQepQHxR5lO/TO/WjMyIm+616+eb/aYTKwL2Bl4yM3FCVREMW4kyAVIQsPrclWqAEPGJw3p7gYGgAGvbkBGOhqXBlzD+AuHH+FjUb7fnWoyMn1z3UP7qnksRatDI70dVDjMCju+pADL47ukxhkhgN7cCjQgfpS+cX3ErlmoRVnbUCfm3FYmjCDOvLidFMtMIl4yuG+MvwWFwLLbKKDQAV1Hne8x88jBjUWXHw273cKYHpHviF7NYL9sAEYuP892ZyN1YYRSf+LO6sblLdsi8n+AmRYyQMDblFdW0WgD1y2eoVMb22OvoAlQyzr5yQV1kqZFpNbRRxu35MwNoDAF8cBv2JcU1rAWc4veMLLmxHlgvduvZxcHpESmWNaeAl1zyA5tPiekdhZrO8ZlH8w5fQDyO4JoOcEMSVAqPO8DIbyJ2GctcaWVbtY7YwVuu0q6uHxLGLFFUagKeU4F/ZK4n2ubRtanSC4B/sItlFYK5IwZH0X8wNty2sO941w3h1uFSa14qEhHihbADv4gzdfagA4MoUjKZCzC6MHLwAA0cE+jOhPUHt17GEtTec1GsEdFX414i9pIbJxmoynkzQfyYAiAi2GMNUeo4CmqtHEY++AeMB5URCPKIji8XQ6mkyfPn1K+Q0IJVhvltv1Ci46k4nnyZfffrdaLE/GoyyN6v3ONG0cYZudzWZJnlW63eyLXVnsqrooG+ulKkiiIKbRjtOidMLsNlvG/ohG6AcYKAnTVkmsQLc8Ek7wAxIGeH7dZOYA0omLy7PVZlOX+zBUoyTFeknpEG1VYpONKUklyU5PTx8/eRY+eiZOHgmVCS9B3paICbvEWW9tC2c7sjzCWLLt2rbzdbW9/1bXG0+IOAEuw35ocRwXVcGkAyH9OE1FENiy3Ja1Gs3DKAOJC9HgSKir7m5u33xXbha3b17dvn1pqiINZQQQVZjOyEhpuJBBMC3CcZjNzp58fvbk09H0YqAAHdB9kqgdU/z/+XKQs0h/uBD8sQH4d9kAUGuLl5skDb8T7tWkxWUzCrY19zwvTaF0YWCeC9OBY304iCORH8p9bEN4hnHzBqAjyEBauGPj4Zcq7LAiIdZPeF5BlnnMTAiCgGjK8PpIU0o4ryrkyNRIqOW7NqXJ5rD/MTvIlaf9n8fcAA3//l6RzKeYzXCGETkN1Xg8z3JbF7oEdRlVofTcSdhnWBGgoESBTTEu0HL5OA8wDiAvAJD3iaZSNxoaNTJ4J3cWyoRCBdPYDl5iZVX5pFIiuoifp5lAMqWPzsD4bYsaSxnsT5gWk5SRKhpCB6Xf1i1+nYCPIYl3HQ7bKUkIu0eWeex4T9eIRYFdr8fAxwLb9Ww2Mz0/BPk+2CW0MYIXN/avY1dv4jF5RV2ij8BVxV7d6na13vlbsYl2wJhJiwbXigBE3Mh0dWuQqYhCzTBWDoGWMTJAq0JUFrKOcc2nVBAySNQJpGOGfJhQMSCv1FyhbgEO5+z3QX6mA7U0pSFaCk6DxOaLUTrGWWjfOPGpK4qCzAkNanSicskgUiiMQAGCiNIYi2jqHpEjK0sXU8eUMG4oTUOEHkx+AiuN8rX22s7bFkhzNxahvIogOh5zCNtE0osjnLg4BK/YWmmtWKzXrM9L4hDzG2OqYm9MVxY7MlvEswC9YAxTRiM8f9eAp1zW+7LY1/W2rNOyidJsfnp2djGPEzDIq6pZ3i9fv3r79vpNvWxfXt9mf/h+fnI6n89Ho5EvZWXtJMrbtm5ryI9Fhw04iRIZBk9lPCvK6WR5v1ys19uyQj9qhSnrBqc0CAMV+QpZBIRWIhSUXM8PZD/engyvJ5wBNxTPwiJUTGLwx089bApJ2Uq+jrw2Ab8FXmB800l9oOjQ7Mv2NX0Ag3TMrDxp6d0YwidclS4QSm9u7PGNuBBUXAEcdoW7k8yShyYjGsT774KBCel6bTdjd8ECrDd3wXMOM+kktPrQN+CSUzYHtwEsVXcHQ+A7bmayfzpAmfwWJCsShiJaEWVtBjEPrUK8Ph+MbR1DnRYrTvkVgFU4w5mgF9ZQESkLTwSOGgcIFyvc0tbDwkmx60Ric1RO5xGAaweNNpNF8FdyQeO1BHlfEYsZ3ISCzowHEp1i7kxtWjpmUvX3SiclMUKgRxt5KdgnGoPFkQx9yHKtIV84cOsl+dkgo86XKkRj2UmMTPE5SaPqSxEqCfI/QAFqqEB5pmOn3st2XQuVBF7GdHe3S0/tkjSP4swTJe4jhewlBK962pfQXLWNoRkUuh1eBMg5lbUQtFCR6hoXWBupO4wrPczPkcMVKIvMWfJEBakJYirsCmyHirVGeRb2o8p4WosG1HpYLnQap1yIALxNaJRx4jXRKRXguH5jstaDC16H4aIHrVSgZCRV0kmdRjTJEdfXtwQVwxGoKHa4E4hAr7UNg3g0ymazmdWm2le73a6qKt2WLo2NnEmBe1Po73K5jJL4ZH6ak0HQ3c3tcrnUuq3r8vHjx/PT2eL2drFYwH4ojuG25AU+TQniJMnycdXUt/fL9+0iiFJtkWbT2sZw345VUxBej+a/aRoiU7YUxqawPkPX4TYdY0yJrLxapIBC+p29BxQ879WrV9lo9OWXX37++aen87O23L75/tX767eROi1LDDyWy6VdrJDD7avzMPW7KJhIOcJsRKBR4polQEi7Q9EsEYfRM3tS1mXx8ruv66K8evL44gLgqSFDpTwfeVGIVaip97tSyiYe5ZN83mhfeRE6CMSHdWAAqtAPE4E/IxmlnudFaTTNkyxJw8gPM2gUZidXIplsina51X4Iv+MHRWE/QeUH8KMS0ftny8d/4QL6x9ef1cv7b37CFCC2t+evHdilQCj5a71tTgyfb7fpHvtSs07og5fXiVCxqwa2IapmZRQlRJhDYUqbIp46MuIg0pHvtUT3hIBPIZIwTdMoih4/fgwsc7/fbrf7/Z7RCGsNFXAuLGbYyBlxeagApr94ntXtoQFwvQG2Uub4Hr5I0mcOn2JwjkfeHDQjEFDFMfXAhoHloBjBBsijcx7NUwHKBQX6GVKvEmhEhwSWp+yC5NDAEy+H4wW6JIkDChfjzBoKQgCXvqxALnAjAXOQCtDnZe57P/pnqh8ookSSGaTerD509IY+8cAFn3lpOoYoE+Yg2LTQAIB1ossS6jEsjwTTkWNJpLBkQx8cEs8JCxz72nRtVTXSE8R+CaOAKNtkZEm1DnayxmhohzXhbajm/cH21N169MKvQP1Apw4LqOMWm7YFUdeHvoqvPjoqpN2CqDB83uM/+zRlmsCgFXJSVMbqGDol72pc2zhUvbMTQuFZYEpTIIS/MOWX4GlHKUMQKR03OHG4IUPpK6GiWoTaehDf1Q3MfSgmybNtnoZh4CeRH0deGGBazndfVYM156TFVEnxeaDk42FYgQomjmHaY2TSoTjutvtisdlutvsa3AqR5qPZ6dnp6dl4MsWfo2lVNffLu99/94dvvvvu+2+/bRp7cXby5MmT2XiCbdhCl8w6AWYpsEwE3Btwer2yqlarzWKxWm02VcVesix4EJKuL6p0CW0PI6NOdcMmTs4L3M0Yj8H4iD1GPXWMx5NtKFyquEIHiUMRciy6ipp/9okfeowhcRk0aR4A9hg62/QPwOFwt/MS0fO4DrMjeUQ77Ak/eHH2wmGp7F/Uxhzelr82+HXyMG24mtwADEfiUGFObBhogRRF6AQGVNkMp6X3nnIc9MP6dmRtDLSGlqPjxfnjILZhZitxYvv1B9mo7ht8yR0/feCDdyBOCKmDXCwjHZV7f34GD+swpeuB+uaaH2o1qLYXpJDuoQeMf/vmytOt04p0ooXJimcgAfIRgOXbVnZGCRModM4JGKAB3BqxZlJ+ByQoHgfhUUKL24P4A/H8ryR39iiKZRB1nVfVbVFVZW2iOIcGiTx/4IJF2U1WeMyEcbwy5vRzA0AbIM8ke94gArC8TocKJrYoWGlWymtIuXfaAPY1PizsvsLkwZpaw/m3ahuoHWgmJqGNAL2IGkIapnWebzslBVCkoIPKOfSSEGONGIb9Pf8bjQlKeF9Gu6IuK3itFm2Nsx9HcZQpRInjt7PZgG/x2LJ2a7ctWsyXlK9CLMVSjiezyel8vwf5NIqD8Xg8nU7jGDNG3dTr1QIGN7vdbrOqdoXVjTVtp00gZZpnSZ5HMXQDvpT7slqsd/ta1A2eCHfH0hpH63LP2UOuOU5gQr79iJ3RwKFc1LeTARxMIwbKK9e2o+lIop5PLi7Onl49yk4nkDEI84e//s/IAibP1KbFWjGZnozOLuXZ4/H507PzJ0E6EX4kZIT0Lh719087ZXHS/F7Y/e03f/ef/19v3759+vTpJ5++6KzY7/edB0ZlYyCHmE6naFeiUMQZzRMiIUKq1Vs2lRa7ZbVZvvrmt3dvX7179bIutqMkfHR1/vzpk9OLuRilIooRARbkogtE4+OogqzzQusHrCAaiMp/xHrxYxCYyT/9B/qhtuDHCcC/zwnA0ADwLzsw4wPSALDLde+HOLDeSbnV+1TwgtjbAh52HU4w5Swt9uUgMM/jwjGKEqZhsDbYxdd3XZSkw5bpnnnaJ+bzeZZlk8kkTVNr7Wazub+/3263cNDD0u64oe6DHPP+6TVst0gCfiiW5QbgmCDL1BXG6nAaSGvl2JxoCfDdNL7n6BkXX8UMkNbZW9AvxR9c99gkSawmYigpLzs4vwCRkxFOEEuI+T0JNiP0GwW0gnEQtoq+6SJEjRSBxAinxZQEPsRC7h4siND7+oNvEs/WB7bAkZUY55vSBoIVljZphN9QacVI0ma3NRrBj8To57kKWqDRGFQfNIpUeXi+gae1hGibzP/QFkLBBDIuyvQ8gdSBiYhMBiAPog7UedBhMbBliNz5GJAKkeuD4WFAfdi2x6wJurT4pKHEyJ5TPNmHnoNFeeA+fN2dE6LCs7yS9z/YvWGJtJjAsIso/JsZ9SNCEZx8ENhJUldAkshKRoGLydJQpbG6QHhBmM5aShnDPWjB4wf9tqkpIJMYC4FVgYlDqQKQX2fjs6a2FPgF+s7AUG8a6gboaWGpA0YBURKPzlWUqjD2pKwavd0VW/iv1zd3K6ofVZ6PLx89efHixaNHT/LxKMrjRtfX19d///d//7d/83fX19dpnMxnJ1cXl73BHyIJmLdNTCchQW9A29+27WZXwEGlrBbLZdPoEuaChi3FebLlnL56sgmvGCxsZbk6/f3wAHJo61CFc4cjA6UbWOdxjC6Og2R+BDC7EFMys3WVOjpOdm8ZxPg8AMNBPAgsG34vUcx73v+RKRkH4Q1Ec8dCIltM18wfaRiGwLjhzY+FnsP3DKsTRk9H2zONAJ26wAX50XpyJDnACcGTwcJfXq/o8NjFsy+b+nWPU/N6Z7DjuegQ3fABe1MGNLEc8hzIzpUU7s7W6QN3AQqzO0S1DIws0my4aDH2aXAG8wAFMEVzVA1y8/I8PAh8rdi/mK4d+uamheqUGD6NZ7T0u1h1sfJHKRShgdCBZwK/i5SIYJdDicuYlLJPK6BuauyNCigYrkUpPdD3TSfibLLc7tfrrbYmxoMTNho8HEMTLLoCioLHMX9iATQ5zR1WdOcIRza7nE7ISYX0n8bqWhGlE6owKvGdzSbtURr6BrZhIwtpT8ZIiuWwF1sbix6AYtQLTIMhfcLCTrc2wA7P71oTSkwYMGAI7NAApAkEAnwzOrIcZSIn6bg2mHOudns4+vpeEudJlo5GExcW2baOkkWvujJtqyl5LWys17RaxUk2mT5+/Fwbs9nv1uu154HeM5lMQuVPxun7t2/263UUSNPq5e1Nsd8qJW0LY1MVRZgBp5midqux9m5ZgivYwmsL9wnZhg46e17WuKbgTsNgKKlhFLuBQxlseJDrHGEI0D9fg8adrIE0iANJNB7nJ+PJaJxGWIft7ft3HJcQx7HwkJWG5TFJZs8+TyZns9OL6ew8mJ4hx9fzRVXWbUV21oGP/MTQEwE2ZARf6uXrbxd3d6PR6PT0tOvMaoV5wq9//avXr76PougnP/nJ8+fPz8/nIs5sWfvpVPgwsyLrDaS8iLYQbbV592Z59/b6zZv1/Y1uq2mePXl0dX51Fk2nIiQ+koqhT4A0ORJeDIo0nvlDA0DafeMKviNdLyVGPMg+cgbu2AF5d/uxAfjjr+7fdQNwUMeGioSkjkF62FEEubAPu93AuWe7usGHx5XjXddULVdaH+jteO8cfty19Z6oq1b0MNLwU8PjDYYMgnVGs9lsOp1mWcKP32KxWC6XRVGwjFIp5USBDzZy2lYRFH8gBblN7cOZwGE4AN8LttinBgDlPpkHmhYOwYzxE/3E1cQqjLmr4alH/6mxGMPdr/9ow/QDaehsik+FUYD0V3auIII7DfuHxFxOKRqKDKwntMkZY9brLQuYmFo9nE+BlEXk4wzIHNgYhG6y26W79CwU9nyj+boEDpxEhjw+m5Ih2/lV4AURYZ0aNzKUBAmSSbowvKDABVj4kcjNEtOHuLzgJoEzLn1gW5jiBxxJY+FmA4YSy+9oA2NNQoegqAf3p7sP4UfO92GvU+d7ldm6xzcV35acOzEoRA+qULBNUE9zhQpKG3Km0AzAWxCDDspWA06LARIDOR5AMuQwECMDBKs4DLkh5BINE5rGNMb6MhJ+EEf5eDQbj08CFbWtrpr6u+++A5QrWl+aMBJpGiVpEAWh33ZxCKIqz7uBrG02ZUm5bIyUk7EjmNYoMKLaw0A5zUaTyTQfT4MwNp2oTbcv6/fXd9c3d/uq7gQmaRdXjy4fXT159iRMwjwfB0GwW29+//vf//3f/t3XX3+z3+7GWX5yMj+dnWRZhv2YUuNU4IEaRA61NGlRML5u2/fvbyBVx3lCcrG7WrDx5SRgBzDTU2AGcTNYU9zL9S9To3AcXrAtShK4aPt+DaliVbcNq4M8WDR2YRIPsuC2NSyQARMXhKi+wOXeg5wiVRA+mEkekPvDrOxYO4Q7cvCDdbU7OnaXgcD09t7IaOAZDhPOY6eyYVU5rrwbDE1cfcyGkoyCB6TuoILS3ZnugXVdpWNBDA0AJk4fNQAA45EUPgQaHv4cQJmhG3E1OvnV8nyMlUgcs0Dxx87o9tA+URzH0ViVxJq8X4QhC6AhZBmWekD9VN8T8a07Wp2s5kYCtEmaviJhQAJGDXj9JwOA2uta5XWBb07GSaJEFsssFBGwhgZZeqYWwnDIVIKJgELcMbjvkLkPY1InNYHm2Ks14CtPoK2qK0iXmPGC04aGQsJ2GW7IrK326pbySVgDwMAKSStpMkmeQeDeEBAAVa4IJOYA3PGCmkgBBb7vj/LUkDAax0RFLY80kwTPGsI3JEagjTaVxhq4XG/wWFlMJNhFjSNSQtKLk9TBKM+GgQkDL4D0uUuSYJznURRgG8XD0zZtV7Zdko5UGNatXq42q+2uwSdS49GUfDQAxsFTrXZ2ummcVUgRBnZRNXpX1ljCsvzx4+ePHj9OR/nNzc319bWB8XGkfJFn0clo5Inu7ub98n5hTeuDPgk+pFOa+MoAF6Oa1Q+SyXyLVqSgvHmnjqBbDtF4oD4mQAa1Bpo+n89PptM0jRFastu9ffv2+vp62OWPVYKHjZuePvpMRlFilyRCXBIG+/3eCG80QpAdHYzykzg5uexwy+fj2fzs7HGUjFab9bvbm12xTfNkNj+bzk7TfAYYXsPRX3StCpAwiCEn5slCtHVXlfd37/+X//n/+eb1yzSO8jR79Ojyyy++GE9PZT4HRUsiSA88oKbADoKfqkTbiGK7Xd3fvH+7uLs1ulFhML96dHrxaHT2CEMAlSEGuIthFaviDkJKBko4BtTtqf98A8Dwa/+PiM3+sQH4517dv7MG4JdfXLprT9g2fZHdKplbckQBon+ige/Bt+f4zz7p3clY+blEsj0Xc30pP2ycHx+N9fwwiNk0bwCueN+aTqcMVzDXiKeoPBk4OZmenJx0XXd7e/v+/fvVakW25RD9hNDeovIbHIQiiixx6wXhne7EHWWaDuUIJezuyV7MYVWgxoD9YJIo7uVuPa4JujEmAM7amnLn2UCJFJkVmWf3niScZUDhAu5XA1xHVQNnCKNjRJg4n0i2uWBLysgFGzER2AVOsS0aaSQ4TBSVMUdRtkdwKzsRuGEFcSMeeCayiBAcJphh81fZ5kl4EoMXcscDa99Adcq0maKuuBiCW4WUEXIrZahQyREB13kUgv0CIFP7tgV0wXeapCUaJYgM4xj7bp9Nxso5CkUW3BIw8j3go33IEQ6UqzVWAZAbngM4j/HdoYj54C9RELLNC1c2VKz0QkvIAGH1ABZsGERREgU+NQAaPnkoauBTzw3AOM/3+60nuvF4nIQAqJoGKJeGIY9o2g5ZRjKaTM+vHj87mZ/BCdHo5fL+3fWb5fa+80wQgtA7ltEoSZHDiigohN0aYwbm235fGKNpmiKt7ZBKFmQqyohWF6kQ+rZ8PInTkfBkPj0Jo2Sx3rx+c31zc7PabIumSrLs4uri8eMntLnOIF/b7Ra3y7/+67/+3W9/+/rV2yiA4DiO49PZ/Px8XpQbRfQbavpQ3dFHQwFjnPFRy5a8/FS2Bo2Kw+Gps0JdpnyQbo8yd/uCHEneQ6POCwiTfafTMVV1SFcoduV6uyr3SC0GfspaHPjNgLLCjWhTaxDlnaCcy2jMguqm7e12HohrXTDW0cvdAy55mlcvd58MScAHav6R//EwDeNs16HsHsahB8kyxguHZY2BCbT6Tq3UTwJp+eT7mTXQw+kFkS4ArsyztR5od4QrnzNHe7zmGNEYpiuMEFOSdFk1ja8Cg3hBuDyxvIS/YTYZMXN9YMfxR6jLAo4+JFNhg0hke4OuSSJ4ZynqunIEIJJ7jyWwmSlt/tG0mSTUOGIKaNOt9W2Yce4i6ZIglels69t2PstV1+ahPxtHozgMPEQTStEqaXVb0nxGRFGQpjE/O3ySccPCPNQZyXZCFVq0EPvC6od9tFoDO7IgiLTpavpmxOWCrIrPSRnnDody+wC9TIvfyDxAXEGIX3A+Aoz1LAlcIcege52os+RjCTKk9CxM3qqyBB0l4ulZEKKix36hOhl0Ut3eraqmbWpMW31MEmgUYDvfmoBii33RSmHCwMBUIAA6jVSEMMxykGbhk6Nt03a3i22DcGHyWhCybk1R1mXTBnguwdcngzJJSfGQiSk/ILEB1M0WC7KvURkgrkQFwdnlxcXFRVmWb9++tdbOT6ZNuaOkSANWZt3UVWFMy7cubtUAdxfZFRCOo6KycngB528yzMRrRUhbMyEd0OhjTNe0gZTz+fz05EwIsaAXIgJ8v6z2H/h38bMQkFif2LNQsRjbIGxFeXEATNDNCRWqAnQmvgizUTaZnsyvwihbr3brTZHk2fnl2a9++6uLq4tnnzw/mZ+hCheBsMp0vkxGhrTpQH/INEvoWuiq2a6//+7rdy+/1XVNdrQyjeIoGTUyHU1PhO1ypLJESLE09c27N21dJnHoQ/28LosdZUSbomnaILYyCoIsPzk/f/zp+eMXfjZHKBDsaBHn7J4d9MDUQsFc5UGZyA1ATwmGsxXNn7kekEbXjIAeL4MDA+JPKBz/SzUMPzYA/3UbgJ9/dn6wxjv8NhLn/UAO2aEBcD/f/2xvE/nwRfYFzAH4oPZ66Nnivo5qC3jNoQpnlpHneZvNhueD0BXFWOW5AShLwP/7/X40Gj1//nw+n3ddt9/vb29vd7vdcrncbrdaazY9xOjwmKoEboYr0FnE/HAyIIWnY9pNKP6LmyKK3REUhkKxYlzWq8CPFJZ9FOIG1OPeyREOcUMNypTHAY3D2o6gIiYNk5cFhcXTxMAQ0Yj7d0yhadoANyHAhI6mwYUL2oA4puz3Fn47Te2U2UZ0NSOzxIcAwt9TGtwW3QOjjKajjvexgJo+O9lt6r6sqoqNKHBFKNuSQdaiKDAHIBcL3tqJcwQuU8gCgDggRynM4rHLNAWtXPTOHIvDqxjBthD9Emg0FHAwQ+pp2fxivF/JkFB/MJJde0PXjRe7ITaOyT+wG0d6O67gMSGKU+RQ3hLBhEBWJCgzHAUbDNMPf9zkpxulkSIfTwW7a0rhbCuN2PluMsqUUuUe4BYVrxnt1rhwxoiy0kVpGjBiQqGin//FX45m0/FsKqOgasv75d2bN6/ub97GRkgLimpCL/bK4EcATjtluaEX9ZMCguV8WtWmqipjujBOptOTk9OLLB9l4xmNjAEuBnGiTXd7v7y+vbm5u9vusXeenJw8f/782ZMnk/EMkgIVLZfLl9+9+vWvf/2HP/xhsVhIqfIkuXp0FsUqUMDRyY0H9CTI6Qog98MkauCplzWSaxmcwqOB3gmPag4E1MDSSgP+HPrtNIqAAbOkoC/KOXkXG7lSPO6LoqhpmrIs7+6XCJamHGu6hYixg37WdYxgb7tHmIZXlkOjDrTA4x7g40kmpOiHFaBfVWErDNq6WzqIs+7GkoPl7oOXmzgdfmTg8RNV78jjuCWJsOXg1bZGsAKk+0rFQegHyml+j8ZZWCI6+O4fuhoC3fkVY1QFgiKn66HwIwV9grg3PFcAqym8ggIUBExe+y4liuADiw42SbiL4O/iapU4aVXAk2GeMbpzJZngxTQV3oHYboB4cXRz4O/kBAztE8LadpstSauNTznZMFiArb00KrHE83YrFeVwKwHzXE9XobTTLJyNknEW53GURr5ot0iQxZCKT53lyPYkwcMYBhxYLpu2baq2Nl1lZNthzkkZiLasm7LCeon1hFw3YelLZDO6ix3xzN2uLAJ2qw2RHvGfIASyUMITyCDj7BfkZDluEthJuq0DyP2DOASQ75y1ja0KDPfQ/YZRlGV+EDdWVI1utahbXVdI8GWBPTeHXQtaFBJAROuJRkoTwe1UJDGILhAvUYQIcg+RqiEr7ZVVu9+XRdnUmJjBhoGnHzz4CjF3CRL4UEOW0OlOShVnaRDGq125XK1VnEznZ1JGi+WybOrxeDyZTLquw2Ryv0XQoA/KvhSibsqmwuMfBEFRFFk2ShBBMLm8vErT/NvvX/3DP/6qtV0SQ/kKsa8QYYKFpaqq8XjsSREDxYCjQFUV+AbrxWGUhGgkePVj5g+8njtH4ePlAhsLAXxJBkoqB4Fhmie7WIVxEpY7lAGIS0NHRT0PPKm6Xb3vhJ+l08l0rhSsTms4qgkt2rOL+dNnn1w9eerP5iLIhIWPrVCpxljLys7gk3fabFb75c0ffvfrYnlXFZvE98IAft4ghgXJ5fMvtSfvbm5bJKvaKJDnZ6dSiJfff9vW1Wa72q6WTV3RSi1aT0Ynl9npxdnZ45PzR7OzJ+P5pZdMhRdiQoVRFYWUkq3FH20AuJRqtPNYwvqAwTrNCTwZYuL3ISMDEzDzpxWOPzYA/zYagJ++mA//wSJXNxNnuV6/EfaaWif5+rh2P7bec29N5JqwD+T6AI46bjqP34r9fZ1Mtn+xEUFVufARdvFjd6C6KU9PT2ezmTFg4zVNwxVDHEM7T/G05Xa7XSwWd3d32+02IJjh2JWZN/6iqB6cRxoZe8LkaUjoDhApsqYgW0/QTbCzkie0Zl0Xw4AcU8BUn+M+23mEPWQZCQF/GDyXbB5KnT3nbTHVCjADZ66ROBiNGfhATizoynHaL4/m8gN1ARt/RUmcdKSuJ2GiwgCZEPvoIJj2fKy/A0uBTRVtB42H+0H6zXwAZJBHglomGRuE+JBjoAV7BHoPaPVQAGLbl56HloszIvoEAH5/dwM6x3GqJEgHKUUQofrux0G9I2oLM0pHLXArFwO2SJ3pY9IQ1UgHY6zFv/IM5PhPXBdJHoLOSmKY9jjjV0oY4HEAvLW7NgklAobiMI6jMCITdZSDpqqLjOQNDXWYcI20XlsWkwTwmucFVkjdBcbK1kotZNHa8cnJoydPr54+u7i6jPMEtkvFdvH61f31+/v7ewZftW7iOIaldODGWVrrLYi4691u1zZmV9RMmQjhrBdZ2xXk8H06v5idnc/PLqI0w7wF/IVAwGzbf/Pu7Zs3b6htLpQvnzx+9vz585OT+fn5eZrm2+325vr27du3v/nN7/7w+99ut6vJNDs5medgF+BDIf2nKMoSOzFPoo6bedL9kH1YH8PMp5en/APdn8to/h6KPzriq9ASpBv4l1N1AoUxd/5cWLSaGFbUSyNBgop+Mm6HdAR3LA2RuEGVPpJxP4b/H0iVCB7jdSBm8WvvVsQy3971xaXjuTdxtDbJfaw7/l4n4JKG+9k7U4kwISQxd2+n2/+zZ7erNYEUBGDTMsKUDDDlKFGEJ5LU81BuCYVLka0wblTXYCBZA2YGFBJIeiJeq4iDDvsZ+gr/KwviaySNwHqFrNV0FEXT8STP8xF1szGtlg2JPLdrUNEM8RUPNsFYD7AakKaCnBjofEE6C6IcdRedRgvuylgJxTtFd3ER09mm1UgSb9qqNZ328HTwKR2WOEUGoLouPdMkoZeGMotlGoVZJEeJiBVSXKzFat80laEzoCTumTzJEainYhxHa2ojdnWH6GaDpgkUokY3DXwI9lUFvhLxvokYSKtov2JT4jIVUM56yVIqIYMClGzOpqjWhGCfGJZ4UVIkQrvIqQyG/VDKI/UY1wYoCVx/cOYhQIIhXuQF0Hpq5NIkrbZ1BfcFCL06dBTkJNEhPQY3NgTHQjTS075nkiQiyigNjcl7LQwiX0ZekDRtV1X1vqyLsi1rXTcwCSj2DghzQSWA1QAuRUG03W6zfPzVT3/+9PknbdeVVWM8//Z2WYC9X4RhOJ1OoyharVa31+/r7dZqSJUCHkyRBaoQYrPbwbIsTvJ8fHX1+OLqyvPker3927/7ex5WuwLUuWbjcah1G6kgyWHrV9e1Ugpj1W1hOf2NoB/2ZeaKnyoErA9u5kM9FdcPrNHqWm1sE/oK2LtClE1DcB+nW1CqtJ3OxttdsduWdW2aGnfOZDo6OZnWplIhecWezrGWnlyFo1ORzkQwtmEEOMvUCkmV9fL1y9cvv7559bLeLU1VKAGbO69r40BF2XhdWeupzXrNhzrK8q+++mJ+Mr2/v2/qEgzP5fL29nYN2kJtw8Qfzx99+sWXX/3y9Oppkp14USaCkfAj4FRuuTg0ABwN5KJNybysbwCAUaDvZHdzztvEX3kswN/R0xrJ3/bHBuDfaQPw1fOT4T+GgHo8HpoQAtdkH5h2zK47RrYGMO8HGgAwVh3xk4uFwZH6A1/qww1F4rMD6NK/Tk9PXRw98XkYlGraajab7clg4ezs7NmzZ6PRiPXBbnUjfiHrinjf+va7744MTA+ZQeTx0vcnLp0TaJuSMH4BYkwMfhjgYPKApZxRYXBVsULBlwi0VG0GGgOvU8eL12Dk0lMOJEwXj6IJ2PQa/v3EmWa0j5c2QqWwcbHzPVAMFPMg6ODKgc1LfuGEMGGaQzaJNWcxNm1Dyyh7EbKdJ8fxDp9feQo8VGiknYz4EMTWe4o/vMK4OlEKylbvKn7Iy8Smiu0ftRlOF6FfUnppwsmg4vD+h8JsYIj1zaEnZZwKNimn10CH4KxQxysDGoxmoCdCcJPDn2JITDj8yQFq7GQSURISw3X045CU207TDBpzA24lXA5013qmlR4kmNg1KRczRZoWGAMsSR8uepJkJ+PMbyuI+KSCz6mMjPXL1pStrRtTa6GFn2T52dWjp8+fP3nybDYZzbJktbxb3C7uV/fLu/ub+7u6KCnBARqUSAXpKB+lSed7JVFpb2/vyxJhmm3bwmg1TAKQmqAU72DqHeeT6exkHmcp0rVaG0YZzPt9f78rX79+/fLlq/1+D+VKHF9cXM3n5+ifp5ABrFabN29e/fo3/1gWu8X9arVaCSGm0+lsNkvTdLcriFZH2bRHg3jbdUGogOQpJAZSkEXFYobBssnd/8Sf4zPGbqG45syNEbC8ZB8V9gARQjAjKEkS59rEfSccGHFlKoorg3E77g/XlFqozw8NwPGmdeyTc8zXD7iap7qEKUm8+rG5MDN83N0OO0Y52Mw82BGdkyalyB1iNPCNZVn3pmdYTyjpDSfEUIBc02A8Isghh89SVaO6cgsIkaphICylJZo12/Ey5s0HYFr4pfAPID2OeBgeB/OxKgnlEal6gNZLnzQShjLm6rqkhg2f5eLiLI7jUZYlSSIlpk8NaTeXcH1xL2dvT3ae6D2otXCLWb8j8NPNawL7m5EZeXd5eRmHfhKFgQQ6vi82VIVVqMgtoqxwPbFMKY/oRnmaWk2kFxAvETQm4blsTkZ+lsKaJk1j6XswFaP1tq5hehPgBISA3UO0x54Ma+u1mhoeUpGDGGM93XWb7b6FgAFew0g8AHJPwV4E6JBVbc+0Zg0AniFKJCQiENECMRMIYbsMpRwbYVGWOYpsHJ5Hnv0e7R3UAJBrLaZkxorNvoCFlzEogdO8g9pHad1BBFNhkOPYjMILZIccAAXNMdAHS9lbketCsQDDc4ZJZIEv4dKLp0CoqjH7oimrtm5NVfUGA5S3oDjzxBcnkylQdl+NJtPReJKNJtP52enZeZ7ngua97969e/365X67Q3+VJTdv3q2Xy/1+n2XJydk8y1Jj+fSChWuAAMbCl1GYPHny9Pnz57fXd69fv14u1n6AdbIoijRN5xdw+KggQ3A2361t4yjN03S/2JCoA2Mxt8IwpYz3CQ+Jnym94gRIAdNilY8ZfbXb7/brroUiPAJnEinHdDs6dMnzu5joUnGcRSqqyma9XtfVTngmiPxWV3BoDaI0n01n8/n8aXZ6mT96EY5PvFChE1dCNHX56rvvv/n9+5fflbt1tVnZphK2kaJj8/JGBH6IR2w6nfoeTuB0Og3D8Itf/tICl1xeX1+/efNms9lg4b149L7Uz7742Rc//Xl2/kTIlIzaI+OBAjQ4tgMyZLMK4f9QA0CZmIQjCkNe3lUtBDCpIIqMUG7MfmR8Qk4Z9k8rHH9sAP6tNADHE4DuqAEgt8ojURpv05xY+fFrQJQfVIi9PJ+dowdDRhQnvSGjQ2sdZku8zyNp/0DRIbFpyI86d/z8xTdv3oTknM+IKcSOFxdnZ2eI6OOlhFfwfoO0HYaPRVGQ7TH4Mj0ESJMKtyy7b6Y+GZxvQoAsan4JnxmARIgC8KKQMp4ozISrD2G0IYCSeQ5D0c91EuccHZ+2KESuArcd/CWm/dBMdQi8dFGxQoimJO4HO+SQQRnSQz07ynOK0uTGgGhUzAakopcycClWrDXQvVGVTikq7COAfYxYt1hoKPnyAOsy4YFNvj+wECHWFsiviliVHHw8+K4Tvgu3T1qveaXyItjVOSSYayPgKOQiMnzewz3sydpSmXL04mNj/XFfw2G5J8QR1LX+AOE2TtgSkny5hRnOHP/dE51uy95+kT1kDp5OnPQ5mDMCgfNs6HcCoGFtLLiqYRiA4xTI6RSy2skE6OmurK6vr3fbIlQihX5QSLLHVkDobVE1ZV1n+bSoWuzHdSuEn6Sj2fQ0H4+++uqr2Xx2MjnxA7+t68V6cf323fvb63K33+x3xW5jhRhlWTYaJXQmPWvK3XZ5v1ou1zWyujg8NeLQJXDTkjjNR2ESKxSCoS9jqcCLABeFzIXeXb9/+/767m7B5CtcoySdTCanJ9iVszTZbFZv375/9erVcrlk4E0IcTo7ZV2N02YARoLrUlGWFBEKEgKDgjT58Vrgs3W5h9d4j96hfIWLC69cLIsnybi1JlJB3ZRtDV0gE7uRpdO2aYTdlJ4TsHg7j12kLPKUOg+G8ICd6e5zVEVoOof52HD/fCDSHUj56shc7zgDGE7wh5lAL0RBdAXZzh62w+5hD8DKKNf20KlDL9EPsgitpO85PT0hZS+JRCkSldl/UZy4PmoIJ+akasZqaGXjgJFBeUUPHgn0CQLgVRc0gCNL3GEyIFVoAVU7TibGUBWM1lGnBkEagznJknQkCnoeoy3uYDgvl7zCpEA1ShkbBzEVZybTgLMXaMPjubG6Bc05jU7GWT5KSGHPRbPebRaoHatmX7dVDcxeGwhh+RXLADMSvJ2VoouU7cw+DGyaxnmeZSjmmP0PQEa3FnbzSA+QcZQmcRyEqR8lcBrAB6AJru3go2agZNCWpGI8WiIQBPfJkUPOADGwDSuoVhT+Rfwl3B7gbjHQyhYM+MgNhJddKzoTSBj+ogwLFFgtFEHhmQb4lArLpl2tt5uiMBbxwxoBF8oTARIGoAtznadAuDKCwCAZonBxgERCH7x0BHy0QbtHujtGEWGUxFmugtjaoGpMVRP3qSyHGppGE+zKinSFKEqs6Mqq7jw5mkwT5AfL58+f5zjF2X6//f0ffvvt138Ab20687S/227Lqkqz+GQ+n51Ok3wUROGr169Xq82uqGD6hybTC6JklGUvnjy7v79fLFb7as8uZyh8T6e//OUv4wws1lvKE9gVu/V6s1osE1+RfU7vatXvEfBQo/E7aaWIFUyNNImbcd9K6bVltd2t2rIWnq32O+rgaGdnWpZPgFdnpa9OpqdPrp6Mx+P9bvfdt79/+/aV8FrPN4iGCSILoC9Ms9N0eipHJ7Pzc5ASAxVheNwu725v3717+c3XdbXTVelZyqJGl4tL+Pyzzz04Snenp6fKU4vForNeXdcXjx5B1rUDAayicJU4jtPZaRPlZ09fPH7+Qk3PhUzQAHTKdDAAJaDQPmgAPGFEQNkj9kEDgA4ZKZRtVe622+16Rf2wJ4Pw8ukLH4O9UMF1gPJ0/kT2v1vefmwA/m00AD99cf6DDQAErBwpdWQnR+JggscIESdSDIlZscjDnwTUDrAr2UcegyjnKf7wdQztf+B64VkekbsvDj/CpTwrgCHax5AaFMPxOOf0ENzn63VRFIzVcYDAeDwejUasKGJWjFSwfUS8FcCGQ6W+WKyI9e7IrH0FbMH0JitDvhgDBYgSAIiiqjyscCGMbUKMaBt00+RScswx6CFuVK4H3NF2AdnwgfBMuMXRqYDM9GM6Mn2ZTwtHjVJapfP9AA/VhdfCulE521M+mQI5U2TKgwk4JVBiC+SNkIOJ4AUSpdwAOJtwLoUJHnDIPPvnu07AatNQrA9hugh/cV4ZCggjSmcy4GxrjXOt4fvv9ioUf3TeOH4LGy1TbnpaEFOPagtHjmOJNr/CmO0LDwZTroDzFaqQvm885mV/cNcx7Yd2Vy46+cC8CJQzplwza5mpCADTlPQj38AqHkpQnHm6CrjfpZSzGRLmHz998uzZJ+kof//u+vtvv6n3u7ouq6qwHWdGunnUarWhGNvQGq8s2qKodNsJFVWeePrixeeff355eTGfzyeTkbV2u1vf3t7Wdble4y+LxaIsC5C2pZ9HKgmDNM4kxLL7u7vF/e3dZoPUsDjJ4iRthd0VVeeJ6cnsZH6pVO7JEHz6qoHZdpbXbbvabDfr7f1qvd7sGDjHg+ZhenZxNh/no/F4TDS54u7u7s2bN7e3t5PRZCCVORquRhnNRil8tyrSguekaU4zSt6l0pftfUBxMRoue+wf0IPlnK3RlBWrV9h7nlnlMEfvx9YyUJ4KQOSFeZQhklxnO2k6NAD8eFgEGrqovw+SxY+nFj1FBx8nJGGrayyp9XVicRLf9zufs9lB6Yw+Cr36EbuvG/z1WaDS30J4HsMQaxE/TdwJaPKEEaJLkmQ6gvQZfVRR7DbboiikgiHSwJsiYh9u1xh5ru6e90l/7xLEcQngDwXrACRtk708hYiRN7yDXVwDgOxdDGp8CiphmhN+ALQYULzYaZcNiAISa3LisqMOEijAYg9uPEiPrfscbqIbhUEHM0XUulgJaEYqrN7vtnHo50mUJUGSRKM8zfMsT2TXbKyui0ZvC70t223RFrWtWrsrUCwqT8URKspAYXqQIqrOGl1gOKBAf4cbGWFU6NOJ9M0uybAywIRTgv4CDTM1yVJpMJBMg5Q6NHLsQwDiCKWfGANT44PLBU2n3cZJwDkNZODXjG6U1l6G6nlySCHsEKhj4tMURHwCZoQGAH8G0FF3sAqQQRREoRVqty8Wq/VqswM1FGPMkEbi5GdM1wy/FI5w5L1G3sGUJo4DBq2L7sYWy7sGYb7lJxTjNNiReZEgLiJhyT5PS7RukFAeeCAYBv4oTrMcVphl3YYxksW3e6D+EBV43mQymp/OhLD3tzfL5bIzXeTH7GYBd7nOBmk4Pz+bn100KEC9u7vFy9dvtOnm83MVRMV+nwXI9KxrOBFDJzBCyE+j9fPnz5+/eHZxcQGn07Ytq+r777//+g9/kA3aenb6dlAd9bkkuyLnJZq3s2MHNWag9WaEP3jG7otNW9Z4kJEshrudRrqEPcnAwwoV69Z61guDIIsz5XvW1EYX1zevu66FXEUFRsMaIM1Oxyen99vt6GR6MgGKb01b7YvtelPstxisNAAUfehzQmQYUEeSjeOO4K3T09Pp9CQIosl41pIpyO3d4v5+qVsrSeQAyEYGZ599np+eTU8uZDqGC5BMhBcYpPbJoQGQuCHAHDg0AFy20Y0iqTcwugUO2Jmq3KNDK/fU/oT57EqFWJADxB30kZZ/xJTlnyscf2wA/m00AD//rHcBOor9ovE0/T97QKDdP4DvfuBRc70qRKcUgkj47zSCpim9NQC4jlj+w4bKpcNxTcb7jYRp1gNZHv9rP4In3wmq4Nm4fTIZRVBP4RUEQV3X7JdSFIjmxnNFb8XBIrBjHE34c5BCoGU2MxnqMyPZgVtMg+HZKEmfHUUHey0hxKEKUL8DH7KKyIhw0ENLoCPCJFCg0GFzj4Fp3QdcF8KTiEBJaB+5XrAlAsf9MIm5f1FVgY0mHNK+MGCnKE9Eqe82DAlgSgPEkRQUUJ/1DQDD855vsKN4dQMClDEImIRfBLUCmAYouPEMBQ3ogYQ7kYaBAsVowM2MfwMhFNXfhL6jbeRj9FzKJyPnYElRIKq1tqxrLFOE32PjhE0e9s4Ufi8cDwArIk7nAqVZRlzPHVopokLyFIiPzlFzyafVcQ6OCEWHe/2jly9sEkddR5aHJEV1kRdeF2Ljh3JgYHFgs0EmpA6J0aQQXY2diTo92Ko0qMzE2eX8v//v/tP/8H/4H6ePnwoj3n3zzWq1en/9+ub23W677LT24dnnBT5CpEEKEKqt7W67hwO3p66LRiZZngODv7y8fPbsydOnT6ezCdEtUKduNit24lssFm21Lzf3EuBiEAdhDB6AxLPX2uVyeX+/XO+2KgrTfOwrWYGwY7suGU9PT+ancQRVblE3+6quGj0/O397/f799S1cOFRgrSWLf9OUdZqmWZbFccyBbsy/WtzfMw2PKCvuhjTGJATjaRoOwI6dxKzYb0LIeLIkhQ+3gJVQUUCtsNkVrLnkm6EX03sVJglhpIJW17vNtq4Rkh2FZH5EQANyKqgB6ISPNFgSedtOIoSMqGjcADCSftxADh3goAV6YBfb+8wexPrUBkDzfbiReuETNQBdL4ToLTLpexgzcM/RIY9csiKGAXuyQWR5u0bytAsQhGCmt+N8++b62AsB304OnS5XgbAGp1igG7ysGlj2IjwNLHusMQY8vEEWz2g9ATgUZDXQ7SiXgPYQEhkHaAw4rdtjI/o+AXdYw/2OwtSYGkrJuIShGLSCFAiIkg2pvCiPgbhSmjpnBna6AqwAe/NG+iJLwvE4n6Rqnllgu0I11t83YleabWXLptvAIcW4p1tDHBUFYZKGp7PEdjUZnRjKTfcRSsjxbBQqToUjViysUp1XNZo1M4EKsUTLgDz4Yd1GBbs0ArZjwGXbBr+IfaWYUkZ1Eq3/xG1lko+PxxkNFzEygSsDNEDAhecZ4C7I9cVpQARkhxhKLt/xUEg/CUBe7yDnDyV4/2az2292xb6oKSYdazXoSP2ELYgCFKagvsg0xvgRkWQ+SkyDfg8gFX0ErwYrkB5hKKAJ4gkSGSQKnQCoYTzJQX8iLIkTIFl+9uTR06dPx+Pp9e3ty9dvyroNIjy/SZLc398v7+86YUZpkqVg6tvWVEWrJCaKrWk2+12l63Scj2fTn//iL07m57ui+Md/+vW769vRaJJleVvVza7IktT3/e0egB36FoIbu66bn5+dn5+PJpgzeEquVqu765vluxvXMrisAAEAAElEQVTPhUjQA+dy9kTTVDxbI1cQPE0OorLogWnDkrITra5MjZEPt7i8NzHtlRsAL8zCKFG+amtdbjembUIpglB0tqjrfWtbTyprfNv5aXY6nU6F16rA55lYURSL+9Vut4MBQxhSviZKHvI8yDENTmOaJNjlekNVyiiOkMBQVvXV1dObu8W337988/qt1vbi/OrZJy/GZ/NkfhZh6jITQST8RKhE+BGFyPs/2ABodHSU8POwAehsS4Jho5uyKgrb6TQKVTpGPqdMeEc7Nj/808rGHxuAfzMNwF98/sjx8XtYi74MMY/bVI7m4MD5iI97XMrzn1yQ8Ubl3J3htIAlyB3ZQ8kvEXUffIV/L4/4B7P2oQ0YSPzMPR1+hALIDJ7sSOVJno7SLM5kKHWtUZS2drPH/5VNqbAxouuN4hhmwGkaBBGtjzQQNqaFIAySLJYosQSaimywb4eNHKRJYF7kD026Rpp0Yw5H1b/z7+eugzm+fPCOFEO/y8WcsZJ4KFU5apJeKA+OVNhUXRBMhR3kuODgiQ2QIfifGI2zbjXoP7RjpEwxInyLoBq0Vx28BQF3WewZZObIVo7WL2oMFPpL0HukkHEbEd+degHHRqJk9A1Wa5Bn+UeArBDrxkWWsmCOJVDggHdoimoCSzQsfhCnAM0DmUWGKuDhOBcTBiZ9bgLgqD4088DMx+D8M/WIfqOzSWnqkhvIo6oOVcMhSuJYvO7ZlLS8yJwE5woUiKqGqyBrYMBqcsQKolt0XaJg1sn1GJqffghQNiVnV8cpaNPz+fznv/yLn//yL0bzx6bRu/16eX93ffPm5v2bu/v3xW47TtO2bjwr0iiNgxj3lBXWj3YivFlt1pslT7om0+nz58+fPnvy5VdfAf+WUkWowpsGdNXdZvX7f/y7zeJ+cbdsykp6sF3CDdh1cRiVFQKzDfEd8BdjPD88mT9d7UpjTJpnUZhURgP+9NVqsw3jVKqgbOrNdr/dF6yQgTKkB8gVefKkaSqlPD+/XK0Wtzc37Lo7FIhFWXL5xeOpoezGeuIDnwsjpEbwKwiCbYk6pWfr1U4y5HdZnFBrgdEKMpN9H/QYXQNnBLHDSUSAc3co/RkkxS3NoQRsT8lZeOSCBSkqnmMLJJj+/GCSyV/RjRkMPVkrwu9WFLtD5zDkZ9ObDwNDhoR5EYUo9hDpdej8OfjXoRJUqnIBTXNIR1HjSDv2UkzTjFcNxhHYyp96ZFRORzuxdUJVCRD6wC8CRAo6xAGh7w7v7/t+RYMgShggf98OswKytnSfnSRJWPokR4JoSmim88/4K/z7EeBAySFkI8GWLLpuaqNrWhco5xhziRD2kzL0vYAcVJAlW+1M04Aln0RZ7D2ZA7oN49QPUgMTG7HDBEBA5KIFzGdbYNttVUN4GnpB4AVJmEYxLZgQhLs9i9Jr6Aq6aHucV0Q/ZVUNCmgDLSzcliQGt3I8neoDNYjWZDqvdVHxyvMgQoQdLmgWSrsDBJe8NiYJ8nCIYak5RoZM20wUBOim0PZQkjFxq6JAUeAmqVcRiA5reRVGMoiur2+b2iChzKABQB4wrboq8KxtBMaJfpKGaYzTTwC8X9egTjWgywdwIID1qq0aW9VwBbDCD6I0UADsecSHyxFiokL+P1QEQE/cffb55z/72c+mp/PtZv/t9y+/++67u7s7sPxRuAOxwvgliTvT7raFT8GUzHO1noXhp6UkHxl8+vmXz198KqMIMobawr5jX0UyWK/XEHXk+e3d9e9+9zshuqfPnyVRuCv2++1OG9yQoKhIYA371YZ3xZAgNsYOmrZOotjZTxP/LQYXF3cgkmoo7leBmApCMbWvHaa6SNPwMYRnKh3xZS+evgDlrta6xmyqQz590TZFHHoN2KF+lEaik2VZa+OFKpiOY20wtFFhWFX13f2yqEoICGUwRu4Y0hVgdEouqEqJ2ThKs7AoSHJtvRoSHXF9u2i1PX/0NB9N19tyvdnn+fjZ8xenj66i2Uk8msp0JIAQSdjCkgEoNZZ0iQ4CAHrswbw4LuhoI8E8Bp5rVbHZblbFbhcqMZuOR5MzEUwonLgfmxOEJn35v1UD0BeYR7Xi/38V+Y8NwH/dBuBnz05YEOaMKZzaEqQat3kPuxsXpkeeehx0Re4Wnel9snnPAwiNTFleF/pweGK4MnIfRcnxZxs2yAFdG0b2w/h78PXn/ZXfxyFoLSpRTEcDP1SRDPwkSn3lBTKEn5ERja5p0o4DGN6fs29cUauQfTMc3hAhrHu//KELknQG4APNMsGeEMyoD9i0/GRR46QAU/oK/v0YW2OpxSidbES17kzrC4QmcuOhoX9z24yD9joBkIJWN5QGlOyFwv4IYmR8nH49DdoJktea+dkQGg4mP0zUOXiSOpjzKLy5k8bPtHGCCgDwbMvjU7CaixSgjHlQXxFMKcG7oLQgdlijeTOvDuwkyLFQzubIIwNN/3AMPMvhgEyXnkaIO3s7KBm04PoSuEvqXDYCpdqO8wroHNAAnkVscRiQLxNnqzGdDLd34PzIG1CQnas3If2QcwFdwWwlhBb24DZDdSmzzoKALGilMtsdGbB4sOWJ/DDyienu7YstNy2WpiWTyeTi7Hw8vfj05381ml6MphMpcVbLuthu17vt+u3bN8v76816KTubQsXCdGM1Gl0glJTusaKsl5v1roA88fLR1dNnzz/9/Muzi3M/QOiSB+efIBD+brX+/vvvv/nD1+/fvN3vNrpurGmBonat7Iz0Reh3gEXJ+GKxhwQZOayBSrI8ThOpQuP5692+aW0JfQJEdxqac8zeObjUgKAFoTwqOFK359m4bspit68r2J5iRE3Paa215wMhi+PYWrvfg+nrmDHU57akUuXMrzCOJpNJNoK/UNtiHFcVJY3vdgPS7Lx0wxBuUoFf7XcoVJ0jLJUG3A+T+JJukoNSxQqvhnced9K4YQjmkMd/cub3kG7LD9fwnX1N74qG4xgT1s4xGD/0BkPnOTTAA1TBgV9EoXFLygDtM6+GVX1MPHMGCbTQoUalIvvAGtLaIN/gqAEgZy0X3EF2Du4MdHhaug6t6TF9ZXh/dhZyDyxl3PK7OUcysoPjT4rhEr5fARjoIRj6ePg45D3vdB3czyD0ykDCwctu16EUBliORVIkYUBkGCmsaeqqrkvT1qLTYaDzHG62+WQchqGxXY3Qc5wZ3Vq0FTUpTDmHsPNaQNv4vIAP0FtCbBOEiHolQxqYucHcGItDAAoQfBAO48HhAg23GYM17Dnbtu0onzWNrgBV4GbDZIxMe4BS97cen1VOtgLO6poBio2jVch2DaYfygvI+gemyU7GapIwiiNMpxGcQnV5WVdNo6MwKapqvS2L2kC1isUW9LQULsVY5DWaLNDkghC3R56NZRh21iuquq4M3NxU1Mno/brcVU1Z1HzJ6ERhKBfFAdZT3WIKAQpWniSRCmVtqnwyvrp69OTxs7Ozi6qo/+mf/ulXv/rNernCcF5B8IClEvcubngQ+RokHA9DPGyOnR1PT3DShJycnD5++uLq0dNsNPH8oKzsvkTYsRBiv9++f/v6+vpdWewfXV60dVkVpW4qoXH7uZGxp1i5qwC7oKLnhBaPhnJQ45H9j0eOw0RDVdj5sOZAH8yDKdshVgwyHjhv0/YKeVrb6LYDDXIkhb/fl0Z3aZJIDxGENJfGfdN1Lf9UQJZUVQ13BxWFVVWtdvtGt3GSpKMRtDTk6AAFRSc8Kic2q3uvq8/nszSNeVjqKdm0ZrvfF3W3q9tsMv/sy58/fv5Zkk+zfCJnp8IqKxQTvugh7UM8oAbu4HBlOylDzs4QbS0Cx2BsCN9hFgJIvuTCJ3RTbJb7zdK37XSUh5NTIUfCY6MzpyJiQgFsu4gDPMwqh6CShxXjxxrQB51DnyX1r+b1L11B/0u//oUbHu8Xn0AEPJBM+suPDaM3tqPv628LCj/qNzzHIMMSa8gLzO2OPZUID0IYgHPpPGkZlMXm1FQ1j7/ZItqx0BhZ8h/M6J07R28nOnQFrlchQ0mWB3DtPoQKOepqL4/j92GbdrcB9Ag3p3kdhfU4rJ7y1NFyH8yKGFsClOAA5h6b59LYo0EyN+hMIOk4JkboGvPKUEYxRGABVWRSeE3VcPXqzIzbGpxd4jshORK4oFBEROFTCy+LYQLASTN0OZoW7nZuLIACnQOwJEfJ8Ocd7iXgebRSD40XayZtp7SNrZCAWcHvhycG4e4oB3hmQ4QDAl/phGQp3HJQzDg+A9uD6IjcRdg0lviy7g4Kiel0uHx0s5GKA0ib02Iy24oigrJ0xr+LWhEgiRjzCrErSgroAf+bNXwcOjsZJ4NOg1jONOAQJkLfAekkGXEQiEtTr9126QqdY2dVCV1HH1N6iCAQ2s7SnH/QR2aopdE/SOBZHEHzYrAbCoOhRxynKsqf/+SvHj39/OmzZ3GWsa8nyZfxAUuCZ1aL27v3bxb3N7apKTQi8wS5XiZx5/l1qxsKJrq+vS+RgKPOri6/+uqnn3z26XR2Gshgcb86OzkLx+OuKF69evXN73/3/XffrEgKgLofVZsWbd02hS5rbc3F409qckFBsBeo85jsWM+PwrTBOEi0Gv8rm6YqQYNG1A3FZVDRCpwcYXBEWO80COaQX3ddSIbiMlBRknHoDzfqDEXDXpNyKngWwc+pq5L9Ls9zGscRhEws9qZpVitocoaVoW9cBWKwqOXuWXyuSRuSyI916tbzG1hcH+7049TCD1hhPCgjzeeH//Sxi2j/sh38fA6Du+Fth+y54yE7z+sOwb39yHSQIhx9p9uHjG4oZfbDZGtWLg1qnP4gnV8NP+kOonbfwx/MLdyHA6bcDPdLeylRL/5xcMwQ34ZDxkTI6RyGMdrwkZkJ+SDcHfAQzV/Q5DfoASBR8KXXxWEwypIkjpCuV9fFbltUe+EZNAPGJGl0ejqbTichmaiwAW5VtWVRU9wh2gttfUthcDyuVAG4ebTeY1TF6IbWtqktOJ6wrLIE1uIgyVy0dznDugVXJbcC9FdcCO/6dnnYkHqBE/zjdzsC5hEWxs0kraAmBtzDggqGrnBWQdhA4jjRMPssHR4WtXXrS4/ciiTKN8AeAM7aBuyrshHwDECCgSXuLSaQoQLm7SnsRK0Ffs07YBjEKoxIMwCcu2n0vrEmHJUaDCiyqQACIiy2pAgRE2zDiicxiQLYaqfRs89f3C1u9/tyPj/7yZc/HY+mr75//etf//r2/TXAJ/JjDdGE4INY7DiSc9OtweyFMC+crl1RjiezfHrq+UFjvTjJLq6enF48Gk8vsslM+d5mt6lKtPqvvv/26z/8frdZx6GKVcAKALpVfC8IKuNDHyMsuh58iWSrBuMLHALdYfwROEX7gb04rxu0vyoOPYgURCIBEDhmEaskWm93ZMOQWy3Wq63vq+l0ul2t2YZYYW7EwxyIaNI0p+hosnfFVZCcmBamSGN/9OjxZHpiOmzlZVmv72/u37+sio0K5LNnz55+8akYT8V+t1lv/+f/5T+LMLl4/OmXv/jL/OqFMIhLs14QxBMGTJFRQ/gbEbNtXVdJFMOiokMPilFAEAIMrNYiCoQPAlIHg2m/JRozuQkjNs42lWlLJGmEgYhS0UUwFALG1H3QALghJkWJdYDtDo1B/3JmuEf1o6NmHX3Hn3kB3f2ZH/+f+va/eN6LgI+J/oKDsdw9cYjaxo3BPLyDaoT9aN2DxxPzQYWJ/3Z8GDyJLuIR7wYOvbOHI7UWE2PguhWwl/DBaponD0eI4KGyl+Ewf2cKMqeBcHiNg7XcRKLfaAkbc4t+f3P3AYR9aiztKG7YjsqWsqTcGeJThIiiIZRnOEvS85TLpqVoGHwnxcR4BqabNAumYQMM8tkWJE8zLEwkTuI6GFTtlkJkdQszzT76indcUDJAbeUdtw9cZWQRvCqsjkd4JNvyuJbmYw8f5xAyhDkIaRA+z+lO0AejTGwwX5EqoD2ErMYpwowQVlKTYbLAji/YUg91koeNfzjD1GQ5jjWDpg4BpQWaD48HIz3VAa1LDFEylR2M4pGqoPMkKXBxCRswkPg8kdW61VIJqOMCiU0CkBU2Wl2VvnRfZ7qRgqFil8XAIGG/ghgmmNDRREKfTiF7VWS+zagTamAjih3ZKUgvCGUY+nEShSG+DWRqurL4bMzZaIDKdEF29ejZF1/95Iuvfvr4yVORjUSjy2K/XC7burG6IR1ytV2vtstFUVTX727AQDMCaDt5DKV5lmR5UTXrfQGn0baFn/R0Mp2cpPnov//v/o8VcdhCqbIs831/s14v725vrt+9e/X991//br1YKF+MkhAZ2F13d3fPpkq4UWhyBhq97xlAS76TiFivNaKpdW0MCi24lVMiBLV/rPcAYIknmeOrwRoLyEaJ2cyTyYTTu6qqQmBQn+DDd8LAaSGp8aHYZarxEN19HATeM7gMG4kOmbXH6eAf2BXQ2iRbfNKDhmR4BAbq/8OIEs7AJv+DI+nw4Xl5GF9I7DJI8D8u3LnBPm4e2GSWB3dDVzCshwfA5Qj14LyR499+bJDg7FCP1kkK+OvtlMljgD4vr8n64wYAx9nv3UPpzz5sxDageeaDBHHC0akBOCS60CdizIKzn4f8Ftxm4EsA+kGqVbG3ACZ98Ds8yAzGeTqdjEcZSOEavgzFm7evgxj2VmW53+12XWdGoxElE+RUefjo+RuMAuCYCn9iSZRQmOVQx+dSvbMs413C98BRaZq2KvFgYwLcJ8z0CjY7NFQdZwhQ4jJNAxSEtBoWFMjRAtUNk6sghIy+JdcgiqTz4O4PQo1sm4IrUW4A8NlRF4Obj/2TPIo4gpCBBoo8h/rIoykNHoEolqS0QXCHF1Va7/b1rqgazEi7ABcIZLwwVtQqwG9Da5CaQFEk6Bh6PCGbRm/L2oSjxmCPxP0O9Rbmb9yDgTYjFZ32qjMw0EuyZNPsL64uT09PCcDeaG3HWT4ZTX/zm9+wYSiNAPGhgE8ZnRKyzhl/ZF0Fzp7vK9OJCr1NdHZ5efn4eRClN7d3r9/f/uK/+d/LKD6dzkbTEUK0titrdZYmf/Of/z91uW+K0uoWFD1tyt1+X9VeCEAd0hXs9Jw9DaBHWPRRCDGgGTs2UMDl2OuoBaUpPaEWPJiyBn4kFMZMFFbrrMArSNZ9BJxrI4jVy6fRAY7g1XVSUch0FEehWi2WQQDXJuP72vNkkqTjWTIaqzhNR+Mnj595F5ciDGA+cL+4f/Pq9e//8f7mTdd1T549vXz8KMa0ZSRmZ0J39a6qrYpGsyg/gdg3jIUXUfC0y1xyCwg1AFZrFBttI3SLuYeUoq11tWubvfBs2diibrUfxaNZOj6J4pScoCHuZ4YCPbIIvhZdiO6Fpmb82Lvlgu58AS4ZygvrUYMqfIyfDjX9H7GA/LEB+HNvAA5g1VEbwONvogaxqzpP2p1ioKegOCSVNzwXlDKwSihhHF5CDFMNXBThjcdjnkUOI2OKbYeQCPZl8OjHoolllRbX7XpzbBt6sLnsQAQfFvRhp2ebs6GAGDZj4g4eRhXD14fYSz7swTmHMDIaTZDkjndxQss49Wiw0ecOR3iakyBdvcuZvmioqECn4W87jNeBxMNOVMYBfANSGB/H4KOHcr3aohGiupSbIzfZcAk1h1aETzqcjohzzIfqzqAxcZQ/uL5sm+OBjnL4et8DWLI1onMLzQCRtpCeCBCXGJlU9Pf0IebcVy2zZR0EGMpQhp5CQzWIGg9wIyX3ui6xb1S4IiER1WGg1EO5XlNDP41LxaWYC0RSQZSw+JKzYHWf17XZrIaEZvJZVzGKRR8FkEVWMfFBgbTHIdJUE2VDaQgRlDxf7hAYr8tyz5cPewwykNlVSZW1NdCZkbcp3PfQClEnhvqVxeiEWcJtttEQ1NYNNpnx7OSTF59/8eVPLh89i/KRkEG1XCHZvqrQgbS63O/KfVHut+xnta9KyPiMFtIPg+j88iofj6IkK+vq5u5utwNJJklH7++3z1989tVXX11ePiLLdmiu/U6s1gvfmt1m8/bl9998/fv3b143dQX1goCDIQwIyVgHFSTUOhbNiIaZptHYRWnhUVp4m7JuCEZlPhhZgKFDSJKErCRwKirExJaoLYRIshztPfl0cWgoJ8suFovVanV9fb1cLtmTjtFTJ1SkHPGBQGKtZQT3kEQxtAHWcfSZ3U5lFvjru11Bdw4Hw7GKnbA7hBMdRL1Dgu9xIuHRfxKF7mifG+5QPsKhGehXEKhRPxiCH//gsesov7CogN9HeWdkkMmaBBTWvTLh2F0NHHFnrknSZ/pXfF1FaPih+8GgcqAA0Z3vjpDzmJlx5AweeAXr0QSmAA0pbA7xcfM3XqiJwue6BTtMABwZ0KFCR+IxLtQOIeUiUOSgJaUxMBhtmpoIGxruX76NwnCS50jEnkyzHL3fu3dvFqvlerk0nU2TyPP9Yr/dwDIoCsI4jTMYt/sB0qBb8hQV8H2yGulw1mAQiDqJgs+QAxwmYRwFqKRlZwAZ7ApMgAd6A6hoFLbtNBKabG37VHvf9+fzM8aV2DWOOPZYoEajCZDn1vLEjxEZXLSudfHtnAEMNzRCoNl/EusVPPL4RHFMjYPBOBexg9bCeiIM4Rrs4yr7FdIAmgqkflgvUEYkWh1YCUVBhIAVNzdD4m9Rig4lr+fJxopOZQ2QG3Lv7Yj7Ry4RaRilaZzGobBdVcL4FRdaSZkE22Kv6ybLRqezeRAE68Xq9vYWAgAI3jDEUIRLk6NU5wdsbisQNUMnByuy9LNstC+rqobtXjqepvlUhVEn5P22bNpuPj/59NNPpZSv374qy2I8Gk3Ho9VicXdzW5d7H6dHFzu0AL6KDc1yeSnuXekwW/aEhhohDBPwrrA9WavRE8EBDwN6vlJgLlEPytMwoiqBjkUBzXK5KXwV1nW73e48EaTZyNpuu92PR1OaLLEnBAZocAQR3QRrrPRU1IVhkI4n55fnT5/NTi+8+VxUyE8QUQRyznbz8ptvv/7NPwbNtik28CedTYMImpWnzz4Z/eRnoqjB0/SjMJuJZCJE0IEyHQCM6hEJYv4wnQKbpq52u+Wy2K5824aBb3VV7bd5KIqiWG73+8YGo9Ozp5+cXz4P0xk2RCoVsNoz8wIR7FYFCQwTDtRB99zyFAUkAloNeN3Ad8IU5McG4N9uA/DzZwcbUHq5vhMzeqdJHTiyKJ4U+dO7qpcM+9ymCLtJSjc87JHkJhHBbYDBKqaJ066DPZ6SJimzkJj9Pvw0CIyhSrxqGsyFq0rD/gEiKseQpT/7UBvoeDiB8qON9oH70PAncw/chz8C/wASDP7WvdiLqoHDDcFuGPx3tsmjr1rHQGcHQ4Tbu1kk0YTcwNfDou9sVQcHif7rZN0T+EmQpBmC3MkkDtQaF5iqu5YUDCxN7oN+W+LnODtOblpwGolJ0Ws0sN1ws8+eQs5BSGDDYJUt5wxTZT+cN4wAiWSP88yfkjUhbEPa04bwlyhIHX7eCye4eaAdyE1gOFyXOWDS1UxDTebAfowse9FkfwtR0ElLGCZ5vXPyKxOBmOpE4g2K5OlDVZlzzEIxAy4KIjk9v5vkGacssyCMJwCh7KTZxUrAmyamUgFoOLd2DeoJXWndEDpCqZ9+4IV5azxG3VB/9R6sGrEA2HcBo6XIHw3DWHpicX8NXUGSwtK0tb6MRpOTyXT+V3/1H/NsFCeZ0Xq93Nzd3W2Wq6YurS6rEnq5Gizker2DFyRaEk8keTabzSazKfOPtTG18douvF2u71fLMIifffLi008/HY+n1tqTkxO6fcHi367Wb16//Pbbb+7eve7KnamLpq0HbIwQLx6CkX14baBHhH8iMlP3nahMhyEDZGI+eM10a3MmV0LeTU1VF+WeJN22Nc1wI2VZdn5+fnV1NZvNzs7OOL9vv99zVN/t7e12C7cuQ1tOL0V1dr0D5e+hibBNsJ7Ar8oYwLGcQUEEOaY4uDwBzr+ADws14v2KdFgHBpHPQzsL1wB8kGZ43AA8PCRILD52OBh+9jA77Tkih8gzx/Mnx3lKqwCYwWkclFzBf5Kp5WHlG6TJlFtiEeZAX6eoDXLi4ikl/z+XyEE4qKMk0Rf7SSaTwrmIP7gA0d9Z68UcQ+fpyQfKhkM8GXBx3fhSn3R+3AzQJJni/zDkxDtCm6TrxuiKFFPG98AmT9JoNpmens7I2TlbrJaLu9t9WWA4Zm1T10VZFoirU1gXozhUEeyXyBjR+pLzBzQMhWBqI4wGJbzVcIqCZoFKVglrAYr3kmCr0IuaSTeEQSlMDkjDboVvIOF7oBSHIUgpy6pardbbLYgiMqBwjzAQJO6sECtT5VniHTk60KbgMrZ63iOlkFC9hVMKdylaNnuiGkUuQtQLe2UQliJfhgYZ0sB0cGGpYaB1qQ1DleWw++XNoq6q/a5s6prHdK3tsskpPIZYZ0Kot7AIxlKdl2bJOIe7lyTJH7h0UMIaxMt5SKuo61bYLo0Baty8f0tmXrhLyQBDcDZ32bSKpiVccGMQhCdPlnUjg9BYsd0X230VRsnl5aPTi0e19prWFIidttCNhAomae/fX55fKCiMTbFF5rRua1JzxPuydskVHqnBoPNDTZ8mke/ZUPkUqgDYgFgElQzJcIqzHZmPR7c7U2i58KURIuReASKig3fv78qiTvO8s97dclU3JssybUWUxDnMizI/8BvKNdNVEWpIlbSQs6tHn/70l1effSlmc+EHqPvLBnyBQFIcUKvvbq9fff3q138nICZWcZKoOIYpYhjLMP38p7/sglglU5HNRIjpVlWhhcuxTxE0gKcMaAEeys6KuhK2Xt6+/fp3//T+zdehb+en09k4Dg3sNGrtq2w8e/Ti5Oq5l57oLhBB0gmoh5m2jdKLaD6hivl8Ppww0HwABZshO1vmLrTIDlEUJP+/+fVjA/Bn1gD87OnFsGoPe9Uw4WXyyRH5lfYwBofgFNEjPVA7sUOO2w/6jdCJz/oJAL7ElB2e0JHxIuf1BhGcHOR4PJHgcYaeh7ntDjkWu6oqlQrIXRCIOMXXMiLsezLCcvkRueW4gOhjqQ743wfVwIfjdXpWyOaSjHf6E3OIQ8MEEQ3Sg4Wb1poQODILZ8kXCEgJvp/exaUH8Hkgrx4bIWiA63ji2jOFRtjT2YypDiALDVHMvs+TDY76obkAyR540wJSiMH9kLKEhFEg6MS7YCk23d8wm/BgmEhGQGCB9L8YZJDjM+lOiC90y9/l7ghH1iclKp0RJ8FsKAQXKk/yd3eniw+fnI0kglf4VLvrMnjwO9SN2oDhhgxVxGQkrgs5pxM+d2hQiT5BFkA8tRC+FyfpcH3h6EBeQ1o3EB8rUs3C/89xnKStR5FVHpRwDtwCsx8Rm3mWUoECW3D4mlh4RGjTFa1nWReP1pfPD/6LBORw3EMUl1TZCAEUaRydnUxMUxd1U5RVUelOqCyf5ePZbltdXD568eKzq6tHo3zieRKOtMVmeXu93a2JNrMvS/LKrKCOuLm9Ze1sNh6dnZxOTmZJklgV7lrPC+O2NfeL1WK9Fp2f5lma5l9+9VMkcWqdZcn85DQOwn2xLVbLP/zD3xTru+VyWRR7Or3kZwSTFscfAEzWWjiKYAJhKhUU2qKdQhopDAvRxXYiCCJQBmAPGpIQjyxiPbFY3TOYytT8oZ17+vTpycnJkydPLi4uwjDc7XY35CD0/uZuu92tVitSXYPJw0SIwfb3KIUQt4Ti5wdrCToS/hNi7iDCEIieW/46M+XIw/KHuPW9O9nDFyhAPBk8jiv5iCnkXqBz0Ir38Rt9kHYyfB2SiYEwefyLj/xJj13X4ASJ2hFl9FDuAyCFva9rfrgl4IBhp8vqF+1+S+aZmMN3ek8zakvY5IBWMUIK6dvgXUPRh+7UHShDbIn88QSAKVX8RBydATCnCTYC1B1Dv0E+QhZ5YzQPBOoOwyvlI8w1js/mF5OTkzxJlpv165ff3d7fK99PsgwFr7awcmiR+U1Wp6EfKBD/D42iGy265ox14mSED/qHCn3phbFj/lDIl6OeGgBMPMKlMMPe9qrT4C1xuxXHYZrmnA1c1e1ms+kD6ZxJHSvNLGmxDjPmXqjVWT041sNUje5PQBKYUGFP+4DyaqwHVyIrkD4SJDCjJJfqgc6qUbGXnWlpWcNADO5jETzf2hrdCDbOoiQZXswBmpSPiwdCKbXbrKNAZhkchxM486IHqJpa+H5FZCcwJOkXAU+Xsq4r0Gw8QFF1hUeVbCAQNwHaUozc255Whxtgvd3XLcTTtLREBv5sum71T37+l8gw82RDi3PVgKxb1/Xbt28DygwDaaBpTasdmEhTL1pu0daB8KOg44ox1rWB8mElBpsruvqYrehOGmS2KBCcIBiicCFk2x09Wcwi9mWYxqe7oqkb7JL7ol6sN622uNhRAmwxChBU4nut0WXd2qbMkdKm8sn8/Onzi0++iM6vRBhhGpHmoP3otri/ef3dN8vb98V6vbl/9+xkRBxTaNmpUQ6tDOtORPlMBJkfjePRbHb+5OzqWTY6AbBoKyCGaAAUMSaoKycJntgvX3/z61/93f96d/0yz+TF+WySBs16gUGYjCbnTx5/9rPk6eciGLW17YLMk1HnkW0yEZUxCvADUgJSiUKPPG5OGnQjho+xQbTSEIoACYFjbOyyXR4ub8fA6IN17McG4M+rAfjJ06tjDuswz6XC3X5UKAMZZY1mv10RMso+0B5lUA9MU3pqmXvKL+6/efNIyeaPKfuUgtUpRdSRxsRJmGfj0TiLoxR6HaLg390usG3ALabmP+E2jUNUPOr62Oqbf+kBPKQGoEeqjj4XVb4sVex1AoR8EzrtURAMF/3D5yI0ov+IPJ7sGwxsH+68oTgg3yQcTwSLaOBtPCfp37Mr92tuDFCUcqQaHVdRlErJGOMRbBsu7DAMmUvNwSvOVZTMnLm2AHZrwPI8VBKu4SJmM5X+IMjAusfD353Qh0Fv/F4liWE56JudvzgG04dCp6d4dZ1X7OHHPAxhWCHAAmKOPmBbFarR2bLRKMd/JYSG3vOovfzw5o96ahA6JLIBpQbg0KTwR2C0D0MWFEuwxiOfdQ9tHFm8VlXlS8BCgL1766fQM6JaSwFfbSlFHKo0CRLw0kRV7qLAi0IE9yCLkqB0Y4WvIsigSa4Aaym0pDiw8RhbrzGWAjiN7ytYCgXhKI06baIomp1eZKNR03bLLSCxJB2DwKBtlGRPnjz77NMvzs7OZAiArVgAHV+u7peL9f3idrPZcLoFvT8GJsrzs/Ho9PR0ND2Jp/NW+DWuO855UTWL5fZ+tfJ8dX5+OZ/PhbDb9YawpfxsMrqY5tVus16tlsv73XqzL7blvtB1w5MjImsgYNRAKKwrbfaeqLqOdmTq7rRFOCvmAc6sie9MzPFIBTI9mTQNio/tdssx22B2I22j5CRvZAyfnp7RK8/Hd4vVdrtbLpcrem23W8Q50zju0BMe9QDsKcRMJxZf9mad3g9RgFij82H1zyyj4zutX98+bACGn/rANnsAAtAMfdQAHNf33sMXW6YeH8zH33m0ghHJkCK8aLyIP8nzBuY2Q7QX+/tz2/PAcpTdwbmgbJujEX6P6DuLTHHsKoY2oNf2cfovUwgcZAgLn8FBxPkiDMc/hGYMx48WrJccBL4XKBkpqDA7A3d8ZtwRDw2oQdd1SZzLQKVxko9HaZy0Rm/Xm/V2Q3+3uqFYM6x3ZM0MvRZRFntvzuMMh+MqnInptAgBh2BwxPk90K/GdfE7kvxAXupiEAFXmapCVoxBqR1GdKsrFbJdD+LkS5zYJEnyPI/juKz2QwfiVlHmVFD3fmSGgekN1tUw0IjHO9i8YrKK2Qfs/HkUgO9kzAJCWIfsYMuCSAwH5nVGSS+N4jxDExVSU1SCOrXbbHZs0uqCU0CChekQcmNInueIuPAn8iCkgAE+EAcaRScIdGjbzpjJCIGbWNcN5oOD+B6TFTL35XkgRgEkuO082RpblfW2KAtEcYGkGkRpbcT05PTZ0+cn89P1dv+7P3z9+tXboq66DkNmLJUhDk95PtzAdvssjdkPl2ZPYLQjsyyQIVoPi5wu2VELBLPggEa6fkCaOopqQMQBWihvs9mQmTXL4eiuxiYReSKdnQKSuF8srm/ua21UEAml/k//t/+7bfW2bDZFsd3tltvdersr97ur2fTq6urZp1/K8wsg954UKhRSYehcFs1us7l9d/Pqm2a/8XXV7Db1Zj3J4iBJ61aXbRtnk4unz08vn0wfPxPRSMhYW2W9uFNho0XV1NNZ5qB5EQCJErCadm7G5eruu9+8e/UbYfbjkfRFU22XEtZJsH1KpmcXn/785MVXIjsVVhoRW4qkoDuQZ3og9GgbwBqQu3qUNK4BsLryURq19Wa1vLttmmaUZ9n4NMznVmDY6PbjvgJ4QAdyRfNBuvCv6PVjA/DPvryfPnvE1erwJWaI9mGZB1Cq35Bg1wi4wuHWjlbhvp9pQsNkAHkr2J55kz7amxx7/kCd79fuIAZlaHDqcJ06uJhwK2IOT1mWgDd2u7JqKoo4OV7rP8DtBtdt/hSDvenwGznqhWHL7giGcck7dEsQXsQnjGprIKAoQSjF1rmUkk09xssDrYU/IzcAEFfSIBgAJxJwwXrCqg5ADM4/vJ4CmMQZFmGIYDVcGCYySo+5UqPRiF04+YSDB9trJoi2MxCE2CaPQX02L4e5GHZ8fGJ/W+zhqIOVmj+cowlFIcUHodkhVhFbeaK8QFAxdkZiJ+NfiavI+DRPITg7AZnQBDGQj6SrhJwVI4p3GP8TYOauCDdUg8ibh+PDpcSq5Y4fI1EeYnAOwMHDtDc1AeAB9wIwQ6icdZlALNulZNAGPFGlUugtsiRSyham3bdwFqz9zgaI6uzCANhiIG2gRIS/w8iVSUY8PeAFEb7kRBq2QJhMkoSjdASjt1qDDoABus2jDHnPUZhkI1hEo2AKVQivaKmC1nb7ouqEP5udnJzNx1n+6OISgCihb3Vd39zcvHv3brVerBZLY4Bj1cW+qlCKA0kMgsnF5ezs/Oz8MkwzAxNAXVR1UevFYrXH8KAKgmA8QlgeJsXFfprFCY3shbBNVe+262K7A2cAF5AUp4Z0NnQjaeHtO1BtQHWyCEiq2nZf6UabqqmRA0dtM/cAMc6mms0mpHPDK0mSuq5f0oubAdbsMjMwz/MozZ49fRHH8Xg8juN4s9m8evXq3bt3RQFS8mGRelAWuyTa4Z/464O97/GPCBy5/lOWdLDLeNd86N5zWGHc9w1K3LYZbHA+lhZ8kGDNVKIfmiTgTH7cLbDw8ePGow/e+pBxRLJnboRoMexDFQjtpuGte8QOFSqEpM4OxGH5bOrgxpu0YPRgB9hH7A3ysQi4f2Bd7GBv34wgRbwjGWvaVivlj/IsJ8odiPsU9UAEZXju0r0hNVwIfIQ2JilcVhpkcukaFoqRCvEkWw8MtbppUAJbiO8RyEZhsGQqBuo7cdVYJ8Z4O7MgkFfZu5C5MSn1D9vtliMOqVRCIB0gZKx/DQ7fc/wWOmv4dFmWgXZPZpyudidYYjzJByDDXTXaXzjtwdln93sffOvhmk9fZ9IOFdzairKsfGSTwVSCOXLwL0A4FNZJ3nBhw4w5NYpyH9fUKIGEgZPZdDKZKB8ltddhFofMvrpoa+2R6dZohF6laZqi2CG8lgbmkDCjiQ8p0JA1A5SNLVUShQ1IO1oKDwm3lELNaZvr7YZjALAAUFwgzX4xmO0XbyBNTWuI1qitr6IE8h7TifOLy/PLRzd39//0j79e73aDZmxoO3EEWsPIgkitvkCfE4XA5WeTMSXfNFo3otMq8JE4noSj2SSIIZ4AhakqbavDALrt7WoN+Xjb1uCFYsnK8nGcjrabOoqzk5MTpdSr12+/ff06H08//eKLJ599LpJc5GORpEKLdrV6c3OzWizLzW4+n18++2R0cSWyKW5ucqG4v7u5efP9/Zvvd/fvRbkZR15kbbFeoIfJsnw88YIQ2RNeeHJxdf74k0e/+A8izoUfY0bpRSJIbedXdR2E1JR30hcBxAs8AbBW1HuRdELvxPqtaFbCq0yx2Nxfz5K0rpp9Y0U0GV88UxdPRTjujO+ptCUmIO5nxvhR3PhdODNwFMWBO2MS3KXa1KWMQ2Ha+7cvv/v2m/1+e3Zyenb1dP7ky4cNgP2oAaAmgv/yYwPw59cAfPL4aHjaHTcDQwjAETMbQpyeREuUE9bnQWDuAuEdGuzWOyo2pVASDG8eK7tfxCFBnCzbw8A8eTi2xx7+zsLBD6LBhCff3ywd6txbCfUVs8veGnZr/lBADPqi332F8C3HkbUfokcEgrmif9i2e6MM2Lex24ODtD0BauYAQdH54aYiC2GDiIq1w+ZEBEoMPENCdnoXI+LSN9gFwJSlPot4wDQ3plNUN62KgjRNGW6By7/1TKcpNoWMscmT4Tj0x7madtSbMI8H6n7sKyB2s0koW5oT+EqzDtTQQJuIvwszEJrD0IJCJTZqYrQ2TgPuzr+t4fAIXxgVIDq+I48mtgzisbzXtsSJOtCFeRIC/rdz8HgwuuGE98NEAlsBThk3ckNmmbsnEQQZDG7mx49QHOJ4elE7TYGx05hpHvueCdGNiKbe1+XOmlrB1tMPiRHkiTYOsQUGofKFzjCSAjZHjRwQaIykqHphSSX89eNsNJpMRpM0GX/9++/3uxLzB3CJMb0OwihMsFsi1AiMXqQcaNMhQ6fRs9HpJIdwNoyUbjC4IEqVfv/mLTCmsmxgksgTM4BgN4t7FSfZaDw9mZ/OLyan8/HkVMXparVZrrfXtzeL+2VdVRCax3ESwm5ftyhZ0EJw5DZMljx8jLJqq1ZKFYeJ9FRdtUVT2QAca5xn4bcdPOYq/M9AG2xtQw/ckRGWBz73bHZ+fj6ZwMBxYKO9e/fu7u7u/fv3ux0StXgQZ4yRfphmmGacnJyEYVgUxc3NzWKxcKm3H4n4OR5owAiOC+JjW8xhpiRDiET5IAdMgReE4Zv5NmFfeS5fPqb1f2DrecShP+LHP2wYPu4HeN/9ITHxh/3G4S9HTmXHfx77jR43BqYnl/Pjxk5rQ4PtVl3W69N5aCputFypSofH1saseaDFs29CqD1yFKDDwRPjhQKe3d5x1PCAkeWmxDTbZHCkswbRXcQLgiOQlAQtsyW0j+sFE0xYZ2KA6CmB4LCwN4BwzsHEle+qpmUNgKEIeSExaQXTmoS5HHnGmcdsDSw86HkcaYcWt94LCD0YARktx5bRlNCTtkEJ1ufZU7wxlrumQcQB5zo74YomYmQH6trwtsOe4nihvVncQJEyArY5KgB/BqZVCHGDVfBms+OIRqKDENxDmzFkprRLwpcmhFNfg9yAqmvBy4f7D+gxcCOYjvMsiQW0ohXubR/BvWVZoCvwu+nJCatuEHbWwKSLn5FARX0IBhIbaL3E+s1eaqxe6Azsj3EFo7CsqvV6C2V/a+I0nU6n+WgSRclmV1RVU9UwV0UUVhgCv2h00WhubLD7YEBM51CG799fw9qV4u34fouUTKI4CdR+t0EdjyAdTLmVFGkMMtLJdDQdZ57fFftNTYRGFYW6E34Qnk7Gs9nMtM3i9m6zXlprx9kYi2qcF2W12RewMcjyOMmuLp8U2GphrWaFB4f+Ckvb7Oz8/PGz8eOnIhk74R4SdrzNpvAkWXZkYxFFSJ6DmKTtdP2r/+//+vu//2tRruZJkPrGawpTt8JTtQGPYHI6L5Dqpr745V+eP34uzx9jm1WpCFPRBU3bgd6Fgt/QXgQbCasx1kZT6xnRlqKrhd0KvcL/mrXe3Ze7dbGEHMUL02R6kV08FbMrJAc3nZDwkkIfX27L7VboOokDP5s1/lT7MT+PCveghgKsa3GHN0VdFddv37x+9Z3yxaPLq9H0LD/7xHoh98zMGcTDRqQ1En4ghgzTyB6a+UFHhI+kVv92GgDvj3yuDxie/3obgC+fXj60+zwWAT9gydPLBhJUH7cZD5xRMPxq3kUcS7R/0TSVN13eS3oqUW9M4aClnnrkqDg+pcES/4//nsROHMNuGO5Pz8tGMzhC0NrNUQDMQd/v97zBfyDd81G0OTeMAWNmZOb4bA/Mfg3C+XE1YPiC888c5L/OJwkJ7dQPoPTh+akm1/OAYEWQya0eymupugDxupRnTmY1fGz4vZSVS8KymhI60TsYK7JxOnQ7APDiiLmz8MnumTlcKDNvuNwXzI2mMoggHRBpQDBlwIk5DyAFWaGB9wSWEP5+ryJyPWXasMiBedjkawGED/tBrxE8VOQCWgVQYwgVE9y1wXtTdnXNU4XhfLobkdoADks6xkcZ6QR2Sd4pH1RU+qG9IxQO8M04NADUXjq3k2GwMyQWSeWZtooCNZuMptNxoLyq3Jb7rW6L/WYZhzIOcb8gmjSC1UxnypNYKY8c5chLB8MBBdoDinkiEnQgVaOySeMsCrNnz77a70Hlh0dHWW5gdl7qTqfZiH5YNrZrWjj8SVCEo7roQgk3TLjjx4mxbbEpdvuN77uZOIj11MWB6FvXs/lU416xNTk1pdkkn54k2ejy0ePRaJJmeVVV7968ffny5e3tbVmWcTKKkVYTgFa0hiFPHEZ5mhXbXRQlgQyhpNtXurVREAdpXDUlrFUNrpMWUneiMaK1XVk1phMwTO3F332BjtkRKE+z2cXFxWw2Yx93KeVut1ssFsxocgyczq/RkKBA50vDIz4WAAzBf+zSyAgxG7EP1djQ6HKE0xAwB9YXFgJAx4MxJRdqPGfrs7cO6YcMmg8TgH9m0Xzwr1RSf7wTHOtYHoiRqEB8KHanr/dJ1R/8imGR/KCd+GDCecAmaGQwDNNYFkyaHMf5GQif/gPOrtMG9A8gVja2Y2YqI/GpiXpeoqQbDIj5+weTgOFxPgBAWBY7iaYdjGbuSYAlEwOGLw3MdjlgF9wzsFAINkFRz2/GfdADgUSfTlO1DciBVHpjVSfXzWPsv2M9A6253ABwaF3vzNOPgolcx/gR/CUZaUJJ3Unf0XU8DBjdcAVaLDZPoyJ54DTi62yqTn5NaHLIpUBTcNsBSHNLlsHmhllEhLLYky2M1/DxW9PVdbunUNs+1gb5AG4Xo7Eb/OKkT1lvbV1VzJLHHq1kkkRjLCAReP9wPiUGDj0CGI0oSG+HeAO+cAAjIMkjq4verJmG8xjoWmtCFSC7WCnS32hQlQT0sp0Qdd0u19vlel3VbRBEYZyORhOkNZBFsUBsLl6+DJAKTLHHNcyWsFgizAH8H/CBcWMQjga/UUkpxb5ntUaMmvQMnEGqNIlnk2w8SpVvQyVJOeiZpt4RJcAPotZ0cRCOR5n0/GIHiiOvP2EU52MYMCRZ1ppuV5S7onr56jUnPxKOr+Mkmc1PR7PZ+9tFMppO5uenV0/Pn7wQJ3NhfVtUfjISQDstkX/cHB6L1vZu8fq799/+ZvXmm3Jx3RXr2DNRmITZtGzN7HT+1S9+udoVv/3m1eTi0dWzT06ffCogA0hE2+HWCCIZJNRYYyJA/pueheabNIidEaEn9ovl268X19+ZeqH8SpgCWS37ernZR/n0i5//h9PPfgJWkoxFMDJ1I8NQF/v3r1+u795HUpydjLPJhTh50ciUNnSa0+MqwpbQ6taPIDFavXn563/8B22aLz779PLZF9ofWQ/jYvYApwAcLuRwlWBwDmoDpBmCYuzYgPXj148NwL/OBgBUQi7Ae1UHj86Z8OCQ2mPQqzWEcGAdATpOCVBoA6KY7DVJzOpAO/K3IUMZFBAoIWmizVNp7NP07j1LnVdYD+NPkNbAnyE2SOcRZtNAQsPC38ElA291d3fno9J1I12GNAYM/pAJ2jv8IIK+/2BHPBMixfcwf08opS3Esqirf083VgOhk0pWQOgIaQHZBT/TtkTyCQ2ZJKogjL2EZKyUXU84lw80vtNtWzetbhToPY1pGtPAaTiKwoTSEkRKeZ/uVTdAkdu2vbsrgkhEkQzjiHQK3W6339IaB8/4NGUxloWTuqmqRoEPCtkqAkghGqZcLKS3E+QJahLaKoeyAo3GdWF6jTBECGZvFJKKMp2J63BYEHoIGnGgphvYsCRX+Soktw132rG5No0WHhZ0ou/2U0UCJgFAk1gZ3csDyoTLcUXz5/IZ+DVQhgbEkahKpIEk+/S++u/dn/oZl298hbRFD5Mp683Pr9Bn6W5T1ONRNprO52dXgRL7YtNUu/XqfrlaWFOnaTzK8iRU22Ib+50KbI2rX4GTGiIDazoZwR0O25XRUNCWq8WNbv03r++ydDyfz8/m88dxUJblcrPal7t31ze67Dwl0yyfTnLT2dV2c3uzmI3O9/vt4v7W931y0hwlSTo9PbEttkbP84qiYOl8LNMojttqD3lkAz4FrEKayuimKXam3LbWBj4yic9OT5791S/gjVs3//Dbb1BV7DdSysuLudVmsVi8f/vq9HSuDdR4YHb5MohBCtZIR7K+NZj7QXQKZpj0cZOgmKBtEOeWkyrwrAIZVUpZI7abfV29vrtdMBdoMplIP5iMZ76nlsvldrutazwRMgjgBUBdhPMT7F1B+cVjBK3h0Y0kzhYTNnqw8cs9DkWiiZARxocpMGrKJElGaiSl3OzWAylumDHyKnHIH+wLMmxmoC4cLb9H86gfdA4l+3n3DR8rBxzl47gToK/x/wbk5Vhj0A8lenidFuIPtpPjcYG784f3If53fwycoAc/HN1iDtCj3YA7UMZ0cMSi58tZfWJt5ZpPgnxMLRN9LvYJcBNC1zDwifU+OjYXO8g+htgqcGP4kvkI3JwrxBVhHmh9umEooCMADElm/1h44TcNORWbR3D2N8gzFCvm1Ma+UEGAdcjzAXLgIYcHj7UoH0kFAviamI/OEQaTTGohKW0dEwrR6aOZLf6OKthaaXDb+wFklHgK6LTQB0SjEcUpo07I6dNwWOQlK0YAYg9HdAL6Ao3WKMDHITqWU4JBbY/fQ1mPdOOhgQcsFMA5KZGqqhupgqKoWvgBQzZtkJMDQ1V0Sk3V6SaL4Z3qK+XFMa3IjoDaNM12v2/bepTEpm3Z8Jcch+izU5gG+e/SYxUGYHYySRchvMhGcG4fCGFBQ0ATWnLEtgL7EwYCuFrb7TZN0yzLVBiHcbzdFY2x8GjC0D/xZMgZIE3TRLDzjmQYMZWxwkjag06gQZuuQlB/yRsKGQVEr6U/A1VbdPIw/Y1hFEI9CChYXgfzhhS7ZoDrYG3ddsaLm7osd9uqqEMVGNvC6s7zgUdVCHHZ1CJO6ySbzC+ef352IZK/9yT6hLdvX1/fvNdaJ2/exEkyms0z69koV6My2OxmYSai1A9zpKKAcQbTXvSLTWnbSpgqtM356eTEf/7a7F5v7zZNU7ZV5RWq6c4eP6nb9n/6n/4fb24XQTaat+bvfvu7//g//l8ef/JFcvEElhHwMpfG1LuyiCLMuySyDWAz1T9qQpTr1fXr77/53d31d77dp5HwERqEafBiuVGVnS1W44siGCW4QQN6+qAW6upye3/7LhA6snPPD/OTT3D7kZs3V3es/MVdX9WeD6bx5eVlJ8xkMhEQ26uO8EA2C6TmelgVySnUkGkQ+ZnhCf8jDcCPr3+dL++nn1wc7148sOwhnJ5CSuJUvupNTQgW9wk80aZ1PUYD4MSZ7GnDiQKodXvHeg5AYWSIh1CDjJghIPwDuOzYuMilEps2cGbP003DeQSw/Qf5AVU/AqGwS7lMn2MiUBSh7B5AsqEIAMD0kAKknKc/597TJ2YkjEixCJk9qjuxSFJPAeHCAT8jUI3ez3RuBA/IgcS7CVzKUDSxpI9lqTyvAOChKPGXUUypohi1C6LdERDmY9FUOHi2UKx1u1iusRfUNduZAoYA+ARwiOF2kjcx4hIrRcgTe40TDZBQf5Ir+JIwNiA57B7O0+2GlAuudyJFGtXlg7HpILfDu1pPIwZxEIVzThfVqXGcDmeeD7hqat20MXwZDuDl4DAI7Jy4BP0/8R2Ibq/PemNjU2DRVhgyG6UO9OjVCb/B/YOd1RlBOkmoq5OG9+85Zl6ep8jxTdLZbHoyHSfg+kBhRjmTuqmrzWZV7Db7/bbY75r96iyPImUiRSxh8nyLQxko0VT7JA5HeZrHkfLgskrXV9wvis7i+IPQeW6kZL0XZel337/67dff3K+KMFGz07N8PApU0jYUb1xrFs4KIZjulWU5D0MggFmt8U/w4Paqau2MIInT1WjbAFLv4ihF13F6GgSBbkCfm40no5MTIcPVZntNrw2xcXJ6//vluihgCO77QRJnQQDGGlXzZJsIxA9bfwPZiQJSZ/jXmUbj9x04OcLS+6UdyMdwSmWR8Hx+FsdRiO1f73b79XpVFCX/7DCZYVrOkBPMLliMz/FwwHowvebbiQd9DkJWKo7jY/+cYU1LMnCdS3rxjwyo+QeeYNwAHOcAHKM7P4i+M3L8YP38I9rf4aewnwLUAOYwNAVdZwMqHHtiy/Cnc0774bX7aAgwvH8QHTUw/RwAf1I8s3PsIWZ2D3IcsH/G9RkX5+bEjSQdPweVZRolXAYffjXbibjz6XD04dwSQwYr+mB+wJKBXtkPns/A7SRLGTZdIPkjqzapw4JJdK8665lUkDdFUegC5bG4sx0cNx4sVnaMJoItmZIK51YOnXaNH83uXDI6/TKHFNCyFhPmcbipqAGgzxX2lkM4wa3LadFpDPyGHYHggIF4QWQVxiiyUWYTRkKflfIreLci8wbqaGWI6bEMwjjjdQz/WkNGv9vtmqqUquPkXRDZySgTD4jvERJvwMbAtBQwDoUQwCpVgEuuFHTAEYB0SlXnHEx2zAXNpL//AxGyrRZaMVrfpAQhPQoAeEmEH8Olz62fHiS5lN0OOZmx3roo7u6Xi9Xm5ORUKkBgbAiGOQawPT+Ikwoe32APaiOMRuYgPg4RnJTvcX1PrqnoAYNA4pJREgvZmDZkASTzNBll6XScJogysHVTQhNixWrbbndwUvaJPooWjt2xZWA8qeJMRUlRw6v47OLy0bPncZpvt+vNarHbbXbbzXJ5v1ovirL85POv4nw8Pb08vXwKze78Ms1mQiltyEdEIVQBihHbCt2ItgA/p6309Zuvf/X37779Q73dmGpfVKWMcxnFhoCKdVE3wj+5eqp9OTq5fPbii+effZVPzrwoRTqvUMI2wm+F0eSdgUmVaFrRNsI0t29eLe/e3b37vt4t0kjEQVftECNPGe3Sj7KTy2fPvvqLy+dfyNGJ1nAM80MltF69e/nd73+9XdycTbOzx5+dfv4fGz/D48DJ39hNDT6L7Ey5B9vNgxM1SIOBAoKUX3aWHiVMImjUV1dNWyncqBjMQG7jKzDTrA8dXcBOZT+8WP1XeP04AfhnX3BTO+Af7JPpKkJncE5utGyNQSsA+8lQ3BfnVGKjEkb1/vpcuuGHaOiMgn54fxRl9AP4OQ70YRzWR43ab04CRSWrB3gWiTpQhSTwItq6qVsrGpZ2JXFGEAVeAxvEWstUYzYqYXoAl5CbHcRefEAuFoe3wOFCAuRHpUwbtWUQrXe+wGfnsGxHeyBWClcMkkawgUTl5AJKm6os9wXM5bxxkoO9TqsmVMBQJgXsIm+MZOYSrCQLgMe+761VwM0A/NvIASjLks6Xk+nJviT3iarSGpwTVIQ7TTAolkzA/yDANmWNM0xMXywm/R6G88ysJcDq+GgEMVIDgCmw9XAhyRQY/8w9ndeBvogTiLPcQ5so/cOIrH7ozhHaeh4YXJ4vihLAnmPakEQsCIIutqZphxN99PwAWew67BYoNSl9EFcA498+kI4oYYw0kNcJfh5O4BhG0mrGBQnV+X2BhYvmKgYyNxmeSpwiXCbRtjV06o2GbQQ27NFsOg6iNFQ+CtZAXuimKvfr9XqxuN8u76rdpiyLzrTS13HkZ0nQmE5JM0rGQorWyKI26B98GacYxZycn1VVs16vt9v1/WK52QZpmgdhLKR68eln//E//Q/rzf5v/v4ffvXr37/8/l0YJ0pC5z0eT2en07RO0AZU1b4syqqm/mGcjyZBCL3sbleUTSGEolQygzwEBVhet51pSuPX7169vH/79nQ+u7q4mIzGtt6//XaR5XmcJF89u/jy6flqu7m+vn73/v272zdhnCbKC3PVNKYu1mW3phZbVgU41rCUZhE2TQfpPDq3HPfo4UFFxROpsKiqfVEjai1KVRi0jdkvl9tdyV8JI8yLZRBkeZCSlLBqKbehgL+towuy5wkkkmAKG8yJiLaBgKSQnfqRgUqFZmsabduqKYH6j0Z5ntG9BFtDphKhSorjyWQCBTW1VfxPH3SDfHsX5UBlfLCIf6BOGaB9piT1txmRJ/qcAa4YaaLl/udQVR8rLR4+3L/4k2SyhqRQBIuQOz8He+mH4ubhxZS5gcBCduE0QW0Pjrq0YqHQxAPNHCcDBTagdw/Z2ljQCfsn8XM/+2SzNnpvNtgB0IJ4DXAaOemJU64GAg+bK9CaitaXJzbDjIWfTa7MXcfBbT+IPWgPiMMjWo1PSowRAdoneAUgMXPdQbuMh32BbQkoi9yzYB0ASaccLarxKSGKRQLO6gRbC10bWjyoR9PQM+B/PadfKN6tsMoA9qF3QKhLi8nzEHrgLBPIY6ekPQPZAth/JEVU27Ao6lD6UYQbFUzQ0A+kItAHbQa6KN10UgWk/ZLKj9HAdEpZr4FpJrWpO226fMw20EkURelolKfpZJS3TdXWm6atasqL77q2QU5JwZUuWx0AMqIoXDpQ+CZxpKsF1ZAt0UxDpCDsRn3qNjumQlgEaBgMW9+zME4IvaCDfVPV1AgPDmLelG1nPIpbSJKxroq6aQTMndCNREkW1e1ytQFVnmbaUZyGUYKsYG1LymcgwirGvvQI+3BH0FpJGRL2D6sMbFhwrWtbPZmO5rMTpfzddrNZLXQD9feqqTujocqCC5vGKAOZCqExNYYoKjLwi0KOAU2WxHQyLhsrwzAeT9I4a4wXJXkNfay/bTobJo8/u0pjtVkv7+5uq6oK07SqIfIWvj+dzrOzK+w2VRMoT7RVudru1pgMj5IgzRP0SUUh9ru79+9fv3p7c7MMPC9WeZAkuxqtiCej2cns/Onz6fnViy9/JsJoXWgZAiWxumJ6tBCBUF21urFN5QmZZDEsbk0rdE1h8bdeswz9Ooy9LJaR9GQdVNLflfsgipI4SJOIQCuq6pSC8LpuQiWn87Oz3bqudh0+fIre2QOhlieQVO5QG0C1CZ4QicgJbL7YtyPKIMYzE8CErGvq+u7+Zrm8Pz+/zLIsTUZ4xuC/qmFbdMRp/PH1Z/HyfvElXIDo9YCZDU7nUSqw2w4xEYWJr4N+juMCYBbiXjRE5omyZItJomUwfgNSKSHRtLBiHusQmh6IYgnxAa/9IORrsPOn/0B6EQsNudYc9unNZnPE+aabm2fWrsuhj8ZYPn1Eprk7Q4zhI3vWhxsvzS76F0uUyHUELdBQFkh0A/RTAzpIyy2zSyMfjHNk0IYILqYjZSWi4wQz0Rl+61UNt5oa3ZFSIgxVnqRsqxJnuYcIFyerMNCKba5v7larVVnWLr+DZy10loEfRzHDTgM2D3yHOoGeH2UoexKzvFbYVqqWdMNkg80nij314QHCl5J/BZ0pG5BItHcCJFCBrhUjjk5uiHqPLpAvOw0RxTBOObrKR8Qt1wOQ8BTz+AGwxDnmX3RYa8h81o2AqOL5wRudySrHZRz3b1kKNxKrYaoTRdFkOrq8vDw/PYHDfQKPS+QGEIccdUGr37z6HjjR3e1mc9c2O8/Uftf4nbk6GyWxGqfxKCW5GuUvYhLgNbjiUmHfreuqRLxXVbZpNllvi86Pnjx78flXP8/yybvru2+///7t+zc8Mfd9P0nIVUMGpoMtLBFjZJpl4/E0DGFE2NTl+h7Zmbui0hqhRdCwEucbjophJH0BVL/YB8o/P52fzmfzk9m+3Nd1A5XCKBeet9kX680OsZ2NhgwYNuC4ei1lnrrqCg2AEjK0vmqFbDu/1iCzGy0gZaaZElEaQCPm2Qvn9XJSr++LqsLYAJMnkKZi8iVEspIMA0boSe7SHPPyD9r6Q8K3VkT1H0p2J9w0hrKZ8FOYfPUvFmgOLPmhMzfGLJdwVTqk17nbyYem9EgEfGz78zHe45JPhuXx6MUV8EciYOv5cGIZjurwVB7pKI6HDE11aAA+aEiO3/kgwqFh3dEshLsAPD60FvVekxQBhgkJhKQA1FnwQ2ebpnsOpCdtRm+bIz2/LkvCTVxNTPIn9xd+ogcmfc+5YuoNeYv1czrSDjE8Dxk9V5wEOxhrMbGUfgRzOPBCEeT6gFtFwL0TA0v8LhptMrmFnJFoFXbMK4AdRFlGvofve5jfShff4Y6Yz8YQ6MZS6X4IgJwE1soL571GxBSOrodpHFfOwK/RAKBlsLJvGKgc54ARHwa6HTuGcRYvvYgXhZs5DIUX1Mbui3q7L8uq6cjqIAxjZvNnWUrJ5aIs70GmbExVt3XZgEWKC8qfFzGdHA8Ma3wibXYaQDieHItGWVu48ZR1lY1GoBrFifDRfWnETdBpKgkXFtjd4NcciBBBNGz/xI8gS27iPEnTOGpKyJPQ/8BVM4bHv4Qt5rfffg9GEsd9UpqNB/DO7JrGeNIaUVa6KOqmxo1AEgvYs4YKK7ySXYi0YfyyOEuV8qej8fnF2Wwybtv25v3bu9tr3bQScBsS3BIEAaPxa2233NQcBI3BDhmO4aoFKs7zdDQ9uXwyv3qSjE9UnOXTE292Vi8W6/Xa6jbPojDwKzA/S5qih3Xb+SoZz86j+SMRZGTJb0W5EdX25v27d6+/3a8XSSDHeRgrPwb4Ilar1bdff/Pu3TU4CPAY1XWzm89PwFTL0pPzq5/88i+jz38C+XOYi1JjG00SuABhbqulZ8v1dbVbGWMQCRoG4HQZLTt9/ebVfr1Y39/Zupxk6STPZGeran97967SZnL2+MXP/kNy9an1YxvkKp8Loeq6xDakZHH39ubN92kYnD/5VCRnxo+dfTlVYjT1QrHw9vV3xXbH8XD5KMOBGV+oU9tCey2V8KXd7zfXN+/u728fP348mcyybCyEslqAIEoXEYXEjxMA8WczAfB+/gUoQMdkDEd96U0kAVscyPRCCjQAx6N2t1U4Gzs3UOY3IdMI5GgQc4zsrKi2o2QlpLQySjEYwvTD5B9oANzhPnTJoPMzOMy45ZiPdjQaubCqo+k81qPQiQSc60Uf9EXEOPcVt2WiNbbYgPqtiwvsfmzfkwfAPHZn03poDEBoYj0iO+7QCTR1Nfj9s0m98zKiv3D3wnUDYlAMoCAK3HKiXm4Dgjg5O39EDQC1OsQrZVec1QbO63e3i/vVsq6bIIBTUBSF+z3sEQbzE94WjhsqivtRhN4KGEqHQctsWBLh0beQcyiNCIgpRF+kUwLSPT32/SQEm0QfAESjYY0l2KMwdt7wIhUMT8xQFR3dkMfzIgQRaqCkZKZBgr7hEjiWwgdPB+LOnCrxcJNwtC8RCbgswDfRTaW6TrSl8kFgQ1AOLgGltSg1ncJK7+TkZDodTyaTPM+ZtpuPJmVZrld3i/v369XNdnlb7+5Ns7+9vskSMR0F01E2zZM8jUEGCK0nSzi7dV1TIr2C3J09eD93yliljTJG+WGajmbT2Twbj4Rs7u5v3rx5c39/X7dGYYwe0QMHIywQ8KRKoRBG2DBEJkq0Vb3bFZsN7oB9WSIuiNi0tm0ErqfKojAEQ6zVbRV0zenpdD4/VxH5/XUiTrIky9f7Yl82yNyr29aIutXFvi6qpgNduwNP18Cw0HhKe4HxFDcAHXm2aLoruFNsyoqN0pum2u9LkCJS6Jk5rZYODewFDrHClB92t3gxaWowVeRmnv88DozDD5Gv3zDW42d8MpnAlBCTFuQPsOtREAQXZ1jfhqimASZYrVY8EBjYRHyr+3AZOvIrPqKN/eD6zuLyww04iH0fBg4Ori+erwXN2AavzMHS97gBGN6KtJkPJhIf+AU9/L3QU/a++HhTWh/wTyhOaU1j4o1bGw1MHgctAfNGKNALDuTugPsGwBlGUVouAn370HSYg3mgoPAjOXx8N2R1z92BNeQIPFRdcwPQ/4kfb9o9YBc/BBGa/tcX986ahoQKvdmIR58CsxT6FB0ZBjC7gX4tY0x0nlm5aMBkp4nioH/FZJHkWYNsbCACIYeJRuADrMPgFycKWzj2tET+ccIBX3SjJO37Bw6WAZnQlx0MHwQWQxJV98Qk4Zm6QfkfxzKIrB+0VlQgxtn1tmAHOSllnmbj8Wic50nsK9Uo33heANS1MWXdknmOQTwtHi94AaGSjqhzFh4o2uQc2mKDhkeZsbZqm+1+5ymM2ij2Y8jICkUNGiuosl3jY5yLjDbpd0kPMGtyrBbCT6I4SyIpNDKeJXaNBgVtGMVZlKRNrfcUAGKaBqMTidk+pAi+3xKtq0G6gGgpqI+VhJhb+J6xtYKO2cf0S9fZZLwv977nXV5efvr82TgfrRZ31+/fVkXZVGVbV57fkbMxiAStsfuKgo+JXCBxmWg+KbrGisfPPv38Z7+cP30u0rHwAiGVULGIR11Vb5Z3++0qlCbP4jDAWoQZVJiKbCKisTBKNF0nQy9Sol6L/Wr5+rtv//Dbxc27SHV5Ega+VxZFGMRd5603xWpX1MiRF9ZU82nQNrvLJ0//d//n/6tIR8u379PxLDqd14U2nkQMBLQTOcIEjBHVHrOl9y9vb69bXeu2Knfbuio8oQPPa8tdtdv62k7z/Gx6ksaJ6Nr19mZf1ens4vlP/lI8/kx0ifZjlZ10XtjSLoCmtNnrcgMYJhuLLuk8LLm4o9m0h/Ls18vVb3/zj+vF8vzi7JNPnk0vz9FqV0bEF8IqMJ0wfoO8bLtdF8UOMZdpjpGC9QnDhKSf8L8fG4A/qwbgF59jg+RF+WhfgavG0AAcOWOKpmp7IlCPcxNdMoqSI4tPXu8NzZVhOtAHbDnI2dm90zi3l6H0ZhqObi77PRTbA4mBYHk2RPz024bz8/n4pA9coGPTboxu62o4cubCYn2mapghsUPCFxBcxPMeyCo0m+f3j7mRINo6qwLcxqyc/airrfEmTv3McxI6pD6oy+vSFFx5xt7grUl6OMDhHAusDXk/lnVToUv3RFWLyWx2dnYxGo1QkhIthqoWQpICuK1t1ohZvbm5Wa+LyQTJuAfEkeA61LgSnFqXVclFc0fFXAA2ORyBDnbhTBxCyBcsPgH38ulmUi3+6ujETOKnpoU1JD0ESXIhDJdxQsDg6EsfttpgCoGDB/tLiRxMdBgwjDtOeh7qxaPG1ZnuuaTqoaDh304NABw8eltJOAYSLhR4VnnaIIYGOxzl2iJtLeyd8vmDTCaTx1ePLi8v0zxrWg+Z1aFvu3a/W2xXt8Vm1dbbcr8CN395s11vPSNGuXd6ejoZR3FcjcdwNKf7H/UAJi2N3ZfwOWy132rPChmEaRJnKonG0yxMULlWdbtYLK7v7terbVlXcZwkaR6GcVFVq9VmXxbSV0kcv3j2jAA2uPpwlla5L4D3aQCNsFdsG90UVreB9ELpzbK4s4D3fEVldELQlQry0SRJM1/F683+3c3tdlP6MkjSyd1qty9Bq93s6xJhwEELSkiEXVwoWAORkwRFCLAIxlm48PDNOlEvvuK8xnt/T15n3E1EzztrNqjGcl+hG88xyPnrlO1FjTGlAXNr5Pv+yckJvy1qMmoh+Fq3teacAQzQYkBfDBPEccwJZUSlcxMnUFzbnp5+PGl8OAg9LsR7NdTBP+0D6TAb47if8iyCv9mds79FuZOPgvAHE4tZV/XxROLjtmQgAx35Ah2YjSEB2KymQMxUB3IITfmMy/2QxJk+zA3AAOFmyRcHbdVslJPUikgjhzRl55Nz9PPOCBXdZP/xj93eQvXAztXFY4HzvGe3N2rcMe2kdYa5ScNiwrAUChdCP2iRxbdJNrHpEyfZWAwsU/gr0ooUo4ztxdB00MSQQdAwbqpOkxPOweotjsZkTkpjDR5PEvkQH4ektFRfQi6P84PBGSJXqdVkxIOM3D1N8efkeIHmin3wjbCe8lSnsW5SsLwSUHMFnQxLCPKh+9Ia6n8QgeIkVN3JWMaRIg/oSMJ3BeMAvoHpft7VTcVcIPhceXI2m3eIByl3u6Ihelijbd02ngzIbcgC644jFSHQ3e/8wI9Q/je1IT2x9DEHwMjCF/NT2PtGQbDb7ZZ3sPNqm/L8dIQ2rPMt+s4QMblB7KtYBWHTaBIAw2CULfI8qRqYkbLoWQUBGI9EJsROF4Feo3VT+8IENEypdY3TrTxJFrJKqTxPp+NJnsbr9bptENHWUmwZ1AgKTPSKKMfKE1EYYEIR4zarm0YGSecrEWeT+dXjTz6/fP5C5DkZcUamLF9+9+3Lb34fRd6Lp4+U9O/u7vJsZDqRxKPp6WUwPkUmLqoOLexOLK/f/OE3v/7VP66Xi/nJ5Mmjx7PJ6Fe/+k2xr9bbomwtghPg8S890yZhNRnFl4+efPaLX4og0FWtzi+QMOAr0UmzXr+/WbS6S7KREH67X2e2vn717fvrt4h5Bo8RYmml/KYqkVZpbeCJPElnaUY7eGV1CVvxdDq6fHbx4mfB1aciGlvtVa1QcYLeT+NkksYAaTVS4cConcXCDQNQAPj67avv379/2xk7n88ns5PRaCSTTHSq6zLhhaJriTfXwpCUkFqEUqvQ9wIUA50MfFi7YvCC5693LqZs+EPMyOF1DJr8sG3of7HXjw3AP/vy/uLzR8dMjMGLvRdvHdZcx5gBIuUcIQaxF1B8FKKHFJjD2L2njgzCsoMwl3zlH+6yXUAobL+huj+BDDX6ICajTEcuCJw68OFuPUjQPt4g4SXx0H6bBcGHErkn2DD0xabv/Tsc7lzygO/feXDWc4bR4sg0uk8IDqC1gJ0QvXor+s42tQIT1MkdQW0gmzjMTOkbUAlT7iwXUk0DpIBLHOR2Jck4z6Mk430ijuM8z8MwbJpmuV5t1ru7uwVv3r2XHNfKuM2PN2xnfUHiI6LqUqouWWpgW+RIL56RgENMn46WAm0a8gKgzwXvENppfQWKFHxaD7MXyhMzEWrug484tSLYq5IkOUyTaJjj+igYA9GSQ2MHOCTQa1dgUOtONTVy/HdnM/WgAsOLzWSOGRcogrpWYs5AYwqvi1QQJ2EaJxEGuyPyUeArCykFg8dPn78YTydnZ6fjcS59b7/f7jeLsizev30NyXC5L4pdVeyrYg9Ci62u5nkQIFYzTTATSCN0F8Bi4oRJQcW+gmUqg9Ce8uNxGGWjyfjkZI4pVudBm7bbv3z1hsS4uEJo/LBVWt2auqiDIBhl+el8NhtPhOi2m9V2s7q+ftfWVVOVgfSSKA5x+xnbNNM09wVgQupLmXfOTTjuBNB1E0ggmkZvV9vlpjQqtzLqrCxKvdjsF+tivWtr3dXaM57Cyi+DToFC3lJNxtQXp1/s8yWYrE7PFYl8mMbtlh2DphToEdm8+nAiR6InmQwOhr9cFFJWErpCdojnyCdejpq2Bf04AWe68yWL5k0Dy9TDVPFw/3t1jfPGXlI8dnBdIihPBw3xcUrAx/U3/41vwYcxmQcn2gfASscWyR+0CrgG3PQMXPPD2JPgtePBgiPw/BAlyTHU+3W7tzVzGiceCjDEABUGgaNgSmtIUA3bffbWq5ycPRyG69mMRp3eDz+PthG60lTlHRGQyDGsT0WkwFoHe/O+NiTGuAXcgCCKCYmb2kFTxWm4NNSAc5dToBF9ERFvFOzlgiYxrKW2gX8FvGhgIEE7mgAFiGrQLMscRYdJ8/gBuP1g0EALIXqBtoYs19HTJ54HMQ+EDZ1tDZlNk0c239ZsKgyVNYpxPBVgMgFigIEV0XCssA0GML4NJEIGw4AWPVqpNutKqcjz/dZ4NVBfVMmoSq1nPPg61GgssAkSe9SmsokDy+g7FhMJeB462bbh3EgNiW1dFgj/qoxJxjPhIZVcBlFV69VqsysaGhNJSpel6AtcdbAciVZKDwJveZAsNB2SgHWWRL7o0jicTSfT8cTzuv12u9ksqmZNoYQBgg7DtMV2hbme6cRseiZVtFhBrcQeFfuqlAGU/UKIAlI39O3z09MkiV6/+l52tq2qutiHyh/nWSBd2AsognVrOy0VOh9M9kKFyTbdh4jZoZ6N73AemAeQGfnKt1kSX1xczM/PhB9uy7psjPZDL8y8MPbDRIXBZn2vdfPm5avzi7OffvXl2dmpCNXr3/7u9v01rRKgRCZxdnFxOR6Phaja8lYg0peudgs7o31JFhdw+fOIOalxTrHLyM42J+NUdDpP46urq6vHVyLLxH6zWm+t51eN3lVNaTohQz+Iq1br7c5fr/waAg8NZhkYwH6UiEhN56e606HyMDGtq3K9tHUV4gI2YRr7yUSOZvHJ1eT8WTK/EHGuy1alufDDtumsDWSUCC9oWx0h8Ijzyyn2zlaUMFAWm3tIQIIwTsciyoUIUff7kfCS1rQeYrBdIYaP3okwzsALpScOchkowOieYd+AflU4agB62+GeP0xoqkVP9SfVuH9qgd4Luv5l3l6QsOhPef8/8Xj+pV/eL56f0/9/EAXAtnoMJBx2Tbp25Cfp+DYD3ZP56z/IYUVr+EOvwSfu4V7Y35ofTbePnT0eIHC9IfQHftjHSaIPujHCgz+Y7x9vqMfH72OoTHa5h39i01KeGHTHswL3I7DWhGqAZmH0Sem3sNkO32HkVE2WpkLkMcmVKgpmUh5w6AQlKEwPaLRCvjfkcU0QYqCy/x97f/5rS5adB2J7jPlMd3xjvpxqEIuS2rD8kwEb/rsNGIYb6IZsqU21RLJYlVWVmW+88xliHo1vrR1x4t6XRZEyabbgPEUkX768wzkRO/Ze61vfICgvBM6hI4TZNM3JyQkXOp4HF3mkqeP4AZ+hyCumRgBP6mCXBrGmj2Aszmc49ngo+cfujlc2Z9AAglGYAOD/uLEZC6MxuNexAdCuSJRsynC6MIzdqNUgtlXXVzmINyNVjF35jTF5mlI4EeQcR1KExH5Dgl52IeZ+iIcOWIcu12w05CZFx7E6md/Kyf7lEbkcxp1oA9AgQRuJAQKZXcLaIA7D9WaJOB3fp6YMR/4uPYA9H0XL5eLk5OT8/PTi7CxJonc/vq3qYr/fb7cP+4dtmu1x/ralrFJDbWroQ6e1iP04DANfL5MoQFaAhwltWewPu3S3z6rGi87rDruqHwbLxXqxhpe/ssYPon16uL69v72/y7Kshhsvo9/ewz1cLLTWF+en5+dnizAAN6dryrI4PNzfP9xm+4MQfRSEcRT5QlB6nTQ0A1cUpYCAgzLDozcYi6CyOAiiwISD9j7tyqzs0kO1TYuy6jthtbdQXviwy7OqxZla1jWZRbH0p4EhLrkS4f/4ftG+QZ4npGzlWz+OyEh8OTfl5A1nsVhMrSB3sIxAm+Nk0iERDjin4CZnBEycB0cIhFbyODuaCtOqqpZLpAUFQdA0DSeLl2UpKWjp80J/hnY//q/zYngWcjLKiRyzZWwAiJ4yg8SmEG73A90GNhrUUykz3/0mmGPeFRx3S5dJPNsScULht+PRIC/MYy9ED34UONMCxgjmOejzfXWihsoB46PPXY/m9krzEYSj60zIjOgU7RRMs3TyASfzxbagsMfwPskNwNBRPwaMARkHhOcPMB6gxx/guqPnQCyMjZFZT5S2i62brBcg7gW/ZPQ+MpCZIsYRxTYOtU6BUI4ZCGwrAOfXoKkOum6MIMoEmJbwplEsnM6rEjRzQmI6StL1fQwOq0Mtetn2jlSGuCUEC6sk8vu27NpKida3CgEjtCOG0bohQKeq2wo6YJBvmkEVNWT9QnuDVKDY0QUzol9FgxGt0fBT9rUMjPSN1LJfJBHytIgX1yOxu0YOV9Ne7Q4FhrbSeL6Stulk38HntyjRVsAXjsYkzOrFRdQ0+VH0tHboyqjEA7lKASLRUegvFzFUCUForNimN4gc3B2qulXGX642z5+/Prm4OD97XnUiS8tPtw/v33942O6lQv769fX15Yvnp6cbQFTbu6LIgcCIBr5qyKaFsbxRAixZimYLw5gFDC1dz27o6w5SChb+AdjQ8F6g8Qz8VIl6intmrPAVqFDLZJEsF6vl6enls7wZfvxwFS5PvvrVv0qL+r/89f/64cfvtRnyPI+C8Pz89Msvvvjqq69FGGx/+PHDhw/b+weUQNSExGF0cbHc3n8feDKMV8kCsWJtJ/aH4pAXf/fb38OMVei6bPI8lwNazdUy6sGAgmtcEocL0DaRzNAL8e7Dx0GoVhsNNcKZn6z6QTZFOTzcDwUJvIUOonW8OQlWZyaJ1r/6ljaOBpHAh1169eHdn767ef9OdHkYR8H6NFidJ+cv1pcvg/WZ8ENhQuEFQvhiMH1neh0PMoBLsGhl34DkhiDXWhS7Krsp8of94d54JsKeeKniM6HCoQ965ZPfxqBFq4a2q9K2q5FXEyZVi8xNoQISbGN1aiJxtGCDTjvaTLMknjQAbKbycwPwL/ySv/ninDW4sxPlGEkzzbW5AcC+CqcX59k3F33nOazo50cUv3wkC4rPC/qpAXhcc1PY1QSezb5l8n1/8mIR7VGR5uwPKMjsp0b2WHiPu4jPh+nHhqHH+Mxdm3E2wgUzM0S5Fxg1z3QIcU47GqUjVf0oCqSHX5Hcje2WDearGMA7hutok7pcwvYRqevwlgdIyWRlZUL2CQZTVhwr2izLqA0j55MB1gcAS/wojpG7zh+KYNF86hlG201H0OfKm8gV1NGxFHi03IBciMQAZAvuGgME8ZSlsxunKLEGxURH3qyg2tMnAsynWbyphBlaQxeEYrMAb/U4QAVRkadrxhYkeKFWHVdmh9MBUQak5cC66h+DsHhfo+vUcYl/1pQeKxXUQwCpXS4S5s0QIlICfQ0jIMiAKbc39EkUbJLlsm45oLdSUkZRuFwuoyh4fnnJPNeub9I0vbu7vb+/Lw7brkwFooKBYFmt49CPoyDw8OTEkbdeJqD2UsoYrX799tO2bpABxLI80I2i2HhesgSdCOaqRpdFvTvsdzsYdzZ1zw6YhwPSA4oij31vsYi//uora7WVqqrK3f3Dze3Vbrer83wVIkWTxIKKojwVbrtR0K4goVWiDuzYdDvRvguyybMmzap9Wu6zOs07ZINJv+qGEqyHvhnA1sKt77uObIOpAXDCa3ZxcSRyXHJg/xAkYKHAooQ6EOf/M8l2+Q+TeZfL8SDt6Iyfc7zvGiXL6FrjwihoAllBWDzhFNOtd9HIIWzU2fCUxcElJTp/3gP82X91z8Pf3wCM88+fbAB4GsYGArO/578IKcF6vjVNb+AnIBKakPCmzJuJy++jEd/Rfpc3GXobnseTAAdqTK8p+Xja/+lecME9E+qMb+bz/Zzfr0GehDMedds1hxGy7fKUNshPPT2EbusVJE6FHRtJwAFNMEQ/RraRDRkTq8i+hzUDjtLJ8xZi+5CXpXFgB+xi8KX4G0/Dgx3+i6o3Gq6JoLtL2Dt2HZRQYlBpVvK2A9shGDlYYzzwZ2j/hglbWRVF1fadM0YUUHVhrNDBIRezXE9jXIwdtLFy8IyAZtVIZKhguum1dMegFNam6YaiqrOqVdoAbekkCYex3Vrje1bqoTRQbQFpRUiZ7DTubO9bg/SAELmQwPvx+OhWyOstKIT7NGsbKAeIhokwAhrPYpDoqL1EZ+0JwCVEhsJfyVwKxvxgkvW8UARSQUQSBWcnp8t1rH2Vlxn0Z2le1giAPzt7tjo9NzrQfnh2ehEtNx8/fvpP/+t/ub6+tZ735s2bi4uLi8uzMAybvnl4uH/7/Q/v3n/fVqXoG09pD+sBYnXRsq0I/Vbk4ZKjdNcWNVy8WHNiqD3WdNxQrjMsbkhFID1PQRnAijvPXpw//+rXvxEvXovt/se3H4umX6zPluvV/+P/9n+tyhwFzCHt+ubs5PTVq5fffvNNlCzK3fbq48ePH9/naUZWFkbL+mRt2q5oezCYgmgZhIm2Xi/M1aebd+/e397eB9bbbDZWG4wFqmwRBr6nfIofkuj9dJIkQRTd3j9UXV9h7maj5cnq7NKPE0zksm1VFlXeaBOu1hdnly+iswuwldD8Dn2e7e+u6v22OWxv37+/ffeDavI4CYPVSbA4Cdan4XJtgriTar06FcY34VLEG2FXw2A7FQE/xC1t4TTaVH32kD58ur3+4bC9Ohy24TK6eP7q/OWb4OSV0IthCDphGzj7D5ZGznA7bUphjbBBVZaDCoTyJUR9SIqjCR5yXdzA9vGmOImUxo1sciz5uQH4l3zJf/PVs6kBmEirk88dKfbo68bKty4hsHMmBjPXnelImCwgXBvQHufRT0qx6TUr11DUOpO48fce3+tjBTD/s6WYlSenMh1s3mc/HC8M1mZ//9Tm6InSbuiZOUqni7OV4CtBCBljmfzenKyNYs2ORhw0bp7IAPxbiDfFYgAkfCOEHDKmADCz8ziHpzGEvExMBwQNYSU4jgTDM2kBCZGQ1aJGNXmej1YnyB6moACC9Dpcijhe8E8Bpk61zuFwgE0prFfKYYADg++HOL8G+OGg/MKWpcAPgMwN5Z1LCnNgvINeyQadMxOOicKIeQemTp0eUz+oATBargIEpI3hTWC/VAV8IGn6DEYy25Yzs1sSzOPuDrECGAukCsI1ChwXwBRhBNdQO3GkYI3rcNJAT5Yy9A7hjshcZwvtBeQXdH8BfHQtVFjkwwj4PFnEURSdnJ4iuJSKIRSxHTquvodVyGIZn52crtdLz/Parkb6b1Ec7m+aGtaTRZF3TUUrChVJGMDxHFn3gWWbV/i42RDIipB13eYlLg65HOLjBVGM6bmHglVDoYA5j/G8m5v7NCvyHGeY7xnZD3mWZtnh04ePURRdnJ08v3x2drIWAg4V++3209vvJWSLjYDnn8C6CzzOKDAUXDEgmqnPMxKeNJ0JYuUFgZ/4QSxUkCHys9yl5dXdru5k20EdR8sD7Ii6p4BPeGS7ADdn+kINOUxH8H84SAVRKboe8Z81LdTJjnMC/udCkQlrwBcfQQRnZ04sI7qtzp2GPILQ15DXxWeoBO8P0yST1xszgrK8/Ml9489uFFMD8JMUoH98A/Dkxd4ATzrYz6XA7g90PRiYGE2cHQZBTHf39kbvfrxa6sF4M5/Qk8+TiaePQDljPzEBmE9IHr9/B8nTDaQdcrSD5sz4ee4KHkZDyTI0hyS3OEdBpImiOPIPya0a7j8aBQc1BC4wBIMO7m/od2jZSQm8n6bZbDdPLqjUIUKAhBq3i7AtCQ/dMO3gkAHgCjRN1XSwqaVMW3QjUiCyV9vA2NBavxeyLOssK7IcqAqZcCLLCyuZLjmLELLsYLTwwHAD/8czoPIbY4HEk0IG7xpYqqJeeiCb/B4Gt7T9gvxIL0D+VkXE6rOUU9nXRddiHiwo8xiwUQAuXIDgKs/Gi0NW7PYHAguQDlmTEyg0dY5r5tRTpOFxfm58M8iGiR4h0Qeeh9/oGYTY1CVviWEcrE6XmiIOcpgdp4c07wZlPF/C/MOenpyfXVzmZfP+w4eqahaLVd00y1Vyenq62cBiwQZedtjd3Vz//ne/zQ77tizA1BSiLosBowBnEIQryaZ5Ymh6pz/BpjEgwAEOe6RsgWtQoOTQGCWD0IfeA+xNQ9Jn3IZXX/3y5V/+GyHNn3733c3DfrFY3Hz89OHtjz5M1aogCE4262EYXr94frLeaDnc39+/e/sDzQcAspTFNrCtQT/pYdoEKbbC3YFOXWUpIko8a4de1hUiXPwA7uWhb33cK/iXU+KH1Z5Ns9IEofZDHcTR6vT08kV8eiYi/+HDn/b7/e7+MAx6uTw7e/ZycfZMxBGeuabab29vP77fffyQ399U+32X7RMrosDYeGmDxESJCYIe1nk9KHPKLE4un73+hbx4I3Q8DF4nwI0iglyLjufu4+2HP95++ON+e5VmD6vTzbMvv3r59a+Tsy+Ft+pF0guPfMorb6i0bEST9WWGQDoh0ZZITAAg0RATywMyQmxy/9UG4LhfHgHff9Dr5wbgn/QFWP3JKcLcrbLEQcgKNgeX0kdlAh+zqDnLk0/WJEmm2TGfKE4ENtrY/SSO9dkL1cIc35pHdc6PwKnx4EJ/pJk64jjbdM7Py9lvn5Ymn6DiiWsHJ9GOPhKQy2AsSRkEBDmSqniAQefUDPD7Qm4NshI5HQysWMrRcipn0gwAeBkFERroj5ILP8QXdX2Z5VwDRX6k45gqb7C48+zhwWB4moDrD29gY2y8CCEophI+zYvdDqb7o81oEIchTQNQn2aHtG3b3cP99gE2keSegsNpEcdd74WBV1UWZ0xbt03VgDMNTnYHViKHFmjtEVDUaQboSArclk3dwESmNzpA2UX5DnxwEKUfQ2TI3ICcobrpu0YMnexEjlrRwkPC9+NFkiwXzKS6+vQJJqiYqKM6ATkHAQIG/HiaRThUeMwFIwkCEbKIOYCgWiBWeI+s4uAOdqKONA0obex151QuQJWILIC2UMoGkpSW7ymAOuSw2cRHLdA1XdPu9+X+kP/w9kOchCfrzWq1RERXFDCpHQSSuru6vru9eyByEVc2Q4voYV9ZZeGkXLZN0eBztvv04Fvl28YPdGALmPehMvZMGNJSEjXUu83AIT7GfHz33o/COI598JFcUSikXp6cvXz5PInjqqrurm+2263vBXEcn52cA5bb7bcP38W0eMgVJ3jx/AuqusuqzuAjWldlldIEr4UXSSTjOPGj0AYrL8fIabvf921e5JX28zg5CaLVF6vTQfvL99fbtLi925a7PRLqKGsVN54Y/+7xgW5krFwH0gdo6P980h0mMSS5FdpV7gKcDQvfMgQb8b926DGnwRDXAaSUAdsOlRPM/kaPAhrNOfYF26Y6D1m8t3nFn2XZ3H0L2H8JLThp1J/uV492qCfAwdPT6zE/nsaE43HIh99TAj3/gLmD9nxvbFBsHak409x1xGimzcrtjdRggJBFh5OgQYIT3LBVF92LY5ynpgnt9KRMv9e5Ac1+HVMHic079R54HMf3fFTdzP9ABBlyV0OHjp4MIiGKKqfkWXckjts76nhKeHaRAZwXT4hJy0w/9Ac05QDnj0VDoJWRFRD1Ni5gHCpS9z5oVbAUZVCewvZNlw6zAwoV7gXI3NhRYKUAJhHwVgS+gqJme2GtMpWsKxLdYkXqqiy1KTwbWT8MrW8XNvTCqqzTIiN+OEnefYhrqeWQydJqCU59nh/auvSsOlmtl354cblgvUpGellQjyj1nIbPJiBtLjoB8D1B4aw9TwmvNr0xMCuTRlEoZuMtVE/B8W3bVmmdZo1Saa90sip6zGBNFCWthUNYC5AFZzckLwhtdw8WM/+NUvD/bYDI+Nbz4a6DVmToGymUj9MlkDIBeY80HGlW2BYNVVZguAzhkzT9gCyask7v77Z/+NP3AqkOyg8iJBMnyeX5xdnZmTIINffaBtjKmzeH/fZWiPsKXsDsycG1YU9SN24AsIGPFCBeFRbJcV4MAxJRIY6gMAbXWUJiTgnICAKA8nu1WmRVfX31cdDm1Zdff/WrX17u97e39y/+8jeq7w67bd82ckBVfHN1/fDp0/Pnl4f9tu+7OAJGk6eITl8t4yK9w+YO5GtourIX2rNBgDcAWyTWfRdFme4J8rAIkhYDDjakWiBwDeTDOs+sF56cnDx7/cacnMOVKIiF9YURmxfPhZVpXqSHWpVpUuULAmuEEnm6L9MsMHaI4vb+oW2lb0Mja5x4SOStdGs8IHOdaJv0kJdNX+5uA2s2SSwWlLMmZNVCZEWfoB+aUlSF6qpA9b0ZfDMERlla+hyxQ8MVGga2Q3XY7W/f5tsbJXs/jKJVBJEAwiAsmj2a7rsNbWT5P9k4n+x+bmL/v7GC+P/fXoheomPvyIvgHT8IAnb9PYp9Cbrm1T+f//JhwKmlcwUw/xzWAEwi3alA/3O+12AhjJTQOdY1F725CHr6M/y/ZuzeqbVgVd9PNAAT9vVTr896IfaWJ8cssm5jPBHII2kkCNzG4JgYQji0wJCn4wX1vjt98Ew20P9RtiKb9GnyPRbSkx5Je2tSMpHzJY44vV4um6MxYoe0ryzv4UXm+UGwWCzCKPCM9ckqvu/7Ms8QI1BmeZ77IHhQOenZ8OyUJUoIX2/boszyAgUfxHCQqdkwXDMbB2dHV2nyY2zbps5JRAG+uEf5kXSAK9BKPOt7nukCsIXaRmJU3SIBiDTPYMAKSlwBNKsMcTdxxMK+RcpD1hSFSNOU/dqTBMB6EATf/vKblnJwGCxv6SRrwV21kpNIyEgIEiZ6jZOBY55rB5CHnEZYwD3+k3tRBo3YIoYHAtirgUWTsSGcDRmPdGLBSkqffHKsQcSPALUHosMgMF3b34Dgc09iABTlYeCtVivMLkAmqRDnBqEgdAWWPJ0MoDRPe1raQEKG0Wbpvmz7qm1kURlTxkEYJ1EQDPnu2gtBTeF3WNdtWcLmYrMh1uztHXvwwdkmWXhx+Mff/77u+8D3Ly4uXj1/8ebNmzKHFCFLU9+LQi/a7XYFwL/9YjEsotAYAI9BELRDgqKiwqShbpv7fSGGUuvCD9NFsl4sVmGyjrRO1ps0K+53+4fd/vr+oG3gBUvlBdZPvMDGy6SRUnllUToKjdToqwCLswLMPUVgxCJLoq3zpmwL8I589FjaDyLhocrhERBnso56xCkN3O0AEGI2LRKYqUKFzODouEXblwPUjxh2B2PEY9c39/WfbxfTvIgTvj/fE36SCPTZ6x/gaEFzws//ehpxzLk9E3Vwvhk+jiF71KWgHMY+g1OV+D8EUKHcH/lS9MDQt41gjyTQbjYb4R9bVdU0GZhpq1jSPTr6P0ZkZm2J+zl0VelfweDBt9Gjx/iIwwt4h3Xhx+RPdEwMmP2KosH5Mr1J9j9GUhQGk2jbuc3A08/q3sGC3MgzQuhpHdzTtfUYLIi/IgM4QP4dMSfxJloBfgcbsqGbaLRstYdwqd4f6lbUgKBllpZVXWzTgxDGepGP2HW46QgZ4YkC/aPy6jroIwZcwghmXYFnmmqdpbuqKtKyrbrDoWiCIIjDxWJ12rZtlmX7FGItz7dYkG3FRqdaDAECeHVF1p9t0xdFFVobBTYi/a6xWniDDSnrnU6Nrm7qpnv/8TqIYuwnlK3m+9KD4SSUP+OkmmfUDMQOgfXsMLSIhZIhEuVB/u973dZl1xRl1kkSmCFoAGSpoYEECIsix8Sw7ZFyJ9DTgzuCIrJD6Bie1nK3u76+fv369XK5lHJIoqQfun26+/GH67vb6yTEKda1Qw3VBd9BakrrhmcaHnmdDVLUNHTVmtIzK4xJ+6rBjqEkrJxlx+J19LQcbkx+TUOWxslqkPbH7//4/Y8/rk4vVqdnvvF29w9dWWf7Q11VQ9PIIDhZL5fL5OrTB4mcY11VBWZK6FhxbMVBIMVQl3UJBEx4frCIFskivrx8juCxqh66bgGcxt7d3R12d0nitXWBIKDAW0SAvXCzujYIE7xbPsWaBuZCogTLVTVdUZX7dH+3L73MkzY0QUIh0Z9++OHq/ftAqaDvZNOZbsBQTANzHCh1xwCpbIau6uvaFz38A+vi9n3iJ8vIhCLAAu8Gq3u4UAgtfaNCXy0CbQH4+UkULEKE2LDtLSN6TVsuqNesq+Lh6l2+vb48P7nYnAndgQ2Iiga+P13Tt6KFdM74LPz981D6k07g5+ywf2kKEP3/0ZhyFAGzCG/m4YAaiauw+Wkxnaw8MfhMBCYtCfKeTOGnkfHnVB82l/n87+d6g/npy/7Wn1ODuM77XO87EXKe/t5ZMzP/r44uSUzT6Vs5AH5ySeKkmOPbcKk6xHDFg8DSUuBU8CcGcRNEUXa+Gzrwi8iyjYJP2MwZhl0VuD0RdlutbD9AIgakHgJjl3JvpLKeCTxMGBEACw8I1GE90aKQ0611iPh3xDJz1BqGCiQAQK2j5WSLDtgQDQhCWJgSDTfqpm9RHDg0lx14pNGIj6b5gJJeVbVAHzqHIJLFG2mWXTSsnAxhuPDpwBg/8oyJ/oQP+vqLl7AloCuAtPEcgFjTtFrbGh/b8YK4JGrb1lE4nFv5jK9M6N7cYd3dIyoo2T3paGGO+6NH8kUPNxpug2mcjFvmSFwUKU3xDVDBIEkTHhBkLkTGFD7SrDBvR24zjEQp6qjv+oYHO869inhSJFPuw8DvgL7nVZE3bYX+wLOe1QnMKkHkhWflIBpKyW3bNt3tMcChWGulQD5uyqpo2mh1AqZEg3mREDJJkouzy81m09aNtb6BBqB6eNjd3t7COK/IL8/WZEUCN32wmNi0te+B3sEQFVdISBuGcRIvgjhSWjZtl5c18qezKq/aplNoy7xkwDLwemnafjgU5WGf5mUFuzhwwJyF0/SKI8zmKSwbxtEDZi1QxvsBbHCn/WHahZCDMdsx3NOtdFHVHHdNM0mA+rREYUs3gxMI4OIRH+tDZux//oPvI3yU6XC8tPjFFMHP9585JeYRMebP4AmTnurRHBKhV/yfOUfj+POBoD0+DD8X/k5/P28AHn0uoHbYZNxWPKL1rARwLkHOTd+9q4au3hz74KeMtD1OX/QoPg/w+SO6/5/bSPlFLnAs03HebpS7Ama5RGM8VfLkFAxGFcq10ZDUWaXxUz8l0vTDOKkAYcay0dFMUUAiB4L2yZGT/PA5kkWgOOahraFhEnBL2vwI36DML/p0nlGAUCycG5XqIWGHyyHol20jmg5M+Lys0kNBGXwwTyOgxOogqVooSeoWkDmY4x5xfaxexMlytQg92/VNVeRlXrQdrH7D0D9ZrdfrdRiGrCCCTivPu4Y2c0pEYXvlZlCt9Nue3A4EnuIo8GOwzOH2qLUEMEP2fdh8sH8P2zTDe0BAOi6O52Gkia4SH9PlJPCInRMVE5vwuMRlwFGWmdIaIxjaNnHpPJwahMeD4TkxlxCM0A+HNE/TfLnaNH1PW3cvFDiLBu5nqiyK09PTly9fPn/x4vTspOuaH7//4Y9/+g6JMTAuqJq61ETsUXSmBCiYrR8GGGLSDJwUCXK/32Nql2f7/b48QP8WhX4Y+rKvBtEYRblkSKR2T3e8WCrgZYt4uRLaO+TF/pDVdfPmxRfp/vDp6gOxbjGEiaOA0xs2m7VRYr/f9l2TJNEwyOywNXrwrfHDSGnbDqKqm7pu67Z/8+ars7OzOAjv7++vP11VBQaMBtG5qUT4AUEeVP0LbQYp0qzUfmCD2IZJtNwkq40XwJ/t9ur94eH+7vrhsM2ktIvlZrk5DxaL569fvX///vbquq9yWdVtehBlqVQPJN7iNlmjfKu06tsyL8rMGFW2Q6uC6PyLZ7/4N2ff/KVYXnZD2JsVEMuhEeVB3H/cf/j9zbvf7+/fd321PDu5/PIXqze/EusvBrms5UKIoO7qBcjOh8O779793f+SPXy8PN28fvNKLE4QjuYnwi6FjRBjTHJ6CgJABfSE0ugUnoymUkXk/p59hP7hr58pQP+kL/nvfvUFb6mzs5bODMfkOYJA8GAQgt2jJ6ftJ/zUJ9U2KiQKov8cMZp/8SOX9/ECfUbdGd/x0yNntOAcj/ap4Jsm/tPkgc+An74QM5xvemHvMCRqcSP22XHu7L2JiXjsiQYPHizg2bHfJCp+LKoOfE001XR0UBAMn28IxmKLCTUwpcHZK00/kTjNbG8ijS1gs0Ls5wbqRqlALvKIvB9FEcospZoK1TMPT3sgXlS/eoyhuLzu3e6B9QYYPlBmDZOACZZ1p34Pn+kGwA7uNR0qrNeEezVFehkbBgkV+uzW0nPb0PTdbn8gSxOW9cJa1OXpkADxKOvsOEaNkmsjn0K3VjSdYHRW5JlLhuIKDOwjGmc4srhjMkwFCpo0tjRlb3IWtCkkxsNN2VqfWSoVLhH27hbpCiNjx9UqnF1ErqlE73H+BTTT0mqAuJZ+jph0zH2LQ5bcfjj2mB8cSvMNOwoMwnC/byV8KlCOVHkRhB4O78BDbnLTtHXZtrW1GJWAM2ZtHMeLxWK1WAeB19VdnqcZO9X0Lpl1kPpQVS1ZrThnF4o5GobhdHMGwp5BL8FOGogJO+zT3Y1EchOAWLAU0H2hnSMjyL4s6vvdfrdN67qGIWTgXz5/Dgu/QZZNe0iLXVoWEB7LFnxjT1ofNqDaI5ZCWzXd7rCnAFAODKUgEDinoO8NQ38DsCwySrYNDFCLGgJKSSyESafLo4/pAZxT+4A4UhqGo7uwCTy5u2QZ2cKOT/9kGw8ax/gT+EHg8YK1djIXerRljT/8yf7z52xAp2CQf0gDgH2VNUifNQDMpWH16qQpGiQojpOwampC/nwD0Htk5cIwxGgDKmf2yvTDJyCDHp1JU/G5UmI+E+C0EGCWM4Lv9DX8PD59DcjOm8yI3D1sUdT6cFcgHx4iafEOAFNDZzLheg+Id+ndWQsQhPANPHFwH8ZsQQpKC2YVAf80g/UwgKKjpY9H1cBU3vUYkNdPpwY5MjBjaoAwHz0jxpiKMhAQB2LEIrGSGgA8ZNjl0Gp2vQiCsBtk2wjMZg9ZllEO12ClXQpsOMjbAr2t7Vh2wBuvZ2BOv0wAFCATQ4m7uxt6MFMhQaNdLxI/wImQHfZ+YJdxEhI0vt89XF9fP2wPnVl2ECFA3o1lrJVnAS4A7iGSpMdHNm0FgxRF09ZdW1OsgLWwL9NS1k1JFXxHLRMAJRgL0wAt0pEHb34mHeWD6DDzC/CNfF5guxsnbG0PC8tewXcIcmYvEFKnab7dHRriv7JaaQDfFSsnDALf4OnDLLouSYjvCQk+0vXHD6vlMg4CQAMtmFcD4JOKEsGQJORRmsdyvYqXsed5ZVliDO57h8Ph6t2Hm5ubtsEXWw1ZoNEYVATW64nviImB5wupYWYtMHb0grCBI12VHdJFHKZpulmvIAHKDkkSpdk+9H1cJal8H/T9ui6ttcsk1jhKIETCqYdoM9nU8IxNixxQnZB1WUWBB3mDVkV+iCNN9lDYhRDUQIepkMoPo2YQDaCUMEhWXpTAVPRwGPIdLIfKroYVLSywWmlwhbUMF8kyTowY2iLvyyIQQnu6Vb306HC3MrDSqr7O92W22+22NgxtchKdv7749t8uv/k3YnEhRDCIlRRGdJmoDmJ/m779u3ff/dX1+z8Mot1cnr/45tdn3/xGbL4Q9qSlBgA7RJ+1++vt+99d/emvt1c/yKEOw1AZ3ySb+OTF8uxVuL7w45X2QqS+Co+y9RwLaGoDZg0Ai4W4BwC16+cG4F/wJf+Hb148cQFilSoDY1wMOVCfYJmQWImjABe4I9dnc4rO7J+qpQ13OkImPGluS+92Eyry6gpPGsOc7E/HBwx8qT8z82af6SeKtOlAmjytJzo400C425lANf45U3TRBLBRa0LtrGS7asBF/CLo2Rn84d8nZIrVsVjU5BwPGiWV1GBFtBYIDQglVDq2ZJfTVHlGLhhgx/JRwb/CWr8aESBSZwJ06ZU55C2CGxECzAc2fLd6OP06LI24m6hv8NmVomnAI/4VT3VcYQGK9ZSXjAcSXQg5+RP/331wXE/rM1fVDRCYaQD7aqTVAsMPofDUFnxTUH0OWS+Gsqj2WVrXLZGIdNO10nqPawtnCMg5rwPRSUENWsCRLAiCRbJpW5wQNBCA7plLLuS3z27ikeZBxqlTVBynRmBaYrwnQXJsKF5W6G0mG0SObJs3kxxXN/6uLok8JkOx2OCo9WTbQSgIeX06JJVHEbQImT1GXnWir8uKUqzhVs5MVhrky65NFYWtOIdE8GzhEfTFqzdYIIgcwnFeFAVuRE9znDFob6APUpPKj3ylgJGT8AOcIljQWdMU+7ZBNVBVUBh3BKb2Ury4fOaFmF+Au9X2+zR7uN8d8qxsWhv4YZQEUay0X9bNdp/tMmoDQOHWg7QN6LC9tggR2G7v8R/Bp3doD7dhMKO2GqQC+P3JwLcJZIphmuZFCX7ztJkwC2gSlfJHY9ChauqeOmsX5sB0H3oVtaP80S89nijTrXwEYwsRhuH0pM8r7LqtePMh4hymmmCpLRbr9ZpxWZArZr6Z4+0GGYnfM3pAchb6Kamus6kd1xbvIezJ41wHps4B0Vzykbh2jn2wxunJxFUJGaCq5IfCUWX4KRuddmg+OZ5BmPJrZ6k57Z/TZZ83TlMqczPaPf/knORzlIdjaHvinXNmMBM84FtPEwDC6akN4BskUR22xPOGgtNaH9lS4OQogB14lruuo5sDc62q7ABG8I7H4AUZjxIEQ0QWuKfQE0pNspDm2JB3LQ8MNQIZAydnAJHP4d9K97614G1aCwsuUoLiESOYw4A/SbkTw5CmKUiBu7IVSQ4uSSsghQ2VsWXdlHVjfeR+QC8vOs/gGzHk86zv27LKyROrzg5plqeBNav14tWL55HzS9CLRbxIorqut7vit3+8vrnbp2nKHlYUMoBmPgwCrBlQwHAgQr8LIwcttcLQjmC7mv4ZBcFiGdPaBmVRiC6M/CjCtlyVZV+Is9Xm9HTjeV5R5WRnXGDkQpaang9qYtcNEKdVZVW38eoEtlCUnoznAl0aZsL7LOPTkzAsPlBwC31jLs7xGoQAWH53XVaYkYaeJfsIYGQGphTQuhkpyiLDZuiBjeR53nK9evH6xcuXL29vb9M0LTKYR4fIHa9vb66IShTBjKDvfZgZ4906+UTTYARhvX7QDbZ8/AqwQ8FswJ6D2DksMnJD6lsK+uQUURhGcU9F/qQMLKKYxYNDSupeqDxNuR/jobHVJoSFnLGmC2jE3XXdIc+yFI2iUBoub1JVTV/VvYCob+GHsTcMLWxAi6EHxqSkbYX2k+Xi9LQ36lCX99uHdH8Itbo8O3lGFsZ36f5hd1/X9SoJl5HtmrwrDkNbbe9ve6XzTot48/Jf/buv/vf/R7F+0XWe0ifYFeoDEgDqrP/hb//4N//h4ebHqt6fPXv+6pe/Tr74ldi8Enrdq6UQft/XSKpLb3bvf3/zw9/ub9625aETgxet8lbVMozPXnzx7V++ePOtCBKkQuoQXYs0MJkW8NQFYmj9ntIn6bB3DQCxBHB1/7tuAP57f8l/+/VzdyocObLOlY8bgKM6lianTeUKcQaMp1p8lFpyfopjTeA/sefEiPRPhwozIydXlmn039Tgnk5dgaNqEOd7fu5OZx6w788/1WwO8Pjgp/N1xKLmLjGffy+dY4iWpIecEDVSAHCPREeLu2hg8kxWmz0ebbiY9Z1WAjxynF8ofWChTekBsGyD6BPAfRh54OqlWVqgUIb9L28itNE4siuVF0h0bYbV2bO6FZxTg3OOmhyrEdzDTvacHjBeT7lIIk7omNn84Ql0DR51D+PZT/btHTKYRoTzqDtseoTSW+PDuH0gRjwIQmDtU7oZXQeKkzEecnMMSLGmH9C5FRQekhdVXhbSIiOGTVTpvuPXsJAajVkDNB3U3BECxLnjwwoJqAPQl7amg38KoXvMjngU2sB/Obm+/NQkSrcIo4PvH981tx7I89+pHsjcc/x6BKgeXZ7cf8LqBZGACc1qsoXl3wAjcrJCkTzXobKPRVKgU7PSnHzKtVJD4AlFGInThvJtoIIs9L0EcH5ImhOyZxXD3W4/TbhE7ySyGLVDwoFfPSnauShcxYFUuJXcz0+OLu/evaNWAU3AIlkmy8UiXmo/eNgf8rrJUaXX7KQxSEOUav3x5v72Zle1QP4kWGqykx1Gz3VJg6W6roA+Am33vC/fvKYyt0ODUhZD37rpovXJhAozLgbJWPOQpphCcLV9RArIFYR1w2ScMjVXGFD8ZAPwhNE3v/tznti0Tg7Znr13uOAbBniEF0VBgxSEEAkhMnpxCY5nknZLV08gVgxvj7/3p7aUnnI4CRd3a5UfATe/Gm2BZqQaWkbzeERUqTBDQovL8YguJJEaDMfy56U37lE4lZ3F8NECCNMUo52n/ozj9JPj3JHfeMxLmXcCT1qd2T/tsbGhUamm3An4BgyY/lFcF553bjAw5RkpKDzh5MbJ92HpiIKKOT3j+0sPGaxo6wZTOOC+fox8LNJXkTEQidcw4ub93OhwDLJEsUqarVYMQ1HknmciCOUxTyAdFIhqTQNekEDoL7p0yP6jyPPN7f0dTwl8H1ALjMP6vunt1W2VZcMhz6oaww+kL8FqyWUpupT0sXNTSiSLkGe5QehB1WN0XhzS/fb1yxcXZyeb9UpKnDXLZbJeLpSNfvyU3twf3r59++njFVtv869eLxdss0acbByVFM4m4kV0v9uWWU4peaEQEkO3qtqcrAggEhUY6h2uWxJG1u+KLt0eqrrcbFavXr2IltF+v7u7u0HWONTBnbb+IkqksXXV5lX99uOVF8VxmCiD9D2nBRIY83DcMQ123HZppCzyPEmS5XJprXYtfd8iPrPDXSALASTSo5mh9RP7HtaJwS5ijIkXyfmz84uLC6VUmqb77cN+v+8rPInWQLWd7rfYfsieBEuGHsmmw3SlqLAjCa2CMFIGA8CqqkLfw+mN/HI4YQB689Bt4lQgaQQv+dHFmEN0yQ2POK6cokB7OJhkZA+IuRMIT1jOsM3FyjGmo52hgMoZ3XCWFUhm0H4Hnh6aC1AZq1qkmABYHQRhbIzfa+MvVuHmZP384uTZMxlH+9vr9z9835bVxXpzdnZS1+399uH2+qrM08jKZWwD8N+am6tPddvVyoab5+ff/sX5139pTp4PJqnFwmpftYUoDv3N2x//9q+uf/yt7NKq3ivPxicXp2++vfjyN97ZG+FtUML0XZs95HcfDlc/ZHc/VLvbqjzgE5jAROtgdbm+/OL0xZeLs+fCC9EAyABe0AJKQcoGgIWt0JYaAA4JJt9eNAB4ISn75wbgX+4l//WXlz+ZAwDBDRWLx92fblNHu9UEu04EoSlfiatVbrvJXPxoL+1+Dr14aDDp8I4/akZFndoDhlimU2qO+Fbkt/X3s4wmMisgJRqF8399Mlufa5QdF5aSImeuoFOuJ6fqMLoLmoFrM5QEqNKhPCaEqZHkdCGHIYRMa4DPogVrH8cYbFP67e5uuY4vzs6X64XWNsuy7f0DLGVyeIpxnY+Di4JsBmnLEof2RJDlz84N0pToPDlyaLjZgFw0V3fwf2qJGuQu0ZTTgyPL7zuAbA1Bj9N1HhcMlxTGIetaNOB9gPwDUI0sEdlaxw/hV2MsuViQHVBR1rC4Jl9L/p3cSrEHPzV1tOWSWtBx0npMBmDRCajMh3Mmjn8qppliQg3q6AGDF2KGZwX4pD5n0fAjuJQ4TrAwA2RDxXjrVMJ0/B8LrLmKtGkrrkjoJ7BJNTUARJDjP08kbO5tpnXO5T69Q06w5k7rSEtTop1EbMxncHEbA3I2YKMZwN0OSZgWU3FUb+Su44x0GsZrMYGFxyaJ6mj9Y52iNwPyVBC/2RUudKqigLYG4c1NibEAIDvPQj3ieavTi2ag3BjubweBtMtOVHW7z8vDvtrnZXoo4YHYw/G17SqB9UaWtR3ULJgMBMFms2F+Ap6PpgJySwsMGj6B1csVNu4yIWb7/b4ooGY+HA4T7t51FDAHZwrn94+qi0YH7IzkJs4zD4qJ089XgGBErCKE9cy6xKmTjBfRZDPA48cJ4Gfcgd8hJ58gjpRo5fygEurqpjEj1YSXonPUIe8U/DbebrkBoIXj4nWZKjPF97L54/TczRsAJrk9+Xu0+vDJ4eBllCPTg88iYF66UwMAhyAk7P7EBODJn93ocOhZtvj5ZvuZYej0wmZFfo5gEGGrRxsMIhxNL3kghmAKfonWdSyMHfNd6PsWTHSFU8mjpwCYakDruapB58NALO07FFshTKZM4FNEL7kOHSe0MND3xn7JDffIjAgbnjN5ENixqWs3Wpsib0gFS661XWesiiI/CGFgQDsDwQRUIOIdmjDNTZb3aQZztrzqqqZHhdsrckOjEDHCy8dzB5+LL04cBi9ePHv+7KJrq4fbm8P+/vRsc3l2tlrHm9V6tV5YrZtWav9kn9U//PDDb3/7u6uba17YPD0LPBsGXmA9SWnG2BeGNs0PvGK7dkhTJMD4fpAkmADEMQwMlMaN4HGvlirSYVOUh8OurAql+mQZn52fLhaLw+FQoK1vkOcVxHAlpmzmrOnv99vdA2AImBl7GBTnJQ4XtoSeNQCoMtgEllYhPRG0JFge4xhrUGURNkT3wgcXtAMOQw9vEIWrk9Vyufz2228Jv2/v7u4+vX1/d3fXtbXVJvJsXZQc6kd5zEz5sx8+fFiuV+vVibKGwttg0xQEQVHmkM1MrFeM5rHV0HnhJmlHPJHmw/w8ki8gDQGIuhYFMa3kIfAsDLctEh5xYTHwgjNGRzzPEqOrumlQ/BAzSgDyEm68JocuMqprazIaDZTyOq1ssgzW6zf/6lcmikzo4/J1TVtWVZY1aREgUkJl+8PVxw91cViE/iJAmk+R74uy7o23uHiZPP/Srp97m0uzuBz0UoKlU4u6aN9997v/97+/ffu72O+HoYCP1WoTbC6Ck5fR6ct49ULCm8iKdNvdvX/48P39+z9u7z7k2aHu+k77p8/fPHvzq7OXX0frS5EshfZpQzEQgWF+iUBGzvwSygBRcxQgmp2MR97PDcC/7OvIteU/THs68qRoPH2smaiu0r43IfFOLUp+OFRSgGNONoVwKUHSB7SS+OInmgH+gjl/g1m2eNGhy56PPIvnMj2KcDBPZ/N06JKnhHtN5T6PsJ+kZnIr3zQo4OYW4/y9U7DxlIhJ7xZGgnwUT3RanGd4dEmbhZObPRkRsDoQI58LONj+NgD3y7xo2irLa2Ok3zSdD+wBXwYctz87P8+r/Lsf/jT8AZ/x7Ozs1atXq9Xq7uamKLJ0f9jv93ma1XWHQeVQ1aWQmkw/iVQ6huDyO3RFKjkoOBStqEqKwzxW8nx9IHAbGyGqo4lkj/RNPAMDzDxdsgHhMpjYsJkmXx/XnhHfnbRlCFvp2oFoS7BpKKotmTVCLUASOoxKjeeheKRfgMgt3H3kAsMHtUXha/BTrTSIMqPCHmwQAEtFkaapcesKUljuHz6TdLPl39MlzXwGJ+oYJ05cz+HLYJABKN9aqY3xrWwH09UNuOydQCvCCCKgQFyHSSfAwxTQeCTyeniB8ZMyccmIp0ylPy91mizQqm5BORj90afOre4G3QnU5IY11zg0hRzixQr1d9tXmN7ixEL57hm232UGEWZEzlGzXSxW7jGhB5B4q8C3tJF1O4iyMAo/AToEHNveyWZDH2TD8abMuSoOBczswgWEGYvEGr/p+gMSAppD2q+TU/k8KMr26ubh09U10kDhtUqe/Kgs0frDwKrGd+R5HsfxZkUOGb4/8ObQNUEUshKX6cWMGvR9f35+3nXd2dkZtwEIMUBLgOPTtV2jbGCyCfrJ13S7p5XA0wYu4qfJ5PQTdrvdarU6PT0Fv4KYkLxrodYn4k2aprvdDmwEBAmvtg8PDGegH0jhYAU2HH3v7F248eBngibeb+l9UheMB8NRVpg6D6Acpyqwc6bPSibREgrOe5cbGFClImAL6RYnm5c5dIMlAvy73FNPP4cEpk8xmum9zf/sTAuw781JTcdxynwfni7/AI6Z6tB0dCTLIOEp0fax91JZDOiXfP/7piMWNziIML7BTAn/GbwQEqnAnazGhkA8E/RyCz+MPNvHUdfEdVNWZYoSK991HKceRTA99DRMyHo9DAIoNgyYobOBQGsUzsTxCRvV4oFpYEXMDKLNJiHLZrLOLcsC9Or9w0N3+eycNEVkSYxNEox2pVspY98zSqNJN3mVZrBkIe0A3VP8KmyLjEcMA8weIBuSqqybm5s7Y9Xzy4tvf/XroavauirK9NOn6yzLuh7WmUEUSW0WUp2dbi4uzvI83cLgH6wSHj/C1lMJTynrQc4lRO95CqYycLTEPkfuuiLDQMAv664TeZTEi8XaJ9Ohpqo3Z+d908arZV6kRZHWbfXu0yd59SmKYvqAtm6Gu/ud3BZJtPDj5PVXX6oPH4u8pqT5pic3bPQkNO3kxXmM6VTiZLFuIZytyTAefhE0i+kUwygDBewg55i0IUSd5VEnFxuDFO1dC6f83e78/PzZxTlsDy4uoJpI9zCblj0oW55uO9U2ddf3CunA8v/8f/k/MbF2AbJNWJbl1dXVzc3NIo54xKc1slB835cNWExsQouBHRkg0icZWoEsZH4gcHpRZKbbPYZKYiCPA6xue6Va0o9JH0kRCJVuKwTe5HlZlVi9vh8iQKUD0EXnNTnX6iGr80H0Fh1BAMXyyenJ8xfRs8usrqQHBjaSNTrQMv0oUJs+u7oJQ8/3T+o6//Quu9/u69AuQi+KN17YKyjJFgabcWeGDrPmAQ2zbhuLiRQSA9KibKo6CiWCkyFxqIr9XTsMddkEfmyE8HSvRRMariaAmyyXSxWuTi8uT589izYbEQWIuoCOnCyPDdXRVPHTZQOpCg0/uaC7cMjZDv3ntu6fX/8/mgAQuj93ySCO5ljQHN2BeO4KWwdX/cwPjAk+B8/Ph/QQj5MXwqSD+P1cUrCCs23b5XLJpeRU6HOfQJZwR8yez+CmgRfYEyKvo7N0j5I75zZ/xw95PKiw9Y9zvSORiUnGc6xrRGjGpmI0mXZouuP80ODCTSqEQTL2oCz4A1yQIRCp7RDy3tUVqPB1XVRtgz068EQUxX4Af0kXREU0cfiAUi3+9ZsvYWFB3j1tDYtlJM1UzSEDDFNUbV1jvGaM8H2tENyIQxVDYLJHhOYBm1NLdKAj8j2RoGZY+NwrSTb1MKr4kVPWQdCLIpgLfWcZxFY8NchOKE/QywDBm1Cftod9DSf4oKihWCj8V6UrhAFgM3BaW+a6kKyQ5yqOlo2yG9WJC0Jy6T+E91PBl0TgcNOBp4CpT8UKzW3nwoD5/f2MtUx8BnG8FqjI6YrQrQDRomkqEkDjHAL30fNwHBCZwUVBs6yZciu59xvxTrivwFWcBeTuW8hZyGC1g/lDsCh3I7ycLVEnCVZkWxhSMw/grLMZCJmN4vZhzWjZQ1sCvgpx6pylfd/3uz1xUnHXYPU7iigaz/d5eYOLosFPiyhjLgzgZbhIoiSGcSEeaKLKbveZIlI70bvAAtYWSaid0MjxQjqEGXq9P+SfPl1/ur27T7eHMi8rjH77QdZtV+DnAAQMw3CxWCzolGW1K91fdPh8R7j95kwuaJPJKJa5fzBKz7Kqag7bQ1PDLRHSyRJOtQCDodg7cuVhoz6+rO9EtPxbJqhv8rmfQs15i0jzgxC97/unp6fPnz/fbDa8eG5ubpg4N7UrW3pdnKMQNAYU6rIskYh6AM4aRcmjBcY/H7oRrHbNRocMqdBK1HLyCGLyg+tvjzljj2n3k076qSua0oREziJcaKrgtncC6+ffCCHjZ1SfR18wE0oNCsX3xLCaP01TYNmT/zSfnVJ7LCw9Jhj1qoH2dAIDUN93ou89mLzyHQHxCbsQbii6UlSoHQ0GkVZLvghKny3XoTVhBAFAPzRVmWb5vi5TRPASPOETU5VGrnhA+k4gtA65XvB9h80/EGJKhvbRFhqD281HVdv21kMux8QTq+oC+zCpXDwfzx2rs5gOZIxXQpMPYUzVDVnZ5GVT1KLtRFlhlNvRPJx/oMuywNwM+wChK1VgzavXL7588wooB/K5i+3D/eGw84w6PT1drk/6zpZVVxTldr//eHV99emmrKFa4VGVh9ZCw6TTN5GPgL+mh7VNUcLlWQwGPvTEoIOwqqmFkuv1+vXr11988eri+bNVkuxv70U/FGV2f399c/tpv9/KASfUMJBlnA7qrqtzxAr7xjNB6CeRDQOtNcWfPxRFgfzKOHKpGuNZTGgRDo9QWZ6iM9TKBTS4fxWiDDVJfLChkW2QMToJLcYvHdLUKRPZGZd1XRfH8WqRgBJJEBXUwwISWNDdyAsVs+mu4943z8tvvvnmV7/61Xq9ZowkjmNvufzT33232+9h2Xk4EJ5Ibk5UjTiPaedQ6wIFp3wJtrVgu2OufzyyNvY0DGYp6w1noheHDGLmeb7bQi3OlVXrgj7D0MfVc65NQ6Vji5OvF6EXLhcnZ8+eP3/zhXz+HLsGSommrKu6rIam1b3w5LCK/CZL97v04WF7d31z2O8CozeLKAFdMdCe30hPJevl5avw2RdidS7UsmuR9SjbOn3/7q//w//86cffLoIhCqTSnfG9ZLM5ffYq2TxrpZ9n9bvv/xR7JrKirfbpw01Z5slitT5/Hp1cxptLffoCIQYqxIlVI7x5gEGIJ7SHmDAYEbM1EIwIUZbwBEC1Uw8wGpT9g18/TwD+SV/yN1+cP2kAJpB4ojrwl4IlwSzVI6Xk6JwzjWtHJZxz2/ANXLOcAZaAwJ0LEdic0VfyMc+yOTx1ox5gLheGDcJ+/4R6xD+fgmwf2X3ORwHzKf/I3UfpOZ1qn5tF8h8m6shAJIrJKInSB7EhTLQYdo6fkixpDxNwLgbVJ/SJrmGM4UxZOJ8URU1XAHx9KfwQnwNDbeqCgIQ3VQdZZRP6wRIFGXYJ2DNTCb5PQYfIijzLikOG9JimRsHtjDoNh/iCIKJpq+3bBrXFI1qUa3Wm+8jkKCrf1TAcZdC8jbKAjC8Mf7FLgSb56cNuz3NM3p153keEfgEXf2pKOOigQZSPaaVHclki3UwFytSWjL4oE9UBLaVLWgCPAQuMToJJ9ExsmTF3Yoxdmy3mo9D8J1/cy/GaGAk/aHKYko52YyBp2/jKSWzKckZMNwkXJZYOKl5uMh0FCfPtHkfy2ICRmSw1jTy3oTbMyZGZy4SrT9qpY9XFTQI+mUZwmMcjL0ecE2DNQxLuJO9k80Tr5JCm7IJNmm+iW9D+W4yifLQloF/jfDSi3ywXRkvPmtCzsKdD6qe2yvomatu+RLhBBT8/hAssbAgkshtU06q6HZT0pLJdN+RN+357d/2wvbq9g49r0xd1UzZtA3soV6BzewwRJIonaBzZUGt6Tnl4OCVFkKeqW43owequqQG3AwVM8TTxNsLT5c8bAFiAjzC/+5sRsZ4e/5mcSWhr4LaUZX3fx3F8cXFxeXm5Wq1+/etfHw6HDx8+fPr0qSgK6FuorSqLjCvFMAx5GrN9wLyCIN8xHmvaiii5ihz6HzUAEKlTfCatIuwnQHOdOyPu2ueFtSOVffYaKJqbvWvdA8tVP++c41s57tuPG4Bp4U0TsycOqigjR4nQYztmVpv8hA7Y5YZT6rYCuAtciaJ5FbG0UVGRdrQVXW8cPdiJ+MEfJotk1kMjHQ851i17vJpBxtqPkHQexrCItAYm5t0wNHm2A1RQA22VA06ZKIh4OFO3MDOoRhKai+0bhO+zqBcmPNANEMcQ1DaQMJ1MBZV6g25koqTyLR5D5RSnGbR9X3cSYEevOmFZKN92skKGAB0iJPUi3RSod6gUfdPA/TgLPLVaLQLfWybxah378P4v03RfZHldt0b7VUXZ1drmZbVPM6lVEi+hBxCdIvNieODAkhh8oLopkuXSD6M8K+7udoes6DHVNotkBRuclrr8YUDHe7bZbDb/6ptvfGsEQnCv3394e/9wI7rW80xK6lUi4/jWQEtQVz1ROotktVwsFqyWQXyEwXFW15g3zs9rTuYeqoo8Oi0eTFpIJCEDlRQfClExgL2wRWCvU5GPp5Lsoai0AMkWf2Ab3w4SAuRKEnkYF943ncWawS7K3FQa4LqRte+FyQKGotbiVGqb/s1XvzA24A7/3bt39/f3QgDBhD+Cq02n8SxDNKMInilMJPFimhmm8sgeh9GfHCAfJ98OqYynKSiJhiSllsjn6RsMGXxLAfAGUzvUFUaYVdD2zUC8Ma39KF4sT06j9er8i69uHx6ub26hPqrroW6xtvr26zcXtzcfD2npURIF6AZFrvrOMzqJY2NtNUgVLc5efHn6+muxuRDxpZABYKK7ux9/+9u/+V/+ff7w8dlZ3JQPga/8QNswWp6cr0/PhY6qsrl697bOsrZKNYT1vfG9xfo0ObnYvHijw42I1/AA1T54TnmBsqSqouUqiTdKB5RM4AskQVFsKm9QmHK2079hc/pH1Ks/NwD/xC/565cn9P+PoLijMYwMhmNCDTUAvoVv1xMYnjnok3SV8f6yRKqfkW7gzsTNKVZmu91+PkbAAVMCSZ3X+nw2J0nCk4QJhOPpfBw/mba7159BfHtMW0eEeP57pwnDnPA9w56nsQBI/o5U4KacDt+iTQG6IFwfbEHSQ+djA/aBps9BML9syirLQO8py3KPHChB+jMPrGx8BWoyBYwWXb8YwBj2yW/e9+3p2UajXoFCA+nrB0yBsxyUUwqQJyaPMuzvaKxqKvh5uyswgv2P3QmPimq6Dh4aiVEWyVseb6BkVUk6MDJZo4FpWJR90woGmBFf37awWsMxiAYABqYe1JBlXZEhtC47Q5oIh0RSAURFOKwDXEMCRI7wPzK0poBYMqthf0MKfpB1SdoPDqejsoYTN3n1TkYx06eYFyiPCPq8GEBRnJUdtB6IMOHY1ZNHZFqWrBbgqvJYxmlXtI09M+bHaugDjYn8pGZxV5u9Mabinggg+K5B5gVEpY62Qbo5Lky7ptVIAoL64niyiiHxNB2IR4Sbn8SLy8ua+s0sTwn/qygySfSKbG3ZFIXiKSS25x6EaihkZOCZKLQA1iLf137shSQiIR+tHiYdUE2g+pdBmGgbVXXfNsLCQigRQdiF4aft7vrm7m67u3043NzdPWzTDOb9KHRK10yiRIiC0Fr97OK0pWQffrShhgwCuBFF0dQ18bNMomuDYMFxk67rdrfbfbq53u12Bt6F7r/MGwCwC45drutsp585IwdyRw9YNEJmk1/XYDWwnBeRPcb85je/+eUvf6mUur6+vru7Y+pFkaf8Ao07XoRhCIy5aT59uuYGgOgB4y7kLOdx641UnzcAkBhSc8wyErxI2/D5BODpPj7T9hzxfrZJ4P5hjC2fZMcUvoVa8En1P23sj6ET958HiTCmOXXq8xiB+X4CWxWqkQl3AAuAczBgwG904MEOgWw66bP2g6hga9a1mHOxuQBHVblGTmJXIfsy7MaqH4AooP3QfqCTyItinyZYuoNjGKaUdVMCTxkGq6w0Oopc8nHPj41zmEWuiNs6DAiBFlmKgfYsNi6kBKKLpv0HIS5SqsAL66olPW2D9BN+c7IJYzTbmJID57SwcRxsywFJQncDHDM7DktBW46sDLAByWPHKNmBa1QOXfPs2XkDbKuLQn+xiK0HUiKG59QDUUpLXyGRBMIrpuCSvgJ8EyU7D67w0NysNwk4gA323sCPB2m3eCrv94dikOjntWfxibSCNncRf/X6tRZDEvsnp6sg8B62N7/927/54x+/Ozk5q6qqqxD9HoaJkl5ddVlZ9GrAz6eHeoL5WCwxLaojFgPFyag1hwMkEfm4fvAo3Y/kAvgyA7sJsOLbEqMQo8EAgys3SONH6w46gg1FHOBkl60VhVatdJNwyC24AWAdfxQmbDBqjEqSZRwvqlYvlpsoirIse/f+I7X3FUk1HCSIEDa3/mlqzWlI1LcQhQA7LuZaEGAP8Dwhlb/R8AsSSlUdPJCQukt1CwYF2rNGRX7Q1vWAf8XPkBIRbCbU+yqzgY29CJ9Z0K0xdlCqGpQJMHqt8uLu+rY8ZMsgOj1b7oqPZVcM0iJZLFzKASbgbVkoylIgW1w7+FG0Orl4+SZ59lURnvjJiWqH3c31j7/7u7/7T/8xvfu0TkyZXZ+fxMtVpAwIBX68tB4MrE0nst22LFKjkP0sjPaTVbg+v3jzSx2tvXgjvRjOXVWze7h/2G2rrj+/vDw9ewlX0N5CEqACmgaAIURbNFG6BNzT2QH05wbgX/Alf/l803HSFXnRI+aJgE3Y0mkKajHaYNtmjJNKFraynn7EBPygTkA37P6GWNokecHOxdG801j/xQvYj3Zdx9P8qqoYYjlZbwhaa/I8LQps4lQ2q66DEUQcL2DYrAwFWtVNU+12uz/nSjE/1cZjaRQbjfU946PD0PkkeuZPNCcGeLNRO58ZA1naTWJod/5BcqeFGjhfyX2D2yqwVaEBsiYM44go7OSPhP94yDOwS7MUxgV97xmYvfieScKI0Vm4/4Dz2oBRgZFj6/k2CjEXsGRzhrTFAQBDVhTb3WF7SKuqlkp6Hq7zzP1mlqwssTuMIQluR3MXBBC+y9B1eD/96xTLOjfeGYRaLE+53qL2DDkA4Hfi/O7REMDCxXQDJc+jmPHzihYWX2cqyZxBIUcgzyc2JBdj8Z/ryVCod4SVt/B3HxgMakjgyN87OLrKaP86ZVYAc5pVe+4PcpBInnbLeDiahLplwBgPuP9UQVG3AT8H0J9a8gnBsUCuneD9cANDTqAG55tGsdxZdpEjkvfkAtRD80BQKEljnRxFmTyrQFEAzonTgn3oWAs8kaBw3vvG90LfUxGaAyfImYPcaZZFUQTufhJJpcoSwrisLIcetBzMkptKgTGC8CBPqSrP8NMQQuxHAbzFAVT3IoFMACJCg1B70s1TBh4IFSZQMKhFSI/vRWVZP6TFYRBI8KKgyCwvb7f7u21a1s313bZq2qLCCLsjdJXfKvSagQe/8ySGi3bXwmDIs9hFSN8GsSAFXnoa+wPYtGS8QxyhoCzLm5ubu7u7Kfn7iQsQLriRaBuw6NQT2cCx9h97fhQuJNoDeW3UwAxDV5YA5YzxXrx49pvf/OsXL55tt/s//ekPRZYj4KPrihwkpbJu0FVqSw4tvAuNAllKyJSC7Gh4EES+rlgYEr6NTFDETNwNAfhxdA/LEywDe8Pj7Zc/LpeULBJ2OQPUV9ACpFJsDAXjFsAYUNqmGdhkksvmudw1zTyUO+3B9dJhIoTsjzncmInR5TxaFOBjmvFBw8/p+qEDTwAi4IEbAN/XCLJy6h8xVA3Sm0eNWYuzhrYX0uqAfgbjekwtcA+73mukgPi9QdaBJ8PARFEYeCqOQ1CANPlOVdBm1AWsZoVFjlXgkY5oxulS2DA9H1umJZtm/IZeDIvVmutI5tCBPkEZwWqgtdQi6ZCEZCQT78qu3Q+qkzgzvW5AGFNedkXVaRNKGxgbSMClcIFkrU5Zgo6Pzq2rfd9fLhNjdN2Ut9dXPibDvk9UfibsYf3XnTXwlCxJSOqHQdM0GFjBQHngUDPkGEAog4Gw1CJM4sAGddu3EBd5UvtDr6q6fdjtd+kBVv4shFOk0e874LfrZRBaeNrBPQnL4Pb6Bve6w4h4AKMb8WBSq6Zr8OY+M2RLFtE8fsc9Z0JGnqXQeTytxCq0SMAkiqkhNxxNZj6ItCJPZzk0yArQsOWtKcStp1kQSw1BUYUKvJI9DDYCXwa2lYKGD+M8n99DEARchLD+UCmFY7fq/Oi0p1vZNB3+MwY0tL5B+RwTRWaHuQuUxBhq7nYo4jBqu1rCsxufEaZVNJKoO+pA2q7vGsCDaMhx5BHeAkPYIIAZU1XRJFPLYIk+bL1ce8Zvyuawh6X/IS+kUgcaS65Wq81iIzpRHNK02C83XrAMeolRfF62YRCvFnFgrGjboszgkRolrTKtlOvL5xdvfmkvvxbJieikOOwfPl794W//84/f/66t9oERcWzj2E8W0cnpeZws87y8u7l9+PjWDF3gQfg+4EwaouV6efHi2Ve/EItTsdgIY0XV1Pf3H96//Xj7EG4uLl589fz5S+lFooW+GuEA5P3LdcKoA3ZxKNQAHM9ct08ei8t5+U5f9nMD8E/6kr94cQbZJ6FU2PcYrUEOkXG4JBMwGJNVg4fh2hjVzgoBOkZpiEqM8BF/ArKLPsKN/if8nnd2HrszY2Ge+4N4IWs9GygNwVaWg1NblJlnAzxgQqMe8UIggcbX1qRp2gs3c5ibBj6xpj6elGOOvXuw4c3IC3F+vjJahnekVe+0YrOuYK55GCsKIFaQP477hXOJGQtoehP475r2UyJwo7WC/Rkd2FxZkXMDBeWA0o2gHGC+TEnC1tQoAX+3ibA0aRgY95XEJqyqihxK8rzsgjByhlsOUXY8frpQri9i6wPK8ZUAy6SrldUxUIkMQIkfycMHkgCgTPXjmHj/j2j3UoASyrkBUyQzvUxFb386GKb/FEXR5GLkpsZsvolxoVOis0migHtg7wFqgroIq466EnZjYLMavv4TldwYg0PiseULdnDRLaKQNiB3haYGgDigrkB0a59MyiGPphGBuwg1xlwACAc4afB6xumloXwQsjco5oiyrySKXWtg2qpkWxeUOkRGKJjKSwREWG9z9hyJMBXZSHVu3lW3OLdoyoHhuPG5dmm7qogUQoXhSSIUBIyINcBP4weBNCwdk++NB9aKlKooEH9TFDCy7Fo4IeKcCHxq4cmnyJgo9JMkiQJflBXpNSFRAymIE6Dp+KQlDN4zhJuIG7VCgxaM+q5XzSDKut0esqu77cO+yKomrdpDWu5zWCRCFoPpfK8wacEO4wV+6EegcWDqAVoIXGUN0u7xuRq0ef0wJItochsTvdMG1GWJKKWja+qRoEIEEirl8d/4BGIgCnTEGjoWFxDGy2OxWDRdQx5XyFVo2lor4weeGmTT1OQ9X3vGOzs7/eqrr1+8eL4+WTVNc3t7++nTNWYC/ZDu91c3dxwahS7GuEKTfaXILcptQXDBH+ltLA5hH3Fq9pxx/mgHzM65Uw9LdfZjnGF6cOAdRCbbkPwR64zHDtxtsm0yPwHEcKM9hLLGmxpPBFJHPF0WtUvHm41DGQNhmRabdE0g73zcMT2AsBHwNTVgmIjypE8SfqIV3pKWvZKdVcoPEFvkeyb2AuD/FIBdNyV12pRCSPp9qTyB+tBTxg7AXBUSaCkvBUAA6jMFXx2jAk/5no19E8FvoZdgD+Ee3GZ5jeuKS+GTVTHjGj6ZHAwD7MJ83xoLmT4eJWVw+4mpSUAy5Fgc087XEUgZSEKUBDL0cWzRkCMVFxotNL1lW9Z91YqqlXVnOulpHWo/NtYnsKAVEjhC11JALz19eAADD44LTdM3NUZzWvmg5dndoeTmm9PNpCBMumvx9XXV80YxwNGS9gHdYY1ZH4YBBM8TBE8rE06TAyXoYdKF3GINVQaljjBZC/6VuC8gslKLWxUFxh0KQxeFsIamEQZasZ/0gGJfkIkUwFt04GG2xha6tDEbWBYRQAP7DByXaPgd2IQM3d6L/GWMZPQBBKIKjmNVvkhWzv+tl9gfm8bAoEQ3dRYGEli/75HLBmzSeMhD5yMmqjRqkk3f9YO525Wouzs+CinioKrqqlW0hUJJYpHYSwYAdQW3WfK04QEU2VKhx8RMh6OUMfglJ1AAJ56PMJ+BBO1GSl+iTRRtI/omiUOPwisoIccRigaNn3j+7OXZ5bOm6t++/3j18WNTlb7VbVOgR6HDFLkXfmj8yGpbp1kc+oNW1EAA/0KIW1mxFB0zGT/olWywlUgZLE5e/OLyzS/g7SOk8Pztd9/9x//4/8qz9NWrF1988QqSJw8qxjovP368Otx/Onz8TlapRKakVUJDAUrjqs3p+bMvvvCePRNN9eHt25u7GxRk68v4+V+Gm1fr9YlSHpkQwGdMCFh6jCcsbVnjUYwF7M5cLrgwdZ9TNsYewAWH/aN7gD8X1f5P9Rr+mTuGf+b3L79+fnY8VUbmKJncpcRQdO6cLgxYCTSXx4KJ+Nb0J1Kw0k8cmdmuFHa+mU8DdyYTD/7zxOmn5phEA9TiT6jz9fX1vL53ej5jgiiebIu4xeeNhjfTzxuAxxNqxr4cIX6W63lsAMRQMYd+DhPyv07qn/mwgVGxCWgfJRV8aDrvS4aKOQTHg3XQyFknkIyHJ3T2kD2ZSxoiS3nRdXUhZMcmZEcOg+iZMsHeke6gbvpmEGnBU2YevDqUjuWqM/jQLbJBmKzqmg6uJjzX5hmn0pawENgV0wsZDoCmlbzf7waa+jBSPg0ZXDQEjm/moPOtHyCSo4HTEw+WeeN07NBkT2LBcRzLBpq0muCb4MAD909GNaFMfZzyxgUru75MP3x8uLqmLifq0VwQMg9gmtGdFfS3bMNKF3DKVnPO4qONrGsXNYAyRuZQQyvtobjFHnZxtkFhLbu+a+uyKKu8Qa4OFI7WD+I4BlGVwoPyEjyDLEUGNDGsSGcfBlGYBFb1TTE0sPwPg2gRL40xZVlzjYIEX1x2COj9EIdt33dGgUvmeV7bNA/0QsQefbiZTdRommn0882JlnjopOrJ9BA6ZiDWTJmjdohE7LBnxPhF+5SNY4EMSVO2Q1rWadV/ur1P8/p6l273+aEoYCTXi06qTkKViODqvtfKTkUDfgReroBw158yngY1MKGOLTgrRBTUZZ5hUkKLhR9YfhE27NbVOOBzmDqMtyEyxVrla9u2LYcBhV4YxIFVlvKbYVNujU9QOgxhmqYry7wuoY958/WbZ8+eXV4+B2+4hdTv/h5X9dP1LcLayKGcddjO3IwaANeccIM5S66YGgDenZxdLyP3dGtotRMngfsW0FEeL2myRnWaWmAxuFaUG+GoR27yQL8ENiDNUFK3CSF4iIkivG6KgqUXkwkEvUNccEvksfGOOJoHysGGdxhuCcbjQQ7wSKNJMj1a4z3EKKBBzyPAV5Fq8C2cxDwrSbmKxFwI3BF+UlYFGjWlbQvmjKg7CU8hbAQYanjajVJxN2d5IEYN1ogIDYAOLNHw8H06a0UO6k7RNBhOgrY94sQCVRoSTkPfQldElWNZtchhNz4w2yP0gxXLoxVisgyGknQJ54S4n6zPsG7LukmzMi/boobFUQlJgNfLoIcUCnLtMJTaCEMbLPVkbq02dS3hWjrtdZQ3L8Ti5KQB9b0aukqLPvBU5FnPwrxFa4mBAbhAsOHGwap0VjR5WdVV4/v+arOOomToZdU2xnjb7bau2iCCZphvOjd1IOui4m+LuhKiD2NQ4LBjwIKsLcumLGq0EJQYiRZylgw9bez09Q6MYFSET+0sy5IEBMOu69L9oa7LEJYhQQuDUbQgDEthiUrTy77uCqUHz6Ar4zdG/krm/fv3pEnA4+B86hA7bLu21EZYg4WhFSbqlA+Aw4hiGPDU0z+h1RiEOeRdC7Np19CCDkAkM+LrKs8DCZNAA+h6pbZpATkTcn54JgNJIbRpSK/nNe+OOpZaDZIGOPDSUTKAQZP0KKxm6Gre69CtIucY8hQ/DHtl20HVvQQMVIP21dWVaKu2ONDqwkysaUUrVK8DLe1lfAZ3qqEL4iBYhIOCsXJTFXjjirSFvj9IUXUt/EBMcH1fvf7qFy9evoyePRNS//4//Ifffff7k83Z5eXl2eXlcrMRSSJ8X9zdffe77+4//djv3+k2VUIH+KzoHvmGen4gPSgcyh4cO+3ZeL00q+fJq/+DXTyLQqih6ItxXNKS4Hjgo/eGg9tk87iyd53AzJKeewBuAMi48ucG4J/uBentTzYATJlgM2aG7XlBN4SHTv45hB7hX8FRYWUhB3/Rk0C/4pGGjL+RC75p/MpVPm+vZQVDrrKCswHDt4xtJ4sFE825ZESB2raqaVqyRJw8PabcgMnfczoV5gQJfgOuJPivXGFFcw0MR7BCx6hO8FHcsc0kbnfdgAU7eKwHKgSuA1NEJiohTCE5ZRgu7jVErs6SaJwVQMjWYSzQQQAAaRShokQaZmTckRPYnQCLJM0Knrq42EKjrPGk0h7ybgAIzgaycBoSOFaGgQgJUwgDPCRC1bWS3STpH13TVENdT5EI2BgtRf/6OBRfvngG2fCAQWdbwT2DXZ4szA2obTAWqAfoQTXC0YDIHm8NxVfRuxpvDbcjVOjh8uEgOBbux3/hAmiUObq7j8kVjSMmpge7Q+ANYCw8M6TjQl9pBSTP0VKn8n0KDnsidmTXKZAXKbnLEX6w0vBjnT0u2UjTehl6hL6P4mT6YEDHcfOGdx8/Rb6XxH4c+vFyvVQbXowfPnxo2+6wfcgP+zBCHPLFeukFPkTzNOmCZV0Bd07Vlb1UgbW91j2FJTfNA5K8wuT8AiHKUsPLApLW/JBX+X4HHyotAAstFouT9earr7/9SggQ2PeHh4cHmFQVRVXkOCslaSKNKdM8MBqKgNgLwwAqZBJhkMkU1Oe4IH0jRWVMpayxJqTUHs/CkRwDi4UXRcrTQXIoKm9xCO733m63TbMcfBkggTDL8zF/oLN8YF3vmA5GCrmJo68GVOS0RriFxuCM8okIiGAiOQ2K+KLTlvYZf4ZoWGxOzoZNSvm0pXCiAjBdSmu29BBRxzCsVhuYqeRV17VKwO130JAYXn34+MMPP0ipT05Onr94tVwuOSvg9PT0cDgolk46gNyJQ8Z8XlTxjhlE654UC6iZ9bi2OelvosYRwjjZDtJfut113gYcXc7oR7q1rbH/9EzFIZsR8uEiH16PWFjcbFQVHhlr3diB3sjxnaPWptMcNCXXjfBlHw3d0QAcJxJSiron5xup2qGFJTC5khGPHiU2P/BC9EAbaMYD0YXviQDAO8/ujG79FiU7zQ2Ze8HRYThvoItF5WgM6T7bHgBQ33Vt1zfNgAmdlqGvI4zNUGZ7QdRrRLHKArLSlkavk/hNYndSFQKyEdpIRCMYfFUCAVI0QWX7A9P1sKPtcD1RZwu4wGkIQBtMSNDw09RQCHDiPa9v7vdtX9OJ0EEeBd082JtVNehWt/gjAhbb8TBqK2D5qDmN6tmHsqGAwv1egYKDwBM2GIDJZNOebtZ91wxtV+U5eHRKLZfL5Wq9OX+xP6TX19dXV1cfP14Zc7fanC6XS88L4iQxtpESMMEgpfECKeVutxtqaQN7cn4Wx3Hb1rf3dzc3d3wKg5uj4H1EJkIQR9BRNE5oj+YZQMIwtaCuySnKIN3GsoQ5z1CigLYm8mJM/DCkob6KTj2c4TANAr7g+yEeTWSes8AtMJHRCLhcQWSI9BHn0EPYH/pJWrgQFCN+sceZCF8tbSCFAM8HnkIQqtFEiqY+CKwlpRuVRAqGG5xebogDDOczCySOvqXap6VAdDTGqkkM6f8iim5ubmpY84PR3ICCixbIen7bN0T8I4KFRKfn4eNKLZHEAgYUZM1kHOJZPwSM87A93N1v06IEc0YMXVW2ZRZZ5XvGN4gOKJo+r9pGGgwFPR/iOyVlFEt4K5cA7YKwzAtLwA3P8NuuRZxLW12cnfR1+fHH71e7hyAKm/IQeyr2ZLG/u+3rJt+fPnsmNhvRFLorfNnVIEFYoHAY7GOOQYN3CPHzfZ7XVS2lv4zj5cnJ5XN/9cyu1oONpNBM88Q3PXYL+P/u9bNn6D/xS37z4nx2h44gShgS15OrzNEShyk0BGce2Tv8jHOhP3c8ZO47pvkThWOWF/O4qJrEWDDD4r+fDGe4vmcOn3P8oNOaW5dDls+x+enHMq1oPhx/RNmfGZ5y4UWN/siapVOTXDgGAFRj1A7ncfI/ESY+ZnAyX5aP4XkpSTGTZFzmVBXAHCbPJfbVRljY2HexMQu/DQKQjgMW/i1adposRB7RnOjnMzGaBwhgf3IvJJWxMbsZPOkBjt0IjSlcoirwMJ8VVPiZDSez1tg0QX+lLAIsA7wXDqICakfkbHwr9P7ux1bEJSJ0ZIpuQCYEhzQd38o4P5k0mvMLiLkl2QaMfkGou3lyAthnsgEl4GjMDyJMl+ho3EGBTCGGBpHrdP2J2Ib3Dw7+QPkS/efvh9Vsc3iVQyBc2BmxpSe2mGuYx0KN1mdD8oqW8F0cJKQmINYWQYakp1K+lZAbAt/yQx+GURcnJ1ma3t/fP2y3ZVnyQaKMOT8/hxtUHMHvv2thRpiDXvVwvyPFbCylrsumbvBQcKavF3qBHylo5pq6hbVU3/c3NzfEy+p8316eXV5cngV+hHzjGkbVh0N22G1BOs0pl7rrvEEgvQ7wmx9SxiqiUpVarVb0UWmS3vQ1WgE0ytYLULNg2m6FwSfTfqS8QCivhYdSl+b1/Q4q4evrW7QBbSPIJgtLSNkJbqjr9klpyw0AIfdIj6KpI91xmruxOJrks/S88IMm4YjyZAIwal1GsZBToDCRBQV3jwg/bAhhEIeRH3qR9XR6yAkR5DA6r6ur3e5wv9u+//QRlBkP8yW++JvNydnZWS+gu2BwHdnHJTxnqHFly3ZnX+vW7Zge7cZ6x8kYbFKPDg2jQ9cE+LPOiqPfxs/ldk4GYvC0osqFcB9WM+S6Q5R9BEWRbUCDOluDAMMZzNzbFwVEO+Olm0Iteq3Qsk3P0RREhnvDyVrYaeih7yCvqcjrjLc+DIu4I0ZAIXftJOsF1I0nApsbtjj0V76xvmd9TghTar/fNy2c4EvU7bAS5ovX1RRrjV4Tu4AbKvIKIQRBixbsO4N8Vml0GCU0OkD+cd/0JbhoOHrchBtbMJ8RJEmigC9A3LS6JzRLKAkeH0d6Y0qJct/ghnYBwJZ62ldxDCE2xtzc3mdlt0/LDLQm2UkP5uwwjbZkikAmYox90+PDSTIs9Ee7A5kpGqfD7t5iYIJ+BqZHmB5AMg7quU+0vSgCuF4gR1JIdfHizWq9Wa/XwzDc3Ny9+/Dh7u4hLwtr/NPT8yiK92m63W7JiQglvrUIo6wqSGYvLs83mxWI/k3z/v37qsKQUggFgi4Fclc0PmXq42S2Nt9FmfTLNke8rnplOTsINYaHNDfcuAHPHfLYMeRpQBGnFHapuA5BDoQbXysEKSqlTk83ZI2Nx4qD1QROZIRkgbRDSby4YkpQ9YqJJcixyKhparKvBoFNaHK1wiZNvQcWpw8aotc0jR/Yi7PTN19+cX6+Kcrsj9/94fsf3vrxcrvdsY/52WZzcnLy8uXL9cvnoqpqarQ+fnp/e3ubpnusQTUYMNDwni1kEyLAwoY+eBGHNkAH0HZd0daDEH4UI6JY2LJq93l1SPMco816aGrVN0loQmsC2GZ5rdCNMJ00Ax6UGBJbDwrEeijrutJi8LUq93tDvB1w96UE1xMr0oTJqfUCDjI/OTtNkoSEjvbq6oqtMs7Ozpar1cP9/cePH/u6yPc3emggXRgk5Pt0Y4VQQbJQQWDCWCcLu1okm7Pw9FQsLoS+GEQ0IEsboAy15RBwclDjT00ARgrQSP55PAF4MgRwTmb/mAr35wnA3/eSv/ri+fQvE1+f1bHOtmJm7kb/gTgqbMzgDlG8xSiE362Z6WtnRodPqRdMip2A2EkeAG3A2DI+ptYMcRzzlIAVtNwzwN8XBsvOfnQSG82Ltid/mMSC08SDgTLElI81Av8/YuaAuYGdmaWI4z9Rt7fD9DfMnuTRvHGTh+ObZ5+ZsbEZXYP4XcEJ22H5s1ofBzedZ49Ee66L6WtDaNNEViGbjcGBdvRr2buUdHNKaQ90zumzuTdxhLpnhC7+NdIaCLWJiQHHD/I96lBu9l1d8dCGVFCEbNZtDys78kIHZ8QgSJ3ME+i2jjlsBHfiOvK4dtIUzqOdnywSGg50oq8nSjeRT0glKXp4dhDaOxkdjittmJcmVKiTeUjdcFHCBcr0NdNg6oklPK+TY701icvd4sQDQnuhe2Toezk9lBUClK9Env2CqEE4wJjnTQcSEHpYJfU4/CQ8QCATN3rhe5EH3i3rFh724JNkWQbRi+ctlslms1msViHs8WwvRJZWWV5lWdENg4eWzLYNrGy22521BsHBPmZo2tPQzviO8fxwv3v/4e3D3dZafXp6vlkuzs8vIS7wQyWHPCvv7m+ur273u12RZsTjQpltrQgjGyPoEqUGBP02UNagDUD6dd/SBUcpQ2QG9ErKCCwJzwQRmgHPF8qr2na339/fb3dZfndIkZNHvb0UDlagcFNGco/2nbTZ4rlg6TelPjMNGncE+CsZsI7WUvQoDcy5Hzc7Fz4w9v90t7lhA8JIPzP2PRoudlKKMIzW69V6uQ4Cf7FY9m2THrI0O3RtH+CqeoMQedu+//Tx6uqm6zrPD8n2AAZop+eXQEkQ56lq8i3liANkFc0mUegDndaFhSLc1RPvkRJwOemcV+DEwOP0qlkD4BokrNuO1rZbxxN9FqGEHPsApg30RW73IEPhQ57DTJknrkMPvgSHCT6xMaX4o0pQXgcxmx3xr5e9b/xB0aiR8B9YAMO6SzY07mTBLgYBo2CM1JDYdeEPTiJXhiw8OzgZK8RgyNMib3Un6KckFTLxbKBYoMKCxgnUJ3AaCfAAN9rthq6FZQWphghb6TGk8rzQj4yH4FLcaQI1nEaI3wwNkEBF0hayV/YgpmijbiDt0NAHNDkklk6n0Q8QY14Oke01FaysnUUZComzabq+qNr9Id8eikNWw62xrItOKn/Rwj2CAswV/C3o2oA25jZGyqmFKgFZw61qctHVfVOLobFGR4EXR3B76IfWtwinW23Wnof6lTql/m5fLNbrVy+/ePPmzWpzmufZjz+8+/Dhw29/+zukfQcEKDRdVuRNTUAV9T+k8GqkQUrA8+fPz87OBiH2+/3Nze3d3UOK1YJjwlhdl6kx8M3kRTXZb2QZFKhBECyXyyiKAFU8PDzsDsoL2a8N9FACrcDzs2gPBEQpaE1hAwVFB3ZRROqCPAmiIW2/HQ4kBJwZ2O/WR0owzchVWRbGEoUMZyQpoYlZ5AeW1mHXIOkQYAhlyQ19z3mLiMUiNZS2uGH622+/PaT7Ms/8wJ6enkZR0DV1mhdX1/dZXnZ9E0Xw7QsC7/Ly8uWLFwCMOswP9/v97e3t9c3V9n6bl3kY4p0EFArgKYk2gFigdMWwNoSUVdfXVE9oZfYPhZSmE7Im62QQOIG7931degoWBZ4fqiDxo4UNFsLGOjj1F6tB9veHu6JIMU0RXV8Vpu9l0xghrVKdGEq4RnWd1PusPj+/DALYJ/Ajn4RBjBR2/E1TweBYDuLjx4+3t9cULlmQuxHGkngnaFZRAiobBsv18vLF5uVre/kCamDrCxEOfdRLuMTCORCTHYi4aoQe+J81ALwpjzXnxP8hiHB8GOcNwPRl/5jXzw3Af1UDMCt0jhQgF7D12a+nMDdUrlOIg8NBqYaDNcD44oKMkfXPufhT+s+TmQD77E5/Mxl+cUvARFUMztyIGaM9zmhkhcD8i3+ysGPnlvE3HK3x/swEAD0AuDoCkTRaaDrkEJJlpJn+TP8f/yP3DGapuCuJspUizcfWmUkvj0R77sNCmQ8whN8Aup3RYcAVxz3KXyLWjU7zzssS75YzKR2OyA0M5c+W5Dc8TirGoYdrP8aSiPjrbPNDvB2HUFJaDSIFWAkwENxL2VikTKUQ80Eo4oF07G9NFEEtYHUcgOcLHgzdBTMKi6nfm1g6071gWdg0zBljsJCVyTwHul2gNYPIKZDqSR/DuWpO6wq+8j/VcDLx7AnMj3KtruYCgHkoxPEhmf95RLk4lmtaqtOK5evMwzGMbBrYGrImD8pArAcngEFNT4MTxr+RayplcX+9jKLNZrNcJqBvwpNmaAX8LrMiK/NikPCn32xWmOMHyebkMqsayqCtatwDlN2cncm8Xgoy67RBDlcYhicnJ1EUSSkfHh7ubm7xYylMlL35T9bwAl8sFhy/1bftux8+5FlGZ/e2qVDPRwGOSDa2imMgjmBIk4SOUfAWcQ00JCYdJFyqcN2MgOodh54gJ42yasq225dVScguqIDYRdw+EAQoGtgpZeoB+mHwA9tSIgfZv/KqQBvGTy5WngFy6O6pFD3UjY8SANgFk41EggjNzOiwhHt6d3WNahN7Wx964Wq1WC6Rk5qnxcnJmsRtAsgxUaoe9rsBcwG/78V2u/346Xq/30sJkGKf5rA/DmOIFwdw6hhgQ0/4OHYd1p9siAERMNf3LpuCfWNZjUq346iSpwLUqQimSSmAaBAG3SLntF3Gtsm1DFJFqajkIkY1/hB6dQ3RCM+FRqPjziP3Xk5CnOcYiKERzshohFrUNHF9mmsBfA85A1CdklDSMbT4nbO4nG4T6XuxywxiqJWG8gdekAr+4eRsI8LIn7ShXN1SLDnkxKxxGsg3BhNJiy1r2ujISYZwCLIf7fpmgNYCXofAvJ3NC0TtTjtBN4iFsFx+QwNAD6pCZTZZQjdkSAMdswUtEjNAX/X+UAdWwIKT5J2sOyWioO16KJTqdsjyanfIdvt8XzTbTHTKI4EVwjQGqYBPQ6TrSKHkEkYfDUyj+jRSZgAmQhZSIKbzICVJorou+x4xGvEiWSxWUZKE0WKXNzmpWq21q83J+fn5Zo2U6z/+8ONf/dVfff+nH6IoSpYrVr5aa/PswIxaMnkCxMbF/S9/9SvP87tuuL25/+Hd+4eHByV1GAVlvifJtQ+hsYG7PwMuCiUsomxeffH69ctXgxQ/fv/Dd9//kNfwbWAGge+5aCDw7pzHHa03ZO4ATgDjx3qoPslSjYPkyCG3rxuXpeNWPjUADPNzUca2s7BCJR6Zb9nWGS0cy5c5DY3vvutbcLLwvkHBcIEXJ2Ho4eSC7KJG3IfU4MHz0AM7cwsD2TiJoKKhM4RCo2HuRHtX3TWFB1UJ3JxoCIBhFDUnZP9JVN1WyKIqD2leFKXu/a7uS3CUIN62CIYcVN+oAZY6pHwJTJTE6/PV6aVdnC9ffCv8pK7zu4drIbtF4nd5ur36aEUvKS8MvX/bpgVFBiFvOGxbXLTID2rkS6RGq2USPb98hsygptICH/b2+iZN0yAKy7oG+0m0sm09OfhEhep6sa/qwYuCs2cvvvn1+S/+UqwvhLANhECR1OCSucA7agAoyNX76QbgkQMH6y5nE4B5D/Df9vq5Afh7X/L12erzBmD0NSew9LHfM0fJHMs02PLi6+u65MB5hkKJ6kCQDhvkz0CveXE2Pwv5P1VFNn3BXCTKJSOTsyfXIJqxIulz+jk8DWAp8PST53947BDKcU7HpfZ5A0DbCTxE5v8boPoyoBHyVsd/ohE4l3cOV+bWiFC6qcFwM+rja+ImITd7CpcFXjjMxhSE+fG89aizA3XT0QaYWjAihSO1AGIyZvuQ/8aYZDzmHsxS3phmOvRBALcvZ8MnRhGw1GEcOY7TAERhdGmQNzf3wLgB9hMxhvi4MAaG+RkaAAxJQBundDA5NipHG1b3mk9mJlQe7VBXw5HSAZqIY4PzD7xE6OOwocrIw8HywDjgmAV2LLPokJjIYLxmgEsyVviYJ8ZxVPM1c2wJJu+VkVA+LUUWATsEmvz7oY5uEQrjfrKY2h52wXKfcfqlWogvL84lLj/KEZjzxOFqmYQxZMFZmWWHfVqknFQPyoz2jUnOL1+8fPk6SuI0r+/uHx52+6ps4uWC/enHjrcP4MCLhyWOY1b1MVJ49fHT+/fvdw/bKXJ7vVyenp5uNpsoTKwOyrLa7/f32/v727uH3TbdH6pGhDBQAZZML8yL4JsOUz9CSYEAE7wz9HXVkmE5VgtNxMZbP8CbQocR+dCgyAJzlFBePjCogYGkZGrsOyKodDR1GTFpNIRcHE/eA+zCxE2k4onlKCmb1kndlJxPMvsEmMjv7m990OVVWeZd0/uBxUUABG1CRPZ4ZJ+qw9C31q+69uPdPVxCGN+SUNBeXV1/+vRpkBpiGEDUSmtHJ5ssfdz6cXZAtOvSs8y6/9EVFjuQT5M9F7NI8Sd1DdoDTwB4t5my+SQgxZCN9o5yfDdgpMEgWRiztywE21quT1ZhGHjkzbLbHdI07Vq8BwQh8aTLDVbdlozN7nhMuPc8XVuS1eAI5/aYWDiqw8ARTzox4Gl2QN/BvDhu4FlIjp1jqJRE60JnCysO8AQRZUih3nUwM9ErB5VBxEmQBE0b0QByx0P+wXwVj129ABsKLTE2JtZKAVfl3gxXmCEGGoDjR7adQTVD345oRfKnoldVlXRhOyU6C3E/+fnKLpBVYAXl+GrqZPDRaDWyZt5KZdoewvc8L7NKXN9XRSdL8vNvBgkwhTSpitaMWzY45tAc+rJLTJ34epnEyySCdTXz+zpYYZJiBKC0Q1uMNjZcnz8fFFRY7ApnjFlt8Gh/9dU333333X/567/59OkT6aHROxljFkmUpnveN9izm70EwjDcbE6X6zV6gNv729vbosQVUH1jiMSIcl4758BeDGcnp7f3dw9398ro89OzzemJUbpq2x8/3RUlRGJhGK5WK8/zYGCdpy0FLLrCEWax+B/mAwTvsHUy+xDQAYKJNxQItJAwfWxgskmDaLK95sR0MNZw6ZwXH/V6aFGoTjjChbSB8LSLx/hK9DThxPqASQO6d8ILgiDLCsiTqTGjM8Vph1arFdhLcDyHvpwkwiiWh772rAo9a3iOIVHAWA8TD8gDlPECX/tBWVfXt/fbu4fQLNqqK0GpRAcASyucC23kkQpdWzTV2l+cXD774tvw+Zfi9EvhR4RJpFK10pOiTJv72/2nj0NVKnJVruv6geKCiqbtZXB/v+26LolCD84+JLs3Kk8zBBm0DcZZVrfUD4dxXLckzmyrri40/EDBt20GVQ+yNoFenJ188e3513+xuHjd2qBppSaW04jw8nAG62ekK3/eAMxfswDHR4EnP81W+Ae9fm4A/iETgM81ABPlbs6wpz1/dFw5mtM568Ax8RGdNpvccc03idIma/nJpnDO3een0RCjZU7Zn1xiHE9gVtiB1eohSZvTQ9majb2AGHKbs034IefAlDkVnlFzdgt50gCgJKfh7yPEa9a6POVHCeamuyKbXH2g3HdfMzJ9p7VNYIfzxGTezuTHYzUOJGeFRtZbPA1gJJuc7+n+MQdGzpq00dbQodlkljxtdmP41MCuJuMp7pQMbMsFY3tm6rsIUvy5oY2AMhlQ244VvJJwSkGRV1RlVTVFBXfKpgdQAaIlEVvhczG2DaBlU+HIKnMXNsyelTN4fiT993poMUdkt1NcMM5haOGnNsKJaj65quHOMedF8ItXzpyfNoa5GEI5j8OBKQN1WrTzCVIHY+ypHzguVA4QdYuZzhcyqeg1NDMuFVtC2+3oajXos8c0NK6Afa184nWifhiZwNRLQH0Xx/FiESMxtAFkWxRZ3fTGW1gvgqj37OLk9CKI4l6ouuk+3VzneVGWJfNJ8OzALEicnZ2BkEDe4UzlT8hHq2/a29vbt2/ffvr0KTsg5ZTes33z6hsoDxKM3aqqur/fXl9f7/b7ogBfnJ3aQZxFEBiSVqMkxoSebDQkXfaiqsuiTouce11ilMP6E7d+EIvTs56uMVQQQcxVuFJqu91TdiYlZ9NwD78LlZEbT/FkDKuUqDJMsXv8lGH9xI6qwW370fCKnbJ47Wmt4zherldJFH37zVdWyYriBThjJCJzeF4GHeo2iI6SBPMZKGZpKl9VDbIIWrh0LxbQAX+6vr25ubm5va+qitnV8yffNaWE0Lu5HBW0PIXgBcNDpDw9gFvCXgg0WOdp0oGS0XlvmVap0CpZrDhAmcekaKJyZIzA0Vhrj4p+3n6huBwg5vQ8G8fJcrkMw7jv+/QAC+E0zflReNwAHEUvfH2nv2GbReBBI+cKq4P0ScDJQaBBShL1I1gGIMI72h5+OlFojDZDGEBgTvsbpK5WSRj4oOzDQIAo3ZqWAO8Sqm1V1cC6sYIZKCnTAdFID4772K8Qu+SUu9jlrB5g51g1LEilnhOCJb5coJgGMHAkEmDVoFKFPzMdHm7agp4BODQ+MmQEfatRaJL5o2yXgbIS8lONNqb3LZjSvocTii4nCGhgU5MhZD1oYTfbfXmNvLx9gbZECQVVlVYWih7YzuJChZyOZ4Tt0siXyzghv/gwTkBY1xojJnJ/ztMiT7Oi6VCyB8kiWp0bPwoCmOe2LfKwUqKWX14+/+abb+qm/Z/+p//pt7/9HffAeZ6LvsNMgAh+LkSFGB+o4ThjBRsTNpCiLJu6DGlCPF3haaANb7Fx5M7gDhalH6QVXDt6JJiXHA7DIaEsiJ/APseeHUSxz8h+Thm4U1L2AIigLQE0yCNgQ2QkEFOoRUfmAQxv0egVlj3c4CmUtlgP1M4zyDnUZYHPyPaaLDgks1qOaOSMGq4HsFJRP2DIwHQ+UghxDsOB2Gij3HkyoJMiCSGSpJxiymjTIP9YDEtU1TSIZF5tVpt1K+TNzc39zcPtuzsfeRFh03dVjRkqGKGBEW0ZQSUWlO1QdjI+vfjyF78Jv/oLoTYi2YjACDRMuagOoq+F6O/+838ybWPhGQo663a3u9tv07K53xZhvIz8IE0P+91DHAaLOKzKPLBWDk2ZpU1dYQ+mWxlFkfYB53dVXuUH0dbILFAwKUrOLmW4sesLs3mm1y/81aW3Pgt0IsBoRe5vg7gPMmghZSBkQf+IBoCVlset+s/8+R/w+rkB+Htf8stLSgIemTwzig4VOjPr6c9BrGMiGGgw/EMc43uqkOa0n/kfGGF98peUpfpUJcwvLt+fvOjvjyUU9+g82iZqIwLI2Ir+yCKgTBBGQLsOie6H3R4UCB9g0/hxSeHAY2BCBuYm9/xiFPaoPZ1sRkcMmH/beOY7LQR/uilzAO+fpEeTAIPHBWMuwbgVjj73QvbsTsPDgeMvHcm+vGnyT+DFM/2uMbrL+YES1WcMrqIsQxLTIsJwKpLcQ+goExT3M+lxaWYvpW5r4i6CugqDAjAXm7bph/0h63vRgK6BE59RNO7iEHscwdeZ6/LJFnquCnDjJUAPJU5pl5xAHkfsgsROKVwH0AHN9dMyjqZ50byj4ObwyToE9ZgIWfOG9nOL0mMjAeLCvOs7/pmpR1xDjEZMlE2JUDSco1RCOF0gmS3mDMzPew/R98sooRRPNqLACIEHFVHMZSh4BXESbjabMAzFoO7uD2h4u8H6gR8tFqv12cWzk9Mz4/k4pPmV5fv99rDHOpdaIkpms4FtZYVGglvlJAQbuO+63W53Ta+7u7vDPjU6khL1/Wq1Wp9sEPcrRN21f/rjD+zBn+ZZ2yKtDyRgYuhJama4jkepR5QUruNxr6HLBCKK/wQ1WRAlizhGE8IhBow7cs3B1BEOlIC3KYTJlIdBnS5PwHjjWi0W7CZAVj7MZcG0/2y9IsMtbgImbt7w+vVrXnJ0eRBEyD1/EoeLKLy4uDg9PeU6xvdArb69uj66DFNSFVaF59s4EQBcNYg0aH9hq2KMiRegVez2UFjudgdW3aGACGgdMmGJkzrHsgnzPRYA04iDqQiBB1tPZypAvRaj5jxLQkogue060x4h42QJV0HPQ70YQEnS9bga6f4wPhQdjxn5R/UD0E1mQbhJggaZexhQuqGshsv6lJumy7JG5gP7DdNGwWIYP2BghVMFqX7CUzogPQ8P3MTupeSfQfGexg0PX3n6vF0cE3BOmVCAn/A9IPEHUHkPFpERENNzpKOQuqoH30N3WndtmuaHFOJ1NKUSS9KwixQpBIwFDNvW+djD4M31UqHDIcrHKDTHYz5BXmaAhIOHOYAwoAQA9SNAIBocgmhA0QkIngc9tFaAAhSHfghVj/KAifdKtAHlbHBb2pMPPepIYYROmh7zlrJq0rLO8jIrEAWIcQI0DShUmRVDmFp7tvA9uFtazzdR4C/iMInDgGp3BJwFgVC6KIrbu4dPnz7dbg/B6uzk7OLy8hmE3WQQTAwW/fs//IkgGMyp0gwEMC7XOO6AXQ38EKckgX7ykGcsCKFtH2+eFkZ1soyhXxghp6kNYJkvP7y8+9FH1zqMidmC38IcRbYA9oPw2GVOWJsQXVYTiYv1hJguQwSs+5OTEwYcp62eJwbQpPGkmmIjZ6XCSAkGA8c4+xIpA9/2rALpe5be0a4r67IiypzDa8anQ4U++iJGrECNIsBCG7l92LN7AcsUfR8LD1S+thA9Sx10FCBRQRuDc9wGwEZJjN50vTDmZHO2Or3441/9TZGV+0ORlcUgoA2LfRNaXRaHJA7DKGmkLlolg2R58TI6//L02383+InQ/dCXRLepmtuP9x/eek19//5dvnuAtYQH3wjl2XCxMcHKC5Kmqq6vP93dXu/u74e+XSaxhxhq6CMosKwndhIuhXucRa8GyGlgONW21SBscvrFr/7181/+W7F+1qmksUlr4r6TodIUJvO0xAdT4unLjWKs5aQUzBzGUwM70vy8ns7lf2wDwATFf8bX8N9/AzCrio6EHGdky2FZM+xqFgrjGgD+Vy5t+XBll7uxNhJ/joozf9qPZTRhRsf399kK+LwBONKTxuqK9yDf9+MYHFy2HOUS5OHhYTaOYJgZvyLLD/g1bssgrjbDwDC8p7RaCieahKTTuHMkAbk7RdYynzcAmLm7wt0hkYRDgy9x7HQf9QDOqIcuhdMPuPqSLgve3QiTTxP/Hl4AR9ocwpuxybi7yiFv3Eg8skKaDj9JJD/m3NMtwWfnOyq6HkjelJBKsUpUiDi3OrrTCgZ6PaXgaMNpl4jzgdyrwSmJD9RyqBZkbrSnWvi9qTAI+BMC3qfgJxgPdV3ks7GnC35n2bSUQ0gDBMb++Z/8IZsSo/CZLxPHP/U8lmU3J/4bGG+DsnTEbOb/nGNRx4Azgmontx/6m+OowQFF3CkQAU5LFfvBZJMHHzZ6jWQhpia7iGWe6yA0iVoxPm/4NFIKVBBniqhlEMLHk2Az+e23vy7rtgbnvi+avmhaOMF6wYtXr52tfgDGKarioqzq4tOnTzd3d4fDYbVaffnFFycnJ2VZ7na792/fcWnLR2DbtgCwb+4+vL8iPagE1N/3XhAukiU4qOuTGjmmZZpne3qReUjlEdbIQx6G840Hkj2fjpzWx7R+J4nQNogwPZjkp3ycj429e5adV1jfZ2XJYj522p0oWHVdR1GwXi7DJPS0qdoGn7eqivTgnGcATsNgheX15+fnMO68OF8sFl3X3T/c3t7eHg6Hvqk4w24aKq4XMFR89eJlTul6cPfH+IWCd5RJ6woBb0CFQY2lj4a3RDXzUDddjhcwV64hioqokgygO5nNseLh6C7w3KaFBKTazToY02S/RB+TTEzDgOSPWhpHlSUaDGkrKQ+brHGoYHVUIvddLTToYQj9qOs/R/Yt4SnOBnf06aVnEN5J/iTgGQ3E8ObpA9KT4hyD8PQBjUBMObtmwWef/kkqnZlbKP0cwppUF/mIYGIAknI/iHQ6dJaYQ1ZC1Q2lmQK7Y0CdGhKtiVsj+I2kuDvUrCFpbtDW88PAC8BgHIYuDuH4isYSZlK0BXPSObOZ6NmbPhQY8NrgUlH1TzEgNPXqamTdER1F6cGQa7EEx6kDQV82WgzkOyTDUIe+8bBnkc0RzYL6ASQfhH1j2w7bHiwpiA8QkuYs6h8e4O61XKzjOLYGQEkPLL5SQ21otyffITickve/XS4T1/Rybgw5awnt/Yf//HcNfDWRrh3BZyb0IEzHA/6nH97+4Q9/yPNysVjEi2RAaHHBhrxuu6NBBDWpUAShmh/jEd1B3LcGYR5kSmGxVeHqkbkC22Ic/aDIc6eHBS3szzxYU+BMwUWgZ7ksK1bnP2kAQoQrYNXShBxWlgpXqNtsVthkRqCBJ+h9J/KqnmoOJqEx/ZVPQE4YoKeDZ9mAkHgQx/5sjCwMw7BaJHjMaK7CxtbsQrFIIuBgrBtkL0QfDTOLpkiYPvoZAoBoQmiY4TFFE07siQjUonVWVs0hJzO3thO4dJ5V9hdffFtk5W6f7tJDieTpWg6NHrpFEmioc03RDa0O45OLyy9+sXj+jTn7hU42+FSiESJrDnfXP/7h5sc/7j99iI3yBlFXaCT8KFS+7YX9+lf/Q7xYi+VSNPXuw7sf/vSH6w/v97utZ6CXUn1LkmW4PUNhRS0uRigUV2rGk6lV9tXXf3H+xTfm5S+Et+plWKu41WHXDUgj+inTzz/XANBGR5aDFBBO90RhAxy9Q1yv/nMD8M/zkl89O/3JBqB1xulHogu/FPnZH31sGB9wcCgcWmbjgids6Ud/YFrYo6edi3Fn1/AI4Z6/gXknQLRpTCSeKDv5xTMBrkIm08wwDBGrBEJkXlWIPuHDmCcAlMhLTvkc8Uj5YlxIUjYoSj+mBhnErB6TY6d/wh1u/KTTVITVEdiAjr2BE1IP0j5pAPi72C1kcg2aXhxcyk5E4/UffTpIiDwy+9lum84W94O66bu4w5nD2O7yc9zJTDzNbJ+p1WHDbxx29NMIHQd4Rz8GCwMUXzyuIGzCB4Z8BsERalF2tENf5Qi06hugdIgH8hDs8uSfahBQG1eEbtKeynUhi4C5AWARMNO+uVzmStEFVlAjxFgdotmmz/6ZmxOfFk/GTXPlyfSf3ESbqGJuGjD50x9lktQujd0C2R0C72LrFaMpAY3OPLxPmE+CJn1cwHTFyDeRU9gcgRV1qwDLCNZMRjK+GwegpHtBkiTL0/Oz1emp0H5alLusqFoAikS3wdQ79JESE+B7URcOAlUp1fc3YK8uluv1+vLy8nA4fHr/4f379+kBQkCAWNrb77Ptw56sPzISREI6iZGOgKkkPhQr+VqQX9u2v725m+Q6LIZ2ZsGE+ZEFR8PTOLJt0fsshSkfzd+ZAsTF7na7d/vN6HvDZp2k9OdcOfSH7qmnRDD8BD8IIj/0A48M81AZgO9RoWonI06I8ODMona73XK5uLw4Y5MTllxbLd+9e3d7fX1zc8Ozka7rAs9Hyp4Qp6enb968ef78ObtkfP/997d399F6TYHNhEE6RSkg27uHHXB0GL1XpLB1NqDQQE/8NEKamWbAVraugGf/R1pjdVY4hg9D4uMEzwCk7ygcipcoJ2Groql7BBccZVdkQKI5KJB0RI5HRP11o2kRjjvnMSRx2sTm6A9hCgiEonaO4xf4uZiAicm7w6UCgGCPv1FPG4D5iQAuItsXtJ5G8gmH6E09AGkAIAi2Cv6hvpbakO8TpcUzmUQryNzjaIEZqULAbV6UuwNiY9tekVMxkuMZiEGz08NLlN4iOvTGaTDGFzXwUvSBsexzShJS1dICxvyHGi4IlFVvyWoG3mfYWcgGFJtOZWBqJANPGw3jTqRqcktGibPETEVlxQ0AtPvEloQmgfxzIMKll5ZgroJw4tk83UrR4RxBKTx4Bi691pquqbzQS5IkTpbQ9nTI0yjq1l+c3u/S2+ub3WGPsDbqboZhWC7WXhDCF/j67t27d/ssTcJkuVkfspRXm2vCB6U9n9IwoO1xg3Q6IwhvEh6JyrjoJ/EuhObd0PvWY2gMRCwy9eS/R8YC2Tbx3wMCoyeZAJqxWhhzXaQQAdAPtuqFBoB+KVZs01SU5cyfHpsGmXAIeLrS1J6D4cC5msA5bpykoKxoQ0lhaB1wxQF3u9g7low7G3RSFyANp8OzhvgF3ZGug4Dq2XrxCGekMbhDeehbWqt6WHQi5w7TArJsjmzgZyDkt4eszPMSbbXURVEetmnsB2wdB1G7QTKg1eQC1DZQtdhwsJ4IV/Hps83zr6KzL+zJL4S/0OCxVkNftOV2/+nd9urt+9//XajUUJaH/a4V4vzi4tnr14uT87cfHuJk9fLlSzn03/3+dx/fv80O+/32frmIYKYsBuTSxLHvWYLiyjrbDT2lSmsRROFitYnXpzZONq+/FZtLsXgmhN91XqfjTob9IDxyufiJQvMRp3/+9xzDx6nbgtM8ur6ZWxtzke1AhJ8bgH8mF6AnIjm2AeVfPy+P5g3AWPD85BxgrExdiAz9sD/jrMIvRqYt5rvzcuopyf5JrcaP/ZPJAH/NiLai72deAdlfHBEsyjACMuHq4xGZG3cK/MbRHYIQL44fZrrtk+s4vkPA3BMzZ6Yo4KkIPxvuQ3ElSopDvuQO4wcSAiz2pxuAbrahjTyfadIy+XVPd4DqkUeyDf5GRqBn/RV+Ky9n/tYxKovZ1tIz1sWV0/9gEIETFHg8YZT8XDLODWpQST7uRHiloTkRf/seUankzY/IHki9hpbbCWySGGrHYRz4NiAEH+UyD4jdrQS3qCXPdrDaWeCIT81ze0789SNC+ck9B7E8NfbTobXam2YX0z/xNVQ8fb4sn7jQTv+p6ZB9MxLEyMic7yxNA2ZqAfoalAhgmjKm6FnCxTFeJadFAKoULUc+NnRLVIdr5YQrjg3lOjTQT0NMlhWG86G/TBZBFINhiTbAD5JFvDpZnJwsNmfxYplCAFCnaZrtD2VewAWV6BZxHIdxGEWx1grq3i0oKnme7XZ7QOInp1qrPM13++3D/ZZiO5f7fbp/2GdF1XV93QxZWqRFYT1YlxDDk4b+wE1xu4ucFDgVFCHgSFMxx8tpbI+kkvA8xTuJfOsb8JJT8NQpn6qfRMCjHGMiymPXUaD5OkCaLhFzTtA/NJRcxzlWHKUchuHp8oQnD0WZ1WXFCtp+aC/Ozmv8eyk6WAqii1osfN9+9dVXDJOnaXpFr7ooNXy7E1YQJSiyoKKm9x/93e9/V9SgJnEDANS/Bm3GkIsOjF+ogOAPxV8zbwAmliWvYd4uJm8ftg1l95tpJVCZgmcJbbAjobmtA35/KLA0RLijUTLsI6n7mhDTuV1jmR/meMpUyo/TOLdfMedHK9s1uH1Qrk8Ibo3/eRoOOdR0c+s9aKF6ObSyGcCB0cA48XesqXL7J+uRUP27/JPWcLzuyLibegAY3iP6Cv8XgCOH+RjZKXosjagKhDB1Tevy44Bh2gYDgeJue8iKEm/b86umZmcdhGhJ3SIyHUwwJIzwNjpaA7OraYyUXUdgJPkzz5w7aLT6pqtrxmgJKucMaR9KbjwKnRzgnCzaqu+qZBE7hhW9MYZLQEAiL7WG8X1K1uNN2vNB3/JAIKd2F7kiqK1X65iCREBiR9Kt1SHYgjJPUzRyVMuiLUfX7fUYT0StUHVZPWz3d3d3uA5KWePHcRImcRQmgxTpPru9v9tvd0VZSw/GlCQlI79N6kmgfpnJzfmYIQbUEOD6HIMU55E+4yiJGflkK8RRGEyrheeVRv4befODqzbWUkBOeCCmpIdMMEwYSACAKQr9uj7LMuZoYohIOINPac1orrApIJgSrHuCZnoChDjbgW1VkfFHDlChwYSZTwFWsHAad13jQqH3xLgGXQWbNChRImSaTNu0RZNAcZmwQcbTRa0IfwqOvpZtqSmQm2miYRKvVqs4WVKkqdzus+vr27JqrPWaukvTHD5YOKZoNu4hgMyjLqnIDtAORAsVhDLcxOfPNy++jE+/NKuvOhkNopayEqJs84f799/ff/yx2t4Vu51qYFeqPCus3ZxfPHv55pA2SpvV2Xmx3f7P/+P/+OnqQxwGXQPlPdpsJf3AQh1M9smyq2WdGUrdGIwKktXps+dnb74Wz16KwYpwLUwi+qAZfGHiQfrQ4PfO9OLzAunzv+Q9gPdwmAMQu48ZvbPCj676sQf4uQH4p3w5O53PX8415bPLzUcyV4tTLO7kR4FqDqNW+hpX/j5C5Z+Uy58nrWLjGMktT9qA+bdPf+bZ+pOv4e2Gt8JJYVwUBapP0vyNoiXa6+l8JedvFu66th6iISnDsWGYkgpQndXI8Z63N+R/wTgHWxnQtSJ2CY1CXY4MqMg04sLXUKYZqaTZ257fOVshMjWFvIXwO9g+ElEnCu5DY71NXyuAi2ATo+9znYH7P8pEpfhc97dTmgZ5IcxuLqPjrvDFd2LGTab3uJQUbOuIsWSufAz9IdU2eAL41QDayX5f+MioJNWsABzGYJakESoV8GgAOjjWl4gkIl5y3zZFllZVBscLqwzEcGqzOXUWKLjs4BPBUKYDWRC3lVo4Rv1pAam8aHCN6H94p5ANwMKjqRoq/HGhcHtoa58sTWaL6pHW5cm4icOnpnkPk8W4SYMbLAgcgp4bLAd6P9JANEZ+znAul+DAUDq9h4h4xB7RG8DXWo2f2+KHSGs0Bh7wA8EpCySrHwZyxhu0HJpWw68Bms7zF88HrQdtBm3gA3pIi07qQ3rx7MUqXp5fPMMzUlJ1dEjLMr++vdldXbdtH0XBarVZrtd+EGf5YbU+LYvs7fuPTVt5YIFLLwjrtkvzLE6S9eokzYvbm7uHXRatFsuzU5cL0TR1WbFeyJFYtO3Iv8IGCsthfDbBgKcb1DcgAgjVGK+VFRqjMAyXyyVoQjgCUziTZhCQzIlYUwNAMW88EebaVKPlln2FCbKAUwbdj7yqy2arH3Z3t9soiJNFtFidqKUoIJHcF0X29t0HhMqRP2AvVY45wX0nhtvtIUkS9ieJk/WmgaN513Wfbu9J9he2vczLZrh9YF7fyflZEEcY7weBsT4lZgB7/XiFGcL+AFoUu2HwjlGUNTno0+oglT0eHVAZhVLw9qF6BUQs9sNLkiXVxnQdnDtXDeGpazJdc8h787h6B8wAUI6TvxZVlV3TsrePtShe3VBFDYEfj0mMzLzCz59E7TTEgO09tTHgLnraU7CLweRHS9MLC9rwEJBwnOIfaK0SZA72Udc0tK9Qu03JigqNwaikd5gLRaVi88U8F9/KWxubAGGQxikC2KlRUxEdnJOO26ZYJlEcL7RclHm+3++LLG+abL+/g5g3iJJQaxWnmSpK2DNCVQOead8C4ULN3U8kTLJgIHuh1u2sQ29gv0i5geTYaI0NfYhImQfeG9k1smuwEcFlEdsERaWTfTJZnyERRSibgeGCcAmpe61aJJfBNHtQAkVwT5HsbdtViGzFfthtc0jqA/DoYILJdEEpsrymOkloMXhaNI3qm9pYeXp6WlZ5maVwCtvzZMb0Su+LLohXURAMxO6gFG/cnLrK9/td3w/xcnGyOnn5/NkiDG63u2YQDSY8LeAMj6caJN0mKAkBun0Hh1Y27tK6rasjdI9uQRnyLyqKggPiUNbTnNW5dqPh68G7IsrQAFEHGVVg0EE+ELwL08mFHA/kS1Kji2MON4fK9S5JEnCmSOzD2hI6qQRmtLQAWV9Cpyt4m65s6SEy5M0DjyE5huEgY7E6beejWoE4ZwNimFu4aGBxg4oTGyU69JJhEAYQzffwkq4rCmFUCk83zy2hSPTQZbI7Vi9pOoEMAZHl5cXFM6F0UIOKtr3fUwQKgilsEDCTC58LLtodME7Z+77tpUiLvC5rWak+2Wzg2bRE1hYShpEuJrohy4p3P/74w9/9daIhkD8/O/nqm28Wm5PtIb3Z7//u979/cfm6ystCDofDoatzK3urYF8kBcxJUff3Q11WncHk0KcAAphZS9P2Iq1qW3droY0XidagbOm4lqEzD2YjjET+ZNH95wpZqiHJCJiwZI6fctv7WMNQIf+Pr/5/fv23U4BcH/sZBQh8tembZzfVJe+M+QCzBu74M5/84XM9AOnv27+fAvRkJjCAofPoayb55hyt5zKR/3Km7yQmDJXO1jv66PMocEQsAS4ybMbtPmsBHwtTHHoHCsr8TY68/yO9Z3ToP34i8pWblLvT4IR/HdXSbkAPXI1cdyjE1GH/zKAlyQA7F7nf7mBpZj/TSOHxNTzifHPrJ/4o80vNB6FjzzttHI9bBwRQ0mzaWYjOfsLxHhHQNeNoSY1EWOynRCGgs5Y6IwJakBFP4hMKSCJedRQvmAjOsya2MsTXECmzZx7IqOLqB1lh8jC6iM7ce56sn9l4EfDM399wPupR+ZuOLyZTjYFnI69j+r2WCjUKz2ZrcxwrQKFI36tV7zhXo5Kk4ZtMd8HFb/NsgMhprIfmidYiSoJkESxONufnly+/WJ2e6TAoO7HL8l1WKI00scVitUwWUUDSM+Bqw93DQ1UX93fbd+9/vL66FX17cnJ2erohIhXae2DlZZ3ud7e39w8Pd+keVJy26Q9ZdTikZdWBpWAsEpZIzEkeWUcXJgq1BAXL/Q0dhwwEkulMWzY1mEBMcAKyO4QRYsWI6+z840ChuXsgET/Q9IngB1NZrqjofvEzxe5SbUtAwCzagjkoTc30iTCKKNsOX4CHsQMej1l7ixmRc38fBOhVEgnNAeH7iRA9krALSCcxPahRITCFzGjwjJBTBFNw4hqSU0sQQJNa1u3Dw8Onq5u7u7uiwLSKIGRcGY7QOi6zMZZ7irTj64ltR+FmIxMXNEYrxTD6DFbOJ8e5LHAvBPYkZbFhBEcXZfL+mrZhNdvl8OcAbclx2EXgKc8Gad/zIJSifY+Y0E0V+QEPMxl2dVCosywbt8d6TGaUZBtANQGDeW5NMOeJBxrkOsDiWyV6ENydOyqK5ZFrNxjskx0oQGrwQa+HJYA1/dAWhqwRlnG0SCLPwPuhQRZbvc/SQ1r0g/SCxHh+DV7cULSibAcKNATmg+tnYM3Z0SSZPYpQCfLIBaqUigO8aY5iUfaBRg9HLEtosZZD11YFZXSUdaO9GCx8KTwjPYv/84l3VJV5D9SDBGRQlGFmQHoA6oUoC2wYkOPGeHMDESo2OLZADUN/ESdBCNNMIKKEk6q+NQoFnFHydLP2A5uAZu7VHWJDYGO1T/3kpBm5mjieetwjDnyw8L4N6aTHYsPnCqL3N3dl1UDz3ELHJcnVgkJL0Nw2Pc1gEQ7g8QNFAmgnmjpy32lyOz+R3XpGmExDmiigINjVid4N/gq4QQ5IwtWgO09BEAhTJ2N+3loJyx9v0LQHsQgYgAPKYIxWQUB1VafCKdaNMLNEujymChoTBd8ii5jsJbBR4wxCg93FCYJNkf+DO8JxhEqKdhURp9/HJDAKk14MaQojhIf7HZ1reOKUMqAi4gJp28EGFEIsA4nu6FEOxtdqtfFslKbZw/2hKekvuw6Wn5j3kLOirwPP+p7yQJiiPPtBtdrXy7Oz11+//PovkuffCvsStbhuhdcLUXW3777/2//07k+/O9x8Wvj+erU4P7u8fPlKr1aQht/e7W/vH27vQG5s2vSwB9XT6DTbI1saQZ6ga1G6Agh1y8B0h1slu6qXRT90fpScv7j88pv1iy/s6lLocFDhIAMh/F7Ynm4ENdg/8ZoTwh/VCihPGPMdugGAEqHProugPQqHHrsI/NRo4b/y+nkC8N8oAnZubvPcKKa4sER19DXHnxh7Hi01mQh0PN70T1f/T+p79/fo1Z0I+CdR/6cCYiCyxyHGvJCdJpKTiwuDXjR6m0gdznUbI7+GbBmpNJ8aACpoYH01CQkmzwFWBU0sZFeRSN3zMc8lPl1PRvddsrL7CMdyfHI9mg7pkcyDyfbMdJ5NeOQwICyG85jH/GA3gZ1i2vjF92Iq9J+wvMju7GivO2mVWQj45GYRVQYY3kQsFkBlQNNx+QZuVncsnaFoI6Hv4+QHBVt8nGugAaEMZJkYPANJ5AsJpSM5KYgIZVl1dOtw/BpyGaffMvTkMsHFEzPmCfFRLWg/bmIwDxpj/PVJrwhcrWcM3r3+XLdwvKoakwfmjM2GA4+UFceGUIOcDn9AkvDSQN81AAPyDQTOb3CD8ZUgU5HWmmhtTrIy5URoASGvogrVI3Y7cnjDUMWrcLVOlifhYpmcbJanF0GyFMZudwfIMNqha1vZwtUBrAjPSKPxjHVDVcFk8+Hu9uFhl+epUma9TJJ4OYiuAriPJE459B/fv72+vn77/uNud0BCq7QopOpGK59ymHGC42mgIVnfD4GNj2+e7a3oUA/DEJ0NJ/ciOZjSf5v6ZBMzx5SKU+cPS9M5dvHivJ5RGQySMe6B605niWx0eMPHnZOARkMSIwVsarsGwkHYfYY+JXiyMLpuoA7IWqSSw5cMyWtCIZUTXvjSBw1DITe0Lo32mhakJtocyFDSAuEbXbMgPhkEjPNOTk5hBrraNE1zSPPtdovM490OwaXwitE9IYJT28/vn5UAj55lIqL3XUMNAHYgCCwpohEzJew/UMVwF8prGDwWbdh3/7jaOR3cWQM4laNb/gzWMI3bxWnznj8gEghqE+N57GDLv6cd2goRrlw+S+molcYPw5h/C5c4FFjQwpqfVcCuJcPUjbO0WSvl8rbwrqnIFsIiDxGdPH0A0lRAxD34BipFIzqNP8MqFxW27peJ6aqsb1stRRj4YOBQLXp+dnk4pA/btKgaqaBEH6RuBr3L+qoTddVUHESLMhGdBhwXXRqp2xbRhQ+9aAoWGhGzkarYAO4vHph4Gupia5Uc2rpq67Jsh0OJRBSBfhK8oNBH+jJi2qmNRwwBTfFIRoqiv2kqmtHiEjCJnDeih7t7mrNoMmXAt9HR261WC7wfYj+qvpGis7L3NMannm+WcbRcwVNrlNzI79/f7NIsTVMpoAPxgrBt27yENS2JjjDcYCttoHtIuPSaFqHFTqtPFklDjw+OjhIWDzj4tMYME2KkADaR/O1s6caS2eno4aEVe0oiHgFDbUT+QQmGvY57PM0iXsyKgcg4u3DUom2uZIfr4oxiKeVDqaJAQjbbRFHpDEfWdoARPfEmIb9BJYGHBE+Ay+TB0A1DVoxQ6ICBkBtBy45ixEnBHXieVDO480tTCK81ptOigLyb/AaNBeEHnIC+u766LZu6KKqGLNEg+aUMsUh1vochZxC5AFOMCprmT3/8MQzjRbhEYmYrm6qFtKTvzp9dVE1ZVy18ezTcby3kLtC+121TD0rHy8WzL85efbt+/qVdvhDBa/pAlVCN6PP+cL379PZwf/X2979FVrzGIGJxero5v5Bh0NbN3buPSCq+vYXrSU/uqDijqqpEBjBOIvL0YNVyZOVpoLqmyqA89vRqs3j2avH8jbc6S06e9TqSKpLKH3pNvA26gszYmRUtT8qPJ+eps5nBNtjmRZplYLLB+yhajJABGgBHBKLT5B/1+rkB+IfYgE7uKPRXrkB0GPYcEyVaHjy8Xdk2C7RqyGV8bACcCwTFYSBD95H4lf7AYV5HYx82iqVEmPn7m1dUTthKLkPHFw4z0laOP3x6jaDWI64R8TSOE4CJ6o2B9lgCOt475fICvRlTchmlc8hZELAbIGc2uTegNKSdZEE2U0ITXeRRMNmxAZgSEGcKBKJKiCeiaudaAw0A02zHT8QTgxG6H3/LyBt2nmiPal+aFbAqerQMmkQLjnY+u+Ou7icnFuYZz3WuGKqMcPtohoMXCRbHReZ+KX89DdRHFjInNvAJMZW8U25D3wvP+lCFO8G3Y0KjoOe0H96wpvxR+nZojunFMx/+XqKKOXDCfTQeUatHA5zjshrdSJ/0AMj8fPQa7Va1U6aOmCsKK5AsZMePA6YxMDAh93eJnZ3hf5jIYR7u/OAHniHNs6LpVnrWtm1rFdjtvgWxjaRnYbA6EV44YOEpG8fLs4vF+lT74XJ90sPJsQcwmedVUfbklB8vF9BKUonQ9hBQ1vAaR78ExPr9h7u7GwENHEynh6FbLpc3Nzc//vjj+4+fdtu0rhBZjx6F3PbxOJEzEiPxWPYDvCocuYMzfIiq1tSdgQ8JqPNsyYpfDeR037Vl3x0tvHgNWAvqHZWQM4NtIbKiZstKnhqhVB+f5bHrmM9nMKsf9fl0xzmMSgg/8JIoTpIIlkc1eYxWRdfBON8GfgCTPtDDp9/OyxLFKnW8bB5gjIoCdBS+HzZNQ2nNJY5PCP7C9Xq93pwqpQ6HAzxVD3AClcpM+xdnhPPm54L5qIqaYHsthiiEUpPD45i+TL5QmFgCmXQqCJeOQoQT3TwWLPG7rSuqaQhZ5c2GL9Ck2hongeTUBe0Kp5INFqa9UJoD8fTtw+1tW5dFDntlrvPY6+EQXwABAABJREFUQIVlG2y64DjfnWiHPs0KIpQzNow5JUXMTigSvXPiYuHmo4KgYZdjwrthIwcFcKKAEXDZx9DBKqs61WVJ7C+T2LcaFKmqRCQiRoPNarlZLtdS6h06gX1Z1q0wtQgG5bnUaswEOvILAveGi2/cHSiQeC7XBeDp4A0Tiw9EJN7rNusliiSrfev5aFpRqQ/a+3Dz0HQoqdoO7wTHDwDsgRskUGjI0pP+ADrbaFADBTDFjTFlXkVRiKcjT6ss7dvKarjOh76tawAHlCuBeYiWwiddBCxi8QcVhCg9GbEapOmUt91ld3d3UNuTCKVuEMwXRglxdfE22h7SPt8Lje8FUdz1Q9V0RQHxelO3rAHA5oMPaUHrAryCVcYrJyBbZ5bvk96mYCUGY0w8MLdKLxaL5SJZxEHfokkgQy3A/vhK6zn2GC0PzInZIAtbSIvwacLc3O5Nx2QcJV0H/QDQgTG7WShRtRXt6oDbe4rXYzWwtfbYAAw9pMDccoNmxmw6mtMaopbJAXR8dsKjBQrZgPasHrSoAh+pDgo+2lJQhW29gIiLBRhoReH87xGg2b28WFoJ819WJaFsoEgA3w/v7h7ubrd1gYPJaI9UDKaocpBjKVXAx8DJBB7lTCt9+3B/eyiGYHH25S9f/fJfn775Vi5fimohpC90J7qi3V/dvP/j9bs/pg83dbo1sr/YnJ5fnjVCfLy5vU/3VpuHd58CY0FirmtNKQ1DB34RZ2tgCZNAgufMRsB2tsyzohUmOdm8eHP6+k10+mwIYhlEvfKkiQbti8HCDFD6ygRDB1R2Xum7Xp5rAFIacFHLeL6bgMmhbZv9YbvbPeBmBf7lxXPYc5GekChvbiYw4s/uNUc8iRnBv84dFvQ9zvPwn+s1/HfeAHz1bMOuq86Dciz7Zg4PjxJ8cVO4viTSwvxnPVbhkrc0DKFn2PaM2zNQzedIGrQ42JFdWXv0ZWcCPBVA7gGmBoBLdS6vucJ/5BBKFT+nb/JndL+UXF+6rp4h38cXcbvnLx759T6GvBJpJwRZkfUZ887rUS9LdQ/HfgmBeKRHP8rxxWcs/6ekpuPNoAJl+vPkz8MVpJPYzpKMGf5khI9iQ4+/1FkJSdWCpD7eO76bXEZTI8Tfy/5o/BFQUo93c/QTpQkvq6mmcY1zaVMC9a1j2oyLxP38iffHxQ4YsS4P4RhTOrGD5kto5t9Pqq3Ha8wVc+MsYuR50bQBwmRnR8gWsWR6iH+WecEzVjowOD0A70P4/oS6HSdR48Tgc9E5f0DunaZOUw7CgtPPlTvI+0xnIvZ/C+NCi/QZ9vXnByIg8xwWcU7h80r3ViM7ladSrs3jENymYr8jxAPD9W95dnaWrNZNr7UXdkKX7TBY30+WJl4I6IRjsEq9MPBCq3VdVul+xwpslLnwxmm9MDg5OVsul55FaAAO76LYb7cP9wix2t3fpQUYq4vVEhGYh/Tq6vr29jbPgGTXdV9UddcLG4TaeHXbQPYNPjWo32w2Qr2B4ozNUSotODeU4UOrNU4AYKeOWcfbDgp039lWTi/H+CeZKT/L5O9//K8uhnBkrTmy1lQ3fAZBIdSBjFbdfIlyG+qixDOIGQWm5PR+yKwx8ueON/NJ1+R3BLBDwEG8bhtWH01LiOpfAiCMPXYnTlYDHdLU7D2i5Mm+rOujuzELb6CD73zSkJAsenCqWXbebFzSFkrCcTJJWgPiWhAbmjguvLDBiHhCuWR/LAsMtRMCMKQHg3n4yXrG/vrbX7R1k+fpgV7si9q2bRQhf2MSxHOOEhUx5BnPGv62hb2JI1Fxzcf7DL8Bl0UwTyGc5YI7Q0e+92zqqlUfeoNvRQDHU03jNWqTeFfsexDCgVCATAVjU+PdbNOWAqrZNAnFIlx39P3dA3hgMAMCPUWhx4bPEjDNJ4gS3c26KKE1D5GZlaCnJT6PGJarzT7LwZ1DmC7uHVG/nDk9x9iRNQPDXq4No2VLY9ZxC4qj0OqBpMrD0FVNWVQF4nLjeBEFXghz5K6riqFroIoGfAWnYEwYGc+CgiUJ4qSuMeKomy7Ni6yosrzYp2WalSaIjQ2xGpVtMI3FMUHqAhwl7HJDFXaD5dyioJ9EZ/MNERkgTJHSkmyKyZONYgQgtLVwucVxWcHyv2nrZbJY0WsYhvv7h7v7bVFUuBHISsY98gKYj/U9AIKqzLWsYfnK9vyksuPyLi9xbZ0bj0Ahy1NIohDgatIDdmS0QnMF1ywQzDTyNGAjy8x7zHaoyXSEOpxyg1IaCm/ajjjNgBwmbBL7UeAHfgjmGKltmgYxi1PqaFPVHLlIeY4iDvvAkxcXz16+fOmFwX6/3233bdvG8YL8WFVZ1NQ8IHdPGZ1slmxWAfyhrJsil31t6DobP6qNV+kofP71q7/431189SvhX4g+7stu6EsdaCHq4t0f/+O//7//9V/9PwM9PLtYf/n61avXz4WSv//uuz98/ycMWYouRCAGdldOJqFUBN21dVHkWsvFMrQaGmhr7WoZ5ekDPnh4enb5xYtX34jz5zgxRS8iX/i2TYttVsXLy3D5XIhI9KrKBz+IhbIYPYMMhVMAHw31RkOD/YZk3AjQ4NE9e5X0VXF3d3t1c50VtdL+qzdfL1engb8gGVOLdHbaAuq6Ig0SlRfQxM18aaGGBCZFBRj7Jw9G1HOm+r98Qf+/PReg9ZPanf8DFdw/Ya3jeyxrORpgzSunSbQ3IusdQIYRZJqhTcy9nnbWMQVQwqWPt8UjmE12+Njtxy6Ci0yHi2velWZEFzo/2Ed8OkldWQD1mCPNP6ntfrIuV4MIyAzOIfrMFWHNJxXrhM5S48ShsELW7Lb/+YX+Ke4T/5LxD0dLH2qUpy8+NjxsizjB/+ObxDe2kCWM9J7xOgOpFaanEIIn8W0uf8cdslxAkB8eXZix3XAnFiUl9/Nu3lVZGPj5R8K3OyEcdk6zEBBO2C2f2zw0KkfDk6d3YX7EopMaLQp/Ui8+LZ9jdyr7UHcuGJh9NohSRD+KdSAUPNw4QQgUbzS0YaEYoHkoGwzUDvzOMaYf5v/ku3O8X25zIXNSPjvhw3/shQYibDABYBwrOxI/J7Mawv7Hj91GAdxVpv52JIUjWogz6zFq64HGwYUmDC+fvQmi2AuTwfrKD2UQtdLWWD6a8GvQjSFa5J4eWJ8s63a3O3y6vrq+uau7fpHABvT8/HIRh6vFMvC8rqnu7+9vrj9td4f3V9fb/T47HKy1iziRUrLrv5QKZtWHvOn6ThoqZcltpu0ECPU9Y/+w3MPJrmAIRGsVYxDYlCu4I8JdB/Jfrq6QpUWvqoLH3/x2Twusg84PXKkproFE3WPLx6J5XqakaacT4sir+fx5n+9mWkjkS/AdJcrGFJ6dZnvyEEOfwApv/pY4Xk5sQ2a/TNyz4wxnMtWVErzzyQWIsYnZRA6Ky+N7og+onH0Ka+jRX1ElKYBzuzkhWVai59JCeiqgOR7oEBS2QCUwsa6JgoVHnEkd1AOAVwy/mhGzGJ2Lx8dbgVxkNG4jd9l93axWq2fnF6uTlVV2n+23d/e7FP8DAaMfejVYaZQHyhkivdjthg554pAATkd5VzVOVEp9EP1Gd3/nAMqTzvwzCl8LgxMjoba02kfGk/CsgjclHDbrrqq7ugEdcSCyqFbS93EdZ/GOXI5LY9qmr2pis7XQa7KSQRi2jT+6J/FaQp1H1HBGapk/poyO4R+P3aWoC6SgNCVoeHiisXvw5ApuUWxM7E4o0rfSw0p+NTj7YIBjVGBVgGs5iKHFOG+A55LoO9gfWRN41kB52XRNmQSh79uYePkcsMgBfGG8Yu+4vKyrpi2aLsvrtKj3eTMoK6TtoENQA/oTBtfaKaDahfGxlJzmh2MDMB+5u6ksU/axAZIj6nKBpigKffBgQPGnOWRVNB2mi2RKa5qmLfKqgg9SX+QV8z0I/qeEGCDusqp2DioefzW3+piHgyBEZFLX62MVNWTTzGDw/Elv6wqKI430L6jXYWaBd17W5N47CrdGdw0Ik2DUhr4IyqWmhaQBmQND7/u+B586psbpFk5fXZUXcHKCQUUjxeAbfPbAk2I4SNVuluvL5883JNzVGnltb9++xdNFGe1lgRaLKW9VXwZxsF6sl+FCC5nvDnfXH3a396enp72ytQ76eHP69b96/ut/E569roYgDC6BiuNIaofd9dvf/8333/3n7c37tkq/fHV5cX5iDar5q6urD58+VkWd+AmcCulMHCnE7qAhM2vUzwRLkSePkYsl7GjFEFrEIV6cnT+Lz0/FIhLVoRLNp+02q8XZ86/Onn+rzGIYQqlCoazoFDTRQlovUFrzEGaA118nsds0Ymgkszc7xFnA4Uv0oqnyPAOR1wulCbUJBIK6O9X2lneovhdRxLvzANtQkFAIKMWuQQCz6pWBn+jPDcA/7AVi3/Qv8/KXda6f0/Q5tPXzBmDiWDvQ2gUGa4hxxlKeGRqTFeaxQp9sFtnrW9IhOZa/pGEFW9sd5JzIwlgQL1/203RvcTwquJIlJGAsafF72Ah63Pr5l8/fw+OPTLvKgHwWbFIs56eQGvyisWDlZpT53wwh/P28M/5G91sI/HCffXa76W1j+6H3CaW9u4Rwh5kKCKrfNSZuDKJDxnnE3em68T6OY5YTJfHrj29gRNmcVVMLZzd8J/w7qAXgy8rBY+4d0BdP4gQM8d2HYqLLSD2iE5ZmBajEgWnQJ0Jx3rvndsLVjmuPdyOISwAe01qZzXboXT76evovnFLMtRQcceg0GilJZLZDLAXagthhE3s6pdrIsh/Qs7UDi7C4cAXBtu/Iv4luOt1txMQQed8tGDeeYrZ137bgkYse7m2owyiIhwjMHqQNXBQ6NLqTstf48VhNCoQDAreY5ESfBQuaFNxU8OHnFFlJFnU6gL0OyCdGWtmr3QMUXfEwJCsT+J6Nwk7Zqhuqui86ZGHhgW2pX6LIqAonZB/40VdfffXq1RcfPl69f//h4/v339nfgeKsdByGJ2uMFy4vL7/55ptfZcW7jx/e//jDdrstcgy4+6ZNPI2IXNUvQ90Nuh9gp0gCDvbeoJ6dTdZh82poFfAao0ifrkWbQG7ffYuQZq6fJlFpXdds8zeusSMwwRF4vPy6Yw4JaBVO1IGHnh9+LqbVk4ed/9XzRi0HL6ke/quDEAUQzUd8SN7rlksu9FuOAKOcQVDB3759i8Cm5TJJErglEg2aec/kFga+70RpI7oaeZaP65MvyYh3uCKY4ykwWILm29Lp7rYzOu1YxwxcmTBjqo3oCoPfAF54j7aPcoUVAjMU8hPqlnjQSNLGolUc0IXNjcr+EZN2nxuAi9seiJOFmwarrt7XNs2KH8r39voKeookXKw3m4uz928/NF3dVHXVlGh44ZwyKLKn8uCABPYILtoAXBlrXCIQDZm49CFcEPZ4ox6PfVy7NR06E0YAZSex6rtaGStaozwre9/2RgbaSuWZQGvj4f3UDSZ/TRv4aN8UWS/wSJN/mzIgdQXWcBYHhRjKqpE5tEaQlrTALNGwU3GsfS+qKwThkdahLuuC0ejdYe9HYHxDXwt7zx5ympFoiv2Z9hA6x2gnJ4Ygla+KARzmwoJMqAWUqpgCaDSeHkwuW13BAgGCFrKWwsBED1Zx3HhZaYVMboAMsic6YkN2lj26CKPAVwmRa9GJAVSlsq1huiEtWc1Q8hPtgc6HkUa7fJpzeMfoUXc8TaZdmaxUyaWJ4CACxSHnIMtU7KQG8npdPOwOhyxNc6KaI14QgAzx35lUwysQWWGhVKBXhWxpy8RQEiWgBPCsZr9/LBvoBthAbzrjHCN3KkiCJBFwfqKmroddGOcqQo47cRlGSjOUzSCaYSNhYp4rJLq6ruqhbWpbQpUAvyd/UJBawZsCkgYScxD5vocnb/Py2WVVp0033N4/pDkyPcjEOcxLeLaNhiJOo0jEWeg7yrpVsor90MaJH5+oQ/3Dhxvt+ypIzGD9NG3LQhkZaj/L7oIo0bLv8v3Ql4sN3A7epfvnZ+sXz5+frVZlVXjSDpu+SutP6ScjTdUhjRF7oA3wSx3ltqUtEdsXAuZCX6N2a9J9ZrHygq5u9vfwMwjvrmzkZXVaDe19euh0YPX/h73/fpIkSbMDQTUzNe7uwSNZsebTQ/Zm7+RO9h/fn3flTk72BMCSEWDQ6J5qVlmVWZkZzIlxVbWT9z41c4vIrJlpCFZkIShHIyYqMsKJEdXve98jWZmssmIIdBmkCN+DuTrqIDS9SFgm2ht63BDNOKbuNIskfVdWP6tiXawTrn4xMzeGILBocmN4mvkVEiEbtHiR6g+rHiAnOgvTXYrSNe7duKP+2Ursx4dC3scTGFX+QS6RJfQyIff+L6WDnEf2Put70RjwCTWAJ69UEyk9149FPbqkc4BDT+h+3ua5DHmQTGquSSfnqTXiOzcjvnwLYB8RQaRGyO/8UwVLGsv8+ed3Mn/zETmHDP6jRgKXZwjsSrhJ03NwWxYUZ/6r5dfJwlYud7K9SZ3GXi71EssVINUSbjAlbxHvZ4oiX5/aO386hJAqH0cQU6mHpzkMyVHOAFNZYmlCWJKZjG8GSLEk+RiiIFZtqL7llC2uCs9NmvKP+eYwUcf9PCsY5BM5ZGuCbiTRAjzvfMPSGT4KiHh0gU3/6QkJ+jHlaXpIHbAs6aQBG3pgrCyw8FosPWU2JaRqIdmqOI5UmplgzFwIiB7YrZ6wWzjNTWd6DB3W5NCF8+kaqc3gST4ObaDihNGfGxRigGCygY3AZdCRuQKShThQAuWiIsSIdzQGGufREVpmBZyChCAuMZx0QXfZDyB64foWusok1SIZb2gb1NPEnld2zJ2N8xWYRpwvJMoNUYgkrKqp9hUiwsbwHjlf8fOXL8/PL68uz6MgrC8v3373Bjhf1304HN69/W60TnxqT85PyrK8vrj8yRcvD7v9d999u9/BO+LmQ6eLuMy0dao3ik45cPKw4MYjqIl2ECFBHmN7SGwX97som3FhHA6Hpmmk7hcejvQDIrKfNffzqZ/syXj4WUnJbQtiLe8Xf4kTERAVjcAcTyaZH6uGJHjIdJ1PNprqTrm/Li8vWdy3XuFK7Urbduv1xlq73W53u52EH4suVpxPAe+1iAGWddJZsFnnlWd5qUdMwBG9x3S14wihVYJlDrgKdMFC+TxYi/IP6xushqc2P8TtPoC0A2ILcQkukVxyICAKaZVCVRI0/fRTkY5/XtW5OmEtIi0UZST0LZLTi2MKEpGFe+/YjFo3ycGfuNV6o4cu1N3Yasi7EU6NoVvslEVarEX1R54i11JVEMkzi7kcDcEEI59WskVHchz0Pw6WEYk5Bhk9hLDDoPreMCLXpIkusyJbJThMA4p1M7Ru7JQyWCFY30rkcBhGTdPoIOJ4BfzwcQwHG7kx3NUo1HCuu1qEkhgFaIC4kQ6KMhtdLhQROPyaIah12rbr0iYZihj0+CDmBIZ2mJy9cOsYoRXGRwEpxWeKz5bZNEUA3K9649qxj8McJi0QwmapTpM0iiDNHLrGjK4ssvV6PYKuxvdAi2p55Hk+dGgAmOAWyDuBwaN27nRTdUNY9w28JgfuqFjrUSVPU184O06O7CJglfDHGZSZ6gTZPWVWjcYk1EFDUl99qHQcpjpK4U4EVfP19fVAETnaNtwUZpqeWY15YSw3QhC4oa+t69I4FltZ7n8ozAE1YIUG1x+3RRRbfcxOmR1EjjsICxtm+eFKGa0J4f46AAAyBpoc5kiIHAWqA3wAiXABzkLD7oBemXBkYoKZ2M8NJsBTqADdkUzQ40SnKVK0UCFAHVxvdwdju1AFgwu6VpqNKkIrB9qSJAfLbAHNPqTSq0AHw2Bvmt0+NqlOuzEyOn/+xeXdw/bQDmcX8fXVxcnFmXJ9396W5bVSnRpNlALesgMu8liHD3d3gfu5Xp24qvrmj3++vb0Ngujzl1/c398vaHWLtZT7KfileZkncV5kqAQCs9veeSPmwDrb1fvu4d4MYw8bwEyb0YbJ0Ny9vRvDrLzP1hfRyUmYFWgtIJaDwBgkZGz8Cbh1xCxJTOA6QIE/ih/TEtlFrejGXilkIDshfmMiPbRNE0VhVmxMr3SEREtWUk45gFtc4LBgcQEzWK1Gx7BPrjc/Pn744UM6Pr4ghIO7CNzxjjpZmnySjzH78T9uAES8Rct4lmUEtrGj+hJqzqiSsR27kYjM3on9LXSOmRTr90hRuWJR8GY7ZJYKjk+aKO/nY5jcvK8I3dRD7KI+92Xd3BjQIF6gCBpge9WsQGEBwg7p0Y5JGR/kd8qf0H1v6jqD5VdJEuEq6b9OHmU0/Z9/VdqARwWxeCnOzYBwqlg9MUbWYqZG4jWhQFEPCj8/wvCXm8oCsCGZdvTgyPT2jsMALzOglTKj6uXDyLUxGwiyRcP/J44FngCLOn8x0NcHZ0USPoUCNIWNHScYy7Zz7sGOU35pkmZ6DAvGuSZgXsR0oKfOLYTkC1biwAgkBG0K6hK+NWpr4Vqgz8Hz6SBOZdItUQPeps1n2U6ksslI2jnx65OD5eExfEJAv6LcBViIgqYbgN+PY+ziKJTtL2ICQAAWOGBY64YR1jHAyZRFWWfsoJM8xBDBy2EhMQd2CfJPD3JCL9b1sJVArQm9oEUIwWC6qtlFxvZxXmsIG7KRQAqMCINIm9C1ygzjKluxVwziIGyr2lh3fnr22aq8PD2rqur+/n738FAfQCCBmDUK7NC9+fbmmz98naVxmeWQP66LPEnPy7wdTFVVu31V101oR42g1SAy4RDAbdCNPdwhSH+WE8fTjD6Jg6uJYsYGr21BERamr5CjnoyG5lMsM5lJlAKnD0EEfV/Ba0KiCicdtr8mnzQAc3bEsS+mVQgpWRMxbpYwsZpnGYHA4CgK2rZ9eHjY7/dMPfM+J/RcGuuqpY++1zDATj3ORogS8ZDMYE8NWojpMyYEcxGTnGt446ABwD0ISxPO8yCZ4AcHKcQC+w3Jk/O32xioIk2kUhd/RS89UGOSxoye5fgLTX0U4iKkDlmYHFNLJl8ZPjWiZoowo6cHC4n9jCDQMSx6gwDk8qatnDN108phlrCzKE5431qArlbZDgVTBI80cksg9QLFVG5uxopxJRypL+erLxEiud8FZpopVQvOhiYA6BXGxqC7bts+TePBqMJAzwP3q2wdJjGGcAR6ef+S3UTdZ5oU+OACNFPlFUWBGcPzk6KFsDVMmxCjHWdMhz7QDD2IbLD4QSRCCHMteLG4UKMN3u6jBu46rCAJQ3DIgx4VMAAQBnwgog1o28j6m10Z4D2t4CowIkjMut7ZKBrQrDiThmkGd0gBExR1/KGyJ+UKnAjKcBuo+iE4TmNljRF5G9I5xiBI4Gtjw3Bd5AGmHqj+icF3Bh0YAmjB/GBDQgNpJUl7WUx4Xho4QeKIudIdiJeYGsXSevogJF1aCHSNiQZnE2OTSKdxxpDb2AFD8/gSqDWSJK1gdyM1CcAU29fW4GnFUQA0S569IOgN5mlQDaOlnmw6GRjB7Uuc6Y93d1VVZZ6uSij2tRq7vmr3Vdt35EWOdkD2BSreBK5s+P+BStIYMWcQ1xC1oSLIZgjEtHZsuqGz6IUx/wRqI0ElcTIm6A9T3CCjy+vdnaM9DhIzHMgwWOrJLvOrHMU6ztgxtAkCGmwel/lq7cJYjTEmJKF1cfdh14w6PdtcnJ2eu77bf/c6O22CfKPKTdNWiXJRlmxv3/3D//5vbt98e75eP7s4//0//dP/53/6n/umPdlsojDeHbbfdt9fXZ8hXAzm3RRz215mzqsyd86uVsX1s8tVng0w6R7iODrdrA/bw8PDoe6rJC7iOA2VDW1rrWOroIdx6D58/+5he3byPP58WF9lCh23eJ+MCn1dpHSqXAexskrBSQYNEPcLZ5kadzCYg4xNgsgcMH8KRgnaub6+h4T9gHiWS8jcNxgIcChj64Mb+jhJIEuYZISyWnBFo0Xd/+k2QP91P4BnLOt1+anI2JfmvjMCZ2jU+vFjaeEyazqx7rCHFh6tyOrByiBvlYiCf9r5JdB3EmL2/B5iUpwJTIFZEqwlNrGwDfK2m1M0lf/e9HQLIVlA0HsWoGBgM1lmEjELXAgau3+eGW+Xt2DtgNaeGAo+piyHrGKNdz0CjOMHFUfI6pitK189hV6QcJLtxPQUhgSsLv2wXY4/px/wp6OdjkCEQhime7YPCZ5MRbEQS4HCotyLFMW6Tij/RxQdh5qbqHQsCw2AYKtMaZmQKC8R9vWTVOy+i8BYgRQFVjYk93LmMJ3HLJ4QX6xwU5JrGAwdzssxIl4j5ZGzZ1KUyRqT4QePEADIZRMyF3BSCixbUP/GwESVS5EjEFb5QIJ9ysxURx4dTvH8wOcjBDxaG1qLal4EUsvDJv8f5xhIlw6gbcA7YmfoQvhHIAnFN1ij7J7YOMbBDU2rdYgdJUuKNEEYKFBVdCH+JkO6QW/gVjmGNuUYn4h4UYq+ExI6oM4tPeAhZIfYyaWwcSYZLIVBqlF9J0TXwVagbWCNhwyhbduxq5UZ3r193Rl4POd5HiSJG/qb27v6mx6udlo/v75+fn0JtPNw2G8fmra6vb8heberomAoV6syHwfdVYf1er1CZuTpusg7GNeZruur3j70pulV3TZ128GXD4cohqKOQBdoTZzL+TnRxMKYGIOoy+e40GXh/nhAhM3eVyFA41wkwKRcuBN3T1h16MKejokezf3mn5C8hMZYKMXzSZfH4XAQwnee56sVPE+ur6/Pzy9vb+6jEAOB5fXpHA74k3V1/ijzLGsepwYBWqBZ4DRbrykil3A0J0QKFSMV9xBDcx1GwcbnsVi9AFuOgQlCVFqAKiFxTkTUMADsDFnOYaOdqHRzgof8H6EjUtpDbhFoXSSFYCPFaMpcbE5BXMZpwkfG6wC2TbZVPeU9S8uNFgVnCWJiGhUZh+oeOhm4q5mObEP5+BIKAVpb2Jtl2ebP0cct3NRBwYRRhKEyNJUJL+qtYDStadq9jmsImLMsTRCHEWodOoClRJxEKowDCV+XkdFGQ4C+HOsO3r8N3CpL1nlqN6rvh7rtG3o99kNnAtObIYo7VEUMt46zfFRRIyEDHXBhtB7Y73h14uP4/kom0oKb+OWWiBNIgzzzMbclWqBg9UQ8LSfPXd8gKSzWZZ6WeRaFyg59fajqQwURcBwHYCLBrbNmGEIKRomlFSZauCjgMuVA2S0gOQiCsK2bwfWdRbYECHogUEz+UTMwJA2zUMWWD04G9Cy1t/AUGl0P8gzM/GO8fwVE17Qt7PIUON8gz8zZKTLUpMxABmt14KAfkfKwHQaFUn/yAYNwGrJioduBb8bzR+wANTcQFeaF4b4D8Cy3HLS/Q9/VUG+0WRInWhcXZyoIdoemN0PXRANMwADJY/g9hFGeaRgWBDrCCFjFiUrQXAVRMfJohE2re9cb1w8wt4lhZIT1tmoxlrG2gFJARyenFyCb9ugeerSGKP2lv41jRx2wbFYQL4Po1JmsCFbrk/XZlY7XxmLHtMPwH//Dvx9xx413d3e3u11x8ubVVz99/tXPt22TlUWUpWq/j2zz6vJUHR62t+9PiyyOY85bbN+Z7W4f6fTLl69uPrzOsiTLjhYF2C00nL6cs6en5y9evMjyrN5vD4cD3MZS1WtMMDgBaUNmko6mhWdsN4Y2xoR3bCOdZ6vNaRGqVKmxVv0BeXKdccbpJFPZSoWZ2JgHKkYLBY4+NCNIUMa4MuY6JpSeQYFWEKqh7va7Dzc3tw9bF0abzRrOCpL/52wDOfWdMf3J6mR9EiEqfH5wEzhmJf3YA/zwwx+1ORx33q5mDcATsL86HKPjl2vx7N/3ZLs1cEUWzAa5NejzCHaMWpBqGX4e2R2khM1ZY8LEEChZCl9JhjsOgWn/BZnpVNCLSxGZrhK9S+oJYDO0B4ZTA++SfaTeH2dFfoUWEojYMsi4aiIYyIHw9QrL/onewz+Ral2Km+VXTB0Fn2djLF8ZY+L5vZ437Xk/0vXIMVxMM/2/cPNACT9rKVC2S+1O3gXHIvAlB+Q2iSKnh5dry0EWnoNY0PmKSYqoWeCFokIEi6R1i2ATOzOHsRjYerNH8bcPR4dXjJFcMtE2GKroDZ8Ya0yDZ1wHIN5yOj1h+PCXFKgJfIOFjHtun+QACwFmcsmfaim8kUjOnSc3iFMKkGKA0kZi46AFZ9uBQz+IH/QE54McoLEgyVF69FCwsDa46Ojuh95K9m60ONrTDidxCOcGMkzByTe9M66jKNPENlrlOebl9AinrNM3j12Lesvapqk7myBtJ0vRMrx6eU2WASgl+Leu2+22Wzucb9ZiB4qwHjPo1CSpRjMQqr6zDSjZMPwB2bTpTW+fXV8/7EHWaet6vV6vry5Wq9Vud/juu+/atq0qWFUmOj47Wb948aJcr+quHobh/fdv/vD11396/U2o3DorwC7IkrIsy2IdapjipUXQd0b3QzxGrXFV3R6atmkHsCKQ/EAaHW8Fucv9ieWxWcYvzLSf+T+fDPSPot7pbgUmKMYdXlEr1f90b4viaJL3zBV3ApPT47IzX2QWSWZ+ajSvbPxNXM/C9Kiqqihg/5Km6d/93d9VFWwWb29h/KKUkuYKtcKyz5xeKwGf9dGiKhnqbQf3oan0F8sEQJ5Kx9IAzBHpQqGhtgELlPfFA7EHvNihbxE7FVo62ZCJNbFc2InFsUbAKMjzzPw2THH2t5mX4UjtBfoPQGKvxIeoVAXj+7sHePCjP01FWN7ADrQvy1I8+mTUKRDJTB2hwRumFSFiAZQG8CHbM79yAaDjNxgqRGK8PdbHndt8pkChY5K6EExZ0GOpwcyZrYh1gDEVsudUMoxp6rJYxWrQcIDBkILdymgGdERdX8nYDZ0E/pGMrCByAzqSWAPRTZmKkGZxP9i6xTgAnQDnAhHYayA5IAlYBzEqG2Pd2GIQCHhIFni/hOMUg/BOkAnGiEJtZ4mvoHcMVQIXfLxPHSIJmPZfCjGtJDnMFFyt4zTWY5rc39+jRm86GHXrxNPf3QicGcoYIFc6GrUD3mJgOBNaUFaybIyMagdgtQrRWGwVuHEj82J+9MPsTDDJ1fzG46/Jaf6MxAKYY9AoN1TIspC9QlJ701DLgFVaR7LmKLAOQCKA8w8K8cF2gGxGnBFtQQfnJev3Qiyc4ORT3LusQ+YihMw1IfPLdRekaWzNsGt2+3FIdLQu8/WqzLIso1sXmlswyDCdYUoKNB9otx2oYrgwCPj0mH3BM8pYpNTXrYmMVe3gFMxMPdg1Is5qP1bt0CNQXfjPCCJBpYs6C7UugtLAXB8MrLWQiozSi3oJ7p5xujm/VqsLGnE5Fenrn//in/7Xf/MP/8f/NgzD+fVVrOzD+zcP93dXn3+VXJyPje7rSg/tZ9fndn93//03v/nHf+D4XJ+cXa1PTkyUbLf7Nzc3Qp0hP8KrO7AFUeAOXpm19/f3ZZNSIYcsgqFpQxWdn571Rc9UFnAg3Qirvf5QYQwURWlaxqNNbaf6Wn3/7UNTN/UB4TMcJME+Ncmz1ZlKMpWulc4ZOpyoJIcro0vCuJDsjtD0qm/UcDD93tTbQ4Uwu7vdNojTi+ev8rywYkHNgTnG4eCXqs66uB+y2Lv2TQv9VFT9+PgXXYC0Bnox6/BkwxAE1MtDpiAe51xK8dwsa5tdq5+YbBwfEzZwnOZz0WeoRyDeiDI59AOEoZ/IPBOmSxxOXBeXGyQuZNSI9uir7cs4rH0SXLKkEct/SnK5316BpknRPrn1Y+1jWCNWDs+tnz/YhMvhncxz/CdbFJC3Tx2JmVLyiNXAglpk7ItPJ2W3p04sEUG+uBFMZfrM9GMXvN+bn00cA7Y96L8fZ3OzeA0w+1vYgAqyiMYpRc6DvIVFGLQ34J3SkaePAM09bCsf8b54Puoa2AyUUdACYJkQ/VygYxa4T6+cmYq2VJZLONTsGv7owp3QwUcEcWwzohCdKj1/fGh5pgR05L4WwehQhh/LMzI/ZEj6pAFwynZmEKuUR8cBFI5kcZJ8wYfVn6LMqUBBKcCYPHV6UiJqKouLIluXOaD1nAmyNarw7RYAjLU2SeJVUWY5LBiyDHbsNNCAR97hcGir+v7DDY4ShtaJ0tCXXVy/vLh+Vq42XT+Qf86Qon5o667ubWOjMYrhvhKESQx7aq0T61SWFbvd7v37999///393U1zqLBnBWp9dn5xfVWkyWG/rQ87ZW3fwANyaBuSYWKrxlgjyjfJMhuEQbExAPJh87I7VA/baneo6raP40TcougWIvQfVGxi7yunb74qnHMsKH2VM18kOOdsAHzSLclm/qpfuP55o9bjRO3RZfPk+lnSyhkwB7vVJd3cW81qRH8kCcwrm6YRiRR8Py3kAVdXV0mS7HbI2NntdjTFf0StXF4bS3ibbj3i1iRQJd6bsAjJbgkGzMQ8JUx8gVBMocGW9+/vdFkzQ+ENSc3BQN8ZOrk4v5K1UYhsPQBJBLuiEIF2QD4yI4R5msT3UGz4OUyTLcBAO4zo2RgidHLaxNoWq04AtxsX4C6b3bSYB3IcCIvQVeyMvPqZHaDMLVUQj2FKr9LjTe3/8DFXUC4VBfBZekq/mIjPrDhGzq3FvGVoDEz6TI/Y7DLEbOEXMLYDgzxh4FrMtEe07HLTOtSGXIOZRoTSE6OBbkAcXl230NlziROFEbSsGjpvaRf94Iv/+WR948caIYMFS2rgrBO4CV3YA9D8IxUHYCJpkOppVTm6CEpRComYeFDm2eX52enpadd1Dw8PN3e3VdOFYZSkWExkfQPnh4cUzJQ8U2GCpdDBkRbfG3eom0NdISfBjklRzmRIsKonq27vlSSpMhO1DvsIKbIePeGbJONIfGmk9xaRoffdt/0wQokLGTQKjxQ9gNbhV59/4UZ0U1W1PxwO0BBDRR4HyWqwfjggIzgKN6J5U5Cs9IFKUDcaiLtmyIAxXv7KGS12WqBTQhwHXc+pYLXeSIAJ46YUIX9A08oN61WxAvYSJRGGtwF0AxwN6Xh0UTP0TTc0g6ubrmmHqunSNM9y5Ir4pUNM9oh7LK5kEKMMmZyiOsgwycFEkRdxl6RBUZaf/eRXF7/6O1Vc2Nv7+7u9cubNN3+6v3lX7e4EuUuy9Or5sxevvojS7N27D2bo1kX+cHvz9e9+O3Tt8+fPkWOgYQZ99fzV88++CKJ0t6+Vbb/7+h9jun7RogBnWRyoTzYr3lbAp8o83WzAFLVm0GOQ4Z6Iqqq6u7upqiqOgiRPxO7MGIPI43ylFMQDl68+20fRzW7f1odMx+uiQEge1qvg9OxSZ3lSnkR5OcYlDOuKUmXncNPNTnSoretUXyl0EQfTbtVQbx9u37//vumHs2evPv/pr9KzZ0pp0486SYFy2qGtsQ6LBXOeY7+QlV2oyvJffzH8P/43ZgP6i88u5qBcn+3OHkBaUqGpSQ0tyxnoW4/tGuUbaRie8IVm7rj//mhx7fFyWfdp0uw7AUoGjrU1MQaW7D6KUiQ+YjoG8LgbegwU+RCv6NmK1H9CWZs9DKarqqb0gDU3iT8AfMMRpm/gYDgoFiEfhRFBoCP5XBNq4+07JFF4qS2e5K/0uVmULEty1PI/529ElOetuCdvUyBnfgKL3/R2gVIQH2OSRQHhtQESvOWNixavgoBdFu7HozHZgIqZjxxWfhbOoGMtFJ0j64h/COrU9PvHhiR0KupVAAL0/NAhNp4UaSOma1rYvFHQKX8QpdBHPjkUmBHzeM4GKXIFqhC48vyTJW1jWf0va/e+neExYJeSW6mUiyMQz/hSvswSF1cdEqH01UN4bFQev0l/EgOwNzHG9umqnGJLDgPzoSaSG4fcbDB6eEJPOcGQOZIeP2JiqbXKU8xeizJjmBRmxs8uzs9PT9I0vbu7e/369YcP7+izrk5PV2mWpGD+g89QluXJyXpVrG1rh3a4ubu7vb8zKijXa51kxo7nV9ebk7M8W5G2jKNUHer7fR1lGxclddeNXLI766oDfKQHO1ZVZXsLG8FgRHbV+3fbQ9Va4IXBOJZFtimLTEdD33Zd9+HdexkScqHQnI9BNKqLQmdZHOdtN9xvd/tDa0AdAewnecbEnKTvh7dDB/btMlPZH/MlhWbREELtiWjUSW0CaJCBSlKRh2A4zBcVZ1mPk7CPg+8JLHzSxqM++FROSN8ZOexFgT0eTvDcP6vKSxfkspkvy7Ztn7yiPD/9+4/o6eSbZCVrl2Dw0eQXKvQkldTseRET+0KhG4lEa2byobMCWC++Q5DVinOxqJqJ1YEYAAY2rWgwjxK2Pxn/BD5gICsItb/CiU1IUi/gUPDjDXx1gL+jbkLZJ0Q+YXcBqA5n29xFw3O0WkcbwEbFz2yOjxDeN1OuyJP5iZ+CLnsqpZpDJR67cqfPL5QwZ4PqeQEgfGJgYKG6pwjKwa0FqRTI8CInjyuA9wyQRssWBTnu3h+VPoO0xwmi2Dh4K7UdCkGmieFNRHG+jD+fVwkY6bBmkltGhC6Yh4fGmRapMiMsf1K0VAhRiag/iVGckcrF54uCoGkqGMzDj5azckiBcR2+fPlyvV6HOn5/c/v2+/f7qqb9blwWp3jbhFhbeKIOkc6SvECLBs5VPAYI+Wq7oWnaDlZmx8MrlDwaiQ1ZVgjONFmr0XJlCt2YDzt9a6mtQh1M72OfLwQiE/aFUAv3R8pf5CHiulKcKOabzSaO46FrQHQB87vO1hduRPst3qZd11GegSbtWMSIJI4VhTH9JOLD+5z2fXoEMAgsCdE8o/uEUaXhWcN7llznEsoqXA8aIRA21WpTFienGwYvjIMxVTfA9cIEUZoYp76/ua/qtlydVBReuJEBCNJ6cQNFsjCbQLoHB8YM+OAhbKkw54H5AV3jUn1xcXF5eZrl0fZQ9Sopz55lqyuL2ysp8vR/+Z//J9PVtq8DO+C8aYiRgyBar06AVTnXVOjjhgEq8A6tnAp0enL17Mtf/NVXP/tVcXGhAq2Gfvf6P735wz+9f3fDwGaEoycaITDBqE5O1ycnG6VcWx+6Dnr3LE1t3SGCPOHhgBms6TuQpop8JTwArZM8K7XWTdM+HCqTZIeqSeKoSFOHGch4eXYOx+pVWTfNfVW1Zsw3p5fPX6zPzl1+qk++6qOVFPFtXf3p97+9++67PIap0TpPnz+/Pn31hSpPlItckIbpCvZhQx9r5DMNuFxxZXTdkKArOC4j0zd+avrx4yOvl/9WG4CfvzpfFl6TzdkUPcOfPOKwTg3AUh8835MfNwBLrvaiAcC8bSqT7ewpCb/zIpO4qGMtKJN/EDAYEukfHvKB/SiVnVMDg2YAI8seCLfUgsthRVmul4XjUazsp2DR7EdeVVXXgRtNPC1gEiGiXuStiu3pnDq0mG940/2PddJPftMfBljy+QZDsOqpTPemovPuLl3QMlBM2HATUr74fpYVT+DbsiWQAYIUrDLA9XRMSVptm/n5uepKVjv4+l7wemRfKQfC8eAQvkPSAh9Itg1hu0G5KrzWsK+DPNH3Ztju9oGOwfGM6RNOChUguMHA0g+pjigBYNOGIXF0TOX8KJR3viaXVx0Rfb/vglPJC4w9jk8MmWYC/oDE4dEi5tFwZoH+zl/BS0R4wJIAh6tXJlRLkbTwiHAWpjwvBoSxAQC6CGs8Uj5wIqjKkmCsoExUliawWn/+/NmzZ1rr77///vXr17/73e/hJB4qze1/tVmfnWzK8uS0OD8/v0yy7Pb29ptvv91XhyQrVusTM6q8WJ2dXq5PThOd9uQqDDbYt6Ya7GFfh0lydfVsjPT9w75qut3uwE33vm/AIcmzDA3G+mTXDk031HU9dI3rBxSXhsnNI3o2ucuMw/lljEd4u3tI0jzJCxjkcT479NDNKygOATyCsKTjBAUMtsSsIPRFfAFbFx8cffiJynIcFCjH+nl5BniDy73mQYIJGOf+FEXxXCksK/IlMDFfS/QJmZJZH480pREVtyLJuyVyqQVFk3e+DJ9evv+FYhUUI4m1whrrCSHeelwagCfwAYJLJCYK7VUszr8Chcz2hfNtQQKJ8Gu47MEIEvR7OVhEMLDK4d5j26Yi1dtaTOghybShN1VE3yCeB1JzE4DX4O47YzyKL2vT9BCj9Ol8HQF76aUlsEz+RFYtzMGmDI1pFSJ9MQRM/8SSbtnhzyu2HE/XC3X90ZhaKILTSAUhRHL4owAiVH98RhiE44bCp1NFDmDCN/AeFoEFvA4HHQEsx9bgggGpRJOBDyK8ka5gLRgdLJRBeJtmKdQjkQovE2ZZAZGNE2iogMI4CIciDyJOUIGUO8iXEwRiqYSaLGQIYukVA2360+e5AJ9FBpg2S1LZrW5ubk7PL84uLlfrkyDS23317bffvv3+wxjmIRaMNIy1MYCrUcGGUVquOKahFyN4WZLPbNu6SmkflOe5bKNV3bKbxW9OJ2GKTMZPHwFtQmtiIgq9GHil+mtPTugA8k8SZ3GCFRDXsYGUGdwtLdok8BAgZabY4m7fwAUNJHsG7U3tMfejSRrEWbf/6gdj3s/q+K7wCzYKxkRHRZZkaSI91aGufBljB3j8Y+IKivzpejXa3tlBWSSdYYmOkYWhdJavN4equXt40EkRJkDWt7uDCjEb7CniEjYF2pW6ydOCwClGguK1TzQKEzY1Wq2jDAZxOHp5mhRldnl1luVlsjrvxvi79w9vP9w5FZys1vX2fhxqNXRqRKwycu9i6Euqh0OE+RKx/CjMizROExdGSb4agiBdnV59/uWLL3+anF0qeML1N//wb//8n/7xzXffy4otDQDyIlKMl8tVHgSqb+th6IAXJDroLZbqGP4ag+no7dT1xp2eXQVKD5ZyiBAUklTHLgg+3Dx0PaIkiiQui/RsU45meP/h3dXVBaZMfePCKEzitFxdXl+Vzz4rPv/vVHo6BokK42Gw79++2d/dFJH68vNnXM4iFSbKokVS2alCrLvrTY+OMAjwQlGso9TgxtHsSGGBPNWT3hj5kz3Ajw3AowbgY3BlrnvmlmAKi8UvP4Fgn5Al5hwc/CpTLqfR9qM2gCWRn+fSBRq1UZpB/rNMeBXkgH0Ix4ssp6SgHy0ajxkfIrIiI0Uw7ebtZ6YszZ7Ts1J5/rxLAHh2Q3IQ/0E4RH0Ptph+SvmJYikcxbDf4w145z7Axz8+hhifPAwInX5DXSQcI2HU+wPOyxzfLTJQaHwwL22yocqzSRvweM6gPjkB8HLDqcyYN9t+Er/Ks83HUHxOJMTK18fA3EySgoV1rDCIfGOSQ8QRO6QkrHo3ljBO06qud9vtbr83g9NxWOR5kqYYJQvvH4UIkCozwEEsX5XyPhaXRLQcqc8wGxdxhRB4IUXMaWIs6ehS5a/D2W1DGra5tpgvaW98thhH+AaAdh5HfhG3OjmAQnWbjnY4T5ak/vH0FWGysRBu25oaeP4+bEmRHJlodbZKHNlZq9Xq5WevPv/887OzsyiKnj179v7mwx/+8Ievv/76zZv32z0q1TBQ5yf5yebiq59++etf//rq+bOm7bHxv/9g7Ni0XRSl65Oz0/VJVqwuL6+vrp9Xg7FBuN3u73b7oXf7pm07EyXx6IK7h/u3b999/+Yt4n73BzAQ0jLKVpFOYHbCMkbuJOVMi1ICxQR3eAqsR68BRYuAcTzA32FUfee6oc8zUAsEDqCpZYRdJVR5CWRx0gsxoZ5ltC8cp4e/dNEAzEbAfiIo34AVwGZgwq0FzJZt4NEQYPn9Rz/xwWHTPbtQAoTxorgEVwSiT/i3whlJLu9lkNnyaeeriAI2+F3Mg7v5Wk0XIjYfLsGWBoaJcuF4QbO/quksM1EcpmYmGFUaYv3kFQ5+Edx93QB2BBETuklZBj3xTtXB4FqaVWpW/BGMdGyAIykHbUoD9Dg6GwD8Jbmbk+j56Gu0zE+QbzjJPGLDHuCgRnNy6Z62aymTMZ04nq9l3b/spryXVzBqHhBUWJBK+gfT2OUMkgTFObM0AOHoXeyC0EnpT99KNAwyVcZt6998iJQ0e2A4rpYRMMZ/MNhBmxTFkOnLqIS5AQD4WeIDJZOoL2D51KMJhCSaMsli4PP3WWHzPCozjN1GM4xuSMIgTgJRApAO5LcwXHpu1FEm65RyaBuyBLVXxCRvUJJaTvbKVZIVvbGHxvz26+866GIVsvdkDgTYOdtVFbQlXLtpyMDrM4J2AZcour0I7kY4xXjBh+1W7givM5s6NNyO04q6uFtlX/ZUNH9tcJ90g4l1mIKhhJ2CySw4e1QJoHkmEg/3JNbTthksEscHQ19TnBrZf4WW5S8GruIs/rhFTsUIuXJ+L4MtD3IcwiyJyxzD1hg2DFhz5DkHkLka5SzagyzRSFYGHYstIiQEm9U6L1cf7vZGYf6POYALt/uq62253tRtHwRh0zRVVcFUJy9o1YrZEY2/EN1I/Q9QBp7ZAHRVhiRA8cxdA6VWYMM0jdLNqLPGRjWyJkDiTAKnldEI6qETAG7CNIn0KslhTNUjjRthzFkaRJFRLj85V0m6urh+9uVP1q++VOUG91lXq9s3X/+7f/P73/+x7+Ath5lk7FtfQBtZzNqjB9mP230aYB4SaEQK1vD6anvoKPXJ6fPzi+cnZ890FDODeeDYT/XwzIIqvTps12X+k59+nobhN6//2LWH/eHBmD5OiOOG47Nnz65/8ov0xV+rs5fQBoyJCpKmbk1dl5EKbQuBqo6gHIgyOAi1alvXJ5dnzvQhRORh3XVoheJyGL1Vmhi9zIsQcsd+bAD+NQ3AkvDg687JBOAJc9ET9hcbszzquv6YcI/NnqNYGc8dYbbptQSN9rssczcBRGCkzxzZmWMtLg2cSyQyNIQbIzNx4cgpMeALrg6k5nGkAwHqhGUoK2lVwbRutg0WxE44x/JDKWRlkKd1AkM1sblhx+GdIi1G/Kw9pugAGTjS1BYA9kdJtx+L2Dykg0V4idD7tfLIl/WpvDgiIwCUY6vgz84EiM4C4plHJIdiUg8/0mBIBTwnAR/lyxO++mSYM7M8pzrYuycliKmUIJZJBk3mcZ5mEBvwDALHmqhlvHUpIeY8FzAP/W3a1gJeQXq8H8XI2wL+c3QoffRYwvPz0abrIYe9UzUvDYDXYAD8M6Q6TAA+feiejBeWA4GlPEAFLkEC/EQsplOt/By5JGIGReeO6X4ZlesFEJ1mCBCtqsDVdeVNQyXcKaAnAo9iWWC7grfTGKw3q+urZ2cX56enpxfXV89efaZONmq3++0//uO/+7f/9p++ft03qu3AWIgztdmUL1++/Ou/+btf/vKXq/Vme6j2uwYGIYe6qhqndJKlX3711dnVVbHeBKEezHi/3d/v6yCK9rsKG6eB3dDd3d2bb797/frPdw/bXdXH0D0mSUom+hTVIw6YxmHWH0ZA8ZWM65xtmmYP2v9Ao3UqI8kc8U076S6ot7z8/sj4kkP9JGBkiUqEmDVBUyG1yALvn6jhnj/Pk8KFCvDhQgLzZN1/en79BGBuMI5OlDqCJmTCGo66Ea0xECBuiRl038MlRgYjR+XIEWgYcxT6U4vOBkBudvEUnjpR3yH4V6SpLngcyLc1yLF2A4Sej+OxZCQYMbwoBKdF4FiQrcU+iMTxXnKXsPejX3ZIgokwW0A/AAp+pGBZih5AhgBCqSLlGlB9oOyyARAcxzmsz/P3x/EYrBW9s9Bjtg8KxEdQxbTah4FeHvYlAexxKyVjSfh4wgyS5oqovzvY+KLn4RrmBU4MjOcVFwXG37ISdEqUXbBkmfh5tEtQ/FAZa3zOBhAqRAqiYCNHCdi/XAm0UprWHyk9xTISBqhHOiv7Xm4rdKYi9asPojZPQYABzjpiugI3MtwbAJ49uwyWOhSrQTKAkMEwDKGXbYBeF0WRlcXzZ5+BTgR7yn53qPcV/tf26uz6q+2h2W63VQu3WjeOUHCn+TgGiAWk2BNvhEdUB8G6SBQEllzHMCjCuw6C4GG7RZ/jnt6YYPZPqMrRc5mAnTTSJEzCqIOzWReD++79fyKqQYkTgXBliC4rIC+8CZC+aVenpz0EK1Zm+0L3QvfTD7JtSW6x3zJCDbsJOBFJss0RiwSNRUerIlvnSZFnCcdZYnbCCzm0ziDKpG8UotHGk/WmLNJ1kWcp+TzoB+IoTqxKPtw9PDzsVKhbY79986ZuhqvLZ/u69i0xE9kgHebDDGBHk5OGPC3ZHMPAbVYFGx5DvgNs3EiERstR1e2usUOQZOuzOM0O++r+7va0TDIdZpqSbnpcByFYZBkMaCEUKYpivSnTPEcAmRludgcXxcXZxfXnX1y8/FKdnKo4x31cb7/9//6/f/Ob39Z1LT1AyjiwlBo2GTD6yE6WHDnF6oiVR23f96MNkiLJT0/OX7169bOLL3+pVqcoYdpGtTVKcy4sXVW9e/e9MebLz19F5xt12G7fvzlsb/a72749DH2lArNZlcXls+Tqp6ef/zI+fanilYrPlIoVPe5Ut0P73ezVvhqUjk+v1OpcIfbOKNtjmqEi05sgTAKdIuRQoyWYAhPFIlIoQD82AP+SCHiJtcz/sHT1eaRjExLnR7kBcqctq8YJaPGGOXjMFvkkvxypmRNhRdgaRLnYCcjdzpzBeQMQn2AuB6mGaieh7yNaAhHVoQMZUYV4KjYXDskYCkMlQy5Zf8X0XRDHT3K+JaDHgZNJmx2kqeJhyH8QrZisNcKfx3EY8FTLTWs+gB9PAMjV4YB/drNhTeAJp96im/Hw3CDBQGXGtTxodzEZMvicARKBju/fYcGY5bxTAzAv1nMD4PNulRp6qtYmWJ0p6OiRJMjp2AzA9QbTGW/yw2G3qF1HGinA0RlR9gl3Np94ykyiEAAUFedSlMjxlxOBqS8ZIKLrYEuF0Z6/ZBaUM59L8FgzgMmAz04+Dqp824k8QikWDZtGb+vpbV0fG84sbSifTG/EbUBqesJ7MkuBN7S4thBZ9ZzpKHTKtFM/IIQqUVY4zcmVhILZoSNTH3U8FlutklhleQKmI+YpsYrC09PT1Xp9fXV1/ezZ2dlZkoPJ0JvxH//j799+f/P27du6PgA8twBosyz75a9+ffX8xYvnn23Wp3GaOacwqt7ef/Pd6xBFU3R2fvnFT39xenaObJswbrvhYb+7v7k/HA5939aH6u7u7v5++8c//rk6NLuHbdNW4QjmW4YcImYUMIJvbgBAWA/DoUPta0cYpHS9YYWB84XBNLNehQ0MVgkxUiY4Hruvj9fl+RSTjeYiNYRKjGvE3VxOTdgSdJfvfSwAiScIJvuIz/NY+Hts/8Suav715RxA7guRAR0RYjEJmNUgEwtOJlQz+XAhUxlDsh1ogaIlLhrUgDBsa9hoLilA3k4XhTWLJ7LqsbuSf49juWjOfaUYRuNgphQ5WJOT1w5MTMTWEFFbFD2QhkO9akwwWD8tAREa7jEKX4HRYUUA0CIP9vgWcPgivuCoWUqW7ka+g3qyf/n1bTqt3vN+XsHkXEz36ez9+qgDXNzvrFecxtu0TIEEVm1ggM8lAtJqsTiwYWCpTcBylyKPzzMxoFoWI6VxjBM+IeF/CamV/gfmMFydJNCZbQw8thKaK9BdTq5bmQLBtwckb3Hgxa0tzQOHNtM7h1E89yN4KAdNGBr0XjpIIaUAhQtUdbyRiYXIzywa7jwt4evFDlNo8W3b1l2bJuUGwX7PitW6Gcz9dn84VN0QqPjk0BhMpUgC7IaeYVRBlhXUgcPpBU7BvI/AtIjGhDFn4gsM5QC8X3qZnNO/3vhgTzLQaKU0+24dSwj2wzRYxcwT8nDIyZVN01jieC3cLHAXpLDdx0ZAiyNEbPlIL5oqZxkab8DnlKKiBSWfvmtb6TZnRJy0+Ag284hzYCc2zQJo/tEmCbxT13lSFnmRpTnSlfV+v6UNB6d/gPl6uGbaPo2TPE1X6wJ9QJoKY9YpnZen+6r70zevv33zlpOTGJQwTi/bpo+Ccb1eJ7EWYYbWOs8LyQFE6jvb8jSJ8jTO8zSJIdrh9dW70QiwgsiAOOtcsK26XdVZyP3RIKXBSFJNDsa/CowLLbMOmqomPJpcnp+fn58WBbbp3rpD0+7q7tANYV5uLq4unr08e/4C4NH9+z//u//f7373dQ2bWIQQF1mJrVa4U8yj4D1Ap3I3prBbsKM2o3Y2HHWRn119fnr9+eb889XmpTp5DqNQMSwAc86o2/cYhseJ6k0vTVGaqqFVqVYP777/5g9vXn/d7m91MCg77Lvu5NUvPv/V35998eugvIrKqyAsEeutjKpvVTio7e2bP/7h/cNDcX71+c/+Or++htHQ0KGZSTJmf8UqyId+iOIcYSl+XyDogK4ct9Ina+gfGwB5BF8923xc/c8b25M5LLYBe6yVl7XR0nVnWU6JHdf029NoW0I3OOWcXW78G/Kj23kX9Bxrej4cZ82+71cBqo9pwcJA1v85913+vphXTPu9K8qU16Sn8M51+Xa7XY4v5ppDgonJ0eS+LkJcOmHC7pc22fBvx5qFN9y33VLLOD98Uu8TIjK4sBPUJwlZky0PbROnfmmanzAoM5mF7VMSGR7zLIWH8igU5rb0SBZ87CtIAXrSAGBKTlk2QzEnYJXOJzIwGSY7Nhx+ELs9AAMqIw4TCJ0YySKKb9TI5qZbCJoFcBaytDDESKSIFyqFhImKbwb2MwowAFEYk2a5kHSe0IIZNX8sFObzJROnWY8xfz+Suj9ftXKfj0FIPwiSmQAt4P8h9hf64E98FTE0Z7gsYYncQNcY4sMGgRXkFRoyIltRaEuNDMXF+/eycbRP3Dh5lctgCTtxpFN+dJynNFVpkRVFkU79EvDmAlK5i4uLs7OzvFhn5ZkKdNc1b79/85vf/faPf/xjVVVa67JYXT27vrp8Ua4352dXV89e5Hk5WPPi5eWhObx5+/7ufmuc6uzY9S6Kk8+++DLPy8369OTkJE6i7d397373uz/94Y/1odk/bG8+fLi7u2sOe8y+KWaMorhHFRog8okiYCgAAqQfw110cxLouK7aDw93D/e7pmtViAKC1wacCHH0qFBP01JcX+az6deNhYj/iPsGNk+CUGE8LT2AkOIIvdMAnA8j2z9QBBVEIlA+rlf+VpoS0Gc9gD874vq7WJE8yssSScru6S0BiF1qnJYF6ww9Pl4NCOEyhFfUMpx34WJKGYwloekLRjs8KMEax32JZlCx5fYcSGboThJDaSUCNBgilwLQSAY8Degz2A2GiUbzRlcsAJODs1XfDg6uLPAoNwT+6dcP7xskAEOH44mYcs1DuPKI9i1ruJQO00+OGwpyPx7PPwEJyyk44hfCrIOJQ4AI6qeWCRMF9JGggi21jYIeaxVCRmNx8ZUlFB5WXqwPD15G0GFYqh0SXuWzIJaXJqfsZuVd+evKZwsAY0lQWEwyFUpUUNulcQJLyEkpNw2xbQTvVHL6hZsuQLQEC8qomtzONE3XRZnkaZzaYDRqHDSiPMIYkRZWuX5VFJJjDZu4efUewyxO5wGwyNXgC9x31gQN/BkDnZWrzcnm9Oz07CJfn/3mt6+r1tZ13Q4o/8GWxiKZ1W0jc1BRuEFoTrZOAIkC2CCyJuPIMBxNGgAZ40kDIFBLwmnGHCM5v1WvkZtmAvONIBJY2Xc4m6JmgGU9jib04bwyO4ZnB24Ymoj7NYZsGH2oFEnbiRARmbaLrYSNGdYDGwCwEznQsQHAfsrGG64PLkGKArzXYIevRgO3WJx9j9rwze53DyjZ47hc5etyleYJ7CJU+O5mH4Txvq62u0PXDZFOXn3xxV//+m/3+/0f//jH13/+s+k7ODXoWHbYIl+1A0Ybw9AFo00QrVWerFdxEqzLclVkuBf7pusbJFV3/dD1Wb6K0uLQ9jcP27bt8yTelLnt2iKN4BeUFUqnFmw0DUpZFHRdo0ZbZumqKMFZIrCSpPnDbn+3q9rBRWmRr09OL65PT8rQdK///HtovdAOYhC3KlZaJ11D1z7emwgIlP7c2ZjUtSBxKguiPFldXL762V+df/U3KjpX+kyFBag7nKMBjQGfsFW7O/jLl2swDHDzYXigslTVD7tvf//t179p77+Pg74/wLTq5NlnX/76/375s7+PTz9Tq+cmSOxg0tDevf5tt327/f7P24cPYxyfPXt+/uKLzWaThqqvazDZ0jzQRVicqKRUg4I8QDxCuSHPoCcDEj/x+LEBkIc3PFnyVeYN5gmJRR5P5inLae/HUlf+p39ykgQEe5cmfnbhwDo5vwcW3H51kImsrHwRSeez28OIED4sWkPXmRDMy6ZpUNPHk6tAnsMj7pGTO9i9h8Mu0kHXP1LyhWH44uUzqT4FhBZl3+iCLMnFrhzUJY9ysngBQBQ5ulynBoofhFc7xL7OmmMJSJf/SW7Ootc6HnNQfZj1y82Thw58Rn9I4fIxgWKI5QTX2TvriXrPU4CkiJEWy5vgzmfkmAS8yNfk808NAK98/F/kBjEDB80VeNo+K3qPkCxLMKiX0mFgoGWgYCIZ8Ghhoh6NETUKaRwZINt9gExZBOIkqU602rbbhHJtnQLaMUN/d9jTTQw1blEUJ+vV6WYt56IbzIe7e1qW+6SzWZQyT5xm4pnnl3P6PxUiLBqIlHiTSGGsTtUamWYsXHWgFb2lZT7AUg9kc9KvZJPyEx47SqYmjfFg3B7B95B5dIB9JacAqFekbIos5UH7FDySjfFu8NLWQgwqsDZ4MlmKc670zbbJ8k2aAUZt22770O53bcIjg/Ohk+TQHQ59XZuqGorN8PLzU+N6pYLPvvrpL//6b5um+sMf/vCHP/3x4X63rdrvvv9N2/VFsXnx6vMvvvjy8vLiT6//8NnnL7744ouf/aowdry93+0OVaSz795+PwYfEGk5jmVZXl1efvnTn/zqF79886c/2a6vKkiEP7zH4+YGZnDWuKbr2w73K5nmnIBF46FGrkKSFmWanZ6e5uvNyxfGju7Pr7/BpdM2g+k4QvOsYG7zHlZfWnMKGW+pL8JcKHQxGksvz0CzBaInpORwEqc9y3w9oFkFOYPxoYsa/WNy15wLJq2hZE3whwL24zcTBP34gpsUMrzDIAh2u52Yuki1JMQ2ETEv69cZLE8SEBely5CrWqabKZ1DEHEP7/zIOS02l10Ns22g1QxB8ZKTAFrwgdF5EOATQaeKlKo5De4563B+fup7lerJ+HHYqzVsPeCMHqSJgZvN0Nu277vWtj2CjSSflaueIaCuqeo8GhQc+xlhaB6bqKMi2S9uMGCRVBPPyyNarwYMCQl6il6BTylhijjik5WTb+rQeMkLog9HjS0XTGh1BFtkmeYRvADm4G18ketr2E4IW29EiOlgEsxDwCXlThGBHqQQXSeTK88dEldo8ZkXUQ/8ISMNFlaoQvRn4QDvJK2Rv+AthlDvwm4S/yOBRxjqvqHlWACOvLTPMjC8NvANguMceghQX4k9hSHyleA+H0aY16E/8eDUoavzPC9ywAFwvhph25UWeRgkD4fDbl+Bht607z7cxMnrOF9fXn+FSWHfNc3Q1lXVYjCeYCQIcy6OMpHDJEkZJKnBIFISLYSypGmq0cG4c9rf4RvrK5Pp3jlu+tzAVTuI2J13kC8A8AkHuPaxqcQ/hYD5YS3okkhj/6TML07SJGGQNiYo0Wh7hNIPPXhwkHhCcIVkNKqJ1Sg3pnEDqOs+YMJfPJwpcCvNOJEIgArSZgCO9nWa6HWJCZv8Po4I3FHBNL68vpKWr+2Grr0XBYcdx32NJqvIV5eXz/f7/Yeb26G3V1fPXj57eXl+frpaf/3175q6yuKkyAsBC/IkLdIMH6BtRoAXDN4RrmxgYq2LtAzDcjBd17RJXFRVU/emTOPw/LSqqnHog6G+2Kx0qBI4J5A1GWrc5+NY265GovyAyZkOMxclYRTHyc2Hd0he62xoYWDQbA+7dzdvUz2CpdhKoys7pgSbICFuIgZbrmO0nVXw8WSzJwxkG6owyVWxVmNOR/81SDtclnrVmaEpU92E4aHtMEbURZqtMCsrRtVVqow2L4NXKtq9W5v97ZBkSXGq47zUeRwmSAobdYcxONCQ8y++3P5pf//O6jQs1unJSVKWQZqP1ds3Dx9uq2aI0jxbn18+/yw9f4F+A8uGMKxmIpAsmALa/vj49CP4q5+8mDcqqZIpNvIgzdJ4UTZjjOsmoOufaaTmPQ/OWPPCMRsz4OHNwLzelNmw82Y8w9Le60bIsmQcCkddKgKKSZQbOYQjkMPIeiQMUDDgXTukZJwSYc2osMXNU3t5zO6KwuVtWzCn2xZRRjMn1QNHVKBjiyBhlIkuvuxwFpCM8yNjuqZyQR+DYOg6RlQ+8gVn9g3o40K/E/Wzd9Sh8Et6MamAeA6wQEHUtui4/AEkCjVT+WcKkE8Zm9QUfHKcAi888tTVhQi48vpFgPoJnOI5AIUvjXGg6zTMomp7jKFBvTWhswqTU2uxPSOsmwoNNeo4xJQVMkCMVk2PA3K6PvVaYXjwob3A/DGCsb0MbLyYO6VTnk7avmtQgOIhqL8cQLqsTEbv9IEWByHIEabrk6lC/lhHtPvkNMk7qYunE94xbbYFacMOzatDEMGZ2bWgNBBpkq0yUhoVKKDWJAkhOYLcENH15LYpHZhcdUnkYN2DK5Gfl9HHQDuJUIpl03Sd63R9sT005OH0XTvs67rr8Z4Hh7EqAeMYOVYJILE4L8qT8xcvP3v58mVewH1cHNzrtr27e/hwc3t7e19Vzb4CRJgV5enp5m/+9pcXF2cnZ+erzSk9sAPBsRg5Gmy322+++eb9+/fCLcbwW4WSiYbivaogfeGudvPhbnuoHu63h7qp6rZpOmzfAUIG4K5LJ6gYjUuZ82nqDgLZPQMmhcAwwcUo2mYd7dw80/FDiC6IexICDAo+DM3wrzy9Qs/l00xqEBx9N8r1MLix62lDDSgSRaRDFgS+B+lBeMnk1stXShx9IrXPxeC1I29MZoCSgzdze7yB9zQ5PK57BFCW2IrAn+Dk8HYTjR2XJlykfQ87Y2zwVALO2icwqQ1uHOGZeEOTxZosJq0M12OibQp7FXL0wf6bzGetmxDxOfYx1amoc/Akg+t613V93QxNBwa7U1qkrqyJcXfI4hfHIm2XicC0qiD+im22OG4tVqciy5diBo8u8TOJemn2k/EDSddHzPOWrUDyWGgZCc2ArIvyr1Qk2STFQBSURF5ImvAlqHpJCuUExpUYHYMeFI5a2QIu7xZAKd3FOB8QbAi46TTnYZ8yhjaImiGxQSzXy9LdAT0wqvnBId6YEHWCqUAUmsAPQ0DeANccax0DsVnQg7SD3N5dXdfociOoeEtSzTWmK2MSB2mszdBkMf4JnSRBJQ7e0PoOaLsHWIGtYb/YtX3FNIIxiIMwHsZwu6vuHg4I9kqLDqnQaZKDzyMcSwvKOO2thfsiQMl0tc+213K9+XmUtYg5mx6eX8my2ZNLhaRKW21Sp1CRz1YiszOvBEpI8DwDyqYtSdRwiA4byyzfrNdFkYPPpmzX7A4HHCs24f5getM/ELGQtisu5BjNDKY1gaUPjJCahIYlN2YaYxHG5yRUR7WeCpRJszjLJLrBMDmN8UQ0EXlieGjHKMvXIUzVLHU07sCQkzTN/4f/5//rs89fOmP//b//h2//9CfcX4mu67pYIS9xtVpFUdBQG6tDl6cJBj4gJ8N79Oxkc3Z2Emu0XtWhuXu4r5o+inWgcJp0FKzLDHMJYG4KZ1lnLtDDqHs37vqq7mplHX0adOgACMSR7loiaN1gBhTFgYriLM+KtO5qVM7r9WDcw8OOYo+wrlvehDQUoTs2SLRU2K/T1LjeajtmsU2i9PTy81/+7Ze/+O/V+pUKVsrlvYtGTOBiaGRU3exe17u7trcOA5N4BbO6c5w7lEqwfVb7D/d/+Mf3f/4n127zOA6Mu/7iJ/nLX6iTFzY52fYAcc43KzXs1Ngo1arm/vbtt28/vLdRcL5ZJ2339tvXd/e7QGeby2df/eyvLl79VOmUCgeoholHzA0AmoFPNgA/TgDkEfz8yxdLbqWIa6MAvmYzkCaWnf4PFqlUjxz6Zpj/sfXNDx3ojxiiXlrnvecnkrrgTTNx4qn/vbwWKlqf7+st7WXOwAVb7mcvQtUq1i4KQMec37nU2XBinj6RFKBZWiSp7lisCCCNIR3yEcVRO5fsbjQCwNsiIZ9FQURFmrekkFE+QnLmuKMZiYSF9hjDLdKy9KfEFhxxrlYJ5qEYSk5MEcwQrOu6bnoqcJA4XsZnxe7FFGPRQMqyi2h0yvnFxFMOJob1DqxK7nLYUQTCzOBSoIXjAV4+x75o+jHcGNEgFflmfVKsV0LXgannMGwfgN/PsSD+e9sr6yTlUQYImCXwLHRdJys4zOBjljtEcYs0ESM8NHTM+KN8cgy1DyYT/BVvj+MZIXh4L1dgVSDdhDreNzCeF/YXhhizQTud1CWMZjm58lc1P6l0S8KwGvyYm1leU1I1dCDTcsJaH2dQONYo2jiGgbsz+D8SBeDS0GgFXj60K2AHoTWKAgu3aY09gFJKliB0drSBDgEnp0EIi8l9VW93ddN0TkWDcVBwGrxDnrEkTNIebiSYD2w2m7MzRAJtNqdpnh32SPCt6+buYXd/L2U3Lpaub4qyvLp69urVq1dffP7y5cvLy8uyLKu6lhbicDg8PNzt+Wiqent/jw7bAJ5Cyw1rRJzisihAfmva/X6/2+2Q3dO0vVONjVyYilsUeBlIWcatAScM7MqY9vcu6IF3YdfOUihEPrZ95PrjGwBQBhAwpBXjpT3gPbd5vqk+KmOmJhtVPOSHk+f9/BV9K7jQaADk69QYEHIW/ybiovM65hFEGRQczYi5X0xhIMvHk3gK/+mY9euvH7HDn91yaDhCU5qjzCBQJqGcZn7amXM/OfCgQGdKLy2SAZ0zwhbdV0RjwbwoiiTR9WEHzX11wCJmYfcuCoSRBoXMPIH/JrztBzfY4LBvB2PbwchsJ+AJBYoO+P0R4ZsBSqB8HH/C40Ng1yFYcGKazBqJIFIwV1hQOr3HAMz8DDUe3jpTCn0gUow6lsz1OcYRpA76wqLEpMaX2U9ccCiEiMg1Fd0CJpPjmIaQMfAOhTyNC+IQ4qLGrEDONclVYjIXjkmBOCr4nOK6x6+J/AfmJwR64Hjlz0gUhmUeUyEFg01EJsVhlkZprKH9toZIQZzGiXLg5R/q7m4PW67RGh2HSKbNE7jT4Ae9oCGI/1sXeQ6zKWXdfr+npz8WaesghOX0KT1UjXGBtbGx0WDDph/7TjVG7W0wEO6dVRty2cgUYpZhTKbSU3LzQsgnh/cJQ498PFyxSLhl8rLs4ItIzSfkt/nulsDm44Nk0cCZAQPVQGVRVOTphsSbDIQ/9MbEDvZ1g2xE7iOYTWh4IjOHblL0WTv2NhrMCNQIASxwlUhS/FbbtiKelqh3MnJxlE3XBuPATEbIssJoRDLjqgAvyJmBJr+sF0KsyVEMBmwQRhhg51GcmMHtwVhF4OLZycnZyWkcR31dYz0EVmLiIhG4Kk3jLIkDaBw603frTcn+0MeXJ4k+Wa3LVaFTHNX94fD+/fvD4SBopjM2yxJuTiECc8Fsl2wO3QxdhaAYQyomwDhxJthut5AFrwrwormAG8QDDGlR7vZVVqx0ktw/HHozxkmG/QU50LTgBdvC4WYJVBK4HEGfY61sr2OT5sHq9Itf/N0v//5/UGGp8jOlUtbccYcd0+SoXg77N68/3N2NKkyyFRir69Nic6Lg5x2OwyFwnWpu//Af/tfvvv5NEauoHy6eXV9/9Yv0+vmYbYawGKM0CjM1jBQ7wplMjX1Vb28e3jfbD+H2FvZ21o7IEk7z1fn5s1dnz15G5RnaujGK40ypEAgG7SVk8v8XNAB/6eMvbRj+woL+L63//+K38/nLq8VWKsUsffEngrlQG+f7uW7gcvXxY+a4P3r2I+HkX/vAOH/BKeSy4dnqs0JgbgD4aVlcy8st5Qd+DWJA5lQo6NDF2upw9OI7LybzuiJ5Eusm5J6IW1EUM8vTV/UARMiJBDlyhGkGlHMM0RyDOIxRMNLBYObyYpGcHU6EqzgtfqPrUETKqsoiBqAyXHSwWmngRnMMJAmUKMLoejG6Hmoq+lIz2ZFtAKf+7HpFwGckaHMKA/L0A6WSCAKvkaMTb3BOGSExEs+nVyEyYrp26MxQVTXhOrjIAbJarcpyDZCemYJtj7FAhzQZ7+qTpqm4Okr2zcK/D8JEKuFgro0gGLjiqSQGuT5GicxLkCLRMRz31eGoLJ/8Jwix+u/J93WQYfSwDU3KglZ9BE2nIkzBAA5o8aQ8OQ6vQMllBUJahyi9OEMMIzKsyI6lAYiYzMAnkRMpKQeFYM38S3ln4rY+q9st4P9gxD6EFihMkJ86sgU1CWR/uNECDF2Bu7jADdaECIfJ4jSLQj0qjawmFcBurrNV3TJ8lOUTGqMozkvHtz2KNYkmpS3Sl5fXVMWhVZPzgt4JQDASrCQ2q1zlkmK72ax/9atfXVycnZ+fx0nUdd3hsLu/v9/v99LKHnao8tsGmGXf1l3TPtzdKGfTODmHauBkdObm5ub97cOh180AYSKZMLy0dMq8IW2VxvwqjF0YY8psAk5ueuhGFo+55pYGgCGpQqmKyNCXCe9xzuMdKn1chAyI+HPU8xE826en/VjYvWQZCUQdJ4U3taW6fVLJB5N/v8iBjm+VMlA6G4uJKGPmYBfDl8cd54siX2DNC+OyjSFeYZcNgC+zRpcENoJTsP+Y05+L8xipPSLekxRzBUnvvOdBWpqwVNJhkVNMjKQNcABgW9911pgMEmQ00LD7g9klaNIKLkBRP4wt6CroOWkGAP+hEBrVY4JKAgkz6yp/NFG7sh33C2zVNGITLEcIYXHTkWHT5SOcQKxDZWjKBF6jj7qmBV9ryTKVYYgA0rgqcO/FJLTACgZDtgDVf6hGzKREuwxUX3w2SUqMseyjJwcjD1IIUMo5qBQA2Y5Bj2g570818Tqn0GlPXYM5/TzyLbNcR0GGxRT+LLD00U5DWYvWWZwo2XrhcFsVtzY+VMPDwwPuNTdkWboG/p2VOSZLaNmqqh/aPM+fXz+7uDhHHu0wNG3VNfu+b6wbuKrDEqMG19+MKlVR4VTS1GbXmvthHAjkk9t9HOk74uI+c3qS2czt5Xyo505A9vcnXTq9aGKZSD9ReiwBwcWp9N37kh0nhYYbKP0cXRw42N2kMUwQYsgVvA+Vt4voaXKBch8JKlOEqN/dwuiwQ2PU92C0WQefTVkryrJMkoyfMYLjWqjBiDN9GCB/2LouCK0KhiBweRrlRboq4OsVRVHXDdUBJg1ZDKpVR9tSCuGQNIw7hc6wsuWVSRZGyg796Bw2tDjqTQPeQYThA8xHI/JK0b91Ma+EhB4AKCBIF0sy0PNsP+zqne0HoDwhUla8DiqMydFibil6c6fTxMu4MRbOTs8uPvvyq9NXr1Tb33149+b1N/cPt6GzKSz9ARTGSX5z/2Bd6NBmtC7Qab7uexPHKXAaDE6HwJooUFms82gskzErU5cVbaSbMGl1dvXqZz//67+PywuV0bsTxyHvEZowFlEYDgdlBzgGwdebTP00H8Ok6joGlg2hafRYVTffvfvz19XNO1vvcDuVxcmLl5ef/3R18dyMSduGm/U16IqoYeD3M9p6X9/b+u79b/5DZPowTuKsjPIyKVbl6VV+eqliJAGDBhhAtINewNGW+gfqzB8bAHkEL67PFoutxDRSxMN7yo96J6NJeuuinlsw/4/76Kc4r5/w3/jnT0DIYsBbwy0aAPlXoaHOTFRce0yVlIdfzvgrOiZC5nFkGaBDPhioIYxGKXa94SSLwvqwx0/4D0JQFPO1YRiEdi6+orLWYw4AuAXlFAaJLOBRrjJ4SE4bYWNPaXBEmDy8tNBFcBMfWNyLDFe8+Ukp4fHHQhULVQBGfeDVHMsPNZBAOaDZoFSLZ4E2GPjcnku9OM4Cki5daLyjDqcY0v4VeQ4DhLKAC0SEkDUWxwqEqL6rK2iV0DPEGkNv3NJBnuer1aooChUiMPzh4eFwOOx2O+qwGXjEzQPiAVRRrFP4YTGcwVgcdXmWIRgG3Eb8UEy7sXunRQ6P795AR0X7C4ncTHQ617taYcvnmF7V/eBDYWbhh+dmHOXmniEmUxGBb70mGN9ONuTEg9EA0MPbu80o0kzFs4li8WlLm4TXvgCVdi4KxpRVK5TBrPVjrVAuBYAh42iE74dYCYEw4Osof3nDHAPGc1GYcgwSORv2xnLi39UVCrjOuNuHBnGv4reFOQPgQNQ7KkjTvMhX4KjQiYvDIjSgPJiwqpTbBKmiMSY/l5fnL1++fPHixfX19dX1BdTAcbw7HJjoXO0etrvtw+3t7fvv39x+uEnjCNbrZgicjbXOYowkQp01Lmp7O8m4ccLoGqLcGA1jaEAmiSFkD+HjBgGm84F90y18vMEJw2LwJZi9IPRwrCfVZLHOiAmBkMKPx39e0j75/DOCvowzZ6Iz6NGTdQ+hPz5Mj6Artqae1T0tYrhCjlQVfnV085CZpiDVjlkc0lJ+sgGwdEXzpgjTBCAaXYpa2SPix3XVZ6V7LHxCTNAaWeB3qPP5oVD9SBAXjM+RNwdD5ADiUc4zh57IK9Wa6G3gahJGaRjEMHx0IfAN6HIZwtrTat/2k1fbUccsx0RQf4zvIKsRkQY+CNs3oVx5Io1VNtF6BEeOXkPOz2ZGZ3KQjo8RH/NDkOknszsJuEWtLmG3CjnQwC6prsEqhyXcxeBzgSAcoL4MYhQ/EFHoCOFTkC2BeBMF9OQVB08QvrFuB1XvEF004eeypJsBJDS4oSbgW83lqbPWdOC4J2CbQNqTxGGShDEoSwgUQz3Cix5SeHDvk6oPI43C1Bjwc9q2FroXTCcwZ0biBCauo6eVbsoVMpvWWZnnKjB1fdhvH/ZVzfs/C+NSBclgdNO6uulrE2572yOqjIY5AnVw9SI9DB4b0s3MAI1T0ojiMRvBLYTvxxwY4kdBpFN4Pnz0WLoILm/VJz3GpHqjXQQdGzV45mNMSAWzQ7qRTuC9jK/xDL4Vww5zpN4pDJBivh/LGAAJXjRytLVGMc2hcoL4DuDdI5lVnXM91WuiF7fgdupwtVptNqc6SrrOVoe6b4fejUle9IypQbsn2RhwCKIbXgj/LLqcqVTH4OTEUTvUgkJyX0O5z4pjROcGoJ0AH9BHVAiI30qiOIWY3yIsUqcprq6uQywXyoEgUnDxwn3ozws1L2jCcWsnaVasT0/W6/Xp6fnNzfv3b7/f7R+UGRAazQlAEKS7ugmiVKdpN0DfoiLd9abMV3D+UE7BuBQ0PDQAcdBVt/mq0JvT8uq6uH4ZrE6zk2dnz76AACBdsQEIVZg5FfbKpip07SFKItUBIWrbNlutsnLjgngYR9igRqHrqzQYwnQc3n7z+//wD7pvb27ff6gOyebk81/+zRe//JvV6QulcmU1TfyxS1BlMDjVBn2z+9MfIjvAbCLNA5BiizgrwxyC4wENQxBEKZVgZGjjhsXl8K+vP/+bawBePb9YUsan/RTjseM975Nc8Eh4RT6520mab5cNwL84AfjBE0A7qbkBECz/aNi3sI72I2KBXqePP3toxgiv9uaYs4soluHuIK4ssxeElIEn65VYNGLhmIiDSqk8LwXFByXOawlICcgyxAJA+TsGTrPoDIm++8WOnHLvBuiA5Qi3/pgl7D+tZHLNUSl0SBDvatGYSgQnGgBszygWQ5KasHKQnQzgDDVHiJmDGUnMoaWMJdWR3HcyHlGcSAiRQD7yPudoYfEPbaqaW5ssVNjh8rxMiEtZUp97M7SN9+/vjC3y1Ywo5+Xq9BSAcJ7nzrndYX97c7fb7fq+n7OlD9VeQm0YzYsCizR6hfEoc445B8AvM3wzsmMfohAmjWcERRVIv3HIWwH3kEwbfdRzHzqfZAyZ+ETEkpQu3B2iYaN+DIPgSXMhCqfpFoo+8i3xlzHOCpuBaSJBiaCQHnxB5neiqbEcU/wfJBmy6KcwgFKBHP0czP6ikJtTTK8kjRKBsddstqUtIa05z3PsKUkWaoinhwFatta4223bWXjggAArVlTEyJEwjZYAUgv0EhwLRBHsPifLVLxxOUTWDQz+9MqZLCtOTtanp6dFUfzy179Eg1cUiOYZzPbu7vU3f3r39rs3374GH2roh761/YDox6xM8sIAi8ULiUXJ/nA4HJqm7fEmzdhb1VsFp44RgBv0dEk2GSk+An2lbSbL7hGt3PtRoslF6wZ5J8V7mp5AiH9lUQwZggcyfPDTE3/6H5AwhZjWqYlaN0Pd4JJ5Mc3ifvHXkhc4knMqmPx8+bC88V/lI04DiePt75+HWNXs/Dgvd0hog8pU/h95g/TYQj9H5vUIbDs4vlKILXnm4stkaVR26NqIpQaGUbjS/CrVHA6TpxBXCQJuToUD3qhmVxkHQDpDuqqZ3vZ0dl+wQUi2YRHDZ2RZ5idyzq7Xa+D0dNJi8Ya/dSjNYeBP/x7JdPU+8XBJYkzYkx7g4wbAN28k5aHnQasC3575tArkj/WEfDCZBiTM3PVRxCGoDiJYKvMM+jEJOnSyziDvpRqoWGdPo5loYUGRMnmaocag/6e4EMnkvNofxOsd21bokiTMU50meNE4CVOGDmCM1qCBH2yAOoY4j5SJs89BU9WA+bsOaV80uJPFbOzdelNenZ+fnq3yDJ76AzmR9w/7AeNhmMNYF7WDahtTD2M1Bp3FAIf3EfdBCZ6TSG2uZPP1in0zPbotLRWA8k7mh18qFU2nFgnc85o52+s91tyLK91xKDepCNCJgXMCO/wgxoUheU4IbMb8VRJmuInANpTbA7QJi+hA2hMFKsqlZiGWh9WMl7pqDshdQbxk1wdBVGRlmiLquG0RfJ6kYZ5nRabhooV0BPj2sE2K06Is09XgxsP28HCoVJTBxJdaZ4tMaArzZMEHzYzKQxh2CXHXJkh4k20C5b53LwzUel0icxBMFfycjhSkIjujBYXUARhhtMro+jbPCtx+mN8aWLliV8D/sw6hXVGcFOU6zYveDPf324fdLqMtAaw1Yu2wZVc9fJ+CMUw79rSjCnqjjAqR8qLToQNPFdepGZQZwsCVaVIkOovhj9eG0dnLz3/yt/+38PK5s1EPSchaZ2uYbqg4zFZWqc6ZLEx8LOloqvsPXd2Esc7yMogzF0bWjUkaj66PhlbnWu1ufvd//Ns3X/+uKLPN1dXp81er6+fZ6jKI83FMdZDhsInhRjRilBv22uK9qQ4EY3IPIxWl8CGNM0bvRbTtwqpFmR7AUue6HxuAf4EC9LQe5UtKkrr8VBoAvyg/HqosbfXm7z8eBf5FDYA8x1GiKtswv19OAPw3UcRBsNB+jn8rftPL5sF7/MElRuaeosbzC83QYUqbpQjsgO1iDq/6RMe7bY3GHHwGGcP5sUaWCVII4g2KuhAJOQg8chBXEYz0anShjkyyaokoP7qdzHaHvjwVCQ4TSbFe05kEvAcSTNHsBLxRdaxxg9MaWer4KJYJgLefZvFvnRrgX6AwIsS2BQGsgECgyFPmi4RzLugeMO/R+UzsHZpRgrWKcPgkyfA1yyISSyhxsN9890bEkSScYFPx4sgsX6/XZ2dncZb2vbm7u7u9vT0cdpvNBt4ZGFiY2RieJQ5gG4XKzGs2KAIO6u6AkoXLmUZIkAgucZXOuWxCDRIzwdVq5XUQQnwkWOOMpU0tjucEFyFX1bMyQOGiyQoPvVjUPUawpoucolWczWPehUdDxXTieP1JAQeGLqwJeGYRRE8XINoyYiBAN1sU/WGkARrFWoUOROF5l5UKmEHUFkhYjBT7+bw7lRx61RrVtUK+gmAacyGnwjixxoF5jxweYV+hzkizYllMiyDPb4QRGMA80gnNP7DR5qt8s1ldXVxcXp6fbU6yOG6bqj7sPrx9e3fz4cPbN9Vhh+U2Um5wTdfFaaZl48EAnW0Arj31/m7bD67qTN2bhlYz2GatCtKSDvRyEYdHbvEwMHnj0SJDCBbc/Zlsg3sfDRo9Fz3lhlI2Um6gpdGpL88fAxbLZWQJWAy9eL3L63oheICtyxdMT1ZkweNF/rj8ivudgYa4qBhrSE9EvFfhrfFx7G00UkKnFXjqglBSjMC1ULvSyV7EmiimmQXEI0DfTH52z0whBD7pDeSahF26hAFLEJuI70FIYBMrvvm464EsjsapSCdkG5PS7VtifAY4FKHx8H0v22CaZsEqCKoeMVKktS7WG/nU0/vH+8a7DfHeZKoj54tBXeKK3i9UZo8mAEtiyfEB/hyLMBlTL0Q+tP3BdJGePNIPwHMRx4YlJjkkxzQPwLHUd4kjCpqVIGythalTj4oDFovk65nRZciECsSrHtqUGGUbr16xT7Ij60jnkFsXRi7DHRVmWZKnmdaJMzSjGfqqbtFyiiP+wpVudvnc7Xb7PX3S0mJVFKerDTstbASxDlar4vzidLPZ9IN99+Hu+3e3h6oPwnyM4qEfD71tbNBZLrhsAI47I2dl+rH7luQhHFUBs90qHYee9OFiuoXw4smW+snjU/fa3AAsU3FwhY/WgjqlIYBGG8BsIBiqQjXt6VURLwPh/BRZ6TtAxq6JN52xbt8YwClYx3Se6bzAnBofipBK27bVHvad3AGBIsizpWm8WuerVZHlMRysCRhRBoW85CwpdJw6M7aDvbmvFA2k8NnRfXlgAbsTIi/RdUBhgjxda10PTciUkSyxPzx7rigymVnCuI/DRjnUvYVNkOQXZXlaZj4tJ01TZxFRAG88yk6oqguSFA58KgzyAuhbWpQOYXDtu7ffC1kj4fiKAE1erNZ//vZd74Kqbg9tP6pwfXL+1U9/9pOvfva7331t+qGvq/rw0DdNHKhVnq2KdJXF/Tg0Tm2eP//p3/8/1KuvYEzQOdM6nW1wh0WJykulgsb0kc5ilYKJj/EnaJ6qbfrBYDUpTtq+T5MMvqvDTgejaw8fXv/xu69/8+L59Yuvfqoun6kg5Z6OPj2Ncwk0wn6MAwdaXjQO+OGAHRi3e6QVLTHQJyCXAxmj6EkkgZpATBAOPzYA/9oGwC8QQqHxI0IiBJLc7p3Xpr+cdqnHNhdPp7R/6YGekFhfis28/8kx4EgHYgEkZd9ELpwI38e/Xfy+/E6W0juQ9TlFmVwEQ5tiZx0JvhoHy0585CgMN8jQxsiOXFWJmyQJULx5qJBj9BNg2jGA2Z4wU/nq2Cwn9r+vC8kgh2aXq5c30ptITfJJ5bNwgo/azxD/ILqHjranbw1ufswEpkoRWp8jfuofdgzh8s1amTnGPkVLpop0KmBhTZ2unDL6OJBKNCmYxUbdG0hTe4rWKMuKDGh0mpX7CkmT+/0e4a8kBiAgjMWPfPAwBIC92WyKsnz//j0EC1MRzTMlHkSs7CmZZn/vT/3qpICTMAsK0gX8zpQlCDD3WBQhLjkvXYdCdmI0UWHMpVeaH6m6BKc9+ldMV5f8pgygpgM5Kc7ZVHDNyeS9e1CZliy8Wh41Bsw8wz/lCFATJgZ6G0iBgQOhuIWnCljCeAeSDAXoC+HwI/za4XkttArvisORDj4COjeK1KM437cOGS3UQ6PTcz6fa7s7GBcIQAWs3TlSG+APzd1XLLPmADUv/hN+1AiRbku125gWmUyf0iw+KdeX56frVZmE4+X52cPNzbvvvr29+X4AWoayUhpb9B0DDhA5DFmSFTpJt4fWWFX3thls3du2M03bV8PYmHBgipM//kK+A8y/nAtI0SlceeH1LrsCgd+XpCAvFcU6Jrasj8cLy6C3p8glq+epKiJBQtBudh0+Z5h8HnnAHXDKqTguko9DEo8P1LuhPWYYH1WwTz0MJnBdYqvmlgY6CK6R8Ejx1gfe10hwXBEBH1EPvwDCOdEbr6Fl8qJbMfrwH2QEMo3JEi6UUQWw/e1puUxHJM+DZwtM6Q4gb/4rrZmxTYhxFj1waHSIi6lrLWA5YWdJg8TXlVMgYQb+aZnsO9+JT7aYuSx+gkzLsiqHlEdq+nPmqHDyRg8JtEsElejDy8pAQhKkR2EgI9NjWRYDfcjiLNSxUQq07x76AKqEOK9AwUoCPM+FiMglTCsFzSNOUngwjaB6NwNs5ocUDR72FMxUU0oziXw8PNxhhebNEmsY0Im2uCzXWYYMEEzt2na73T7cb7umuTo9z7O0LPMkDWk9jGU5ioJytQkibYbxfte+v7nfVb2zwZhkLUY2ELsKpW2aVo6DAasEsg8+jm3AlNLwJINPnEyneIoJ7AvgST27sT2Z/D/ptxfkH39vLvflESa/mJcmOkpBlQzZuZk4UeLaNwOCkkhQZMDvIVtl+CY802B5Y42KhNCKdiuJszymO5O3YwqEiUr6ZFPBu4ywiDiKhXmeFuscymN/R2AmhsDlGmagQPuV3ladGeHzgdET78r5+pTFQSisfpoE+W6L4kAnk3siaG9BOJoenPg8ozvOeEwsFs9A71mUxsgsFis7udoNeJdiv8Gp/lAUOst0mhcMHctPTs9Pz85Ukau6++7bb96+fTuYrsjyssxP1ptitU7Kk95G37//8Kdvvru73w5WXT9/8fOf/fKr/+7v7e3Nd6///OabPz/c3o62y7OkTFJlm2K9cnEarlbPfvLT85efh8WZSteoY3QBlk4YSQPAU5kMLm6qVgemWDEJrqvGwQZJqpKCi7zkoLvR1IEb1NCrZot7MklVmA7QicUB2HOJ6a3mgB/KFW/qg6YiAEDD+EisYoh8A9/4UBe4XwoN03aB/yfzFPXjBOCfe/i0r+VjKliPid8+4JU3oYjuPyb3P/nP5VrwyRf+11CDPDfAQzv4Hqv69K/yPvjOfKdB4j3zK6eUGa/i8+sOlmDctBjt0fomjsBdhpIoqLdbSrWiLI1DBSkPaqMgsANCyLMkR+0GmVg/DJ1zuqdWDHEz3A28WNqNSRRByiSwgBjxsKDhS4uRHz/S5CESBChRvJuelA58n6HSWItJU8RWJWgi/JBRl4Cr2Jselmqe95z0uOJllZs5xHAM5kIKFBpw4kRJwtgX0IKA/bL9yHLftd4GVPYq6YestasMVKhh6A9tU+13ml4WEbU4YZyUZUmf0LFpmt3+UNd1HKeAHHGE8HJV3T5s94FGSK0Y+UFVQXTCOxTJAWNNIFNdJJUOffdQjez7Sdtl+0Fbh+2hQn2pAYfzVAbYPJX7cPPWYj3llj/SoIwxZOBYe9dyoEG4aPiKfqXwTlN0DhEKB84OhtvUmFBmSIvy0fX0rZO/lUsWGxpFp0wWQ+cMHaKf//AsCDNcfh0SYMyi4NcGrAQEDgfRpYFaESaqxureBVquXc6LVFjmBcVVA6oyNkTdMIZRr9MNOFTgSmmQUuH6iK4xyzK4giDXidFEFu4Yw2D3253YbqKjQFfj89SyLBMHQJyUAF71gmr28OpRh37ouiZS47rM1yugWuPQl3m+KfKLiwuGJPVcd9Vhfz8MQTeYFn9h2oMkGWudFuMYQc2Q6TzVLf4XlSa8b4MOpSfxMsLJmEvTaVUgRpaEOPr0tOfoR5quqUHAUceVLDaUUESSDx/w/PBSp6u/iHePIdkzeMGrTpYSGsjBQ1D858UbXWoVslS8u5T3MibI7DtYxQoafve0riAL7OPFzWP1RwmBZ1qLBkBQq0cIK32T5BsHui6eHsYBsoAA42dK8AiQRiCP6f8IZMAkYJKD6CCJqddErJFfw8RyyipBJRdEQYyVz9UN1jdJS5vaaRwemKLgumHdJwm18NJhXotPv6UoSfyb0Lgy4IxHRuAj+uVPGgxythZloo+Z+ThVRnID56DlJ/sFJhJ+mDf9BG9XVMcCE/nOTcepNEWi4RGOOKnkTKLln4BKA3Kbg3g9TLARSvoMmwDRLTikMDD/nHELEiYIpUSNwi4dUoz+cJCjEM7sGvIPhYlcWw+7CtkRaZrHcXT5/FVdQzF1qCrjkJyapaA1j6HeVd3dvoGSpyjK08swXbdV/eHdhyKzg4tOInQB1nXb7aFpKhfcnJ5dbNbnNogGFxza1lmcmRZJ9ZMnlTjF8oqX4w9AgX3LbIkxKaCmYQuDwBRsQLW4DjAwcjZ0FfvXR0bJfmj2Q5N/bOGStjE3eF7fQiEdYUeivt5DNOxpPUFeKtdqyeKYK2bOnI9ZPxqlJJ4WWpdwHhGMvTU4LzrKkziPtS2yIc/qFr63wD4gA4ekSdUQR4Ggam2SZqAJgVPukJPR9gMSgvMQCAd2fKgIpI8lE22SlFFWx94QIyJDUT17HN5l5K3iA+rBOtWaOEa3g/wIitAJcmHxw+AUmzMMgrTWZqAFNsba3u+II6uwbessX6dgHWnnTAURdBvq6Pz0YuQwGURh3Jr0D4zjN3fbJNs0TaO1Pjs7cyo65UMN1DVgC3Bwr0O249iZdpPF6zJrVfBw2P7xn/7Td2/fBWkWx6tXLz4PwmQgm2hzeqbLPIxjVZzE4XlUxmoYVHtQgJ7GIA1UYIeHDxpXdWiwiqNlC0eX5YlyOXPEMpWWMShgQV13VbMrEADKEpRjUxdyJQRlNOWOy/4LichD2/eHuoJFnhtLsBE0rpcwDQCFAAz78fEXUIA+1gDIlGom0S5bkicDvuVAYP7PHyr0f+jnjMg4ki6OiLjn/S/1AGwJp5/MlAb5DwO9C9BWaZ/n99P3pDrQSiyHP3KSwaMNtpuJVglMJDgPN+CZsUx0oMj5MHAsJnw2PCEDC4Vx7yOBiRGkAxt6DNuFokT5jlQz3Iho1ulxYmUcnSOnTzR/Jeov2y9xWRwQLA390HiRolcpuLlspegOmyPky5LoMUY6X9MMUY75MRdN3sMkDiP8rPEZy2INagbwBWC6YgOKja0V14gp4l4WXRUEOsWAj3kBMK6JQPVDYE0DBxFDyjM/NUoHupWhVkgwe/BhkwSgYJnM/8BqJ7PvvmkH09f9bkZ8BeKW63C1Ws2+qmwnArgnaHV2Ug6m7dq+7RqDrFrpY12BxmPChiU7Qow+rJ2TE6Dm9jpsfgNiEq8cfPWMc4m5ESh4zqqQalJG4RSq+tzoMYxgnM9XYXsj4hM2G5wGCOo533p0JoTVkFA9aM+qYRWq4cyDKQGzhyU6mGNxZ00UsQuKYlJuIANF/KIbA1AQmGkwBkD3heQdqIhEUk7MKUwXFpAMmoVwLLb08p/Y84o0T8GkD0eXxlESQ/a4ytK2qUxbM9tytSpgUzjaPotpq8JLuu/NoakryMeH2+0u0mmY5DrLwygxKhj6sbJhZZPWRgDwhr6l9yzqFckGJsWaFlsg14n5DzqdCSZfSmnnmmO5/rCOAB/n43VGKF7LVUu+Mz0KwQnjBE1OjPrLLOW6wLGYNLWEVKFZecQz9E8oz//kgYaSDPt5xrCotHw96okt81NNGrapb5lCi2ZAd3IHmoAbEiqmuAxmYUA7hJuMTjzzWEOeTfz+pnWJ/4KVK4QzIB0FpP+cSZ6JTmmAC4wTyAnJaGGogJt4QQ3j/YjIAndWMcQckw2ol9/4UcmR6jYLUvv2mBy8/EauxtlcaEEBPaa8cSX0xwFrgUw8+HX+HSxB4slLZFV4TEiC392LoFkcC7DA9Yg7DGO4wME0hmpYeFLx3pz6tOipXlnURqCj28DZgJwWnwvOt01HXUxK0yTL8jiMQBMHXDIGgKUbGEoaTDRCHQPpGL1uVRfFqkizsRse7m/v7u6cG85OyovLs9Wq1Dp8//79w/6w2x9cGBflRidZ29mqaQZ2XvN4U8RRzsFljus/XeBIQBJiYZwu/P6n8ePs8LE8X778pj7kESlLJskThfIJEQjmX8wKeDKRw+wS9FcL71SNrTnDfjDGuh3pEyCSa7BCGcRxf3s3TSe0mESLjuVutw8oISORkRxXnu48zWCbCSrJgJ6Dl40xdn9os2KVpvD3hJyJYuu269I0hetEi/i8MIaSiukfYxZnjGwHhhNGsVVQR3RDn8RZlGB8AVML8ghATKGi7OjrRWMx0eHoKMKaN5iYSy7SHthgWitsCyIYIyyAtY6yRAPWgYMXJW2K10NaJmmoVF2UKRz++Yhi3bfdoa7SONtXuwGSdGrio+jkdHN2ee0i2Np+9/bdmzfvkGZg1enp+S9+/qu3b992TdXUh9EYHUEiginfaGI3rFZF7ex904bFKivXPXQ6CtYUKmo7E8b6/Op6fX6ar1fF5plevShWp1jkukqZlkOA7rCv7g/t5uJZM7h900qq/ejMKfilG5LAYBM3hgW3Isit8Brk6XL5IwdBxP1ciQx6JfgXR1EIzHG3C7Rer07ybCUJU5Rl416jNOnHCcAPPoLPXlz67/zc/NgAHH9puYP+wDv69Mj7L3cBmmB/boHe7lM0APLw73D+c6/U40Iu/gYTxX8C0bjbHWf0hFUhriUhWyMdBv3/ZrWiSWjIuBCA0+DZQ7ILiAg5VjQqhkQS/xxX1V7Qayx/sNbjFBL2cRG8tLGKC/oos3J4bnp6rqDefD9jENUNFpNlMBm3E5WS83r8yABdODo0veei+4hM5ORif6Ufgo8LZbAaZZHRGKayfwviyGPCPmRKFjsu0JjtOI6FMQRHOAyPmWxd4jngA1YlKAA/GlUYw35UCjSJWyBCD1Y4asoRhsywq8HCJwECIgL2AyUyX9OYIVYkHIsnqWhox8A17UE4oFKzgqosbxgUYo/v6oiNXFYkSdh3tY5VjCcENUjcTvqhAy1zqrrEF0UWk9n/W6QgwtdHqKLYlXoYVTjEJIFNd9iUx8RtkhYHjpcfxEisDERgbvlqwu6Qo2cYWAnT/YmzsOQ2COoPtAurIM8snh4cUCGtUdbmqSahC/oWbDTBhHCCweGH7aYCEIgYLJwv0cBTRTJ04jbjd3GfUyEG/+LgsrD6hrdKhKtKXhD6PGDEKg6CVZmLZ5zDNMJECuc3Cccig5Ertg+ZoLFmU2H04fauGUD7OSBDzvWsyoYwO5isg8kMGjL6t4JWO7gxzQra2qIwAOuf3SZ8XYClSpG1WBUe2xDPtQVO3yTqeIJQMGjMd5A+lgtdJDSA4Ghxz2bNR1oMaGnI05CP5bkvbIerpl4WsnPRMwt5lwsdi/lHDcCRkvQRBWha1WRu8QgTmVsO+Y3l70v+gV8aj8cIOR5AvicSjvDs4UPC2t4vpLTUEXQALBGHUDze+P4TCf4qwIpELjJ8iCGGBPUZ8YF/kiULjUSHcZx0m0KwkWOFmsovyL7WlA4/idFoTblXjwkn0wcU3pp0AhIQLvuF5Ov5IwuNk+AavnvBpWotRPeLxRZPRSKlsT2S4wb0vT50kp9kDOCEJkFX0C4A6wcOW9e1HBNavGP5En+CJGICNFYySRaRbAlVluWRTkNbHva6fVHqKFJJAgAlDKN+gINW3fbMqxAr50hADGjxy9JWHZglzjXNvq721vUwmC/y58+fQ1HQdIcWw2ms+fhkegcqoMd9yEKk5wxmY/yY4ps3HdIwDOu6IQGdXQtuAe8C9ATdl9R2pBPEKemfe3mHMH6tqv1+n2XZcqOfL1fpxj1yP1nYijk1TNKwPwN80YEClUq785MkzfCe+95IWCTmIeXaUqsm7QltIUgBHV2UxE3bDrSdyPlIIpBzhEAAMygSGpljg00sSjPfVya4rydZGbKQG+TeY8LPLUBDAgfG/UCtS2pGt6czXlYWJ6enXIThiDAMnUL2ThDTYyJKS9gYgWS14ERx8/K2HDTF5uvDtbnrgNmMo8XgPoIDuzVAcpSV1PnxSFGDNDzYbLIggNT+/Pw8jAJ4Nz9se2v6ptvXh0gF69OTLM0l3/3k4qK1uh0cw2F2TduHARx2jDHQ2JA1R5N0BW4Ygt1NGWMTVGk6Jlk19Lu6Q1McJ6MJT07OdBAemiYpsy9+8tWzVy+D/LQdN0laIjkDPkaD2m/fv3379sPdQzU0Rqk4P7u4urx+ttlsVgXZVlkKHr/SbT24MQFfNApADcLlb1zbhHmGkC+nDo1ZlWsz9giEweWLkgANFYI3QtNzbSETW5pS2d//4vrzL3382AAs/vwveeH/Eg0A8OnpE88eQfJrEqcpc96RVeOSmMsxPIo8rUMwDiMEkUg4nzgQw0MAyNlYFolG8qVo292oBinRJEkXcKXPJRDhXXS/b1C4MBJYal8EFA5OxxihCt0dgDXv+SBKxWvvyUyTns3CL+VXf1YEa/QSLlH4Tew49CCEuhAqI3RBiiHgjc2Cdham+pw89kasY7hp+ukEi1phz0+FskxiVYp8jePaPbmchNt9bew4yLTS0zIkVRcIFixrAtiWSTBqGGLnE+xfkH4Wxdz7zbFunh3orB0SijM85sfdyIPTJEF4dErOAiuaBECki6PEu4v4uQFWB5wnknjkCmGXJKI0nyxBbgA5PwwXADgaUhcIQqpH6yVAx+8nPjeUbEwRPEywGA9ciAkJJkeAYOWKnW0ixTfpiahdkoxm0oUXmNKORsRzzGZAhS3BZzoMiyQDfQQZYUMnziUE0QNIirFn6SghTDU0NFFN44yHXSIyjhxfcXeVhvBYuU4NACKrSaeW7TlSIyxgdchES3jkA83qemfaWPVZGq/yApFG0JezT1EqK3Jjx6YfmnbYNy0CDbq+NVGNCQAySsE853XIBIagbjoXoo3hHABeql5KG3gRPx9PqSBLnBJXLufHXg70UQ/wyRVpNL4B8JU+hUCSAQJYVwKiCJpKg6d1SFt9HFvP5GbxJEmoT14OXCw06VPO19La33+U47TT/9wTx/ziuHi3i3V40QPM1/P8bPPfizcS5oS4cGj6iRWsE5myr5t59aIx5nUtRTOQ1aPZAwspudskk5UNgKS5o2gQeYAki0L164MRZxHqROL3dpP4+0WbFEzOaVO3PA9bjqLS5ShAaIqCuUpWh1gplHMCsfe2Ql6BNAxgyflnFuImzkKBYDu2O3RjlIUFzfyoQ5xS77gwv43VupB0KrlxZD0H0kMapsQ5g+uARgbrFSLRaWyAu5J+XIR5XdfvrTJ8g+BTIjtghFXU3d093nsErBQL7IDLCX21E4/8RAWubeumqayB0UMY6nxVpmVpnTpUTd31AKjjtOfqOk1Ijlo+sZOe5HDHUzABAn4/Wipb5p/jnSQJA+aS88vnmA933RzWLr8gou3Hi5vcX1g/J1M19mbSDBiDlVYU2+xLERSTjKOpizJZrWBnHDIDgR7cbhaFe+OGqVw5NDVWPiqmsFaPIdB1lMvJ0PVNW/c9ugjRiQGYw6wF94Jct5OJBewvCHLhs0jSBWz+0yQXI9dAmVFVdb2va+tUnCYnJycysI1B9pdmADZYEGjxz2f7I99NTbM+noW5AUORANqsMYBH0CoYBbTbwEtixHBSdHp050OgcJwgci7Lss1mc7JeWWtvbm4+fPiAfJtpEhLHiQpDnKN2SNdnVsGp2Yd/RfHo0ACI7BMHATATkEMNuYJdQR4WRUUR6HjXdftDAyGZTvumT3ScxUz6Oju9enG1eX6tVhcq2JjWur51Q13d375///5ut+9dOMbl869+8flXvyw3p0zr48UHqtUQZYWKSqVgDN23Q7V9qKr7Z2fr+KxUfWfrJlqdKJ13rbNByD5N2B+431XghqHr+7bMShYtHB5Q/89OG0Smj5f6HxuA/+s2AMLlJOliGlwuXn0WAc9/jmEpy2T/cy/inNgZ3twGa5n4vsNsmiUjONm07E140cM4jLbQaRyLiIdpwbYAQ0iJizY5G6OEjlBRSpEutxFJA4VaET7lgjmpnsm1WAeMgYoIHrvQEcM4SIJXonRE0t1kq7x48MPNmZfHD03/AXeEivlmUIS5wYsUZcTLz2hGsIy8bT23dpLfidbPJkW0xZeVXnFCDUyOjYdsjdIAZHEmr7tg4qJPaHv4NWKXMxJMhlElsvt6E+kk1AkRLLIk+aLkrNDPhnWSbIpaa/gtHDeemZ6EzdjDe8xSyfDA3x52O0FMRRrlYWxnWG3SUpA9kkfKp7AkvAW5nHjVBMqPqgVZwbKBtgc1upT76NimeYtcihKQ90ipwmYL04npJNLWQ4ID0D1ICcJDBtdP5ht4Vw15BsNCRJDXMIonR0eB7UWS7OFhVkLUDcfAXjHahr4DEwM60wGOx7gEsj9cZbxwUD1LQYzoGq25NcJATwqgReX3qKSmfwv4oLwfRZiO9Duq8KDToNwN9KNEow7DRhsHh4cbNaJWHqEah4UUgiXSpO/7SCcag/h4DDAlw6jdBm9umwoBRjUoYxYDFmQFoHAMLDT04gERQhPM9zMC/v9EA0A6mr+wp5oFxxpdGq/bJz2AUErm//TCGDdmsbcNFSUrE+soP6VIFNMUlobhQkcrgv65HZ3R5ScvKi03aFtzB76wAQXgNpX1j7hMolOdV8d5/ZS2Zvr0/p89mWd5Fv2CLTbwIJFJ1rvGhUGeG0PosCXPbQn5VIjN9ZPJ+XPJ802f0R8ESb92OJ4clMkMcUpyjOKMCeVHaEPeOdYZDg2OaTOS7zcc+X5L1anUo3Pm7pGyIlQr8WwlbZIwEBbGI0tlKuED7VNjrRGkF52zPPNsp+bFyY7kOavado7+Ra8zpcRAMDqPQ1mCiBMl8hQkWJ1BY/RswqzWDq230eRqo2MuZUkSWddJagtyEkh1E/GRofMmHBvJFCVNP86SVBmb5/m6LNMsdo6BHghGRQNOI9RIJ2mYpDB5JAKVTGYJc8oEJ5lqam6Pw0BhvkH3DJISPpGX3k7yMDkLTwIBbm+3p6enFxcX5Mx08M2pKo8of7TR4+AaMHD8FslO2Kv7DNz3Pb4gVBkMoiHiDAMng+Is8ZMW2w/zZgSOu8AhqF5hR07FLFwu2qYfx2Ae0VBFhHVvmkdB0ZGyUaSTB3OjZCUkwRPDpWlwLW+gSNPTLEIUCxm+bgwwa6D3cpYVaZ6VZZmTQ9V2dVvVdT+YUQtrdBEnisvmmKVwZOuJXU8Mok/HbDJc1QYbVmClOwLpDrKb+foPNiclFG74iybROsuyujnc3t4mkd6cnSZxNlhTFOV6dbI97F+/edeNqO4tov24GwbaOU+VQW4Bgv3GAIjPiLInChKHQOswTwMdN4M5NM3QDsEYnhQr03ZxpM8vz04vTrNVEa/yuDzpTHZ3v692W9M3u4f7h90+SsrN9YvN5Wdf/upvs5df4TJverD9dQSYH75u1tjYjXHb2O3N3fb+pqse/urnr9bXZ2hKeqPSUoW5GhPMslACOuHoUlsx7HcPDw8PGS0K82KldWKh0vbWBVRUfuLxYwPwLzQACzT9X9UA/KWjlv8iDYA4QIsd3nHuz2JOxs2yDUg5RWBPOyJMRJ4x4iZuZMPRQR9EfjYjt2DIQtIIfFrCSKjA+Kc81TkKUDBUMObjOiiW8+SMupDWh8IsYFCI1E9R3XYw6QcugBUI7Bn+QtdDy7nceo9890fVg/ibj4SIZj97McLHP2Nw5n0SROIK8EFyTub3QyK4H/ELL180kzK+QPAo5ITehFsegK+58+H1xIxZCmLB6TELBlVDql5rEDxs4PETdCSygg2FD0vxXATHg9NViR1RinCW9aIEKIoCOxbyamFrPV9RUYSFuO3wD0BuJP6dAWBSbQhQKyimrO9MiZlLFu/bSGHWcamVUEzWZNzkhMUx6SajYORIVIoJSjdJJkapDRh1CYz5C9UbIgp74aiRgFkIfGLJ9RGDS3ZsYZrm0w1D0Qko0KJtjdmwPS7pAlx7c1M015dRMJqug3WGlN/guzJImeQr6KgbULEt3BvjLIP3iBfFesLPnGDKzztxmidtPRoPNACzjJ7zNMxbHO0C2aCBWgB4LC6zMkv1ukzd0LVd3Te1HYwOFVCxhB55tJ2KodLD8Mcwaqofk6ZHqsPuUFdNA1leZzrrdJJbFUFPiuUHRWsQark+veMNliIQLPxchwWUTM1AU/IXMfU1bJ+eTADmUub4eVkDpTGMt0mrm8KeSRscGZCEGkOUHlOFysaGGGGEXgObNxxjeoToTTagfgTEZO7eYPDyyRyA4wocLLo/hgwu7WiFQrBYPx8nCxDZ/bgBoF8K3Pgn8ps4sbgsBWdZqEF+xsKXQHzE4sjMjY2/XNkIiQpabgFHl2Sy1zzJX6jebGgXLdDxkp9p5f4u9lYzxFz9Z1lw0Gciyjxm8fZl9DXC+Ua7TnNh4DKS3ALvfppCSKgfHpr12UR9xG0iE8iqgqnAFD8iU2acvr53A+mdgJNJ4JYwNedclmWr1SpJQO9s27aua7QBneenRWT/Z3mKOl+HzLOD+BGMxB4Ac0boIyszXhco/UmY7Fpw5Eyapg12C0sjCRxRwZclYhbVcJakTEwUXMCObruvdofKWKuTHIxEUjtwDo6MKb/Wz9MnWiRN7ZnMeTjNmSPA5iGMX3Cm5Zqe+lg5imIlmTCOqLx3N5r2r48fjoF64vw7NwCYGNBCmo4LfpmVRC0dBw5SUwfLSwbPC0DO+1DYknDeJC0XtMk00fv9brvdtQ38/hFwy6S2MVBTJyCx1thlADWRAzfHL/huG7RGXHuaWDs+MjK50jKLNqmGMI27m4q0o/ifynw8lRCJhFppMJF1LkiE4ivUVhGBMF302GAvV6cw0DDsRuaYCbBn2RBDQGdNW2RJmRdFlnHW5NeEcr0GkcaNu+394bBTDpf9ONoiy9cnG62TbjBlub64vB6cfX97f3do2sE1dds1iGjEIbd480mqkT8PEQNGtlE05rCsBYAHQCkMs1W5PjkNorhvIJ1+eH/TVIfAuvXJanN2EheJC90Q6Ly83O8OTY3MeEyK8vXF8y/OXv4kP38Rri+UzsyA7UMXDHg2rUp119R1M6oxbZthe3tXPdwoW5+t9KbUJ6dlXK6VSqtWjXq9OrsyYYjkCaK3oQI/6v7+7uHuvmma09Ozy8vrcnUKUBXJgjiqmmf/X19//rfWAByJs/+XetAqw3/4iROEr7Tb8Baf8pDVBBeTF2sy/YUbHu8nsn08P4TDb0pJiHaTRM6tAkkZXT0iqh1Q4zz0RRhHnEghjzD50DW9zboedtcBwpJTcauPEtgaRAn2BQIpAoWLFJiIO5JzVYSyKQiRiSGQORlEx0nL0ppQnDAngw5RmQIXgQR0ruiDYMDwlxc6iuAJrRGvcQAhVqhKs3saYLJpaEGxIA1JvcUlFmSm6UCi6hFUHWLf0UujHpYCwK3RWR0OB75RGDWqkYFofCRJwlm7FTzbixWc+/DhQ55lZQn+qCyInFkYjCtIcYE5OXKexLraGotqu+DDGJSzHQgke9AxPRY1ex+RtgTaLowPYOZCnJLmqtRzs+ERixdYCjAwEMJYRi0EI2c7OF3Yk9qqgW0S2RIIZok5CVGjafY+B1i6C7+QjAhF9kinFldEqZg6M8BgEaWz5EYgyYQFl1TxjD4LwxjvmVQTPgnSmSebUW9TSDAcg6pQT6YXqHfIRlVmsI1po27wrGwIy4o4zeM0L+kASlF1Xe8xfplnOIEKwSYKYu9ZJSYsM9mXs4/5Y073IPKTwghuGQTdUh51hHyZuj8gLFNlSZQWZ+X6HF4PXT10GLwXeWoH19ku6gwgWQBu6C5zreI0zKJilSdNW1RNuwWBwdbNMLoBkVO4zDCe52UdIthZgiyodZGTCu19GDFllioY0KZQF5L940v8RzeSHFRa67BJQO1JRozqB7hgeSa5kFVI3CJijQmO/BtBQjSFcZoAMW1bY5CrKWtMkuYA+vmr5BDTvUd8QRYGiEdPZR7vH1oMsZ55t1nfiE6eN0tcRnj8MtMLReI7/bk8u8dc2dDS9Id/TacfeBh59azfQKYGiT6aWD+R1yvuLWiKQQ+GbhMf2S/SSOshu40BDbRU5ngEPIOpWZ5GHLRKQvshZksyISTn8GgDOmdxiEJANBuzacHcHqQEYwiLImMAd1sH281EGlo2hOKQKt3D0LY8sSIe5UcEzjwG+UrkwKzeEPso8Q5FmpvIxlE0gNbFjJSutT262aFrqtH2Pk4+PFmXYbgWbRSb6gFq6M44U/dRWOZZCLopgrY6uBv01jT1MNbNPkLOCmWgSsVBqOhYud/vMSrSUcI8Den8u97EkcbMtTHWdc5mKSXGbITU1VVxfnn1sAWKWjV1kgH4bZqOrBoJ2TjyecTaz7f08mA4sBnARwIzi4yUAIw7TxGRTUS8siiiBaOzZqnnEXpm40hwAYxlPvXwbC7ZqeVaQ8tBki20DvSI5JINa1Xr2g5sXvj3xLGMNdrOgPKxyhWHWiGMXuBExE4HXnBYUkmpcyNiPTq6TsdZbkfXmZ5nGa8eJ0Ue67vtg2h4NCVnuNeA7VtMG0CIVwhnEL4lKAFjbzpI6jMw5gc0/BYusW7MsxLv1rQO0WjzHA9MJNnJxE0RahNeH04/HfhLfIc1ndwIzKYALsCw0yhNEAqWFwkglIhdPhexlm1nnsar1UoHqjqIGGOFhgrhHyA+WGshk43iLC3O4mJ/qGEhqMAZxs7F6wc+znJ30iY71lGRgWW0yk92h31r7Ork2atf/FxdX6u2U3cP/8v/+D9GUeps1zRdnDU6x+3W15Xr4Lanx15BfnDx2U9+mb/8qVpdqng1usQ6rVcFF2Gr2nq0prcw8MmSIs83ahWudNzkoTKHaDwkUa/M2G+bbWX6sTi5SCQTSQcJAxWZ1+2CLMlO1ydxqJFYGhe4h+gBRlpzBBf1Hx//GQ3Ao8ndMvzyv1Dj9F/uMW3wcwHtbW0EwfIOpvMy13ew/cJ8VvJB/PDflm4lYlMDxBpU6obayUjBAS1NY5ifRLDugj1c5MB8VUOoWk4hyUnFphLQbAYjdQ10IET6NtyJTRcY8uyxVAGT0BGUYAzcmSkER49OCZ2feZNTqoUUE0QEAfyMDAQSPLSxPecAKFMWKb8juK/YXIWlq4FWcVQOihBjD9gtkTrEwQGINFGgXQChlEwHOF1PGFKlvdkef5WPw6Higo5cUrgf0e6SRqghmnSHA4EoPyaX28HBdw3VKLKEvQsQ1lf98PBA0V6SZjoZYXpjkKTTVZUXpaEd07qEDSWirPqmpYWfw7AeuQ0TA4R+y8KqlHy0KcbOzFj+CPdDC8sXGgiKyQ8pNDhSgFu8CaRUKmM/uhDpvYFWLk0zRPn6S84TY2ivJAFebJyCxNM9A9UZ5gNYvCLUkEwxcypomwOrqigAi0FI/ZMrJJszYHq0lBOVCz4jWgSx7Ikcehc80jSRPWYwputt1MMnJwzGuu0w0p2AUo9y8SXoZiMaBNH/MZTYZ2Yv5/XYspAeN/1MKFWeboQc+RD4PAto8ptAMHl3t8uTpMhTaOXBDk/jTCeAZHuaK1oV9OjOAaWmYWirfY3SJEwgvl8XRY7M6dYAzuytqhEcZnto8K0DxYwUKdktvWYCD9xUDN6jSxnuFg9zOt4oC6OwHzIonO+aCLuLb+vQhk8IdJ4exangJEkPI7WxjrNIG5cw/wnVi4G9ayjfW9h3ynXk514LwO845wRuPbUET1gTy6BWWdDma2/6Jd93MwA4Qk2+aADErFRqOOHGSqCAfNyOAXBTTyiQPClSwlL4SMcsMLxXGvgcAA4GZ5EnMXqSBxmyiBqcZyHynCt5U/K+p3PiAeMByc1ex3vUa02dgCyM80BAIEbT91pHqY7TGLz2VEdxkIxjPJ06ADwMQEWlH9F6RQJXxBGLp8j7YMpiIitbEPDdEi0Ow6gsS760+M03GKsqz6Ob+EjcAXAYCdTH0ejiERlicJfpehPYPktisHc2RbiJwNhgQHbVIg7WQg/DpVvrLEnLGHm3DSYBA+7socdkMI7TNMXCCmFSmBCslcAWh3U+CWGek+ssTbLy/rDr2qGua9LKvdezg2TFU5i8/nZaxhfXGxqtedgiUA7RDS+PFZa//DBN0/U6ngUA+/0+SZL1en19ff3+/fvlpjx/D8nzsR3194Bcn8S9DJpA+nOgBcPvJ+MYDkNIog0JmVGSFXHVNOTGEDMy2oJoppIxqqo+iZOrq2d9Z7Z7YMvWgOZaNz3nIGMYQ14HBwLEkmOP9xowbAoIoZfJArLZrdEcJjJ0cghG2zrV2HpV5lleghE8jM0wBC0q+gOkIJOIzouOvDxPDiaNFnDFyuhsnnLPmitZpnhzBTxLCiHxEe4IHY3Xl2dgfhI5YjBoAJsOHQ9G3dzdHx62MCuntXYCw6iCTt+8ZrIiDHVn3Tj0KtKH7X5fN20Njy9YnUO4r5M4cUOPrgmLVRDjhpJUO52tTmoXqaYdlMZsxgT4X2fSfBNYY3TnHBMngMdESnXbuw+Q5VjlQvSE+dmZ2pyrIFVBaqI40IUKMnzuocJ5zopw6NDcRZDaKx2uN8U6u1AuVVGhVKeq7ZvX39zuh+ef/XJ1uqYLOt5zoGLMOixY2ck6Xhfr83NcKkrHuIcRz0oJYgAvdW8t/OPjv6IJwA/OAT76nYmyJJRr/gVJH3Bh84xOVKOPnnbiw5AExw1H2SJFQi02DBI6SROEyW3XOqeSUYWDBfoOcQwlMpuyYKql1OCh4X6hQ5RWEewfhVNLRWCUOaWqQyPWVOCEkIjPPZj7sbcN9Vu71DYSOezfLcHfqb1h0YDkGtSuk2U5Q0lgNM2PPkcPBjZDPT9nrdKQnnAYZiHinCEeRPAKRtErXuQWECCADck6i+MInP4JayfRyL809iTOKxg4xvqAICDcDMixp70OASiY1gwvXrwYh77r2sN214lVq8ZstCxLHYcxkDBxnxCqtzs5WdO2su26Brb5WsIgwyTW/oOjTD7e4YNFHLzDUoEVCaeCYmDRPIgXJ38/pJTL65a9RaDQMfEDlySJXFhgiXloCh6dUYFbhsbNM81EzotBwQPbesls9ZdrmtDCUvTWiLRBPWLgjQarDlT5dHCyk0ko4Avhv0WookaoVkjXwSiJ6a8Y8uIMUDFMwVMYxkmsafUpDS8mFagcuqBpYFTCI5wmcRGltLhmo+vZz5ROIGZBz3bnIgk92npN8wE3Kd2DMHzx8jP0M13fdC0+C/oJFEPKqX4YdocuCmysozLVRZ7kabTenOGFTSeE6a5r7O4AHgU592GYKB3pOAvgfRhpDfCpt0Frxrbr901fNS0KJgNC0OxqNa0HInuVEyn7uZStEcFlQwhd1hIP3ssZF7M9odAxwxsleJr4JVGGQ/7+8hUu+f4AryRFAsfCDDaKkzQBFMtJyACI0gwSqEY5Ng260F5Sh77oQPw9KQd6UdYvC+5paMWZnVTOcioWKenTBofTJnazUvTLs4gtleh5RLzO7/mJOBdzWNk4+hlRg6JyIKyysHH0vHxZZ3xXgJsLbahYoctHk3wNn6LApZumWrRvxjUm3mBy0/iu2+e1yKs4wI88Wo8e8x26NLCSBbPBFR4MkR5iUG7SOKTPMKBDoU6xKGMjjQx439MjMYOuX/RKYA5H6F2VIdSQV2FPaAcLHJY5fSMtg3QkLA74sntGIoaWAcidxsTkqWu0w6GOE1YqsI/DzYg09tZFAQxAy7RIot7kJzYYoAjFjQH9FNsAFQWXV+d1i2u+we3SG0IwOVLVe2QFgKwNSJqfC9dXHAdt2w6DjdLk/Pw836y2D/t9dZj1VHjPlDyJdkJInX42NsFglEyLUZu/5Weu4/y9jLZpwCKzSpj/nJ6einPOdru9vb2VDmG54c5f04SEHO9LcXwTUiKPMAKAR+jUmwRpllNkPIASE4ywIeZEWvWdjGtIxncRnSBgp9G2Os3TPI3C1IIlHrUd5q5D1zMiSAeIZQDy1Q3tYIbVKoeDBq0oONVgonOg4M0PKMcHJjgDgdIQjYOpkHgHvCMJwkRneRI6GwHXwi0q82au9nJhJbDr9w2zd7qgXH6g1mXOEfPbdQA7chjsYj4KMW4ShwXSOhH5zG6E0llsDBZTOAXNR57n0oG5WBcl7KQSsUQLQ7RonCC5fmjqtmmHm5ub3rhI6U25igKAR2h1VZCAHAVrkzgOqSLB6jg4u6373sVDYG92VfO7P2TfvDFVW28f2sENbef6LgzH7tDsu4bOQWocIHl0UYRFH001nJUUpMr5GGWDihs0wyZ0AAmUaff1Ni8gMAiGIDQcbSSRGmN19129/f7u9v2337/rXXb9/Es1DkN1iFZX3s3c4FgHYUx2qCPTAWEBGMDAP0uPDhAsr7Gn1mo/Pj6pAUBt6GHUZeDuRwKAmXf7L379z7FhWrgAzao4/8oTl5fCSNZw2AZRYPkszMUriuPBtIH4EBmItzJgObOwaea8kpYnZA+fNCkiMGtCFKBt13YHA3oASDX4FeXiWOdQJnniI197SLWFBwBLUhJGsyTJAPMjSdCaQXAjwBmiTeZX7zAtqLPvahaFKdsG7x4jPsFLhGzmxT6m6oreS8WhxaoBS0cAfJw24NPpOMXTenwCP/ersNh8eJ6Q994Wyz4y77F/yEt7tzKiUHChoSso/RxRonWwLhixaqIiIGxMEkdfVwhghuDLr/v8sG7okGfumeIQdqFvYCAA+LITY3XeSLDeS1ibEADmc83jKgmjolP0l8DCVvV4SQNPwijAs73lh7Pf1HH/Y7GNDF9lgv6QiNKRikBs8yRfccxCAbF/k9wOlA1ETi66A7KoiMWhITLGde3QDuBi4mjzE8QRhE+sPxBoAjoHBNSgmbJzwGSI1HKM6dFiBZA2Tsap3On7ztgBPuikRBMVRoUne4xcq/JmJhcm4fuKD+NE3sVvkD8t2uLJ+gbiY43NoSdNOcuyKIJqsGka4UBTIDvSfBnhLWFgE5zM8fT0lNnVVKtIAh1aYRu6EUwh7K9qhMoyCaNkxDQkRrcXQvjV9UNdt1VVQYXWYgzw0aIhRSGn5kd3dq1CZNmMnxIBC6tkNpWf6eaSqgGQkLx+D0cr1TQNhIlwBvN/LiJ7dvV+jTpyqwKMsKakW6FWe+fNWb8xV1a+OPiUDSjigjzZB9eTJB2KFa3PoEUtcFxvbaAsQC+JVJI1U3qfeWF/vAiPKkKWkTgKeCxFPk6Rp0t7/nlVwbW3KApF+cIPxRZ3iumQt0/9FiVYPt50Nmjy38/U/+klePxF97D45TCEa9Y0NZnO+fxACMugnIV0B+AlKjjYbgr/B17ACHGqu3YYhixmo0tVv/cK5KtF/LlvYbjCyJKYalAN0fJOx8h3DgjTBU4Ukf7HYbI3GxXEBmtvEkIGoCNIYJRrm6qrm2BUZZYXOWy0oG6PE9zXxrRt37Qt7jM2pWmagxqUpqGO6rrebrd108ieIjoEmjhx3IW8rwh4B8JAcvZYIT5PAlf479++FtgekPN0zWPZYoaXP/7QQtBziSsnL3jJgKHhLbVAs3DcIcTWoJuivkXGjCg6E4zOqONCllbbtnIB+y0MfSgT62n+BkNVyvdQMXvrOTBVRgv5aSw+GxKnTp9KHkxw/YPR9n0z9O35xQnGingbQKaQl4JSNxyainNARNNojTDEqgZ8kKRlA/gBXEWkWKYxVnB8OvRyAxYuk+p4lWU5FzVc//DydxrTUWP6FkcGLsEdtWzxqMS3KR+VbvshjFIDawS6kXpHO2xYGbo51irz1sxLmuvJVPj7OwLygXVZRGg8UJXDljCLVlAXJ4fDLk+TVYHLBkCD+I4bu921ZbHSERLBlDNFnsaI4hmKfCV+AFggQj1Yc/ewv7l/GLBfxWWxPt2cRVHcNG0DYx+knUbhyHAkjGYjjSphGIPOZnGSu0A1LbzO0JYNxrXtKs3r3VaNtlyXgY7qvo7S5OS0TCOI13uV5CdXJ9dfrZ9/sbr8PDy5dmOsktw6hF2A0xVFu7v7N29+f/fh9ctX1y9ffJGVJwq6Kav6vWruD7//xz98/Zvt9j5OV/n5qy9+/d+f/eRvlCpsWKAK6ns7NBHc0sFAlaE6tkJ0d3GgwBYT10Q3tvQ5+FfXn/+NaQCCz56dPd4evA6YC8FRJ+SPF9mEVGGTg7v4iv3cSzGPX4MgsgMmcP8ZIwniVVNZFjgN/Fj+xbu4TBsbVt5wDOVdzY+JTOG58pMNC9YazIvxQHs8zUMxU5bta/aHln+yg9/XRVDbNFVd1wMsXGRkzzScySgAwi/+5hwX6pNKolDya2dzZVkiGek9DA5OcYOBLdfsuvCkcZLtn0Kxpxjh/Hn9FTCBN5PFGH1KSC4XR6FF/3C0Jp6jHT99wfkkckmQxNGYNRJR6NFxVN4WwAZjUvANcDUs6qKznQp0ua5ExDmLnrHooxKZCwvsviwm5JT5VgHgrYCRNvUUL++IOl2iY5rFXhXH1wYfVHIM+qP93MwxQKkXejPspbITgbgLFws4jUQKFLDQZZEFzjDdmeSZoz7PSKP0oWyEleWvaBvqu1lxppmJEF5ITV8IH35szXY/MAEYjFzp2hC5AjAxd04NNoBwnQoBNYY2CCzDv6RIAkQE6Egc5xhxik0UmSkj6VJAYQMEuIjdqnDc5dGTMjHHAhCdg7SGZBZPd5kDd3ATUXA819CilFVKPewfSLVC90jLIA7uuZ5gJwLKn+bFJskLTMlUMOx37MK5rQwIOobzKCW/8sYkasPQULcfxtpGxufoUQzt7ZlC5rqFDvR3TFA4EAv58r2k386F5tzwz26S840J3q00RQM4pjLHIRCAX5aCRgS4k5W+LEX+jsMYx9+bUMMf71O+E7J8JotYHs3ZR4jsLLkqfBvgWTHopnipfLTe4u54/BN+DWGdxD+ZUAAfIOhJOx9Nw9HqzJqHaZ2fWTey9i5/H8kPRExnhNh3UJbfE8WcJaRAbdHDLnLNJDwZq9xSHHy8KcCzR/iyzGdEmi9+xz5EDIJsGZlODB+Z+bJBlQsPHIwMMCiINMSLJYERp+nNmzfg+YBJAIVoGMCEjdAzJociSJX2SQyexdI0ga4DxB6QjtCx92cna3qUgcwofuRZlqUA5hM3QGM6wrpR52kCu/M0giMQkWQDw1wImYzp7ajKiwul4REKro4L4HBD98m26eGslScpylEawnNoV7O8ZpwZbiUdJU4FnVVVO4xREiWZTkud5CpKoKlyfZpAhyOPAbQ9iYzUaZzw3oJzIoAGwqkWKOvAOwv3gXjjyJAcswVSNDmaRk1MDMso1+NZuAjQ/UmWdlXX0IbN17pYximluhqTT5bJcIaQ3orXDy1iJZGdN5eopAbiP8J+QVce2JB1eaxVkcWsd0cLlg8qZmiS0rQb+qEDFR/wF2IZtFVRN4y9GToHjzH4A4dER4xZFwAEA7DROzvAeCdLwjzWz6+vQEzRPiOirmsxOY1jTMsIL0ToMWhpEARhjUmUpgM9wkkn21uoCo/bkyCYnK9Mrt809JuqDa3GDJmeJkl0noMZo7VarYv1erVaFWLtwDkPFnPUDAOiysjyDHE5DX0UKKjlyqyuWmZuRoMd67bdV1XTGUjK01Varq+unn351U/XJ2d//vM3//E//qeHh4cihbogj8M0ibI4SKiVHEd1d1+FGvxM51y137VNpeEJlAXM4jROtd2gsyIp8zjJ0iIZXN0rlWxeXH/x1+vnPx3jdcflOs9gkMqpozR18aG29W739uvf5sl4dn129fm1SkJU/3dvVVP98X/73/u6aVqni/OTn/zq/KtfRRdXbZCmyYbAQ+cGkLI06FKJCvSANRZdmYzwsVwwiDlQGBr/19sA/J/9CF5dQ6zj02e9b/QjfvPyt0mXRgbex64aS9X/EUz1M9VPHKNPTgZIGRGtmAgOpQHwWOzkv/6oAUCR9anH3ADIf/oaJQjPTtakK9MVgZRo+YUs8/Z/nlk+cX/F8WXOcZzBMLF/nn9ztqvLs4wrrAithAaIpU2Q16OvjlBuo7DpWtCOoAoTw1AMgj1FhwvNbHokV7YUGY8O2mJE/vHhFcv3owff9FgGJy0ffds9Oon0X5fWiz85Vo3iKxJFqELFRtAzgKmOrCrgVcwVQhs+Q6F5AQb/kvsoXGESfKEO9eRtTAWAoS9Qfz8F8szU6Fi8AgqbGgBjW0FVxSdBlFUiCTjSjcE1QIUWjDbB6HAq6Y7ePgAqlsQD30MGVmOiImks+AmN/rx5qDA+pd3ytjnK5bnYzD22fTza//toHp+8g4tDwQMC/SFs7AD0AKEHVIYszDiPICQH/ckZDBOaMfJZBj6AjO4lyhV5JjM93kREYdEzRG4IcacSvZbMVznRcPYIZ2zeW7BbKF5kZIQPJeU+yK9RBLmHd9YSEHeE4Vo4xlkMnBry+m4EcV+C6hiNN9iW9VoYJQG9Q6MguFiv0R5An8d9DewAkF4b4p3IKCWhCrc7rDGCdozNGLAYQuK24801QYn0FVEx5r8MLSD7YxBt9iPMeBG1O5/x+eUkbG62SpQ/i6ce2Mtw/QkdodqcI6kXMySZAfp7cIpKnb3PF7WvNIeAZheJH36VQ1E7Pc9TROBTLiu0T0Uw3xOzoMXTPl09YgIoS1aSfCMUjsX7lOdRQ9+Kx84yt0SM4Z+4KvHqQpLbCG6/zPrE6kjKRFl4p61hagziLJ5NneWyltvNO9aT+chW08uiyDz0/uhTEAqRAgsFJ+wcEpA6Yq758PtflW1XQ6i6q5qmG5yNkMoaJ0lGSCIi+QTkBy8Ocz2aeZhoJUWWEEPCVR2jGkZoDCiLAZhI2+19vT+AgUE3RnYDTCHD71tQUtI4Bw4UYY9hQEznzLu7B53lZbnO81xHKQZLTCMAgMLNSPYygPsEXCrsF4DGqV9GynIHY8sxiDMX6F6F7aBa4+BeU5TY1NxBeh+WjDSpQo4K71agAMQCMOvz2yg0P48nyfPl9/HEhlMXTFDlpPt0CJ41TTMc/wwkN0r7ZwZUsZw2UJ4hHRfzqnFz4I61nAAhewSfnZQhopCUxoZjTKluHKlYqzzWGLNgL5DsmaBqGlLssRnRBj4yZjSWRj3wh1CoHJn+SKlGDHakBMZAoNYHo8HEJg5yaJiiDIB7wh7ASz7appEh0ayGwk3H2HIOeEEP63kM0RbB7gMZlD4VUW4uWpB7zcN0fqU40YE9z3QcjhkEuCmyIqIgyRNJkdOYvetuQJJ009Bx9QAdHYYZcYz1ERlkloHW4PWjwokxv8J6zzfkwvj127vnn33x7MXzrFjtD+2fvvnm/m6b5/nbN99C+JtEZRqvMngnDT1yJrTGfR2TLtg3TdvVwYjFoe2G09OzMdJNZzFuSfNstV6frYvzlYmzZPOqvPoyO/tc6dJgzNvfvf1jpLokcCEM/FYuKjuVqUGZh+3JKhnDtu3vs8zpXNnvv3n929/u3t6M0AAnen29+fIXl7/4dfL85RjmVVPFOsyiKCEtmjRhNTgNf6EgdqIAVk4LsU8iI39sAH74Eby8OvHfUf44HxcJCpkbgEXwlldVL+04JxXLJ2rQH/Jh/XQDQA3KbHEt1648ZrqO5yAJskWT8E8e0mVi+XKb36wQ7a7pXC6DS4AvPh+RVJkJkZWxKSYYixLwKBacdGkiwxLZAKDDyQZuaaXqc3+n6mFpY9d2HfN7Oa7CLBirM53OeGnz51PQiURB/XOJy08ua0Ibx3165h/PVISP93ixDZ04656AJNomYf76AyueDRgND3Q+8XCwl2WOWBO5m7KgJOuJ2JK0Ese6wR9PxnPKJ/WRZwDm5ZjI+OB4jsXq1Pv3s9afDaGVcm13kAYPdkuTmE0hY9CLO/nnIqHGqu8sxAZPCK9LqHh5iGjH1kh2I0NPgduiCPZ2dsyiVogiApOZQI/UXjPlbMaBZKYkT46FespDiGg5kYph3OAEumtbEGDYbQKdwzXPPEulYxvnNoikAFq+Z/ECWj7InaMKxQC6pDkrynHZgCF2DJBixKEEzj4rPNhFQ8HMX/Zl8YKBhhZWdq/JhSktch8UpWArQRUoVhXi97ZpEZWJrF+qMNEQ4nNjJA/jwjCCVm3K7vOCeFHcMlgW+6sKBzYDAzyCHPNS5ZLiNQm+P6p/Km85FYRtlr8OljXNJOF9JHLl/YI8jQnbJldQyp0Boum54ZwP6oj1YYp98Bc3RbQLOuIiiU/IJ15BO/eEng3vGdFSRvv5gJq6keVw74ceowrBjJ1fbuJMyiv7X3n8SGm/uFwxlsdnYSHv+21n5wTWI+ohItrlCjmRhAyHecd4hOPM1jetsyxY9hdqNI+xvjzEPFA6pN6AH0QIOb5oxAeDrYE3qGVYkgKgC50uLuVAoQHwSV74CLjRKJ0/HOrddo/cXTMIsY0gLqBYYaizkQXMTw9Ql8Z6VWRFnsVx1NY7iL6YyjcT03UUbu8/MMTUpztRlgCkCXg7UximToakzUjfVwhSFBJg6IW+CO+TDaXrUO+xP/f+m70181HGSBCSGnjxdkaNYWzHcBhDg9uEVHpS/vA2uMnhKuZzGoPoLmmyJkdhL1rzA+Ep/2EGwhY5CUfUDxx3DYuDpZ2lOCznPglYQq+mqxHOjSG8feEjS97rdD2Toul5cHzrBCLDMc9zkodQ9Acwwg90NFKpizlAEgZxEhYJzixfTMyX/SJvTdD3wMjb3vWDhW46AbHQjgAPeMNGIL0L7RfZdzZUJg7AvclTJPNmccILksHYPEmcjuIdyUGT9HQcH/YJI5w9xk6yw3mNO4O8FO/GQL8jecBVyxm43005j/SCG7OxyzRc78oy14goCuKMhAX0lEWSpADd2363r+7u7nfbA65n2TvQDpNIzDs0Temwxx4KiIDE8+nk5Or5dldvd/vN2fnnP/m5deM//dPvX79+7ZzJ0Q4FgevxNsCj80FAgHxZIMEkilRRXLphdHp2EQRRVbdGqSQvLi4uLl6+zJ5fq3yj8nOlN0pvxkCbobPt7s0ffzOaapXir9LizKp8UFkUZKap81WhzOHm/Z9Mex+PzcPbb15//btCJ2ebi/Orz9bXr5LrL9TlC5WseDd7qyjlBgV2yah0rnTubGjhoA0Yy6/+zAOZUzufPH5sAI4NwHw/SwPga32Gp0pzv7ztKWRdAMwLaHn+ybIQ+YuCGChCkL/ycr5PdBqw7/NFMFNWPPX/yWNm0SzRPvmM4sibplDPIE4vleURl3iaou+Xv5W1rz6g8JL6dbnh5Xk+TwaWxURTwRSg5QOsHtA1sFy4wXC0vUT+gHlYcFTmKJN4Tvxt215aAk4k/NeJqn6krCyP5/JAHb8+DtGc/4Qr1PEP59+H1g1Ec//g4oZVfEo2JT2DWI7UsvwgoImwJOS/Tu7sUCj5XFD5OV6uOuwf7zHIRwOlJ02B+RP5l7dCIy8UpvLmZk2IBL15hoD3pWG+qexIY499zyu36D3E8zW0pIIEAAPjCCkPwNtl15jez7JGnJ1zHh2iwDHIBsMKnxjAGheiYegDMRYQphmDnHHkacQhtoNHZNQ5g4ZEJOD+4FNUOmJonaVpiUeOyDNEF2GHaJFhiVl+Ve+bpu575QzSKINUCSeemnKYkACzURBtMwoXCgSoF4BcsnElA41GQAxco3u+CxCgg5fBdUYOvT+qsILCH5JyQsaDj9ERhJi+8r79kxLQATsAlwbEXIYoPxJho28ce2ObrmuQkD3c328FqYpgsxUjmxPFHcodCEj4JvHpAOzK8MYLRoH9U+Ppqd6QLwSgg1geL0Je+HRwivdndnkql7jA8i7u62rJnzk2B2gU/f0iEycxtiRCfwQm5kHAzMPhjTc37aE4dR5XNg9q+KRnITWRKjWV0KA3HMcXP9Tqf9wAzBOASfMg7//RWknFnb/On6wDs9vmMhVkzhuR518WiC3tNWey5cSqwlRfIdVqeYs92gWePH9Hrv/yvMwNwMcNecC8Dmm5JcZBxMxg5Yk2AIuXge84b0w/+aTrEa5GXv0Syvv2zTvw4zybDveL5CbjqjdIuYawWzk25+BWnJ2U2CgC1SN1t9FhcHJycnaygjoGxuZ137TjCC1skadJoldFwTd51FbxnkmSYlXV7W53OBxqM9gYUOpanBXkHKLFRaMLBj85fKDhgLxK0YV00aMKD0Bnh2YwVKYWQRR3g2k7kyUnIxgX03mcHGrquoaWHbe7PIFQ2oBszMuUeF7Jricas6XcRShz0MxPVkKePes189wthH0nSZcydHVi5+oGFL80jJj2Mp/TosCqFTdrYCswzgbow9xtLJESFQyARxlOhNAtgE3IVTRjzoN0j5I3AS6qU7t9hRBgWvhFiKiPrRt7A5QqiTT4YjgCFqdY2TAK8ozRJTJ1F+trjINEbMooPeBMOFbSACACCJ7ZaLcccDTbNI3p2wxJ9nDsEVhqxg1oa4usHpjWkBYbRXEWurE95DFyqYsVqGNzpBx6jDiJorgnPayum932sK/qKEzFtRypwJh6w4ZkNEYkOUw7wyIqNmEuDHsXvPziy5PNWd11u0N7qBungvX6JEn06XqTRGp7f3d/8860TRQ46NwkQifCUCtKUgwv2Fv+8q9+XeRl3bV3d3e496Pw4uLi/PMv1MsvVXGiwlLZWKlUBUFX7Zrth3evf+v63fmmfPaTn6nTazXEqglUkB72hyyOdBao4XD/+rd//vo/Vvfv4sDFAXwmnn/1S3X9mSrPVJgqG7a9ydYFO0mj2sbuD8bYtDhVJxfKxg4TgEQ2ZKYMC1Vkpo4/LjV/bAD4EObGzPcgh5lbFwh63LmArC3G2bRVPLrx4K6ZHtO8j849ky/EbCv+5IHF9gceHHuTvsDyYuow5hc6entDBSfKtE++xOPOYRqLo4Nhi46glaqqqWqFaEzHiPuWloCILMrxNE6E8yowPyAZ/nHXk6Iw7XY+lUbp88sLEV1JDwC4pccS1LUAHQRw9Qsx6RkgcSI1lRHrisUPlp0x1imZESBhk7JCmibLsJlqcAwGmgwEp899/OBPZIVPCoglKWI6o5ye8bZhapDHw1m7wM5yhMIJdxjPgVwM4No5ujGDMjVisNtWNbfWCExJiKXSDOtXlCYx3InZURCOagByGXAlLTj0ocUImDUnta508RY+nz/jpOjSFAXe6kzv4qHhFQJXY9lIOLGIMnoKhWF42FW+lTKw63ABTNDGcITBH4bD0LzOmThHmzZ/xLxJit/5GDDAf/DxWGjYlIXINWJvGWuL/RlPiOVpmuGQWz4YLPquhYHgcXzhKW1uzMOwq5rtXaV1lBfxyRq+gVmmzzcrHa/S+GocbdsdttuHh/vbfWP2Dek2jHdAugFsr+sgiPMggaoWJUesCYqKEbszHavzMEEQY8iAAkyu0/VqwF7kOgxqaA8DCQf2ThG6BFEQB+iVpeATigJNVLxt6sgMGtgp8qYnT0E2bMwdyIwg7w6yyDiL9TqFM3eZF03XH+p2v9tZN4ZJGsEINm0xCJCoIFKCGfYq4TgsmmkqI9EYYipOXi9SLAk1IpaLBHqxsHnS/Yrt4FytSuEj/5nn+ePu1G8fGZ0Q53ja6ZYZC+RRHI195Mdemnm8tR7dcdPyJUbsnl03GWgCLhc1PnP24M41BYHxLpzsgh5ZM390gz8BaP6Z3Q5aiEkSI3J3XJNCBBVPCGj6J2AGT+gPFMM2ojBi6qZIun0cHoQXiKKGKMyChcPJKiqgeEq3QMwtRJC8i49ihUnoz0oZF58hDMWprBevi0ZIvFZ4ZOD25u0raAXreLmwK4O1PDlBxIXxhpSLFeBfjji4aEcJ45nHk/ML3J5g3A2kt+P4hzCgHAIdF2WOhQZrR9f3dVPVQ9ts1uX56cnV1TO0n6TXHPbbk5M0T4M8LdVJATYIGuauaQ/GDkWKpNg0TeE4KavfMFT3Wx46bD0qdMPguv1u3IFlQacB5mxEEaNS7GCHMAEHXoU2gUwTcWOy9axX2b463D3sABB0+0gnUaxLXQLrZp/jFPyFoHxF9kdUFLj3PbEF7ry00xkNW/opL2Bqw2T7m5nr0wATi/KAAR2D2KBdFvomfqHv2yNvlvDBAOTfxiHcyqTWYPXuL07q79mC4H+Owbc41XRc8M4QOJ8U5Dh2dKDhQ/ODw2IMIJs01kPd4hLSAPmSVE8AX9yb84dd/eHm9nZ7wERApzrJVnky9Ogl+BIRhNVYrzBtGGk4ZiZ5CoDMCEOKHj79YKhK/SKMNhUoBjsMKuxh1l8UcZoGLmigVYsw1IRO3VmD3QFkYHjuoZ+Rrl9WT8poxgLycJWkSHqfmQKov1PkvbRNvyXzp5VEUYOtF/k7netik8AZ1PdjiO8NQyjlMuA4fu0ag9YMzf7h4cNtM5gkLRD8PNjd/d1qtemTVKepDuMiL20I5N50dZqhq6C5Ona9YQwdjkdye2gbypt1UZwUpdbhydmJOjlT8MqO/UbNj5dGzozN2Dz01V2nGtVeqZERv3ivNitTDF0VfKwShVyJ0I7nF6dRFufnJ6qMEf1ia1YmaZZHavsWfzg6Ve23Hz7sD22xPt90XXr+klxRA1COAPInA+N/fDx5HOe/HuKcvqTC1RZ8lD4P8sCCOBexU/MwI0ZLYonffj7Zf/3gnuS8qc/j33n8zYRUib2irwk//fg0TuY38sBaVPPiL0E7ORrd4C6gRphTXehdiNTKT8oSwUrOuf1+PyfVi4BT3lXbwqYtjuPNZrNer2UPMMbsUkTHT8GrCAiTGN7BGsWs3hlW0Vp8fpb0IcTDkB2V9EM7U1Z+CBT8ocnAx0zoJw+lMF48PtXiLIcayI2BYR2yTJFaKQY+DGSigIvvGKsvTl+SlRigW6yMODhNTTV0WM4lOTO/oqhIU3Q1iHAXL2T+veC7YjzJOjKSCTKdTuQywyRoosl6+QH5ucRQsTlEOoWpdobMTB29eGkHdGVw1qvqFlI8RLbut72aNCGzJwysMycbuyV4KSWvAchFqn2gaTmGE9N1XWhY6/RWFl+pq4oC4i02UrBt1lEMljE3POTP0XdWAGAUSCpuOqvx9pknd+iaprq5GcNwODvbFHm4XhebdV5myWZ19dnLCzu6+4dtb11TdzDKPHR1O/bQH/ZpoewYYqY9Do4sZyb3YKtC7caLiiMASeQFv564c6RZAaO8x3iaJ5RCYg+Zk0wRhuBssub3LDjBC3kNow1EezgtKaSGKDMMyiBR0g+7o6jI4iBOzk/POmMBonbtoe0O4J12h7ZXWo8KCRLAACNMBsTFHk0ygFBcFEa04rhOgFB6eB7lzXHRB2VCPR3veDr+9ENhs0iEbVmAuuA9Sdg8C5a59O1ekN19G/CJ+2vxiuilpkULvqDTmnTsHOj3St9zweVhwkurSlaxn/Kx/oGkVZpuftQb/DPEIVyGJFlJWOk8OF3aOC4fc+N05JVxfViv1/N6eCSQjFaZAV7mcSa/PEuP4OQ4OYnNBCHnxgQps7MJGypx71qGE0T/SkhmgeFzp2L0CHZ+GplyWMDjy/wFsHmEToRpAN9YQLFmCOI06mYQgVBPNc3FxRUudznZvEOYAQjF6DQyws2QpMi7jkJV7R/2u6qvmtOzzbOLi5OzCzTCtlF2BwY23yr9K7Hm9H3UtT0kEUGQ2lHoeVGaR2FQHTphqyjkpsDHlSVhANtorEs9B3Gg66PU1Alxclycw2ix2jhMuGIamV6elJsyf9htP9zcHg67IQqT+NzCLBKrt1D30EighO7jNMV1ApwHnA6Ip4TFhiXjkfuntMfS9D5tL7FSI8NrqbMX1YxQ50VCPV8PDtm6qPuAfQB/QY0oRxcAhQ9cpw6QFkGhG2OGBKcpFmTNBmAYAjGTIZtqNNxUCUZFqfC3QP1ygUPwSOCUDsZEY2J/elK8enFxu62/f3d/d7/rgXQw8Rr2FeRMYQUEWSaE15HXgh/9Jzg88RfwFAfuyYcjrvDWtsjMDeDmV5ZFWZbWbLr63hh42TE8m75zRLZyWO1wZB7FyBgYLTrS0K7KNIuV6HcF3eAe4b744mULp9itdSECyBxiaXQcWcPfcRhnWBvEdFrDKonbWcdxkmWp1jHo8Ow5m77RKlFxhMqna7RTFxeXL1++6lpIT27e3zzc30SjWxVZrFPTVtRow8qvRaHkbKjjcp0V5buH/amCRiLSKVx5bL+v9yf7h+DspUVBMHIRHlR3aG+/279/XT1831b3tk6yLLnqxyA7VcmJKiENVv1otre7t6/vXv8pHLD9PTw8rK/OWtevMM/vMUkYGZ9pjFrFqtq52w/v3rx9+/Zta9Tl8y/Tcp2eX0PQhPkEZ+bkCf9Y+v+LDx/dKhe7kHVYsUP0Rtk9d7XZEUIp03uRKB7sXSU+dCJyPi7ZcbF/Gp7/Idh+hl2PBNkFiUjcMX2kp9874QP/8ZNMo4mnsgTc6b59wQIr+UFhEHZNJyK8sJpdbrB8QdQ7c/j4I0aoqlVRCk7sDdQmqsl2C0qDtBBCiohhA+o2gcdRpFtAQOwA6FY0Br6qoARitGANTeWU32Iny3mZyx9Vv8uma/kx56+S4Tu3AcuK9qjVk1JeGrw5gphsXfZZzL2C8wznARp5xyKEEgaEQ0gWWjFQ0Vmyj0GwKgqIVM3YYyKJICdFL5rmAI9Ib2aHBYqRk9Qw+fMpqVoj8nGAT8taK9nFAvwTcRdcUHzWIZWUTF4QiLCDBVoLhzSCdSOYo6enGwiipVtru6Zr+xbs2d2+mtwwbT8IzYkNcAr5lHBmSCgFiGIZ4wCnvnAerQgS5hQsVaEfRSCXyCV4AR4aVJa4oiR7jtWBDMUB5RlDpyTpsLGU296koU6zWMNYEPOCBn7Vrm5uo0ilscoLdbLJT083pyfrPE8vz85wLs7GthvaejjApAoBQmYYrUUQJgHNHpxkFYcKQKxkZwtlaIS0LtQjxGrM+cTNBYYTziXIWFppYFPYu4lMwy/bjUGUcPztNFlDC9WgBUeZZDceAwqbCes6Q7QPB4rrM4qRaMSlrkGQWAXhaWvsw6G63+62VWXGaHCqN6iqMLiZ2r8wsKj1hMlA1Yfc7iysfUVNKFGWNaZPMW30abMrJ1QYfQ7WVS4MAfiJ6n8yPhfoOoqihhGb8yUxU4Bs188uT8v7C16A82HhPiTMfkh7JqbljLnMLb38txc54ShNmvJFG/9JwdVx7WT167PDZGWQtcUrDJ7+lUhn5I4XBTl4GXhD05T18VfYbPu8aPSNM9BDZ0mKYRwWOjwNrvBA2R7t2kBissb/hBZSpJnQQqxFOcthC7caSVn22wYvHN70RKrRqUSR09qCMklChVih8mrDSsWJJN3CGBMrYQ18JuxheN1VSavK7nC4c9S+pyls7Hd7oSbSb807HUgjlGEcYOBQqZxLUp1lSZbG1xfn1WFf77YP97uhbteb1arI01SVWRI4RGWBuEN+UbnKVkHw8LAzzj3sWmfBlcKouSywyMRpAEjFGsuGPIziKAlCXdmDG0cEVVmD5UKDqATNkx2HccApYFoslhFlOjjuumSVX2yK0/Xl+Tq5u3vYV4e27zpTg42GAxMOQlLHqC7shoGWHv9/9v6zx5IsyxLFjh1h8ir3cA+VOiu7uqZHNDF8mAEfyF9AEATB30uAXwi8D+Qb2bqrUkVGhnBxpakjjFh7H7Nr7hFZXTUcPLzHrls9Pp4e7leYOGfvtZcQnjpoT+ogshrygMAnwdK4FyPdiZ2dpqhKAhHopqaynfOix50qE9mstcNNg5aSzCWjMVU0GeR7B0U/7nEyUaAPhfeKZx16CRUp2gWtDQ4o9h8kS47ZZFg9IU93vhtsWWa5DAqq5kEio6eznRtCneYWWuvVer1eX24u3ry9e/X67f3ulJjEYiycIEAPfCbqlESS8cSP/awibRN3Yl4Uk2NepCfGhQ68LIlhMqJ1oDrLMl1kSWic9TJJ0I7gogDnyg/S49KlBokmJ5ifI2+CTO1AV+Oek8hFbWit++0/fuf8cKyb7b5u244uRmH9ANyc0C9oQCiXiJioGkEBZKZNMX9oCAY0AH2JzgxT8qQqLA6zWVeLF0+fmafPxW733T/+w2G/a+DMBiQOgsQUhochGawdQC+rFs8++ez65WdFtSwQxtwftrf379/c3d2k2+Ek5Cdf/Wua23oROnGqd29+fP/j7w73r5vt+96eXJ/+9NOP942r1i8vrmVVLinFXfi+ffvTq/tXr/TQKz20rgvHgyuNu88WzqX6IHppj7avT1dfPWvf//zm559ub29PdZcW6yxVVR6dNshxLHatMqLbf+oBft8jeX69+tBNBYZTlJgIIiT754waIBAsHoqE+GaYoJ1He9UvIFW/+HMUVNPz8JOMBhHkD0bvM2oEsAEPof94AzCnNs1wC/ChHz9INAkuaUR5R24AIxOR2MC4fjRcp4HAR1wvhuF0ashEJbol0jI5GhqOPGlotiIyBI3SHJM/F+4jB33+QMXFQSAPf5+P//zPz/oHev8T0Xb6eZzhfsACcoHq7dgk0OeKQVd0JEecdYwCTuj3Z4YPMzSURdXxyiGCgwRFv2UnS5bwxtmuUsvlgjSqeAouCHiz6aAGpSNM0isW9hFeQlw0FlOKiPRJUIDUlGzKDq3s9rBaLrWGGSsD2OfmLaB0Ph6Ph8NhcrJnpHNuExlVd3Ck0xTlxonKvL3RWBxMBmz6zNGKQQ7UsrGfNgYAhE6jBEcpj+ROPC/8MpBC5XpEGoMHAD+cLjinEp+lCtwpHTBfGSznl2oU8tittBTPnqzyzJSLqiwWBtkOoncw9f/5zTtcXE3PDCtUFpTsqLWBzyZZfMrEkOVeSuPa1Hrf9g44k8XEOlrDUkwM6TiAinJwRNQJRBtBEoLQNACFBJoNcmNk/xYiaEkRFjnEkBS0SapwbLm0YKdVIFNwIK5pBllzAgnj/a6pu+5QuxqBqMFGu3mAhrj/R+E5vSuKR6PtmdhGWC8iaEcmcBNePae9jZdZpLBPXfQQHN/p/PRo5qltc0gEjLOC4HmIh/Igg/A9rhjgyI3XBUUXx8fo04oDaIHrn/WUszIrPLpP6V16MKpHKv/8MWl4HjzQhc/XgbMLUPQOeNgAyIECjz5YNx6tPHOavkjgrfTh7z94F5PSGvMy5P5M+cFIesCcDRVw9FAAUTmautJZo2leZEVw1DDeOgpW6sCpmEf5z644MAKHZQB9nCRebMkQ8hTBzORCi4KSU8CZsssCACi1CJhlxgtFgxOmQMVSPHHAGbKsKMu8SJHyaMlJsh+C1YlYLsp1VQ2Db+qj61oK6pKblaYk+DjNpUA19EHHYx3Ibr8no08qBnHbgRipk9Tk7KBANCRvEUAT3WCBBTHEwH0mtXJaIisq08j40woYx2a1GgIc8UEfL0vv/XZ/uN933/547IYMipkwOKECsHoIYVto0pDsyKPKuFkAy+04B+3BSaf9dG6ONyF0ZIMWL13e4FK28ScMyzkcYagysJbix92J6BzUw4/PzRlEfO44P4Q81gDfBN838PkhDSzbJPC7PU9XHBD3sTAYNqlcpLKCXFYp6IkccZNElpcN4gtUsbgsq8u68a9+fPvD67fHvidkAyanuVZ5YQpKkkuxThLONRf2QDaMxOgYI8ge33SVNnU33tegWLKaOwPZB4onN3qKAIAcb67o3oOuC1lAODE6ebIpF4gOgvWz1EYq0zl4J3z/3SupTRDaYhgLa39YhpCcmip+TJZTmeSZzjOVpypDuyQ5fNpkaN5gw9D3Q4LYlrZzAey9FCqRcvXi5Sd12xVZ3rX1m59+2t7fZlrloI52iT9qOQSVWZkO2eLJy8///F/92+zPfyMOB7EoRN+49z/fv/3puLu/ulws/+wvRPHCC+gecNdu79/97h/e/PgP9fG2rXew0s6LJFsm2Tpfv3j+6TfPPvkcpKXUiNvb1//pP7762/8qulO1zrNVnj+7TIo0pAalSlCyS8TJ2qa+uX99PG2dc1VVLddPFhfPLp9/uXj2pVg9G2TlEDmsY5AlLqRYtnz4+JMGgB/Jy2ewAZ3u5/GWjBAaU/TiEkDfgjr8sYP44YhwLLgf03j48agAjTU0EtzIxTuGj549qrFSs6Yddwb7OWDWAx9gXijH5/nw1M53qczkvIrxGDrmAAihNIAo3opmlR9IJawbnupafrYnT57woGBKEaJILyAlRJfEe+4oFSUElLlk3RvDZcjUJNpbtqcaY9lxdD6nVE22a+fMHZAron/ITD8aP+P8IIzHnO0pz8fh3AiNU51HSommO6d+jiUMKbS0OlM+4qrNeBLuN0bBZ88fGwx+mrNOVIp1mdOcjp6XZiceicshRT4U/irLTFVgwyX3a9k0WDeJOUWJjkwvkYPtQRGmIwbQg6PK6GqZ0iJRCdGbxVFdlFG0bVLkaMbkGhA0EQnMVk68o7DMAxIu0nJg0cQMDDNoaVLgFazfo7wyRsWcQ9XIrg6Qt1EpzOJvSCbYxIZlnpRW4QXCKChbQEn4hGDYjyQWmbiuZgM9+OHBkQaWPUPweY6L0WiZooUYTYeEV65LNUxsSTe8LMsyLXJ6M8TMpoiuIxSGp7ZtnR2ULKgeJa6vQIyiGDCLTyRiiWjEAXANkwNMqIIkQDda4qL0Zo+duANRyANTWQm8E87AKwIjbYppxCCRAiwTGPah3kgoRwScI+IKSyVz6lgcUG9kxaMngbMs7D6H3qveD03n66Y/nBrwjgCW8Y4M/0YJCw+iW1DsLitMgaNh2ADJjUhTvi6ni5AvdQ4qmpFPoo0J0kDP5S9j5/j9RZGf70TyaSV6d08uOqPWlpXwVO6fGjz/RL0dKWQ4bh9dD7l6eCS6xdUOisdjJ18GLD5KUYMwfqaYn16F8w25iHxwyw+4UD9cMOc2ylN5JxQ5inyMnMkc8Ud/gsu/aUYyGK9aUb7P5BB+k9PxR6WO6j3GILJgmjF8HkyyBBwe8aNXEsk3ITRAc81O0ZQmDFcZuvcBFhA0QK2MONUxgIn9mlgoGQls45iIVzmwtsMgdT4EpO5lmSlzmEPi9gy2q0/oFck/elFCPwb7//60KGDgDLkD6mA2tQZEAQ0YsLOk71zN/r4BFXhVoASMOx1LS+nhesxVqTint0R6ztEKgiOprYbm1WwWRVUUKvF5kRZwKIpiCXxjirtavL87vXrz7vZu31gvVCZMIXTWWzKNJd0zXbcso6UR+Rj8PN8d8pwmNuNON7LpQg6l3CjaHvcabtRRBNOckMQOUU5TUHuAc0ZnCysmtkYQeQRmtzzbQNQmXPhlkMIptg8iMwJMTsqqKIr9/ohuinYGyHDpgjHDsMlkqkKZ68UyW1RpmgFvcL5v2l6nhdKF87q3soNAJRcq/btvvz/VrXc9MrAMvKYyLPXQvPLNTkoJTID49lUSdJrYrNIlRReT4tWS9wI5wMZns9mslsVp/7Zpj10Txz4pDPvBij2dTjAzNaas8qpYCDm0ddN2pzKVl5tVVVVluTBZCTjGi6Jc/N0//C4Iad1Qt721HpMiWMNqa3uD600Ovk/lsKiyRVnmcEYiJSPlmvNu1cObpDtsT2le+pDsDqfODYnJgtAtYpIpogcz3SSFSwYP+7rCOBHsoHNdrfPN9frFp88//ZV+/lykGZrS3d3bH7+9efMq08lnL66yl1+4oRp0jmlV3x3fvH79/W8PN2+8b1ywidF6sVldv7x48XW1eeGSAuu5rystSud3P/30+u//1tb7P/8X35T/7i9FexSl9k3z44+vdj/fyy7oLti23Z1uW9cYY549ffnsk88315/Iq8/FxQsxlEEWXhQewD+blyMEgCjiH6m5/9QA/KENwLQdxkiaEeJ9iEw/nkqfaYJUan8IMj2ys5xgMDAQR1u9yf5RDgE+zbTyRClchKl9mmfzJ/kQ6n70lV0FmRbKnhsYlBHJZ9LLjvYFNO1w9lGMJb8EGyMwa3z+wSfTNKkxm7OOTYcyrFMEDZLDNKQUHWRDSB9kl7RH8gl+qsl+cbTZJNXU6B4zP9Rc706PkeFDZSi5APMvT+9/msA82svBmkALlowLH5E/OHqJ1z3G48nRaEi0BRGbtRiP5jCPqgEEwWgZNovyyeXm+dNnF5drKWVzPGy32/p0eP/+HdRcHmxODtkdE1JReRcUnAlKdwcOP0ureQiBYgJjI+ILO4vCiLZJIDo5VHdlXphU7e7vMMlBtArigWJ3p7TSCNJ6dNFGthhRtljMHfXcLugc1C8KN45zIc7MJO0mDvi8oKQSfLqYzygvHe4YATPNQLgk0shVIHejWCBRQs8g6uMethgSBCIzMadkyJJOs7yPGgMV0y2SJ1cXI1vtjNsNQ3Lz7jAMKJcBMoIQTDipkD0FIRFrGsgTgVsos+pDjUKfrkLIZkDLgfV6IhWysrDR09AcwwwtkBrcwrmEvEqZs0B6PmwqqUxSoqhqiT6WRzRdEzxZYaBSA7sr6SNb1jjYx8AURMhsEBpBfSK5udv28fahtB9uqhNVliVuND4l5MZt265zVmU52oBxcZjX+h+uY6RpOXP9R50urYRj6YxDPaq3RwrQeOVHNg3OL1Ppxkb63Hvzm4n3yzjb5GL0oxM/Mr954Mg+rW9zj87pX4Od39fnW5IdM7kPnT4Ig/QPb9t48c+DFOdLK41g2OkrgMZNekjEKkE67tHgjl/pKg4pANFxEjId0nnOF9Xx5xuQmI+8B0TpMzcDbK4ajSW4ZgWzQaPtwvKI68/IFF0hwhwG71lkiTEUK6jpASoLvYsxrQnMf9wKMQ8bA8epZpLK1CegOUAxaPEEpIrIJCjokWDdNYMHxy9PDWHUuu+OxNInehLRx7BSkGc/HTYMRXoHfAH1Xl9rGCrGdQCU1Bh8JvIURRQWFzKzIYtM3FZaazKn7ofgDNjtIsNgDeOILIO1HfvNR7mFyYZsYYWpm/79/f7H1+9/fre9P/atE6v15QACMB2/MTkbFzmO8ePrbWo4P8IKowT0sUI4X/MY9UmyKiYHqghv0aSUB2vkvTSq9Gl8CvkBNQnwSEWsKxrIIXScCUCGobxb4yiN1Cx2BoukIi186ttUihxWAqrIJNb+FBfGYrXZ74/39ydgCLoYRGrtUHdujwDmPniL7K3M5KmpSkx8DrsdlrCBGFN493zXjqBbjB6f994RDOr7XvhgjAEgU6bLCk5RwYbT6dC2bZZlV5dPIHJVqq0BzXQdAoWYMTpALtzDutsPaV6s1k/a3u32JxeG/bGFQEGmFIvMw0Yc2CyXiwodoJZBq6EwBpFbKrFdR7F1OEdZlpXLBWZugzzs2+Ox2e4Ox7br+tDjRoVFFuK0qN5CA0C+3Bj8Cvv0smiaU+uFLpbL65fXn365/vxL8eyFqFvcpsftz9/+47f/+Lf73d26yleX1+XTLw9N32139njvT6fQndDC6WSxWT/78ounn36ZLJ4IsxT5RpiVEMPxzW/3b19tX7+xu21m7XpZvvjqc/H1p9D+pkocjj9//8PN67du38oWooVTf0pU2GwuX3z65fWLT5LVU7F8KpbPKCR40YtsECmFIpIORDjgyR/TUP2pAeCHnkYk2Bt4SMr/SV95c4jaAPoXB83ieT+YthMQL+brAm9UmMLTLH7cSiI+TGT8aR0549hS8tiVbPRokxsRZdu3jP2RaQSnNDIn9UH9Pe2dCFofCaATdMb3q0L3DLYfkUygEUyGoWvqeWIlahyy44RWbfTumSehtG10OZhko5EaRAwT6s7hl0L9OoKDOV6Vq3muDbg6A2eaDwAxa+ndxk0XeQD0fwwB4V06Kqbo16Z3Mum0+FNOJQ4tTEBDIT4bxwsfDknO5AdehlDX0+cNTLXAquBFAoSPcHtSJpF9W0y+Qvn48D7gCcYDCyh+cT8MhwMlREqYMW82q6tnT3/16z9blHlzOt1vb9/89Or169f3dzfbLcZ8wyCWy0XbJPXpgFWsBPjz5OICNB6AuDWg7fpoO2SOUpglE1XZFBLSK+/3u93Oe3uxWYEtTAhWO3jpZdJjr0mznDePaezD9I/9fi/JzbrIc54P0LRi2G73lqoFsjlBFA48OihvgUpDnPo5JcwZqrNJ7kuOOrENQKnLJQ05qyCaBxT0IcDHLMB1R5CvuIQNHny1lQGkTXIBZweoFXqp5YBUC05aVohFVBqzbKnEbv8KhjoAgUYSFm2Ry1VF+ywUKKR8GNDiDYloCT/H03eDwyciU1qVKhCzAs39wgAGi7Kuh18QaTWIASUGzakrJBKBipErRYiywVSGrt+ybxKh/jSBkEQVUEX0f4k4vXVdi0gw9KA9/hPYJ657ncOdXer82YUNorMeBuloYCjHQUjAeJSoB9429jOKbs2zxjqmNHBLOTevPEMbs8b+dIoI8XmJ43KKYL9R5zD9uUCZNt5HvLLxevPANnH0TebBzog9x7+Kf0sahohRjFxH1r6cb6yIm5BWxFNwHqCBiG7zHyiaH0134vQSZDUY7/sp6WJ6lflLnPUABL5PSA4biZJ3FuMr2DoIsccDKdk03aHpFxnU4nqCBGi+7ESBrSQzCRg5DRQjOJpJUBU1F26xwozeE84dsc15PaE1EbMkTJ6Cc6CqBSUNWkspYI4OhqEMYAfieFHqBQhHaMdop0ORCvcvyhwh4TXpScnVPt4vUlxslvGfQOLoUDv73ru0JLtJbbLWufpUH48B2V8ZhnlU0JMDCjYRqAdIa0Hm8UCXc2nyrEoHWUiTnpoDphs+KOukhJswFf0yp4kLJDSGZfSRodS1PlNGw/ZRpVoE3xEkAksivj5lwJ4eDWa9b057DblBodInZLFVJm+32yNuFpYukdM3DDeHYGmYN0nbHzw4OftBnklc2WMiGze3dI7GYZeHVft4jfE2C0UPyaggYmX7ZsJPhNEaOw6d38jjIhswVL3oAVGlQvcPGLu33mUpo3WgV0XfKqaBEqVKGA0+5anf153WQMfKIwYuOl9kWtStrxtKf3CDCxwXyHZYACb8kA2JLKolTagpsg30TEwwaKcgiIS0RXGrpSsrUnYxboJ8DbnmjRh8PdhkvcpWi+Wiyk4n6M1oZiUvNpthubSXF3A9oEfXgJa1KMHSh19VEF0HTZdzIS+WRXnZ9hblhPNCBoNrLTNGd81O62QQwBO7wSV5lqWlAWNNwwyZyLQwQmhbT7LgzeVF0zIPUSc6dKfOD96kmes7EDpp78DGi+YTFKy6o1GVTkv4E+UoxO7ep+1JKBOCr4+H7lSTG3tyPNZN/67oFajN+60/nUopFgWcbgfENeSXT54lLz8XaSWsEtLAyL9rFoU+dsfdzU/2VF8UhRXpzc2brNkunqyDFMfjcf/mbf3+zp4acKlcnxbKFNnlZv306aW4uhL5SuQ5braA4ST08XgzZFoIWQdVb396/PLj43Gw02OSh/J/zr9/ZPszp6+cC/FBgKwzWijOv7KrxuNRMgV7YdDGDQh2BCyiWFNgbQsll44eJnA2SaT0g2JCyRyvmtt+Txse/6cbLCEWWC8UJSkyYYMMkgNJEIhyOfrxU9D3uUlhVH6ucGC0jLd8UB0yQEFVVZkcDXdL5D+ApmC1B4pDBW4Rc1jhT989qshntN0z+YfVwx5DsJbB48knmyubSZgV+zFaqYcBiyF8cUb390n4OH+teQ9gSdQIlQWZCWAUCE+EJFUSiT4eqj1axdnD2bPF2LRnjBv0uacbzzj5RAmRlmXv3c9v3r55+zbLzdOrJ59++unT6ycvnl1fXFz85je/SYLfbe9++umnH374/vb29t2798xfRBb74XDIc7BcMq0TuVxWn3/+6XK5TIS4v79/8+bN/f29s+Cmkxcz2UjHs5c5WD6DjaQjt4qtlpi6Fg9438NzY9J4zNFiHvWk2N5WUyhEtMomdvg5KRPXpU7gwA86RmoMSgqrOmdJGYqMyjDArjQkAfsuJa0MiRc+8dIjuBYiNyjP0mBw3gg7rBYb3mzwhqerxw93rdWJQ6qnSrQRZgCHhoZB0vdIRVKE0sfhwyCKYkFlJkcWpIPhkQ4ib9jcM/pUOe/a1mNInRH4CsoQpIjYJMRAUgYNR/+hx64O1YGLsy8U5AwJEFtP9QjuAdnJKQi+gobkjjHGVIZcwVOFmxaS9Bjn0HFhP7Ou6RzysWF50oGeJEyiswQfEEUcXPKTDGTWJHny5EnT9vXpBNIdkjIbiSZeBmMY/ea5HD+YHDXn1TwYWp6XOGZd850+ppmOqx9rABREeKOX+cOV81z0z7ySmWLEFRJ3yOMvkFljvCWnwp3tFT4yrJtEWXNBfyJEpqPNYoTPHy7gc9iSPTdJM/dAxPxoTZgnKsZfIMhWIieIXLbJJJByr0jwRJAB3OEdVs/m1EZbN6JSYSkifpamthALO9nInq3f4jjuLI3gnzycM3PcIA4P5xKQ8xHmQcipRBMidFVQpiQkX0qDOcfPcDzU/D7YSIAnk4PE9aCQ7Ks5zMFS1x78UOaUzi2Ey0yXKViHwUigHZxFiExVFkXBLLv9qQ3HY5kXpDsCjRuCL6Fo/JP0LXu9SdVaY1JM2IRAyBN81UDqaG2vReKMyFLEtzqahfN4UZN8KFLMXQ+XCDjiAkdSUlZFMYwx9iTnHWQig0BkXhJkA9pHA7/ItJQqf3L11A6pTOvd/sSTT4qmYa4v2Lbg3/5Tj/luO/p4niNEp8wWmslGBd3Yc8KYhu8UosyQwIhtnscCHogBtXBk7hRZt2DIMXkPg8fWuwTFNO3gNPlMGf7C/Q7QQQrYJQ1Yddu6PyCZx9r3y/VmsdoobTonOlg2IDIh1DBVHcCuiTbfne1Pdb1ZbRxtu02PEUFHrse4qJ3VtLuOZEKe7mFnJ8ItJjYG2DtujUGIvu1b7fM0q6oSxhhEK31/81YKdIwI9yrWXZkfDvqoEkoiRjR1ksiutW3bNbUVIEOl1oEhmRc6FcTPpItGafHy+hJicq36rrFdTfJeSOJpSI8D4wOsrho0DzaIpGnFEQoAuBE4gdUcdx+S2jvI55Axn5B4H52xMabt+yAGdGchdM2he9sn798JnUmjt/sdNty+Q79qMtTaiXr/9p0xWS61zNIiEVWRV1WRpFoWFa6vYy2UE6YURof729ff/ba7++l4/zZ0pzI32QKpzn6AuuP1X/8N2s62Ox2O0I04i/GHoUAaRBQfmuO+WB6ESMWQw4XbFFQrcv4XZoORRfinx+99JM+fP6YAxagQ+v+wQUzo/AdjZX48IqfOlW1AYmjA++HocBKxPRKTMXZAzC3CNcltAnuE66Hp5KkWYn4IOk2UKZawC3yoXfvQrm4qpl3fkZcIjFYoHXagoqczxkyRW1McDzZHz3sbHpNwcEpGPMvdSA8A/DgJZVmu1+tquaiqZVpgOJwoBcEZsNvQkw99TX6Ufd8fdrtJXDgpqied7lTcT8nEGLqPdntcdE5uzfPvR3f5wCJCfpNz3fZEG5hXFWTWggYJk3MqVbh8wEbPGkcvSLDEsqXBIaAJ7cFs7MDrIQWKjSXIpMTnGXie66pYkFM78BKEZaZ6sSifXj35/LNPPvnkxcV6GbNj2+67777db3fv3r17++7n+/t7uG3ichLXV094aymKbL1YLpfLoihUmt3e7Nqux3582PVtZ4yCH+uqur95H4NRJ6oVTXhT+Lg/6lXwWCwWHxJh6SCiT2BtwCPTw3jiyDOaGgBwcbTO+XTieKFAobRK4cE2HXfcmH5M7a5U55E6C9b5bmJqL4cWsSqGo6abejcIZOKSWht3CsWTDZv1ylBMKYlUcQ3QTg/FRpzYUfg8idhQAPDJItMVUmeM7IhD3dCsAJSJIDSipshyx2Slw3xcwj9vSNDcUt7zaFP7oI6ACLisUpOUaZqnMtMq1ZDZQRWASQfeJ7oXHDTwzHnCZi0rJgHU9fAqD72Xbkh7vIGh86EX0obEJ9oj5Z6sFakgkIG8nk5N17ujxbY3j/3i00qUvwe8uFEOdHY1hfE6+3EOQ3M8TF03vNSjGUASeri4xmWH+cD0/7lZdgrTV+gGgPvvjKg3rX5cyo+/NhIM5hPmx3OJOQo7FugJjExAm4x/O+P+TT7+D2bfCSBnVmzP25tpZXskNKLP4ti1lK9dEu1yajc5OyIbgCSdZOWLwB5c97RrE+zBK2wQosgylKpAySnxm5nyY9zL7I6L6eDT5PwBIEUUIARFUdgcic4jlSxPMUTLjMxSnWUmh+QHszDb4x4MbrC+p3wVuKcMkoLMENxrJLX6VELgkNY17G5jO8SodnRy9gT0LHOKvGV/4a7r7vc71jJxtneagbuI/KZx4o17BMRuxJMNKsmKAgZDLgQyxWJ1r1ZyWaSZSnJECug8lSnWEnCuirQEdeSwPx73IriiMJcXm8WibNuWQzYSDTSA5M+Unauy7bHd7k6tCyHJWp/sjt3u1CFYZlyW6bofGFkDij8L+vwQkJr6w9Hl4kwJhtPQdMEQMA7/GIDydEjp1pqoqkQSg8yb2g8aFsL1HyMcsqmJSTN9H+GVsWwYsPz2gEBo4hpJf7RRIpVi8A0GO1gIsLL53rZd3XXdEDDEtvBxysoF4LngBbIbLJmfIE2g995KRMtBj22kwQRlwKgTH4RMA5U0fW3jBQlDFHKbwEcYXNdLRUAGfnFcUmS4XKQqcUoClIf1p4QGwNpuuVjEt00UI96RtdZ1Dch/f8RXpbO6hQtCYtLrpy9h+C9Bza2b5lCfBhFyowudPHty8eTiUiVDXR8bzMO7wdtoYECXPiideHLo4k7H1gV5OJze39+f6p5cHJCDISGnTLNU5chDgNisTJE8ZjKDfY4hBlKpZHlZLJZd727v7u/v7zEOI3v09XpdLDf5xfOiXJSJ73e7dndvkmG9Weab1c3+UG42Ii9DohbVSuTV6ed3v/2bv9q+/i2YbFVRrZZ5ucDaShKfn358JZyXBCxRUABYVRne3ND0jdLm4url5bNP8stPxPoFKED6spelVSXMQMl8Q5Ec6OMxtH+iAP2BE4BHNRBVpbOR9wcQ2vRr00rd9zFoZv74kIXyoJEAq4RsyaIrH7go1frCKJVqDZNzJPq1cCwTQ1c3HnjTeZr/+MUejPiHbFEwhA/x1mKRpinx9sDwDgGkIE9EC35fEpFhjjWOj/ae80I2cxPHsMPAueB03Hd90zan1fpCLoVOcyTGZybbFCaFugjmM2QDdNjtmGiOkNcTTBwh1nRusqFktG+1WvFHaA4n9rKcatCpXpn//hSiCSRpdMWZiv4Htifzs4bCCOjLdF7ApMGGwHN5mglgtVY64H8hkb2jTHYqD0mkC6Y4B8zzMYunlJi7YfCn08la7RzuZ8pI10jEFfLUtN//CP5PkacXq+X10ydPnz5drVZ/+Zd/abv+eNpvt9vb29ubm5v9/V3TND+9esWFl9Z6m94hGhPD/PTTT7/OsiIEQXaffdv2SYIj9s03v2aCPtZ8Fvv2jbPYkD56Qe73+1mg6SjChh8apu62aRzZSEv4RehEGS7uo9szeauT21viLayDkIaEWhzOEuziRDbvQE+xtVDYHheAqUypgiHwl4hwjEM3tqPyFos43jP154jdLfNhyEiyyObguIKTwb+53aWkjU7JdMUobVJtdOIhqnMIOQL9Am0d6f8IHQePCOckDvQgahdZkfYWn5i0Z6EPAcEsQjRNHVBnwNaRp3HkeIL+hEOFsG7DZInGRsPQ9sdM6zp1RQaxXZ7pLB1SbOBc8Qjth1QOmQHMY7RaVuXIUxpsP3TWNm3fuqG1iQ6S4oeo9qBQ5iER2/s7qVNIBLM8zaGAk+XCB3F3OiHgjB5nsT7dQdPNwq37FF47g8nJ2IC5+4tq8vDlApCGQlLAfWgcvsGSaLrwHyb+8lcwrNnEln5AeRJMBhsnaaSnJ1V9XG0+2F8eKJoedgLkoOmm0DryS4639tj5PAoRp4wXpmydGUFxiZjSXWYr6ZDAUIpZH0DQieUJtpd3ZEjOJj5oXOE7RWmu8K8K3hsv4cpODXCCQCXMZ8hFmvtyonATc5CdqEFFBEjLn27Up8VCkzK5oTPhqhwrNOXyEt2UOPMpIltRgPZt411nmzgULcslAxaEMVNoOdk/L0rYO9IxRGmOaTNYKaB0MhJhHXmeQmnATmhD52y/36VtU+QVkNxqKWSS7e7IZhTNAIpy53IPYe4QEnDSdIapNUyieos54tCCX4FbMzM5qAtwpO2868pUIdYPxHjygiI0B7hmCLnWSVlo4Zvm5G3Y7fZt2yLAjj1aybwGXHLrrU+s63ov+1YdGrs73tfd0AsQawgV4JgL3K3oAPBdIlT6S86Jc0FIzIynQLfpJ4i3ItyKf5u33gf8UpgDjVQwTIwoKBDDZigq4nkGgwq1Mw09cGuPcbZYUDCVIbIch5ZOOy8b1A1DorOst51rGoBQKAykt5oyDhKB/g4zo9YNHRSwNEMZjE5SvCQJw8iWE7e7xfqMERaxBQiKxFxFZXkWNXs4K5iOE9g2mEIl0mMyoGMevFRCi4B883ETsSAoom/JMtCB8MFjlA1OCHsMrlYXSaKKqq+bFpeHrbVJ0qK8v79XWbbarBeLqihLn4Ttbue61hNbDASxJHRN3bW17wEUGgTFJWna5TBGLfNqUS1Xi+Xy5ScIfPz57btT707N1hMjMwSrUuL+EiggsWtEVbj1yErAHkdGLNb1feNBzwxJoQa5WhA0g3y3i4snL7/4VbZ5JvISz3P79m3T/fzjd9//+CMyX6oqO5yEwTgiz7JFmp+2W3v3+in2L+vkYF1ju+C7xDZd6HyRqGCt6hF2EYSyAwFbKllVmRi6tmnub97UXVccus1LVemVWFgJ6io6TpolB9hJgpX2Sy3Anx5Ux877kd/Ty3Cg5oMHkzMfNVIx0DF2RpzPxD7Aj5DURyLgMxpHmx8ib8nvhfiU8AS43GyqIiuRTyGxEHhIbYLUP7y+d4G7ajzYFxhMuyxjCIv42WepHOCUgcADQowyo4rMDGVW1zXfig7mt/HB+8R8+Ztr76Z+YGLUDMMAQU6G3CUkKfX2dDjCRgaUCch3CBIqi7xK8yzP06LIXj5/yog+sVxiD9D3/atXr6aCY3IEUkotciDTZUnlEf0Cf2r+tekRd30oAAAO8xjh0aH+sAdgkfdMNMPYPs/Xeb+nEoHWZZDWEdsOphFm0jTQDQoiDrIUGDEzInaikaBI38vra+e6uu36w14OoSzyflEuyny5gIgTEJ1zN/d3d7vtP/7ud6nWL58/f3K5efny5TfffPPn3/xqu93+/DNGAf/qX/6L+/v7t69/fvf+zf32MAwHcD10+vPPtzqFwTZ4H1STWe+O9SkkwqTsjKCIOUsWcm3HusSZSDFuZuvlamJ789WFbSb4Ik9TLVWZh5DC5FDgfzZ4oxRsRCiICtU4I/2oKaCOJIEcGT4zcY32qpAohApDTIk1jitPDWSOH1NZyW8J9jgqgUeHs11MygF5XsNpSxNhOKTRCccH27fEK9LWYxSNAsmngxJBnFBJzCQ5sPZH2g5pUOC/NV4bxL9egLIVsszmPjASj3oihFNjXUgsRsmE6tKv09S5UETVNqhCAnJGyL+z7Wr4bTehbnqE+2hRgMKaVBWMHJEJBk8kRPbkGnE2q+USIdhE/sUhI2WzQZhYA9o4Sh3gyoNHjIwXyfWTJ1AP9/543NcninLDgVPL5ZJdhuLiwN8kVHxxxDOehE6Wg5yTe9doaEiYMcp8ZGoCHYhAb4sunZ7QGmLvjAxGLmXZwj4a5k4LK9048O6bsgsi257OPFOxI5suKmDj6GyaDMSRAAFc3PDzSOMMu+Iui36X87X5EY1z/saIg/NYFzStD9OiEV9CDgqae876Y/SXQtv5J7gkcV6AlqJ0R7GjwUfDnw8xdoIEwsPgOvKSxQkksSXePBwIIMqi7ykLgVgjFO3HHx54EMhibEEWDwUQCdZGYHwEa9hEJEVq6CnwAgL0S99xAnFjWUAcARFOOoFZFJKzoyEpxpsuWAyRF1UlE0zfMIhCKQp8UkojlMQQobewgrK+J8hGav3k6mnvQMuvawDPZLnYtX0jE22DylL0jYCDDIV5heFow6BSAUqiRsfCGdJkJ4NhL6HHDlNBWNwIkbT90WhdFsUiz7q+POFx2O/3m82GmE6ZTk2QqnO+6zHtvr9ziSp9IvveuB6bAXnWa3KEpM4NyYBYreiAKniCxbHtR2qAhyl45+tqbDhZOE6zdzpH8AUgxhVvYdzLscKF5o+xjAf8D6040gp41eVUPPyJgaZfwvTe2tCz6QB278hCQnswUulwakRQDkRf5TziGEQIVFGYzvrFoqyW5SCHGvtPgzUxzZwlFXmsV2gAAY8BnE2eSiVDsLTGDc4nAn4esStF/YBpLUVf+kynInEygWzDGIVmD8L0MPS1kUmeYmBI+cJEHHW969o4q6fMbaQZg3wLTdlqtcmyHIY/IDS2g9BZXibeby4ufvVn37z85ldCih+//d1f/fVfv//59TorM2XaBgJZC+t2AZl6JkkAgpCh0PgOMcWtUp005WZTNseDH0JW5Iv1CiCqkFmRB29pGcKHjtkOlFddN04YVeYpElETYfsGw3X6KySvldXFcpWYLC+q68vrbHMtPv1a2CBsKwaxvrj/6aefbrbv7f19uliYcqvBbhtKI22Wqr4rRWuwVw5W+A6GKVaQGZ5JVQrCaJIKlSM4WbaDVaWplpkIx0wlQQ3H0+5+d5B3dRvSZ+l6UV4m0snQEQsMx1piVonzGmZYzJ8e/wQFKJLvZxSgx38wmsY9qunnvv7TXoIdmNZ39uSmsXD05+avTLQZCRD8h5ICZ4GTwTwENi3wdvCuWy+ry8vNegWfXJrxJUKnXmRd7+q6xXV5OEBWT3vzXAPwoPEgXEFrnRdpWSzKCjw8rfV6vWaEjAvryLn3vq0b2hRgaEyYKKWvJIkHtQDHB5NVWhfJOTy5XC82q4ru4UwZOIiHAZtHSGTdNKdT09peJioHd7RK03Sz2RgD2QBHJzI26b0viqJt+u12e39/v91uyS4A24mzNtPwGCb+EppyngNAqkQiNl5ipuAhqjUfz2rmDdhDS4chQXLqWHoS+TXKEIlIzvFbZN+GbRzAitKMqHFmJxMKhwECJnLxk9FOfvQRcsKTfw7Wf1xLUBOAGxNcX+bZalmtFpAbwXEPw3N93G/BhdW6LMvLi/X19fWTJ08Wi0V92HdddzpC43t3d/f+/Xskg5waa7nx5I8GhJ5yN8HRWm+Wz549e/r0arNaGJJoB+cOe6iNbdu1tgdoRgYUA+JnISNDNhi1i+jcKFP+tLsDmk5Sbxcw0NjtdnVdA7WMJjDUC0FcC81hgGNDvDvGLi7Wl1yIjwSt8fZhvwkm49FvYmvEUJm2xlgLYsxMPiqycXEjYb8QsBpo8p6bNBnrWgpFYsqNzzIvpYM6AhUQ+ZDSpZClKZ88mCfQVBynSMnGDdDHUBEXhPZBdKCAJUHqmtw56973DnwD2JwPoFhwRAAdfdqux+sNYGTTts0Rc3fhUuDuSVGazMg8MzmRF1IZMgPBSU6M1Eyb1CC6YZAIovZBtv1gXWisPzb21Pb7ztY2IF0JGgEWceP3MZCgE+GioTAeGEiON0yS0BOOff5EBKJOIzqajwZNGIrFmHC6SYMFxHs6ndBGNiem7IyuNbHep+jieH9xxcOaIhIsTHfiyG4/l/jcmo2eNXTceSzwqIIfharsPEqu26ShwMUy2mtOXUfMc6ScHG4nx0Z3CAxsPzQgmnsJIIaD1mcipA1Zjs9F9J+R2T+u5NOqTg5qcCwTWmbVEt5eZH7PaEXA2hzSNDt7StKiEQ/JjFVCJH7aI4jYxuZsdH74TsOvpakmAxn08cAIMX0gCjkmnwPIWhT3OGWndE3PhjcsASIZPo3hSFXGZBXezhxpnWzfZrgG80RgbIv7moLJu55sj3Cbw2aSPaCFCE+eXfFqI5Jge9+0EdBBQUmnjFd7RYw+XM9euYGYUtj1vBYe7bEMMrhUhTxVZaZyMK4x4tBi2BQL6vARt8eEIqhI++54apTJ0rI0eSW0sYNoe9v10vV51yVIBPMBtlp+aK3tHeLqBUjgCBhBdC5w30COW5VDJ06H5WzpwYqyMyctTmLQPnezi/MspqfwkCSFhJcjPLxm4/w0i3HLRLOKxGMRkF+L5RKpEclAUSfc3nIEC3a6vsfG3iFgDVaVhpdZfmnO60tUsjvuNOTRGfoZ9H44WXF4DupVJ6TIyiwrEMNCBTcWK7IhJRWsUcHikKLRpNkEtkS6dgLQRInxZILrBPpsZgHD9MwngyVZORqAIkf+bo7Za5LDIKtzrtdK5XluZMLRxezUTJcNQaa85uJ+ShFQ7ZClm0iNBbZzOs8vLq+arpVab66f5GVxOO1v7u76unb7U2UyDTFb72wH0QVAALdYr8ikAhMZBPSZdLlYry42fX26v7891rhalDYIv5ZYfpvjEWEIg0OcRYb7IMF9hf29czYJntycB0zDahhkF0U5CLlcb15++uWTZy9UtRDVUiwvhCrbt+/r+1tl++P9u1ff/e5+fw9iTwrLafhlZepiuVyXWRb80LfddqeztMvNNnT31jqpM10Wusg6ORy7YpDr1TIrdFAhXab5RRVO92HAtnyzP729q50sP/nVv/r8N/97sbweZOlkDvsoygVC5fHQ5+ZBHfsnChA9kk+eX8Tv6FaMiyIefPg+aABGCtAvPR4UlCKAkEXSXiKGnL9SaCyNwKgO5K/n0TbFuoOTQLuUTIbn11d5ZooiL9FNj3sA3Tcc6j6QdgQmXESZ2B+2p9PpeNxju+9AXyCEQOuy6sjVh+Uyw+B5Rb6+vmb3nljqUYVtVNIej9AJdP3usMdKix0BObJFBhsyoIbEJKUNEu8qS+USHr7LqqpWq9XFxcVitVRG1y2M69u2vd/tbm9vd7sdRAEBTJg0TZfL5cXFxXp9AUYp1cpUamCNoA+Fyp9Sw5rbm3fI8Cav+gm0nnTVEz9h0irkU0jeQx0270aPEUF6lnPpcJbiASGbn+Vps8fkYbxcyFSbsG1Qp+AyQZsrKuD4okL25CXCf0ECMFZ68J4NEBHLnpYFH3+TFAWsbJBmQj6tBA7h7X3xxecg/lcL7/3d/c3t7W19PA3OH3bHOUWKWDGYXXkfcPGUJdff6/X65cuXz55evni6Qtq6DU3Xng71drc77PdNi82gd/h5wLKO5o4Qc5iLYYJJD24dGQZ79cNPXdcdj0euC4eAhlBI2VJw7gimxqQCBlMNllplUuKdo5HEbuYRoo6an9yi4LTJHQNlHGqpMuT4JCaAf4/ZVq7B+oglLFVNjI1xgB3IVVOoFHIkPD0T5NFawmc7NSpHgQuWBkaoKAiQLUpcFRqCS02oDCorijtOrE8c/MRLN+g+JJ0Vp84d666mu4yCbughowci9y0MAXKPBNfPOK9Dr5vIAUoAFP14P6mRqUw2y0WqJHrdlEbzk0RUp45MQ0l1EA5Nuzu1R+wjR5Qzg8QAG6UccrjJgQBW+mTUjZwH6xG4o2ACxlZI5yAwfn6T5azqYLBTGwnBgkKnPalvpyVCa3047ED5qOu6aWjEH8Pv4HIzFtOjyw3bvJ4Vk7NNKNryfHCfomKLvKDzCnvm5bMrr6L/ofSF7JwoSXxbUfcBHjixgpglTz8c72K0GvOBQFTK4lMYuKjR4BfjWEvsEgSZkhkDTq0GZ4KD7QDlw7mVMpLZR2b8DBWM8ROtWW0FcXZzAjR+pizi7Z1lvl0NHPS8LrFDj0D5GzUYVJhxWQgGD3WahCawdQR7TXr49QtwMtlUl7hJeMIMRc+Yu0LSJi4zLQJ3ca7ps8VEp0FYTewbH8SpbU91CyPgtMzG4GYAAQAASURBVMjSolquIOjqe8tBewwMSdRhQwJiYVFkZV4Nwnd1c2zqw+Ew0NVVlmWijPWgpSiZ+jDmqECxD58F0ljjp0qSJMCoAvhrmuVpqYdKWkN0CDbH5MG8H5I3N7e9Fx1U/ybJFjorZJoNSfr+/antsB5OI3xjVJ4ZROe53vWts71AmCawkkQaK6oAmicIfUTpp8AQCFpjGNZAFwnd1ML7TmtAdfRzPMfou4flhSXv1JGioGewr6cxDf6RqIcxHEWCsqWYHkawBY44XX1ZjikFpRMgP4TCT3D7FFlONBszWlPE6QQKAOitgHyIwafa5IhgN5j4SbgUUw8KH/2sLEAYTJfYusnXm+2ee+TsRocA8jMlr2eW2AkkCxvi/tFSjTaM3VeZOETYGYxPUg2+EU4fIukx+ALjgCPXCJW5eHKJwFCwGQfKnpR0aZQqUbnJ9/v61es33onNxbUf5O39NgxJ50Nre6HF5urJs5fPNpcXmdT/r//H/7PdblOj1lWF0GDbI3ARi5SBy8KiyhdLm6jd6dR5XJbhVA8hlNXyiy++utvuV4uyPh6Ou7uXT5/Up723nQSjVXuhFGD9RZ6nx8Pu9evXvu826xWoj2J49uyZlJqsi/rFcv3V17+uvv5aFJXou9O3PxyP++3d/eH+rm1qj/QeioDQFFwAeYXIs3S9rBZlVahk9+p1b7t90tvSmKuL6upZtbpO0019Z9tdl3p5sSzTNDTttu62QXqp1QEvG1RaZIur5ebZ+unn+ZMXAqV/MSQpriCsmdyM/tH1diL/mTUAnz6bNQBkL/PfpQGIxbkIFDX0cavpD3+fa0H6JzapoEwfWsQrYv9gKUQPkOcp6matNYR6NJon9YzLtFosFlVV4Z8ctvyua6AjtJ23trXh1c2upbt74nbzjs6YLutmWJ4PuohMlmUGRVIYOiQ0ElCDNb+/fX8zCjrJtZ0QL6CD3hYFnoHd66vloiiKRMlPP/+cQYOu6wBa7wDqQ6m4R0JT0zTDMJTF4vLycrO5LMuy63r6lCgxWb7Do8P723dQkVF1O3GEnHPHIwrfmLcy4/J2FomTH1FaPxwITAd/JHY9OCkflcOOX3GyWGfJdR4E2vBro/wjsFDAMWX8DQozIlPGU8xUAhKJkpUYm8oFRmwgSgMo1BojYbhBUQAYcVM9enNzQxE8ME0jUxdLUDf4hPDVGOW509smziUe/EMksJRlkUuddJuL8pMXnz59/mxRLkMIJMPov//+e+9inQrHSXp46xawQotwPsc95vAk0pztAIQbyg68OuZdUjW9hdFsJN1QN0sMZpL3Iqwe+tXEK/Kqo4EwnEloa0dcLsfHRz5OYkKSCpknMgMUhcGYELaRYJXQfkpMXh5jEUN3LlBmlBTFPOV74FCk2J/wVSVJnkqTwO1TKY8nxFQ2xhqP9r4KjFicUzkIXfcuJJlPjIdDv+r8YD1SAjrO5uFJVISoKf0alG8gbPQmCWGNBjjUGpH3IocQURkUSgwIZJEifanI0AbwJIfVxWgpB2lDaFo4/TVtf2jAKcFuCufQhAhocBMuUvKGJ5frnrwgacKRID1ovGLP9wUaWmQHzyPDHlGf59zFYYDEbaQO4oOPbSdghY/dLIhBiC7Gj9a9EWF9uEJCb829ymwmECvnx++KbhsQMGKpBzQHB4waAOrGyJqVZ61MtBTC0SBzXP/jRyZYJTb8IMTQOCvKjSYC02xOMkUizjsTbjrhAk78ZvK5P7sFnPa7Md+KCGQj3Q1BeZEYPd6/9JqYRzHliYzgxlACxMENaCDpQmO0iNYQeMySOIELZZYR8xyMaHfkpAUIhwXrlGNNDH/SbmIaxeuPdTWIlMoMSKgQHbz/4ec2UOZjSXuRwjoVPFHCPOxtcPGzCxnnhCBIqyzqrm1a5M4i/wXzKpWaYgCjCoA7ak2KMGXbBkX6DCzIEhartM6YXIWLXGTS4balTJhIgh9g7XJq/b6xp37ohQqJCVIH1EMSYerwlkEno6XIjcrheZ9Cc09DQ9d3MDGqD3XjB72A1xah5tQC4fD7AC953DA051TKkASHjDpCw4kW0PMSZYbj26Dnp8sPY0by9oHCQSYWSx4VZ6RMGwlsAyaQTPfCtIBhJLx20+60QWiuhrUUjrJHGLNdLha0T5fYUi2ycjky0sSYxJBIbxKRZgpz9kxDG4GRy9D03ant2h5QVaLS1JQGEwHgTXKQDqZu2FL3+z1fwnomn0uGoaScYMoaCag9MFahLGDvpBIUM6MyMu8gLcBgyI0TlQyaf3SJcKoUIS8rkSTrJ0+vX7wIWh+avqwW6xef/OP//J+/++3vjsf26sm1EPqHVz9vd6eiXKR5aaiQyBbFN7/586+/+Wq73/31f/0rf2o0NoH6/Zuf6u32+mK1KksuBpwYMCgpK5mXPlFo3JPkoqpO+8OxRnWxXK7//Jtf+b7+7d//7eH2zXqFhDU7BJtIlVcqX0Dj19S2b0UYTKr7pj4edl98+tm/+3f/vmuau7u7n9++a9t2tbl89vzFYrESYbh5+7prwGRumoZGH3jANAWzEYhqaN/EPB/9gPcG4pp+F2pXpVfffPnpb/6lWj8LnZbZtbBa9Akggf27m5sfdttXddfcn+r15dMnV89Wl8+Wm2tIDkwpBiOSjPzqQdwaLx82BobV2O8vWf85NwD/tAj4j308ZJafjbH/sN+fNsvHh3W/3zcyOcERCxy3PEddwIU7yQ5UmhVKI/zFDaLu+oVJs7yAvCo1hR+Ulq63x7YX+fLQYILPlyZD6cMwoEyfiQL5mY1MMoQCZiUNbQs0+0WegwCOpoIq7h753hR2H7wQtm8b6/vOYsZ6aupT17Cc993NzWKx2Gw2gI7LCuaV9LBdX9f1dgsqC/icx/32/j6EsFysiYIcvU24P/HeZgAvgceDtDqKB9jyaF5/THswJzGfrUAiWfPM7ZrkgPRz+t/4+CgteN5IECIbpVtkghLpBYAdyYyXiEI4MKjKBtBLIRvlgTx3GiPlnEWvQA+pJEQBD6M2J1VwboAj8vHIyzTmAgmmgH3THnfHLEeNyKYuwTkNXr1GJYN9CNwC/mwGymByDSd/096F5n43+KYshrc3/ne/fZWVxeV6M1KMlv/qX/+bw+F0+/7m7du3LcXosvK77/s45haJdd75pq4hg0MoUrRYjQeHc2pop4OUhCkYjLKOBxyFB9t1kH5SaDFkqZDCUxCYkEJThgN4LIgeEB0UzP6ErBNAdPg/gyTsmLGKzTeRHtVJaPtuYpLQqSTYX0qkJDAx0qNTdE722Jx8EBDHZInMEM+lE5ENyoOHQNyJKCyhGAi8ZWK7orwDUYLqAmDv8O/Os4zwPXxS7LGgzpImp6iIa8uUFPp8aACB9RFfIFEJrlqig+F9H9teJwkq+1OH7Z/IOERBMUQl0ApOf8qjUhtMDgiXHfnYeYYyDVAK7/cdpMb0EEjtJUB7rPn5fp8n6RI1K1axU/vErl9znsx0d9y8v5vcugB8qpRolB40+HjPjBc4HXaehvE/jM8zv+HO/xFnnKhj8fNJ28MQK2ce81+xHgsmeIFHuCMFjpHvmMoAQ2Dg86AJsayfblSFtWLkL4Huh/+HOy8GGyO4zSC5zSsKBwxQvFBEIDWouFOZgPbAhmF8eUx2KQ0S1wC9fHxUVTXFa4D4MTYABiL4c5KJD5ZagkhqYtUBGsQhQGqCkgxXkyfVNFWU55WKGgzmqWMx4EkKTBFoTAFxgsZgx6MTDWg9BLSz1IVaCofEuAGH1QWlBoi3yjwNw0khy9e70DnrjvtTcwK5zoDumWe51iWqefA8esu6LBTBqmkaHjLghMJCFWtHFzpJnzdOvyXlOID7B4SZLz4y2QV33La6VUF6VehQ5ik4ZtBpclwMKl0rQ57YXnrb2dZa8q48aVN4ZKIlioATxKVRdnZvO0g0sD2aqsjX6yXERUL9+NNNYz2iiq0nKx3M0SDk9i3lf2MB486dEnm8lo4ublTvhOzgKy50zoYnbQsb+9OohigqwIUSrzjdkvhSiRzITYtvE85mJ+oZTpb3rsa79RpxAeh8TFEiAZAeEZHkdiGEpm9QssMvlH6YeE19Zg4zHNBeFHJutW7IQgNSaWilVCJS9GNQAASS1OYpJkWMlUxWEMgjs/A9xqyPph2a9mWYbbiIqvDNTiA0jFwZG4M+GEuqQLgLVi9qZ3hZ0zqtFmhk0HKrb/7t/7BZX/32t79D1LFzZbEAT6yzN69fby4v8qoMIuy3W2ft85efXK5X7969u3377nB/91QPpyoTtu+8w9SoyAaJA43VGkQDbZ1revs33353eXm5vrg+nOreulPbPb+6+upXX//HuzfIp9u2LogXn3/563/1b8xyc78Fz7Y+HVIFK6397n63vU+S5K//+m/2+z01vVjjt/AD2oIPeaqfXF7AEIB5yJBOnM0BaS3kFYAcmcAGdJXHRShUbmm2rNJCZAtcLL0TWSWKXLRZKvoLacuLyg/9p4N++uyTZLVGyC9irXMRRHM8FIuUoAIL0RjrryiH5PcqW//0+OMnABPR+eNP9xDWgk0bbpNf7MA+RJpHEULc6pJxCBDICor13aiAaaJEk9aCI6KYnsuxgmTyk+cZeN6cvlGWufBhXze3h7rpQBaalG2Th+P0zWSvSeSfhloOzB2KDP8zwD/wPxec7fA/sO+8JbpxsN0JiLBKiV6pp+8D9EMKzQMIgmVZ5mW5yDKzXC6p34A1UN/Dv3K73dd1vdvCdpBaDOyOpF7NKFSRbDppHZ+81WD0S74T3HlPSoCzJwNnGsy+0jz3/JUGxLSSjvXro+qfgfZHJtBU5vLmzY4NDLVF2ijnwnCIGSNtsFumIpKjH+Ohxn6CNYLpZxw1TSsv3lVeaHgP8JAdSEwUaqwXS0x1KH4LWxsZFXvrNssV6OiwraSKkCwJ2aAQtoQBBTh/D1WHbzIMnmkGS/U9+ccgqsVo8HxWy2Waptai/WAZxn6/RbQt7CajXgWiQXpM/lM8S+HRfGIUkYPPujoOIQqDg0UPeJjElqdbTye2SqUMMKgBFR6RP2xMiardhQEYZO87BIHBmJ44vGDmUHoeGkUyYAE7iJBsKsSRHDeaiGOu4CQ1Y/H+oqg4QegUKDepyVJZAMKiXGGI80hVgHE3qhB48sDvSGhTuJD0Xlk3wFWDhAEWiuYMyjiijniIhm2LSsQuVmt2j4yRAvTOhEzalgL4iLXJ4n9IMKljotE/yFF8MJnIkeeENxPXnyRlJMQT8li38D6ndDPkZZArEmwcTwdWNVBycgxFI59fzCUYrTwX+mJAwuhYW0x8Hr43J6X43Ghrt9tNXcH0yyzO+YiSknzTox3tBxOA6T/PDQZ03/rDm46mJlP4AOHE07MptrWlj0wFCShPBITTdcB2meT4S3e7wgVGa0gsu5nuDEQ8VvN0XcWZg0SnaOFUE/f4yTuID+x0WMbjMKR0AU9bx3SsUiXPGowzLZAdgM7J4mNxTCUXu2bFoxpQSHJ5Ge1ZiYSJi5a84whHJwocW93TcaO5BxBciSqQjzBfq0T1nuyYaR5A8ug0I00aqGdgRGiTQuiC9gfkTPD9agxvs1SXEC1BWpampqI0gOCx0TBAs9vuKUUKg7sAEySiIcV8WQrvjvl4MbqY7gfQgbjW5nmCTEJhQmEEfCQKzAR4ecd13lgnRD/o1oW694emO9Z90yHkBPnHCm8MpBQFND0zelFmfJToiKF0p/tLlavNoWmPx/pYnxrw+tq6hp0uZmgx2oP4kAnkat7bPEMOBu5rUD2JqYgMJrb7IRKaJF0KnRQ+cYyZDixAMjplOhew1zgTRhoozR1wKSqy/ED6gdVCZDAQA3cRSRSU4UCnFs5jTJk7HuooHEh8IpyBDgUOB8sldF86SxMlO7Ld6ywEXm3PzGCM63PSJ/Rt13aWdxlGBLK0AFcIZCJZnw59jzGv9QiNQd5DnmnE5SQgBFvIGASCGug6xEAVVzJNQkKmVIGIYvI/TpKsqPwAO+PF5uLpy08Sqe7u9k1ttdR3d9u3b96nafH0+vnhVP/ut99hHZBSp0ZmKivyq2dXf/6b3zz/1ZfCh3/8u795+9Or0HbN/r7bbSV1Sgn5oAipKUUFWRh1bw/H0+rySdNZk0E+/uzp80QMJgnvXv+4WeZKwsxUZdmf/+u//Orf/x/E1XNxqkXT+hYTgOBs8F2WZ3c/v/5//0//k4cRBXuAcXM+JnOcOaAY7J+zkljDIzAMrCqQndikdTi5alnaQtfS6yfrp1/8avP8M2VWMhSJKAViDwZx2u4P7xPZ51VpVk9Ejmw+YZ2wUpSlEBleyicB/gLJkADAIusRMij7vejzh48/TQD+f3v/k58Mf5P8E4eInBwYomYr7Mm37rxt8DOYNI2NBPEiMIol+dr+CGrH5NqR51nFfHEavLKoEppUst/fH0/Qy1Oa0hT+Ou3oE9o3n60z9dz54XCq61NH4U1aKFHlFaKbiBeLxVMqvEOagoIyJGTft861CeV8h+Cqaoli0d5hsCt1nqfcAMC2MM9Ra65WVbnMs+yzly+klO/f34YAzQAC9mhecWog6yoxfjhbc0xYF2P/DP9zrRzbA7IppF/nsoMHMhGRjOnIVI6NGq+Pn61H2WFnu0Di25GTIRkyAk2jFxqViQMJE9nkBpwQR8G1tD+fWQ3MYGeeKZVrYwMmaa5CGztqabC56Z2gIid6AHkwS3Cv+Yn6/g5Ma1jAwcuZ/oegH068UVKRSSdGA6w1sL4BJzZHSQkqUW/r7dFZu1gsbrc7TeuBSiSHuy2eLAi2xA5h6y4EAHa5yaGmotxism2MXRCuLqpnMCOhOmU2bMGsH46bWhoNPAgbldapcqV2kjqjzCTwyjRwU0wEOACYjSN7y/fOI8YSTad4t+t7Cl4lyqvw6AGUEDoziMJJoDmFfQi8Hsl8VCM4luWgUZyN+VfwaC2EP3XBaAgrsyyF3ZEKOczsENxEsj5JTFz4JFI0jgIHzuNE0+/gkB6sRaBnvDxQ8pCCQpyONf2AKMFEUoUQE759hppOQjxx6RBqFRBFF0tRgaDLEVoeXGeThEA6mO51mCorI7XJihIxY1SVSB/0GJRRmDWjTVTbwcWUiwbWSAiyXOK0X1ZeoK6dcrIiXIqKZ0IKmF1GrsG4XitSofC6QWLQiB38AvJEBSh32lPVzig13PK5UI3XEHkyebgJjvcduXPQW0XwNN3XPOTDZIvb6YSUnYwi00yJ1kEeOuEyiu5n55gtnNKB7AsZ1qXFGr4chO2RDsV5hNTS/YhKFXN8yOBJlj3NJbDOsGXt9H/QBgx1zyJ1duGkmFyaFZA1ljIGwxlKPGa6WbRg5o/JrH1uPTRMSthZa+rDolEoinhqBqL73HhQaQYBXyvyjWSTg8R7Jz1uycRzMBwhuJg6DgzhguGB24nGG4NrexSsKFZc8E1vgoQrickS4ZTWWZF6u3SwCa1PzXF/wOA3N2ZRVZjz5qgbc6Odc4ui7Kyr2+7UoPCEsxFBEYhzovEd+iy8XQz8xmkJildce+wuBUeB5NjZzqsu2MaJMkeICg2HTe3aIDToj0Shh5eQMlmmPHQpyNnIAGoQ7Z5ogtZaQOGZzsDMSqxF5F7ra0TtKX15UVxcltb6w/F0f7/bn45tR5a8YbB9R6cSNTbJaLngm2B4HPXRKIR3d4DQbCYBIhClBvOGEx2kGHWcgkMwPIDbKcWSh7a3INXkJZodzG9c33d13S+rwtoweAxmsa7TkiIkAEEyCIEZG8INJITgSg85+URrDXucFJJncFM9WiyoApAX1p1cXukUiXGpUbbt4ARFKj9oa5xUcPEXl5ertk1PJ9V0dP0nAu3dIMFpIWMS0omzcRzMg6TGhIoTtjAToNwcJeRysayWcOQcmiaySXPwwXb3P/98e3N3t6VBrnzz5o3W6Weff9J37nA6uiEsi2p9uV6WWXPc3v74/ZOvv/7q19+UZf73f/Vf7ra3pTbVIu+OxyTQtZGlHRBKCLKKLF1Wi0MLxsFCZ5dPri6vrn/68QcZ3Pri8rC7XS+LJ0+fFstVkGr/0+tV0GK5Fpsl7tgQ1N1NXx/EYnX5XH7+xZc//vA9N2zsWIVPSqslvD/OsSTntPWIa8zmruiQEboBCqw22eVFpS5WUhrvRFpkIl2JoxXeibwQofS18XCqqMRQig50IqFL3MaIHIdgQZDpAATn5CsWJ6VRjfSnx3+/BuCjBmH8eMTkoQ6MfZmHP/D3Y2VElNCxB6B/wngIqYEkMoPfOywLWJ0kJXkeh9DV6tRwG0AG82g0syznNdR3sIRv2x7+zga1xeTzw5Pocxz9bJANsVFRkAMQqBqQZDq45OhB3u8P7F7EOIQCeRWgjTQptJrUKCkdUeEQAkRg46hXKVQSXYcXxe6LhYm6l6xElblYZFm2Xl9AMk8pM1IKNpXr+1Zrhl5iXn1MSqSNcyp0HoYzsNkzD8NwPAG/0/fxJ6S1oA2JbCWBkp1rl+mp5jOTedhCqlIilDzwGopWboTAsUtIzBuF3suwrC+GvlPuMsH9+J4+F9ufO1ycWE5RqE25BvSalC5JZHKsTWxmPvYnbdMQKuzkINGZedklkGOODjz80mSrCmFFZlRF2um+PqJXo+IGI6Xegm0FrEbBXPh0Ot3f31vvnj17RtUoxv5EkCe/aO95QsI9Sazxo8fFA+0E3DUI2CIxKC7CEHoRTFoW6DHypFIdQooTT1uXACk/wQQ/NVMSrUb8VsB0yw3q2VNT26GuW8ReRVNCi5YABA5Dth6GgoFQotNB5+uc3OfRIlBuA+yAKaTJ+7rzsnXGeGNspsQyS4wKqTEpsW5AY9WIDz7WPSbfpO8H1kafK+DAGucDhiuebVETaXRhdNv1PKmwgx8ATAKED6BmAUEc6zNQCIDTSkI+hUK+O60jXL0h2pouJUj6oftzSYKSi8/ZuWmXMkWCKzQDk1SGUDuoZWInzG0AS0spcI0BKk+5SOSREhO4udZfrVZMw+Nre0J2me3N9fF0J4KLTImnj1c8YspNLkDzIcDcRW0CIHC7gi0+W5dgloqFhjJiGUCGhSOFGKIZj5N20KmxbnCzP4QB80Ky5qSkLtai4Gl7mijSQaCWlA+DEHKBC4wWFOhrRpZUD/F5tHGJd+XjFJeRPUX/hcZzOi8xkY1qRUAlOM5EsKbbkylmc4kFHSdKIElCloHjRxMhXiVif0jRI/F7XoXo9oeuAAsaoQnAHfiYkwsm0gwHlzgMD4WyTLMkMTpz0iHoQgurZBIUllxwQzJywUrQeHsYIDM/M4drvvC2L1oDJYrt0BG7fru9Ox63VVFEqwBkKwWtc6i5FCI1MC6DeaidxbkxLZJn0bijogsl0NPRb1okbtDODTZYRvqLNEvJRFTpMtB9d2qRnw2pgVSZJtrbAEVQDqQB3RJ7ItWn2irpO+PzNM9Aea2KbC3lTzdvyaKfWW26KrNF9ULI5HBqG6BRcDWiqBFquMaMa9g30DmNtAFSBcSLmTsCYp1hyhx5XOhGOToMjD8/wNmD+G7oT5GaQA2fTArwQyApplaCSG7koAQTWRLJ8DwcC6sFIS1RQPHBpcJKjr0+R/4J4ARu9GjfkJiDYDwFLEkK13XWtfbkHLX70C1S4UJdIFbfBh0u/lUWWYq2QSUa/AJKgsfyMiiyhkMIiTZDCCAZ13XbdTXS5RGHCpYalnBH7ZMTCHkIwP0urlrrbm/vlov15uL6L//9F9/93W+9+/v7+90O9tb7zeby6dOnrt/lmTmdTvu726pMn//qyxdffC6qUgxCLRYvv/pKehDStu/etonLAUqZIs/igAhOmCovS5WVX26uVFFdP32+Wm+auq2Ph9u3b9fVQsIrHQRT7cLhVNs3N73MrmQGVyYHcqeAX6cMd9u+PpaLzTB87z057VDwhLe9GwabJDpFxRKTXsdynyGAKWSWDxrdzkOeLrbHkxfu+vri+uqZubgUxVJkGfXvkaYojM6rlZfOlBcifSJwcwRBaePeNiE4rUOCs0bwBJU2sGZhv4Q/UYD+F9MAfNRXntuAD3+ZDbTG339AOGF3oIl+BAQ4Ea5HoBW7OjCaxc6HOsuQ+IAbHGxzsDUaaOGllPe7bWpABCLHTAC/3vv9YYsanZZU9v9h+vh8lB/fBu1hx9OJ9njsVYDSINwEPQIJgUSnAfgWQDlAEnYyANBMgKKoNDOIyEaZCef+Av79IEHC8RJVRVvDlSwEhwYAYeYgFMT0Pnqw8pWJ7+vlYr1cOefevHs7r7Mjx2Ya3s++Z3VddB0ZszvJupSXzQcuTADsIY6Dgu7cv33sFE8WhHFfJy43bwZEJiEW8czNiRFOphYhfHJ6Wj7OlBs1Pj2M1cZSI2YKk/QzOu2g4qUmiowP0bxgp49FQvzDsoIocyJ0kXc3jSDHtNdRuYh8otGxPS+qclFhHUPAOkS/fr26ACOrhomBwW+k66oyxtzc3FCsF7nTq8HB3xD6ck4O5jWOryKoTSfoccxaGiPVCDsCegK8GpayhOAGOySpLXTAmBsV96AVsk41XNQ5PQpaOzPeGkGop4tl65K2zeq2b1pbt0jGa91wqkHR7rGD9WHAWAAmQokKCNwBRTbB3JzFUlwmYYIP6BNlVGh9kL1T0te1T5XIjCdqFAbiGk+lTJGyhenghLOo6sGIC25QlKBJxGTOAYUJCOhV8Fn3jiIhgiBAHvpmbCsTiyN6PEKkAfgVjT8611FDjnMMLA0tN661ATGueC05+LoDZQ4UKOqlM4wZEpUqH5xJi2pR8gyN/fvpDqGjyc0qdq5R/DrRXajwAlIcQQjKusNAA5FuqSkXVTEMyX534Ip5uuqiKTlRaB6LgIn9FPN2Hk7SmP/2sHVnB97z8cG7kRTOJUWKuRAKKJKUY/wNpj0UFSB0jEsEaD+gyaBJQMlEvi7UBzChnjZhekOEl9NSyyiFFii84Go2pB7pPcxGF6gsqavgfDo6Yuewp/F1YwQ4T1D54xDTJzr8wI3HwNVgGBTIkdSB8GFmq5V4KGgx4cNFqRfgq4BRAoIJN9KJtZhaUJwZz0DA3iFxKl3UU1ZAvGPoamThETXvuNzdmICGtR1vGnanLDTREElgVZJI4SDMGq0pRPaknnWeWEZiSIu8KGBYQ5mycIrrusa5/nTYu75L07Rr+iwvTVogxykvnU9OTXdqagPlIi+njBah/aQzwoNoXsz5gkH7HhIaVHqcCIWRAuZgUkpef3rUaVjYqH2hFc9geEHlNubU1GjiCG5Wa6Iv2vp06k6DplEMcgwuNtbDVONwOHSdHRLQVrMif7K57JxdLPBPXYskzq5lrTOjrXQxcotLkbE8dmFIifdsGlzhGkSviakhTgwtQdSvehXISY8oabydIGoyzXOsYLBh6OUAbTdSnVVBOScg+hPhJ6Js0g8duLjUGYqhl6LXEo6bRmgkNsJSKTPknaDIAEGGREE91PcZYGwSgjNMnWeZ9mFIDXf3SiXe9d6Fuj5ooi55TAuxhqGllbJuutRS5gBNNAlZBPYGF69EORpmefjNoZ62Ltzc3qeHU1m3OsuPTXt/OGiVLldX3hvroe0iE0I0FSKE169+uL6+Zp+G+/323etXZW6WVblYfiH6rn6/TbzPtVotFnc/v2qarlitwuCbriHhk5J66F3bn6xy7unnX+hidTweTZ4Xm83/+H/8P/3n//D/2d68LcqqPu3vd4dT73M/LGRu9schvdvVmCh2bS1DWJdGBne4v+2Op6fPXhzub3d3t7ZrEOGMMGCYr7y/uRPRulWyGUGciGLMSB0oNQBRe+kH0QnIJoM8bffr49EsV8L1wu9EKUHt2R3u3/507FudZ+V62bkhN9oHHbxVmK5oVSxwa7v+/ZvXRVlCiIwOBCBiwPzsTxqA/+4agH/yGWcbG5PKP8oaeqwWGP+TSM+c80iitHFrJDyEy0ks/RP+BBcIppKTvmReb3VdQ0nfxK9MMPA1OrNhYEdL9uzjaptG+VX82Fw4Eo0e3PoW9zKn93GON5PFHyBVs4M2CJvCuBBFGioQrDf4vsgKjhYGrgDH+a5rOsqQwRBz0sPxk/PzT+5jbCjExv/L9YYhRn57U0ZV27bTZIDfCqHR5NT/EIT+PedrkMr2iD3/0DaUj9K5yuFvsGBqEJVpes6m8hEXGv3XWZUxVgYyjMjQ+KJsIYdFARsUozRj+c69DDcA9BOcMgPrQQmkjWpMEDF5HEArCzk8xvM4VxM2DaS6c1Y3/ydLRyDHAlmIMh5oRECxL5y/hj3Z+yiwXi6XYEiT8zddWihttRTb7ZbILnp6fmqHYkIzKyRp3AGpMr+v0ZQdlQiJA1Wq3KoU61Jt1ovVIi/hJB0yHZQc8lRC3YpwG2AncbouZW/hoSqIRZwkuoc/puhc0rQeVOCjOxzbunHkjUM2PqwHAP9eDUGi+gPMDj0DaNAxz2GUKyTe1VuFfC6Tp2lmYneqlCrznAj05PxjiZLX2T4Mhx5WsCz+Bo5HpxGsal6IGXdnWgvkqaJ3HTPO40UbBdZI3Zp+7ewKkPi+PqQGJT4QQ5SZNCCiHDoi2+EDsW6P3yfEO/TAJt0SaZuQ+7oBro8gs7FFHC9K9cjuk81eb25upnuNNTl8KFJTOAc6+KS/n26ZsyBknC7CqP5jq9/ca+jRVyLPRhoMnDTACMPou8gzkvPGuHQmGuIoalLDn5ky5P6UDJ6kRDTgihPOeDuk5+6FoXQmbDjaX0naOs49qAFwpKHmxWfqqydzrUfGRAz6zUh+NIJgtQCfT24hZllm7Co2nguaHlBHzR+OgaExowY/gOMuhc3h/VAPwJIPDLb4N/hFzmXlwxWPsWr4X6UQp7JIhZlAFMBBPkgk7mfzXlKgYLLUduT6gpgabAwKw8NEBIh6QPEWtmtOx0PX1DTWIDtZZEgZUDIHrUw+JBpkdHuCvIb47rTaIDgWI2tk0aKFx41Ar41NTOme45TJMh/8S8zE6GPSNmGyQmoD1x9otHEkcwwwyeFeY30jXyaU+yIMSsMUlTMTHOU0dNamVZbmWZqCaNr12JVgVyQNU4ryHEn2w5A0TbPbHyEPaC1W9ehrQMHKOH80UYnHmSc+zO8VmYFGiVIAQJSNvsDMWYUSl+Sx2PJjegCNjLBOUv8LD1Da1AI0JHSIKM0T8l3owxKFhF+Ez9D1iZQvLJ5GceAg7I+QL4J9HBJtjHmrFYhtMXGP23aMBKGhwpU2uiFRhheSqgC504Vn+67tEeMGR4LUUbI4xg6MbMEcHE6vdPAUhEsyaFweoizSIjOr1UpnMCPuoARJBqWbptsf2r6XnYXFhaTPlRliJtNwI4SwWJTri40NkHlfX19/8atvLp++eH9z+/OP3//w/beH25tFmS4K05xOlxdrSO0Xq/XFRRByd8K5EoleXTx//ukX3//w+s3797b3z66v3/z0Y72/9129qMqiyp1IWoigy831i/X181/9+b9Zba5++vH7v/7P/8G3COHqT/u+2VdGdadDsD0OqYHrse8xBEAHR6aFdCvT6aOloCc3FIykWNjJowlCFFCP5UZW+frZs2effZatN0IoDx1++ubd3d9/930/iK9/8y+++PU3Kntad3mRbVAv2EaB/COa3e37Nz9vd/eXl5dPrp8Wywt4/6Nr1uCX/pEc/eSfmQbgFxuA0Tb4jOWPY/qPf4CPB0tBxmo//sIf45pDzhNjdKJkZPKaBI4eN0WALtOG7UbKePzlcc9gdk1clzjuNcb9kBPIuFFNG9jc2JE9drgKR8qjjQ7BbdtOO9+Mp34e32OpIh0UqN1IBETubAqeSRJgCCMM+NCQoPEYVIjQ22buWz+VI1zn8a4wtQRCiGq5mpDss+GGANVhHEdGJQC7K2ZwN/tFG9ZHfJ5BKoz7P3YTzCkK5ydJQNKbgjZYrsdvCYKqybv9LOyOA4CpJuCqAeQPTH/jS51flJ5/MoedqRUIyZx6y4k/OgtgevQgJ+xzYTTVK3kONRIX+kBcUkSAse87eVVjPkJSpyhZhlaEOEcRkx4FrNR+WLICRKWllESaChmfTSXLKG0nMr7lUgrmFQARycddKa8TGPZlRlS5WC+yJxeLq4tqWeZaOhgeInkejRBCtehqQXsFGIrAaWUGvD3tQpLmqx7pmaq3Q9OFw7E/7OtjawdpOi9gFYF3oUCzIXaQB/5IuzKV3cyDx4i1rzlgzFunCekBa7bv16tVUSKzTSoTkgThXE13JKJPtPCmfg/pBiCIkoMuuXPS6WTNo04Ueg+OgYoN25h0hh2FPDpjlcgVGcjLXTKAO5dnKXxyoWkgEXwN5zvhYQOFmT9rW8liiS1fq6rKCkgzCfn1t/d3zrmmgxwwetFw8TeaAnGvONlcPn36lH/OZvbk+w9/YQPKNxYNNuoF8Iuf9xPyPfUATLMhXfbvs6Wbr7ewJQVdnAJC2UsRpSlAfoAMCA1il3LGr9n//9yB8CVHAApOGY4wAEmqpNncEEtRGn3oR0kBHwcbA+kYE40WnEImZswVmSS8Ex1x/rozztvIXxod/fkuAD2LSgEum2KzlASEGo05JHyg4tOSNiDKgsfFHGv/AL4IXD0nryq885g7y8ecBx2jKQKJbc8tCk2Paa7L89DRYDRuPTSH4OMbUxGDF1B/DYhGguGITgzaLoTWYdzqvAJBkNhNCIHquwaDJ8hDhRqCwrwKfRzKUVSHWeLxWzHaBbJpMqDjdYOXCG/ReeJ+90OScePNCku2B+ajRGbBdLLIDwljOlhPBqwnvIEA4OCwwCT0bae0yGPpHEmbfgh12473gVIaLa6QKe5HLDLk9oY7UYcgoKLtYdLFehOmO0YJN/Vs8LnHdkanODW5SaWR3tb4Ls0xO6QU3xRqo5QopjCANkqkYCkNHotUH7xNqRWnBoGUwRRRgjJ+YMNoChkg5x+AGonpLVrUBBhfZzuwd7LUeNunWpZFtiiKPANK33dN23VSZ4jyxKAjL4pCKs2hdZBrE2kN6TodEWtZQI9RLDYy8mcbECxCue+gIVK7wF6uHAdm0vRYn2xwWhCfUwQ1OJ5FXF5eKjguFIlRnQ27U304nOqm997wRIvvXMg7YBwEBxGsUcJLQmGkBhbZWbdePaHBEFlXwXyqta5zzi5XFYkLl6uLi8vrpyrLf/r57Xff/fjy+VcySYNQddPu98fTYW/7TgZrmyNkzmWm88KpdDB5tblaXj7/y//hf1TlQmjZvn391//pP/z27/7Kt6d1VXTHe0WpOFACjGE+Ab6rhSV3XYAvlI3KXoVViXVSCfj/hACXZLAHnZXWIizVKFVmqydX1XrT9v3723tYbwOLNOlyXVxcFZur9fWzavOp1y9MukpxfTS+P+pU+mb34/ff/fYf/u7ZixeffPb5+uJKZiVdtAqb2miJ9gc+kj81APMGYKrSz6PqP+RJ5xDLmD/y0d/58AFe8EcaAP6GvE5A/4BEcKLX8/ud5gaBIqCLjLho46tP84S2Raf+YaMybdhzoghglayg4F10BRy2xQji/f09F+5chzEAAzQIXFVPbu+I6KE0TCBG7AcAuQsQZUMmjxj+ptkon4/gOlbMENwJ1KNzqteEiOdlNXfbOO9zhNJNfiZRzQx+UnRPAk4/fiVlKrg3UzTb+D25F4g/tAHAAfGPGoDYA/CB5a19GgtQk/FYYMB1AT8/u7xPr8mwNEeyjynSXPSPQm3UFw/eGI7Dx97/5O80TQbGeQbRBGKG1uhuHnFKwuQ4tHj8RNFDBqjq2FJS/BCRD/hk4esU+MXXIft5M/yJy4peKLqPjO+K9jarTVy0ZCIAF2ViUYgiFU8ulkWuFlVWLfIiNUDzYZjjugNgGJSwKJ5x+gC/gZVlQNQdzJCkSZIhxBcW5eoWuUADaeKHzgLk65FvQcwB0oCCkTHOMRJc/3q5rFJtDvvtzc1NWx9hUaJwtRONFYzwtEB9jQBL8rqCVKWNb4mtflgMQDaV5/YAl02iWJCNs8geo5HpM1BKXryEGUynQRDSyjQxeEkzk5aw6EXBBHpR13YtvLC8jQ0wRB1pBuiahnjkpgvUHpSJ1dJaC94UPeguxuuZScvxECCYGwTPBoDy55/f2h68CJ4okg8Btrq2haTkgwaAnBtZBS9+8SsnGDA+2gGCpckie9pIeMWOT4XUUHCWYWlD+tokmJxto87jL6LHhNRkvLfhszmPSATktsEJksLiJN9nnG7O2dXxTuWFlvBVlIUgRZxZglMvPVkPP6KAzjWAow8MhwBGhQw7wEwNANP94pGnGdr4F6xmiOt89AhCA6D4gpneyTxLe1pnGDIPAnbP/Ie82RHuQCD1eHdz9NWIrbAlwVj9c+R5VF7D24BHOhAEQ5UBLsr1xSUwrwDWjQYSxA0/2gYIdY59b6F8VzoXuIeH2/19VmZVtczzmOzOFDWg9fRhxuaFVNJ40+wqRssPN3u8cs6BOX7zYNOEEtgzLpuRohnhjCJPoW3z0FnSNqeLrNTGnHrEmLQw/kEIIlYD+H5iMiGkgRfNIMkKDPapDgMqwNhjTh8tzvR9R4BLTG5AGC2Gcz70RYU2IE3zRIHLRG5dGGQUWdb3Xd81wVmjBqT9wHU70SMvk2tKDOWorLRdO8UEReskPoMq6+lO5Kh1KvIbYCSkdckgFlKLvChK7NZKJYdTzaNUNuTELIuOKMUEUBIfTglaI6w/OjmdjoxfAPsJCE9m7YoHRTk6UFHsRsJM3mpZ+WBFAJFSoUDvhUcFwm0pMA5wUXUgd4RBqK4DmEMMUVxjsDDCWEjAlg1jTajF49ZIg6ru1IPtGEMegBDFNDYt0qKs1qvL58+uP/1CVMvTze1PP7z+7d99K1zSuqHtbNchNTWVAnJwvBGhU1Wu1hfPP3n++VdPP/uVuLgW+QIL0fZuf/PuBM7P+zevvr/5+cfE92hnscWTY9u4P5osRwWDvDlTQEWHs0x6AI8zQhGQw4CcU4wWhxDag9HKwxY2KatluUYUzx4RSS4rqydPP7n+7Et59UJkC6EzoS8H9VkDKKw3CgxVIdrD6+//5q//y357/+XXX339q1/L9SW01gE8zUSeHVP+wEfyz6wB+EUNwLh6fjAB+IXfn+92Dx+/dEQ//kyxYaCVhGbf/NJMJScGrUBuKAHB2DGYYT9vANhepuvIpmoGBUVkmmS1j3YvblLPo2pas3j2rRowLB8V3EKIly+ecdkKo9wayRfI8zo5lSxowabopYHiThJknVLDApyJRMk0H6DGgHypURdSRUgyLypeCriLjIFKM7ANSYfj6Zjj9xzEMy9WWP1GExjcKGOhzVGZMMWJNWzcRpgPzSK8X2T/f+znJM2i0zS2ekTdpREw+Mh4V1PQD8a7Dy+wh5KDB68CyJjyIuPkiZqHEWhku1ImLo1/xG/jowgraSFifTnnPHSdxR9QgeCx4tPqPBDUzV0oGZhMdCxSEfO8iwcbxAumllUrowY9DClJDxwRXwIKOKzoVMAxFOclDEBBPYqy5vh+yLoUKlnywQhQ+sH3s26E0eJ2eygysVwkq3W1XhZ5lcO4SJn15ooaD7wiOV318Otwoetr7xOLabkBt0jmlBSLAXEaRJFJZ0VnRdO6trFtD3G2daJFyjX8PrBuUnDli08+hRZwuXhydfHl11/BL6Ou27p++/Yt8Dsy7bHB705138O+dnNJgIJUwPmItkyBl4HOPGgMqDTB52DMH7m9JAGPTBGyfodhUaqlCyCikKya/sdl3+ATQ5FBkYiCWhzoXZ6SoIAi25oaEafkMI8KgwApflc0k8Tb2e12IUA06VAZkEkoCY75nZyveZRu4Jf0PdTGxhjvHMMBxFZQ//Jf/AXi/BA6jhBoUhp3XdugQZpd4bNFCEqheNs8/EpCeeZTR/8KKCJpIoFig812KL2KRVAA32CdI90Az3Jy5xlC1/CEnVatKJ4RSbA9ru7obQz8GRC8DEnfUZGHRYDDBajJjpmv55UaBDICpG2L9z9fVBnKH+Mvzj5X445wnriy3RFd8Iq49Gz2EC3gODeGoNZxleBwEWoPY2AxvRdiERIPA90UXzlxPaR7mkIBSNg93f4EJKB16TueSJPElJsMlE9xdYTRJpvXj9sZqsBxRSF3ymiajMhlUh9gIgEdC/h0XiZ3d3epluhJCzjqInwBtjDwPF8tsmVZ1a07HOq6OXgnoDvGk9m+qUWArSS4pgi6jw3kmViFel6ZRDmOURzBC+p4eEk8n7I4RCOx9jjlQFtH0xjaVaVseyDuwKyZDykxxLODLYul0n0iTdL0NJOA647zidQOTHoNCY+1UEJTU6hAZGQ2KHQXWG4YaFPj+QUlilw5ESXhpRys70NnewVubIF/ohzpwdPkMzMeYI+zfd2E1sFCm8JBqNOggI1QY9AXctIgwcRHCEXULT7bBgG4xAUFM8ekGc6gtTbPCqzAfrCDP7a2D77Ih5ycxFmJPo4rHWkUFNYmyhhG2AvWEEQXSPjNaGqhFOlHOKEFtyRyYFwIWN8ChdUnSQ/lTdqrMPQpvKoREiFyI0LO3C34kLZ9jfUaFCCtMkxT0WWSa5BEODolAcGRGeaBCVmcg96AZhqSSDEU2HXYkxp+1rhPWV+tlPMwcXLvb12SFst6fzgdTk2mjWPyWHAQ7wCMlEYNuUnp02P9NEpvNhuxWgkjxfEgjLGnw2//7m+//Ye/7eqjEm6w0AZjP6beid4M+wckXP1z+cQkyVgmtXCBGwut2JzT1UTuuyLpWodZ2emgNOQWfdNIt2hz0+0XRVEKZUSSktMswrbl0OeoCxyMlRKXpeKTl08uL5YyVUS+gh01rRB/evy3TgBGq4oHZX1cYj/6RLPV9oGi94/swDDsHnWoD173g+/5a5nxeJoc3BippXqwbzumAM3ItShQU1AYH3wEfkJecB/RWEH2zcsJfZ/bArJal/MHJk8h5xwHZHCEawzu4UkF8fsnA6z4kAr3iKT6kgSQ46JPklCeyo7kE25XeJQ/8uMfOIc8YjTFH0b6ChPQYUjK3v+MMk5faWNmNvAvNWYfP++eiu6ZkJfLJhqjj9307G9DhlVnRhSOxK142OchqdGnKCZPM+GHUHNu9WJ+0cg8nZxViJAqwS8P868K6ZgPfkJfkYRKxxZTF0K84tE+76bctmGTALXXqBTgH/GAydGQ4TckvXNhxITsCbVzMKgiSAcrneMsHboOsbRnMBjBUkljByPk0PpOysSg0kHMlhisTpwWqECpUhMmFUUpqoVcIAZZf3q1yTRCSSFTE9AfNg2iLJ0frPVd6/oe0REsBrFCWpMBRwSNXIkBUwLrZO+GtoG1B4mGse0h4ZqujPtjkxX5erW4urq8unyyWFZywBwsz/P7+/sfXv306vXPh2MNpw6VDgkC+whKo6iLPNdpihIOYgBwpehsQmnAPvLYhTx0lmxCE+dXjnQIlDZA9fnkvo86TYL/A3UNks1kghi4DEL/RZHnRVYVZWY0Jujc2Cfi/c1dT4ngBOSdR0CWEGsmGM1BCo6RH6vJWak1W3am3lsIsaiYkoe5n7W+ro+nU9OB8FrMEX2+ipB4Dd3j75sARI+USBGcDUx4WaCvIJFozWpFZq9xXpOCmVOjFOA3XqYmwKLruumzT0oYIQ01ABiUuoBwZJwTSjdPkBAWJ4Q8xuF+N8B56cFS89D2J97v5+M2UvL48I31KIDD2SIwrupkUDOA843ZaTzQ0QsId/0MPuOmG134ODXiVe7sjjDHfabtw/c8qRgFOQMigTGJxYV6/lzE+uEoW5j/xCHDlGeCJQ7RTuyqqcnlmMx8E9e2aSYXZbGo8qowKWg3WMPh2uuGvg91g3DVDjwITXZmqpsJwCZfCgZ65soKXldhLcdRyXxVMI4x2W/MlBVMTcT2SMMQ/lzkoIdZUdOclEYuMplb0K1HTEKYIQC3wXwY13PTHw913VKQt8rgZgkVMk13kWkArj/V4ah/0WHiTDmaKMVpPFvpmzwr8spkukM4QdeDJkLIismUxugDrLlUpSjyfXCts23wVg4B+gpsAhpMfTII5NiV5XLJY1U2NMAkiBzsiqIAmbYjby6k9hIlF4G+7MtMM/a+C4PHLEOGJ5slQzxEN0VAOO4AMt8COxHGSgw0cPTGsFwWWEqDcpAPBTCjMGFkyivcchIZTBJADANbj7Kog021WS+LVYXVifHyLMsQvNUhiuvU2MY6DExDQEcCllWSUu5AZsCwZ00I5NfgLKk8K02Wgg/U+0qXhcaBC4Prusa6hsY20hRZ69yp6zsvJPkL+iGxrU0DrvjW4XPxvoRSPvTgWSFYMi3W66/+/Ddf/et/K65f4Ho6df3p9Orbb//ub/7q7etXSegBv9i+hAYpQPMwJiUzdNiT7S9X/3E2S5cuibYpvhNlEjAXwlODCm2RwcCnI4s2ojhipADKk0hMuVo//+zJ57/JXnwlVtdCP+nDpumT0iT4d7dHELU/DfWBhh5GyAyRwGYhzFIMundEHf9jHsk/swnA72sAeET7uLinmvIjTzT7nTOEFiVBf+iDhltYTebPOS5q55j68xoHMRCgqVhVR7dpPE2WYvZEHWePMFL2scDFH9/hVIsz0s/r75zbGtPsxifnX5vKgjlZaJoYaAUuI17HnWXEHIL7SyK5jMNVYF0CaWNEFtHmuqgDI7RgMiAvMqB909s7ayE44fUhs39qBqbSf2oGxgLvQRtAn/+Pu0C5ARhDweL5itmlo7JqxKhw9RiKbGT8kFNyx+JgotPE5hOEBg7joXKdjOuJWMUDAP6XeH2dUyP4U5Dr0YP/EfQ8eiGNXwmo5PcmqfhhTxguECHhGn1dCDaFscaQyRQbv0bBDeCFLS5IeMoWPdg8Z/xjpkYQeEixqa4PcKMH7MtlBp36HMRODQPZBFNoiAsV/FBdMlgF9MsXJgm+c30D4/1EGCPSFJOBZZ4WqVksC/QDhclyUsNJedjtAWLZ0CHIpe8AiIs+hBpdCHJUQeeQBaxCB1BCu56TGRLrh753mJx3Xe9dLyTHYrNWoaqKFy9eXF9ft21bVUuTF13v7vb7m7vbm/d39/td29kGtGcU3DCfzqu8LCjprqQOHRc75sEwAULOaYsNKoK1aOuocUbiLGoEHD2mbvHxhI2I73ElQ6xH8jvKmQWlIc3KIl8tliUC+2IBjOQvndZts9vtDgc4GeKupJaP7EcBe88EIfHW/rCLnpeV09LE7wh0YU7sIjUIX6UINu2oz2KPLZoEApdHO25h3cMt68e+RsNc+kr31hnwnWtXMOKjlWFaiGgBFFo7LdnhPi6YRLSGyQEHy06UfVY3CpAsYNjtAigflogaAHLZEYWJd2TYGkti4fmenZMPP7oF8JyH+HhjlG8kB+JsphRwxkO2MwWIyNywmOSWaVyKBgFi/fkeZ+IfqB8oQeAwEjHu8+4TKUkjlj/uL2pRrBjrx3wVSCO5xPqeJsM0/wRV76wEGIXRxIniK4R8ioODK11KAcvk04UZrFZDlWdDsDjLaihzuVrlm1VV5tn93V2Pe8InMlUyrRt7e7O/2e5MtWR9/HR+mYqW5zldX+cJIa9OTKOKWVpkxjl68PPBf9CjYjI8NVr0uZjlmEh0GgBTKGhv9OACPRSNBzXzEgJK2fa+abq2c6dT4zxwBGSfoPSnwEEcMfgUKymJSQJRChlwDX3b4hx519DHllpV5bKscqOkC/AMaGoLnhEOKhYs6lfx58AHQi+QMYyxba6ywYeuR4ptb0Mi0Uuk6K6jlIPWYbI1ABAdyN4TwDxZksELFTl4CDqAG1DKUmEIy4JJYLJcYNENmIiRpgbZwDDO921n6dKFbAlyYuApGOOw3TCRUiHCZ9qkBysBOAdN+6H0Vcj5xckqtQqu1VKVRbrIs5SmDVyVekxHRedF64YaFyLuTS0gb8iMyqEQgHkrdNok0sB0twc1iWYbGrhJSFw3lOQWCB2+61vb4raTBLKIpOn8qQbnU+k8z5CPdNje0kRV4s/JABe5PAMQ/aIwMC3Ji6uXn3/y9a/L9ZPOh/3tfX06Hfe702F3POzaI1ytFDQPVGYwc/b8wOwG55HsE5isFcswCwACawvHiDMnUwYp+7LMs6wIXjBYJUIvoJRAL6Wq1eUnXz//s79MPvkzkV6IUHViYwe1SBMhetHeCtEIHUSw8A5KILUQIkX1b1ZiSHvr/tQA/Dc2ALyqf0QD8AsF4nx3nNG7aUH/hd//8Ie44SgB/OFP40hz2m+mBRr3hWtZrKk0JUFGRAqd9NTGxMkAfQRE9c1Y8vORQhTGjbpeftR1/WALGbe9xWLBfzV58vBEdrW8nD8nc0bZdIhGivEBC0Q6YvAcHg84txm8FBZFMYlEqeuIqD/PQ+fDiukEnVmwM/ryhOg/RsJGzu6jZ2Nn/T/8wa4+sUChnZ6GwYwM8aaOxZkdMUkwZBNBMtnot0D7LA02Mc6nDWwidMK0G5SY6ATCF05k3hCxYSoRzmmjmPx95CPMecnzQwF7D2obJnYvx6ejBqLJgAVyH8sukDTxf7HPNHTBcQ9AiZhs1Q3jTr6W6COP6AjG9TAJpzgqVB50UmOzBO0tJgCJyWF8ykJkkPc1QnxSNWQwr3MJZTQF4NfWo2JzCVF1TJpkGfaY9bJYrrCiAmyWOoEfSMAcAAN9NJS1b1sys7GYxGoEBQwmCG3SCiRUbAfI3Ohacj1yVhULtoVhYw0hAgtqnz59ulpfrNcXEtApIngSqYdE3Gz3p6bb7Xbb7XZ3ONZQy4JJQAJGZq+OWCRBkQgmHlMkySE0Pmg/jJ3z/MYfAj64wCyeo7vQ4Xvbs1M4LEQo3IHce1KVZheXl8z8GYahtUjaPuxPdV0rsqHEBH8cpk13yrTCzHuACSCYLqE4IcyysbAmpjDNkaiU1I8mAKhVSDb/T95g8wuVqsP4F3P5yvn+xf0CnSCMB2RIhhamsTO+4qjL5PFUVC+MMxZ4ZcT6cry9qBViQIEq3fhOcI5gnW6Izf3wIDyajUwLAmOl0bWGUPOPNgCTxgYtFKTuIx2f7VTZJWa0ByX9wFmQhl8fKYjjrc74NNmnzGT/9KfE1KMgOhILRZUtrjffn2GvGWXxvKZNV0iEHRBJYdCzDLDTonbUKLFaFjQQtTKxRg9VoRZVnhf6y8+/6Dq73e7fvb29u913vc/zRVosf3xz48YGabzSRskK+dZNkBbO0OCD7cd8BF4haUZBB3D4aAOAuL2zqxIdZZrEZhk461wQ8/WGxg/6YFLdoPxKhCFQAEKd46FprWsbcj6V6QCSDJwBpAqQ7RpVZWlZpMtCVwgcxj4OF2MK4jiRxgYCOApfIVReOSvqtj01Fl1AwKqSZnDZh0JHIEqElTyZhulQ70Lb2bplPiWEyGmKxOvRNykuxQj4ChYBySZ1QUDiQG5ICLugo0MpIlBrZMDRTa6T4A5KYv4DsR+sipGh3iMBrWYPY6kN719TOjjN5BIsTgEmtsSdG5CQMnhY/SiRA5oBh0eJsCkNqSySPNXkBYTWK03Ttun7MPQ2tG7oQ4JrQED+rgdrkgDvEApsJpIo9peu6xB8rjF56DCQGTTE0/np2OT0SBEQhJaWJ51t06s0S4Tpen9qrPdBGyRV2/4El3y0LoL2MZVRJKMMVhvcEd0wyHyxePIsW2yGRCHxsakt8KD2eNgd9zsthkVZ9n3LWzfbpg0kklFiyPNIcCWjtrM4p+8QmE1uTsA2WNFBnuk2y1WWVuhErA99G2wDRYVtcM8X6+Xzz59+/W8Wn/1GLJ77oUjyZ71zmXSJ7ER/FEMt6tv9u5+ttRdPnsnLF8JUwmdCFIMsEgVe0z+13P6zbgD+aA0ALuGPPR64T84aAHaR+IMftPKe/4P//2jRQ2+Ca0WSgcVFkYAl4IDgfQWor2jkfYJ7SYyqIa8MjLwTVAZxcxoL97mlHVFp45obXXfyjOk90QEQzgOII7t5+2YS/GUa+at0BGTbNFgzjKHcReIcxzwMqn5oT4JQNABVCCFUeTG1xeT1Bbg2SYZTUzMiFX1IkF0ZR/mPhBYTIjinLsTegxi1Uz/Cxzb+efRYpNVrNC9nD/s//GwxEjKR76fgD0oiwkcG0hDPIsinyPwjRBDIyjkMEsIE9ANEQGY8lXvP6aNML8dFwSQLOaNe8Xc4gv5jLSfz9eO3418wX5jnOjSDiCbmpCaT2MnJZoS5F5SrIIlCAP0toWcMrU10J4x3Ka0KqCTxKLDkwTiOgushEzQ6xVYBBBrVJ/0fACusfoMbOmd5ApBJZY1CMG+eqkHWQLASzFTTlPSBUW1M0Q3g1bZtt2/q20Nd3m3zTD27vs5MwHTYZHkC2fCCZkm7+raxFIoHSA2hwvC3DrJvWjQaaZZnJfzgrpjCnH736oemQ22Up3DSbJrT8bg93L497m6urp8Nn3x6+fTZenlVLCqljU/kv/zLf0MkAQBmu8Px5ubmzdv3u93hux9/qJsWjQHcA2vkuCAFMh1EyrXnmaDCnl0kSSFGGpuPAAwF5AXGQoq2ijpIcONxiHK6eaG74GkYp2gPMvnp9eu8LBCzXVUYCIwP/h1WO4w9Bl26KIEorgFfRmUh6KoPvHH5vQoh7g9HzvEgK1qENcAnHk5l1AgTVk0XNU+fmKv88ZnobKWd/Ywb55E9OEmlEQk1FdmQAVB3CRgNVYjEECBExJMeDQJH4WHCBR/TfiixAdGdTL/hxYPJ+rQ+yNn9wIlCbBN6rlYfwf+P+Yc4iJpXPFJ8xNBX1nzzpI5+gHp3Mghg3S0FEhJdnQF9Pkf0Urz2M9AzVu0PjiPdvvQctD8QW52kvYM83taU9UXifsJiE0qNdJRRwBODOGWkcIWA88moPzdjsTtAaUbVJBArhAtA5SXCsN/vET6VAaVNEkhHdr45nYb79+9evnz52WdffPPNN3e3h+9/eP3z6zfvb96uN5umdfUJs6mRAoQhYN+DDjHBXZFsDX2/4+uH0pbRBsDZExKO2fhltF5goIerfmZgMUF9GHx7QDoBeHrEPyRMyvbO5nkKhyMaz1H7aXhGmwMqB5TT0hyDJ8hgFOGGwfGXyhvlUbZmSDFf5DnuC7DVy2FYw+YOlbV3bQfZqE5kbvyioLIew8ZEySw3yzKvFlmWqkFYZ1uLLkBYDGeHshSVF8em2+6Ph8NhuaHjPyCgAS2Kp0AA+DO1IniDI4PuIMt0sHBZVQqYVEueqrDWhO8Fav1ChkSDdtgOrRA9VfPMsifBN0ZjsPRRGiMR+HnzTQfCHKHV0S8tTNoMeCJh9IjREOWBoyXIUpWRtRFADQyuQprpoQ+YsQLAwOCAECOQyij1BRnG5HFIfTPMSxrpIJzQKdx9PCQEfn84CG0ab20HfifywTnrMEDzA8Yn/LES2QfbefhCq5CWlNyjND4bXru3Ai8HJoVlT6s0CUPXtINusyy7vli/a45v3r2p62OZp1ebddecdvd3eZ7zyB79kFQUKIoJpnfwmWWMlUUzEWFhyFWwWDGuZiZLg9aIsHfBUAoMxCfSysGtLy9laoZ0kaRp37vQOblKlVkESCsHH3rZn6Q7iKFp7m9++P533J491ZmoNKaa1BQzdPWnx3/LBIBkJQ8mALyug57y0SeaSTnnXy37OH4w7MYG/7EhOEXUfKS54lHORCYZNaOh0AOGkaMPaLSXZoFXLG7JDDBC3BQbQlwb5IFg/E245ujqOJuzgyoD/xzaJJiZw9pi9uucugjeyZi7CaJDvkT/gOEa9h44rDAPiB0YcPRQFDj0KySOqZuZNeUkxyWEHrLRswcoW3pnOYa6cxeOyXp8mk5wpxFt70Zf/POZOstY56cviv3g4v4L5ISPfOXTxHUB7Z2jkwyMFEizySVDpDGQI9s5GoLH2aNYDZYOmCnSp4vaAAyckR019i0TgkXFxwh5jUX/pBb4xevzw8fk0Y5pA71bx/Ivom+IhEBxPtcUSSUtSNIjNQiLHRcrGDGDGkRc7HHjptQCkCAh2GIxsaJBPHGd6fokw2viBgUbqKK3TNGCwz0yEAFWpUavFqXRAsTQAmwxA8tSbIFt11FTZK1t+/7g+hZG1YnwPYxEVwuzWKzIeBqBeFrrfqhBJMKu69suegE5K+Hm5KUjXIhISWDwmyx98fmnuMTd0LSnu5vb3W43JKIoirqucXASZbLs8urpp5998ezFy2y1DCrVeVFVcAg1sNjzMNkBj/T09v373/3uu99++7ufXv18OBzIKVz3CHLiuhbzlukBTjbyrcicaAxyRgiaBtmaHUHZ6Ba7MyKMcHtO1RIsPhtyBCLPK1xjRmdpAecg7OWKcp3BAuHGnt3gzxSyM6T9kFM3LU3jAyS2yYBydkVNCP0cjpUCrd2HDerkjzn6/0yXKwUqUV09TgrhxB/be3pNSlqIfYwcwiLP0FxzOB+pCZjydnl5iZaRVc801BpdU8Z6ndM7xjuIAQUWIIxdPQWugt9yngDMXQfmE9TzTDhCxXjx6QTjbgszakrEBScyy/S0Z+nF2DywDm3sNwhmRpvygbUAL9Hz90kJConoBaQOrEGhEDKm/cTPOy4S41/i4iPiAiPubA6K+w7JIRRHCFMmwj5JrOkH0SvpkGknkLRbZrIsTIHpXF4f9iGIq6urzz79siiq2/vd23f337++adqBMXJIicGCgvqiyMuJOsXrHm9x3rajQoz8ZzBjwcQhDPgrfoc4PFhiiJCGgpOQXnJmpycjTiks7XFkyGISmDTtcWpfb2nqwl5qEqCExdhcSe2DtJYYQZShwWtdDg6ryFSSZ2pR6GVpqkzmRhS5GgLYaEWWl2WuFMhyfdt6UCAxvgQqIlPnxbFuaxLsgamvxLIqLi+WFxer9bIwJru9P9xvD7f3O6QzCtWHZHc87Y8Nl+kT0xWYHCZ9QQqswxRNY/KiTMF9F/DnQKQjCfkQAEyLCbr0flOp3OCJ0Js0uD0ATKc52H3W95T/ALGyyQDn8WSb6nwS51DIHt3jbdeIxKlE5JkuSlNk+G092IXyuUSOtUJT1yE+QkrYf5bLzg41qE2+c+SPrAwKcQyO4JIJB3EUEmwQ4LvONl0bQlhvLi+vrqXU727e//z2fUoBo8DhebBF2BuRbUTADZcEWOKAxYR5ReISY7MyK8qFVKanQFKHFgAWzwOMelKZZkHq1gtHOOYqT5+sV8OQvHnzent/K6UsUkCowLhw04G0R/7RUXPSHLapgSsDuxMzSuW9zzPIWhLEJsQqJcuyYgneawP3J6cTnZNmXrhWhH5R5avNRbbeDOliKK7yy5fm8hNRXPiA6bhQLhzvfH1nEnvcvv3ut//gvV+tLy+uPqk2z83yuSguhSqsndwdp6gKRhkexY2LGYX4rCf85zABSF48XcfvpgKL/pPnhjQ8H2GI0c19xsf4yDePuD3jFiLnHHSyTeTN9YHojWx7opkw3WXnRZ8on7GoIv09/gkU6hCY10gUC2gxyRQPPuJGoSzAe6BNkt4ZxpoxoBXME2Lu0huBR200Vx4PBYlLW2eRPzmjHvF7iCPmMTIslhFAuYiEkCHDt6qWRZUXRaW13G73/NnpL3xnW8AhWG7ODdWjEf80/p4zrOb+G49G8B/+MqHb5906biR8fnnOPp2rMbyd/33SCUzny5hs9OXE9sBnkBuk+NITQ4ceXdeNBhEPOEa4IedMswiqIclqetsxUQUFXxAJFtYYr8vbPysIOPqN0HvuFlj2P7F+p2cbGSwfa1CTkKWTBBMBlsxRgf862JZ0NPjVWAoppGN/uFkLOn3eMeGV5xfx8ObQoqCU54F7yn7hMvHBksczoWokFSCrfEdVEp2ykb1AwWGcZgq78TzPqqpar5fL5TLPk/Uy1Rp9iIP699C1J7Ig9DfvGgJ48YfYjzNdlgtgfouCzPOg5LPExD3WXd+FU92T3w6CSMkGFINvL1FbpEW6WW42m01ZFJC5b3fHI1zwo08kqMC4o4rFMl+tXnz51eXTZy9evFitVuCtcngzx5c6mNve3N3++OOP33777Y8//nh3uxND5l3S2R7SWQsKutS5MgjiQfS8lClpb2JMhxJFLuG/QqILgkJHQkY83SAckigXATyJ0odTQ2g3rmXusFn8zUSXyOemQmrku8/g94fTJDaynAtscJZiLttHsI+PrLagCuhoLXnGZXGJMb2KG4DY2fI7wdtkH3rcFjxsAhJBEYc8/4n+YMSsTTkIE6sX2T6S5TDIyKzFpMecuDhph6KPDCkZODbxIZmETQLYz+q8vEyfNEb/jK3ag3SRaR3DjCIyu6Y7ZfyksdKdr1dML2atQmbgtcBn+7y4wTk+WiZM8wcWwVhLiP74T0wOpNEDrnKaPWC97aGGhAiA2EcqgaUKoscJwiDpOaLekZ5AdR6IJmQAgGuP24AMgzOwUKjOdotCFpnMUu1d504H1zUwtUzls6tLLQnycWC2pKm+2GwWy4u2V2/eH97d3Ozr7lB3u9q6kOis1BlI4DhZYP0gMJ6Gf7rto5j7bA1H6iWLVRlMPFAyYLuG1HXKrvc00gaKwQgDexWk1DAPHnwqE+01IdnEEkQCHPTGNKBNBD5vXZOtlnPQ+2Kb9ux6vFyul2WxXBQZ7Hd6LVyeiypPcjPkGpMQo8AB1ZJcf3QWwnCq2z0SQ7xPUjsk8KPsgUQr2PvqAmkKwchksyovLi7AFivy3tqf39+9u7tvre98aHvfAT4PKF9dkInJEFmQaS29I3cjfpCdMVyeyH0vdumcJMC7jMD5SkKrtQZiUeWDs+Au7nZ0ttNEaspPVFJlJiuzrOCINDgIA18AhhDlN4YqnEDBlKnO8xQSXhnWsl2k5OJP7E/kzPd9a51Jy4BOHYG2ntIhZJIK6RPV+wGnmG4aDnzg20qRfVkwxmwuVus1yrZT3d7fHYER4KSgiSVNPPsvYaqDTAPrAsS9mPMIBLY0nnbtPEe0KK7Hrre2Z8Mo/p1hgAsqV25ZlhHDQjFZjj4BzrscRF4hYBHXDNc0BHngsqN+fhLS8ycJtE7SVC+2owRrQrhLEC1lfFNQCUQdQLhMXpaLzapYLlVeJXmps2IwRedTn8jD7v727p1JwrJMbXu4e/fzarkUg0yL5fLyxeL6c7V6JsoLIcvBhkTlQipcsABgDeYDWOi53uN5YkzjIU/XXyiUf4kZ8b+ygv6/sQEYP965ASCrzTijHeFYPKBg+1jd/wGi/IBrPsfMpp8/OqY8o0TbHHWZY4ERWS0kFiLbtzl3H8p13B08OICXLRoAlfR9yzTY8V5CLpyQiIijN0PJixwoxrcabfazWEomg+JiPLu1zwrrqex+ZDN6OD7QDEz/tNlsPvTNGIbheEJC7XkEMIJ5cxRtSiaajt+cdMsvxDEFjw4+bax28tImzzTx4DxGusv4c0JOpiL+w1LmgUMiPcBN+uiFNaqlZ/MNdvpHTg0XGZyEwO+WCojYCkL+S3xNchbtyTkRfclY6OP3U3phIoRxIuzsTWK2kkxfx7f6ON6Y6wPkp7Dskg8m88UFWkcAcpH8AyUlraxCJAZYIE0JeMR5BhrZf3t8cOSody2UD3FYQU5BNDcogAkRvx8EVszVKJ9h6GGDSS87bfMBSyfnTFEXHbPhMA2W/slF+uxq/cVnn1xfX6Um6fqmOe37tkmEaI6H7Xa/u99CxuIo4wuEYZHnqlqsFoul0ZkQkmwuEHxssa3Sxk/edkCXYfCBfR6Va5ouq9VyuayKBWZiJoffZte1XQfWmrPaoMmonlyurq5evHhxeXnJ8dVsBnc6nfg6Z9PMPT3axv2n//jXx2N7e79FsGhrwYToEQIA/37oS8jgKIGlN1UtiRhalXhcCRLuK6P1+KhqhQ5B0QbmYWsYBqNz5sxE79HxSmAOQ5R1nidU5OcyXiEMB0RIPvL4HnDWJzebjwAfv7CVTO95fIa45GKtGt3x+F6demPufFmQStPMSP5GCUu/AzMlYv6OBKE4Jp0q8rnGaRIHxwktMU/Gy3i2PswSc6dGZaIXfviR55rgWQMgiCozTlE4voNWYKbc8BoxrXNCBI05HJs+EZBL+Q/8Coy+j90Xf4pBwQowEoHGlS1SSXltP8MKOM0YqVHsCTMCJRnFUho0zRkRjTceVapkkCPLO9FofhElCpwaDudVleTwaJepxgRgUSZloZZVAYtJ9Dyd8pDyG+HKwqyrIs1k8K5pTl1zavuwWFyDrIGMPLNv3c397t32VDfOpLkX8ICvinK5KI1M+q6p2zovq6aDWy/eA+kourZvujaRsIVx8NgEOB0JOnTM2UIeUD/NkbgB4HRhUoTQJQxSIy3R2jD7coB5dGIxL6LsMwwonbOdHEJu9KIsIG3W5nhoAEmUqTGDSpySrkiHLEuWYB+KVKOmT9Eu4SBj0zcZgjX70PQObvQu9DA7pnkqGP84dFUGN0ctBlTtg11t1kVV+WFAtHnTvr/dvrvbteh3E+uIk5sYci6i6ySZrocRsyN5wNQVxGxHtp0VPteDkj5PdZGnAN0TjyCt3qLh8UmHYRmIrCExAwxt0TWxxQ0ThlHMAwHsCRQk+yQSNBdFUS2KVSZXslkaaXJCMWTSW7s/wZET+AaWHZT+aMFkmqhM6qR2ez9YMqWGIxmNiPGxLlZrwlCggEq1KqtcawWD4l7i3iUJYtST8e6jFDPlHDAq0gST3klTRB2/eUuOghxqDjcPOibMdGWTwzTPmqbBfGlGUpjqnyyLxwGLj8NQiFhwEBdH8lrEZfxUZWl2XjEymjTgdyCoZ55wgOcs3pLW+uLqCVIBLjZ5VYgkwazaWfJ/MHf3+33dEA4C0ORis37+9BIWGR2s5ky+zpZP9OKJztcq39iQmXypsoLMAuk8glQAQYqYNQBRJ/PPrwHQH63mz9/zzHB+WGakoF/6q9HU+cP6/vGgYL6F8KsgyYKmXtM8lsnvE+ebWYysH5VSwWYR4h+2nUREAEE7CiNRUtbw1oYrXsP3jt3qiZCDCpHM9tDdosrhsTnKDr6RiFQXuuguP/u8841wEinyLyyXy3k1P1Xwr1+/ngeLTvulBrJ+ZhHwnflIdDgaZj9ovR4hcGwbN4cn+U+AA455Oujjx21+7tsd63+izHGs1ZnU+/B8YVOOrzjMIn0+8gDZhXUFQE2h1ONKq7WOX5OHbdP1hNEJ1xlEqsWWREdFKQj+qRE9+w5EkWW0f+ZIIAJ14gUDzyBgoJwzH88ak5vp10YSBYkdGcVHOQX6C80LhkR2bT/KmzBbSMmvWkhosHCQeD4SJPUF1DtSZu10WmgjAjxLopWIHJNLObg9Qwid9woKXWnBMUVAPWSsVH1S/pFGuyD5+iGsDgJKPBMsHHywHlK1LhmaY3fz7vD99z8tl9WTi+X11ZPr64tnz6+Cd8nVi8+GwXX98Xja3W+32z0x+OvTye9390lyD7/CxaparvO8ypXxLuktTEjgAtRBJ+CdNWmmPCLpugbl+X67yzRSbxXwNlOUi6paZoU41jDC3zXNtu12p7ZvbX1sLi4ucDtUQ8iGIisZKCJrI1AkUp2JTP3617++vd2ZLE+z3anpD02z32Ewzv0Sla4IxGEBnyaN8ngP8uHmC1Q56zAxQioRYdlcO2KS04/5YtA18rU2TXs4SZUN6mNbPt7jrH8lmDniEeQdEznr0+9zs/zhGvjRjQSrD138PG+aUeigD5mvM7MFJt5uzEskEz/8t0lz0FdIvE5Meboyguh6HrSeH9MCxaj/VBhNq9C0vDwYYkz2XFOXMmsbPtwRJ0wkMqPGBgD0nAipJJREkWAL5sA+hqCJxzUCHPxcZHrCqwSFzU2rH1bHIdolM2cVBibJwKg/myVQWz4ghpdFRVhbmDODhwqZp5YjjgsQloAl1wcQrkF3od6XWR6YsXg3uvGwVQAzaHAFk/O6Q5nTg5ZmIaYcrHVtq33vV8tqXZZlUaTAUl3ojokUnR+kh2KkWmhQY7y42zZJkvlEt2QOllflRhiTdr3zOYSgCGysj1uVQEW6WlZ100DzqktQUcmgoiiKy8313fZgfTBC5cpIbTwj613nfO8sLZxcfEGAS9ePyWLCIRMxKRcSEtimZVpUgN9HtOHi8ZTRclUtgLTTxCOFGE4sl1qrIGWrcJCC0XST+eFwOKVA9E1SKZVl8Gz3oumGrm5DIl2QjUsgfgDJBkhOmqYu6d0QTg3qby3hQZ9qmaayPjW98xDwmGK5yIIwQWZv39/RO8f5Ib4bNutx9Y03X7zyMQWFCd6U7TOrdEPjXZHi/fTEVUm1LvNFukzXm6Hp+vrUt7ggJDcD1nqcj75rbM+uSmhx5aAMOEhAItnfzDYN3IptFozTtnHBDSDu51mRQSQLa7J3N3esdKLcCeaVUaw7UAoavJJHsndE8BqGRiMxV0tcTT2GVieu46GngHUmStlxxIHr26F0gXTGccKIpBlMqvI8PZ1OTXNM03S9Xud5bomfSXdQXBsoSATPytor+kiDQ5Q7nokRBLIqASiHwBtMN2igDphihocSwDoxr858rVn9Q+vaqDcdA/uQY1OfdCIabYBOJaK1CJ6GnVSi/eGgg0qr5ZCtBpHkq02+fgrJuDp1TV833aF+I262pqhMcZWvPxMJ8t/Yg01SxjLltblIeaA8lbjMEhv5j/St/9/245yWMs1hHy70cRmeHlMZevYentmuzQDQ874yPf8csZ5jybM2IG5+LADkgfy4n9LmT5cMqcPg7E4itagJ414ZZBEnQgIFFZt+0naIYbmz6AkIjh1L9lH9BmI2nAtiymw0jMDzDH5wI2XoAZzGQ9W5VXM8MvKB6vxMW6JtjA/IVNxjxPZA9hx3ygmZmx+6cXt+cCKmrxQj//ghKJKQSKGRPc9jllmJzzLt8efonUide74kxguFRsYfnvpfQjr5/c8PGr8Ed3nM1qBngHsahb3wHIZ4Q8yvQLWvBYJhQDikFGgqTCjpkKQlEOkRUWfkAFM3z4GX/JUmRvgHHd/wZCTKXYUwGs7IPBIiylN8wMYOGyGNlzhMU8JlPeMgmChlxhNzDILFDJ5DSKK/Ml1+XiuvKGM1MnGhEANQ5AOMKUgqika080Pv+8RRkXQ+YliO+FA7x0HC2RyORaca2iGEw2HYH45v3xzz4ufVIiuy9PnT69VqcX11dXFxffX0k75z9fEIl/rjdr/fvXv3/va2ub0Nd3fbrNiSCUaFmGoMXzOlwD8gh0izr080L86x2TKFgejTru6wIvsBZtswMKXNlSxx6rq+vUVOdtfZuq7RIWTm4uLJSBuDgzjRjnMx2DT1ZWnBF4JddSu1YXNDB20q1/2kBYVSDWNJRMXSxREzcUk0AuRY0zgbuy/hSURLVUo1XRedbcYGIN6/mqhr3Idyo0HXU2xU4y3G/xrzqs7rFZPKzo3fuX+YbpmP3heBNAAjCB4XV+ox4FgyDVdji8uV9xjMRyA02x1Qe0yHKQZhRCoWXZQUUfco7pqRhflSzLrPR77G89WG89THyp7q4XFuOf+1+X4xbxLO/QBeejTFojKJ5mCEUDIkgAqaPXYGigbCujFvYPgdag0tPr80ubGQbQMSmajBoJ+PiueId5DpCHfOJDKBplf01kaOK+oYqbAwEN2Q3HKAG4BAxzcxXq5HvQobYUqxOI+k4zHADBNvEoIC5zrhUX/IcNidFuV+s1hcrqvNoqwyvdxcewt7+/t9A3fLPKsWq2VemdI5L7b7083udntsnJCdw5tUUqcmMUYiQaBvXPBKZKUuV0voWLRUXdftt8l+v68P981x+/T6+frySV4sbu62v/v+1fawX682n3zx4t27d0Q1xU4IExoqG5lPG4akc97x6aDCzOjM+sYNgcgtvNHiH4jgJBdltlyUi9yQgqkHqixclUNHl2AOgwgqkjTBTX+5WFAKpGz7wVLYeAeqTx+0ccL1TsBTiMQAFDacuOBImSeV8H3fdaHPERUslSmRXV53SK8ruqyAm/BysTo1fd056zjvT6D3QKQVOPqP64p4s8X7dK7boXIbcjzvhg7GnUmeBjLZlMv1Mu2dSfu0RU5ib9EQKeUwIrAA/sl4IwFBERdHqKqC6xbvpXd053rbdxhRtCF0sPxv877LygLj5UznReqGxFkhacJAvrI9pMSkNKAZBTzhsPsRxnQ81mVZLqqiKAyxRRGPMvjg+jrP04zyiKLm25KPLOaXtE9RBDsjSTIxP/7403q9vLy8cq6/u9uG4DJSL9reI2Emr5Azr5Bl2bb9aXsAh3ikmqEfILsQBXgq2kCxP3kIsbyBF25kOVA7Pi5BdOufJ5BTFcQt07RoAinTQJgUogO6w25bH0kCSO1WJpNchc3V5uCSo1eLy6uXX/86KavueEyTQRetOR5Ph91pu+37bV6uypUqV5/QaI9ShcjQOza8MbFOovonMjCHMPJUQPyzeZxTWh59Ezc2xrfGAniikTza7SYf+g8K0F+0X2SO6Ydc0pFKTuAPs8zpaaKpNO1NhNbia6JkatII4rFFDLfQUBjxuybvEM5bxSKOVZrPMJhtEfkjITs2Tt7uIweA7F2CGV2DYn4QjMjwYCrto8YAfsOgjj/4RPx5OYL+0d4mhGgaAjsfTtgfbclzehVU+7PnOdMVPrAt5/+i1Q9Ez9h/QzNHBT/KWaD3o8fIKA4en2R6svgpZu4fD775hX6ZV4TRxYTBe6DyxOWdEErsIaAC4bzHlCa06MyJwF6l6HQZwPksj4TxI2anYHJyaUgKEILZCawFRI/bfboCQSWiuHICMvnD4ItiXQCQV4V6h/a7eK6HJDMLtBfRR9BbF2Xf0Qd69BUh2TlUv2mRkhqPYm7HBgCLmz0OCZFDPdjnSLqRcEICS521nTAsiXccwZUkhub5CB0HPpwS4/4zskWvAoUeOetRriuOj++6/m3dhdC9fXfIjFotys1mc7HerNfrqqrycrlYLJ5cXz1/8enhcLi/393e3t9tD9stOf5DxCxSGAEtUoj7QHBYlBWFSGB+DMtRoXQGLx3YBwXRWrh49KFBFiYCzExtQ0KxPxeXm5cvPvns809TU1RVdXd7r+Ftl/HXkNMFInTf3qO2WCzQDSWys6HosdNst1s6v+xzQ9wlapbYg57uaKJUUR64EJCUoRLoe+sdzENgbgPKFli8nCI9XreM/cdhL6jScTpEiVd0JogxT7AhNwlEF6SRMa9+xILn1SbOKVmkwX3CuNz9glsaz9imOwiMF6TPBs8LHT8Pj9ri08dFmCUIxCKjyRXyB9DSTK04MWK4AWBT4A/N2abH5Gn4yCf7DN+Mk5a4HJ/v6+mH8cPOPjKHbbPJD/hw5J85ZQti05eDVLTdk+dghB6oOqDufgiDRflObxtn9iwKig0DVzJTY4PVegBnwjuHARHTi6OrPfpj2uOIO0ftPblMU1uBBQLKSJgeBBRz0IaxHTNLGjkm3RjkroQxjBoVP5Uy5FKObyFAJ6ATJra4mLCudk6EQ2db3ze93diuKsRmYXSaFbl0bdvV9aG7P7VandKsTFSWmLRcroQpQ5L0Pim7vq5rwL9tD+D/YqkSYfvudLxfbS5qaiE2m80XL3/tvX/z+vVPP7/9/tu/f1o///LLr//im89/883Xb9+//+233//03T8ulmsaGZL7nGUWELzIlIamgqkmRI/2lOniMaAhquMgIoKjsFgNy6rMUplKCGeNItPhNEsz2bYneNfZqNLm9EbvPUBlUN+1pfEs1W9FVlb7tqv7rm5s3VsEctD5F0gwtFVZ6CrXmUrzXPjE9X17qA+HE1nqZUlquqE7td4OSQdTSzjI2JTOH2KJKWF83Afn2ygPBMh6h7wWQsB0I3Jxhe18Bxcai+mNwWkdkrbtvIVdUOIczHaa1mJdQeBQOB4PiYjDhAyxXmQ+Bp3GCeRVgPFJWfA8V6qhJztA3GLOuePpcGprIZFxzrs0Ye3o3AHcOxLH2Ojbi20F+mxe/yWUI9Z1TZ+m5IYCDx/K0LUd/I0M2ElIl091UmKHQmIA9iclVGp9aDqombXW/9f/2//99vb9m5/e7A92uVhrI+tj8/bt+6urpzRa0wWo/QvEyvudO4H/wwNtkgCBoItwdwuIJtoQUH4OzUPG7FjGSOhmeyTEZxIE69HHTE/gZ1E/SQo4Q2bFWUqQHbpfBLpDaJ5lmLSErkwXjR/avU2XV8liLdZXWdEIrXTXFrtbFKJ394l3S5NcbhZpXklTMJ1znCqSQn6U14tY/U91zB/rA/q/7UfyyfPoAjTRJCIeTKPPuQbgwwZg/s2E+P5RXz9klEYnOF6kSdrC0DWF+dHtjbEZtgrGZTy5H2CxpjWGsyp9CJz4S063BvMs2r/D4BQUmaMobSS0Rblz3Mli7chM9Lnp0fzdTkjDIyRMaTTic/jqUYP06CsmUrPnnzD1+bRkfpyBF80P1/h1aqjm3QXFv5Pqa2wA2BJvEu9SmzTOQ3g9mpMPHqChj9jzUw/wx7XLWVrFBQ6rP9SxzK9wbPE8CgShZ8M7zgab0ZyKFCCJJ1kgiT0UqnnWfpDDJnUZIoTOwpOb+oFJ8YyrKGp9UPfPDylk4+f/PCPBnAwQM9fG1AjuAJkXxFKB0T5IpqZkewEyBI1uMdRk9lgi8RSj7QbzI6NxOLH5yY2bCs+QYqQcxaB09Ee1wchCGd8Vu86DCsX/lJBHe5rpPIUT8+G4R1oWxY2VhVwul6vVqszN5brMC7MsqzQvhR+OTX3YwxPo9v1dg8Kk7VqLSS8lawil15tL7NNkWcuVHOUsJ13vkCMDlDK13u2Oh+Op7l04Nr2lBT1N04uLi0/pcXl5uVgspnB4dtNq4Hzi6lM7CNU5ezw19/e7O2gBmt7a16/fxGxUslthwSU4umQigetZUV4yx7klOE18RhCv40Jne2jbgpfK0B42o7iM9fEo7B7XIpbFq48bRES5KjcAUYjDP/8I0fFDhsz4mGyEcA9O/DpJO2WEEkbrG/qYHnZOIEGx1WU0tiOPUpIyz7YrzoQKAYP7+WIyfTPHZaafTw0ALwHTKjFNAKYjEL972PB/CO48dCkgrTat25OwCmvOqDGIndfUqPMkkBxWucqPTz6u7Y+oVSyn4TqDyVpsByelzFMzO4xTkkeipKHEVbqPPHgWlnz3Ed00Nocs/uEiJk1J4xhxTl5NUL+wWhEG0MRxJ5IjimbYipL9JeAF70wiyhTCVqPFelVdrJdpKh2g4RbG1VJ3nYXTvNQciaV0JmkHOTU14bzW9Z0cHNzr6TD23nGo8+V69eL5c4hBPRxvb+62r169evPmXZaXn33x9dPnL5z328Px7c1969yxrtvewh+eeIz0QinHV7JAn6k+7GQ9nlASLNFXlYTNelmkySI3Rc7O8VhU0ZaDIQL7+RgwR1ICMQz1ocaUTyHOjCb2KkVpn+7a/tR2hxPMhJAujMEoLhiEqEF+3OVGXizLskiD65tT7WzgsaRQ0sGPPxFSD0oHCusFDI7rZRK1B0Mb/YPrf7Z48vXJHHRKT1dt3Qzw6AtKDPDAhIEfrplMG2IYaGvhlgYlhFSpkm27lQL8gjQ1lMCV5ci7Sg67LV2BeBKAHErxeGGVqyLPILcFD4xNwCE9P9aNxwSPom91LgZkpTs/NC2K61Frwoi5QXYZsuB79HBcPGNbTyiBIUjhNIavGTS55L2mlKnb/tS0bYPkayznOl9vnlxcXPzv/i//Z9GcDt/+8J//83/83e++s7ZblMuizJq6C4PLdLZYlMvlWkpxOjWn06lu2xF9YJ9wLpnm9iQR+6euO0kxwYi8TNYAsG4NvDWDJIIsy7ThBYrFythSIdjyECwP1mrY8qo8g2qZlAxY9lhZgQGRhQzGpqtGl2r9fP3yq/LqhchzUeSiPoi7m/evfrh99zoZxKcvP6k+/wtRfYUEsURBUQHKJFYHdmIUZ1yDpwG8LMN45J+PBuDcAHDtO9G+Y53ERo2zI8Jz6g+X/nlB/OAFPlbFfnSGECFw7GqxLiRcl03WoAXUsFGnAhXGvhbFFQFxHFnP+A/2UpbSUo43EswpN4QAUjTrqUHOyBw+PwvmeCAw4W306tZ1H7Jm2WdwKrWngTvbM0+fZT4c+MBVIz5g+jCjRc3L948V9JQpOv7T/NA9+kSzep0a3PETnUW3ZEcYWwIql/nyx2I2dsPzs/PRnIfRLOr3PR70eJBo08ZMyPfYW6IscNAwREEnnUFHrgNJMpTE3wGVZ0wHxU+JBgLUeJwu0NPxlcATD7aFpQE3QbqYs2I/G49A7HhR9k0lV2wACJR9cJXGWFAR6uOBuD1svggXfxgmoANFQUazdMpoHJ8KJv6Rgkw0yeluCsQtZl4uK9MI5C+UArMlRkdFvyxg+95PjTifEEJYkGwRezrK3bSut31tbb+5WAyDj65WDM8ToWq9gL//olwulstFucyK3OgiUbI+1k3bk0KgaaHqpWU5+LqxnBcDCmsGczcy0kANav1gSXsB9rBKsrzMi2oIunO+ruvT6QQnKLKt0Fp//fXX3ABAW0amuny6Tk07wMuSvEH2x8Pp2HToll69esXTNqLXAkdGJ5AazvUkN5bYAPDx7Pue4sUMlniyL4RR9xDqpmMR2+hRG69GntSNdf9sFZqdcYY/JlyAb5APka2P3oy/uGHQ/TuK4EfsYGZCR4Ef0+UYhOuYtMb2VgR9xGgRKmjxV/78chpBmJOl/8PHI0zhw/c52W5Gev35/p3f5OdJ44dP9ejBQAPP6CZeQPQiG6XbfH3yN6zJo7KBr/zIDqaTcA4Rm94nJStH0yRuAMY5MCaFk+kC9/gRU0o4vTX+CeoO1K6oAedXCFFDcYkach/imR7pN3iGE4KF9oDpaFRKI/gJaoTckB8ZlhoFTTFgJgmMvS9zXS2KPE+R72TQomh0F+BCdJY82SmlGibyefbk4jLNtBJDfToe7u/6rsmNLktkcZBfvEBN6nqj9LIqF4sFoO0hqev657dvf3773g/i6snTi+tndpB2EF1vT11fNxDZI/1a6MPxBF44/d/InMfKywATTzYxDzRQ8Wo1rKq0TNWiSpelybXyrm3ruuubVYV1ZrKvoJkCr3spzZFgx9fU3fF4bE6IEVusrxBkCA0T+RloLCzGqLLIoLhz3WDb1MgqA60dvG5dOJ/0PsCqBqorZdLc5EXdtDT+Owd3khHNgMZkdolS58eMLveoASAWuxpgmg8EPzjLbQA1kGShSiFrNP/EwaF90qUKObVIYEySLE2rqlgvF2WZY4IKvyhLTJ5IiVHJkBtBYtmC/LyNxKFDIuF2f+ht6NCTwZqGWWoWU10ZB8gYN8Wqg2ycQPry5P3FNxRsNEuTaYvk6QRa3sViAa6mUH6Arvru/nB/dzxhOVVpUT5/8enzly//4i/+4vbu5tvffffDj9+3TZdmZnDhdDqWecnsX2N0keYGfgtgEp5aMBT4cEajcIbMp+VgVPhwxa/OITtToGccDc0bAOo5yU2IunMQd9Gne+EsjB+M4gabklXwC9QAZJmRg62hm1w/Wzz7JFleW12ovMwXy+50dH3X1QfoNvo+y4pn18/Fs69F/oWQSyIYEOipMa6zrlMK2fa0uJwZYhzk89Fl+59LAzBtEQgexWlkPvy5puQ59YcV/B+9Ef7SWIBaPn5FiYRFRoyGi82G2A50tzssl4xKXl5uOMoJ2icYxGLOC/Bju+Xkwn7iBFMDQN3nmR8y/4Zflz/19HnR8HxMFsKBYh/+nD1c5ofi99T3PDF4BJvNf3luoTOW4B8/nr8E1XNwG70kgjmmrp2DbHjXZzCOd/0U2PTMMOHR8Xn8EtKCsPGRx3yOcdZOgKFjGRcc1zWO/4BPHFjdFHcAtAMGMx32ZlDlo1IlcooIEqB0xvNLIGSJbkXYllF5xcPrCVLliRYpBHjGFW97uh4eHDE+wlShojECREX/Y9pJGGBFwBiz7X1rwTl3QTQtI8pgbbN6+GF2Ndm8cBVErwMSNsARQt5Grq0WQ07vMI5KOd6SzwKVNVP1H09EUM5L2N1gnA6YUGmJCYPClgVfaprwEMpGPOzE66HRSqTw/QPxH1NjYIGaXKo08eVgGt22bX1q295iAt517KIdA5Xo/pLGoIlMM2EUeykmUpq82Kyv06wqczQVtuvrtunbzgW/vbvnSQaYrRRln2pYLhoN9xIYEIET3HXw1MVl+u7dO0wAkOADLS/OlFRpmvfWEX0bvCtNuRrcr5ZlySUaCiFqExF2I5NT3Z5dLMbybogag8n3fbzpHmmZeG+LRMGRsD82AB+ZXn7w9fFNCigO9zsP32aVcpwAsLvRWcovXJUZ6Ml9AnMXD6EqNzNt206KlUm4TAyIkt0zH/UAj5j600vME8Hn6n929xo/xXy/H+vFhx/zHCzwQQ8wNQAsM+QjOc7IosNS/CEOC3bo6ZlHB6FY1s8bgGmyh4th5BbHiWISmlPNyRu4lWj4QPyhpO3IUowE91EnZmETbSkTLtKn2ZQJMWqIjKKDRUsQNW+capIhTQqkBewpcGEn6ETDkBJR384bJYvUYMMijSQtww43GNY+lE1TV4kuNy/KshyE7LoO1XMO4LzI081ysahKNYTDfvv+zc/327s8KxaLxeXFpiqywYeuaxDUau3l5aWmS6tu+/vt/n63Ox2b1vt8eSFUlmjjhqGxobXgcIXEgC4HhhEyLtH9xOIYGVaYdbg+GWCRvKwyKBUysygQLmISl2VJiRaGIoMpMpx7MRYHnQdNbFaG5F/Yl51OJ7gQnE51HZQpoCijhjZN08WirKrC9v2LF0+fXW0G32/vbg/7Ow8FsyhWV51N0BpBJRV6eKKxG5ekO52mTGdvK0myv7hnzRuA6Do1RgbFPxGqyEouRru+cX03oE5V5NovPd1sMBPVAK1gy+O6VLdZKgFiYHRGLGI5GJl8/vnnYIxa2zRNWx8Z+MgI6AADnxRseV6YrED4j8U0qWna/RFSqtGmTFjvF6uVdwDFGWGkY8irLt6MwRoY0wzLslwuCt/vET2hVFUVVVEmSjYNBrmJNPtjezrZxorjsT+2Nk2z5fqirmuOZeArLU3ThBaTieXBwCuZmcIW9tjUH4AIcf+KlmgxqZowEQ+lOBn+xAaA9z44BdmOGwBIxQDHI72MPAlw+vLMlHmOOOfgVQLr5zTVVAfYEzKTeYaQIbtpCI11whTL6xeXn3yZXT4RWSGU/N1/+U8JEfbyclFW66xaqupSLJ8J/TwkVazlDCKjhBjavsEgWpyXoPP69guA5v/fNgAvn22mIi+GsdB/5kRR5rhEXMLjI5ogzArZCMaMothH/zofPc+r2196Q7TxjJE6xO6X9Mur5TLVqsgyRG4OqHhQLdhODSHPM5gt5AAapZFZihBTRIH2tj41p7ZrG9d2tm0xyusdIYXzzJpZ68LA7fmAUNI7S2imKnwqzeeS9qlQm1N65o+5qPd89EcayYcG/9NE5dGDB9Pz9uAMWX2MojNF5OBbHurgC+9z7Kh/3rblECgO/MEuPq2bH9vdkbHwId9g/gEffuBBKscFAQ3KqeiHhQkG3NGUhUJ5aKekYhRFdt80YIzYPsp2qE4F1s5nEocXycpAZsgXaKy5GT7h6znDIk7bMBBstmQOvi9S7Ny82LEFE1/nWLkxhWWDTmo2aACaphSuA68FbD+EyCL+p+1t09m66YiyCHI2p4emaYadg3qqeUYSagtqVM7nDlWEy7yXpIOMvdnUNkQlZVxwY20nVO/wQlS8xhQ5zGehk4GFOfMuUO3wMRe2SJFqzyaAVNCzZAtRdxw6R41BziC9VOZ4akHUIUS/bWD3SRpYmeagPHm8BkU+41bBExb5uqgWm+UqLXIyNqVSD8VQtj3s797f3NzfNcdT79GcgPydEPkBwjKIano6NYOQd3d3RsvBASKqysJ7ezoc+SNLOKDCXVwT9Rcw3XhHK5PC8M4NFnkNGNq08HA/51EQJWDSBMe7YUbLGcn0jPfHIpVLf/6dmKRxBj4mKtzD6n++AM72T0Guf3SvxeuB51TRnZA7vvN9J5xGR+l1okn7DnRkfn+RLyz4YBPFxTn27nh8//7SHjbXDsVdnD/XSFaagKHpL+Y2wR+sTg/nABImCuekDu5k6amY3EyJ7mdWFVG4sCayK+REMAAJSj9qpOk2FyKFODhuSYxb8wEs8wJySLrNyfkjjOsztnhWAoxkv7iDQUFOv8+GlawZSHPSblG7AKsmfGU1CN4YYFIM1kBkJlKzlzTp5Ubf4J6Ach0gpu0xwdaAn1F5xilS3Fn4/WuVwj6yghCzyFKiMmL9Jqdg6QOcuN6/f4/syMFvVssnFxd5aqCxRcguCnGy50IbgJ68d7WzP765FQixykWi7SAb9POw0jcmp9CDNHgBvlyHaiyEocgrxB4EJ4U3WizytCxVYZKLVWEADwmlnIRYE+dJJ7rvhq7F3ZYkGMuzzZQxOssZYcf8Uyoe/MK54d3bXVMTm2VUh+V5Wi0KJZI8g7voelmsloskGY7b+/f3+x/e7JzMs7TIyyokpm7bPS2y4PXhuqB450hwpagKFJ+xv43LAoGG+z0oOlELTlsMLqREux5kRZg+Uw/gvTWpJm4/9oIo86FOwJgUlbOsVeKMMWSCDyNU3INUy2bGLDFWzYND+iGSXpAw3dHtGFWIrDQLQ3JqmiEkrA1D/ku85AKleY3dLJntlFmeZVnbQu5sO7hk4tWrarlclnm6XhVdezydDs7bKi+Wm3WW5n4Qv/3dD+9vt9tdM8jMpJUNuqPkocVqOduNzysD3kRMYRePAAI+jHSFxlSNUdlHxc/oF0zCGq8kOe1K0sJZTIDh629MkWOSNhCrsygRk+QchC6oLkksl6fpk4v1ZlF56w7HHdKOva+KRZbnt7f3P/70Sqv02cuXzg/HuvVJUq03m8snq80qu7wUm9Xub/7r9n5/s92rcn354qvy4tnyySfZiz/zXeFlwSvtbNWjKyGJi+gE+gNrZOOwP/zxC7/9e4Dv/9VNAGbbQ5wAIH0DfiUoxCjR7WwWMY2/z0EkdOFOHPe5DSV/85GNcJYh/+gRQZax+mfLGFw0eQ772zwvwEMg4I9tnvva28Y5p7XOqzKjpFlIEhMkgCBXJMsTgWT146mpu9ZBMgTkFbayfU/LPXBYFneOW/O0cWL55q3oESd+yt+dHiN53fx+NvDjQmFsAB798i8dnzGo68HjUd7Cgxc6NwBc0MSrPTYAI/lnagAIoI6cY/7KLvkf/Z6GvBxV+IBP9eE4YqRNe9hMS2h6piof3FaUwvQ2sE9zMDBPBoYcCweSTcEz7ULXoe/zbjg15MNJ6p0Ekz0M1KHAUoZt0QnygbSQ11MxujDBTGZMRDJJ6Or7wcFfjGSLGCAwTz1ay88MIrkcyXIW45JpIxoAdmeH1akLANW8HzAG7vumxb4sBuNQjbNjabwd0A7AhWZWpdFb0yJkCWQq08vN7pex02aNI+MuiRpCypDkjLOBM0u0BzIwYaI8b5PC5ilwZf5N0Bao+qd3RTx7vumjU61GtqNMp+Azzs1te5hRN3WLmDAKSgukwMCVJtVq8YRS8ADyRS4BPeE0EeJh/fF4PBwOTdPs98em7Xra0dnnnlMOaOdQznY6Eav1kngISZ6V3373Iy4XMkNNYEyBycAUQwvUnzjHlGiMc9RYtBPTYfQg0RCcNsP+5w3AmBUwawBolX/UAEy3KtNOPrzsHy13440qUSiNNly8KfHFRb7ycVATPwsNr6RAw8y5m9NGy+JUAJf/X/L+hDmWZM0OxNzDPdbMBHC3Wt7WzZ4mNZSN2ej//4Qxk8yoEdUyDa1Fst9WdTcAmRmrL7JzPvfIyARudT+altfDfCQahQtkRnj48i1nUSv+UNQ/tXOkoLwoBHzrQLoY+f1iAnB5B1Fb/8brJRCI+3h4mQCkYtOmD7AmAKn/mpRL1rBDsBmSA6DaziGKlanWP1/xhEJkQjWb0omItLxs9c4HjTgXiovcrvNSuuFiJRkgQilIxElrTzoDOH7oEczMDeLKLAZT0BKScrKRUhVe+Fcq1hV6m3hTcpYE2i1aTLIZJxVsQB3gYnfYtXUJV3HRtgZqCBCZpbLlM6ByTyr4uqza0rZ1VTdlU1arH6X4s8LOTJs+FH/+/PXPP3+allC1d83+ThXVHNTj15Opauk/E3+EABRrfEZV2xpVl3oPslBz6Mq2VGWBfKBG4ySgj+sXCrFZHZtpZJYFmCJ8rrCNVMhzQEmlYnDdmJINk2UKtTkMp+nYAx8oV2ttUdfl/WEH/6y6Av67slWJkRkXfXL1Hz8+ffr0xQdVdfsS5V4bC/Px0+c1qWfYmp4f3H6EqpTDj2xmmkjARG4mNKY8H6l6lCXUwInDmqnrD8tOYmLx0MvCtE3TtaVRvTXgAKQ9J0cLgfFPUyGFw8aFqGLRRnW7Rn45QDHToadK54BxWpDP09xjNflWSv306SdwS+q62zX7/X63g3OEtXa32yFBobs5lPLhkIgi7en4eL/ftV0N/bNl4m8eqqZdvPr58+Onz8fns5vmOC7aR3jYzQ5WxLnByFIHJx7mWaLVp1x63b0v6bzo3qV4A4OwUm628UOJoJGMRI8VJ4+mqcv9ft9RqgHNFvQ3EDrW8J+DzV/X1He8EeVRb0rBJsdncXGEsvQcUCZqvBaVM4+M8dB0MHZGGnkap0+PUx+r6t1vyvsfm4df3X/3t/uH34RIreTcNpTyHRUUlMRDxDuKAHewqA2o/34SADqBbF7rSTY5VBSkA8BKba4qEU8sayaRbnNL+qrMlr9ZHaxeZpavXlDGostrBb3E8/k8GwsbumVhjIZGmDXFEpYP79+9fftWF/idU98bq7uqOezv+3E4Hfun568eEoqFtdWutk7rOWCeklAHTRkhSoKSlTRGaHYp94rYP2tobi5+W3HfKu4J2ffVqtt60N78fD141jTplx+YaNu/fKt1nLe9fv58TW9Jec5pQPqW1bWV+82gViJ60fAVIg+rfoioRAATUS8gNwKVSQnEekGprLoqGslBKmFL5mzScpWADQZF7LQIuZOVM4T+cg9QdFlsqeqqbstKReucYHajdwq+9P0yDLCh8gDkzIB2QEgTW3aFQkQS6QsBRN60oxH/PS++KGZThO/u72PAO/JsQAu773suDLXO86YGY4y9Vz3Pk4wgGLYwCPNCMxODzLYsQqmDtwszkgX6cdqhdwzagERmSVRkcch6JCSCf2cSuCXTObvMQoobrY0QokGsD9USRVVvY4iNAWgnNe02UwKsGWlOIxCGr5GgpXAwOnR4c1dHoM4MSlPoxnptznnw1dZdiqMQ0Fu47gAcRagqZoV2lJ/H/6DFFIwZpyX0dLwX5paA/uu6pkI2jgQMdVSmrOpY3Be1Op5dOALii61ZVTQZ0CE0lXWw9kR5cuzPMbi6an/z21871ELncRrciIqd8D1IH/UA8rI7JIJ1eEZi1ybzjz0ZPIEkfnvR4pclKJsN3UC4s3EB4WmnqU9RWWhxCohFzMyTUNrlHSSmT33w6/+3URRdtWwSAo1nkqhlpxogA1wEfhREznopeTGTzckkHG/CUisx0QbX9XJf+tbrJZDp5S+kyP8X8Zy/9II+Q+Lgy7oWYmh2cUOHTfCHpPF7Aug0JPtJdk+OvKwfe6SckJs0VkPRXkfT1ivaX0oG6VBG3uAd6gWiYQJ+TlmVHlwj7bEHUJ68gLo0IQpIOLcyhYn1zmLhgiIXtHJwOKBGAgMB0aFKOCX6ystjoSw93wEaDGw5qViWbeY2Bwfhr2ioSlsaWCkx/EodZqz2JTwe+65t2grddxW89EuR8ADnXu3u3kAFxrl+RjmkceVoAHHh5EmA8nl2Y5hi2R0OB1PWx346D7Dihr8fe56KR5Ior+P4oxp6DRYntGTqqmiB0mNUjLpMLJEWQh2Yfq8yvRTqMahK08VF2aqCAUxZmnP/DLmNYFQD09ka0YLxZdhXzVLbQ1dMU9XzBTPfafo0Hr///kN3j9r/cO7HIh4Oh3fv3la+Ps7x85fHp6fj8twbW9XNzqLMhzMb9R8Mb1IGT+t3Az0AcJE+AE2DymCy2aEllox2U7Ye/LNgTNt2jdY1HFBGsIGnOfoZEK+SDV0Vl+h9t7MoEMFCkdo1ThBlhTcWwqwwNJ/FHos2o8os3loof2KfjcYt89DP40xbXOSIYlUsiSWe779/92+XZZS6O0ggOrilh1P76SuU/SlogLPFAF8E2dSwPz4//fEPT1qrt+8e3r1/H6N/fPr63fe/eotMtNG2//T1FKZFvI+WZVmhcWnflwNJOIoiv57Ob1mG8qRFZUQAokii0kjC1wSHmtQrCFgCyE1KSBrnNSpxa39DqsaS+0lTbpnmyoBaJnJbwzA4uIHBvKXZdT4Up74Pyta7gx7mz5+/3N/tmq41wQ/np/7UK99PhZun/u/+7u/ud21RdufYqTfv7f13sXvwOFgjrEJIoYIEKM2KNfmFJnkDAmUiVT00+78la/i/05f+3a/fb/Z9sYviEqLQ+pYGlyJgRfUSkuglLNhW+te2wGqDJVCzLThkW1J9+crum/LhJIDz6jDniPW0EBvMryL8+O5Bx6Wp63cf3n1497asq/P5+Pz8/E//9E/CcMKpEwpIBk9u8tDGgo8oYQxZ+RuBwufPn5M+YEKZy3qAluBLbOsvZHjQQLl+3UBibt7kJgH4ZXzU2gF4+dqe9Nt3yFzH9e/TeHJs8+O4siDFcxfwxgrhYE2LhuCbnwt8BSX2a9+ABM/dVBYv9VHIgs+aODuhdxNPgI1oVzeQkSRGVjC7vMIl+EFr+Ktj10NXuaJyBXo7rHcChDoMA6ir/TAu7jSCDCi4wwQUIDbUVtC72IoQEwI0dVWsCoh7JtALPpnBGZW9E7c7Cx1oHd++fUMAqshpJ+wmfsNBPE9kQ1MEhujAOl86DwAYCF7gPZE37P0s2OsUPmaCOPwv2aGGXgFpzgQLMFVFdRxq0RLNcrMmZ6tMmkQZ+b2ZZpK7SvgjSAxH1cacK2b9+yIKGJTXwuctyxC9BXJqM0wFAyhQ4wC9nQA+BGI03JHI8e12+2Sgxoeeq2vYKMBaa9uaXgEUIf16Op2sbY7PMAZGdw7vAhvIsrK//vWv39zf1cCFAmQ0nI/n47MxJZS1RW3cLwDyB2huaxh+Ee8BDiOJRBqXt/gQTYU86pIAoPQrIr+X8V8XEQ+Km7JONomUyoS+6QOIvNgvrMdrnxDwd9cOwGp8xe45H5Y8ggxgQCeWZErMY4pO5keMs3MlsTEZl6xCK8g4Xky4b/qEL/eHa3PfreHjVu1t3R++if95yTFIlVGx3iNceGX6igiBTNHsmZ1kfLWTJiTuLsmPi3Qjifw5GRCvIrxDt98xJWCtPC/4GD3iCYeqv1SaDBQVAUnBUs1Qn1XaS57jFs+5jlhBkAxr5FTGp0kFAPpVrXSwTD4tF4zsigrCdExDKAyKr0nCDi7G2GB4nbRrwq3UFQrG3HnQ2JIBKbRalgklB5iUwcpJrktHBE+lKZoa5V9owU5nBQnLIjgAwesSmTbMkryflnlY/PPs2sN9t7tfXPz49fnjp+djPy1Rd+0dzKYAh0SKlae0rqsdVD4r21hdg9TgCkrnVcZXqM1TnFngh2BWFsMA9GV67lI0MQgHFzeCkYcBQtd0v292XVMWpR8isZkY4WmajvAPPIGH4P3h4f7+7k0qn4vkWtS79789z+F0HD9/ef7zpy+PT+eoIafKeoQIMcMokIBPziIev1dgVBnSjWGfdACEHWALfBxIHW0DNsK+I8Ua1NPhdByHXodYYXphp21K1dW6a8DGLkvsY5NDO5pRMswTUAbFpsdHRxJXUBMOraqxpgohjsPcS8OTRUlFnEWie0FAX93d7+d5mOc5KszhpqmaCqzZzz9/XBaGzpD1wYSHOFKB2DkEN079MJyLQj+8uXv3/n27PxSmmn0xzerpNH1+HB5P0zTCUWuexy1iWTa2dawgXrHadWXchywTifoUHG/wQgJJoVzZizLZRtX0AaDhhC2N9HuBj6JnE6Dk4sPACY+jDaqpTb3b7WoQL+CA0Q+nYYLtw/sP39umezoOs1dl3TmvYUNpLJSadKQO8tKWuqtR9dA63n/4oWjfuOq+/dXfm3d/483BxZpWMYkelPYwBhZ+mQm+IHgVNs9YuohkkmL0fy8dgG8mAKBboIZBhmL+dwFZrt+vob+Q8K6Ad7lztG7igreRPiwy76Z59YKSEES+mPxhCAto68szOnkamkJ75aa3D4e3D29K6gYcDoff/ObXP/z4nVLq+Hz+6aeffv7556evx2me8bRN+fj8RKwH66KU5Yqg3it01rIAUL4Q/te2/Z1vfNXPvjntEHBfUSR+6ejN29NVZ2D95lsdkjUB+IXf32YCkBzOBqgbpf/cNN/M0rXXL6VP1vq5Vq6/l9+T71EhTvr6l7jzZcfjumeSSQu0PWS9DMdPTUhLBYC3+CoKQMLVlYoheS+I/Au0oIoC2q7W4hykrBAeJXXujsNCNZvT6TSOEzBCrFwohJIQ2QO6vTA0ZmeVcDp/0TzBBHBPrTHATUBxwua3XBQkJFoipxYxKrd4TEvgsxEc4xpcTLGCmEAD8tFQ9WIBsDYohsuYb8MEoD9SCMQC4vaYSBocHNjjSBqAaS1piSCHNc5tmbcxAnOZiQQA7QjSVDSLJMDKLVp2sQr6o60zJGMtdACkZBVRQajCUxOSSYWhKT3ttxXGvCI50pQVMiSI7YCND9gV+sf67s1bOTOk0p8jNrodsz/eNKCgQRtkGEAqmFw/DCNkq9NGIfiQtm3fv3t7f9ft26Zra3BNgmua5vn5JIcTmvVDP4z92KNoZG3FLAsUYmY0BQwBAMoupQW8vlCZp9DpusxTk0wMQPQVOXXdiFY+gCRWl30gr98X6/RWhCd/+qa9vlm/AnyR1vbaiEeluawTMynRAeVpyhVIZzKtTkl0eRdXUuhyPTcQwZfk3fVO8w1spcDWPfDy/v+yBIDKvivXRdKAeBEnECLEBd6mY0kfFsxUbhRcS1yBnEu5pZz/hEuDFnsIoi4JgAKHBxQWrGWOBnUjvPdlU1/oEzJFF/68ulJpSxGSMtC5JMoEDGxWtaA1E2PFypeBhbOqcA3oGbLwQLyB6KCvCQA5V+woYu8BjCarEoEST0RTJjBIDJ1zPA4W1w7EOt28GBvdPPllRn1Vq1JHoICaikK4aLGJUlzCNSn7OIwjuJQxIlOt51D0w3wap3mCRJ5E/7h4S6fdwrhFQdymqXdt1ZYQ/jcKCcAyDhbQzYtMbZKoJBRNBpNxtexkfn9oIZMPNZcphLkCjRh7dQkL8KTA40OcZ9Tbx8Udj0dgdMe5adrvv/9+f7gfhuHj1+cpgFiti2qc3Zevp89fnqclFKbOS5FywOwIEerP8sXN4Zv1HlbGqrSJGLZHlsYZlZbQIxJGclVbN43D2DvctW5LW1dlWwFfPA+P1KlEa5NquZo1HTpJO+QAM8TsQf0qm5pCEiPGlr7pWlH0acGjOrLPnIdR0gAx6rkQxEFzskXL/jOMn6dpOEObYVlYpGM9q9JQRuEEn5VyVVs3XVvYsul2UZWTK4Y5nsd4Gpdx8OM8ecj75uR2U2gAfi2Tka4kSUTXFaQdXAZ6Zdh5x2RMnvNn0auwOJflj0kj5h3Jr5mCWxCBuHhYXJ+20G/vDoYlXfgbFHGc+iO0Ryen9O7+zf7urak7U++KskHTeRyef/9f5vOTD6psYAtQmPDwcPfhw/s//vGPb7/7wTSHUB/ufvPv1PvfKdU4r2wqB8L1RwVIPjF2SUGNQlekCAqUdAJQkUT/Zcrm/9oTgN/+6t3mP1MCcCMDunYARAXoprm83e8lnZUGkOQAopYjDYFtAvDPRf9Xl5ScdzMqVKJ00Xfbt80wnJdl6brm/Yd379/eITflbth13cPdXdd1KkJdAVLI83g+D3KuzLMbhuEIW2yAtY0RVjix3amXj5ODe/ErhfmXBjrpOq99ANZXNrLJKqWZv5v0JV5Ag77VB4BK5Guvl44/UoSGB8uF43JRNM/P+vZTNjCDq1vbBvfbjy2CT9Z6rzVGbhMk2jLw7xB3oraKZQm1yuAXw9G2RlfQ7UDRThdhV1sFUIyEo8AxCfejqkocgdZCYJgVNIrAmuCND9ikeujUjccTsGPjQhyuNHwKVVZN27ZV25Wl2bUWaA1yT1kXnDwDBTngrXAVqGEsojxfHz+vjO10nLAxWlWIa+XuMqAI/aYeDBNy6AmogmAoZOTg/IqOAeTJUBahogWNithRXRkmq8gazumEgZZdFb+volNibJcQO4Y69hafJM4C5FKAcwhQDEoe1mB+rmjIRKTBkqAT80aDUuRgHQ/alBvI2mAdHcZJDKaBfkKWTHc+CBCVTFTYc5VuBb/WZQUD+2mGHJtGQ6YEtLCcRwePHZJ7Id9JbTitASncdzUeTVwotK0rWxwOu8Ph3tqiApUEKIdhOM8jGsoyRA6eCwm0ze/VeQ5R2ZcJwDbP/xcmAJzA2z6AukkAtpN/rSK/mgAk0ae1gKJRiZR/pz59elHxU9qSlMDlw7/EuRIC5eK6vIjzuwrQ1wLBq0Sd627ApjxBSNKLn38zAVgNmK7WO68twFAtJQCb0buEIFtZzwZ097ST5FMGm9v5fJZu21oLIHg6LsIaQuxBYP36ycwSxRcs1fX5loJeyNIlyTkVZ5NDp3rV41prWDPorcl9Avk8J5hg9sGVoi8byL5IAMRmCwgDlqQp3kpg1jofoFQgmCdsFVADVfhrdszYb4Q+G9MJNMrQ2UG1qq5rqZctburquh+e52HU0VVY3KEsdENQiCxkmasIw12cg590MS7hPCzzEhyeQ6mLMigL6TCk7tRZYxE9db6jqW3ZtdW+LTvE6cqwA+CWCWRYwj+QNLIEbUvdtaWAACCzTpM4avTBArzbQfIUhmKgwxoUso15uNsLq5CcKOBF4Cfs4zAv5358/Ho89YM25e5w1zRN1MWfP345jdM4+6hsiHacwziGxYMHsmanMmLUfINq8A1bL3sAXuTqL7xz7L8OYWtZYu+Eq4MR+nJd2mUalZ9KY1pIlhV1aZva6qUH7oeTQFRlwTVSph9QtHbQWVqCV7YCkUxrX1XBoGYE6KTW6Nby1C1EXjPV2hEQSxcotUyrGpiUeR6neQwLwF1VVeFAod0CCzHIMCqDfXQ8n849IEB398heJjcfz+f93cPs1WkI59HPofCq8q6YlpmWSSkCkdW3JTOkXW4zgIJxkv4trLgsa20e5ZscwyRsrSQAoqMpc+lGBQjEBoKjpnlgDwGc7w8P99E5dP9KWLlN4JhNc4j17k7bqr1/+/7H3x5++I1q7tQwh+Pjx//b//L00x/P01Lt98HWToW7h4df/ebXMFo9HFTQs1PVw/fq4TtlWxVLJR3a1e3LL2pc1LKoXQfRZNRGrbgO0XPTqljB7vK/nwTgWyTg6OhblMQWNkVcnjC/7AS8/Sbh4TjPNvwqeJd8IwEAeI6vC3wd8zB7TWdhuLRd+cXtdtBQUzqMYx/9LKDtt28f0PY1JGIxVqssWmkHKqyJefs0Taf+3PfjME2fP39JWWAGvMo5t1ay/4UPGJYlr722CcDWN+CGfPbPPrDVB+Dmr9Z1u/3hiwQgDWYqwK/3skkDcmX0let/eZEoEFOE+FsDcpvbAPfYYFeg/j6+UpIRCsBuSZw5VLZWL89oFXRggCCBuyIB6woJQ93YGOaIGBuCFTyA6cMIyYhd0+0g7ODC8/n09HyCvRVo336cgAEOkDmDM421BpLHVdWhMp3E6SntF5YZbjvEC6QQQeDIDw8PIsWIOJUBdIpdSBgoLcpClxilMMdxXCQlENAHkDOQI0TznUxC4Pop7yjqEC4YQapcQUfojZDgAalFK+Z1QfkefTCOGUMiowNDEFqJsRQjwSOCFQbotdDiuDPL6manaEYAROR6YotIAukQgkD0j2sfpzvrfATnSSBIGQg0+1kbHOYlFgR1wPARPfocjnhtEVtAiy1ACXs89/00NbabqOdrMPgFBNnZI/7++w9NXYYZtgZFDPMyeIel/fnnn6qq2rVd29UdqAVwCYKfZd9LiAZ3AogGgmfgozmObu0ASHEyNz82m8s2or1qil3SAAECpR7hxftWQtxX6D3f6ADIJpbOy5X0kv8TTqISrCBeR5hRzLgLoS5QbynFyijIZXJt+vP8oa/vSytH6CYBuF6qG08Sge68DgH6yxKAtbGVkygZ1STWeMlk6NjVoeKSO4rCDWA+ME2obQNod3mxeWYRN5AmTfpEklGiwRkXKcJ0YwA/q5uygvoh+4cpvl8X2jz2L4YMWB56LEgCkLSF0YOm4qG4/6ILBwgl+GT4d9IfxUt4BSAyhAJmGsQDLiuhLEQUr+tCA+WFGiwTWBFFJSgcO1pk8RUaFaYI0VX4upRwHiQraB7cOGrIOuuyKGqSWQulZ7dMw4wGG3D7VdTlNPvjeR4GbH5QUm86MVsQoCCMGImY2jUdoj1btGXRoGodDASOANVAMEgKj9h+l7YuqmjN0LSmqmA+ZYuytnUEO2v59PGj7KXOz0arpgUSUGl3gNdvURkLJ+WCuvhRzS5++O4Hbar+PP+XP/zxn37/p/MwViXU/Xa7HWBCsKkyhWkcijuFC9BW5emBqo5kL6xDhSRfvi1Nptl6OWgvlcTgay3xt+XjoLszpASKfdvEgMynNoUBiDyUBuzkfS0Mcz3NCzA/swPgS9tx8kqbBW0iqDlZ6BDGeR5KMwF4iZiyQMMGvwySEoRQs9AtPzShaJwT5E/NAokCxBJdGiQdPI7Evp5u3zQvbSzC6Kou2B44omfeNVXTfP76NHt17P3TaZpDUZS7QteoKCDhSvXHLbQbELo1cuPJk83ssZSEAidANdnHhmHYiAIRv4fQRFr01MsGwkr6UQx+AuyTOzGC5AVIAtCVNoBBju6AC8u0LNCQauo33/1Ytrv9m++7D79SH35UZatOo/r4x+n/+b8MH//0pZ9m08y2mXRZ7Xb7hzf/w//079Vuh3DqPHiN9aFsY5pOFXbpezfNdWULBP3efX1+fHysK/RJTNmYqiubVkHPulVFrSCqkXRc/rtIAL4lA0o70uyKle+Rj55g4ixEuCL+BYlxed/8vaDHpCewagdd952vXjTyyB+3kWhloSLVZsSSSQ7FtS+sBUBiC6pQ4egACVSuk4Z7mHrGuHnMxERkAsRKYlP7+ePnraHm+rk3vIULdp/NrJdFbjJjRPgrifzJV7T1M5Bm87UA3wUtYoJlg0aHDiSygGPz5VcO7avVu7UjcdMBoLf59SyVUd1kHtsEgMF5gv1sv5bWgjufgCjpa3LSJlEyCT5u3oc596bcQgkRt6BqIhRbCnkibk1ijqCSxmTKmCD8EXJ70kLR0dhYmqIqCxymcYElO9AqMB+B0hzGuzAFfL8ZU2RErylVodmcdcM0Dz16zhPKVInfTIiCKkvIb+93kHdr4PCykzRphQpA3juEfupXajs28ozfRbceywG8MVH2qGxd1GUwFY0DePYz0EdDIBDpT9tagJJp7USFLT1KxTGnc1wsCfwg+3IaXiDCywLHM42iAhudDM4EqrGeLkSI8yu/19DHuvToIC+T0R3ralo7VICP2TQzoZIkRVueQILEIJydSFxQuU0scELlODu95J1AAk4B2cU4JkZd2pacsESdx1GH9rEezud3bx7uD91h3+26Bsfb8SnJdkQYRzMAhEIOSMPG0McAyIplcf0wAVYAYJLul+hxDzw6U071SwmAdJrSDN/q38tsT1SNTacub5OrRpZg8+UrdigqCYhbOZ4TyyDJX4Jhouy2IJeKDit53Sv0doEXwqVtuPKMBYO72Xiogbgm6sk+jk8cZi5x/Yl8jyfL+jR/H9d7VVjJqeCLxCARJ7Y7w2sJQKajYD5c3kfMv+TdodyRdJASkAkhhI4Nbl/qUDlNZcIqHEF0kKdF4BDQ2PI+lnB6lgtLv1yUq9Y7oigWVsXBQYeY5IBzp2t9viUveV10tMEDLM3aijah+fY3mRu2dFbEYeon2gnoYSJ64DUjKWGRlZkPcyHRMJZMgPYDRYwQ6UdinMXUgbpg/AQIjbUCsUf5A97GEQ6pKgKODw0z7+ZeEWANOCWPZ2yqQsHkHvjl+XielnFaMLnKXdTF6Tyejv3kgJJqmqYFQddGFRYIrs+UOoL5VwMD47K0CnZ74DBgSgB8KDBuVs1tGa09t51t6s6SIFSZKjg/Tcv94eHp6enTTz8/Pj6K8iOlvebS6t1ds9vtkMHCyUON43wcxqJotKmVtmDKqmJa4vF4fj4dUdRDAxOh87zEaVY04a0ddRcoZEc4AB2LU9ZNqGTuKSVEjUC88vyHW4/8Z0GKFyYQolcDqy6KrkbvjI41Cv+IXlXwJdA41oRlB2HOzgX//Hx8Pp4HWivYsgXjiziapt03TTdM0/n4GONAIS/WiHisUccDKv4oAHGPTeuHrxZiCag0QQuoIoCNv9Ufn2GEgkY0InFZMaitzENT2a5r666FK5ifv3z58vHrI6oGhR0W9Xye5yVo21lbo/B0CQUkvs8StEmOItG9cpkA3SdJAHLCnHb3YTjn+OfSNENhroRJBFaHxzr1i5MEoG3b4Xx0zu33u4c3wGVUlFuF7JTHQpv9fB762S31br9/eHP39u37H3+jP/yobKcQkRt/Ps+f/hT+6/9dnb98Po/HWU2mimWrqiYU+u/+7u8e3r01ZTmP49CDaKF0ubu/V6aAJdS5Pxz2P354r2zx+NPPP/3xT+DSl3Xd3XWHt939u/rwttwdVLWHa9hVAnCJg77JDt5GVxsf2Ff+9a8zAbjBeiaZtnyyCfB6G+O+2trevMnV3vptKMvrlXXIu1y/1fY/N6WndMgyk87G1KLuysS0qWpRgheNhRSiYWN1GR6dEpKtzZZIc6xC2vycq3Px5X1dXSdiNIY4mTi70mfbii1dVkPXcJnFJPyNBv7Mb79OA7p1609yGoB6zlXBch23164HaRyqudglL4mBpDhXlf58d1nQMx/waTNNNEOBgLAUvKLSjaq2KUFSBgCHRJ4LwspEK2fUJeJ4mw9eocaiqVdsLAJYHKVNoFQHsa0TyFOo0DYWcidCmxOzIZlXkME2WaJbAgJC1xjoFCzGM4wA7mvx7rRgwkncisJqoUoDbay7uztUDUFOwg6Y4jWjuq6d5zHpV1CbOQ2sT1yoiq4xiyNec1ymWAadeAJyRqEgDbqcpRwdUx50IYH2jwW6/KibCpKVjjDCVpS1KF1WUaajPU2Yl57GZ8kxEfW5GR64CBDXgjGFHARlDrpT1h2i7Qn6D57QNc8sgXpMKJk7lGXmoKe8CaLWxu4EpoUparEi5gTmWgY9Ii5xEjBBcvXmapK4kE/6RqESh1v+r21OC5070sFNSU2JtkXQ0DZVA32jvGIhtzqKpsQwwNulaZqqasBDZBg3h/D5eViIcpKcRuA0m4W8WQXcF1Bvy+H7i2X2yhGQSu8MsmUViAqM7DY5BEfoKyG286ME6yxSIAzmO+TkXkDASdccfx/8IpvG1sw46ZmmRHd9YYavZD6IWmS5XvkexWxJSMB9Sm8UHDp4VD26gKTXPXMLlaFDG8p4qByiL8G/yWOYEgAG1ltp4wJGe9n17AIBIpqHhYOLwxffr+LC54kjlETA01HHCZCTx3HEoUA2vsAw4utTvwQjhtwUrausqbQ1i3eYP/B8tcCLsUiMjqVcnKTuqerKaJ7VynQQ5G6zEhevPObrDSansNwYF8XDnDKLnCK6mshbAFdDmUMKZwiiEB6xksoRfz7NC5cmdgAZbRZNkPCsxRoVTUmMvrFNCbK+9IIAnsZWABrBskxApmDK4x5FVsVaQOcngF3HYYChkjQ0wFR2FEKAmCO69Fg4dL+CwZzDzoSgDUaBACoVMAVDDwDFOeR0qGNw6/YP95DCr2zZ7dqHw37XNRC77IfHz4+0vy37fvzy9Xh8PnvukE2NC4ayJeVORfY+Gvvzx8dx8uiWFlVV3Sltp8mfxsFJZyTLyLBKKY0WzG46wcmhH1LRp22FJoVHwE2P/YFYlQCxdE1dWBNchI3jIvwH0qyhgsM+gEGNOAYP1i+KTSSveofyf1O1lWnAmEItsmoaW1XDOH/8+PnTl8e2OwBKDvZUZWxdwKqkMlYv7uT8BD8TjeoVPoLW3cMwWcijNktU/QS/xYjIHhbIGPFklI5YAo2VQpe4bMCBihgaa3ddc9jtu6p0wxndasjbAlipy0qZ0uviv/7xp8lHDOnsgISwcEY6Tz4UO14nBpUSahCYEgr1RdU05HVaFIsXBQ68ZB+AZ56HE0LK20UagspCQkbgPGEu7bnAuYrneZZZXdeVqZAPvH///sN370yppvPx+Xw6nvqPXz6fh353f//hux9+9dvfNR++V7s7NTsomfj45Y9//uM//m+dO9URps3oIS8O1SKKzL17967nDC/LetfdVzWod8MyP0+n9rCvjHXLXATfkpYCIdLTOZrKqzLUd/v3f/vhd39ffviNMgflK/qprwFKLmImn3E5Bnh33FlfhPe3FM3bU+OvLB/Qv/nx7U2rNx2Mogyz4QDcVJpvSvgryexbP/8Xt0i25DNeycYs6SpolRw+VZgSe0GOQRzkYjKXhYBXR0/AzKmvIgfyilFGi20TyK4yl1uAzcvE5jYxQLXUbSExl7vIPfqbr4Gz7SU5eFs9vbwAHUEFfdt5WBF4r41yUHCV2nQ/M7TpWr1k07q5VkbMNT7RG5FCYNLwSfhpeAaspsJsjrKosFVzWquJfLsrDsOWpJgathuNgkLFBjyqFOSgb8DvC5SA5wJ1RHLmuHnBglBw7tn9F5togXAbidAyFzmgTPU/oNniGcL9rPFPEKkE2oeYpmVRVaUqdK6hSo2vTASMhbX7AfhWdJCg99/3yVACmoNwzDUFCrSomtjmeA4O3C+/OD9B1NTPZIxBLYrSD7Cwxld2O7BfzqkqzAPtggWSHoEYGDGDInQ63N1BOC8VL5nPAicRYz+caEwE0LKMNMJKHY1LexbYCAJrZi/CljUUm/l9UVhBHbkIpy9K10iLACAlJtpQaRQ8K0HOlJ4MCK/QKsD8F8c1mcScFQzKZXLlhy66YW51HM/5Z+quSAtI5pV07ZrKqmXo2vLh8NAdOqPMaTg9fXl6Pj8bZaARCZGWQOs2VRZlNMXzOGNBUp1pdcu6SQDS9yL9mYbrX/q6ws2nlbvp0W1QjNIhcBGXk5y/NhAgKmwkz5N1MwH0ArImGT+Udjz8K4RUZQwZzeb96hUwnvwni7sZE5FJfpCWd7OAodeXpCK73Y4wj1RLzjuSn+eJCjYsSyYpyMt4gtSaRyR3JJJi2E0CsHYOURoXuCLfwbJKmjy8qa6TO7p4PCC4UDxEpnoAdtwsQU9YuGF2nJ/KAiwlrAAb6b0Fb2yCMCIC6MtpciE51BbIhDzQosZJ0X4mw9vBXDu9251q0+9CjQkOFWgLRFME8IgQFVJQmUeDKA5hyRvrdDljySZMeUrIvW/aKoG9eE9IhErEca2tVmF2zp00blVVRQqbiiMEpdVIk8BCBiZnjaHx8IrU5YD8DrHgki4AdgQzVrbXNEGVAF7iA9u6NFpVaGBECHPhewD4rQ1lqdFdt7pryt2+a0qUHpxzXz4/PT4+R213+7e2bJ5P4+npdHz+Is5QgNVj5zMikXke3Ti50+jHKSwOfYAYCqf0TCSw3I4A3lDUV8isEvEaW45UhQD8UmXtKfoPpCiW/Qx0SfSlsXUJJJhgb8jIwnQ9nYnF50QlDAY95+CXpiwFj4rgu7IN1JXK1uoWskjok6CQb9CJnmY3Lf4Pf/ozTINMbWxtbMfwAjuSh+qdL7GUClgIC5FfKRhGKj15PcxhcmFCA6zk30yV1SVUztE9YsqJ2o5Rsa3Mvq12dVlBHd/7eYrL9MO7t5BEg/h1FZQdXHjup+Mwf/z8WFStRgcpzhOmF46wZn8eiXEPbnEj9Hn8FKnLB8VXoMjSYmcGjz148ij25QK/7AMiq5WiD6HiS+4KVjo2XezAiWKB+IBmbWAPg8xgyAapmub+/v7+YXe4AxNPafN4fP6n3//h6fj89v13v/vbv9n/7u+A0z31X/705/PTWTj+fhqefvoD2oqJ8w76CvS2S9O1O+481rkwjtM0LkgctF+s6+4Ou92uKm1XlbuyVNCUPo79YMtGt3f1/Y93P/4fzPf/RrVvVaiUal8kANv4qLhOABKvcvuvV2dKVlX5q00AfsnVRV7blrdsfOvPt4fNCvH/FyLav8UDXjl1DHPSwbNq1SVJZ/kF/l8eHxeJd0FjC/qQyBvABRjNsBKPuhKAcFt0MlrzhN3iJ9TKze37VKHf3u8vfC+r4Vv3LDzFly9IRFy/1Vph2jKGEyqDVqLrAHOQ8mBdX2eOaS5sZnmh/ZgK8Nso4doLIj+i298S1nz6mBSGrk7Pgg7Me0JWO0+XdKkIhlz+l/Py8mRzjW11jJLVFSsr1hOm0I5RvsSF2MV0hC2tB6EWuvySCAmzMs0HHHXC8BeLMVOAM4cSNzcsSIChY6DqCiBA1BRnnIqod46j03qZltMIewEGEzgMUdip7a49AynUUOCybGzZiPRHKpQKQAUSTHTIFo+FWFgPSUvLWvF+1yZpkQh7LQdzCryBcMKzEFvaZgtdWDopijs9UhaoWSPUfjodaeBFXQVab1oYnut91zBpwBXx/8+CPTKWsleUNCykt8OkCseAKI4WBlUzAAFEE98iZ5OnB0g0vzGgWVOeHmotIuBDf71Y2JL1I1ERTWkJe0niIpOcPfisN7o0+nV5St4kXki0hgHdAB2fn5ef/vy5sBo5GQjjZVk1pCaDTEBDIyY5kGgh2obyzzKSQsa+kbRPe1GKW9Vf9HqpvZsaQiLzepUAYMEK+CslItxOU4PrGkMv7Tsetrkbxxvh++TPu7y3yJquJ9UGdJfvq6bz7nrHsnl44sulyXmpfwOmjtYTKcUAilCVSzylUcKM0bCQHHj5yd0if1ZylEsDQdgZ6ymSWmSMBlEx6S9y0Un+MCVp8rxiRCbKlYtHme4FhQAiVSxgf7V1XpcAhyzFrOj1jqviupO7Ccqx7SjK7Kzhy0DRwCMJVW2UlCT1ZlUIO+5lX92mT68xKPCyVsdYYsbREqBQUJDEf3l01GT39siIqDapw+xH4FGSzwPjb1aLlhkdD9a7qRiEdVb4IgRDDr3ADnH4paQFeuwiMIUlqShNw7APkCQ20yytWFNBIWnkw9dvmdH90NL5jE2JY897tFDcPACgIc081yDaNrAkK6yy1jTk1JkiAnNeVnBBHMc+LL6u0T1oduwGqGFyQz/BuykWza7b7XYj1DLH49C74wxPcu6tVb1z7A/HAAEA5wtT1EVVOzezM4cGrFw+KwqqKhsiqiRPTGKysdBLcLQ3FwCwUrHEn6f6hIL4IyEG6cAi5h5bXjq4gSYFO44yIQFNISB/dhq8YMgKu/hwV1GVB/ZedB/QhJJXdw+HL1+eP315muZTAyJaFyMQazW0IcoagH7oWxDdio9u2rafZt+jHAD9a8hvI1Zx80jjB19V4IgjGWVjpwF1ilYxbhFoFjkX5jyyBQ1lNquLco7+PA/Pw3L/3Y9/+vnjl58/V3V7d/dgSzs71596ROG6ZPdmKbQrLfkzfPqweiCfizhPTPxIa0jRS8SGwGlDqWwGTcl6jy6eRIVFFa2xYoCCp0LYqsKhh96CyFQRxgB0xnAuVJjPT1/Bzanbfhr9NGMLn5fp3O8/f1VaQ7fo+fj06fM8z0gcSvgGAITKjEKceUQV4Xw+Q8jOwB0IPgLoq6E9VpQFmj9VuW+7+11na6uGutCxsvUS1EwRDlRUDenCBRR9s8J20im43u+3pdJvYYJW96p/Ba/k0PkSArSCWxl7XUod6WDbhGtZB+o13fdvV/q/6XiVW+Hrcfgqz3VNsEStIiWj/Fsxmasga0hI5SYy1lG5xalCSzAuAci6LRJKjXqcGPwQm5GICDdR+7fTm1/KeW6yo/WYBAloLZ/n8F1I1VvBmfwBNpe/Elxbrn9b4dsYllF5BgjxBANIEqisK60wJBwum95VCu9RLyY7Qb7PfkXYdDE4V2oe28aFLAxxqNomkBlSdZUArH8onaWbZEDRYE4OthQTZzBaU1lP09dUcwX8pPDKG8BRWEJOlmSQFS8i6h8400kgZl8IYiDRFsFYKNpInRM0p7qowO3b3wENIkUyfMWu4tSsKqP9Mf7sj2yd2/2+2+/vaA0jOve72piwuGmilrOPZYMTOAQLt+nKtgQ8BqWO5wFiDGQFBgwX9DULW/d9n2RqmDitdWJoBgHoK2V1xuYEOh2fn+kVynoYcwB08o2624FOCelqQKVicDP6xG7GAetTyI5aIzbpVJGSpIL4FCj+UT6/IFUsc4MQe7H8iUpPUsHD2RA8eFwLCMMBPJY1Rb+45iEOW597SgCuFsUa0F713C5gmLRpjAs4D2AK4aMLBYTM7JVvyibieWIEZCZAmI9jTehaxm1vkkx+v7mMdCWvL+Fv7WM3N7J22PJ/bm+HH5ffZk2ABQUnogiJ/p6gIGKehbNo7YImisLmalLHcnMZafvKACT5CpWhzU+ECYBdwLNPthlkoZrI9UDPBSf/uv+nTg68lK6Rn2k/z1vaip9EwsNlKmuVJghJczDvDdiJhNWOcg3bAjEI6FEt/ATa+WiPfiZ93CjrhyqjpjANBxj9vTJ6kHRZSKefCab0Kv3HgT2PAzoblFTlaEpi4YdpzHbF+YlTQNC/2IdXpaD0OK75+tzHAgrEFjXk0kRoFRbACK1zT6jMgK7FiQwwwVAB+aEIdgdeyzm4uiUrb/wShjKqwS1WF8YB+5qrybicoZ+E9iCVcrpd4Z8W0qQhfSk1XJl34jqH8h/t+QgcAnyxUF0JQhRKvw5xurQ08QM/MnRTBLTLbMIHlhEKzl1llG4QXkcIazo1RxfLsnnz0Kmn888fH4+nsbB10+3ev39bha7Zu3Ya+/F86o/H8zDOoynnwtS6qAMi6lp8DAVDSG+qCIM4Jn6iMgnbER5nltmc+CHCqHEcpfOEWiK2CQOBH42qvwQA0pbEQ4CvHAhXCm1RaDHAYRfUa1SbGTfQBE7FaVmKsQ+hCjZ8/nw87KrDQdUtjGtg1KhA0/jVr3/Y3R3au+7x63Gc/LScIIxAgVpgndBcIKqCovTC6ECTAl0LKHVOcK0D9Ah2NVi7Doce5qyYONKrLsS+7+dJz6DPNl1T26o6ns5Qsg2zspMt2ymq0+wGF/7x//GfdvcP/+P/9D//6te/8T7+19//088//+yXMFIsgUE8HHUBUSu1AQtFXOHZXYTSLQ1rdNHt7ueAdAhhFYuQ0jzJBUYZ1LxkIHDnGVSQa4DjCp1ikyS/IzUVwcGQ/4dzw8Xz6RmuCBbdk+ruobLl8Hj+L4//G3roZVOAk1scT/1perZF3HUW+z9LeCLELbWEw+GAThcFJtHrMJWC/pc6vLtr9k3XdXVZqZKVrCq0u0OMp3n0KIBptAiVRZ7Mo1D6jtyImMWLKem/loD+/2MdgByBSYk3/VAEoa5Pu9uvr8bufwkE6PI+VFAjwzBj8bkVXVlhOeeQ/LJOJXwZj/UYKkLE6c6eCo3STotQNOdZdAPmEdZfrj6tlyI+mKwaSV54VeZnm/X6mzWHkV9YB3qr3pMiDaInEGGlt9h+JUY2HfkrAyOgCAj5xTX6T6Ysm1Am31TKX1DNyKAmLF3u4TQBw/YKoerN1/XztywFLoZ44TOw9s6qlNRRNgAAuZKkRHhJAOQacyx4JZu4/nwNzq6IJbhVdBxThRBEt9TyHkZ4zq/mnSjPs2I+wulzI97CwdBKWe9ErpRWhUVNMWKF0iHe0nkUPQDM4L6P3gBOFQvorSlMXZW+kSbMhMAImwLAOot6fOqfj/PqIYA+sYBVmmq3u7trar8ACSCQAugJwb8TqImuacB8mhdo085Asft5nEdVlzVlguToYcRWwNfzdD6nWQx6YZ4Rher2O1GOF2oDLJGRGsS5P1sLRaSuriBsZ4pd1xhVB4ATciDCBETua1fDPAhGWkgpJXhSTtmJ4FVpsxHCgQYK9NpJppQxLmPhHPSLvFPjhFKlCCUhBpFJnnA96pIb5HhfuBsv84FMs07N5QwJCwryGg5xX0TnnWLmykfXq5kPi2LmGoR1/hz4BrSwNyg1idyyDsFtKfe/7fWapOZmOW8SYCHHv9z7BAK3wn1ErXyNR6Uizg5A2oisidcJwPq54HWsnIT1KzQN2eHE4xPYLvcV54ACF2qiIHdTUUJTzYzdANlvErSJEJKcyMkdcjzTY0spyqUPIL3Uyy/SUpzMf6Ya0nAlhzY9oKsueQpXk08FN8akyk9FUJ0c6OjECwhCCaha4SOwy2kLEbE1L9h8DGSuchKlwcg4xoKIcAE0sQqWpVbXOpVYt5LAnZQtMltKvtIYi8gEdhJgNMFcDjw0Y3XVQg1Pdrx5dn3fL/24zFNBcjNiFwBv5LQqoOqFaByxYjrtkpW39nFx4mMYAjIBqsfwFmD6iORb5IpEyoHoTNlMRGUBlQJQKTAYdWkB3CHvhVRmb5XfV7ABLm3lVZznDmUPynbDs4/+IBBjgFBbMNEVKGEsSxGm4EmfTUjxBU3QOEBrQTuvu7s30S5Px/Pzp8dPX4/7Q/f23bt33/3wzqjn4/HPH3/++vR8PPU+TsHPUUGlNKoSuChHNFKhZtEdKkxZYfpaA5cPHGYF7IlFFpl4qMiqPxzahUyNsNagm0nh4LQWwA5CZQewKFOAMyApGTrGZbBNVVhwoFFIAF1m8t5NDuJmhVaTWspJl/VUlBbEYlC6sbUfj8f9/cPf/d3vnp/7f/r9Hz99/AoiYtMt01kFU4RKkVtcFqapKgMCtG7bpm66ZvbP/aj6CY9ULW2JEg0nvZPylSyqZVlKpA1ghmujh9n341GH2HXd7MKwgCCgimUM+jzO58lVh8Onx+fz8o+6av7mb/7Nj7/+7den45/++J/f7HYGiQ9CJwCfgCxDvHx3Bx8n5HfOTdqPI6SHPACde/QsgbbVHpRpHMlpXRPDhwUUDRrcjJMExsbqWyp8SJ4NRW9ymrErY3sJOHCB1PDzeer7oTCmO+zrtlGLPy+n0tYnKLY/I1XuxzAvJsYS+SY610zn00uyxHcfvkcV3/vj8+njx0/9+eyVtpV5UIcGbUKw7NQwLOOwDMMyz49fn4JpqsP+8OZt8e4d/lbpEWJBjWjBX8dFKy8Mrxx/yj9s9/JtUftfR8JAJN01jiVhY9POJpBIRAnpD4Sekptoa8l5RW7ctNf/Ug4Ay0Gvlf+35+vmU6i9aKsa9VfR0kYGwM0R0T+TVvmjZB3jlo3Q53Xl7Lr8LHP3+gFf6nbfGM9vqxttIFKXyhlTmm3udMPlvemlABTsxlWFI3tu4PsK6lpIJ4D6zjqj8pPcyhD8xdqxKVf40OUrDw3JtuL2K0IOw7eS3h6KbOwRQn5yfTRp6KQlvbl3ibzTOFAm7599pWGEIQACpiIUXsv/Lh8Ee1uPo6wIEDpOHXw52y9NAEJGVZh9qvUVLhijBhdLmFoH9D4ZcqBaA0kZIjELTdd1QCsr2AvQ5IvwHhaTEgAZ5UWgTpYYqYI1eX2eCsg0wPGqG2aIuUH23qc+JTsYBoLHugVm0XgFOdp+GE4nGBaM45wGm/Y1wLMgH0GIA2yxgCcQ+lxaPZU1CNUZSvGEYrWPkSSSimkaDJQZkJA0bUUgrxA8WSQrk+5+gBey2KPCMZsvv7gZEUlckIhRNAqFHK6IoMfzwnBATMdwXcQ6l8aW3qmZPmByrK618LyArhLvbbq8XYyp00gNxzUBUKrYtfU8T9M4LjMCG9w0isEV8EcoWk1xpro8/wyFSwAsWBFee1B59PIS/BcBF7+95NO/3qzflNBePih9KsfvAqq8hJASlOYiMfHnyX8nVf2pwoLzTn4zi6VpTDCZ9lwxhaUqzuUll7RlUm2JTPDfee3uoMLO0HtrWoJNBTZH+W3zQG53Rfl56stlshCLmmlgUnlizf1ykUFIxSx/M6lJwkVQQRXjdpZEEW7kipDggYSGwso/4wEL1r+m57UUSriHYdzxg7pueQywiZAQvsiMyrISsUWC+JGwb7siK0TqZVN67dFJN2NZJumaeuUXcGKiK7R1KuCYAmiB9Ny6aupu52bvHh+fFvHLo+lm9vRereuYWnFZi6YNENaIOJVUErgywHMFByCtJ79w2IUUXiPuVWjAiZuy0bW2UccGdlwW1F5MpFJw/0WYw9xj5BHrFzX01srgsfuByoGeiLiJY0sXhCIKATGOfR/IQ2iaNmr0AlVR9iD1xqDrqKto7Rzn09SP4/m5H0+Tfzsu3aHTurx/eF939+XXp3M/nU/TNKMsjk2X4k3wHcfaJqjS+WUBkAbdV3Bm4FcIAQXWuXSAbg/PtQX4J6IcKRhhouD7OXvQZKNBMRR7pJFKcyrUvJUyoeB5h8DWsJsavZ5hUg7DhEWpt/d7Y5TzelxcLIyFqyRoajaocZ6GcfI+PjzAjEj8hQAiw6pOyEMPw+Cg/dy0OyCpjA1Gz7GER8qiHCNjwKXY7YGtW1YKEjGo3HQSeQzMDwik0oIdww4YVphoRWnqrmrqcRz/w3/4D//r//ofRZD9d7/9cXr6Ajgchhd9iaaF6Vtd13f3B4nigAoz2qow6Xn2ehr7oKtkFC37sFh5SoOJUJx1O0UyybavnETULEdKhkwVlgi2rkuUqMYp4muPvvSYVC6QknlXDW3VAOLU1Z1flrGn2NfsCswEeP7ECJ54VnJnwR/RUPH45fHh7Vu1O+yD/vrlOYSjKatd2xy/finigtzVlOfz+enrI8SI4BkatPW75mHxsZ6darEll3UteydPLDQhc44vcP9kqHo5tr55Hvyr6Rh8swOQSKVi+r0JQ2+gJleVrX/ZYfnPvYAzzsfh5a3STi1w6oTuQHEEDT7sROT4qsBoAWBHzFNskzyGqeogAUHVlBvC1gUsu55znkUvif5RgrlC2r6o8N1+880bf8kkSz9/8a830Kmb4igCKiH8EZJRrGo8rPxJZow4TcA7OD+lfyyVM7m1xC6Q0U6jyxkvn7OBBq1f4TopBzWa+ORsSgmSJfOrjOhSycuXvb07wRZvB+ElZ3H7k6IADhJNdYpXrJXHbKyD+pYL5HDz5zUr07JHCPyAEAtE9+xeIrRkDWLW0UXqEoiJTAVUq/GglxlgGXGjJBNylFUB5K7XxlSdcwBcYeuCGg71KCDunPdBiFHq8zAez70Ky66MVRFh1AOJbuj64YgyRf/UQ16NcrTd/e7Dw56xSvFff/8TKMKEHwF7xBo3sPp81Ch2imOA1AOjWsYJbWXssOJnknilVWm8XxThcFizAT1mO9mmAlBSyPGsIKoSLIvYtlX02jkdfAIHu3mZQmGmYorae5TcPMq/GM6g1OwWgEblocgZAKCDgugqkeCUfwJYc034IDrJByxNZMMYcZ0ZNxAgqnOkuHOlmgCb7qaqqu4f3tRda5Qe5qk/ns7j0JQV2g5IWlwClVDFIuvWXUI34aznjtN27v23dAPWoH9T+9jULzb/mlP1q7+V6PMiErBR65ffgbiN9B9ZMCNgSwQP6NojnqaXfgOquTcLSjqoza5dN708sFSFQsXr0naTwystMz4RgZQIMogRFC435Rio+nH7oQ64cEJkO1mvAZ8O5XkYS/I+ZDSkGpIap2QwiPoNGVqS5BM/Jf+sAvwleIpTogt7M94OksHsgbIzDEgQAd9iPZQEHliRJ0GIWQe3QbBDPQjWiZ4YIyr6LNhbJvYXUTjxXUxDJ0ehdFbFFyJDE3MYlJqxyDmoPItWRaEXBc8ZNgnhZVGVja2r3V13wCSPcHgdGZIQbi/aofPkwIMNHPCMPoL+W0GxI9L3JQeCn2CIbpxFdY6iNzL1kL3PAS5LVMMUUiknJGJeC+2D2UO0BjQaMDe1N6ilRO+mXkxFpI1C5y+chYy9RUMXm6kLMPhDGZfuAJA+m4MLGtZ+RQM1T6+H6Xwen/vZO/Q1OtuWo5v6j18/Pz13eyh72boqYCzelt7aRVm1UCTWcp0i0AcyxpfAxAoPjgK5C4nhFOjkQSTKUmQEs6jGecmlj94oJgO8k9HUpfQCMJmQwITPVcDEIfImzi7C0JfmjkC2s1xi6qKxaA+ABfD16VwWODXsGYUePExqGb179+7T5y9fvz5FVRwO94fDQRVm8b7EvKJLDDqTRYi+n0Z3BvdaFBfIv4K2dddWKC+5GZNcGwT90LZic4vO5d7787CMo2oqu2sBa2nquj+e2NHRS4joL88LrH8K1dYwDgvUwtrtwGGY5+n4/PntHjqyUAWqQfyua/QUhAHONYt8kBT2Cn0eXzxPuXtLWC93Ay5eId1R14+/ICVHHRz0o0BNoSTHSlIUfXa42hOPCIimQ8JkweIqGzAHYmHKGve1t3U1TjMYCJVhFZfzn+sU/R+i38R7zjknpM+ff/rUn8d2t5MyVtu2dbc77Orz6bOfpvPTs9a678f+dBr7HkafTStvhMN0HHXVh7ZGZ4zQpXXvvBI3v3KH3MKCcnNgI7F6CYASBGHza/8qZEBrVmpfGt+8rOhfYXavY7tfqKi92hmQgUocCtmuMs5AIoAtFlYgAQZoDYgfr2x0bOta1/ROly1DcCOYJ0XR7rqtG9d67IkomCSjWz/ItEqv0SnbhOc6ikWD8bWfX+h9N4lTqt6+hqd6OZ4y6V+VAV07MNs3h/49cW7YJzcqKELyeymDKJChV5/XSkLI+j9AT7K64rb2sXLQQpWC0PMc2KUwjgFcuq9XR+Pl15thkfP7AuN+kXEJF+TSpErEOPQqs1TUJesDKFMB41IBrQuKcAVgrC90gF54XOATWBYVtSP4V0VUnQgZUaMd9jmoYAQP4ppgn6Bw0FQNmHAmeht6q6CkRmcfOgfz2tq6I0FRlL+zzhosbrs5KMQEwMjO/TBNC6Ds/TDSOAxFb5xrggKKWjQ3UlwVUe+CPTBK9gs4ABbyI1IzIzCArEIK/WA7ZqcbVUmaajNix4cQ6AVlpDnox7GYQrEsfmTPHMD6VI6FuhJ8gqWOKwg3bYNHw0LSacGyyMNdxAgtR2CXhJbQiSTTvlEBauh8Kaji1Orlsq2ZwMuEhPwbjy+RL5S+gaidrBdgShZTOf/zDBHnZpQJhMCa6wH6F1SAXlfZumxX20R9M29FtSlNeEqp0/8tqeKkBOCyf67JkkzanACkySyxnXhtsp5Jb7YU7SUAz0LVjpdLSWRht7vKetk3tu6yl8pwpcMv9xT5kJh4y9/lu2MXnqOXBUDXjwBz9HoHuxFKkB/kDAaRBPVH1gKNCACoZZmBV05+RJRHF1VyMUeirwmdKiz+HurJLHnQYw42khT3ZCkEgryyvZciA8qGmCiDCel+q76WIZaZIf1a63h7azVwxqLypMEoRHSGPKm2kAITH1cLH66maTqWzKvhPD6fjsfjeRzYDEDgDxA/AilRWMxYxwKyOwhJNk4a0nH15+MpsYCoBbDO1hgWS5NEqm6CNQA9JY3CmIK1XKxq29UV+JXY2pd9W09osKEwK64TKL/Q/E8uBWF0hIk7mgBKGReg6WnByOJ5q6Yljos/jxCdPI6un+ISabvI33PjiS16h/IHvReVJo4PQ4N2KJGPyS4X5ZiqQldrZaEkzSh1PD6BsAXJTFAD8uSBXxD6Zsw14dCcxx/sannElEoICqAaCMXEigUe7cOsoEjmK0gb6btdY0vVVbbtSsjVR2z0cZlPnx+7qmzbtoRuKq3MLJCiy0JSGbzM/TTNUKGhVVz0izFFU9Ud/BYqHcD9mCa4TIKT5aOtqrrd2bJmBD+HYahBXbUh6tn5YVpc8muX5BLrvbKmrUsY25XmYb/z3vfTfDz1T8/9aRxnsrb6cen2u7pupUzeNA38Uiu7q3Rl0FfM6l5hq2olgZlMANS4fDHrnYtoAVHZj1sxi4xCFZIuxLbfjxzWUCEKJcpQ8kg1RXh7f9c2MOMSfS1a+03nAShOdEkixHz2dw93d3dipToMSJjdvByPRzdBdbSpakjSxQU5V5WEnnFeMSUwxgzDeOrPwISXaGqYqjbaf/9279zCM3SZZzdNk0SS1lbd/Zvvfvtvm7/5H9XDj6rYL6oJRWeLJqnbJVvYtJCyBxN2JGacPKdQsxBDzDUBSLI/G6izbNiv5gl/fQnAGrmL86XEUtsEAEZur4Wqq2rN9iy5kafcJgM3kJj1INHMurYvGfpLdWrTQC+Ur0qcSFLISSyuJAEJOALY9wzd6ONEKbQoesyCG092SIKFXVV3svETZmrd7TY1s0sQfyN7eql4ZW747c9fQK2SU+83yNDXhcP1gDTLcjEg237NAf3Vz4EKzHLsEgatA56ET9LZf5Gxy3Ha7SO7RjIkizOjQwORnmQNI/xFSQBKnuFZG3slaqNlu9Z0twN7UUXcvLZkaKF8bTonG/kgBiVr7Lhe+4qvIPU4k4M38RZaRn4ui1DDdaVoS9NWqoH6XQhLL+kcKauIm63Vha2VPqii1qxPsy0rHujlMAwDjCEnH7FG4HqjonLzm125b8od/QRWkROl4tSPOFhzQpZ2YWhZlklZlQYqqQ7k43M/DNN8HsZhnHEkSFytwFZLFgEQOQWzIckcITqCKUCA9Rp0VABBKHBAgiGFMAoVKeTMPMjv9h1+B1VCbOveYbHMIZyDhYaKKhYHl/tx8gMV1oZxBgDXVNpUqJRQNsWF0HStBDqSoQSvIH46z2I/LJNpVeIPqoCCExOANTKU/8N+exY22cxDkct8WWKoqmqDFKJeNSMKiRdk5ucJI4l36oBdomEmwFJTf3V/e3WdiozpdUidZn7qpl2ulvVu1O1TApBy1M2ExFa2LjTxHpOqcFp1MqUlNJeihoStcimk9grZd/OSN0SpbPXV2qCqEqJX7lQ63rkj+upRpQVmmQsK6LowG8i0FDzl7OyAz62ggZ9OhNXvSNa1QIOvdznEpmnlZn8AToNkHixrHaV0psyYsZVge9Akg61eNPA9ARmXCY94dadVRmEfjyAiPVM5L4g2YZCHGZBK+Juj6manujm25FDIQ6q8mwvtBZ0vAaiUn0oeQ3JGwYUj+RzoA9YdGo3exWFczucBtrfjImlMmiE2FQi01bapwH/hi9ZV6aO51SahT8oEISqqbDFPIyrZkueklg2YVF1TaRTOcIXA1cOsQHrk6SwQ7Rc4lC+ARon2GmF+NECkRGYBK+KFEmQViKuLmmY/ujiDglN+fDp/ejqPTgdTF6Y2JSz7aojPINbkk824MhlL2lbmVcl7V8bBvDY5n+S/wm+LFs36ECh/jOfbNM24zAG+5mAnM+XBL0H+VQ4glipESMNH42R9oagB5dYYnUV7JNztmsKExhZNi3J7WfIQ9UHPwY0IDGDehn0WO0/dVcEDHMFTGIVs5BiogyyKIpvoaDDdFKsc7+GkOy0QZoACRNVUNQSnrdH7qlLEYy1AxcQJJSYha4ngNd4EBgW1hUuDNW8PrYVafzyd+69P58fT6XgehmXpuj2UponlgzlKVe13u7tdV0ToIEFFAx5wbVU1Uuv5+vQoM1mqKiJLcB79z1+HJSSpGImvRC1XBENTcJcCpwVwp7JSBQtqSLmWGJaqiE1t2rp6uN/d7w/eL8fn5/P5DPubunnq57IF/WB2S9Ptf/e3f/Pht79Vd3cf/+N//P3vf//45QmpS9MCtDNNWscdkE22rgDk44A7Ie2dTieB+a1ek7aualO0wFiB806HeNDr2Ps2aN5X7fe/+/v7f/8/q/e/U7FWoVZ276NdZoTvZdVg+mF7A20qQJfgKgGgQIPQp6xEUkzPBDSNfobM5H9hAvAt1MxfCkn9Z5vYOfLJBRr1F77WwPcGmrJuHDcx6ypvd3OJa+B7c8Wv8ONee2VroQIdWxUNbBB9RAgkTSlAliNUImPN0oUYoyDtRvKNGSyB/npU73bQkZXzKVcH8SnHHjrBL8SeL1j/WxxLCmJub2MLEV6/oVvQP3PDWzwAFOTYF7kZzC0t4ToxAEbfcZ5SGRGnvaAHKUuN0jxiQ8BPKb9BkvR6eL98yjk8EH8hiZkQu28vWHbqiU6BOQlMFEw+9zRDbiKqrbrU+miIUU6VS5lbmwEkg19wxinOyj5TOc6UDxT1UqJo5L+TVLkUU4HhxKkWS61qg5LPrjG1jehYaoD7oVQAh/KIw9CNAGmiMo7rQeUJnLSKLtTsb9cAEfHNDVCk0bQtrBGtTeEpJhK2SXX//YFIm2keAXOU1hNmrWlmdDbJcgTMthSkTVVo3dRNVS93kGfAfgiIkEe3liwPTEnpMKDKVzRNLUY5KN/BL2uYpsnNS1PayYdpwAFZaVM3YAmbyp76EVRFnOVFxdSgTEAD67XG8UM467JAxamIYd/toNvdT9Pc44yu2qZu67oZ+0F8TOVEx2oyZX2A2EgidadACik0NakE2y21THnQG7jOa9vIywK2HFcbJEZeqheT30vCcC0icO0s8mL3fCn4ePNaL2zzuuVB3azQX/jJFS6R5TVruBfJrJayBYkxkDnOxQ5AP7CaARWgOOvlDbc3Ij+5MWIXEn+6HlaTi21H8cWti590HnbwTYEFjOCpJ/YQq2IpmldqGnrh8NDsLvENLst/I42QH1nWM+CaFkk28M+BrIOloLRMEZLCWEpZh4o4nRBQ3SVTE9uNLH/RH5CwXvxTNNXDUnU/+3sC88L2XbYDvuQk19vvZVTXh3118RHxWUansj0BqyKW0VmZTgRdRuLo3hTqeDzSQYlIVlUaUx729+0unk9DSrT456g1gIuDgcQezlhMEKGBoC+m94nRl43k8Of73UEqMpQKIC+HXpmhH8WgwFqIiFngtNBaQEsUpQOxesuPBMwDbDHiBQaTLHClAOjYH7phOD+de+iQwtNAn4YJapPRnifvVBmMWULhg9chVB4KEoASsa1O9/S87oDv2I5zsrBLIj+8acqeIV/TGobf9LhM60gS26jV4/MRnYEK6pvITwBzwjZOnghzBhk6zBELRpibqP0dAZJUC1SAUBfkHMiNL4YENQr+2p6+nkBwdg6+E+AruLJcmtlX6FiCRy30KpSYuVghMgPxH56SKYmQVhSwXKiccLuQGJpyK/S+SPOBFgYOtG+ZklKuzKa86HCB8aGLytq2KX1AjRw4ewBjSqj4aF1TtdSWRVupyoQ3Dw9rfbPv+9Opl6yaRRkxqwb4CuETxptGq0wA0nkn2LwUAuVwb92ZZWkuYYHCNh4A0kW695QW6dA8j03TvH37tqrrp6enx6djebhT1uwPhzfv3j68edccDqrrlDEffvMbtMPoiYHJr9AqaSo7jUfic0UD1AJBt8zjALVa0cdeqwwpkCDQCw+AoQJqdSwesHpmxuHY/vkP1ax8dRfqu7JTxu5h2YytZlaqROeF5CLZkBj65zg+I1MSAor3zmK5YDG20tIvcoC/mtdfnAC8Grhv68Q3p9rLtunLovL2PyVuSD8RtOX1Qb0hmaGeAZokDUm5ruH2IuEEIj4PnQLnYFouWL3CqkZk7JiFp1IlJ/cwLy8YXcQ0iO12gusk7Z0bM4Sb719+8wuZGcWKv/m6OWMyQEuG8Wom5XNcts6sYcs9FmVC6rGgQMVAgthXzHFhISeZozRngTCR+SpnfOYe3F6YTO++76FOwFFK9X4KU8hPkixd9m7d5oc3QyTp2baJJGHKVa6VBZ2SYr2o+GUiusQcDKI3L1FI0auCh+Al5KOViUVTVjYuRuOkKYtYG9WUqq2Kt3edNREMScg5o2nr0BJVpwFQV4LzqdEei+hNmCHljNqMhUgr2vwqwFynqMXIB31cCBDRTyBRqeizU8ItzHHLjjicVVBlBe4umgmLnxe2FFxQtqogc4fBtZBjR4M1WmVHYQQGANjEeUVkOovZo+kPjgEoXG6Hy3ceRpIeSHlUn5Z5Ps/zGZuiaStwIRrL2pIF+JLFM10ZiMjaCO+esgpVE3Z7tbj4/DRWVXt/1wRlHMR/lnGc+tO5qOlfYExC47DiAlQeVbl4yIFa4R2iN+JEDbnmuSElxVxW+NYEYH3lwrCsiByc8BupKK9dx8vvb01cUqa67cWtvaNVuOayO92UNn5xjV5QNDcyoNt5/hI3so1gVhJw/htpWGVKIJAXBIFHi7BbKsoZtykoHPJWAIm5WbwSxPDX0mfKWoDICTnd19fGr5t1tKYBNCXaeo0JJYD8UKi4p+RjqwBG/wH8GXkruBGI0Gpta0LXVqRKepa0FZPPEzUIyQ6xWAH+SBmC8AKQ8oDkzbMcMQzKekTqcWB4nRwgigFIPgJ1TitgZbRfc9jOFiLTjSxtKPTgWFDwFJ8lj3cNWFPAs3nQog3ASj/AJgKccvRzE80t2aAYbAl3ij1JepgYvSDegq8BiryIdYmW5mUQaYGNmn7QKE8itkITco0CY9QNlOnFa1ZAsEnPVQaM/5f5uKWhYkDxmQYLJWgS0Xo7G4/FZWBEwMCL7y3pVQGYP8inEY5UinB2NgLAne32u25/6Ef3+HR6Pg3zgpr2+TQ7Zau6KnSlfRyWALwRSAUE/eELGKKiWZoUi2jVnHfyNFeRUIl6lRDDoY0D5UcRaswIKKFp4e4ajgPID/McFijC0f8LGm5Q7IS0MXTARTUKjRMJEZn1EDqG9oQyxQyjSY9aeVys1JiaSpX67vB2rt0yDv3UjxNUOYti6cd5t9tJccHEIi64HXpXoRUU4szCB3Mwh7YsYYpJtEkawAhjUH9Dpw6oOVb6kQfwWVAJwpOqwVKmLSqDoB81qnkECNcUaP+40S+jm+Bw//7dd4LaIlAI/RLYZWoY+ZG0hxIpS09osaDvxvWOShWGFpcC+hmaisLqkdoA1xRvRmTSiQRIqAww4YQkjtUCBjZaXegs0YwvT8tcY22M6ZF/AfjkDoV58/Z9/d13WDfLjKdcAzXVdPVEa2oPRCs7KNzqJwUMlTFA8NPTGnMYgCBuGmsjC17HXoJuaoUxLbPwB0dDzMcwPj/+YfpP5den3ftf797/WhlYAXByEUuL3Q7VNySHV2Wj7fYv9kfyiUSqU3X3X4ty6F+cALx6EN6I/2zVkb8VFovs3bZiLZH91Um7+Sj5qRzn69tiTfHoK8TUiIE/PUtJlkT2hnh98dAm5jIAF1709USucT16j8fjeoMXBDN1ndfD+9K1z5qVL0em+Mb9rjHETWCBE+a1ebL1VdgO+wrd2VpofSvZEO1GsZIETgDgkqRpKmraybkHLD3JHJTHbpAjmGw6m3bkTUCzvoAjb+q2RUsOpfIJm4oYD11qt1Kn5DjbAgf/GuJvwqYN1jmbj95wRS5lS2rd8Ef5wLjU+28ylUQgT5z2fJsJQMO+KqJqlPJlWDyt50PwxpRID+q6NEVLOSW819fH0zBNwzCNE4T1p3kZYeSuiqoIziAAR7SsVVHBcrywKCstxbT4ugTwpqlL2KvawjlIuKKOVgIfjFaAnrUD6NgQutZ4Oy8eNIBxjD7MI/BG0NXBKQPnYBOBEfIWXWwcE6JSOgVBo56KgZUwqGMJcrpsDzV08ymTGpDGzEM/jf2wzPE8TwuO9jMJA7UdcY1AFBWmgbUjq2J111X7XamKKqry/AC9juN5Op4GN49+goKKwZHpAikN8hDlEaMznpaMcHXIj2CxxkckAFRAEcXXV+bYWllgdC+ZbfKyQBDDVLYsIKlEejplI0EZg0xIjtS2WeIWlHhp6211eF8uVfWN19qq2mD2ZJ3eQoDS3Ls+G+Tw2P75pVMk6XtwKKCvBB4HJ2kmzAlss7k2Vp9QLtc3ev/S2RPxgNUHPZn4MDC92q/WdfPyKeSSOdkKotjD/wA7L0Xesr6k2s14LoFpuZlkRTKFiEM+/qYikAJxlvDlmeRMBvs6M27guaFfSDtHRL8sD2OTAwwluZVz306F0wy14pHhYHolyoaRrFb5WIFn8DEk/VBKRop4y+sFrJsSWOKp09OA/oToSvBukoUirpI1xGRhQUZbXbaStEG1xjtSUIhWz3yQKIAZKNkgFJb98AqMxLUzjmNpCmhiIMoh2oQ7r58XwLWQFOIR0cI2kpXNUmWEdAw6motDo6WAEArnCbZGJD+I25FZBQZS2MiFdy5ZCcAqE+T9u33dYsxAWRlZmKhx4TNpw6GAhwPQaQilMK8xSPIVCS3pnaTuJgkDPsGUrCfxJ5RUGUDHGaprvqqapOrP8JS69SFqt2929GOkCXryL8GssYB1grXlKB9LkBHQaVySyUeT7gneO7OA3EyRAsDy/Rll+HkcqrIo9ztIS8iRjX4MmalA4fc9g3aUvRmMouZtSxPUDMgW0ymBvwtJSY5yz0tEXyR3DodpYuEcHQCOmClrbUo7jmPiqaPbXNQNMPFtaQqPfRaC1SxIIfYPqkQ5K2DLrhHkAIYny1D50+kU2JF3mNzIQACj8VF8XQDQ1WXQFQ7FylQ6jp9+8gGCitKuY2rMnDnVEzip88aFuQdiBH5s6amsoq9sDQhVoau6LCuITZ/PQz/O2pQPD3UPsotdA7BlWUCSds4o/fT0tMwzmtAogaF7NUDeHSIWCdRNtWkSpAuRqwWzX6jKgsWBrIYJgYahCh4mhpZkplBdBaftfnbn82Mwxf7uoVKTUqNazkrVTE7JVoYHiUzWi1VS3iaTeAOSZFwTVozz8NMU9z7WEliaTq+/uvL/f0sC8Gr5dg1Jr/rvL8pmN2iZNYq9hvOuVrVX1pwpSs7OE1lBAjAJbkXc19ASSO9BLeYkQ45O0uKLOCsd7NALChYVTWK1kZkWRbc7bLvwK3idIokXTuFFN+c1H7hk0ZTQvvmWU70yD8I6GkJ6zuJSt69UMcrY4Tx0wjSVSls6sPJn31xJKgsi9U3/Kq06bO8MiCU2FjQ/2uvUEcIaT9X9VNVKkIIce6cOjThqanV3d7ffdYfDoSxL0HrO55FEHDeDlJmPXpRbEpuNgaBkUFtehKQNN9NprdrKxV5wZcQdJSu+FDVK1TCVM6/eKk2g60guQ1C9wpFZmxJ3z5r0EqCG8/j0ZRy0a5u2q9oa9KWmaozVu0YvS039fjfNrh/mZyp6uwje1TCq4Gfe8wyXwaBN2ZFzu8yV7RwOYML2Yw3lA9pVYptEnxqbxzwRMYCGLAVJbVWC7zUtYYIYmp9wHkGg0zuMARTjYsLEwyyMR9/igHzjnU4osCf8mxV7+QY632UNSbayrLp2B8k8Ffzp+BSjn4IfnTv1o7hEIZFra22xWCrwFru6ag3KlHq/3zcOahhNZfu6PCMfWqbgTjPuZBpnPPEShETh0FONBQodoiOBiW2TcBdV3C8QlFQEeJHcyt6CPgUfKQtQXD2EvhTGiACuR2mXdhV0/aZI0dWWdR3Nb/6JczLtOS/Qet96yUxe6x1bSg/vYuvvK83JK3DdBhrH1s3mQ7lafQlEi4gqXfqWsEa+4p6mFzZJonIYqgsWTlp+UuqnLyc3Hdl6CIi4jIx450mgDJXc1yBAiesrXUP+ADEYIe+XyFgYHXyraRwShSzpWIqoZXSOanIMoVJJ6DI2WIeC9r40cKTKm6BFNBOT7y4PVySrJReg4TIj7bUplGJXClmx2Cq3InudNyAtpcZCEiBK5WVIbwkddm37XtSU5T8FUsjNkdrpTLRwmzR24+N1FFGTsJ5kZdoEazWyyAwl26IS5JKglRIHg34CMoepDkTFJNE1zZYFSbUJupes6wanbBl4tMUC3e8QRG5YTI+JRIoohGG3kKyS5ri8Fz97CBmLbXTy3QW2NsKfTKOqUQHUR34tST+7tlrG/ms/lFX79n6/67rPn8+fHo8Ph/b5PM3j6JcZxFtBUUtzLPFs6C2TGylJpFvq+ES5yi+hEkPSipAM0VdEDxPkWmr8IY+DLJXAh2JcxpMxuqvqprsji3Qa+tM0nOu6BlpKDCQIcEHhv4jsdBI/RBUEWNBRGRSuKTrQLIOc0BDdNHu9PD8dhUHLdqs3MJ7AYLmwpBMVuzmqMHOxFDBUBO2QTZq0oUldlBtFUqvTyvioS9aNCP7nHsgkEIwFAn9S/g8LR60D2AJFRaaBR80OQWdZ1k1snC9spY0B7Yr7NrZueENyNwmhNHpY/DQCwsSDLoyTH2cHORzkG64aF7gcUHRo8XEYhqznqwHngkIRSTLi65JodexXIKXEWQH/LdTb4dEXotdNhR4ECxbEucL6Zga1D4dTV7Xd7lDX9fn5/PQFkrj9AEXsCkWxpYDlc4mZsKAs56KzLVTfqxLaZfNMb2HQKACzehFzCsZZgMo4eCvIYQMrVVkoKVkSuDXkhlwdBzUfEfe3KC2oopZKIqESTpG0JS3BXAG5HB/yobQHQeADW4QKrgL8BWEe/hLK419rAnCTCbw8qlfy2asn6A0pNv2OmHb/ohnnGmRLrQg0HGz0OSwQp1vivkTSIZ9TIsqmZsqlEZMglkEgR8H2xsIznLUlErdQnbW05pzJbL+wfuXEmqbp6srXY34bUly3RF4OHUGQr9/sVtVn/eZlsfxb5ai1kcrRQEOLX3n5rEtaDRNwamRi62PGDgibg68mV9GacskGLYZ4mSW+Jibn89kUWsrM+/2+6zq/3McY+xMsPMRJ10NEGd/TIyZdv6QEUioGCa+ut6nX6nCc4BxZdE/ogChKiehk6gNLqIU6Vy7p5WFMN4FqFq8/2aLRIKnwSk1E+BkdHBSguY1wnObFQ8sszPNSDrZv6rJpoAx03xV1FVVT6GLno5m8GscwuvB8nI7n8fl5OkPYoFhCGKfFezVH60BQiX2hBvQzx76GgfkeasdmV1dNW5e2OhzsbrcDQap/BrBf7FYMbBOqqurAXixmuKR7ZALzMqIzMI+0tUY9LzVYEqzFoa3qQF5ShVNqDj5OLqpRRX9oG/igMT4Amaw0TVnaqv3Q3UFxFFI/I7ORmQoq/niaYRljlqKYjDlZU0GIW1MCr267rnu43799c7c4N43j4MLz7E7jfDqdlgWlVpkn6/zJazEfh2yVr/NZznh64Eoglmip6+/DyQgyo3hJgXQLmmcEfNmRRbZSSKvXFe2ryHtbQReL+1fL/99qAggp+RpViE/PHbzLp8hSXkv+N1sfFEIQoV5Izx7lQSQwSXwDN6IpiYgEYJySs6zU2jnUDCdAws8pcbICJzpI1q9kFWwNIlT20OjIFfd8nbxmuf5X6GrM3FMFIA07zXGRj2fhLz53QQcdDrtE1QwoXtART6AlIN1CdJmZT3I5zKTki3nwZseT53xxHeYdVLZF+5f0JSJ+SMvXCF/E5RWhTC5YsORMccJkTgeZ/g2+OTvG4KOJRRKO+DWOa329nBhh7WwThiB17rQEWOsN0GmV3EI6qshHEPdLvZ5RqMSmkpqxo8CnhUvFn9SFzaiXnIMw7LR8Cs7PblBLMQtpuCiKhqFSRljhk7h9hnlhsinjgGMuISSHcSyrGFj3RGIQAxEp8FQqtaoQMWumAcjSTHQAxgNGo5SfozNVUb6969q27RdlzDHG88imhuNzhaSBA1hMQn8RS2XsH1GcTWLzohyVcuUAPGVBe2QBdluUeUMFFikgoXy2EEZN+SWidrR251KpBs5bdVfqeYa0EdCpjO6QCgNqZYlWJesJx5AACEKhYBnZVhV10qi4nxYd7rIwDnpCWFMe7rGU/VmWpam7pIkttsX0VQhz1DZNeylUMzGEPkQANhIi11IdY4MKHR5TVOjOwgENw6MLv/LH4IYAp8cQl1kHVyDLRXmfSwi9fVjV008O5GRblTUk3hiag66Bpaf0PC39eYT98rTQSMHGWIDbPEA/jEclOSrco/jGaVFfRD5EpIHiHPJPJBKKZKOwNWBXwk4nDlYWH3xR2MlNanGktFcmmr4fhmPP5LC0hcHxMY3o0syjGyb4T8B7OC6TI+cJLu9Q6HZe12AGcj+cplFcNKhwoK2oJBFthTWOe/fk6SpYxNdAKlRNXdRWwe9CFSZ4G52b+v7rJzyv6vHuB6s6wTVVEu6wsuZ0AZ+lfIBc0gBSybGnFgbKiiOMxoFTLWktvDl3iv+dJADrawuJeRn6b1QmLhjZG9WX7Vut3zAI22iv5lc+jxPyZ4XwEj8oSLSEZZfKIPbvbDaaqm9ctHIuy24IORWcsli2J9djm6PNIPRRRBGhiC25kNlH/XIx34LorNjZmwhjW3q8Om435clf5lrkcORqJq1XdfNra7OCbueC0yM5jN/zK1ntWKWsG+buAPChHEOpxF5sxLJVwArkkPOp73vvgPw5nU5QJm5goWitffv27ZoALHT7EFWlebmEdBIzyX9SkfdKKfUlOogCPulMNMB9kBGXReBgG0Y06EtIFYvQqVJLyxgpFOLWfVRzwAFFnfWggXiHRUhXW6/jgm7tOBXTONpqmPCzyVdVaOp9VbeA2Jf1XbcL2p4PbpjjuV+Ow9wP86mHgmc/qbMrxxmSZyh6zP3UD4I1KoHiLvZNvdt3+w562LumtXUddLtg6wN8nthviDKz+44xhxemsa6sSzNC2m8J52AcqWTiJQSOsUJsRYA0iMic+2ho8vkW58kVMZzVyGMfJgA0BC3fP9wzArBF2dYWJlBSaLSnQdrW0FeGpmwv07OqqoXEA2MgKLG/O9ztD3d3Bz8CcltV6FmP1N1CPMo5wwnJSjZRFnwuaN9xCW9D7VzoTYHadlZgT1/doNNE4gpi6QWrHnz3VMVlU/16k7npLF1j9FNM9mr5/1sJgMDJ5N1yDnCRjNwg6BIIRUwobiBAl53zduKiSgu9FQqKkqAHcLFUt8QHg9wPVrQF2HchwVw2TKHCpLvYbEfQm9SOkjQbjNUWLrXZhyn9K5Dg/J4CzllVkrUmW1H2pRRr3zUHdFBxZQqzAbsAx4d/RZNaLyJhMldvGiNigsY9P6stJfNDuQIdPMrj/BtWLhhNJuS7xGL4DUwJsSuRQC8nGDoEKEJiVwC4fN1yV/2gAnHAa0//ZfSfw3Hm4UIqYKwpzZZULCSBl88yx1VEtGMcEPA5BhO4AcTVySOBX8UYDo7IsoEL0JUsAxrX0PAmLys9+6VYMP521ONqmJ4OMULApOO6roV0ZsvBmm1VAD+DNAKcQoAHZNZtyAm1BbTkwQL24w5F2cYBr9j7YOr6cDjsnvvZGF3XVT+7YQk9GoOAHvUkARD2vz2wMCXQGuUCTg+cd4gOGPMkJoi8VCJG/DLLPilSrcCe2BL6mJXWdGaMywCGblXed5U5NMfjESQAUTEmaAPiLZw71Gem/RyfO9XUIujYlK6H/j/6NygTKR2a+w5wY+wwiClBXXPQzWyaFrL0kE6lPFJUbsFadL5wdNNDb84oVE8oHSG4fAmSBJEmDWi0+5D4I5u7dK+12u877MNoss50iJynXke3NN//AFA8AyEH2wfcINAutoR/ZdSTd4tXYLnh8PWPx3M/L1AgctALkN0rKlNCopQmSJz+oi1gLXtKOQG4TCHw2aThxnqAURhDlNQBLgpx1iY2MLsrC7VohatdApJM6S5CxCLJXsT53Bfh8zRAwgFXCt/nuG9aIg9A4cakxyMxtamsNg5HGQgeSmlH8CtT9HRZhDam0AKhHIS4yAzFisQF8Jr94t0ynu3Ejg8MqHGyDcOg2n52pr3/vjs86LJTtoOgKboBbAFe1f7XfQATZK0BoWtRqMpjNr52XPzVoYBuEoCblAWR9g2TYXsibjE82zB3W9k9HA6rrstWolt0u7dAoFzdp730iwtNXcNrzylu03gsYCblwBLAR6kFUfuFqANEDYRzJYh+qk2KmxaXLPIAkokVnV0FSY4dYQFoUXSI18iVGzQNqvKYrMMCZdo0QGmUcsUxZY7yFwnkShLrqw8GAgLbWumKEs65UeoJMKxPWjhSPbqhDm8uZq2rFFo7Hhv5+lfQP5ipjiUqngCXICkrNKSzf+0w3N/fO7f0kKccy+dnugoCNb/vQMZCCaou26YS4KBX8XTssRFzPoiQoKTvw9ndJpAMegXyxAuXkq7gRdg/JUNuzaFyU+JWrjGBjmXDyimN4DVigIAaKlhu6ZMBEGDJiw0FqhSAZkrtrjCuhmeOC0toa9W1Y7VoW0ZbaRw7pT0cdp02d664G8bn49AcT/3Zjos+u/o0uPNZD8Pg5wndYabAcm1f4tmYx5qlia7rqtrcvz3wYKhx/hTaLQGt+8Ufz2eqGLLZhf3d7nYgbMUpTAHQSThzkU8iQVJlO/jWuDCjIp0qGVpbkmWTNbOLfvJumMEj+PT5EYwx+JXBGaCGZh8O+MOHN+AMz+MEQwKYBEMbMAbU07RVaEGrYV6mL49fnx6Drr3dF00LlFHbKb0MaozzAjQouMqCHJdSdBL99H5BaUzm7SYQh+T5SvFbZ3sS+r1odwraJfUBAJa39P7IuSs4BsCBJovuvEYZiomr9UY0U4Yudd7Wje6fSQCcg8mDFA5Yd6D5VAxjD7Kd4O8z5l4EVvkUZfeRFgWrhvNAtbHMYEvVE+UgBSvzEpx93jhkA7CsaIkEANfFYgHrGv/1WiqRdumtDCiMBeYBGe9F/wBjsiJctm+DTlMKDjJsQ7bE7MvBUCyTLuRxFep4fhaEACiqFRpH8m7nYUSx3KFunIyaicwGsHrdrFJuhMAL9kxcGPQwTX4axIxIckMiCUY/aGDBxQ9YbEKS1AzsnWg8IcghsVHHBIAspqVKD/OEeGkLAMBbMtbmpJHTW74i0Mlf8a8RhfzNUUi5NXYZhIUIFD/L7ZIQsFSJ/1xljvEJSS0NFyadBKJkUpLJ3ljwi4POr+jAKJGudGBJilKqJHDS6CHVGaUGSXCM52wPMcxe+bosE5sM9XI8Q4I7Ywm9MSipkgW8AG5uyl1pjULhoEAoHHSJHktpgHG3JQZtnketbFuXLhSLG5+fJtvsdy0MOsrF67MYHECxUVwTcV/0S8aqEKAF5i0WOPMfIafR4d4CZEOY0gwbKJGXMEXb1maeRx8mkj85HzArgpvbkhIxWHXoOjg/RWXevEVfGnAcAvKBA4MdGrqkwhsUSVtYwqGUFMUjucJOSRvpTBdZphGBOlt8Xb27v783xNuMI5QhZGMFgwKDO6ODnL2lU7EAUwoTo6ob6hlZoXDIyR4AktEB2E4KPYijOTQViof7A9xz53IeR+dnseaYnP/9H/68cGmYqlwWQPyjKppG7/dNiGb2wU0wdywMB2KZF6fKsrb3nXdxmvw4gQIA8YlxzhwzrA6aGyDIr6wVOOhqdSdSRm0L/VBJPpkqYC4AkhTBUdI6Nm11fzgY7YfxPA3DMvtuv6+rtp/m5ydkIcaUu92haxAWDsO5rJtlWU59r03BZjhskAW2IE5nIi7XHfazR4eZuQp0nKypCvDt0GSg2Z/wdmAQL0yYgJwP6qVgD0/eT0HruSo0dDyS+0fwfgBpQrU///4/H86zfzfUu/uyfYAhHcyuaxEnlsMAtBgk4Vz6nMAJlpjpMawCiAAoG24MoNRf5Uv/+N2b9F0uwgnTC2CY/POtD4DodWxBPmu9dg39V3i92Hluy0vrX0lZUUwx1vJwQgXk1zaQRSr+4pXj+M2Vr8cGY6xklomMQqwZQPHPOk200kz3xfx+Bcamd0swN4Tj+XRMawCqF1hU+Ry9jEwJ4yFh/EilC9vHJclZiQSARCSHlxS0XXcJvgENYu3s0vwFal+cgNOLo7R9H1NWSSc7YWvSsBoIDGT4Wjb08SghsCMgZZl8CWLetAo2r/0sGZMIt1d2BoltZOHa77tGzufK2MoyrCxJvm9rgSPw2JjFcwR7wDTfPHG5C6ke82BD+CdDXVBWj8b2iK7EFUheNRKztA4F9yjjRlxX+gRB/UrssngocGNL9c4U4H41iL11ZVVdQcSzhS8LlX1DMMrpqe8qkKswvY22VSV9j7uHBzFCp8maAHXmxelHEJmKYV7QEBjGvh9P/TgswHc4hG5wLEKLW6TBY9jtyqJAfb1tWwCq+OZlWZ6PJ/ilU4tIEmkad9nTEpyC5A6cehHuU3lHQYCftUPBP4hL9JpgXyZY4lxeQclFH0Zi1PBw2Ft0yZnPM16B2S7NYpjLo2YjApUYEFsOYJGzVZOcyoTtl+HGxOhDukEIuzQ1umVXceqKY/TtC4J6qD5emUUwnk70zQCwLrCumcQvNLu8d11JElP85aI7nCCLawJ//fqWD0BKvrlqVudsr2Jta1nzqLRR+xYwg8qQXQ7wYULZOujAgvQmEIj8IGSrMTqCrHaNbWUmQ1nMfOWXLmukNVtmFSc5oI0ZGQqMG5MNq3xn4Hx3eWeK3skc2JRdEhxLnFY5M8wlFshQPUG334xPyV/dksKlALTWU/Cfzo1YLJNDv7IBE3FT5udTywJiAtdmAiBYTTFEEw0YEc0huJsym5tDN9+IJ3qath65piOV9TySBNukPrWjkEklnrsrnVoCbPkqe+/6dV1im8Mx2yYyGF+fozRwmPKVop8qI3wp9MhhyudFRX4Zt6VBPJygMmkowA7Ww3DmbEd5QYCePGLK6EoYBgSom5TQFAboyEcPyI3ILRAKK9pkRnuUbP2oaQlSRKejqy2wNIddvauBJnfg+gwAHcH7PLYdLM67btc0nVZmGKan5+Opn8tmf57c7Aunq+d+/PjlOM5LUaLEmgUZxZqQWWyMqLUbrBFsqwyRyWfwdVVBMgzpOlQTqKAAR9lxmKLG1g20PfoVAL00Vt91hvs2qlCrpQETquT7wUI75CPFxiqUcKWltJgYhkJjUmnfkEF7aCG9jONmoV3zPNpSz8sYgwY9y9iAEx/sqFIE9QECgQ5PAgwXVtfN6TwsyyJBEVY8ImR420I5rgQztigK5xxapuPYdaj0Y8mA/IMmbd3Q88uYBt0NfTyfQOQNAYW2qp2dmkZ02gEeoheKSHGIzImcHbA4ntmRdYs24BowAS6VLh3aF2gIFLpaRSYIrJbUo6joioOeCGVklXLWwNyjtMVu13V1kzZZOlHM3u3f7GaYz8xaxZqNDgq5gru2LL7r9otXP3/8HJVt267vz3f7in7HWhw3lS2RdwYP/oPzJobKGGBxZvQ9UPoyqoDXHlIsNsUEggVfOUmxUOplSCZb6OH+ToJMdLONqRDJkZKjsFOCCte1hTGLCqjg1HfRvBlnqwrz4Yff1r/9N6o8KN2o9k0M5aIs+t2ojzgNv+qZIg3EgZFpfHp+6odTV3dvHt6x42ipVMiNgoPA82KVBP3/6eubHWxJAPI/c+fiRiZ+SfLaUjAFZbXNAdYDWxJHUdeh7CYt9zJCdyXJyQYnCjzrR6zhyNcvjzd4oV9Qg+GFXkHqLz9mAiO0tk0xKWlErI7Cq8tMIptuooGEO+ehnNL3nCahUcjNSzpiYAolYeaUYKRNPMlHpCtZK9CofazB9TcgQKsSzjbRwsxFxSj7p1wMsHJwk2rhKVhBaEV15PQmPFdTG25DSwKENicASLvXhIGyVukjCmJ2UxyZrocGnNh6CGFFt5RGUhSOJhyQ+HQG7gRV6aIouwbWfcWlRyRpmKQBW1H8dDvAsaePE5hhKlhSk5AJnjx3+SFqXML9YC2TgRR3d3YBCapmrUU6M1HpYcbRQHkGnEOr2WpZFVUJEeUGcsMQroZknlbWuVJQhVSl0GILz9OrbVs0v3c7+GJ6OE4sc5wm412x+DAsyzD587icezcsvl/UsET4as1+caLJgCpUZYATNnkpYf8GhUq3NZStOWjCoaQDsQs9Kp4KWDaPgxDNTTpZkwhJgXa09PnERY4ESIPLirtJNW+nHI7n2Rqo0ZeVKW1NU2Hoq9CFD2k7+MuLh7snipAo0slUFE6qPApyP26dgOUlcp/rznCB+284QhtACB6EVHC5y6e0IK130XRHILW25vQ8pR9e/IZkbW7kd7NxVcKvf2s9vvZjMq+veb3yQi97gxuUZ2etGad+9bGSoF/ybPEnEedyhvLUdkzyXHlH2iicJoz+teICWOAowl3agCQ+5fiSO0MCN5qUADQ6WGFmS40D1bY1+Bb2XGoHSvgL1cDsUZU2Cr65XM/WdiE930ydWxWWSXVNCUCyqSBWEGltKAZXiPOomA1LsnEtcnyVrMIIksCwbBR19SxuqgnsIQHWAoVbjoIU2deZwx1bOoGrbHG58gu3y2T9rJvvGSRd+YVtgWfbGS4QIzdv3NBeFLDMTdNGe6OdLsRXMUN3pCCVxItW8X5ePFH6wYOvy1WDlYu6bXRN00h/CmI9EAVSBgw438LxailNUVuao6u5tkULtlxAIAhUT7lvu6aFs8cwnM/nI1QdE9m0MSVMYIOyP39+PI1IAJRp+yV+eT4dT6NTGrEx4aVcBSysodIPHQLZ2+l0Ae5yDblL48YhGU+TiQ2yB1/tbr/MbqCS2ezQkG+arqur6PumMnVlLZhWiMCxYxbFPE0oPOFpo3Ak3/tCDdBdkCJBoH+iKgGcjBCGLnRbWkToOLCEsOdLC/8p1F9I55gcLttYmGdJFRzdqmkehvM8TqP3k1O2rru2pUgG+qhlWXZdByE4RurS6lkPaFCAAXaKFp3BoIPHmJfluzf3TVMVpV2W5TzgfabZTUsoq30MrMtwBVlrW76gW80CK7GRhdh+2bo69WepA1KPDHHrjD0c4KgAlg46oISYIUModNy16KVAwxlPYdFw9oVsT1XoDrMADBMtCUCMc/BQwgNiQld4gthlkHECq1M8n3pjqhD18dxb+MZ049QX6EfNCMaNbXb37374/odf/+bNu3fIVqZ5PJ+OX78cP34ajs9VUey77vn8TCKyQaUGBhZoX61EU2CbNbx9IJmKFKqou2rmKSVgb5EsE4hdYVS7a+7uDmVTEjOubdk99dqUe6WKqt3XH36jujfKHlT9JtrdbBpvGpJzFqWmIsyF1qUuaWM9+zD5BaNtTVVXB1M0ilJaXJ+oWyHlEO3uv6YE4MLAu/mlrf76FSv3G4ig1ZwCFuKQI4STs9a662DzdmPyqrU+nU6SMFzDZ/1+v5fzQCb0zSa+fnO5thc8tavb2W6pebNesa0pAcj777blLfXPGweidWNluIkWM+ArCEjX++LmzjTjYkrEF6jG2G6TmsdF109K0dcHA+9LNLcSfnS9Hvi25ANeLDgFqINGo1imiEBKenBsMWeEpxydqaCe2w58oanJ84aycwDfoQUsiQaq2iDXSuM/qd5uh/oC1chQHBl5uR9sLXB1pxFZoafTicTtC06MhzF2fMLM4dfMag29cA1sO6kNTk7ehf0dRaiCh3cSH8+iRakAJsB5XjMveHtap8wNPxVTnoJikrSTpEYbJOUWMpBQUwMTC7u8Lot437RiqCM+zlAjYa7ivbL2/PXrE7Q+gZ9BMSaCYtVAUaUo2rppatvtwuFejYuaXOynABnNfuxHpAfTDB0P8RUPLszLpMf5lChiGr6PFYnIdW0BjxGb3+g9woGrGbVBzSStqfTs1kmRHtMW6X4TsuQHTJiJD5MKeozGTBQar+iLjPY4Ci5Qoy6jNwLuhrrEikWWr7LiUkBP/2/NX+BayN6rlyWwvYYXV5W6ZTkBFkY49w/uNlJ8JVw5TU525LI1LxdvJo2zD7kpysqHbBOD69cvsLg2N7shHaxy+9L5oGgdusc5ygSONkeuqq3og4G+KLUtkuwYHvB209taHNw8L0HkC0Ru/XxCm3mnKQYlmRT8TuKjtF9gVcWamTj6YaGzwy2/xoUjBl6MlAGQFDu/TT+Q75v2H0E6XjQP2JNhu17sOem0BBVuiVxxtXCSLTCNAIMPM5pWONCBnZBSugD9sqx9nrSykBfa5cnkX6FNW3Wmq/VATCiQNAHIb4IME0ozISvzrxO2IYCn22mZUZ1pCxUGZ97/Ee1ko4CrnPZbBzAzvZw1bTrtRKULpXmV/UQkYSzSEZJGCxZekiejyFWvn5tIqAHyxEgNsG7wWKQf7lWxLGfA0cQAEv5I6A8URi/cESEbAwyIKou6tkVT6xr/iPiFGpSQFXZOeV8FfWCgOZ/7Ueu+ruumO9RNSTRLHKZRGe3h6oFyhopqpE5r0o5PPBGcFXVNwzsSbSV/xuYGWAxzR05HCsmKPVoM53OhoXJjD1USUA1ISGzhe5BorZ7RGS7KoraltoZtAtQkAA8mmwayNdqg1gRiDqrJBplhES3OQfi7qOCn2Qy6Km3TVGwqlLQRQLUbOvqLgy87wI1913V1Xe/grWsh3tYAcVAEH6G3sxyfZsFEoJYT1TSMsbY6QINInImlFbZ4B+gj/evgRsZ+vQhtHfvz7F3JdkFJsVcfxnGe0EyzdV3VJTvqgNPMy8S1g2lA8VWwhjBvkAe2zc7B25JKqeR8VXg0ehihypUiC+H4cXcFNI4AMYjb0DG6hjSFKgC7ykbdid+OYl0/DgDHgMkQImhZmmISobS1CHdKslTY0mF0ZwV+LQwpd3f3777//vtf/+bwqx/Vw5v254+qAgINPKVpXob+fDwO53PdwaU4J7nEZm3qL2j9JamTJB0FBB5NrrELEYcmu4pzHuxjB1lSGyuIWpFTHHxod5VSdhwfwydlu96Xb3yzlA8/KKgp0f+Mqro82MLizyWcP6bxfByGM9La9hD8ZEHW3xwZyFy/Uev9/+sridxv9rWrsDj90/pNFrl5uZ1JBWjL7JTfeXp6kkBfKpqrOoFM5UxvvyQb0spZuaFrx2CteN0UKR24Mjl830KVJLreBPrc/tOJsn29VORYZfiu7pRzLYW/5M6S/41GVLKk4tGTtHIZk0ldPP2nRN9UhTCxRLhJMQ60itaKfjow5EpWQt1VpF7W1ao0mhMzhlZpoCRAz7S8zUsCoPWuS5PAuDdPM4WNyesAmb2EaOsZeBVzZKMWiTmkX4NkH6V0sp1y6Ac/d3L2+HzFwAVdI/Qu5R44DaQCmg4GnuaZU8GroN5XEoEUEWkJMdapi4YBlTR4LVQZyeU9lA3g0qE1be0NCrRCwkN50ipDs10260UCybGHAB3/iMY6dDfBb1pGmu7iQZeIfkXnSzUNcDjzvPT9osOZdFXeg90jDANSsTa2VgbabXVRVq0t62jrpt3tz+MCLTamvNM4oEKXq5DySKJSx2HU41ScIGLLdrkospmFAijCpSDyDDEDoz0+kYuxVcK8yT/ckFxfykml/9Shrhu+t4L8hPeucMVMrxM1o/eFKp429NTU+A9V1o1MYgEpyeMU/8ubijW8WyTU2qzQtZgqxl43TYA14dxYMHIrzlpAQtzf0FgLcnVouMHwdk0AMuDwlTbIq68bcurm+9fTFVEHuqyplHMHzE/BopExJmqYRYQTObXjgTlJZ3cK+l4NQF+5YC7Y9AtbK2VR/rTSCeTqYYDPej1iwAQppJKqxrZDpgHzqAQ1wVJbzwVZp+m4vQgeJPUboVBv+qvC06HJq3gTeDAh8oYvjj2X+akK8IcscwKL5j7KoVJTkWAo5fK4LKniL8tE05f0WgtMUn5atQTWU6ngliuaKuAWCggoFUBSMUEwxIlCvpY3rsv5cr835aErDbj83F/2Im4KZ6L6gxLa382wAAEAAElEQVQ+uKY0ZoKfBu6gtjXr17JnirfRnBtfpI9czjNa6fKaOc6iMAwEBbhvuMcSIybpZhEBFo8FOST0EATAAzowE4J1rbRn/G8K4wPwDaau264pG2s8cC5TCKnYfPfmYZ7n07E/Mj47nnv19WRsU+8Ozod5clPsQyxhJV5WTWEW6UwyvUyiOGxUikA0qKipK4SjYfR+13Ypuky9a84cik+UELrRQJcGWKgs0+LcYhqUhCfiEmcdC1dMBjuJMSXXlGRoBdwICbKnShiZgjRVd0aHhZl5U8UY5hAg2ZOeoK5QfSNBQhmkzQby0T4uKqjjaRimqe8H0VRoqrLb35VleeeW5+fT8/PzNAyeIZB0zuexh09LCWis0aAqya6wpPmOR4vSioJ1aVWVEtsIcFoaYmVZtm3x/DzOvg9eleh7tMYYWJQNp8P+vjAaP7EC2IvTuIx6Otw/GHaEVCwAxqLoD/r7lreJcBmAxUxHUvMyoPZni7LSVoP3DZlPJAAXBB1XGI99HZqqwknkYUe2sDcFfATBm+yyB2oSVQJx6w57POngjC3b3f7Nuw+Hdx9UVatxVA8Pw3/5r//4n/7T408/hWkqgke5MOE4JPU2sDjNtWMxEk3BQFKcQwCBEIUUYI+uuQuLI6IVYORCF8GraZpJPiFPFelOKMqITkUw/dnPfR+qvn1jqsNbIOIYoIBzAv4Bar9+PiFZj9N0/vT09NS2u13X1A0ccQRpAuZU4tayXKnUXyMJ+GXV/KoFv5HduFGGe1mL2prprtufAL4F1yt/JdZRG3WC9Ern84ta4Ms4YP249Re2CUB2XrxtbkgQe2UxtingbXO0TS05se9IWsqybkyuCXp3a1yBDUbQpwkCwZaTQG54mxK5UdlZY2GCh5Si9pvX2v2QcOVSx6J8diI/cP8Xfz7Ws0Tuhr+ZrCyNiJddv80lbVjvdYX0sEaUdDRykQbXT5wlYvAVwsELALaegFaGNHn+RBUnx4hZTvVUh5ZyvEAjiG2VRyOpGoM1cUWQi4QOGnEUUObJab5kDrLuyeNcAz6aEmLRo7wpjb4tphbHP61rEs4toYAYpuOp4rmUBeSKcfwVcd/uiMAFIEdFBwRqBI3w9PxFlrM4BgVofEr0AGx3V5e6gQwZjq9pmVwo7BmkLlqxFabSpo5F6VWpbIXSA61edi0oebUrJwD5F0L24Q+alEPkxk0FVU7KIcv6kv4JbolDI35L/Caz1S8TXSQ1rmSsbkL/NZS5Vr43YI0xbCxsSVFygfTQIp23v7ioUcXhE0ZnwGId0IAdiFIxcqdrY7aaThGWvIuD/tLltc6KlTt0FUDzqUsZgsQuKQFwpZPpy9wNYKe83n0JPXtZw0nhJ0HgJGOUZFvSpH8mBUjT7xaVtPoiJbXL9EYeUgKXIE8oEiQpLoTise7HPUrq/CM4wHJWyZwlexlkCV5mmmPpIjhQCSIo8WkaUqKAViJTDjl5+JCfuJqQyT+RDg61KByBFMyhP21CaHBdUFGfTYG0WabOIeeM8FxFYFSK/LL1cUYK6RbSC8n/gM57BApLuURIz9mVTy4YVbUKOCVTMXmc0btneVemXeY9sJeapRUpCgDrUYhAs8yb90bcBe0N0KzDJQI2IEamFJcRwmn2X1hXh4TRBH9Sdj8/1MtvJL493YihWkF5dqycUjQsubevHgWSMKwKsLk1hGuC2g8jdiRihukw2a/zNOLPwZiBdzFKx+Q+R7cAkgHoPv3cs7B86tYSAZSXDOaIhZR8krcuk/UgkD2H/TtoyfgoNucAiLN+vCzC8QgjlJOLpXARQXER/RgOe3vokJaUldidYv0uQSvTNC3H2/pTD2fB4dhGs4DoY/AmDuo4MmsBj6QAfzpVhUEHkDoKClqwGejDWVXiVBMLWvH6ReMx4S1NaZEnAzo/DzIroNtT0nCOcA4JuTxyCQxNXQP3L3bA0ruik7IuygqVE3SdwQHgjCLGcgko1ZmSYDmYuw8jaj91XVFfv2anzJgmVAugkF++fFlGN6A/Fpq6vNvvIHBJ+OaHd28f7g5PT0+Pj4/9NLYIEnc4HqWhNs1gRuMUaJUtf/78yHNvwWo2RUnB8qqq7g+wNQgRVAGQEeZ5nKcReCoNLNC02LlQh/Jw2O0PbwSiuSzTOM4DMFSA4BKSY/vzmIQ5pcYE3KZggwEWFTGGFaPCYjfBAN4UHmo6GMOgo1NdhUyGdCds9M4vtI8rqroy1OABNJUydmLkFgrVtq0CWqorqtqji4UE8vn5Oc7TtPgvz+fi58+qat7pQu33auzP5/NwOg/DUHhPKS7M6mWGtws3UwgQr6B0a4EbXCucWFAEM6DTw2iQ5gyL8qG0KEN3FCnR7LJMMPLERTuoX/fH57Gpd93dm1j48XzStr3fs/cDcX9EVZjThFMo76paKXeanr+Ox4+l8vsWOts8V5yIZm12DalX6r/SDsALqMylVL61dheq68vXao671pvlz1HZeq3F//T0tNb8tsIUTd1KB3yL2Lk4a76se4lhzTc6Ehuab8ob5QJutI22GM1LbHT5p9TwJYhdTiuIfmTAJd0mErGYS+TmfjeYYMoYpBxAnCwNNIs86cnMoFkOhHYDtBgQZDkcblAogIuS0qJWkYCwPEClTGyoj77NbCiIE4F4TSISGaOTG46bwcyDjD+zwu2TnzBOyjiffDdbnANEKvP5uQKNIEAJF6xUohcdDC7O4OdZwgsZhexzn/JGYW5s68R8LiK2IZgByVBXLXAO20UZiYiE3O7PNR6moHAhEC44ymmEjgloQZwEfPB6KQCHRrG0UH1wpS0g81lqQ0UEqbm3NZ47QVKocyDO4056PseicJVx+dZs1TWQ5PeQRYB8M0pUfgmjQ7hgHHCoJpo6mkpDr62AMwtk/soCytkOEQpdbxLjAkIcl0wRsRHLWQliKFBpiNWlRyy9faFs5mgvL+EX5f+bwuTlQUO2EvMf8So1q8gKIaoK1wzrRaZbLCIBKCs66CgikxyTJhsqmzkDXSfnWqBdP3Ej8f5qrT2p0IuGSiJhJo6N7DaiUnN5Q56Ckkrl+Xp508ubb3t932oFfLMDsGmRbTeQFem3Ch4ImL6taih/Se8sw5YUadwJlbeBoTMP2AqJXgor221ts+WawrGneD1uKAhTHlcWyuYuYKG4BX7moSPMgQkXedyCB1pvNxW/1yV6GT15F7lrWngioEuXLeBbEWklm07qwNu7QbXAE6lCeD6aEqVzEE7PetvJ+5MDhG3RVOLzcGkXy9vJfrtqUcj5EqP12AeYnwARktSjyfpJFDhJmBjZoGf46mRYp8TVebF2sfQrOW3yCd5MD3kPcPjlzlkOB4OGKuMtOmmQDFsWwMStL6qqUVa1dQ0sviAMN+4TCOCS5gTeDhEyUEQRhQmmVdwY2FxUjrQD/EBAMlaXpVFLWSzOnyeQdXg+IIQBzxZjWR6PZ7cMy9jtdu1+1xbanM/Hp+dTgAd3auy3+3tT7mwz9JN/PvbK1trWpTJO+zj5eVmY7sMRLOvKk9CboFOwm+VCETKuJJ0wPxFlLWD0mVxJSUjkpOQsZscEsJbFuREGYaLNxBxb4DoxoI+Lowgzh1PT4IBCDDeDysW6FsjHIAQg6xjnUAIihDovqBrI9EBGdmqpVRnTlkgrRtQggq1aeRTwmnahH6dCn5dl2Td1UZZVYbqmUfsDaGE+9KeTcAagVpSx07QddlXVLCicpPZmvl9xjkcfuaq183GCvvZywtMqy6rZdXcFRpIVpcLWbY2Nwxgx9vQLT2ASw6YJJl/SOIduKWXXudSINEodxzTBQ3RwHBc5CVIgQPZCFdfv4IaT2n4koC0AyRZ2GgbIo5LQvTITfIyHun7/4fs37z/c3b/xuvjDH//08ePnYRrnoE3dNbVevPvTTz8/nc/vHx8/vH3705//7GY0Sd69fbOch+l8glhRge0NVyNxArJ7pLOXBcgqgWTCDuYT0G7Cf3JyII3LRedkvOhRj0D7Be16G9WirVrm3kIA6qFs7OSC7ax5aGmog+a/mjE/VYmOiXK9iqf58x9++vkPi3cP7z+8uWtgiLaclN4nGHTaZP7qBEBvZUBvIEBXXzd/8C0so/z8Bou8gnlevifSwa1+xXpYZhbT6oS1ff/bACXCaONSvxcbxXTNV9d5SWa+wQFIv3Z9avKVDIWkJH7Z8Vc6AbfuTPzFVrVeW8Y3p1Y+7w01U+meOZ5xCTpFoUC+aZrF9NZDLZ6e1AFcOipR0B8kl3gRqSdf8iWIMZkUO1cb+bQNppg+Q4MoUZaUL9YOd/qerYPVPyvdVCYMiBbQpRsketpZu1rqW+Ivxv0xGTOskrIxejguZ/lUiUrl3ZzsK4nCn1TEGb1LmC6X6nO3Oz0pNBmE/EibA/HLETTzSmrkmKYREZ/gFXUgZC/u4ZIrEpmy4IgYvStNnCsz8niEgW5VlVVh6xKWguRmggoQcNlGF2ipO5QZRBoH20yJLdGFiYh5ak2HAm1XWlkGaPZoOFTHwmsINnNvCbraEWFjZE9jkHVJTbnn0eOCIOXoHQGtSeAiDylrHmCnJQjDWl7lv4r+oHy/iXfT2rxCMuA4sUbEFekbSq11EU5PelLiVUoxTVIMD6wRZoYr8hDqYfvnM1SMqPgCTCgn2oWAtC32b9fp+to47CYUHzX1eWtM+sgxFjLfijBep3fuQ+ZeH3XAr9gyLygSr+xw6w5x+YbTdS37p7puRiUhJRKWS4Y1RmTv6A4IadughJhh6yE52woynjUXlgA2G+D2tc3ibtIP8HjzWF2unn0zkSm8NNIB7kXCnyv6PA5S1Jt0iuUus64+ulIkCrBunrOFi6+LcJwkM7qqL6w7q2dZ4IIjEppE7sgRqCz66InHo0sQ8DU4Nrm1FTx0QrDcuMcKxmyzpaTxWQlpawIgTYE8XlLZhxOIYJfEUG1VN0LsmEDnqcWyvv9aIJKZmPzp8ylAx4ZkKsHVmvSLZDqmr5IMpb/DX8g0pTABxqTrAL0DOh3FYCFZuHl2tS2hW8ktlF5IUgdV0zivrV05yrFGtXfaRchiymOQ9YuHdTyfUnuWlXyt4C5rrFW2RDirYgntf7CXKoieWdsSAB1C3/fBL8YYlKKHiXavAwpx4O12urBeRJzKhtuagiY/8IGxAB7ewRwXIPEUaq6BR13XSGYW6IXB5ZfNL1a3QBhKtlRg0SBiMxTlrOv6bg/RhbIs53k8P5+Po69MM3kgPZyDUAeTbe0g9UxHMQAmUX2DVISsBNG8y1VE7ieGrhXKR+MW7nUULaVycIQheyhKpClO6OnOhQEiM3yXjJFdnBomH+NUFdrNk7AtWmij2P50fj6dqGiHk66ywK6IjrMLqrJARoCTbSOYMQYKm8aYU3+uXBJWaboumnLx8byo4+NY7+oWfi5Q8zqP4/HYe5Si99rqylR11ymvJof/QWsYDDwptRD1RPgySD4Uh5AZlFSiGfSDswAdZZQ+pQTGggEjNLQfhEonfXX4psXFQ4oDgnhkAcCaDhnALqLZAohX11q4DqCBowr78OatrRtTws5smKfZLZ8/f3768qWp66kfhqfjdD6GcTYx3HXQ2Pjy+CjpPXnY3paV1gYNemHlsQImtHhOFgKfEXVd7QOilVSgoGu8X6YFzBc4Dpt4qKBCVsRiHAZgvpS12qnpWVVawYNBjyMkRKu2xmbYP45Pv//8+Q/9+Xl3d7hrlLJe+V4tlapaDMu2gnDrIvxXaQS2QoC+hZLfoh63r5WILe2YG77atnIsX28wvusxBteK1xKGlWNw6/25KRnKcb5Wk3jpNx0AwaAnIGnewTfH5PbnyftKRgAnXzKaT6h0ySZTiYf1rSsZ040MJUeMiQH3EJEQSA0saEnyG0QS5I1mKffkWEmmJL83+L60VvQxMkhcHGTUkoxdGOhmFT80RmvIzKEEkql7uXCVbNrSeZQ0y7Njblri8qsXiMiLtAodtrWfcKPUlFrwLNgIY0ELKZmlnhV5IlJ3bdtuaXP5OUo3P0t5cushhQtBglBCJYoT5Afa8dQeSm8CiZY0CcsL5CCBSeTR+2WEtkZq1YmbFvKImtQeUJLnsBTRVbZulnK2y3FqmmrXtCVUJoq6aqsahZwPb98JPQ3N2X48n4bxPM7zGTEcChVlVdZ1UbpYmNkvpbIe+vg93MGcC7PIL/hoZqchm584GzQ4Tb044ogE9YTpwV4+cKpwWlmL6xw6ggrkPzeI8DXo35b/t2v8tf0BqpWM8yRkh3UlwJOgdqHFKWEMKkUOhop8RqGEFRjOOtGGk9ebu/sJhnEQfp0Zlm1BPts24FrB3VYHNvP2qryao01kJwnegm7zpWNg4Q7HmlAy+SD1Jslz5eHY7n5/4Ysr7uIHso72qsixCkPxHJp//tOfIwWchGsud028DVNfwQdKiVqAKiYV2mWjW+spklTcdFYvKJztFcoORt/VSFH9pGYma5580uT8I0GthPKslm3HQzJR2ZS2G7uYWqT9Oa29i8dI6lrlwcGWwFh/HGFFR9AFNytyMylbbBTkcdfqOSqajARRoEU8wo25BEjeGeDWr5zm1z+TIt9qQL5isMgJkRkl4G6pf8rUoUVf1nyT2JquMJcUa33KK0T26qRL6ejVoP3y1CrRwWBkjcKibIyY+efzEXIx4Nt2xlDnd1k8QrgeEj11LVYZq3/XPJ9EJFWaGNxmCx2XonAgnrDcLkhWEUUoyxofBI8q8WMhWbtQ3W4HLQIVK1tUKtSw+Suapnq429tCBz8D6H9CabZr2u+/f/j6PJzO0xN02c/G9rpsHPRQ1Jt33/cwnZ2mefQ45cAxLqn+wJHHOQONGw8iJdb74sCqwlaqCtUSjgHAzjg7LDGmUYjjAOTAEBURwlkoozgncI66KaPdn2fvZz06qKExc0phA6IN1uqw1ApuYXwi6H1IKQw4JwSyMNMIRVdRzyeoQJ/ItO2Q2gq7O0GYkGVPjZnQ9yM1ZNGVLY1uYSRQx6iH8+n+bt+23XmAVyaaOda+f/tOxNiGYej7XkS0yrqqmvo4QHBBGzRWUDUSrSplupbkV6w9UzWtqVDhGVzR7L9D65g+Y+2u68xhHpdh6r88PhcQs64NvYZhJbOg7oD5TDTdQvGa3CzCyMuBfr0Zou1BOX52p4xmEaxQShYRWiCrFpt4KncdHJGRrVKACD1iHhrj4j5++vLzl69t98fD3f0wDN1h/+G7Hx7efg9Ek1vAEW3KxbvHxy+Pj1/bqlwGTO227cqmU27xE3KDbr/3OjoXJsj4e+sD7Hhy34/VUgIjcLgAEZmBAqiqieEbgykPWaRdh0i1snqYAEjC/lDXwHb5eVzOz2eEVOUuDif3+c/2jYp4XG4YpmBNFRqACvqvP/3T/+Zdv2+rd/dt2RjlBlWWqjsoqjXm/4fdXTwg/tr6APo3P75P361REaem6CGuofC6f1U11SpevNaO5AaDeOmBrvuvvMkaMt5K4kCfniflRYUte+Jct+AvO/IGZLWlJwiYZIUApT/MJNTr37wcYCIKkt8Nj4pdx1x3TD1i/n4KRMRTRvp0UpPOXSiJOojOBPnvcjBLeJamZnQgEqx3t5auuZDSna6XSrRREg7i8PG45UVDfC0EFlulacobQTUQAN/050xFBP0sn54DK7FCoYcytXXz1W/RINuBzoG0go7BKqK3fZRZNvEKuKXhswgtzkuFPyF0sszi6jeW/yn7ueBFA3kJ+OBTQUcZcY/JzXd0/YD1z/NW3gpfa/Ftz/rZUlYBxB8k8hREJiSRPC8BONIfFKoGRsN/x1JGAlsJqh1NBf2Fhp4ALWTnTGmgZG0oThxgZB5+/vRpWmZqRSCHi7r0oEMVQdvZxWEOM/dlbsdhCroPxgWc98wDcV6KkqOtaonwxGog9UDhX0fIxDqeoDBgS0a4IAHO5rV5LuuS/ybERX5DSMYv19dWx0MmvIQwRZzF3J66gJALQZu7tNOIOIylXMg2JwOQ2Q9TqlxmocwESmwa+EisfcVVGAdMlDSZEQTkqSXJYSr8Cw8//+el65VY0YnAeskuslwpP2uRUEG/ym7aUptEJldorNcBcXI6F39rsXhLXm9N9f2H7/rz8fT0DNLkMIzjKD7Z8gZonef3555jmJNflflvnte12Bja+qiw5v1nBXCK2LE0zURCFSibQk3A8OVNkgtAVgECo7VTujrtYj+klM5ajA+gjq73u3KQ1vkGHf1UQ0jSHOA8imZ/Ft1KHpE0cK3bFdpBwVlkRCiRiIx7LnBImAtQExymiGnefujakbghpEmQsH2+Cf5BUFO+xzSwosJDTYBLFnojSrG1V0siEPnPt59ykzBs3hB4b0F8raMkv8MOnujiJ/EMIsZQQQETKBtOi+aVIKxosDovFJHivVtU2+OMerm8shCFUrGpanQeEn0TkgaIUJB84WyD+rtWlQ51WbSVabGvFW1dHfb7uqYEDRQPEIrfPXx3HsfHp+PXp+PT8TSMSwC4tYYyMDsADj5jaLPIrqUBVQUDm3sTzX/Y9G9rqIqxGLTCQVnY8hHSxhPqyMIQqMiHWEbK5gaI6DRVKausrJvj6GCURYeZeQZMMkUR4NxdQpL1cTdVRaklDAswPcCx06kdSpK0LUPVJYjqshB7AJmyNaQY2D2TZwfpfeCtUN6yRYBwUFW3ZWHj1DV2v9t1u4NYhh174NoXOLY4U1aHw6FuumVZjsfjeRyadi96Vg3GGTUoW2iYa7bYD21dVXUbVDFAUXQO0Xz6ehJ1owDvJlSFakhNqPPzGU7t/B/qb+wGKFOM44iJg+SKkxwqfJBj6Zp2dXwXLRYUceqypswmJEvComOwZdGW4F1r7+jHoJ2fwrTE6OumrKuWRyuEhbz35/Pw9Pw8TLNXcX+4J3QfdjeLQ/z9P/y7f/vjv/s/qkmrH35UQ//Hf/iPp+H0t3/7t9W7N2oaluOzn6cvf/rTf/nH/9dwPO6qptAwu2i6Fjk/iCckeAAXZGyJ9pFWgeIBtrQk9jH0EsUzZLMVPNeWBQjkqra73Q6YNPqzhKihBuuxTOqyuL/bG61AKVd69HEumnL3pnv7/bsfflPW7fPTU3DjXdf46fT06eenn/5UN/Zwf3//w3fqu+9Ve6dGPR29U4e6e2/qhwWneQRMDnqqRaSK2l9vB2B9rfU5VrIvwcG24r4NF2TerD/c7rlrP3dFxMIJLxvc3Gys0gFYP2L9fltdW//1W4DdTbfh6s8Rb6PzcAkZXxzzGxBULgXxRT09sbsiiY7QmsRMIz4/OQxYOvhu31kwvkS6J/6iWGYluQa0cS9y/uut9z2dQdcoOX3DvjRjGhYeE0BLwhqpC/JkyomWKqYFSM4V2rsdtxUHkxBCa6B91ex+ZYS3uBF04dlGlLZD8uhZ88mEo12fI44OoSMyO0KJGAF19FrXrKowrEf6RjU2OFeKFFrGpyHol1I0Vzi/JjB2/oVNd14+El8l4ZRBpAUTOLvUEWcJI+nKr+ry1GCWSALe6jykqeVoq1KgGWD6wjxxcvNSGHVK2wdC3raifD9F3/7N3/3NvCzDMJ36sR+W8zCch9ktKJIpYIvQOI9aLy5M01K40NZ3/UKBNxwRi/iagtwIHh0mkUPpqaBaC8rGgCJCxNTA8RrTDIAIJqZS0L2waOSpzXMKuLeLTkLVl30ARnSvK2DexDdZ0S8o7yQhQWCX61uA/HV7ybtARsxidiGEZnbL4nEsMRCUs8cYsxqBreQi+f6CBUrKtLJdGAalMsVzyTs//XUlAgOwrvesM5bxEldx28v7XXewa8B3op6LySAlAQBYSHpVoBZiw5lRxQShsCiKf/iHf6gru9sdvvvxh9piBEDoW8bPHz+Jgw9Kbgk8GRc/2arKSLyrwd9yJzZbJQIsSW/WpCF1RaRjRg0gMkYRhJHfwRhXPHyR+guKKcCgOT0A4ZjgQwAHRkqcaEU5mGKOKiCr/LGbKbd64srVevj5pGwKMDB5gSbj4JI2TaN0R5ktCCsUH+hYMs05fUoAcnMs25ZtSkXbWbqdzygAr/lqnl9am2E8Sz9WSjlrhabuWCnPaPu1N5U6GJmOfxkM3O+FUbZdems2su6QACe7Sfb/xJjcZJvrgSsumTJgRrIFkW+SkiJLsbBqUvDrUDXKoux2Yad8OLwVaySZ5jCighPVMo5TEg1gEiumloinYZXEygIflot69ktcjG5rW/h58RaVariC6A7ov3nRhambLh6iDbqc/PF47PtpMFUd4ItIsz14lZFZhepekuTi+FvMHc5MaiqAfKuxB0g6hCII1OsLtDwg88K8Z55dGN3dbp/96ZAKnYd+HCFUbNoDnWgFhmAQKxJwuM6I9ei7PCOpKxFPkE5BtDFLZEWo8/FHBcNswh2D0vDyCk5oxFTNQuESKDuo6S6a7UaATIJ6eOi0gntjjM9101VV9e7du6IofvrzxxMyAez01sDhS4R95mmAaGZRzKFCuyuGgvo2qBR4BKq2WpSx0wIrRlpJSm2OxOqI7gSEelEFknqrNwFTxscwzGBi8+SCNA0AB0ivkxj3S+clTGzakCFKxBwsMHeWpZ+HYVAP+53YaMBQrEicJefAGRimKY7wQbdl+eOvf9Md9k27+6c//ElES9coZTz3488fm7sPahjU6YzeCLItBjWlLfdd2QMYtt/vtffoddFz7Xg82qq0FdKhqGLZtEJBSdtO9EKCYyWMKzFCJUIS5tKapsGoVhWcv5cFR6xaUFyY0egw1sawFJV1RmvID6AxWZSd3jV215iygGbyPH0dT4/upLSf5v6o3FjGHcwzxkF//DirL6dRH2djqu8Osd7ZQ1XWwWINEFyMdE79q0gAtjWMVDl4cTi+jA63Qf9NFeSmMrR9h21961u1rhsk0j/7yn91Q3mUTjoEOi8MYykpi4xg5stu+gYrizLFCi8wypfLZpAhXZSL/7EY3/CtRfYu208SWat8KT5c23QInhogy0IDJBWE0ldlAAFFeCHFPJI+cSkLK3lUehFDdUHeUw4vC4tkMLSgyVectxT4MzqYdSjh74neSML985dTs1QaJdAPo0o8CpWp2po1eeQjUkkxTw7KLOAcwH0k91Qp4lKmg1bo0qHGbXHWCUWDUUmGRiQjIVnnKEXmKYGLS9ZB6Rltc0WWEHMKSitn4AzivHjoOUjhgrGIuDrU0GtDRQoQDIhxOCBTg7O1GMlRaRSEr+BhCyKGR2rSY2nMgOpJjUoVfGTqaNFDr7v2TZRiGDTEvj6dzv389Xh6PvY40kDGM0VbnebJKrtvQIwCh9XDNQxN3sus3oRTYLUB/URFFAKs8y3noOSqbp0QGNvi9wZztS6czfvn6bpd4zkGu4C7cfJJ7hRNDekkoaQnt28U79zQn/g8JLATmrSxFr4wIPLkHVzCLPlmaxuy2WHIN0BpJ8Huk5qGrFpKannObukPpOWTE8LEHU6CRDgHIQ2celyc95BcvNnT5Guxpc7LwHK+Ccc8S2TR+ILQcTgzI14Ofl6CHc0wLm1Tv707KBWGce6HQW8Mwt6++9D3fXE+uwVkngQicm6cllU8aRu13CAnV/w3k2aIXvOSJEngHCE0Nt2MIAEIxYAKYRaOykuHMHTCHaV8QZwvKPVEtcq0yp4czOax/xAYKSjzNNrpCqUNuOacINyw6oydCSYgKFhYDx8JhLnY3yS4FQkgcnap+yEwdkHUUwFJ+p4lGVjXaNKbjtZ20CA9vp5T/OHMEvj93R1TNSTemvkw8NrW9j2w8hmiVkJUk1NV5kmetHj2VHSNbV1esyzSV4eK/opCzhG50gjZc5NhNSGWd5UzBzotSFapMsTOZxKklv1VdEtJLsNWCSWcFPBRf12jP1PQhRpk3yLGmg0EKNfIPoYYDmEt5zM1lACtxqaLu1om1CAmyLdC1Ivih6WGtn5dtU1p669Pz6XWu11lqs7U+2C6RX2d1HmcXUCRBGB7KEXj4EpHJmmRAlxCGYtzb4VtSu4qEQISpPP5zMJ8egAEyoYY7bhAphnLRxx/pUbtQjGN/HW0TYxBlxDE1QuccFvmo94+cXOypzmuEokQrDhl6sLAa5oEJ5P5+NDoQwbAnJiGWcgUkFpCWpLCueDJoOkQ+v5UFUrBvgWYUXBq2Yt+/92H8qnS+rkfB/jUEtbVNM3Yn+h0LvzwNH+mZTZlPS1umRezxIgEwI1wzImlaeCXwPkAbpX3c1xE9pchB+2dxecSrDNvbSUYPkqWiyEheAXiN83Grty3wPPQMTC8Q1OUIIUAczpH74/P56atuqaEkCkUHaMtwVEewb6AL4SPoawaXVWkLOMBgA8wz5ii1k7j+Mc//P7Ll8d/9+//T3vntFFv7nbzYvvz8/z159PxqSmr/nQ6fn08Pz0TJYs7stY+PDwEhTeEpVpV73Y7pdFX6bqOPkJSQMHuIU7AiCsAZAVnzZQKa5peNkjJlJvnEWknpqfl/6oFktwRlCzvtRX/bLtrm/2hU3WhkZstz+evz+enMJ315GwwizZDeT7PY7/81HvlzC5W92/ef1iBuAlkKEk+OZn/ChKApKKTmnGbin7iMiVM6k3L9VVcwRperLvbqsr8ShbxmkySfMR1HJDD9M2vb/8y8wA2BAD+H+ag6UMlyBAMa+owyCmYbjTVCiQOIvo/xT2s+q/eRtkjONMJ1nCZn5gOP7qDSdielG0YSyU7Kg3HKNQORXMdGtVAEK4/YcXHI7twgRh4aCfkHGbTXE72RlJqg3oe1BslZBSkg4xMok+QIZFM0BNbQmKh29r/5mTdVLaoH0AUMc0DyV/k3SABgd55ygCwza4KGwXEtEDNWuv6SReaTl88HLjfMu4XSd8ccSTZaMK6qOeT4QqMVAXWRT5vvuYbqrc8l+tUE/VX0QsyxtuCGj4c2F0DH8PKaOgfo5RfFqpT2hXaKe2oLOgpb+4LQhdK9oK1p7j7vMAThM15tDPgjd0WxkaNqlJhqsJW+67uuu79dx8WeAa75+Px6el47BeAjOieJLYX8qDnUs2wiGSHmiggagZimVIUgcIvjEBv1stLAz7pvG1XrrwW9EOvareZ7JiS1ZuvPCMCIeRQrBa8SlHECmcK2hqieM1KKj4LgJ9lGacFHIlxJFIHYszTjAm/xSalQJBFqfXK0wbCiDvpKqSXoCrlFyRmYl6di+apUr6tXkhXM0FWNqI9grCV93gx+W8WwlpCznYEUsVca/+IjBmFxRDmZcZpNJbLUNnx3He75m5/3+5Q2sxvG2c34cFDdx0j4AluFymbF2vw8p83bGC6L8FvUnAdK52Lyw/Oprl1lhCAiBw9w8ikY5ZMLcQrN/dPEtBOREtva9vkhmwLLi9377xBivSW2HulXE0M+tbOYYzeViJ2DjSjAjpOPIFRd8fZCa53AbEAXCpr9EUpfnDbZtTNBWxn9TyDmyFkSniCwMcah9GnT58E9tC2bcFJCMCvc5Z2NduqlryP6I7f4OsYHcG96uKsfCn2XxbdepHE4qN8m5lk6Z8E7JeL01fVMVrQUz+ORzEjVjIvALZmKZjZHJBy2E3DaegrSEP5OliUtSklg6JQBchNSgCScQb2W+dHAcNAjJhGNw7Ci15hm5rnyQ9T2I9+t4+dL5rGWFO7AlbkmD1WN7u73RSnaHw/ebQr4SMZUPMA7UdyPikiSP6FgAhNXanXijUbExK5pCIO8CtA75VrAeL9ooB0Pp+pByqW6cwBYixV7MeZ8a0cDJCP476UCtt5JFflqg2mIAFZk9r1OI7kpxEazjEXJTj4TjBAJvcFUn1Mv4gGIp+tQhypq9LU1tY2nB//LH0qAQv10xjHyXl/d/fQdO0+RF1a6K8Gz6aXut/tmAAQrAsjYQTUiw/dvuIiNEtAlb+f47TgnHAeBawLkIE5JKBTkjFeknDE+xp6WliMAnballdkPkeLPFw6sfj0yWs9WzCRaV/AOjpk80I89ifvW4kMWdCXnp1a+sVF6Oo42GjO45fHP3/8Oi3L3d0dEFkxNiXsLGH14Jb+ePq//l/+z/u7h3fv39zf3+2a2rn5DCOD/uvpY386zf1o2Ss2Src1zIy10afh1I/Hwtgff/Pbv//7v1ftzp/P//AP/yDVmcWHwgWLdhNTMgMJLGxgOOUxBoR5DoRCRnAcgi9sU8Ppra3Kro/oBMK1McaqrHSJfAF/BTaGUmVx17ZDUw2PoxvPxumo2nn0Xp9dUZyD87bp3rzrHt69f//eNlBuJQWa0ucAJvFS/lUkAN96wbgkNzTlhH5ZrV83u5u/fVndvzlfhaj68q9evZI0ub8h27Gq/WwhQ/l4YnP0gmi6CLQl+ehcHuJfyRBJTpyU61AXY7AsSGypUIgAHAHuWVEuKVJLJMIdmWVJfrpcNpypZBdOxbcEDUJVOkaEdzAqRA1DFN40oeRIUOmDJxsblmtZ1uJ0j8tgyAXNcUn2EaumROVSGFvZEZtnwKIfcPI5QwAnONX7RUEi1UplbJn44QBKFRgcP/KOOhKGJ/cVyZdYhwthLdxAEikX4pIU1BEwaCIjc6jSn8tgU7KEP09QKxaPEsuVqYXYdyWssL55+sLBoML35YUkrqyEZ+3o5qu8N4yBFhdMQYm7qqhRyBdRZ2iAgm5RSFEEl2cVanhhno2BT2fC8qZqlp9mhyhjhtvIgrIsOubaWg0HxrqsOlvWprBdi85C1fjOFefJH089cKIOTxFybmjMs0kdDc55aZen2jw0VdKyEimqzeqTCHVN3i9ci9fWy00LLnXMVsJMKkkSwJF2MXqlUpNWqr5AHM9e/FKABQJR2sCSXRtx+J4WYHPHAV9FIU5UHa/bdJvVvcEp5QB/9YRIAa6QWcT/UWiq1LRP3bOVNcvgN8U5nBDJhCplwhmHdyMDdDHyY7h/I0VwraWb+nJcALhlKRLL1jLPgJQuy/L8/Nyd23FYusNu17RoFdU1ABXgiVd14/rzEbZBPRDHMWIG3jRRU3a30TFdvy0U3EklQ1vh/iRCgp8HoTsp9VFpVLp4SPywp7GbgdYoH7IKaNSl2CEn6ETCyE2Jxf3aDCD9ThoC2d05g7WAgiL2+8Ld4BwFfwL7GoKNhFBnDjBNwPTTngg165LeHlEXwzCxOgAoxvqICLq+eMtsUrxVrElu4vJMRXUR44Mag64RjTRKQdyGqOWTRD+r3R6tqdJtrr7AXAGZU8EmTn4WlHWX3lS2E1s/N236wqXOjy6y03txEmZUJumodChWZSmR58IGgg2eu7SsAZ4YqA9QPjjLBku5RXPLIhR8gjEJ+TloGO53HRM7JmMihYol7GrEhgK/V7qo/AJB4uiKEfI3apzPdli+Pg/tbuh2fVPV+x3IqbNX/YxuQQ+2aZiXWDU7qD+i6EzFVmmKRW+4UnNrOPHopKNIlSqeDdIWo0fjHdWQKOLuIZSzoIocQqjJEYLVKxLBFNCvvHWEn6mdADdLCvRAfhTxV1ZVE0gUDTmIpiSwLBcCNPJP4ODgMZauB0uRhxKK/fgLURVLUcGFL4ffr6qqa5q2Ug+7X3s/UM7ZT/OY2Aaq+PnTx8kBg4JeDJsyCoo0/mFXN+g+gfE1LrMd51M/js49Pj0jszSVsnr0xYDtAXVA72AuvtrepYrjtSBH3ifAD0unKEXzIleThvtH0DOpQfCvRBWAmJnFed9UZYBLA8pDgAA5B1BqDND5RrXLGwO9TSrpAYWEvo9U2iBHWld1WwVlpnkY52WBHPQQoYmEdjdMKgAeev76aegfn+/2h8OOPjzxYb/rn5+INkQzGRMe3QNnjIMBPR8ITLuImaxtBQO72aG2RLMpqkEjTC3RrsKngBrRlE1blSVqdHI7Ic7CRYH3iHDVCo1KvwfDuDCxqtDvAxd8npRfYE+GnpgrvK6Lpiw9eAW+VhEo7qpsy6Yu9/f7D786vP2tqvfKNqDwLSSOp2n+1xX9/1ICIHjHtcq+UgJyDIfXBvuoZ7ZWt6fUq1CfmyLNS8zxNgK4aSD8Qk0uff/id65kPVMZ+SIDmv/q9YpRwsasVTQvkBLKYFDliuhY2KysAFQ5OEU0V0pGSWYUdXzpNIqQ5cVOIVe4L698DSm2IEIB8j+csmbxIAUmyB3TfYoqZihElnnIRdxVo/Ayqqy6JwHsJPPPEr1EFZe67zeegtRNLzgEyntzX5UwXeQG6Y+DowVMTSrCsw4iZUDpNucHIjqDKF5hT13DwYQwwamRRIhFtpmJlA6WqXzKb0RAnH+EPm3xin9FUkDPI5OjqCJaxOzkc0IUGV6/KDn6EEreEem/oBBBuay2qob/YDBWL1Y31qAyAiClrqUNKlgqOfPIxhbaE1IpyBtC2k6etw++Px7Pw+dpcYW2ZY0mcWHbIvjaFGbf7rpmXvw4LcM8D3Nf2JoQrlyiZZdzlWd92bTZTmaitPRLrs62QnnVVVsHDQGc6MrniD9/TYQRsU0GkbqIoP8qNEEU+gn0AaD3VdJzRQZVNfXd3d1hj+1iHMfJuXGYZ7aGRa1l1Wl+dU+Av0Qu26cfrNj3y5K+mMtuEyGZ2BtUxqajeL0BbLegrafsNhBfz9dE5ZfZtDa1NGTm0B8BbAGQEe8LlIK83u3acZp/f/qj/z3KQm3b7vf7rq4/fPiAYjN0biqQp7031puiECjgFhG+7q4vL1i6eeJYjrhGrI8RqQQksghDKcmAaWNFUIAZwXYWcY6xXSkGHRJF8S2xhSFRx/JOxJmbwcFZej0V4zxj0fOjUpaaSyLk1SQF4TTayFSwgaJVzhshFpGqyAWweRH/X3J4zjzWHVIkfP2MbupKl2da4EFMM9IGyOx03a4Fb+eHH34Yxl7I2YBkZHz/+YyK4IpbS2Ta67W2zZypT39pdG/7bNtNNS0K0i8EMCnmiDeX/eKkk5yf9qI8ZPKAon6MOvlGXY013oS4ZA4AA1j8DEFvnJYC6mfiPMAdlUKxoahLOB7SQwwlnNJiiH0800/KB30eEOY/nSZTnsFh0rFpK1u2QDjp0mvjIwDb2ErxjiZ7tKxQKO4/bJKk/ltymmMIqSCKHODphO0yFOrhvuOVWBdg2NSfp/MZmBn2xtHljsBTofmQe7dyONJCBYRLdKM5IJsZnsBfouyXCSQknIh0DOGt6EAibOcLhF0nggdyYl24ItJwl92SnZjgZtRAsAPGuL9riJDFg3MkBgwTnLuejmdo3zgRJaNlPN/Vu8WWtinRKqkqoNtxLA7zz58fZ6yJSlWNixZtCG0qtMEiXIKzRME2vspn0FZMRUzxUmQkcj2Um/DT0Gf6LB0VqQqlNMnNNNrhneKvSBqmMBKYV6TyZwhEVJAJcuLLF1XTte/e/7Dr9jHqn376OI7j+fg8jeNx6Et023CiHu52x/MwnI5+HvrjEwnWha3KZRy8m6GYDPqP95OflZ/mORTwYrNlOS/Lf/7P//mPf/qpqiEoL8qebkHXlSGY3C82GejYNmVdW8h1lJDncXF5BknaRyQYBPvV6GLEEMvaLtMYiwXbJitawCbTITmO0/Pz6fHzl/PjlzAupTJBmV3dgYqhbdN09cN9ubuvdwdVt945oz3CEe63gIWxnbmqt/2VvL55Ndex+0bmQpbrhs8kFYttJPESYHBdVky/cJMY/EIT+eXrphP9L+cArEHwek5IszEFCht60EbQLbVrNzcoiBrBD+AUK0yC/ivEe9JvKgwjADGvSipDrBkLh07epzAZCpU+KDMTMo5ohQlwm7alrwI6A1jbIjovAEfAyMFxFh5ZziJQszApI98OnXw+1+0WLLvtB2yiLt686AQnZPVmSNNQreKAYpcmiAKc1RA7x0Eg9R6g7XI1VgI4Qnmz43ImaV1iUIdIizNQWL/CecbGvAg4i7wHHDgp58LJmCkcG0JA9g24NPGpDRcdikBCMUaYgg2NOHGvbQzQnYDYGIohYZr9ZFRbQcnGFrqsCm9NVcOzzdjYdN2aALA/7Et03uOu7jy0q8EWmGHr46Z5mBe/v3uDrkLTQKzUx2l2fd+P81Hbtiibtmx2ZemDOo1TcSroSwPDUZkrsowKpCnk/V4gMQRWpZmVSK7rX0iN1iVBvDVUEt7kbb/uEniwQXP1T/y6Ku3IT0SM1kdfVxcVr0BeikQt0zyXaP5CD6cQ0zoeSyBdwN4u4f6/tbTlarOe1er8la2zyH7l7yVxK/7a1R2lTPiy/5AvkQvZl8pu/mZNkOQFUuB1RyIBnMhhEE2WTaaCU4ug8aqu0ZozzHBi9E/Hs7G6tlXTAo4Rgvvy9evPy/LxyxdrDXl/eLfAxySadZcCA4dLrnArk7rdWuEQK7bzoNevoyEpGVYJHa+hZ4WtQRXQHd+IvMlhn2SaUV3dbKFsOi0sMQt7Jz0v1reQ3FCA6eYggGy92O5mDy/mTIhERYBNPGWJZochDwTClfYuLvTxgUsP5hb0hg1jRNQDxLhJWBfYgC853svQ/+YnAaZ8iW5OOIeP3lVV1Q/ntm1/+OGHv/mb3y7L8vj4+Pnz5+PxSDaLRIHRmFiWUqRPCye/54oC8qWtZQ/fau+u32+LYnLBFQwl04GS3XKlmYwHve5VK4kCohGibp16fanqDBgMguJVP4r5FAbbE7jI7rTkaJj1QEFgOhQw10IBgxbQbB07yt9BBAdUX0pKhBCqtnM+QNt+dOM0j+MSR0TebjohgW13SEHKpqgaR+XjcUHPk/IYYkGx9us4l5JPKLgFsnnlXBXfG9ZN4IVShP70XMG7tSlMCSW3mpQhU52HQaY3YzhjI/jFBUQQLjRDmSFSDssct7WEKZktrE2IKiWhhCC0dBIneji2V6w2mDLiNshlFvpdDoo2Zbu1OjBNcEJfCqe9rivVtLumaQTyN1AfsyxLsPx5al8JpSxONx4PBX7DqJkYW5lqGeb41E/Po/N+0pWJ8GGE2mnDo48aqdI6zxeTNw8eBJwT+B6HMh1wCQGQHi+GCiuCdQWCVcR7h1v8TOMwObPBczCmNqUti2WQlU6eR4Ix0w9S67qqbAljlrZtRQx6CfHt+/fLNHVNez49u2k0RVETOfTl55+QmtIYlXgcYHjmeYx+KQsTgL+xhqqo0t/59PjzPFdlBRs1QUAsy0IjCPSFhPxWydBZzO1SuaapusbaUuqxkvjBX0/ZAj2Bqjvcv9ndvS2KEiDV/lgYbyyZNWGOAaW9/b5TLk7Tcnzuj8deB7vfvWsMmJddc/DnfnJ+nryal1B7swTRtxHnI/EgojApMA7/DaCb/6++tlezOS+pGpH3U0aweYpvW+rbikvFVulaqbr4ROZ61U0tZG2m30CD3KZaSZ+OTbH5+pVKxKmxkqDA3LxE74J1dzEsX4HC0tFmyCg3yFlrxaRBQC2b998eJ2tzOf2jwHv5U8Se7ELye/HzYaWNmhJBSgs1JqC4Yks0LmE5LOiS+ZkAcOScZYkia5iuZUV4AVclDj20BawB5pxImahQHaEkH1m51IfgY/SwYWVAntIOcVDakhQIHF1ldla7UGFZprJmmh+JoyX/mRoU8iupBoA4ntwsKPLSZovBvQZ3TGBOdLLafPr2ROQ+ljDB+UBni5aMYfRBiOoRjyQJLgl2YC4hPeA1sZEoJAsEsRRFN5OEd5X5BhM5Tzdz3ngl0oS5JMl6M7J/aTRAOIUGgzRCUlXwrlQNUFKqRMF0ggQ+2wUQI6NjfV3ocYbGcGUsA77KhUgcfPjy9QmSpWB0AGNYaNu1gCNouxtmP/SnmQrnoUBR5u5w+Prc0/+AiZAAOXMImvCuuO613JZNGi9zF1V6PHoG6iLgwK/wqcjfb1aKiFGv24L0jNbOUVLBytARQkqInpXPJVU3U7C58vXhcC+46qdniGGzZIDfKasOsxEkT6mUA63g/Lw2AbbNCgOMO4+7TDhNRYlsmSYfKOjoa3Rbeq2TTQJWFvKydAyftaSfQlAnlEUsjREMoY0P8ymetDhDcf0molx58aZJ+xicSo3RXdfudjtjTBYlRLACpuk8TG6RSQ7CYqXnBR3tcVNWF4R+CR1iVGTpZZGqA5iTG38A72gKR3wI/lSqB2Qkc8XiuzmikwCkkQnRFjZglXJxYjIza0xISGlfksIhg5F7v0wANDraACU6AhMdRMYgxyml6CKQ8cmIXvZDeAyBtUmQFRmWrOsb0OvIGt8C65E4CSUEZXFogdHoHYgX5ES5Gy0bdTpQUn5BCDn5IfIV1BO2hah7JF/F4QtjWIszFnKA5YhbQNxwtpBnBV+fr9/99rda68+fP1M5B3EGS8GzB9k3nXHELTFIgU83N1zsS5ca2VV7BDxIyJ6udVmWjqlinuRoU3xaALKFSoYI2CQvSTk3ZT9DrL/24nBolEWJ/4QwWHJNkWOq0D75qslswQyGJS8kcooiWi78MkANhkeOiPkyMyOWHaJAaN00sVqCNuWi9AKBqGmBBI0LukDVv5/dMA8unIuq9arox7kwJStkF2BhyspZm07uaQIbw2iyEJ75J1Kzx2GuzYRRXybMEyx9SEgJY6ssKbkFbJpYDU4z0kjEnux8pcOdOExJX3Osgg/NulUaKEulRHFTDDBZ60IGLyECtVQLYaXjZBVrbqgkyWFHQV0KBAjuWBjz2CvmeSkWZYrzFOzgbNXj2oiJ3BUHAz1Koyl6LsrOEITy7q7jPgz9Z6aYZdUYE6z7oWrCx8fz5yeI1ZS1MtUMY2W4iWYJgotHSqKJUyJEnO/y9qdngqOyZUXqeChwUUru5SKXJzMRXYmmQWEr7fLImGAwEYPINKPSDxTTIjhqnJBV0+zqptvvNbhgUOd8fHx8Op3Hc5/2ZgUqCnyqeTS8e/dWFgVMIcBqdlhieKypPoUTAU4WpTiX3T+8HYbzsR+qElV9/oKfhFRG8XckrlVZV1BULlGd021dVlUJyKGbHZwo4QssaWTT7ru7N+/ef188vFXGqmka/vHZWKw+BHiQQjNNac1+549fg0PLo2vau7fv37/7oGypxsmfxzF86c9P53FYjro11e5+UWW0NirjVBijQ4RQ6AorWyTI0il6Oa1J4Utx4ZoqSxqWbd23VLf1MOMudCnQsXXzF3qNIe26PiCJPIE8hshcJvWVtbiyQvQTOzZXyodxWs/py/ZXQApKBB+3DGDZeTMg9BL946thhWOFTlLvnYOUPGKTIjLqWDiAYT6H7DzCcm7BMxOBZConBCpZSfsKJNqIABqpJLfUtE0z4I41UHebfVlaq3nH5XkmhcZcoUR5LDXTkoqIcGkN9GCoEYBuYCaixokIbkoZoGScQZ+SoqTeb0o1SLaDpj8vgauaaoMQWA5RzeguslKRBIBYGDON9sGU6DPRUopFa/iH85ARvPv6DSikpgz0p2CvVmogabax+UeypWQOkgYko2XCbraBFIwMJHQIS1xU0GgLQ4UM2xvSf2wfXidOUvYtu2C0siBLcmNcRR7T9Yj6h2xAyTaIsS9OJ3J45OcEowPII7IkicwtHRWBbLmRTOGUWkgRzyq9YzWT6qoF+ZdxEfUW7kEcEEsvN1CzHEhmQ2mKyppZFXUoxsnbaSn00pRFZUJd6gb0L0MfTaAYiCFOCuFBOV3oqgaitOm+myZ4nAMdjv+hQjzNSlm0OdEaRmWlgOdpxEaCCARXSN0jeqlSl3QLiBbAce4FpEhRvqYkGdhNHvQ530twLzG5lkhj85WRRGohELSWvgoVmMNJnjdWYW0tlLZjdIB8AA3KYBjDyBl4OvUCwKP0qYIbMtQa4vOpXxtWxC2g9ljBhU3WzaXOncFLRG4RnyJo1lyMT500NqIvZtXlFrWfAWDc+MSBm2Inm5442KdA1wHw5421EhJzI4SmU9s0Fs5BQO4C1o+EAESRGvK2yyIIB8wv7wGeOh+XaTgLtfThDiKAEwJotu/IDBHKHTBUKKemhYBHv7IsyG8IYQ7LHIwIsjHAkafDEgRg27ifAsEtyA8CxwtA3SBuZhAm9AhkzmpBzOQnPesiVBaAEKiBY8fPvH2QMxNfDcsH2juCX4y22aMlj8noIiDIxGfDhlOKFIHTk8gixk8Vde8kloJAk/dSpJ0RdkvAh6SIMOsSPhvLktqTvBDs5UT9sRcnzwuEJtwnevTFvEhHAc+WpkksSxLSLWVPqcMxGWDynJqUWalM3EWUxzwJcR4nxGHDLNooAAdbpPuxtKEGdig5FgQP9UP8HfOgqzQ1Aw0hGZHKznKiYfJDKTixh+kYHidwZbE78I85Ez1gk4tHC4itUaBjJDiTTZQ4dCFriBYcP2ycU/EFyVdSnsDyWVx6Ikwtgdhkb4HRJjdjFEcqiMP8v2n71+ZIkiw7EDQzVXu4OxCIzKzM7i422eRwRObDjuz//x/7aVcoQg7J7q6qzIwIAO5uL1W1lXPOVTNzB5CV1cNxFtFIBOBuD7Wr93EeJQZFZRlRGAIZPg39XBTNw6HrDkdXt69naFE6Hx8ejt2hHDAURd7/iiOFgGiqwOyMCQJuyzJn5IgNa/Q6HuosmKXBNIuZHLc0UWISjlCzuDLOtNpwgMNJEQEDrKLuCjdHaCdzo1NDAQj2cZmRtWOHRWVbQrcIFXvX4LLT+YydNmwTmEqHFBxdX3zpakfkKvNczzwEnjJYRRV1oNl34zEwAKNvo5iLrcT7GOZzmIADR8MZYB4AOC+T81VdR49aYMbTZqiJonG+apAXIXEQ6QXs0/4ylUtfHarlcDiK1h3n8Jdffn69QHmWPXWCzuEPUMdpsviFTJCMLPQyUSrlFhFKeK43YtFdQ2Y3QPzY0hwS4xIWcBwJ8upiZs85RgCjHSWlK5cG424w1udpGIeha57atnOuu47wHp7CjKz/8eHXl9eX8etPP7X/x//xv33+T/+pKN3lv//3+N/+28uXX9mAgBUXhj4CfBZLMZkoKR3GqikgiYN3Munhkk5G0gO7XgQbXxwKfziA9o32JsIsOxFd10aAAqiOUZe18y1Ms1Hbjv3UX65Q/wQcdxkxil+qsl2ST5iL+ymkbpwKDPObx9On6XpBIpCmZvHdsetSiP/zv732059+/naZlqcf/q5yn87DdDx11Y9/735Yfjydlr/4b69fUpibaq7dWEy/FqEsqq8xNlP0pT/V/lPpDkUgBpiaoBUHEbmGr4oKEF+Io2lDXmBoB2nUumUSkvHSBHkyLaXaO1yr6TJGgikMUos5GVDg9xYA+w6ZCbipicWlrZ1ohwzZKejvJwArpGcVx+AhQ43sDciHH8xZ9h2zDZhrDPYU8JVumNPXDW0Ako60cCcQjr0l6KNVvoBqLlavr8BNyr8PFIe5nvDpsGG9sE3GHGJls1dGX9s8fBvKKuCmlU4GYcByCeiCkdkKW2cVoAcvMwiQJ2EPlzyOhJu5PUZ4jqMTueDgmZmKF8XfrJlmGSrGRA8ROiHyJVY/u3PkvrKZQFAI9tnA3N3Q9hxAofUIQVzypVh55qhsQxGORI2kZkXqmh3uFkiGT24wX0YYwXolrJjCEvBZNEpnc1c+TXjUqPBvb6h6Cf69PBgIz60Nrfx/uLDYYtzJ/Ev6E43OfIirOexSwi3eiAGCrukSYkEIc2BzI8N6ZdYjdVtxdoGEqrgUrm7jkiaEFwxqybjAoTZ1Q/MwS3B9VcxE44jHjP9N8wjXFUwuUTdEAmrZs2I5SvdOJCqOGhoNzdJBcwO/LVbD5BxuIsW6IWwXIf6GxanOv1x+sxA7a/5qlb5h6+yDpx9tWgDKsHo3uNf6dQUL3X9Vw2slmSw3X0lLwNcUy1Al7CjowNkQD8F4Td/NWZYwJM5C1RRE+rmh/vh+XEyQccgdjz3RFthg1ic5UOr/3CFP9tYT9lJB+AFocOusNHWHq57pgKCVFXBO6F0vaci2xfS5qqqma5vUgALOTJC4ZCBt5hly16SWok4HWy+FeR6vPaiDqIyphbqyCwgE8gAIybV0rUfo3sXYwXYp54fI8KiB5as6sqlBci5AMjpgLDN4t8GviJMKI4VnDgzhSTL2xHwJ8blytLrzNmNhIoVwat6F5hmMd4AIATK8igBgzM8o5wWECWwq9ADHVEb8t2ZKwaPph6dPsuRsg9BcFEkVe/OQWWA1gG4ECnEGLlXwQAYgHwUXIu9GKuWsf67bJw8txGhhKrjYbsA20i9dlhY0CBs7SGrGjM9Eela0kDsufid2rad8J2oKV/kaiZ0G2rZj2WFIdYc1k4ZR+8b/3Ta37i8gkxb1xlfF1WFjHmRKbE2snuwk8VZ4nDjl5KCZdHg500gFSFQNNKfJNkJDH1EnT5JlMcGjD6eum8M4TKGfpzDNB7662p+6pq6Q8JVLKDGM6/vrPE+9b9qmPf79P/yhn8pfn8cvL1eEQ+cX17DgTCG33nSOoLGKwcmRr7q5tO6aAeFiyJT9JPcuI+tn8BLbd7gRZQ2nAPxmqKIqUl1AKBNplkKzdIJaNB9Tq46zXQJoa9RESwzInsUFoBIfRes4jl8KGHYgqMfk+YOqSIBmcWCWSh8LN7HbEpgY2lYjlSxp2IH1VbnG1RUEIS5973x5aNrT0+fn6xnCTWQsQMCtiJ7DewOxobIDbpWwHFwqhwYaBPqXshjgZjx/O/ffXq/AOKJKhtkwdgUcDoYzNfEL2VFOVpFICtbBGgX+uHNy69GenZFjtq5Y78UCYY/SqnlDJS2FBTZUfWDyCDJ1uVStm+Y+xNFRKvfpu89TSP04/fzrc1GGcp6r8tfa/9e/v/Rd113OZy4QKi4ucFG2A6Na8vnlKqklFDYUSAXWroDYKeepKi5xuJCuchAVhfGQVhXXNWIouRA0PuDgFORglH+u8SJiVUW9pDjQnWDB9e8OT4+Lc83xeDgemw4sgtj3EfJ9fRFjgxOTFmu4TN/QevD+4eC/++7p9P2Px4fPoWqDb5qwFDNAkZX3CPguTUP//PO/1K9fC99epuLlEqbUnr77hx//7j8cHsBBHsXX2Po72v0UPE19mTIkTMvKMIyR2g2I0WqVMvxnjpy5C2/75+9D0H9YABiWQq3aDeaxJ+bmrjcb8+YfrzVkx2CS5JY/UP94qxn2qfw7xl6Wk3OY/Q471wqMwEUJBIzN/bepR9ZXzjKmu7/iGBXV7959zLqASo1QTggmtLGHbzKGHTl4ZUPzl5VY6jA22T55CQt6hmkAUdvEmJDLBiYxEJemjs7dyMRqqqWt2fnOGbnGw8wy0ZukHLLqLqHNiDFThkzxMnVEooM5jFrDlONgw434W0qMrEBJqy7yElCzX2NmkKw2Y4SP4Vi4IMJVswoCygTVWwaTsP+mYXQGs2oEZjgT+9hswGzXGwXhNkUR3tv6lFKt0QRENm0MWcI2WnzRsbGY5Qeb4jszDFUhpCLgsPA/cCbqqsaYF3cZoaau0PVUC1XXS5kDopBguKKDQbyQqe1SzJiJjFWEdFlZuEmbeu1cYJ+1LtFDAuOrgtk7xUZrbGbsA7vrUI5hqUEVwP8KDC3nckFLAyuXchNCvmoR0AV+e5r23/xNrw//5D2y4/73s5Yucz8+QWu+otmd8cslly/FJTn48L2x+W8o802Pa1taOW7oe2ry3YAJ7W/v6P67P98dPJLRHCP5bKq82Ze44FVQRTtfSUv2AE8NyANCXIeQ2pxYzEPGVBKraHFlBQW9iAke2cSloni2d13d01nV5Ou84R8tZ8p7NnvoajuCuw7weHKoSwkg0ORWjshsaqvjv7t3AtFZ6MN4Ev8XI4sSlkbVTOkbYwlXIRpZZ7VCBwu4QFFq/oNU5BKaBe+JmIMbyHCk+ws0eSAGEu+Kko6kC06RII5nil/Qmak8IhtkMYE+RaMyoy3XG5T5r8QF5sHkyibSndqgQat8qpDKe0iOhaFdyC0BXJauP1aFornWHW5lxUnyNjQwCKu0+rnydxwSPKH6c/uf3mo2h+kbdJDk41YTJUEv0A6Wtlq1RAK9stM8jwDTbjJwMukKqRASfQJ36bUNNXoqHqIezy0aHSCJs0hFp+lcVcWxtX60K0MRB7KJ0FxtMBCyllIJCeo5DMt1mJObXPPw8Hgs6/bL1/PX12vTtVNaYHWB/BiK1boOV3QycJGgnllhJiyPdkw2Td0IoV9iWVvsyg1IyPiodbgrzjXBXk2F86wM1wD5OC8dJWKNm2IilSQHFzIY1T1AIo6VRyc8LA/cZRxYFHK+pCCPcm7yxtCPoL6uCQxgKxFdPr/O5/Px1B5ObdP6BOfi/vX1Nbwk37UouaUCqqTKpSUa+E1WBroCcrypyjouBcbCIML7WJTDAPRgVfjG1zCJTy7gQWRdh4k3R95ZXIvcL2G2McHIQYz5vwa2rHCQ4gvgC8ost1OlK7zXkifHRBe74Mhp2wI8mPeHtjkdAPIfrv0wjf10nSbol8FToIarKeoS51KMv/z888vzM9IwPZV43qkZvA/IC+BAHm4eTUF7TjbadKPxZ7BbyE8vaSl+vKKQkwmDzfOkDY7HBJkPb2YcBih0LqmOZUmR2GKG9s8AaSCI+jXH4wkeZm1HzFgRp6kfxrGHKbsDBI6XBGPneZzhadF0B9ee2rZuu7o6tk19jGO6vnxbLtc0DQXZvYl6f6/fQqquZdtNi4/L4XA6fnp8ag/HoijHMMOMAA0a5pk2S8fdkcAdHwzO6oWnTj7NEdYeXJe25+LIQOzUVL+q4JSylQF/KwTodptkoF3rs10jdttrbzbUG5GNdz9g/wtrR2SV53ubUqiiYEPaHq99QnDjHEysLqFE2anSPmD7K3N45UBasn/crLDOboCYuWGztwCzXJaj2HU/KN5irE1PXxsDuWr51I1fRHwtClLuD9ICkidXIgpFR2UFYK674kEdXikk6HCUYgoHr0S5Ym8aozDb4ykGQMVfgwsDzsL+FMe6IDwsm4Y2LYoxvzBV0L3B0Low9NCu6+NOJkiAQqV6FBErHEwfqQvE9gi3Q7T/BWyyLj4nnlIj1rkF3ce1JMjBVdxjXU/plOsHmbRq/6w4XhRLbXGPtqWKERzCoC/C52QFWuhDvHS4lW9wBsXJE8b9FYflEW6tvLbcXlJUAQNgM3zpgf5FhdAgy4kQrkASxlEWZj4pQRxrKQDcAuC+quB8yeSJ/k+e4q1iHVSwVofkMQbSta9T0yYfZj/GMaZ+jiVG3XLQkPoqDkvJikWG31EDfPScfvR6+zZ7yuz6jK98oTHMUp9c16F+j9AjUraZnCnvQS6PzvHazt0ecwF+1l5UPuzFk5+1/tpdILrrL9x1Gfbl6wq406+uJ0e8YsSAlf8vFvh+LlLj0HFfQhzjPA+QtSLIqwrQnBZbEifLtN58DzYglkEKuYjI0lkv2hrQRDK+q1jkKAgIHWf7DjsHx8UkTXBFUs4asnpICBycQVfIXm5P7N+QVCVcXonPsF9fFB4+u7Fw2ILFx0OkWf2hMsSR+e6y+f6WoGsi7Z5BkGUnUkjqHR06TCgAKD6zZbF8rhF3GMZ4i4ErT475JutApF9rMyUumLhSowvuslmHwNR/DCOalak3RYf8WjVGOdvYQGUmz6cWnOQp1czKWwYuP3TxLWXfa8mvmf0KK7eLrOx0F0X3peD6E2vQYjFvlytX0ZgJIyDxWZGT48oCTwXQGtZTsd2uZDeiBNJSMklSxfEYrUAGcecrzLMOy+Iv17Mc6CQLix5pDbxTV0MH6HiAEaHD5QTAayZz6fl1eL6el+pcHz+nsgH6Ag3dlrhMmJAB94LcFGF/HidWuyih1KPgSUY8JebMIW6kLVGqJ0lbTKqh+Ghg7TT8tD2ASb+BhRRYMNjEhpYvIISgGfSlGG2SdFXRHhrVn2hOoe5N80QQMqBcfKjw1KC5JP2kKSROggmoohEGGXc6GONTkMIuebqqO2LDholvXZ8+PaUUzi8vz+dnuIDj6Er4gmCwVuDeVgvl5cES1DgxjxKA3xunNIzXWCyubnzdLnCMb+d+hs1x40LyE70kOZFewmwrSih8GZEp5llwZjMA/8szUvCaWQBACIHxzlUFQF3Mi1Y7alx/+t44urs4V7a+6A7+4bE7Hg/F00MI4dL3z6+X86WfB/gTw5SXzGVFMzlpyIJTL+tvrr3gYulOJ/o5YJelZD7TYRYD4h9u8X8Xx7Znabcr2dl5kIZVVkNsGtUOIVcAEPEShVQ66M652k8l+Qb9HDEFwn7aOI+cCf1SDFugjOxg3AP+XYAt3eJfvuueivYhhuHrly/L5QLJgmXGMqsRptDP83V9eij8Q3P4rv30k3v4qSi6MIfrNRwfH3YHbXFL6bthUYV34PSpKIu2qj2s91AsozulDFw1nxA21jolTnnjDPze1w0leb93mt6/mqk5pV5/Z48fubsBd81+k2LMjIGsrWk6yje5phil8iy34fNN9qHyg2bWXKBc9HjmM5lio0AWRaOdgKFc0kvgx0EXucZGGeNqf60DkIzpnUSDKHrKbNbtIfcpjUyj+yA+jf2tep35mNXFR7qb0aHWZSfGnbmAJU9S0FWnph8gVJd7flkZQhJC4mXwDmDjRjcPb8g0NfBXLcOI4K0iMRC8SgrUNo4lvJ+S0tZIk/y+KYcIYLIq/mSVHh2/hBJygaS+ggR4QAFU44fFhtkOMe1Bb1KRCbQDRG3gC9W/A+QA/9e0x/c3nSKKyj/UFQCnUZ636++QuMxBCnBhcrfJtR9TDjxJnEVwbrLPFEWc2tAjat4VxXJsG6bbSFAN+QuoBXRTsgQhNgQj6BGOTJxPgeYZFpq2KQzi1QNGgJvTwtk+V3KsqrkECQ3UbabIsBtLvglQ+8GmzJrAtfAAgCIB5j9ooNHtBdfTIGh3qX/xb3rtnK1vXhvnZ5fWrNXy3SgADcrATidGLgav04xTcwrNLmW5RX2rqiyB+c6fsX2uvfnuR0Z5jugjvg01ewWh/TeCRuUoafyQ/FTmta6qW4hh8uZEikYhizYsqJKayqJMR2WHXQMlLedpQBWD/MqBAAq0+VZ6L1cvXAlVaR7J6xa2zcR2J77dU/p9QJYKAG3N8LHQZ/AvtQ1U+GQ4KUHUZRkRngy9ozeU3pZun3pMy+JzzlQmBgdFQpwb7rgKXlcCTSrF3m3eDO0BIi8EsVOJohUOnANbWPTzWPtVaGWS0Wkc/bzPbeeby1cJCOr5JUjM+hqwSwJYUL5ym2wA16c15nO0tKvOKsuYoLv/8d903TQ6teuxQHNQ/oNE6ueCoQBnjIUrUytGlxobhxnn2X5L1VSCQhAzbnr/9k1VM5DxOjNqotIqQck3zWgk41o/bOmwHYy+KdtFN6va9j/KtFgtYohWmg3TJR35OLeuY+OrgugIyjsyjcBxfv8J5MtxpA1tSk3XPJ3ahyPUh7umPhzaQwcW+wLK8DzO4TAv7TE15/HnL69//vO/XscEdH1zeD1fEhcg+OeYFiG9RIei9KDIWx21lkDsfisjYNwFF1M+M4Q/SXuCA2yIBGAj4+VaabtS/9QEIENZiGi19g1YA1UB8Ziawv1kimHrkC9h5pVSOMHjuUfpi31J/MLSw6GGa17mX4JeGAYv4oGYp+wyqELDjqIoy34crtfz8/n56fHxcGjLqjo9fPr6/IrckcLf6tBDZL8satfJ2BKCGdylhO0c+lHqJeTV4owixEPjNM2y8BLama0wQIGQNZhvz2pToQPOmyaXaJ6vIFNkZJb7H9YwpVZoicBdWHBeNpeQWFQ+eG1qKNXnabhcyhDD+PT09HA4Pn33+ccUX17Pv/zyyy9fvr08v7TNQ6jb2KAQQurs0eRJCcZqKpXVW5cCiyuX62XwNR4O5EJGUzBjCKqeAf9nkimIMAKWZ+tGxQHKlVJ/AjOfrm7JwSiAnQ3jcO2VsEG4r23gLsHDGMfRwWpQTu1gIdBn7CCAIK47zp7AqqxRheYOJd3COHp3wbhg6H2YF4iPhqVKrW8Obffw+bvq4aE4PhQwCDqm0qUBhmqLa0+PD1tbfb/JKjdjfJE0oz3vS4HJf+loLS0/FpYlrHEUvu0d8D0dYFigFr/7ZUD8favsZmfdFQB3r7sp/Ft1oLdd833Z9u68XpBQwTzfPdyM+d2+X2eyeu99OqL/YyK+ORK1tWfdtKX+RgrM+nr7XEeYk/U4y00dRUNh2wLVp7cTYQ1rHD50aW2bwY2U+oFITtZNh+GUdXew5vU7IOWPSKSw1D1CptIpOnTi+CnTbamMRHOI+aMMtDAhwkfOcBc5GAye0Hfu0VRc1scjudgwGKrRMZ54Y8mUqzKbEW35it1lzqnlxMQ7WTe1B54RlawGppIlK8JUkv7CgejGdBTk6Tb7RyUMty0jjZEvtctH3y7dVC0uzka25vC3WGBrD9gfZAf49Jvyi/o9SMvJguYWZv2GrE8FYb0KQgbY8sEXCKkKwUWM+oi5ADCSjRLUg4TAY6v1mAoQJAJKWbZVgd2LX2YoHiB7rCqox4Q5wQ4GMPFUFmNyLpUgV8ouoKqaiN4oU58ktA+VVXmRcf0I5r7r+v+VGuCDf/7or6SffZf93/WV169mSW8b/HqH8N8w1lE2usIIgRHjwb/30UqLJYK5Dylket1k/3fHcxdb1trirrNu+dk+FtMMSc8VrNeaputgzqDU4fX1VWmfLAvMwgxOctTknTAPzLkOYos1HTLTdD0ezQd4GKtsCCKJfNVlhGfIH7HiiZg3GW4EFyrfuaVGYiJFv13zhUgkyIes+Bg9SMqx1jnR/jpLnh+QCJmycVvlOorgWaGdK8aj/g475uaAhn8UEoNwpq2BqCodlXmJ6glZllArN1YMdtnXMoCNCUw2Viq7RqVAfwcVGFvhpKJSmLy9AN2+LFzvuG0HS+TEz/41E0h4ASxscjqdZRnBYcDNN8Gftd+/atztyDOGDyT92kwhJLCmQY5zEMPgFiedI45gCTY0MSHcSnamcJoVtcesvFiZdcz6TeNOnCu0bzDAja6hdDywhkXtob6KjAfcTU0AjIqc5VzioTvA5snVM2TlgnOlX/o0kyqHCheskKZtwc2EtHssyrodYqquQyzH5GMxDiOAbQkr0bmKGvJl1WQCITBvt4+nLpTUJo0fTBYYqsWynObJQDvYJ6gjh/EWwqnUXh1lMZA8S8DfRlIC4mi58WeAfrOHD4S84KL45JBoeoBnjUhCqEvVxVL2V7D2wZmAsiaKJxyPdhM5MhMtRLsxUMp3qAFUMtRgwWM4zgP1Z7pliV+/PP+6cIDmXd2eOEhjqEFaGYAlpKkukVtS/GFSzA2WPF0O0dn9imm5DOPlOtBzHXtIBLaFM3QOMnxz0txylaMVJA5NdJ7Hjr6FoXiFyZ5OH4oloDtjbl8mqNWxJrOnyWYoBUB8GF+gs86JvcLg+Xwuq6qDm/Hppz/8eDpB5/Qvv3wbeqiZTRNo9AqeazPCHpi8HuSrBg0zYDKI9SfRLgaUJZADxoEZpFsdNAGCLMDgIckZiaIcbg0eW4p4ObD5pxJTCPIiXNs07aFryQXnJrLEFOfpOg4jiPJQ8G7xAAIThXqn8mFZBkX7pWja7vTUPP3wQ9k+FpUP/TXOc1P7hj0TWDmzFYib3rTF4VT0E5OeCE1QDLsJHK2ayVDnSm/W/EdYINuOmKiZaSVIkwlufGz1AAkMsKX1F5XUWappW9j7ifPvKADWSfhewHgddO5C9jrQuZFsD3CJsRu9tnluZgS/r+OojEZV4GY9u3e+vMXscn0IdcO2UwZDSSuOuHgW6xU91CFTcGNdvAaptQC4GWxkTM6qkrnuGixQ7R0q6J/kwtVqcPPK1chCqy03Iu2u879V+qNDALY9Kco2xzAMH0beanoKJwbVeoJ68tQPDUvtnCbZgbTVTkJ5BP9vlpLDZowgwwaz0P+KeMa/RAQmp4xZgUYcImRQb0wISCYX+QZYjzBDcJlHcG9iqxv61Iy72N6gPB1neT6uhyRYSJTolZ27PgU/4L6bCw9yFG2kkm/TOlYnN04GMuqH8d4hpcb5sQyQBjLWDEZ6csUECAuhpgKow/Z9BHR2LHRlrZ5ENVcNwYHwitcUoPAlRIEVXSPMRVJITWowBXW+gsEvYif6UZDThnAIzhrGltgJIFXmXC1LB+aUDnEJcn0R7g7ceNCh8N0s6zfeO+aWRHVxAH0HAfrt17u/8dEfCl/xFlz0bsEgIGaehLHlpbYnhUNX7GZ+UakRPhW5p7urLlR4KNDt8zkJGu4S+5XkuqtX1yMk8QQ7qbq85kTBlpI4gjpOI59wFAW/BR6OQ6ft0LTH4xFj/e6gITVEPPkC3RfcR/BfqY6vtqWJQ+4uyXpg/CwSMSWHa8uWYcGj0DVt90x1Vf9bWHP0v1ACumqGFV0xA7JP0U/Sde0j0BiAfKSlh7tUWvK7qjAUB/JMlSQu4vLUqxMmSaz7dV2xekfMJlK/cgQwoITDNUHtQIYfPQj513qci6WYTal568HrC7k9+22Fs8GiAtdQ0SaXaJIG5nVU2Llxa6Zprc119g2obRWqDNNUg2f4tkK4h/FkXFZZLtcpiK+1OkLAoJaCM3l4sLaNMOa0yG7XFV/1PbWMUMIjm6T5E8aiYIx4il2w6OQl9gW8n9BGZyssQwRs9sO2hfQthScFrJ6dC/w58nhf1HXl3QI5FySxQUAYUEwl6MfoEaeLq4ruUPnHk6/IQZrmMF5C65c4gbxdAPtRt9Cc8U01TiV0iUtI2n/vDv4wff12Hc6D94dIvz+OHIxRgCvG0a3MjwgtsXTHnKQlKW2cDTb+CJgkgxlytzR4wbkKRA6lP/Bxc5hgqbbedV1iUqJYlCJpp64WJ25ULIZ8MPMsAnd1f2kw48DxpUkfNgv+WV0lIa6Zb3KmxRKaewFBd9Syo+YcyLws8ru2PZ0Ojw+nunbzMJ7P5+v1Og5z5ZKDwhD9aCHjFyqQ5tcGIhUMtfepNMNYBP0mNKhoqVb7soGsPijcYRyHCX/r65Yze+AVBS5UzrO2LCF0qUVmgCvafqG8G9GZrxo5ACIF5AgiQZXLPER1nsxNXAoowurKN76pcaORKUGuB5o84/nc+5fXrjtW3rXt4acfmq/P52lM0zShdJpQT8oLpnbGadSzqcYgnnSYoHNn12guVlDrjJRIRp1kMVrwPzDsjA0p/UZuB4yhKCb4ME7TdLlcQsCyibBfrRIcRdK8SCBEbugVRNxmEHghparKfZour5CRrXy1sFW4Bsm4QPbtOvTttT/UJ6A/CVdoQdfFcwriPtsiUz80r691Uf35y0tRn7qH4vTDJ7j9VI1mdDobwB9sZQm+LMAwMVzIRpjhS41tei6mGSqpla+6rmi70jUlsakCC9m2qDj2N7b/rQDYARa3Pd7msrcNmzVQvvnhzSB7PxzYO4/u/+RDjPIHCcpHr4/exxr86gxYhxhF9jhKfSnDVrJTqRlh7F56H7re2aGJpCWrzF26sh4D/mVVN8JuTA8RpphQttJ76OjsqIAEpxznCmUG0BgvT0a8uZfxbghdiU4qR/E5YVXrS1W+VwTEjMAtPkL55zrawIF9Z2AVkExQ4sLkHrFfq6ElFsPuXqzZXmaXW6G6LZisES6qLa1wOFIt+ssFHRFg2asa/XBQiLwrToCWcQ3g6ScuSOetCZIuTp7s6SPt4hNQiv4IEK8QNns7B0CjDeIkkhzVnFOsmnKe0JHCRBgzBeixo9NHmi+qP4xiERcJi0Xef2obZoOIuwQAgQg3p+Lx8MiSDLKPGwOyLIbxqu+nacBuuoQuxTr5qoaagNQwHKKdgZCn14s0A9sanvYwH57iEMJSdWUI5RQWiHNA5GwOaYJmCiGZCzcniAwRGCAeWPl7U/9/w3Mkk4V3fr5DOe/eRYbMvKO69Mh5UE7WfC6UY25jOhYYa53/9pPWZkQOU8sBk6Kb2ePdMtgf3t1PqMLxW1ep0vMrac5MzRyGoa7rz58/FwXUr02HgNrVc0qvL30/TP0AmZrcaSbTz+S3twLGICi7JHU9x3yaegzFqDbiFVMk4gZg+KD/AtA/sPD2EK82BhlyJORiqZIP59r45+dIqH7N/lUO8cMM+y5zU943QIyzNRsy+gr7TarJVwIZjqrhdd2CgBbSNIVxnlZtHASoYJ1mIqfzLEJ4al0AYHxNpnAjfmSYn2hR3NhFaVYmbZYTd451VG2w134UcAesWpfEPM87aNbaaEAA0lHc3R1yx1BlS0GSExvALOus5rmfMJC+KPo4Ka9ipfL7aRruOWy2dHFggqRCidW4JFAjYGuGhOZ1DiYtF8K3OB6ggiSpYeNIj3gxqAnoQJu9DFgPVUQKB0lTCK1yJBumMVD/ESLOUCSr66IDDvtwOKL4ZQWLvRsu5jEt1a/fzq49Hh8ex2L6cn5+fb3MKZ0ePr2MSFcwIVgChqDc/6qlenh4wAMyg8BKwWJsr1yHVr9vGy0DfVPXOF/Ar3kx8YY0I9hZeDnyVcnLLa7XwVResxyMRIRDmKGdXEK6M80FRIfBzsS5kz3Mv6H3O6N05dwBJAUook4Qq67htgmRzdYagnIHUMZJ/DwgbXqo8lhGtBP3+gpYyOnh+HA4fvr0yXv/crmOc2gK32IHhCqlh8ISxivsi0GOQ/M0ikAA1te0jxNAp4ARtm11OB4fusfDqXh+fhmLcVmQtjon2f7KV0WIMwqXXZGvtT1MYZ3IWSBHVyCmNJcp1TCO45SF84baVyh70I0Hz0yLksqErmkevS/g/lt6yHTFamZMQHe/7VIs+mv/y89/gs+gwf87zMqJrzbLTy57Lw5YzsfWiDsMF3wWxwXq+pc+VLMn1NNBTETazYgCSLMjn98tnjKkoAVLw9MCUj9DmAYHYp4rHNIvTEJSMcc4jWHw4Vi3zrlhSPMMqnVZFK1vUHKH2E9z++nBFB+yclHdtXXlpjl8+fLl5XX8uz+m7/7hPxTdsZ3jmMLYX03proxLCNdrEUvvB1j9zMMypdp1n4/1A/RIAa8OUnN0KDQjxc8MowkGFNHt7DaILg4VoPnbv4RxGMNS1m0bn5rqU7UcY+ngQsDbyva3ZJv/xtRZf/9P//jjLj6a1gyhIMpijWi0BcS1pXQ7yV07+ndg1o/+c33dbORCqb37+x8kIjRXyyeze2/JPtpBbsevJsINhnh/Om9/TnlK610psrPnhLp5HfFnKUmb2LBlbd49qumYGalHSJ6NiQFhqF35jtvkDthqs+z7lC6Dbgm1oW28epnMfaDVYHoOSBDtcMGZA2Eck+U5xTBzxMbVjf2du756A6IYYxQLSe8VasXKIWN22TzcaTLorAUEUK5GQyhKkCTgp5myGFZStVYZH2tglYSytdeav4IFaGeEDSPvlOu+LkUGDKtLtF7vbFlFbzqgoSYOALr+vP74BZQdssOUBI+MFYqi7sCf9PSXoPO6b7ANY4OSiATdNBP6/TPU14AJotCAUkClPXK6tWRX98PiejihhUZ7Qrw639S1R+bkfT1HqkzijdmfQllTXcciJNCKoO2YimlJI2YFy3WYAuUNJ+iAIELQkpVoxawLpotgsra2MExnJpNAKKb2Zp1rG1iX2ZZRUTT23cduTyvUAE3hfx57bvzqj2NwrY7pzI6vligrKHKyIJ7nAedV13/nhFruwHW741w8lW+3JDo/p/IVeftitsAnn9PBFbYd1d6zymFFdCChBDXh1um8LDFK7rru4eHhdDqJsKgCYBohdhrTPAzD+XwGKCIhQcwXeScqwJ9tseK2glr/89ZDvUoJuul2MynzYn1+jq+wtNjAo4gn2pnFjLzC6MVK9PeGMsqMdzJiZbT9S33/9YFa82zCTShNw+z8dGykQQTqc137BrtpVfovX74qwsxAjdvNlaaH416lzFvaR+q27FgThMCRyLDMQwMMnZRhkDsLHvNBgarkeGeAuoVKe+2Xyv6X1gmkOodSAdJ1NpwMX11Dg62dQZ7+ScaXa3VqAQE5rMFy93GpKIphsALg7mtb430IrlAbFJNg+NK0LZXd1SeyRkOKBcyP5AORrYIqwhNTnF0ZvStaX7aNazuKnbhUpUvrcL+weJZU++rQtgckpBTOpPJ2SZV3Pb//+i9/eXj6fDqdVJaDh9oeq7pZyuZf/vL1y/O1bB6Wqv3l2+tffv7y0sepPMAfiRcTmPu6ggUrsZc6F479GD8ZMCcMNQEMg8ktJRBQTAdUI2hpsTlsVWicl5gOjfS8pXWsqXgFmdmQpnnuxzjOE30RcPzwqa0Br9GikleXOFmEd2OQgi0GM0cUdLBidB24xgjkoQQOPsIJoSyOx47SXiRDrjB0iKOC5GD1DBdeVu7WfINO2843AL/U3tXjlC6XSxHm07E9HVpfha5xx0OdwthhN3AYvUwTnGSnaZhiLA5FCcFoiUf7pm7bAzClrh6G4XK5vJ6vw4AeE3uRHmxsshzwEHHCXcOTxSMQ8fE3XBDAtK6pYhP7hwNFLjEs8k2DCxvmEeLXbHJJ57RputOBdBBs4eR0lHDjpj0GeBJ//tPP5l0hrRFhXGNsDwcExBIQSpi+VwCzyQKS6hV46hUE0hymOB1OHcY1UMGeVVeXdHiAUzLN16wRuYHulItI1JsFMyFWYZw85P/hkUCMccAZumohRJPzjdTV7nBsPx1ObVf3fY9sZ5rOl8s8R1y15uC9fzh2BPUSbcHeX1X7um3GaX5BM9V998M/fP+Hv6tce76O47X3tGJlP4WPPqxAu6Kuj09/+OXlMhbNH/7+P/39v//P7vSUoguxqGuQQ5D6Dxdge2BNgHFCmJM/PABSHKamoZr32BfVdPlv/5/+/Px6HevT0w9//0+Hn/5YuCOlEhqYX2uzsidEEAiIOBW/+/U3+xK/zUrv0MC/0U38jd6/Nem3tPP+939jYvBXj3bTGcQmbFyFjw7v/h3uP0IjbeKxLddSg8AqJXXWMy9Lmj/slJvuMFD+IgJSTacaMXukagyfU6JDaXbK/pmIurudS6pv2ngsNTcoqoy+wEkUNgmJgmRCpFWNP0Wl7+TkNUxA2glWa5sL1zGwqh90lLOi8O0PV3EqIS4geQCZZ4kPmMKGevckI1/m6Is4FravC/2KzQNIawp02pTJAQ2avarEpIBzFE53NGgQN8EsjqtLVM5TYBDHRcB15fS/LBduJAY3RzwDfJ7vOuAUNAEIE+IbIEpV0bUthrAsp1jv4bpDFGgpKaNuq0O+iZAJrpHXCshn3UeZRwaoGw1QjxmKHkRDFU3H4wNNbRDZG6++MqRRauzo1dKU6NUkNi5gVhPbg3fABfH30JUDVzIV5QQsCPwktpxSYLDbjsDaMdEUa99c11flZ/eZEnxffiua7Buu+ubp6WlNjGCaOk3jwF0F0GeARwVTZQnkS1dN1I/PcJQPPyUX2JqFbYd0Fxzunt8bDk9evSLf739nv9JJxpCxQJ4gcZJe101K6eXl9fX11cpvGhGSNuzhXUNXL3FP35XKXQ/4Dqp+B6latUHXISFEXjI3Lhh1iNgdlFfZAjfqz7EbaXnzNGyaZg7eOVutqMGPJislyGW5l9dGRuOIz6DqbVXNhLrLBW8ei9mlcQ7VMAKqUEGhSuToveEjUcjqYduSEsRonmfPHqFCFZ10WRpjUnjitAMyHTMIl/gTjVXviB/ybs8E3C23/42Lvy+07vTN8gUXRGGrOXe4ZVW81JTkxHLNftYHQYglnebeVUYFw1po7ZkMQCCos58Fo4V/I1HVOEnrjs50memeLLitO+74odQNhQ1LUaBJMA1V8OX0cCgBa47Q5iqXVMPZF5mWhkKHw6FtKHmky7gU//RP//T6+vr8/Ox842ofp7QMwTVdLJrHzz/Upx//8uX1l2+v/TAvZQ1QEJaggjD5/bi58C6JaUYvDINfrByUirVPy3Jo0wTbwwhVxmlCJWD0PHZbaji5covjnV1gzZbvAsZSS1FJ8q6sXNu2XeeozR8G4PKGIYRQd43zdd10LTJ/XfFlWS7Xie05Au9lX0iUEUITG2nwbYE3Vl2BA7JMMXnBqrPOJNg2kHrgUy8RvywniAKybZU1skyL80SGcRUh4tA0cFFoMDEO41QkQHoeT6fTCVc/LbBaOF9e+mEYhqlqDnDPTthlgMWN5TIlB0GbM0HwlcdJo0FO2n0Bnh13fk4tcTyrvaA6UZmug/udytR2YIZ40C1cAxABZghxHsrFY8OCaCANQLmNcFtE1wXdqLj052kMl4jSCUuYSmKQbwLiHpCkkIp5nDC7mVIBv3v4S3TH4+nh4aFpWvGniJ7CrIdzoeK//89/+f6Hz09PTzHG6/V67UcUclgqRqZidgWFg/2kl76Ce4kFcAYg18RSmHLk2CYl7Y3xAdmV5PovI8zjqMO6aCRFngkVr/rh0qERQOVidMRwjjjcEI/HhzEWl3769vXXYZh8c6hcS6aGlDiMpwWLJ6Tn7k//+s/Jtd2nY9tUAG/ECRxB3pBlJv7HJWTfcSyGS5xhsFgsA8OcdHJDMV2K6duvf/6vZTm19anrlsaFIvYApyYPfmC6U0fEgvw48v2vKwCsLbelffwmb99GgFq35BVTsuaUd8nl7ueaXJvs++qD9VZ2cHc8RgQxvJIdCREvjNkMoept8xc0d95J5K5HYR38m5/v4TB36CSpD5n/dhbv53YNXLikdU2nzqhi7N/DdtFAO6QGKVGz6lb5nrYHqRJpC1rFUMh50i5vA5M8C6PkqP5x5TDAMMNEc9Zdk2EMp9V1dPuz+eMC1WOqBm0QavmJZ6CZLKbLm94/t6vMpFSNoT5N9o6gNie9p0TUCgkwBXKfShBdAYXEtSrK1PJTiG/dIW5z1pfBEBh0UItlqU2rpdQck1eB8hv0JxIWRVecnnmATrG1xBmKxlvqdDLxnaGNEH0VqhEa8A6KBOiQAVHEJhCdB+EjCA4ut2qAqAqgiUT7JEiAuFBeQGwnmCQYJCyDRhZh/Zdlee2hk21QCrZCeaVdSiD+kq+Hj0Mcpqxfy2oQdUtIzseZ+5O62lgVZki0tnJtcpI9K7T4b3A7dzXexxyAm4iy/poSl30uqxbOEtH78k3XNJh9xC7OJ2vxQp55QqKMiQeugobxW3Jzl7rtS4JtDsBy0JSCtwL41tVsn8CZ/pDWKm0UcEmteBadnSAxrAvqVVGmWajQSEUpkixq39JrPIY4iXZBbwcpBaK9qiaWpJDevZK7kIWFKm/c9aAzmDD/TxU+z5AehEZx4x0XLh5JH8ANzN6XhMoeEh/U9pTe0bplqr9gGeStYhIdzU1g0XQB+NDNMtyVGYBsMsSfaQ8iK+tawfxJCVnhVJziGadYp6Dd/Cd02YGBFlyNdQu3LK7gjGr3RB0cOiTKSH9d7RwyOpkcsMOx6nVRR0SVkNorq0JbFui8GQLc6ABtW57uuJBIQNLfFRjmMXK3o5rnY/4gK6flOcUkAOk47NyJ9F9z/baF0yf3BySQAEgQvASb1fUjqGeiR1kPauJVly6yktDscyJ0K51l1P7hRsR54AKcAVIBeG4xn4bhLWQsi1QHJEjTTEfe1rmmaIDQBKRQQbFErdKVri2q8vXc//LtuazbT9//+OvLt4enpfSnYY5zKMOC+cLx1LzALXh9flEFxhmjyhacYHrx4nJEGdiloqibdor17Ca4Ck9Y4JDucS5AX5krHpsmuZ/QEQL0mc0UuueAXmXXMy5oEjcNQijxNLiSDI8ALHHBAVO3dsKKskH6x39L1eLpMyuLMEGuIFaLu0P5X5J0icNDW0ciPnqeNCTUKlo4WodPRAqr7C9ncfJrh/ytQc5gDR6neSjidOgOTdMANNeGVGNKjempb+u69XUxwtY2znjkcRHgWQspLn+59NsTTZgw+VTmxkRoLPnL+HMyXDmKBxqHgkmcjVQt3HDRIEsxoLQvq7apDw4TCaXFia1ouX9ALxsbdCvv1Al82el8wSg6pOXQnWBJhDY5Cq2qakgsxHpjU7EAyH7qJ5SDRTi0ztXUGNPJKfXAf/z000/Xof/nf/lT27Y//PDD6eHTNE0vLy9pWUxMTQzENRUzIaCbETTSbvOFAOEXihkmEcx8YQdPmefQw5pzfPx0Ihe8PqIHWS9VOQ5zPwDwWZVL3aJs1eSHJOXZubmpu8q3S4E6dhiuzs3RNQdXK+Ib+Uk7L9rD6dPT43d/+PH4cADgJ03wEXTLMg7zdK2XVJ5axIPz6+u3l+s0f//jH+vl0RC3sSmG8+uvf57PfxouX45t0Ry6Y1s4F4owgjYB1w8yXol/Ea+AbZ5QeiMG/EYT5P9OAYDUzaCb733M2279uznH3dBg/TljxPu/v/+Yu4/87SPedzrVQt9DgH4bC6St5L13pakl84A8E9g+LkMNgyQCmHPksoU0PMkYaBvm5ofGghJr2MxSqJj+O9JhtvwJfeZimcC2zuOw7GhDCIc21ky0szPlLqtnZBXmEwSfmLwM/xC1Eq8JqkQ34IT9nVp19+3Ks/34cY8NeiTanC3b494IKjAGBYC76apA4IB8Jl1ZnRPQ/KryM4ILbCrEdoAeGecJfkAmZecM0nHVlFzVBK4R4MyUCxhL0mYh1ZPoj8xIbjRp8tLgVlshcEKsKF0wl7fsHx3KmkbiSP1tWRB06tGwryoHPhHQsuht0KBLdguFbzsewYK/S9grVNYOwzinNFznlAAiyfVOXVbHRDEv3kzorMM3l2msmgO4qFXV0LYOOqH1QamY9YQ4N7iDSttTqer9DaLHHj3J1K4hNZfcyMq0am6rhf24bw/EGq5ntveBD+EOje6XoF7o2B2xEY7jeL1ez9fLNHJ88d7xvA1fdosNDX5TwOzDxdtC4uZNci2dz3R7c/O3FgFxKeWUF6gPv5RpnmhdBz+DBi15Pv5TAOiF3g6coRmO/DdeMvy6mQC8Pc3d9TdGBcUMkDbK/Vx5KA6MTwGXLH6HPqhIZJFT5lPbSwBtKyE7poYZ7piW8pqYAdIXKFiJ2U8YsTXbquLQNiUeGZW7BH/QWzECUCFzsZuxE4XP4W4J4iP9yumCjWeZoFgMs1jLAH8M76clAkfcdUChRBhzXq/XaRqI9FUJoO5w7oSI1rlbBn91CLAL8jwn/hE6nLshyYrwdrfqcFlWZRujrZ+4k6B7Zx/cc+FWE2jmM2EtANi/FIcEtMKNBLIxE9CeEDYPfTi0+0kqUrWAhjD9IlxR+gaZaFGPywwlS66Vivl5THEYQyp8DBPIJHM6HdLx0LoGz2yYpoeHuvL1HNIwF3F5PT9fvl5TKpr/8ef/msr2+Ph9VZ+WGdBFV3flkIUbZEDBrgviKrDpPHCQ4Nie0UypKFvn21PX1vUwjOOE9GoFjKVUTfSLMJNmqecR68gNYiuoMGNgVwXuUL45NvWxqcsnN/YTM8s0QUcb6i5ZEA4MIBTKfAbRxGcbDhcp+zzgXymIVcai9oJg2dYgBqAN0HbmQity8nx+yWp+NsEDeoQerkK0BhAiBlfEEGoBxvoeJUnltNKqrjuExV++wFMN6EJsa7RSKYAXgOpwjBNIYTBJ4DnxRjPdhyMQPsFCECw2yK2GPjCHKm1bH7u2q5cjqNTQ5k8l1kNVpFPTNYd6uIwQxESDBh9hHo4AKcN5lLi+OaDcLytfNyUaH9QjwYR4hJQhLxRzkoJUu6VsYwEB2en528tLdTweeYR48wzMpqRlUZ5Op8fHR4lCDMPgnDs+Pjw/v2RxYd6oPLTVXm9pT9YFxgrCAEwqUktNEK8yB5OXlagoAjnclYsi+R57unFuPNKIGk9VGK6XEiQrzFgWaC3MZO+XRRUqVx/gb+1iqihrhk8RadrIpnkIUMT4j3/849Mf/q58+qEo62KZilhzUL+U4VyMr9iHpraY58svf/n65esYi9Oxq31ZAKdQFtOUXn+9fvnzcP7LAZS3OY7XNPVFhIu29P+E3VQALotZl59SrRBj3++J/4snAPuh5903d3vwXcB9t+/49ucWjjMiaJ0D6HP3XrvS7dbTuZrWr9/rZRr1Ow7Dbxz8Bz/Xln3/1lvrXXmJhsTU5ydf1eyNtCrWY1j7VII5419DIIKITwVbUnjGFurQs5TGM+AqTvdQ+KOexka7WQjNsrPBOs1oIUki5D1jt3tt+txExb0tblRVW67PfrcBs/IcYLvOArsSUWBuFDvbTkmaqluHxqvQx8j5HbSdhabdmfWyLcPnh4hCmGUTUsMpAa9uhWCN6QK9LSEVQsk0xs4sqIJ2uKa7fFNedfw51TLBj6O6AXldUhQjGjWrSLMsA9wCyPo4UluDnurEq0TnAtWubThBk7cqJmD4qmJBkK6AHVxCgPUj4I54z8vQU2NU2GuKtvBkDg8n9oRIAFgJl5Wfhxm6n5g7SksbD4RsAfDQm+4DHwpisykvKLgVPoLiaDwXuU3pDiqD0a3PBcDdrTfcXc6LlCSuvey32GWhtNe6cQWNaC+fx7Hve6GhQIAm7l/DYjo6UbYDl1JiHvnx5xG+fST3sCSOpNffMcEreXlaBp+/rmK7igTC9fCPhJzGt6sukCHCEdNrqmJVwHQiRaVkXxHTPBWuqKsakh74Q/6b5AJNwGRtMRR/7WU19l1IsQvPFEpaamzqCipokr/SEueJS5+KpHtA3qTlQ3JoBsW/vdOaiGbrDD6BxIyYSCQVJYVkJCyES0DzB+mwRZj7rE+6ZX0mkyUKL1vc6B2yLodUolxA0BbTGAOiAOyxiiNbwGkb54mWwGJY+Q5lY134Fqpi0xhnZHA6IRr58WAU/NFHlyyknfIO7bnfBVV33Veb62Xa/+1m8kiY5/6XNSlmi9ou7nr31awMeHadVjidGmyKFURMsslPzmLg2+Vl6aq7qvKL2j7mNUuNgTWWw0gknyqQaLmUQxyUKwzTR3y0NM3mCbBkSRB6DmkAkkghvU5jXc3E3icYXZgE5MPj5yXM/QRvkqfPP1Tt43/5v/75v/z3//n9j//4eh6HGPrYtZ27jul8ndm58Cg9qeQF/RrQUQAs6YfXqiwgfcqxLJMxvH+Y5xoJZE2xxWqGzj3STCD7pefOJkWe8gCqL/tq06fKBJkaqlkpoAQvQjU3LXoNjXPt8QDV/DGMaeLOSCHaqhzmgcGcztbgUiEpRxcHZL4cTAxeh22GfAOmHriy6+SnmINBJTfRCKriPD19p7mEujAsbDDD//zpyRIbdPpBYr1er3+J408//EDErmII+cUAwFdFhc19Bu4TTw2qCVLLusMpgfyAehd/Jyc4sHLRUCeFIehRpsk85uA1+ACgQaP337oDNF2rHx7bCjvwQur+hFsNnPzy6fEUoIoZKW9GfSpKpgKtFVExngcI38PPl7r94xQwNaHm8DDDI5r+6FU/jnT/xAADV4al7xzD8ysKJGVBptBFgvXlcgHR+eF4OACCj9n49QqNURgm01Ybd19rHJSwteO59p4oEBwg9MmxDnccWCEZsDlIZlejkm07O5/PXdfVYnONE9V1bRPEjAIkC+QfkocqXXV8+JwWuAfAibUExKxpwHkJU6SNqAHy8kAyPRwPZdcUlF7gCcwFHIWm/vVrGM6pSt3chP788uXn8TIUro3DS/H0AGpvSsU4ztdvaXot09j6ehowm8DN9TUqBFDdQW9npR0S9I2EKYL6erG0ph/9/8wEQO/7fsv87tfedvF/u/2/39Tf+bk215vPEMBoJ/e22+oMR5T/Kr85XaFvfVXetuJuTu0+R+ZIE6OxHWpzTVNuAcoZnIrvp2lSu0m0V2a6WDgNppDMTmjNgdVETXCQmBGVq0B50HqpudEtoXBQBGOkEexPY+MpYmXyY9nSQKKJbQzSA+SK2c6yzQe2W7Br6OKT3yUArMXM9hNd5KxvulUOexSHmaSwWEf8NcCB/WtF8AClSGsUDMDYczhCoyyDYJoefLXQCGmW1e5yqKkKpwYkqbrSypDys7pHMvnSzIGGAngyGXb4V9xMWqh5SF6faRnvZRRYlHpvlPlaSggVm7iQpMSAAUd2rimzIlq9YOruAvZDsbLKfkR/jn1PpnQ5eJlKqG9EMgwJ/49zEoxLloJ3dsG0h2xo9F0wC6LKKt3fpOhosnorU0RrciX17qXTBXqR/OVd83JNevZofrs1kP7bHsY1zZVCwmp3ZXQO54TZUOFKLiiGqsL9932v3xHi2d5q97Y3vYN3ywBLfdb/eqfVevfDD0cBb1oVFtmQkFk5oAxfDyc8rotlIopLKHF9rVcSzDZLLH7naz9IeXs6av0acUV0bmHbNMGjXIQeQVYshINQcRIjMtbEWhN6f8Wr1YkTmwVdQYiUYEdfuSxRgwg7YMLxKcDXKOoREllVzmwyGXKd36MHmOVLb64nDhGkIFB7YUMOeQBXV9NAVVsWWKwDGFvQ4caMSB6iNARFgxOy6GQK8TETqx/Rjm0VYYPs9dan4va1jareroftpuw40MPMuE3xAHMHIypqNSmzzN/Omnavxi3fPujdvVJOKGoglnck4AqcnPXtV9Ar8VmoqVRXO1xRqrmwYEhwKeEoJs3TFMuRWtL0Em48zFwbX9Ul9EdcUX359nxondwsQiimMV26qXXF9Qjvi5AiUP6uadrTDz/+w3l2//rzt/r4uVz8y+t1fp7r9lS5ZppGXQ0WKdC0Adyfeefx8D0AadjBaKpEmQrEE3QpIW02o6ammzCTPOjecL9AacqWvWfZO6GfQhKqXXAju2jnRbIQ0ryEMPWQbS7Lh+5RpljOIy+K6EXA5xVZPdyOoT4P2ChNocl/DWgOMZptfQbSQzUdkoyHnveKGCTdCwo30W8WknJAIqmzt+9ZLMvy9evXunHHpgbEpz4WyRMuND4/Px/mNh2O1Mr3FYj1TRXmw+GQBrT5loCBtJSU01I+v17JwfWuwQYdFiTmRZgxU2MnEAfG9i/y8qp4PD3Urmrrkmkq7z7UfgqQxX3Rtc3hCNjPOA5Ikqc51igsnS9bFA5QOqJN6DKP8zhPA7SPJ5QCqUyUpqZyNtDzkbrWdYlOGOzJSxcI8tQeZ2x+dqagIbqjzbDgQhvv9fX1crl8//33f/zjHx8fHxs6rvTDZOUwo4qx4XEfrBGwPq36hs+mdeukZiZws/DSCBLQBTK+NkOWvTmkC7C/m0+4956zJsPQZg4VPhICob6usTzB3EtxGeehgrEsoSuiQBoaYTlfXo+Va5YSngDuAAjQFOZp+PlP/1cRBp9S45Z56mEtHEvXpnl4LqZPGPbMobhehtdfw/BaxQnlaYKdxKE5FHWHMYLaR2miQdgc5568rNC1rugeCviobOCOvzoL/beRgJd3Ove7ycC/uf2//jz7d95P+a01rTNSnnAH1L9t1ltjfrsEmWisD91/k39l/3POVPV3rB+z79pHV8aaa7n5ThCe0QvsFDgNVJGDydKSOnjL5c1e8tcEextcgDMQgv6EjmKAJSTSLy4G0LBgL5sgXUDKHfJxskRNuHjBo7gxRNdvNJoUcm4/+DYdHv5vs3bYXtsMxrxupdKjx8Q8HvXFRjnrDEHuf8brsN/RIaGZHTkTED0a5md2uaiLrfm2sH0I46lKywz9QnJqANqB6w2hmZSNk5IW9ZI8pbDVyUsqFjE/UH8V0uUZda2bxAn6upJ5SkZAMIskHBC1JYi/4hiQWSxOTfxWTkMciN3oIRdlCS939D8JfcT8RpOYEl0HzR8dZX0hmZwKCD5Q5BVTiAT/rGVGma8WNwHWAPyooY1QIGMsLZy86+xIwNtTadXhG+Ow/fN1027XbUWj6QZDshYM65zhDkEkgi8UTnZySZhaMOPDLAtif+tS/Ov58pZFEW4iarlV9fnJUkv27XG+Wb2mayRGhHL9eFvhcC7F9Jg9bDEsqXlPCydqSwueLeOJ/B4rLFX396+c11v80tsfEuyrx+SmPUEWtdFvjHYqbgBEtzko4IrcTy1rMY52dxg3FkVpgtVYLqbNubpAAqRnVL6zUiaQlshmua6VIIo+qyWgEwilwf94oYFPqspD250eT4f2UIK0WPvGhyn0Y99f+n7sYW/ByRyMNrxHY3eie6PCCR1/qG+sDuLCFIDBBAmmqQ3uL/hW2u0LPO2btw0am43dNYD2KyarkPFt6bMuMsLaxNxFeISc+LuY3+stKCOqmv0PRT4HZwAMUJOGsL+FpNNEshnaOnQzlI+EfGwqV9dIZmI1xWkJyGxiqubkoNYK36KydTQeQZPBT6E89+hw9te5a92haztffv3ll8fHU90crtN8neCftPjux5/++C8/v1If043zch2ntmi6rva+QYXGZpZULjQMiTF9//l7R5lL9l4ht2PXGlkrpGNBRPCYVPAfrYqijBKq0TJEFH2YtUkKLAc4Jrz4JKKfaSalC5sMOzCPcq0A3gKXAtFnjrFuwZcJ6Jkzkye8syqgJqQtgCSQLUNlocvBBD3s84aOMtdE7TTJyVRvk7G2DrRDL59bzfPXb/ZkpVmKARS6QS+Zsqdpntuu6xpwT4F7bQ/NmKZyhLQRZ8J8PhO04IEhVS4LTmxiMyJ2Nfa3ivpaaCiVGPR4Vx67Q1tDD6qpywatcfAxOIEYEm7r3B6aBj41MLqsyuXan0n4p0i3IH1cdSGNRRF9XZzqQ8fm43UMwxy8b6C2s0Bdh/Z3oP3ArQDMB2Bl0fsZ52qONQtUypoTc5jH/rIdu1yuDw+n4/GYUvrnP/3p9Pr69PT0H//jf/z//v/+C2dfiFC7ZwPzEaUFWzQjGQ9Qrtyh08weG3lVzYP1+opUBlYi9HiG60ZhgsuS+gCyF8MXsHix4AzCasom+Dio+LUnDI8BXUoDnASmpvIkxerp55KgpNf5+WUYp+M0Hz99V7jLNC8DDAfSeHkuIDc6DylU5dLgnldw+pn7pX9B0gDdjEsYz0voFwqAl0XjqiZMqfzlW/RT0T3Wx89UA4ZT0DQ+X55/gYj40bfL9+7wqIFh8ftefhV5Y6/bdg1G29w5XsMibxxKqvd2uH0H5TYWm7qCIK1/kyjQ+rmyyNv1re3XyDF9Q7pT6r8/qh0E6P53P24QbqdgO63Ju20QeWq+gDtF/SVOaMXi2GqMvHekw+HA+oHZum3w6IsMU5/BF8IUFhyPVnjKN0In/cM1DObny0fD1RQdY+euLVqictOMqMLhZcoOi++cd+G9fqL+NEbyJM7iwqOQsD9Q02ZXV9lVYbrDVS8IR75l1CYz4UiCqDXkFwaGm7g4JHaPzNKeo1WSpayRvfoS4FHXHaRIoAQvsVbRIIfyNIoFfAe3Ff5tCOgEqQtA7X3iIMuFBsrYjXwOEBpHplkPr4SP5T+v9zGIlCkymXYHULhagejOq2vJUb33PsKzSSdAxx0EbPm5oykIjTVsExETSxUSU4gLxONN5BTjVN9CZQ49HEwtCxiQzMWERpjhKyAkJalKKWBDX8ceNOrSsSYyv6e1U5vnP+yc3Tyn69OanWvXXIctkKVoHEiZRHWwYCVOBGQVB34C/WOpCmHjBVwH9qStT1w613nIaYygPAABxrHszs/1ZmFaOfo2jOThhlQtV7earWpfdd9pQgUiLFKCj50IV1AIaxxLTmiLgfyOUV+gGs8OrVudTb1v1usDW1xkhCv+B73ALBm5g/oIy2j2FzdF113Gv7sOFPfRHxN+nDsjWAHkmWr8ZBKwSIRlBiJskBJUeeToWkl4IOedVqsAoM23YAanZ0saCVNdYyYQmZNBgEsPABwtmKyt3I9SNS07bXI+F2NBD4eZoJ9Oxx9/+P7x8bGt0SttGt913cvLy6+//vr169fL5TIS0k0BjymLG0AkKocfsuwNmmanIVF47irvFADvIlFZmkQgHm4XP/rTeS2u7gBCEpbM5GiITD0F1vEFZTq3IJ+PYKkcLELWQpJPwdak5DI1118btAmVqeeOsRLrGw/T6XRg3wGLC9RuJcbIB6lsQn0TqOajnEZcbBqo+bToUuKBFSU9xPL1im7tHKnNM5czqOtVXabvPv8I66MwjUO8unQqm1R3ZeO7uvtyHub0shRuSuV1Po/hGsr6x7//p1++vb5ehso1dVtcrudhGKgWigBH0E5FQwrktCmml+evTV2eDk13qA+tb+uOUavsL8M8x7Eup9ZP89IP42s/pRDa1oWlAJEKpAC0bxF2YtlwDWPoAQYY6WpKVgLGC74soPgDF6q2aYHp7r+9iDg3xgTdH0JmwHerrI6d0JopUV74khY1nlB07bRUZNKDhvEmM2FOUfN9TC2RH2jFmzyWFkF2kV8ndIuYuMXf/92PWL3TNPav/dw3rjh0vmvcp++fRDy5Dv0cUnM4VK4OGCg2KHGKcUJZjP4DWftF1x3J8wnLyCxV2MUKsjvelU0Nlx2yucFVa6C0O2DghqfDyVOD4gPL4+PT+fxyHsYxBSoXcb+OAOo4FyHfCpw8dJxNq7f2pfNt6z51R1d3c1peztfztZ8xaFoiNFhBOqkWTJPojjkQrod1btaWXPPSIjX9IG5/mgX/AChUmqaZNOU6hPCv//qvl8ula48s97aqmAGrSnEkGsBERipKtdLpEXeROyRSIxhe1MuSmmnssUktaBoSoa1KkiXZMlFJFT53qAFSmgIOpUyLNGoPhyPoDE45etU0oNtdh36aEvFa7WPTXQEVxshU3TLEALYaprG/jpB1up4vS+EvqPd819aPbQtdVBLS27pBWliV4xRbkKRSMfdxGqsUmmoZHebOEyCRVajCl5+/XP78PBbN0x/+4cd/V7WnBxJsxjA+j5cvCcTi1rvKd9caRAlKxCHSS/pkl+Wa/1N2o/rP/+4fEHiyQbF1rxfKLLLy3npU1I5fW337110Hcf2mgsjKaP162yTuIvIeDkT4N2rK+7x8P1l+8/pApzxDgO4OiYO/dxr5H81qV1dTyUFwr8Q71Mg3kRgpoRJbiMsL/DnbDgRcI4yXbAGxdDGK0i9QOyW3jG4F11dDMY2W1iuMPIpNEGOkCTBClIrw/fhXweNJPhhn/MjwcKtx1bJILEc9VJFrsf1DXhYJ3G0bFQmNVIm2fAX9eCb0rs3i93nqvTo5sGOnO7wNWKlHut4jukRRdhAM+e1Def2ZSPFG0oBRTuaYIZdFOh06htoEGDlZU4toYSgkWIRD1QGwy7bxDSzJwExC2PdU6OH8EneH5YOVc5YB2INgGz9DV5Zdq6i77GwOTHVTyh3ifikVZ26CuSfc4xmkkEgZNQh9TYC10HTx+kO10u3CQmq0zWmahpK0Z6rKVUecsNA1cayyFtjNasV89ga9/FdeEmV/90FY71RGjWcZTU6BQXmgGyahHPjq6fi4rRNhvzgvXuso3rEVz7t+kE3hNcnReqFvW4YYsYSExkl+dvLBmw1zfpJZyuqrskV7WLYlqh2I3guaBinHRM2aIPIgPnlu7htVYAfRyRdN/2e9bkLtc11Red0oMxZwMyZNoUB5uW1wd5FQOgHi/GB+ZxMY9tnsuSAphBanTMetAkHD1Rpt6PKizAURENdNcQnFMCWt+E/YrmKYdlZaOXVVZxT8dmD2oOoDlBr5J8TyrxFJzTB20cwYyyZmdlkWH2Pti8eH03ffPz6eWoLWZzDY8hg5hNSP0wA2DN7p0gfJKymLNQJmeSNTa8qzpuID5bs1vOzPYr+8be1Bz7fhwWdQjYoqKyCtV2vRgK1VigPhmiksAHHMKCq/26yBuz0y5P7kyKnbxicU6yEvJ5qgEu9TLB2U2IH5YQmAZJ9+31MNeWAHIXbIZJIAOg1pTmM/W2VSwhBaiVRZoj1pRQWDj2JyLP0wx3GGpmqcwCC0cWy5QIGyQdZI4U4Tsjw25T/99NlBbBZ17BSLfoyXIfRj+Pp6LsoaKpzAn5jea67zbRXTaXFpm6qpiu8/nQ5N2YHeMVZpOjTV56eHz6fHpqxDiNd+fr70r/10GeLzZXi+Tj2qBiA1l8KrCnDO4eKE8YDr0CHNp8IcLAua6tDW8ziMw2WeR18VDw8Pnz9/ejqdagCgwsvl+ivMysYhwMu5n1PpW85DeK25GICMgh5+Bk/mKJFNoHMmkJeKTVbxgJFN4sq2qU9dSxSP7y/naeinsU8ptLVv27qpYZ4lCKsvQ1UGB3WPcUn9EiOgPra9NUvRlL4pqmap2utcDmEZhmmU2g5SS5Qa3H2QN7KegV4qt4UlDAPJHpx+lxXWDCRHfQNAvvHl29p1Xes8nvYqZiM8trrASuX2B8SdqMOIzuhVo3Pv3DDGyzSA5PAdxDq5cTpfN//yL386X4epn0myrTmVwXH2oafOIMEIhJWKgmKYOs4HtWbkBSRrmrq21ajWmzbKtfe/Pt1w9gqAOal5iqtB4i9ATV1DUzW01Q+Hw7E7xBgu13Ea2TygHTU5NrahUO6zgFYSyBmOYCXA6RIuOxagb+rD6XQ4HasWIJ8BZu/UlsRTgKcD3j2paDFCwYYudDfrQuzjCIy49RwaoWkIATdQesIsYVycqWaJSNvrT58/m3RSGOM0Jvo2VTF6ICF91Z6iP14XH3z36Ye/+/zT3zfHA44i9OP56/nrn0P/2rrUdp/68vPjd/+u/vyHomqLAFWU0jWLa4L2R2YlJR7wWMGGLFHCSS0+9Yzz/hammfroloqQ0UQY7G1msKV9u0pg/UYq9nnezkqJSdXuDfZ/ogz73sExI07eT2c0g/2N182EHSf/V1r+d99oZJypAzhQbIzbO/OYBR9hCxCTQfb7Mt4UTxVag0y49UIdxTemjY1796OFNTQY8HouRcXRMOX2FvkXyi2SSadQAHCIQvxmGlE1rk64w/Iu2RDhsjLR5DUgshAOV+COI2HDUVELhDKalm/RWACEGwYK3l+AdGFJu7/Oq3OjOutaCRQIqaBbXC1YedzvbOSk2opVngmRrxuqFNwIlyUDEi4D+IP0erk6+Dv6xvu2c4fqqDImyt8gooEBUYMUlj5MLkFiDXwyxP/W1U0L68HWu8fDgfuicPX6hgGRKEbVKhi2IGrgye+nkuKM7O4ZWpr6rVKQQGcWkm9K51AS1GZeI3BYEndWZQO14aBYJo9cNLww6t3LeL2HHo63TX0yo29XsvyK9ut//Uad/o9eHw3E9Mjuv67+dlA8Yq6E7wvowe9R7GtqSwHX9XWHvNc3CJ3KYnNStWmtyAeCFRUNVlFT5Kav3oBT2uzWZBccqRL1zd8/WT5b9E9R9MLoBXuW7oiB7zDjIR/wg9dat98OIlNSNxFbzmpnppnA1o/YkFnrS7ROi5RUJ4dxRyZBCoqGFgkefFwpfxNy0SPEzWDzhiNEchd0PGJEgmVDBhP2pzI1GCeYlIV6GXwE8U8o9kA6otQOf0SA0Br/tAhsHL/PvNcCAGKMbefdIo+9tm1Px5pdYQ/nTdoDvZ6v6QW0VCI2qmPbKBsQb2qAUsw4A3JwM6HSyaL5yMT9TgDWDBO3ek3DSXbNbe1tNYCKWsXq7SNoPowkGOJhaEupVOA6rRldsRY5LTI9N/X7KRiM4Ci4miIaIWpGpc5lHGI/IUATG2NK5Us4xiI9aFAmYb8aZrT4Mek9NGUJZnS9JNDECKqZ2fzElUjTiL0Jt5j5BeOMq5jGUdUx+IpBEZOBOYRhntvm0J0euu7ga2ienOf4Olxfzv+j89WhezgcTqVrQ6z6UA7gpEIqUW0SA0Yz/GxyRkadQEVXVcU4ITE91s2pbVrkq7Gcr5dvw1iUbXN47I6n49MQyq/nofz52wh3sGokiF3EYl/Ai+rY1XXCidNSilw3znJrt1RhPLbVJ7ipPNIRJpVpvJ6Hp7Y91FX7/enT07Efwtfz8OdfXuZvL68vz6mqm/ZwOHSuqieqbWqoxQLSnsbViGMXeQAU2eU5uYqDdjY65f1w8VX54w/f175oasjM0AmH+kplaJoj8nLv28a3PoIiDZome1UAkRfDHCG9c5nTMoZlKJvjlApA4FiGsJdhKxtGOYiLCerSVdG0uLff/fTDEtM4wkVgmiYIFlDtQtyQZSmmaR4v/ev1wvQkPB4PBjfwCQ9a2x0pzPD11y/coweMPOICB60CuMrKF+AfYkQ/Xq9nPIYYTbu28XFuipm8g8IvALJpHim5nS3aa7uSc/YqSaKq2oiU1ghgBKArtuHu8uYB6W0bt3BCzxkj2yKYrEu/Fdr9NbwJsYnjggw2IKiQ9mi5aiqZQDZhN6GiBpSaxZD6hCNCoi1E3R7arjseOt80BdFBFe1Tiyj9H+QArCcW+cR3XSeZKdOCI+mEqTbJiWVgqCQrjyYtJh8J41+gBsDhhHoVqRw0F119zdEIjhQjKqay9t2heXg8Nqcj3ni6hv7slvj942lpiql/6V+/FN2yjF0xlEX9UBQH7qbq0XDLNNvWbIdF2uUmxa2uhoouNfKoYqAUU4pMN86sK19wTf7zxpC14Q2LfJPPazq9sqZ2gB8rAO5Q6R/Rtv7Wl0L8W9jBu6/fA+G18YikAwi555SSlhN8D4J3KXZpuiRUjGBam+11EXqk4pOzZftdSwPf8JWhNc4JAPG4SBA817fyRonj6eLxOWSjiNpRKBBgR2YX30h7NKuijL31GYc50GUeUDl5UqqLcDgc+CwDhKGeloYDMrHdgxn0Wjfsrf3GT8qd2m0mIwStScJrRmQwFWVflmMRdiBnNabeqLBFeogLpIgBv2VHDZ1mCRqimCm8QyED8xe8AbsLiLkz9Ex8Wbyga4VBQdNCjVnWj/fOuJwDyBgXTVa0ijlisfNC04TdEzofUaRY2QmqgoD7o2FmrnKwAlhnmDIGy1jmz8aIMNCD5b1vluX6xCFjAjZ9b4Vm6eDdAn4XEfHRUn93CPAbr1ULSC2e7brldJ+Y2j35eDfsypAkubYQIGHddBOlWhEVkiXihWetwcucO+ISfr4/MOpECjnCR3S1yFBIMUfVHNDQ7Fu3nq1rkJ/0XaTajzhWnOQ7nRGeHDZHDQeYVMrjeCtLtDHc3BnJD6p9wDERG+2EI+TXSoXbgxbwDEBAkBKCCksaOxKatjZlCNQx+0Fc7Y3zsp0Cm4oUs7ULZmFY8T8fp+BzLG7pR2qUgRxorRcO0IVtHIfD6aefvv/uu0/HQxvCdB36b99efgYO6PmFKjNfxgv5jEi4IcABSQPQh83vUhfRhnQUYatgwoAposEN2byggYbcUYi0Rkc78xtYpa9dhnxnyHHgvV8BRcxmuH3Zky75qSy7vK+6dxR51UVS6TcfeAStmsM8AFLyXUMXEfUU+nBE1VHfF/qdJoAMtR5qvJAlLFcmXx0wfkwBoaVEZkYmgLrabHSmJYAWkSJmqmi6gJwqQHNsMApAlciio5/G6zghfTmc8K8YpC6/vF5rX7V90V4jQCmpmqcEo1rov6hdg8tqjzWlzzf6ETV2aogUQ9wHgotjkWBmWx+bg4fQW2optCXPH+/rx8fHpWrbh6dfvp37Oc1hmaWxWJZN3Z66ui3LzhcN4C0iXidwn93yeDqwASKra7XGMSJ+eXkBfqM9urZ7+u7p4Yfm80/TP5zH//kvfz5DTAX8VNgY4BHBTaRYp1DlHOZk0JzRT6lvJOkIbpGViyDL6p6nVEILP0GF8fn5meo6eAyyRjhEnUOYaNDN0YyvgNVB956q02kZhlT1qH5jDMM4j2EsmxQg/03yCYtrEmloQUxqA9hurmxadzy1XVOPFyTldF1oKujZ9NfLeO3LOUBXp+s6gExIoye6N42Xq2JAUQVI202xHqbaUb0N/vNhCTP8IipaNXcY2HSLp697gClbV5RLDbtZdLUDreipP4/0mIF5fQoyD00PqwbdVv3umvrsqC4xhCphmG/+g7soqgaiweQqNAXwcKPpHpYicEJJYT2mHI2vQ5zmKc5xBNKNCbTapOsSTQvS/BAnTBKcZ0hWP5TQjrBIUKo7QBUX3IB1SxX0iNkTm/psbMXYgnyBgIvkIgAoAcgTVENkcKKzNAUkI2xl0yR1rIAsuuK+2FjDhM4s+pAbg9+HQxoooyXcAAoPHwoZolRNGUec2Dy5ZgzhpZnh44EiofRAo2ENQ2AUj7BRhIFWWYrkV31iciPwiRRRWpqajmj4VfOKV/BUoKwEF2EDUGJlVQGFBzEK2BAERMTIqDm53++OK2tql5TkUvcN9/ftTGAffD/4+fZBu3ajlQFvf3Oz3nxHGyQfsCHisSakyF0g/8IGjz1HNF2kJRIIUnsWyBqguEBb1TsifrIvSWAAh8S5eb99JQlx+17zo6UsoDplPEDWYLhnwFjHZeaR6cgt8fJlNYVZvgFrn55mMXkTgnX2hr1JZTFiAE2ltEBpb3T7ZS6tJ1YPMLdAfnfoMJFYJwwqEooiwU0GAUwOfPhXAj/CPI0Zs2CFQeZxKlfSkawbtLXOCR/VJUseDVmli9iZQhGGAatfGcmxa1fYAwYOGFkC5sfxsW+EJFzwoCLkhfkyBHRuGswo6TnKlmIJNYC8hkxrT8um9r6EQLADVNU2Aut5i8Gm0oD4aWgkQyHNdhZLafWecn/YjJ8yb1via7snLifWeSK01lSaAAChukJKcuK8Utn2P9HZ7LXq9yn+bUJz85C+/9R98E9Uj1wB4lu/f99ouHkA94zk27fcYHhGruWmzeIon9fWIyAS9M1DzfbLHYN2hQCtR7ibWMp8+/59CPK8n0y+iUh75VS9l73l+vG5Jt9y97d12v6reEI8IHVlNqZ1QRQK4nB+joQ2YQmjbFwTPOQTEHqkw6XqDmr06X1SBEZN2LXthHAapANq88stAqoLYAO4iY1r+vfu9Zn6IeJpjM4XNRiQ/unh9PAQJwce4cOprf2hdO2SqhHusEPbHkLEdjjOE6b2VQmYdlNHNCbYq1MpY5mabFkhi4CBCLJRSowuYENioEOURVUtcKyl3JCcc5gD5TJADuS2DtXV1wNFRyTvRRbM27PRPdu2vtsd9k8rfc1kGM3EgeoiSOMUVCDhxIUNWTPUJZSLQPqY5gQh/LlAcgfbtdq5TsNkTHxD8A7RfvEVncQQ5jgxK2p40qlcZBa3oJ0Z8O7APlOikcB16JjUIzgB8zIMfT9OcOaLGLkICtCeplT0fVquF8pAcRkA6+k1aGHI0WAXGek4XuuSNimNayq0UdrGdb78dOxcMcFndponlzpfdV3btXVXAhp+HSCFg5me745dC73Xwl2n2APIuYDGBiecGpG5KFr0qqEhQ4tgV1PvgZcHjA70i00aAFtic3qMRTHBcHHy0VU1Lq33/h//w7//5cvLL798uVyv4kgBAofUD6peVlTz+dpkanaBdGtm2WSP/4Q3ITDVVc/PX5ExoylPBCb6UwBiVRE2LylU81TCvLLy6DIBQg6yFBAjdSr8vCwDXIIjDEADvXD4RJH2y26S2giN2ZctdQX+6KF2UxGaCgifomiOrbv0bpqhuvb87cswIPvnA4GFAcWffvz86Ttfek5bqzClNFyEeDl24Lu6JVRl6gDyqeqWDi6g4RbDUMTXOcSpq06Nb0KqoP3P1jUMatgBE2WFR2tW4pZjSI971/i3dchG2zhzYp/FlNbyYLd93HSB1QUhDgD3zcw0UTTnWEpWILrwZcCFBj04cmIM62vcngbPDvsRhUBB6suZiDlFtjWFRiMC/VbCsCVizHYM4oWjWlVR1YQSYTEjwzHtoxwP2a5ctztTvMuxUXBpS8kwDlVkENpcLpE8LGR1uGZtW59OrqnjNL78+svD02cUOF1b9NP88jq8flnC0NQuFUMJ/a++SJ5/L0fUFgqhjDc8TU/kDJ5htE+0utfJLUUHi3GEex9gWRKfEhIXfVaWQSHNANvFOWEuHwA1Yrw0rhaFu6QNvfNHWVGzd6oIqzH7b4EQdsZG+9fv7FKuH/0RHmD//jc5k0I42x2012GbGg5BMmNngi5jGnMpldmwSXVgXGYrrDYcAbUrVgutBQ1l86NasdQrhntFXVOvBxlQ7VuhGK33zfpQGFy+OY50TQtswiCDSqKGlKcaYYGtQQnRqZNaItp6AA2QR1jKzguXzpfrOxjc0p06MGNWYXJxCojnZozhV+4iJIouMQHCJEMa7Ge0N1dNrQTXer3rMmBHmfNF+TFUvNLAROKpZGGAq+yozgVHghgDERPYScA65ai9KloGtYrFfdO01eGAKQcSbgo9GT87kv4EGG5VIdCLLqw6y0SCANnhAACzkN3q2kbGaO0k6qbMC3paEQtlQ+frUktNaEs9LZtdZae2Rbu2N+4SRKs6AnKbt+t2XwDsX3sX2P1f7SveXbT9K7Oy/eTnTnRsh9G3uL8bC2zZ0qrXDpyrxjz6fXWCSF8TZlodIE7EV1SuopZU2/aHuj3Ldntvo4oSO41r1/pqS95Meo5PM/F1H3QNMtnXXAcstpgtrQLCrcoR3we8VcHb8sfZxsPfUEPEKgcjv4MOa6hxzc1B7icnhK3rKDFH6djCXkEmydkMju2GxdEuWD0DUEnpqENPBbM0z3o/Ok68FWpLUspp2kxwkcBIVuTfrC7y/LTb2PHbdszsYBzn8nyF7t1wma6XL1++tF3dde3xeKwqd72OAC8gXU2fv/vh2o+v8SWOcBFFq9hBV1/kbCkssENluC1R6o0azpEJOh08x42DxCOXCwIMendqxbpXTJIdW2IZ9alZecKkhZoh0gVGXrLaWu9KuN0jENCK5n3CH4EwivrH4FcyaVqFKyqwxuuSbujbY6hxTwCQy/mG7UXeTcRjwmDIiKotDS+UYB3aRq6LNHdfhnmaJ+gZzvBnc0wu0PCsfQvp4a58eXk5nuq2e5BlFSRbxiHEpT09BoBbOL9Cqu3QYMInMTAJIICvIiLHOoJyCgUa0E+rpoLKUFUuRLy4pooNqLqYu05T8MUycgnWcGBtprBcwvzyev56GQvXCOvUgCYOAToHOFVqYRfAlBfS/AoFCHj962vb1QfAmA5LaEYQLocxTEXlke4B2j4DeeHiGNKln9NSqcnaEl2mvS2i252fUWF1jTpnSDLt6ZDVzH0N3nc8BGCOQWaUw4OllPGhJzNQpp0QC0s0KcblotIuSaq+ArdhHGY0pDz2rbg001Rdh8XNGOwQe6gowhE8VjQSNZJRkRuj7JnnqV9cck8PkBEF3QAd4q6uq3luwpLAVcYHc1bOusOlxcXiMiZXJZ+IEUNnEVO+ZSkvl7725UHa1Pgf0DHMStBYZKtthPNbM7qqQ0sxQa0L1GzhV9EHBT99tQTaYjFjU9d1nFsiPwZjm+wLXNLrVbnvamD/tpxeVaphDNeAratYheFgDVK6w//DjwfYYDCS0SwrzLHubHAkiF3TAHFfli2cm8sEH2bWAGIMwkCvwvUkEmkGlIf/tlRwjgBDjALlimwUkSp85VOIIaCtScdlNiZjoIJVFpCxoMJoLAMjRBhrWe1Pc+37UAqe8nMg+lB/lNGyPj2m0kNQKCI2FnEKL6/Pv34ZL99qV7QHP/W966qmwTM3F3NZL/XB+xpEhUgqgsCeK7UFNZG2MbXocJKcytAMBt1NKhA6iaNURdnVzapp4FDF2r6O0Yz4fmJi8/+K5fk2aXj7n2+nBG8rhDcbsP7+/R/fvb+FV6JG3v2bt3lM/kPpyKrrzlu6il4KnabJUPZqkdWOxpE4fRJxNEtmFxEqLhiRZKC80S54VNtXGHCQsJQVkDhlUQxBwSDlJks67Hd4E9+MOIS9Y04v/1KpYMLbD+0JwgEMwoPDKrxv9ogeZW7ssa0d8SKaPihEveJ0XjPO/BK5WWQjlPV7eAahRHgARKvFzkN4wBiE3VeFZbMSGnFLjQfrEB0vlAE4bmNay12LNCOUqcDdDXqw2ByKwv1X5TLMYzWloexRBQD86JumqX11rFvIYlNnvKyWpkScMn+fvBLNpYvTFUl+oPWKkI6nWTkAnckg3Ul0IPU6UduAbQ0oBQMbr6sMR7DN628Z6TFIVZ/PV+8/BZub+e7FadN9z1Vf9wnK3evt++8Lg78p+3/nczMH4OYw84QhR/n7VrEOIM9+BYlDaBbWJcNOVA3fPKRrgaE0fn3L7b2Nk7Kd7P6j35qTsPKm1qyNGTJWZ/eJ2flY8g/r52qmZ42fjKvZXyhx17aLlj90eU8GQM6j7MFTpHoFy+n70+m0KwCsAihL+PtoZmstJ2rgASI4wc8iUoEAtRZaxw4mrfTJUyecOTuqYopMosgl7y1FNX1IJ6BO/Ubd3kNicoQ06Uz9UtXWWOolNuOXebper6/PL6c/NT/88B1IOG1b1T6lYhjnsqwOh9MF1QDo/Ki8FbuWJbFNuO8ObhACxT3BA+nQIvx/oEWAJqmaq6rDYL3KPQlYG5t+024TSTScf8c4ud3LAtyyQNxie+2alOgQoEshbTXqYDI2MrYj4QBQiyMWTrzQCOV7SqfVIq9iV1Fg7hETtIL5aio/jiNVFilCiydGEgNImIleROqW2JwfXOlStYzFnBxaGjBaBvYFU9myePr8GVkybTr6vk8poTFSuis2bPSIqZRPPSiK+NpAlFcb2RIZl75In04PdbnwJChIiv7HvCzFl7/8+fNDd/z8cDq0rS8cqikoSZDlgKYy5+QlFPynYRr6IQ4TUBhg+MJGnJ2jRmp3uJLWMtOcOS6prtDEpYtiVVA5yMEIqoZ06bKME6QWI9xTulTVaSmeXy/X63UYoFqjOyj+9I64ksfgO+HXN6PU9HDoJN8p6ieJ8cwLKwrHSXsSW4njMDnBvQYelFRjQf0cUjJGLDobsodEYYMFgOeS4HK2ByRHFmXKCFiTK2sP9zQsaMhe9FcA1tum6h4/nR6ePtV1PYzjy8v5fL2oRu1HEANMJAoPVFssTSr8GOI4QU8W+zpRJCZi7yvsirUrHd1F4jBFJMrY8amg9Pr8OvZF4buYqusAo1/5GdEuh2EP19YaENZXJW++aZo9B2B9XtZJ+15Xer1H9xPRGBvu8fLbkr4nQFYFZKYG4rsYvApQIbSlTpjEsPfPECWvAFc0yIYT5WBF5SdqoCwb13C0DsoU6ieqvZJ1SEVmaSzLZ2AJSPCQX7AD6/GQaiMLIXQdJZhMQhvEFvEiKgqX6Rln+uBuzpcZFwwsCCGOxYJ1Lq3fYnF1VZwOVd0d5Zn8fOlfvg7nb2kcsDuGeD2PQzklMCGLxfdVM3cPdXOciSGR0JnsWclNZrSG9ZLpAQn2KO2RculgOSavVnr6wLAD/cZRoqnZ92e9rthbbIggVV1TVxey+WMOwH1H89ZIS93334IiMN/466/1I5Q3v/Mb+YHf0EL6w1WDWSuKCZuSLnVtKYwIE2YdJOpC9e2U3bFZUkIeUUCQlXJov6Y3V0sIFRe/cvIOgpdlAQTaMXMvr8NIojSa0XCxlRp9WU7sPOWT2b5HtDSeAmAzlhhgb6TKEI7dOrLolmPkhUdon7WIabo+qIbGtqsJITAzBMjbs/bmCIOVm5/InsOaYYiPHOo6uBwj5lIFCNr5iASbPsxNY1fZjNC+zlMpHw2SBP1NOGn5qmix39L5Eo802/+E1PbXc4qwiJzDNPb9MFAIhVU8BDdqB+WEtoagA6SCQLZeEVMS8FHaysUf7awW6CIvDsEShV7E7FA+vZqiYKHAkEaNJaW9ljCypSE7OeZeNqDKxqHburVrfgtMyeUjCjxTi3o7Ld0v/vVf92TKNanaP4A3mLePX2uBdBfQ98l9/tDyvbp6V94TBsrc284UkYZgeYRgDNOBHhYTveZoIDP25AaFUC6eU3bqyFN7vdddwc9PprW21J9y6KN2KIAk7GKD8apP4vEKl5zPzBRjLAjofqjnv8LjDQHIa6Lp4E7qQEAgaz+rubCqIfFq0PgZhWKYA4DHfCpiCcEWjacPoEXqWzBYVi3MCsoPNlM32BV6ina7NMygkSgFMcplRJNbYwhthGILsJqV1l6+TZJn0Ea+Lif9XOoz3FLw1om8FP2Cqxx3Bhgp4ALH0PfwGqWZzhXNRj4Cmoalyn399gKHMDEChevKCAF7HnJla3ci9ylWhpKmtQaRk5gBZ5KmMpczjFsIExSFV2aBiNDK+DSZMwDeLiO8ddvZ8VsETyCbhPNcYwOIK4sMjyOa7GWBd6FeE4cWNmksq6IB6Jq6VJghBqgVs/zAPMZEFnFxyDcm9j8Az4GIBCcgrOYCq2JxPmLrBzEy0iqSAMVUFp8/f6ZRSVm66JrQoC+KPGqGv+8Nuok2GcHmkyqcxJ0nChMd06qoaT6lE6nBqiqu15d+mV6K2aWTP7Y1iKZAT+oWhAQ5zrggLzsej7H04fk64V+oyoziDfgN0N1KcFoCm9Y8ZxvSuEMLejTXCYZY1OetnPv8wzGk4nwZr1+/nc+XaYZgZVyKuj1wQZHfxZ0XBVXTTHEzLtyRua2xk5eJ+Y6A1I4NwNctWqI6F75mWdfNFALGVtI0iuQVboRrW4cJBtL2OAwDNsfKw5INMoluGAJkmoSSNy9ic27Eh4jiTAH7rm2PHSYtFOoHZP8A5qtv6urx1D0+fJpTRH/9tf77P/6xKKphGr/8+vXry2sPwy/sVaVvkffCDIGG0Mgb56oIB8oKKZ3jBID4NbccvItFWQMHcnh9nV/P4Xp9Lv1clL6f5glUk9I1Eg6J5IAgWbEZtwD93C21nmVaZh191Vp0XqfF0fawi6G922vQnAyJYHbU0JFPEIoteelgqcQFoN6J2ewCdQ0oKHiX0tQd/LEzm2GocJPMqtDpM4mViSGuOuVAmZCkBRcCTY8cJYinoD2dRM4xbqDWI7nLMFUPpgUEkwFi4DdhG5NkYiMJ/GGl/pL+Wl01pYyYaQ84HuR1TGlgABpjFUG7LsYZ7mkvz9eXb8U8dL6qq6aI4zxhHjdehqH/Uvlw+ty6B2XkE50s0c9ZNxk9y16dDEvoOfqRwO3p2Gleyede2wnwhHGejZeuXTejl/YAg52+MoQOBHvYbf9bH+42e3i/47jH5L2TiOwWyv+d11vowtrtW38l5//I9DisZ6OL5yOSCS6oBLjBYuMfRgJ+WGlpLKD9Rnstm34bjla6obp2DqpnYgJRs4zxF81slAcmFIiINRvJfU3sdu0KfDNNwKXZRbbEqFzKCL48i4C48MFgicFOoe2UAibxHKBgJW+/tTmbP6VoGqjo7MSFbKu+k4vN4QDoMbapzCNw7R1WTGRBQ2IBINKtcMxbK5ngTabkFfXvAcqCvJJE+QCmWqYYajYCwe1lX8+jY1Y8ff6eVKUZQQLgghFFLfGjIcYhxKIfNATQTfj+++9zlVvjiW5qDKKRKcxIdWS3A5tLZqGcrqAxFSl1BBUFZIxI9IG7WqsshhnWj5r0Ss+d5b7wYOpQ3gjprIn725vLxoNBg9brr//cQ27WbExiC3fQ7T1k6Pe/7iB5u7b6DbhoJemuB3aDDtJk7JYbsAsUSmBv5gOUslwVCNYF7ymYaQ383VNNqPx7x7+qr+6XKLF+1P/G0a6CQnkE9GYkojDNX8mS/9u/qa9sqWeWhF93gbXo0t3fuhKGMbRgyD0s397IokW19tj3kvLMokm2ESpBlwsmEi1CXbHfQQtdWaxErHh5y2UeRqWeyOGYVEpWkmJ2jvg83UX1CbHe9o+5MT/52/vLst5WTCewnjFQrqEsUQNn7Ipffv6Kz/H0T9WKQinh2/awoK1rIeWOwXI7WeJzQbo/4Na2KkllzRKEZUnrLnMIssxjvw7X9Z+SnGQ3Z2ubeLeNRnM5b7BCSzpF+6LXLggfbMF6I1YjYCgJiPYGASLbavNTsZdkOCQ6qHLQk1W28hVEGUK8coIY22ML9iyrLu9qJofgT44TMrwSUBeIeMo+Vvrphl2RkQjHtmkpv3x9Jnm0eXx8PC0HAGgu5yu8ulusMwJdsJych+BL2c3TsEqaasEg5JZFGC4OXfsI2dIa6P8G6vrL58Mf5uEyXF5+7l/nh+Pnp8eHY+e8O1/PAKw0B1igV60rXSjnKZVPT3V5BScBJQ8HPiCnVMVUTq4M0GkEpgi1rriF/dfXrmuOh0PduCKV0zT013mO/fT19fD4qW26z9//UNXHr88v19fz66VPz5e2bZ/4ahzSnjDPyMKim/m0rGHtbc9xDZ5lUZ7PL4embR6OXdfpHmFDidF7P4cxUINudT+civnT98fDwT2AmZYiNp1pGsMMiFMVlyomP03FdUrnPg5DhK8NQK6SCEQPZIGBFxk7y1yBeFKeHg4Px4PjwCGFwbui7y///M//488//+nh4VN7OCbwStLLy18ePn1u2u706ek6z5yqzairplC5tmk66lUuKY7LPLKLmrvA8MrBpldzkz50HUFELZzZquu1/9b3yMahHEWwDQIDdnTWYJWbeiS+kodqGmLzlyaldL1e14zRptPIbgNEZct7USDmLdNb6lqFjjiYTVQOBTO8bUGWqev6Ff7B7Dvjq2ZW0kXA9ON0Onnv5nkexhBAkYk1zJacJmacI6I4wx8miq8ui3cwJWVrBnR8RLkyeWTQeAhwCQKek9p54hPTNA8xxrquHx4eDocDERAggKrVoukIFSDXfRDz13WX2e2Pgp6xM1iVwzRDnITdBrzny/MwhtfX12kc44SGJh91AlaXCnbPbQ0Lv34um/H0kGpWqcV8LaqWeRspGiaFzxbTf/7H79eLLqSKwtOnxxPnkiRtgIeF9QKqK41O9JAYhIMD6BXCtX6vDZ56qJoJ5I152Z/wbtuzvHML0PtvPkxQbuXz7x7aty+aM73z+qjfuR92C3Cpt2EYxKLPqv95o8qWPSuIkL4BtvGrGFj1DemSY4t+bZPrn7SB3R2b6fuwUSnDo2x7lM/3nbPTvVgHTCINU9aG3SZVBUhTqXWDfqpukIAq7PbIi0RK+AqOdK3iQCOoqW9CGetaMlLLm4MB6hCLClw0Gx/J65fuhoHBWBMGeHWV5bWHEYbOQg1dY/qICMG6FK0d5ikVROKAFoUZStN0tYeoIIbOCKs0jhExUCwWkJ+mYaa4n0a6cOtiL62oa5O6IGIVZo1tc4BiRgsNh6WsYljGEEiFwimME3TM55BG6DHhEYkxjjENAe6sm+w9Dp4TEpzmlvtmqw5A/t71qfho/Rv343dzZtaf36VWeyvfd6FH+9d+2nCXkNndfAMBEnZn/YllTpyTmO6YZO1zfw4AW271nFNbdi45izfHv7IabtSQxAIvoumDvg0pb09EJywLBhsYL8s0IwNbSF6UciCM9qxlGGDMvX1uFhMxhowuCJmqGbm04pF2uCDelz2fZL1WJZRk16GQ2cwrmaXchHk1Enq4ho71d3a3AJCJrBSEKZZFME53MQ6WoSznAOt6UJOtKNECRMGbuTq7AmyTMGYj1cqkfbEnSS8C38EZJO2MSSulpcV5ILxO+Eyon5nO7G0A3+sv7debtV52kXNf4K270vrzQ4vG1tuX1nmOYOsCWCCvkiP8avG+UoTz8ZhZAN6EbiQEDID87PzSAKe8QIYYSvBELHLYImHQGhN+qxw2eVzaRfJ3OBjhXBQ9VAgkBTSVMeSsmPmUDbfmQAglRlUom8ViqZbSz8uhn9J1GPpxRkkA36yu8tD9pPVSA+kzc24MYSm+vfRjQJd6nkf0AQ/tw/FIwWScoIOOWpgn5Dr0nKpOh2OgbDkY3uAAAJJyqF0MQ+OKBjNt4DBhxQigNnQMT6dTWtyX58sYl/rwEBf/9TqEUI0REqIzhISz7i3+MEKKljNytXuggUnENlTMUTK5BspJVupMmPNiH2FDphjncOnHaz9ypoS73Db1se1wRhWQSMhh0Lq1117xc21GrDcXQ5IwKk3ivoAE9HA4YJIwDxlPdRH8lZzg4qentm3Lh46de+fg7YrGU3x+vlwHJGpjKGNZp1SHWIyxKJvuMuDKd7VfitR4d+iamCbI4/oKGrPlcmi7x08P4A+A4DEKBzdM4zhMhasOx4fueKpKD9+26wCgdlOHkF4v56Gfy+oYMBGa0zL70m5W7YsOlxDuRofWHw9t2zqsqzI8PGDSHlCoVJdr/PI8fHueL/0EEC5LhQoUEPikw/CmKJapwkFxNYqh2zXY6/u+R8AMUKLV41wjhYDekZgN6wO4orD2hXouyJcDdDxQAdNPEHSCDpYHrvFt3/fn86W/jlQ1J9K5CI9PvmmrI9WQoAgUp+HaD8OVJUTdUZ6YxUA1T6g/l2Vpamp6YpDVNIeuci38t8cIUQIpfJoVD1bpcO3FXLaCufFaD9kRsqIAmkGkiwqiLNTtUCivE9KeKqZU19jH837JCS35YiHG5nTo2mMqPOBcc4Tiu2swJYAPYKhgBLi4Msr4ZQhIHF3dHZ++//zDH913PxbdkdMGhB6GXIgNMOPA/QL+cstHSWzktU7n12vl4KUqRojVAMVyoA6R7sd60EUBSNI6SlP5K6MQQ07toza/ZkjJlgNlc5mt8XMrx/sBIvmvIZX/174gS8cXKbpyTzBcj1DAytI5+jMpCVDjiEYVR3oFQWl+PdAIjORZDt9BETbNHbkoyH9ACQ5QYVm32ghsMIpar4RGs5vcSk6/ctLA/85PIO61zfhlHsP4is2LF3vVHqcLppUQErQkGJaM+qqoW2UhMASAkhiI8JhOCPCzH8HrK/oQuUGZVx1ST9dwLRFnn1uev4Huwrag3VL6Dxjg8zpR3KeYYQyG6e4YYoNSH2Ap55cWs4cK007XUU6jcLUp1IM1jJle8DxCSadjQ4pxHKbzMFUlaNDYzYUGxq6Dp4Kd07o5gIEP03ZPM48wyzzVeagkWVEnLRVDBW4SyOIS/Dbm/sOC9oNE/6Pfv0vx973Vt62vNZm+e9v153fZGLvU6d0JwAalM0q9PpHw7A2SZC1qtJBZqEn42nRBy/e5CrsCYFPp1qVx74sD3V+fPe2BQWxGKqSQDdqoAEY2IiO908AkKblZ1rD55FRCU0jXS3layHoD0pn+1n5asj6qa6NxtRChqm8GTAqHsDanHYwuwSSxpcsmDNVpEJ/f3LhMdCT4nHRa+qMVRdM2SkABs96VAXyMmLrbeGplRt68+Xru+fq/WUiGj9+ESXOcNIFRK2tYapvo6PsIzffX2zoAuasB3pam681+dwKmyZjK6fVNuJ1tFnXlbgLARDx7SO1eh9OR4GRhtthiQC9z8UdOdSrhSOVozXIwAdOlViXuiBHTZcKeuA7tBVhG4brusViApiD2MaURHyDjOcodxkAdXqJdXOH8NA1l2R67Q+W7YZz7OfTTeUnYu8uyHBx8ZDHirKuaD9un0wGJcOtDbIoISEMZ+pR6CDZVTdsh6S2Kk6huVVn2mERRJMgVsHwqYsVu6g+fHx2KbyKyaRE7j9PQX67XmllpO0LAzYPqzdUrFVlEfjzvRrTA8zWPCxCebF5BEb2Q3LOBPF1Rg9gWyoDtDXzn2oc5yac2FeUEdgDoLnTfQXeXdLNYo6+EZOPwcBKn22jBedJnO+864bfCAMRSx/GLYpESnrpBpouCBGJHna9cTIFWzWmYRgBo9Rz7Bd7WFSztf/rx765DeL2O1ymNUzEik0en6NB10pXvDm0Ks/Nl2zhevR7ME3RF2D5/xQ2OwBwNbdd07aE7ntrDA85iKccBFgTQFZ1jGYoAuVJViKU4dahkWIICOxtRc/nDJ3qK0xosRoeRRlX51tcNpfvCl28vf/n58vIyTsFBzYpqsBA7oqA4DOIIjamLZtsLrG1viD5cNDGF5LrMIb6rGz2ra9dgXwO8re0FrM3WnGjqO3bTilTC7JqbrkRdUeiCqGcGpjIVCXECr2YXEpb8iSwAJ1IhpgQgG4f18OTFqgEwIFi5aEAtpmIteErMpOlz0rRQBKUUb4Z0kC/ArFiyj+QVgIeTFYKJUr7dkogukXhTWc0TZBSqai4XdOSZGY0OGs3AcmXHcTBDlqVsXBdSWQQX+tCf+wd/xvqt8SwXmLmlIs2hP4/jBcmWWqI54t5kEgNQ0iCwGLdIwP+iHGqwSaTltH7FSLSF3Oy+BjCNlwELV/vcXXn9N3bi3/8rlVdvXx9DGj76+Qefux3ADgSsLcRamxuQFxFeDj4ELvCH4OwolVGPS1OClb8YAp4ckpLKndoPSq9b/Z/V2xUFJIYxXJ/C4+S9WT1yHohZ26pljpDFBpawNYS4cbfl2AtzBDM/J/GLa5KG82XZQE2PimYgxViMZnHNWoa5vWiFJdjhMgZCR+p6Hdakf8XgwtEzqUO8K+pYAMy03LQhoFLkrCFFCDhvgfID9chkeaDEhNdTWG/IATraaUIluHAzYIllubSwT1waEAtdR3GrWgBAIK2YFizeLZAYqDkdo94wadPcyrmckWn1Q5RjfFWNULmoIc9dFFXdtVRVITLRRvm176p+3Hxqsz6rkqRdYrclTGb/9PvX54fqWB88Rx9B3fbP111t8PbP352P2zfyQ775VyWC+w+1sl/CURv6nV81JM1mAKyMDILLMacujhaOtdUVPTU5tKuSjypUwLBux/kB+HA7PedLYDJQy9qshg34aoLpvaXgpuuAwgDrLfulU3aZD6Eg/yJ7G9Qjnz79F7dP2+6jioVd+btNh4SFo6zYOmc4HI+aAGQ6vQA/ek6y+4GdIAtmYeLlAytFaP58Iy4wtqBeMlqYjSvuAi91MzJ7wdaeBR+BtfQgMgIidOhtzWeJmx7+3e4sWrBGOMjLABq/b9bqXQFwg8rIogt36fh+Ve+dMSTUfbOMqcnLRJxczYz8FIlizUvky71D69qnrLwO7W7jCCgRCIVCrINmidRzgi44werUTiSLC71MiPajnW8yWRgeSnVUkoPCJRcmnlhVBTDBNg6F5zSsAYjAQm8CCiywcUKnkH5fkC4p2qo+1XWDpA123L6IRXQlaog0lyPajbVzTesPaIZWxyOUhzjHa5EaTtAJBfD3Opd1Xca2YgIQAJVAm09qC3SYpo5SmUAJAE578HX1cOxOp0NTuxHk1JfX19drPw6vl1QiLKayBWgJfdBmBL5Nuna6ohrigUTFDcKaUUz1kMn6KvoSFOrGO9U8GsnpRsBLGWUFohHUKiEX0+rfcacXhCnrMQ2j1OnWryKNb0UA8jmK+xE054DNEXlU9SGusxvLQ9spU3JtszgHDZkI/i7KP2ymjFE1Nh3O3yBp5OqqPbqyLbvkplQe4dmcxgkT8gaMYPRoqb4iN57SCpQAurTYzCFMZRG7rnl4gP2t901M1YhyYSpLd+nnCarhEV1GRAfpF8rskkh6MI/h28CWhobq2Pjmueyn+TSfwByGVilkhNPSxHCeMfKGFCsaBsSfcYWzv5kDOB+QTbJi7+EN0J9h8c1VSr2wLAYuqIiRSFUUC0Bv/rCwsDUVF+rsgVEzTKDpQ0R1mnLaCelvKLQ29ZLw6csC/AwsBcMoKZEVgVxsQFn2KbifEwoJ3sPaWVC0J8sAAdzU2MAWdIkEmdr7rm3rGvQn3BeMN+iyhT0CCTHgzai8aWRNJYUYodGuaLHG+9yN0vVDcgcTsLknZaWrXRUDCyoMbCS8yiyR+WmKVY2CChiw0MerO0M9qGmKWr3/sQhTuLy8PP86DRdXFUJHwIpM3SmNrZVPehSJCOAqj1fBu8typcixK8E8wFCqrkDyb31TYLiJgT26BlJ6kUZWLgAsw+PH7bGY+8G32eretv9/Q5Pkby4Yir/1dZ/rKOmX3qn9Mw0BmJ4jbVDPa93OVuMr2WSQQ5yF25dUAptrVyevbHydSSDjj7YwpNmR9c7wdkia+SOEYGUQ+yuD1J+wCtOVXf/JEowYASWcEtBsmArCr0A7sqn8A7wg1IzzKEjM3RIP7uSIx7NsFlWsjayp8KvuqZRSVjYBx1bjTu5TtSKH9b4F+16XTfoveOqKJRILyEPK0t35Xmhvz960OvGldA1k0sQrpfIpyNQFFCuKOY0F7FQuRP4RR+uxevmHlLZQ4g6UYe3gY2DEQT5ylAfFNyPMuiNwQikUM1BAGIh3B8nbObTWOC2BSRs6T2uikJUNNOXY6dhsy/ij5fxX5gN/w2p+07t9+853z93bPOxOlWj/t+Bm545OzqK2gmf3NkwVOdXaFQB2Efi+qxP2VoOvnAc7ko0LDbXK9Xi2FpQcee5RN+/AS+6OjB+m2W1l7lv0TCwK0luVZAQIITPJM8lO/Dq9GTKEyTIZvZ+NiU0U+G0Bxq/msWQvvBGMhiwNhRIdmXwppWOHXYQqjWxWGW1mOZ8vWUv0ppDguEBiOOahRkMRyMiqCiGQD+NhBAyeAgUvrFpTtb1vmd9l5HmGs7+YtFS2MQBlX6irw0iERGR9Eytr+JvMd8xPZnWbWWBthbkKOTTbVxNkhPQcmus7zTTsRRJotigqQ6WybKVGIuAg/BDB9oNNDrE4tAuDr0aC9LAqr/2ZbqMnk6W1+YxFM0AfJ+A3yKdDW90Dx4i27zgONJojIaCC6XckOtQ5MAPgbg6ZDrQSTAkAnRe6M9IcBak8xJiKeerlz4gGOKDxHEJy0MViAJKdwzSfL5fX1/M8TKhk5+u16GPpC1+Xvqlq4AcwB0ZOCRQBYFRzdEuC0Skklf3BNzAdLnwMfprcPAP6S7OZYYyTQ61hsBmkQSCTEX1ZVl1Tndr60PnOw64LWSzEUqoDbJU+f/r86dcv55fz5TxME/Vbepx5U3flMEGQn/1ryuPk5UQnGQ1huHSLSXEdgCim4pDYZ1antBIJ6rLMYZmA5kzgQ7iGakAt/JJIIeLmZHqmM6y8sJrApSP+WOtBLTnkxOQV6eeaT2Ad55609Y/Dco3ntmYPuMbmsXgMIEFjmKFUMZJBR5MpWXKV/XCGoB+2nNa7ri7rDsPGZRoiFCrAtgR5RvJ0FMkAdR81ElUCEHsi+lyuWsJluk7fum5oG6BcEmC5gITNM2huaJYHUr8cEESVrKbY/UUe7Jqu9S3qKOl7Qb5vmMdyKIchtY3/y5+uj59Ojw/ftd3j5+/cUp2HERjXOeJmsC8Bj22xBzJqAUtRCksCtKi/TgzM5rOpWQBkPBRg8pO1n/HuRatJeWoMemwdBJDiM36XJa318uGqS10v3zZYNxkQKKdRxAR4i+AF5JOhFbTOCkDj4Bzk4Thn/SlqGavLArkAClGgh1i5JRYRUAIUFVRO31kgY9YQiGqmOxAp1oCs0TwCaoGagYDIvDfQ1ByVjSf2emwDxe8jBJQxuSIi25TAQ97RSCYARrMC+A+Mk4R6ZyzmqYhNUZfFPMTz88vzX67n55SmE5ZqC8B3DtiWoqmbo5GWsdG3VgqoSmyzQjcBqLoZ4UAK9mwG1ygCaJYqOzBHe5F1w1UBIAx08be8Puro/04VoP1rl0buXh8kXmaEmdMe+1DtBVnQw0qAfI7Mwm14KBhAjjZW20GEe+UAUBd2q0ysVch+EqshCsdwZ8VmQPl42UNw1xOQSyB+SQutFl2qMiCqbDkycMDieWO7oDYIZgsIJexjzFBQOw+wlBcQK9CHkpC1gsZegrUhRNeVg15OXbXg2rDbt4RpQs9FM4u2OQjju8012EA9snOph1ZFeSAxH7PxLAOqGR7BRurxJixpbMmKObrqKoI061CmiAsivoz0z9FPQ/JArRi+Mz8lZmkgFN+Nh9qPRUODumGtAUpBU3puPkvCQCagd9Z1Praw6rF+JzZDAd7gAzhOkEPPbQ9Xt0gcyaK2TqODpjkpQGxG8VzMIU6ZxEdUlw+W58rI/52v35gY7GUu9zCJfcd0X5avf3hzPFQzVKN0Ff1UEbX7/XySHIdmSXfDVYsnE8IsEH/WpTEWjfUnrGoy5jSfLgmcsX1kSwRsJS6Mdxr/+/x7O0dqIxBQQcHtWBDVhnlmd+wyDz/bcmGZ+DzXoQ6bhgXyhBA0beNzKYOmf3z+eb6kdiV0n3eDIGnOSkqCsFYZn3Kxnc9nwFj1ONselmV/haPbc7FMRh91veFwNITkuEojC0ELURRnvB+fMcOm6RgBbAIOPi9JW6w2Fd2mPbk8E26DGxlPR1sNhwsyvMh6+DY9MJCQ5o+8ItkS0aCENOY0sJBENuzqZdAeEafkN3F/5NGroWAmcvQloQ4z8zldbAUcjDUDs27IlUjSsASIIr/01hkCdOMbtcEVaqmHMVOYCjY/obaktUuDTGQK1HvD3+F4IlAsxYzWL38ZuAFsHGhFcATKcgXg3rgAgSMFGHi2zuM4U7qgeDye6g7t+abt2qM/PDw9PgEx/Pp6vfTz+XIF42lO6PBGBHoYxGrKAxa1sZznZR4HVF5zmTwIAmj3N75JyV/PFz4I6HsolUHwhPlsKN1SOziuN37pfHHs3OOp+eH7T3ClDuM89+fhUkEJpz0cjk/f+VDVyfU+LcOYLpcBM4bFxRKNfKRZ2YiNJesC6zAqgTIaO183iwsQgXAzJCMgiwVUi9usdCBsz5ktx3jYdQPmbldUSBrOVDDSIkTK2m1IZ7i8Vyoj18aCAER5XKK2uOBiAQVdEjTwoQTusqVHEB6k8UNCCoQtBtd2KgDJw3WfiVUKyQbmGAKwpkYhHhOWH8SaEHmA/YLzLkcS1TDMzy9fHx4eAKhGlgfKmTJgUDxpD4cO3gDsfYPVjoPGiAZ0EMfNHTEDqHbkZrNz4E5A+w732Hkq/YJQzqcRprmQBoppwrzh5St0B4ceAJe0VO3hWLoJqMhxwNclBqCNkPLHCpGzqYkmziHdtC+ymeOOnW9OzEqY7xo3aKhTAnitq02eyJULqczKCQLcZvMbykIUIY7uwKjXsDCaugTqnvo8fFQdZftlWlrm6h3bVk12WT+ewxJqRifsJdQw4AABNYyyVg+DLFiANd7PY6gXKeMTOprwbNQOerWsu7BA0eZ1ru0aSIkcWghAlY4aVogzGu6NkjtXIUTVUG2nUPXizA3nk+ZAtX02V7G7md6AkTk58g4DOw4w217iOA3n8bVql7E4NMv18vry63B+WcIIcu+clmIySVqL6NTAUAgWNxVr1ViqG3RyLdTsDklNko2TmeAn4u0MWQX1lLzt2l6bASfvcgDwlLxp1P2GKOFHP3830cGhvWP0+VuvvXHYW/qgdNyxEbJRtwMYyQ8tZwHisbI+Fo14TT+WhU3BNVHWtopEhB66VBHJX0nd2wxTxWZVHkHAozBmFB/ON4u2IVlZP6G9h/hRO7SBxOsip1VWdFDkvwzzXGAaMM3zNIUpzHBVXJYwDlC05DbOT+kqt9S17zqpZJSsZgtIIRPB2g8X2YEJFJQl+SgcR/qgPClB1WWOdSFUzEbfQoFn21edoEBkbxEy60ReQ1tqEfIIaV5kNnfEC21eC0UJFxMcEFVFLRGhFfls0JO6nrKyiuR3wKgrPDh9VYTtJsacGZAtyNBwuWJcTryjmZtoOgeGlBaq9TuJ/MOBcUBwy3j52/L5m/X5e17vPlxvO/p3nf67emD/SN593fsPqMuj+zUVOzWqlfrP67EWALm9rBzLDFOzhEKuk3ct53wMWi2qFfenpg3NctiPEE03n4z7voLW2A+bIoVjoUVIfYmVyZ1Rc+aKlVVrWWzyCVhT/E3mF2uMqg3vqRvfDyV06TAvtg68Fe16KKiADoV9ttZygsou8Kb6uXu3dcCs2mzt9chqAHogFLxWI10jysxDsLQ+r+F3hid7sP3+BsneGp31feTkxcjnTnnjVQwaXX8KZq/EJ8Y1ul8RAAgmaK4ybGLA2KgevCaz7AQAz6gFnD9TtSUgQHgTCpXQEA3Cf5A9R/LP2Ikgg2NGy5V9PVZ9jF2beAP4qRkBKxC/8YZlk6DrLA9nEpXp3IJLS8YUr7m8THkMebwAPgAnkzQT04RZjVRoWWJvRPeGytOEFIBmoBnzPKXKX71/hXVY3UKokrHr6empbkPdtENYZuBDUhjGNIdxmCAVChBIBW8kDpNZ4KKXl+ZpRsbr4aOKrm3VHlrAP1ICi5HStJBIdO7QlL4omxoyzkDXBHSN5ikO1/LYtZ8/PVbuEU3lYRin8TrNc9GhH98ecKVcauZimPv+OvjmMBMCxKWbL3JMRQBShdeWaGTI5kP++gjoxRQmZLrCrEEzX9A24qxEK8VsA/vaArsyJMdsTRZxriJGvRLiV5TOo0Y9J6K+2fox22ncLE3MDPUHkUP9TlnDYgoTJExr6BJq7SFfSzgjFWmShIDprCT0LGIJnjbmTVgj6E/PGGADBUQRsaZlhlaVU6CSDwYmnFFL6dr7OI90RwPpIyE3Z84qLSNoB0ayBLG6kD9TdLv1JcwZYBrmUPJCEi9MhKvHpRwjTL/gWZbSHMPjpx9jWL58uyzlhXoweIE2XgMVPIY486iwNhm3Z2h8sfOXM35M0taEns0+3VyW9Nog7guAdVvfy4owILqAaQ/LdSJ7NacUTC7vOQ7YFCyYGlVVVh7S46nWTZGq15fL1NVTjxrbJv84/bluajz7fLSLsmLej/EPiyiiQncAeHb0VedQyMvIYxgaTRMmEuQkIPOBnhYp0Rg5FkFqLnQHYUMHeK5dW41MLSX3gGE3TevrGELfz8s8s/quleBmyKKYWsJaABqnP00x9VeYlLnLc9u249iPw7VIoSl9vaQ0TMM1wQ4u72g3kT3MVDfMpRtFWpWOqXhbNZot0Qenez90thBsNttr0qBu0odAh906+G2Uwvq6dQD9Pa9MPnv783eP5zYx0jbDi5WxyEK82l9TBC5PBgDLyZWPIPpC7aoKkqYQh3rMeNiOwo7JzlyGTFgDcfsJ944sJEfoLM0sUO+TcHNb/CRO6nBc6MwqCwZFpajapkrcXDzEBOsGGNBYLIfTaSZEcophmmEnj27KkkYMkxFbRlYFBAuEEoK7ojQjOgNB7Rt16/p+XC9hdlTFOV/OZz1Eu77apoMEewM4I9rx5xPRV2YBzOz1Qz7Lygeog8CWv0GYLMt0eNY1T2eTVcZdpnHEbmOIyvaAUeHnmq7ndSCWl67tHnxfPnVVVcw4jOxIgLRQOLrHT5+hAjFPJSK0nblvmms/IqdCt0hAEAMMsNTDQaqNRB8Gu1j/j77uHr27NPSuHbB2bvZReJ9Q3iXQWXzw7vfLO8GAVe3Ecrrs1bWOjPcNcm3M2XIrO5LaudzUKnfVCIn4W9mwP6ntTOWOsXtJFS7bP7vUFm2IYY7nfkDmozlz9qkAmoNemHkGq3OwxhJbAPgI9R20ygW84VQjQ3+s2DA8/VoEIgXN0xgroREJ7FFCFsCqVSCrfDXQMcJmnNv/2hSRIMYgbX+l0wLmCziNE8hUZd4OZlDSA1qHJ29qP93Z9XtukybhsKkYGYBlQ0qKSQsBPDmoZQd6LgZ0SGCvw1Z5vjgWTMl91OaqpkoGS5KQI9IF+lW8edLzvt01rLFFhgIqBfCitET4MEYodery4F3oNoISgpiK7Itya2MkGIwEapVDcPSgJhocdVbGMzoCKWrQty51XU0oSm9Vt1UJRTmbnRQnvkRhAmRTon0JmXBXNlVdF3XAdsLEahwnNJmJiKLlE+hJrqoPzUGGFs5VQM+4quuOdXucY6jINIP2C4xm+bYL1fSp44KZ3Zz8AoEIyAF9+oSPmeJ1mCaYbCVQjDHzD02VurY+sJcMWMM0zlX619evT58evv/+u6enp65rIQ8T8IfXuIxhmUIaI2zBOBSrJlAzp8AGOaEQOXcEMnWCVQJy3aoEvhIICueWtq4LVy/QasOVEeIvLdUQ/RSrKcQaLfByCGkY5zhjXMP1YSK2SHC1JDYommHtVZGW63xAI+Q8eEQJgb+hA4P9kXZiY2Jo3Mf9iJsu1xoBb3SStooUjFVcbpZ+kP+EaRtY2xytI38NaS7K9OnTp9Pp9P0fvvvlly9VP16HCcyAVExLdEtVs11IWx2sORAe0HMmJLVpgCFieCEFEOPtlk3u2kOLtxOeBiANOL3OE8q7KSTIyGAWKKOh5vR0AEoX2kqzc0Ssk+1RQ5CIToUg7TBPLGvkH8vAlGzL4qgCjOfoLgir1C58nSUKrXuQN2jEIHXfZD0FaBPNSrFDwHVYYz9QFHGaeH9gyPgkQiGUEsnO07CTcido/JfVAmyeb6/XK6b4nNvgmjSu8fVSLt2hI1cJEZejVImWUnSVLsdSD+Vuh9kDFKkSRzMUe0nLMg2QEprnYMkD7ibth0H4DOMSKRoCiBF8FlKaJxBFXGUGu6sDQN5fcSfQY+BVQGRmlm821Yz51gZjpMEOUwSO9Wi6EGIfhmJwUwMxVjCdBB/hTSsjJqIWx21aa0pnTCjVOCXlBW4O5HwRdFjiWcRXL8QcIFLAA8WdFyM2OUVYYVLvAKnvUvF2dYwgTRgHmGRd/sndV7MHffNVlNm7n/+bEqzVWsg+E/gqBo71nVd5z7VVd5ck5bJBIFma/aldyvJVshtoFJNFvLV9BAaTHzmbjCuVwmowxnrpJM4LE2728m0BKUeZZ5rcYZyJZwVmFQj9EEgvJeVmQk+QpYOTDL1ofXXwDVAwOXU5nB7GOUIH+PkVMrTYAOBHmOaBhQ5OirMy+TGVnx+PEnlEgUsZO7b2y++enmZyamcIgqFZTmLnCgkzeJ+YJ4kGanbjdl/3SJIt58PsegV4ML/nWbOJqHzfMaPQMERLm3LL6AEQdqryULwkKDmgBUJDlonHBUyna7u1twHZBwe3+rqqf/ru+2GahxF7MAKOMiG6BQMiSzE8XiPrknIKrBWxZrEZ1FT+LVyX+wIY1x+QpY8gc7uBVv56X+LePZvvJvp3Wf76At5Z+7H+P8oa3NnaoBHqjuoeSPklF9T2r1KmAlQX6emK389oj2bnd5Hly7aj1YGZ6paSTg0w8wluaku3fp+rUZ38Lhz0g1ZkNVb64+Mj+ppUYsOkV5q55oux8iVuGuRm1WzgD6tJAMCli9Ia4O2+mHzw/e0O6M2ZJinrXwO9MMG15HK/RiB9xWNb15XyEoqN2cx2m0koA9YjB7gRAsWOE5yBdUZmxq/REG1xCCb0MuRBEV4n3Qo8LYrVYiVlMxmRGaWSZqNQA5fmoY1t/8r62WuX97HkiXSCu4VqwVCZHHHH+bzUIVENwRTFvIB56VA40WIuPw+6PxRGA9CvdPRRFp80LkvbeDNrv51v8PhMKkzoLPgQVmXdtQDvIF8XpiSM0KMJ3jUQszTA0jo4ShFQfAOUkWvKPj+ZlWh4EvYg0TU6xRbLPLH9SiIj7kYgbaE6wwG6gKQBenWAejD+TL/+8lwhs3HDHK8jmMh1d2oPx4fTQfs8HesDyF4wTUc9QDYg8CgkuUt0Zzk/wzfAOeDFAW+ZRaBa2jK1IPu2h86jcJiBfvcOJknPz99eX1+aroMwZdcVVd0cu2/PwxTDaz8AlRRLWCWQGDMOVyDuqH+qC8LgJh0mSWq4WBFPgEEOym5wD6HF1mL+wF+PRXGd3BgLtavAiJ3Dy3W5wA3sWlY1CjEm+BRBrBwaWEErWwFTDAGZaueXhHhl2su4zUeGgh4kbXN0hieOg4LVSo+I+gpMBVZWJORVnhMeSPFWGKdHGOyEOU3TsmAhFK4KJLKVxXW8sitUPnx6fPr8va/b5/OlebloIFmAkBaKJGMEHg/uGH07sPI8+vLcUhshhmDliSYdMjfKBkzT4FroYB6PB+fc16/PywjnadZgfknggqSy+suXZ456kFTDBScVYZzKGURgStOKzct6F6MiePIImLvtIBzMyYmcj7Rhzhme1j1Lj/Nuc4ooiNhmz0wbINgEI4SXHh8bQRvAfa8qDwgD7FAXzvHsAKh2VS0Rl3gOYxGLtq67Q1OUCTrkzOxJ4YVeOOJbBKofZEiQdYpxHKcRYxc8agwrLPTYskFWA1MjfOoMdH5V4IOnae7HoUxVA+Vw13QdODOAF8YwBei+Q6HItV1XlXUfwvUypFFI2X33at311pgDmdGAzQixyZKQPEE30Ifc45Rw40EGAJ8XaQbwmbyBhJYumpcN8Be+/H/9b//+dvs3RxVzyVYpYnNVswGnjDGwi+vXVepxdWFcfRmz9fr20n+uk6DbbAO2sLjJpjZjX9Uj1Ne7n+Oh3LgLv+PrX/M7um0irge9OwLSFpGo8FxX0Q7b8lHRfvi2eVC1fYS2t1yuiH7EZxhe1GYXjBxYuawmQ3SQXd9HEBcZ06xPlh0MkTkcsXM+wCE7E+LkEWyAN4V2m6a5VDc7nU5bR0q+0OyGOldL7yvGeL1erxdIQTtffvp0qlwSkiimYg5jT0fucZzB7scWJ29wVk3MMiitSXImZcUBaMVq0IZvvhZcexSE251O/gZnTfuDLMlnzjtb0xq7o+40E3HGSmCPAO/W8MHK5lwW4t1kEo3CZr1rxI+wBKIqEnW1be6m1EqtAHS4PSDvMhrUQ5RzZYKgMz5681a9PyllFTfKMPvF8xF2X0e7VdfyGSwMoJzZELkZkxFc++WtFbyH+qzjSHVS1yPcP6rq6N+B6Q2PljlbqpoyZH9frbk1Qdz65tpsjXFEI2Cbd928ErEKVmyoALb9ZCMDQSYuF+ci2b992cSMzxFbnHktQcd2vTRSqTfSNpEykIMAr1KCE4A8EEG898bKZ8Tbv8lTcp9eCgdBhbtBCmWRtw7Q/htIcKA4YG93zTyr5Ug9e1lwqAaxG4HSwgQKbQjAVa1U3aYcqIyV9APLrinIXUjJUj12+yjqgBc4Szs1ofXrqt4nrVvTTC2g/p6hXDuoGB9T661kV8F8Y9YaPtdmWZ4uHx56z6vYce1bQ/4gsqEFQX7x0iCT1RpI6FXmMhcGffJ0vV29d8vbvkIus50jKD2CGmuO75wD2C/fdCZBIGUC8so4bPpsCDX4ntpKMoaTczvnDjytYZ5I8lqHwDSCQgfGjgyBmlY88jN5ejwVy1xAjGQo4+zL0MAKAB8xT3iRJ+ZlqVYfDr98+zrH1FMAlCoP3vm2JOAbWUjbwpELXokkr6OunWw4xJuxQe8wKcVOtLYAKCkz10U4NNXD4fDp1H06NacWrrS1K799ezmfz+fruKBvfyx8W1Yued8XcUQiNA/DNPTYJsYJSAmw2eISJ8jimZgj84e282hpVbiwh8Oha1rElSK2rmrq8lADIefK1HhI2vu6rbunmZIv0zT149RT+WWCEVUcQrrOxRCKObm0uEi2AESQ6hq0WrSHi7YGUTiEYEjd7OGzNiICnJhh9crgDxdt4Gl5DK5KTVXCVL724NRi73Ev1wnwctxyMBaqItBXsvz0+RFmMks5pWKIaQR9pUqFv76OtLgE34zKkg2kZRo8huyaQTRVIVRLdJoGKc7hreYAGh/Wu9HxOXcGPAYHWdetX3w5F3EsynRoq0+Ph08Ph65DS2ua5ks/Q+b/2/X1mtLSlL5lt3fnEZbNRuCPUbfb+gfxAYnzssS6oT0ASVRChMovhfHNZpJopLGpsTAZAC8GZnbKG7W0yraWyKQGUNkzBtunp2mIohb6ILieVdkPV2CT2Elc6Mv28PDw+NDF+VoW4B/XyPE5C53HeR6/e3o6n1/7vgdth4VG2x66rqlbKbpiiLQsLobieplezpe2Ocixhla5sB+E/GgR6wpOxsx3oSfO7gtFBXwdaFvs6tah/xKRy7nKdy0s1pqurOqICVWYJ2gAmCx4HhKubazT6QQjh6b2NcYrSKymXuGIois1xpVIsXDZKO8g4tw2Y1aA3W6iKdFTBDpbkdkknN+Q+1uam48NLC0gUi5aJZcYrqhFyuzB+db4Cb+vgLhqu+4RPu/syjlQm5am2jY2INY75u9Xpl/xN3794NN/Gxph1yF/xSSIi+lupgE6D5bAO++vggeZOy609LyxDanNKDj4iinkfiG+nqiROG96UEBdXGltnoPb0U4gf7x9sTyzktnmFPImm+ce4hKoDRcaZWKaXJXl88ur9jli9BEC6rqVbY1puSzQCzsgLNWHQzPPZ1+VXQs1ASWFyOmheLVMY7j00/naj5f5Ok4BJnyx9JCeUHznpSCIx7kwzvh4mwKt7cdinixhUvGwTj/2bFlmPHYHoPpvZoEE5HLVLEsd6IgMEpH6eNICRukvwgCmsZjuYQ5rigTsZeZEA/kF6oSqgse7bQ6aI+zyHxM7UjvEEkrrOq8d4N0Ddb/YpFb9dk3+BgfGVB4VlSUrbNhoaxusBmp26y0vt0Sc4FDr9O7BM2s7YKVY7A/m7XOU+V5YwXpgqcKU+8ybQRgHX7zCkjj3NKLOClioSLPSgL3v3eVaP51cF+0oPGLrhvB3NBrdyKo3L6sXFE+k3LLDdmMOtv6hJCD5cTN14stC1DSyowAhdoK+3FwEDZLsJwZfovIG2IMkst/4Y9hYgEDSm0kjnowEuqfF3nwXSCEZhmE92rzY+JxXjXSDdhNXRA/N0aTKw6yYhtTyo+TTxKVjWadmAxI1NecTif3paTBD2Zu4qsap6joNB/hTSQaz9NkveAKjbm7HSi7f3Xqu20yI2+afm6wcE+hwiwdTIVgOsxyveX9zxQVID7I13Nlc61oxkBtSt6saBltTAZEbTlGJT0thWqL0vyUrIF0mQzhMU+DqQ50hU0udSpYd1Ofu1wyfQU4HCSzEH4rqyAnCEsDHq/zsZoe3CEN/6PzjqTudHhvYzc8pXJcwHaBDWRcHcDsjnHFDmIYxjj999zgv0MWf5tiP4TJO4zTOI2ykQ6jK2RW+XtoG5GL4IRWOgZ6Hxva/HOHBfOXUmLgAGymjvkECEcJ8vUxluLh07OpPx+7xeDz++3/3j1+fX/71L19/+fXl12/X5/M3pLR11T4dipqcyLZtfDu10zTSOGhCuCVjVnAqX/vW+XKYrnpeiKMzXRSgjzw2MRQ8yP6lrFlgRteHumtPh/bz6ZTS4dJfXy/Xyzg1VTGEsp7KZq5GMIjdFMX3VvVvgh3kYAA4So5YnpJx6qAGIMP5GkkAr2fvbDkdDuNwvg592adD1yYMSqpUTE+PT5gGzxN04OHmiwZTVZTn12cUBvWhrtvS157CqCGWTecc+2gJLpMhxJ5OC7IfKRrnmwa1ISU0UA908PHA3AKQY+TU6K1QRjOrkCldgJTHVISiPnrfNiwa8Uhehh5ILOgINBTUAUHDeemdeoA/MKLK/SxClmzMwTVseZ1qWboiwYaNskXrnFyNiLUrL6k/qo8QbAhdVbk9KjgBfre2Ziijn2VqLOkpF+ezdQ8DJwD+0PVhl1q4AHSd53nue7iCMpADxgSrOl+1bd0d6uv1EsJEbc2mAW4ZgCP+FbViSyhAMPRR2bVucJUw9MLvyMUMy7Tw8rmiC8vKWOAIpulg0E1hQLw5LxTAwew28bpBGZgWA0L9mM/S3a5KtwSykgiFAYE526QTM4UYwztAzhzYVjKll8UAIpjaRvZEEzGkuEceS/IgfVumaMNi4bMtXt+jbFMJSVBrUq7Z71686V2+4N1Z/UYN8PbXVoOebf+4SUF+V0L/+1938qMfvU8WgNuyf6ONi1/35rXqSdtv2g5dNJ6aUjlfXz+RjlrWuUdwW09/k4u6af3ujTO2t+OiUBdtBQNwTaSirGFCQ8g7pVPEYMZzmef9qaqAY6uqS1mWh8NRsvnaLL1vjg+fPn93+v67fwQhh1cjJhTXlOPFGId4zbLr/PJkutFTTN+en+cE0SHpq0i4bca2B0s8I/6ZYsd6C0Q7tszVsoubumvfvFyRD2prWqNRrYyVI7FzHgGcTgWARIc14eWcFhkgRKaJ9s73UbaUNjBY6+dsr3azZjZy6ttm/61h1nZ/d8t5/zsf+1rse/DWac4gqLX3n8uAspgTafp2ebc16dgUzB+fSW4iXdyaaa0OBm8+net2V5RmXDtvX4bS8cpt4m75HLcnfR0g3KGu1+uze4I26JT0ojJYPR8DY//699v6yOpJmq+u2TL+gSp9dxOA7cllekmNkLz0JBNHWT1+5aVF+b7dL2nQGOeWTBasOsl/cZrIf+WkAQ+C9Kh5B0ESyyKZWWxPze84SV3bmOg2CUE3SFrmVpHeLZL1Rhrm1kYwZtUORavtVovNYR+d/zg3rj9YhPvIowR6mc2IZ/9E39zP9/9J3GODB0kMZ/OrWe8PTnPKzX0BDLZluRaH28jObpyqCPsTNWzyxEy/v30bw7ISlvbitncqdmud3LbojN692EAXV+F2W6TdKG6+qHGEM+n/ofZeDZXJsUQx4JBtx1jFcD0N9bGtTl396dOn1lfTcA3FyKcpQZ6t7uq68W0juc+lhL7zOC8D+odhCvFypugC5jXDFMeiaXxqiaQRklh3U0+u7UsUI2UeY2sTqNHj4eSKABaBAz7k29eXy+urc+47kI+7n3766e//3X98vkz/+udf/vzL1/MwvHx7pcNq07ZIZ9u6KzRK1IXiNFLRW9iPpXiQ4tAcw5WzZesckSOAaMZOWbGUcHkK11MHtxYAdA9wezkej013eErFdQqvQ6hf5/I6LQNg0oBAV87UGjh8YT8KsYk7gbHNecM0sbIeTb6J20bjXAHjrsan+ZjiCG+tGNE9KsspvFbOHU912zzWYEnPwInCsyrOoRgnpNmF62LpR/qXjdhvuB3RvlIJAC4NAQHgo8HJBmyTCtqrHjQ8bOQIHMjgqY0qKYIKHWfzMfHQvSjJSFiaujodOkzsw3Q5w8B4WZbD8dMUlmFcYPHriwpDkgWyU9jvttRuzezXvemuHySgvGFc98PhTEm6fd4NLsV9X92HdaS7PimU87Dp8k3AMZsOyuTymqBnt6K5IBQbx8dTU2JoTMpBSm1Zdw4Wwi8vLxRXsYIz4/VBvaCoqFwcGBILJO7epOYcTN8a1p92vraLYThD8+OM2Lx/2BU9fAkoLFkoyP4xZmDh+Y42De/cHCaNR9josNizzyVWnb1VRFgVa5YFuul+r+FO5BNgBqVXmP0OTM3ArNoZwW9Gt7Rh3lu0vk3l19usb9Sp2t+2387OBfzcp/4f1Qy/s5B4e3i/8a93W9FvdF5v7O53Xz308qvfKBj2r2pJA/vuWehq3cvXOurmrch2vzmR9XRWks1u1xEM1LqGDOEUIGUiIqP7teoAGQziranxrcprWo4siznMF/2o6YWdRdd1x8dPhXMPnz75Oh1gHW5tbx3P+YLWAjHTIYypH6br9dqP06dPJ/4cSCEYp09zP0xVqOhgr2hnvEw22hN137c8dTu1zHPI+oV23eIECk72YrCtgnkdVdluri0xSDQGQuFmFtxY4hxx1sr+Kdlt+lG4jtSbz4+MKUJK5HTtOK4DAUzAMvb91rx2+/omwX2n1v2Ndbs+aHeJuCcTWZHAsIKi2w6D4GRUv4YYvED6UjvJGtgGGKHLyCbuvv+Uu/i+ey72qsHr1M2oXTs+jP4FNpGKM7trsnvP3WP4ziDCigHNY/RTO9/1g3hv3nnJWebthV0NqrXvrwVA9nBQ7DZNaALQ7eHCIFsPmjl/bxdNqYNa9BHKkCa7Ka0b9nIAojOpTut565Jl318mQxSIzL03JWe54LQ7wwLg7qbcePe+t7SsUiUpRl4lGY5otNn8/ubH9NE6/LgsvFkna2h9N96qwNinCCpPaHiuI9qmFITeIe7pIRDYT8O27DT/7nGua0lDC60HeuXcdrUynnCLbKsM676hcwuNQwGQi5O9DOtbgzy0W/CUrXwJVI1GWaGPiXXvOItZCk4yMLGMqb+M0zWMrV8eu9qdWt/9+OOP0wjAC8Q6wVaf0KYJcy113Mqh7e5d59vH8rCU1fU0QlhmhH1SCnMR5jFFSIpuSS3b21KtR99Hdnyi+cjRFana+dy3dVWBQwkTmKVcJkKmvnz5CunP7sHXpyEsX5+vL5ehn2f+RuyHy1Bd2ro5Ho8HKtIcmpYzV1khW2tooeypyrZqiXWZoM2EjjpuAqhyzkOZpywhIRrglFvXsADQ9tV1Xd21x+5Y+Pqh8t15LIrzFF9RRgDPKoD17k6CEw8gxdaGMMl5ppWMihDn4fMM/XthnhNm4uM4Pj09PH36qSrS6/O38+sLQBp+mcO1dbWry4fHw+Ph4CsXpmnGODxertP5PF36eQblpBoDFHggrGHj9wbCNCYFAt1YNXqnKSx0qtJw/vo6pFBMyD6R80POAu3CCI8e/rWrYo3HxHFCX8blCgsnal5DWiqU/TUO0/hygbDtzMZ/KigiqefJhDEsiKh7rXTlnfxHE+aceu7t+d6ljW0dKhYAXPmbYRHvh/UiEVE5bwctZTUG1c1j7QNDLoCyDbygkiPMaRznGgMj1BpkPmDskBIg7okkfjwvPiKfOSCvN5aeanxs/zPdQIrHTw84PElR4dxzF8Btnhg6x9Ubd40Ym1pAgvMCozaYRVsfX19yeF7nAKy5QcWJiWq/GY93t//uNjUTKlOUs5FZ7qTsuh4gH2tdGdTHdKNwTGpkQlRqu1vVDn+5C477xuRdR1w/1JnfJQq/pzf/NvV/C4fI0mzF/8LX70n9P9JLWY98DyJfXyBH2ijc5vOqe+d5lpUvIIiWxS7rA2Z2nbkVx3faQ19ucuK3P8dGaEZjavQBZ8mNNM3juD7Sou+IdgZjCPtAYeVtHb+M/doDSCl1IfjTpbnUf/rlL4euejiRVnY4dG3TNa33/rvvPsv/bp7i1E+v1x42kJchwrI7gi87DNdhvPbjdYRe9cvrZYpxmqkXrxkUS+AF7MVc2ORrjEKIG/+6E+80T6xRp9RtvW4QK6J22L5AZ6IAbKJSCkkGKanS/scaBBARefwCMrTd6Jx3ijXERfHuinr7XOxfa3C8S57ufvmjxAsARM0jwJ/g6M9mfCr0rTTKtRs6fdJBV+wBaYw9Y5jB2eSQ9iJE31UVMK9meM1D2yVz+1HX+o3QWWt7bLtpGdYlBva6hjNKYm035xi3znN+K7PcEaBXFR2VBPZXYIArz+bv2G/wumXI0EoLzhOJjb9hAwJhTvj87qD1eoTVmTYbcI6qc/HJ4E7GDqerqrSBJDG+j8QShNoiZikpQqh7b669CP9qaFlptDa5s2f2XvVL19jdRdrsonAzAVDdzwsPzQCiTvC4mLiZ/oLDB57Vdt8/KkT3nK5tp18K8A/zxPi2ADBDwA2KI5AJD6p683Mj4AkTyhpbRwLEnmX/0vNGIS8Xnt0nbhMAX5kzdO4p2qnKvF0VyD5+YjIGLvoGEqOFMeRF1l+zBcG7AOfXbU2+c63edO94r3k/VyIWuJTMbLgWAvhmAKWgz+tLdIAPzUFmsTGGr1+/Pn+dpx++r1zZNe3x+JhSul6GfhymcWwrKjlA2QUUJkZ0QM8/HQ8x1r33o/eyUKWKAxFIInbjWhFdiU42ukF2Dclr4CygjDGc2g5F/Bx7Mobbpjy0rfdV1x77cejHuZwvwH3W5eEEB5Uw0nMmTJwCD+OS6hRcrGGR5kFQdUABAR4dCdFBi3pCfk9JVuBZJ0GtM4wwzCBgqORr2+M49lBcbCAwLfQFKpxxbk+PGgh8RowfIHd5GXrgZmtJEjDuU8ZEnFo1EbJKmbzz0D6HPxqG3YiTbLajZRCKa5ibpn44nbpD8+nzd865vu9j7J8+f4ppiGm4XKN38bvHp8+fvm+arh/D63n48uXsX/tLH6/DjCHRFGClJr1TK7kJQi0KDnMmkHTnFKoooxIu7Jr2gRwbsosIQgNmM+jpAMhCnndTVU21IPYDeESbgrJy3RFTlODm2fUD2APQ0AMuORVQskf2jwWZ0aH7DH7f0HwTn3OFzummIDF7dMPWj4CbFNeVjI3UUcvsL0tKMYLT7gzLPKxR4x9tiajSEsYqtUtYnlLNahiGpXWHBsh7wkQh7BE4MSkJRCKTCwjVysETuq4d/jUXhezx4D2bTth41FgKzLRZg/InMhxIQ5jhsdTAvPerbOiKOIBIwzhicuar7LVq4kfmFGIQd+7bq0WmVIBJwpFdKQe/dkmluyKXel3AXdjJG7GNu9cf2j2CYuEdtCCzeO2+7gsAu9DMk7ISpWOfaFXONjyrvgpuqk7Mvjm9d3d7Ex3Ftnwn9f+oN//BRPrD10dp/Tvv/HHSdvc+tx3QDztk64lkfXS8UJre5ojbVTL4zlpG82rkw7nbftbP3fdo+Xs8KpV5/P1AXYMFdDgybKkqDS8Pglpq6k+voALqZ/IdkKJYaoWnYppfr5fmxXVdCrEKcHWZm/Zc17CebpoG5BXnWl8fHtrldPo0P0zffzfP8euXlwmU/AkzgWE8X/vzpe+n2TmHrlY/DPByJAjPmnTb/p0hQOw9ZOtHlBmkJus6dGx55XanuuNKmBhRdjFLF8rcfPhEYagNeo8FlJWwm+348IlvJi3rPG5FpFjn9t1V9O7E7N0E922P9qN1pXRKGWaOrMVMC3Swl0W3si482BpKyHZNUzzTwaGBIdUm8YOkoxJyKLxD4n3Q640YNe8aQu+e1Kb7vto87LpuVrApoXxDApaGxF1TYOua5M6QLVrUFW8mACoAFJ2XN4dnrRCVVZtIpdSBKK1tYx+thInQDoO1Z2asIGGaREiDlxEXUhLdQetTrVbo42d6iCHR8n2JKkUosZBPOc9GtKkKHLJbjeyA7azh1tW4O6PtHaSeK3cMZbWqKPi2hNvRIEu6PxxT/lZPZD8R3VVQixU8byY5H8RbwWKK25+vpYUUlLc2GEGxeWKjzZ+AEqZ9GydtJdZTYtYInSbQZJ5TZV0bSXFZdItNz5Tvs0kqrbnL3qhoqwgXWondjvjevVxr9EBgZdcB6uX0Ca05m4XKHvNLwknUDudwCTrfrm2argOnswSWZSoL9+dffq5ddTwenx4jdHdO3enxwbvy/PPPRCv70vlYlFMqJyiWlyH2Up6nrFblHD4CLQBAgsVHA+KHVQ2uNiDsnBuLYmwPZkoH30W0kynYSP7PFJY5zmj3XK/jFF3T1t1pKT2gVIVD97qATCMAJjh37AXTPBRLqGuX2roB7x0iGJmACxjKRIvgsvLIoQBoD945NH4nDDFijABmoCF+gCVZCXD89XyZpqnyoAaXlb9+/ZpKVAYPDw+Fb5fiMk9hGEfXNlKQZpNYPJwSIHNScYVP3984S5f4xOBeYw/Crly33fl8DvP49PT46dMn1AB1c71E3xSwBeZcbpqmS3/FYpsCNDlZkMSyLt24FHBMgwxgxGRBrK3koHZEOwhA0XibkIYKk8nMNZYJx8+4napqcrBuwM7fGLYGl8vBkgLj7Fgsn77rhONiF9zXzfHQ+aXoljGMcEwgMp/8Noovgc5jarY3qchNU38XneFVvFbLa0zYcWC2J8i6HSykODXImaQ+jqGZvOCM5ePNUEDW1rzKQNNy3JITvdae19T3y4KuJhnFWLcA+KQwTRNyla6jGAk+EXiEvm+PB0NTi1kBejcNtslEt7YX5XZQE6fYX2HIAbhR9r4UPXfThMg9U+sRROsBEbQqV5CbPcvEfXhd5SLEJpngEaucx9q6pVgtxIsotsPPWFV082/mXVvOtMah0h1MpFRvA/d9wrF14ARz1YCb4qHaMzaJgNycFn1tZWhRDCu7deqrmUvuhgjrP+1W0TvInzWe3v/TB1vSvw0d9Lb9/3sKgL/1/felMEfb6wfpgeEUHvrWq1mmlFH5a2yZ2hvIb8EQvGuPas2NmLgw0TGojBkB0CEXDyTML3V/jfOKf6axNRVD83QIa6s7NLxHbBO6MkBwbaqvffVLeOjcw0N6OB66eTkcQXRxy3I+X+q6jh4T+YDyeGb2XTVg90NLRGx6IfurgeIVlx4VNX0vzUhpsVH+XQGABIsFsYUkdv7WIcB6EdbrsC+i7u5sTtTYAEXtw88BQ46SdJD3lTqBPTNoy/HPpfm20lXlFmTJDd5qrcjvq9m3heU+qxYV6e3K+WhR5dOhcB+TObc2UQU1x+XEOSL8EdyBXrWuhuyQlJzWGInSBtIY1Rog0in2nWO4Kzg336gdwVH2a0YvthxM8eFt/bAlhfonNVTWGnhrAXzQPjDxvtumFCFARuRdw5u+NyvW+7BnMk13Q5jfDgICqDNdtHcry6JtbFYEMLcuDJ8rXGFpz1Pln/1UiTdIe59i4fBDXVB73Zh22fVZt1Cb9W4FAFuY1OvZuj23AW2/B5PXWNYANag2sL1EiS92FPXpc71MQwNuiu+9VhD8vqbF48JGxptC8bfGrcalwAvJvQH8SWrkmiPlLwdMIa/y9chyOkUl8YlNlXnVm+J5rePUrNOqWRIFejjjXo+HmdsmY61rS5d04zbsxwWUGtvI52sQ3tqi2zla8C4KmLIwjkA6VDKRQH/zdkH3h98tBZCZ+IA5OLqVzWGsFtTzx+6hqavi8+d5gqbIpb/2I5Rh2qY7dB2HCpoBYMRHex4czzCOUGkjFJA5X7VULR4uNoVyHDOpEHRqUdgsgYxBGU8zEC//1//4n8fWPz2enj6dmrahPzy2iP/w4999+fLl51++vF6uL/1z5Xx7PB26xzDOrqlbfxRUJMLzdoxxHsYwhzTOwfUktDJriqlKZTcnNCewIGHiRmVe6gSiEVkVXevwMEEWN8V5fOq6Ioy0Bx6rOdRtqjvnmuJ8HQoXIVxd1FA2L5cGqJi2t95Zgj4cSe48XZmbstxgSixDbmSpCaKltqtkhRJtPaOEwThWPXTIy53v+v619hWKNRhKlOfLeH4dyrJq6i6lappTP0UIC8eprEJdlyNHPgHtKq7lhKoL9RkknEhU07TeglcpTUfgosIccEGmbvEV/ZtrOIV7bGlkFgEdWKYYplQsE77MaRmX5EP0RdFBbakcxmGIMUAinFXoBjh+87rjwKw9Bawydtr1iDG91xyFizz3b3btOamr7R8NNuxys4I/knI6g6388WQgvJvL2ecz29ahWYLRHh0AL+j0F0CpyYUGz3nddoe2o3ILlgCVo8aQehr4UCIT1wCTs6omwpM7rOWz2CjwZzZAyLop2RkQ+YMqAfVhbcOFj11WNeJui/k0B5s2v7ZrsP4XY1lu3tl0GTMJ9UlEf2H7DNW0udPsYs6KBcpkxdU6XQ70ZYk5xbY3CMiMU1yv7NZuUS9M87KcqqrLop8oMc2yWawNNIB7u/f8Rqd8vZ13m+6HCfffWAD8Rkvm7Vb0G+/z0RxDNdlvvG42DDiEGzksT3a4UKqlbcxS/u5IjAj45t3WjtR+LKDFwYimjiPeQFUaxKk5RyWu1jgoS1lME9Xu0JKCxAjVQbA+Q0InBtk6MGzAJCJ+zOFf//Tt1DbHY0+IoTu06GrAF+bQdk3bNE21MJlOqYGLYNv3PR9utLxAmKOcSt2GlJ7nkHzfuwIQThNc5SFudydnJ0jgPMa7eZwC2QideBgHYTP0wKj3vyb66oivizCvNM75lmWu8DArobBERMhDsVZ5DOqEUQBAtA3adLPji54tX3vD8z258DfmS+9OAO7+5LdfOcm4zctFO2XnlL18WZlkjG8GgDGgW7G0X58mtnOrbX93SLffwLpn++UdXfujE8ithw+er6xceVdmrPC/2w0gG8Jnki6NTd73VVgnk3uVpPtpzO4gPSEfSZnxDjj8UaRq2za7dAHas4pEjeOM/AV1nuRDpO5feKhQW18tVrEwlSqq2pnwmsmeypjJZhdvUGfMV/ZQfzXObi7BekWrsuqamsmUwj9XAm/39TrknjxvH4cBVIP5gFNhHIl1U7fP/qgAWCEEt8dmrhFv1/wqciARpLUAUB2lY6SghTjN4FSsK8FutNRF7h9DW7d9PxrT2kx9FWdd1x3tVGQghcwS0UwToftOPzxQ07tKX1wP2668TgDSbBblPC8D5kKe5XqB3VIJAVAJ8NOTF4AQ+V4ltNpDP8R5Hiu3PBw7+GCByliL7xSpcd6eHudxgpQMkZYBEdAXrnF1W9CRLaRlRlMUK03DQC4q06qCxYC8GQB9sFWfUsJnAD5Qfvf5+yXFfpynX349n+vTQ0tlyaYJ8fDw+O9Pn+a4vLxef/32/Hq+Pr9cPz0+CWQptj2UIGtAJq7nlzIs5ZTJ7sIx6wn1uAABAABJREFUFtWMNgJa2Aiv5Gs1HvCeGKayLDoo2aPISWHGOb5ep+pz7d3pcPQ13InDUswp9f1c+RoGZPMI6hntvYHraDwsApAwstI2AdCiquolwS1HgAhVBNbaMVeAle7FX1iq8/kMYby2HUP8+edfnSshsdr5pj6gNpgXyMkv0VVVi+Ovv728xghDtGEMwwQcU+Wqg2/90sy0HsvA8YqrGkpQ7MRFrAog0IgZAxUV3yTQhaFHD2xPVTYwaJvbxj10dVO30LKCbmwZl3jtr7EsY3AjvNeqVDTOHXx9rA81mBUwk8OeX3mg5LEm34o78qX99C6pKzHnsWB112jLIPMNpquX5I/vIzSyEjb+LNtZ2J4QBgawqBWmpyC4tUT5cSJ2KzHoTkcoE8UwDnOsIzY9wumapoMOVdOpwCPcqQj1MgoazZm5ReMluRS9b1ejUjMwyQeQCbRIQoh+gG3omvcLh6btpvJu5igL8DmoJXJrhZgcGouKwrcieLTRAQqPbtFZXw/+SICTkq6CJ5PKHspjeKFW2Zi32exNz2Upy//9j39/d+n1f0V0WMNv8W97yQzs3X/5MKd5XzXlo/+kUe7Hn/+27bSvZ3Zff0Nl5d230iLb/+Ru5nv3zUf/yd7T7eXdYA/rnrexPBviOO+alL/RM1YCoY0Q870F7mOmbm6uPHbNCXMuMKFVI7SiMSfB0tm7h+hweum5Gsx5CICWiGg1VOTwxDV11bYtNNAQiTAobygnDFYTuXTDcOUhsakC9eKiH6frNF8u/aWfX6/XYRwBRy2WQEfDFdBgxW3u6m34EjQINtI9ALsZJ51NNFia8nqwP3ez8IAMlF6yxqVUXdSbaAqi9pjmZIRsUc9FDhT5BSKaehK58bzeF9it396dNSC+WwBIHPM3XvePQ17/tN7T2VGu1wap/KecKFPebhAkk9xGIkktfikh3kKzTmdA0+/mCNeo997CAxgsW9uys7hC/nZ6/JuMC2RA7Th3bYLt+qzokd0nbCWBSLGmX6wOh7ECtmdcmjv7q7cSyDgVIXKA1psk3nISTiUrykAwjvMOIjzjigGhDOzBWukZaYxbiDiyPIbjEeraVIszYwrYPzrwrslFw0ubqA5AvDTtHCogIfsd0zDGrBlq56uiyCYYuwaBPRmLk+WcrQojtdsETBom2dydtuTzRItZOYHgGUaBiIIW5wJuZX6BLQKZi2bP5/6NWZbd3/yfu0nF8mE8xGQc0cZWwk7TSUbpTIYp2UFVxLJcXl++rRl1TgNUcmtpM1raOrwp2PIissiv/G93/HZhkaDcPhRrMXDXapGKGnp8uce2Max2a3irMdjxSfOo1aTYgkCKBAJuADyTrMKEsSuvBLvXJtlXRTU3wOAH5wHoXK3qruukml9CyhHT0X4aX8+X8zCTZ1U63xS+LbyPSzEB9czeFXd92GjgWgnES31BdaaASTNRNWlaAQLUVB2lFSnDD93UFOeU4uOj9Mu70vkFEvVxGAZ8nScAaySeSiFzzoH9PEDCSNJwaKHz9hVlNbmqH+k5g6ex9EXsAFsB0LP2uFyQ29wE+8v+3GNuguQVzu4Q23J16Zu4lMMYrwNom2Xhp5hez9fXfryQHWHNTpPC41txhyQaFuZxkgelniOkO9btmNaOiAONrxWs9Jsq23AGMTQ8Tu9Qq9agkAIEPo6jQhmUF+CAFvG/WH87pxAdh+4IpJpvw4jz2M7zBAAYjEHCNI8FXKiA1odHF1dAimPjq4dDezrUbeOLNJdLaBv/6eHUdTAEi0t67oeXa//yPFyuIaa6LNulbIsS14dDxxCKkIrZ+cJBBRy6QVk7a/mN/Ge9IHVj+91e812qIfsovuVjwYQO1ri90I0MaFUQuA+KjVL35xDETF1V/2NGShIwvH8x8SALgumA3pDqcBwkQkQV3RPvEU4PdD8oC7eC7BQfqqoSxx+9PXx4rSnQ4eEkCJz3fgrz9XqFBG2qzi+9tgkBipD70CdkL5+t7ynfkyrfoKCs4C8+z3Gc5oQYU3MwaTs1nnp6NJm6IJ1e2YpMhCSxCQsTPHiDYHvCEyMJpGqW+mveJG935zfxNsfn/SZi44g8O9hE+u7u3O96Gbfhb6of3mk33v3kb3ivN1Pmfefpd6r93P2OjmHt7N5d0B0U52aTe5sF2vFsjBb9qvW31HiwV8bdqSZ++85vb3b+T8wPzQ9TUZ1kocj0mohYCmEwi1HmAlE6yx8FKDZVClvElARmUxyFablU14DY7MfYozguMXasR++r0xGW2r6MACaarCc2vK71IM5wlMz1CoGgYQ7XfhyncB2xDUBtC94mPpGJvuYN2XONdbn1evnzvc0QnB2NtbIvHkxg9E2jHVuLLhMaothZCYEua9cowMgQW0hFCimZzK7e13BHAt/s7vHb+3KTWN+CoW866x9MkD6q9Ha/oRstnOL7Txw6A4h69lZZulS3Rh3NW0bQVo1rsLg5mFpykJk/+av4rrk2MPjmLrF673WLlLhdwG+KZ2WH+2sinU/JgO7mlvk/cwGw7+vvG1Fq6K4FwBRh8GRSEtweJmgvh5JqDzGbgu12RC43B8wJOkBt3XjkNN++fWGfmOuZolJdV3rfLGk5HA7fffedWGJrJbDiR2XyYhBSYBw2gFIeG6oWVjR4Z2KZu97rTdyd/j4r5b6CksZKImrnkfCaOwLrXzAV0fBtN43Z89f3CLebC/7BhOTdFcFwhPxQDhxKyfUv0rOCHBddS6wAdOUf/vCH9brNYpbihiI+Q0G7kHuDFQOOUPfVUNK0u+TXrA1vdZAm8kZjR7l9bNY0qwXNakezmlQi4q3R2gqt9Vqtp79vm9bQcc8Ozew7zPMYwtLCU4V9El7U9a18bgYJgUJ9MpdQXxPFP0vVJ1bVFVwsX3//GSsNjZhT86k5+n68DtDA+fLyGgfkWZGjTGTJYIUl+PwsKwkbiEQVkMzJ4ErGy2hLiN6wAzLXPk5z0TTV4dgdTsiBxrEvpziGsSwnNPpRXjS1W2YKqGBcSjuYIgSH2SMcVtRd0ZyW16OCnGcFpZKyjN6RhRYhnw66pi9hBOxAymK/yS0QbSm64ymkZZymfsKGEsvSN21Zh2FKI8A2S6BcQkoFWk3TnAhx5MrW+kY0wdQQhZzqH9p0EA1DFX+DSDFWM2JmRAePnDlaCRfWKN/AGVj+OaD3xLcNtHYG5QBsW49ZUwXZTXhilW55eDyFAG3GCTgmIvUJ3oSRQAywa4byvDghaNYH3KsEyEpbVGXTVIWvkcm3XVMtNYDsy9JPfVgCaOPN4ce/+3fNeSjLl7i8nC9xRDkGhVGRnbXaPGdOjGfVvgDY18BvVQ3zc50bUrcTgFUMZiUQ5/ic56QkwRv0lxXiOPZLTCu0BjM0wISv3JfzAA2dezZkWAaqtwXiQn5ecj6GqIZ7yXrWwelgE7yCpS8aLjiQpkWnX0doJsGsKqDaiv9k8cPuDDzJ2IxQYrB1A/P8f33/DVCQitCjv1m5VLmaHQsYk68hPleVyOVBBmFakSfd1O7X/AkVECa1UE7nRoH+I2YAoQKpPRsOsWll4eI2I1jvl78dv2w7we1r/5O/pQD4WDZOfbv3Xvc9pP3WcvdPf7UkeIu9FifhjsKyL3DfvsO7P/mo079a9uTsxSKpKH36cT4A/Zcyl7urlHtgWYR520tsV317nPeDCLvBjE7q+q/ZM9SHXESHGxpTKdIcXBgalOQ3tztDSrgZakumPQcVTQj5mEw6SgiTpPHXGVEG6vLZzFuSBfHYeTj/aqGBYwpqFJTjDO1AsnwRSoj/VPDSc83aactmgLlfk19Cv90VAERJ6CII/MuT2TVvTEWRRDS0AqoSMwpbJxUEifhxkVYbhLPjsrS1HY8BLejht5rgrjxNftn0WPbtz71jxv7nH83s3n5/X0xm0hgb6ZKDqAJbmFD/1gTJVNxTg8Qi9yy59jge2tS0bj4R4yLpfkmngYMGVqZivRr3lW6nSosy9VwctG3JGY7IBCXs8udW4t3DtUtqd+nmttBvL0h+rnWdt5WfS4htoyKDKbMyBLtAo5OvdblbGy9zJDCK5kYi+lgA2UurV7/ALJPmqz5R/g0jhaZp/t//5/8pN49hGM6vz+JEPn/7ljBNRkKmsZi+79Dem+lZW0VKtmNPgkik9B83DgC+av3k4fjuunHz25kn5NLLGnLaGrccVH9IuVgtHgHcpU2nACWNaiNzcbqsFb51QG/7+m+X6Ir/ehNy14i33Tj+WAhrlDbYYzMKmEcuQhLao35Zag7m5O+BkIPCS8haBJNhGECl0OiCxvbixnGgl7HbUhgFrFU4/HxfpYVvbL/N78wAzFpFWtBsj9tJ5KGkNDp2+z4uBnKOLVBnZhd7iht8gRBCQoNjFWklSyUmYDww96fdFQZQQu3Ld8YmnIe2XkCyRWqJohXiJHNZhvMwqzfZAZfTlHVTl66I6bQs1wG2onOYyU1MIY1FTP9/5v61SZIkOxLF3N3MHxGZVdXdA2AALPZxubwUXhGKUISXFOH//7h/gNxPVy6XAGYw091VmRkPf5j7FVU9Zm7uEZFVNZjBbqCRExUZGeEPe5yjR4/qbz59ZCOqLJ2xIKuDRf1aQR4twre9b6qydV1g0Wyerpce1YXLFdXeDx8+KBzkIonMjUkdUooApvgyLqN0fqplYoQDLpcrawGgEmWa6bLtfFNVEypp84gKbRiGefGLG2akrw2PpfE104ry6dMnWEpeztfXt3E4n67DeD7Ny6kP6GmGSxuXAazwcKucq5o9b6X5p0p1AmFvsrgGOiYBdIrFeLhk5Su2LTlm4VnNkEjCjotsCimah5UWJlNA/1gVANpW86H1vi6a0jX4yIrn4MJc18vzNPnrFbae1/MV7s2CVBYU3tEiUhOoLmroNhUFPB2WYpiDW2pW4jEEYIcXAhaYup7hJXZ+O12+eOeb/q/qH+a5reqDa+flch7ROjCwdLmgMIGyvDmp82XfoDnatqq86nUbj+VUn/RI9bEkibOLT+iRpeIiWWdIk4CnS+9Y2CTAPkovYyYzPpBSecYEwvmmBCCTXcaajY4aioQOGI+OPXKwlXDIvzTlHVSAIDZK7IOlOcxEyPygYlR6N1wwyNHiTLwMx1z5KhRwCOYpa0kXLqwtZZcVqEGEkT1KXB4gPqt6cKG2kCDRNXlyvGJxcVTjQeyi1fJu2Cx0XZQXLjgPG5XrkqvG5bjwrl/BZO8R8p1k9f50/o+tpjmGVXw7lv9VckvEw9777veTh/ydXz2N3ZNHqkHvpwf7aOb+Y9N08X4G8oiFHB8LjYal6Y7dj/QA4Oq1ydhJz7YIixO37NKPEoKSHKSJQiFVoMYI4gQE8iy0oXSrBgJOYE5TtefM5ee3E0f+gAyehXhhrC8XdCKxawt5Ad3CITQCD1O6S6ZpzW79YmI6avn+2uZiu+26DN8LnbOYVhazWXdkfL9DhbeUhTuoTTxfbHhdy3wDHFnGHGtiwLCgsq77tRhg0253x/Nbk9egrGk1c1TZPXah/73QKja9Jp0vNjcpvo8xraKT2AO6zPA1BVlInBtAh0Q9sQQC0Yr3nWIpQGPpAGuRTkx6Kq3LkaImLNLkMiy8fnd8707znemwi+alQra/y1ypaGgriRjmGTHczJEq9czaHxL1x46X7W32FRZEWs0H2huAedYdbh17eKe+iOv7AJ4DYaHqn/7b///41H369On5+fhXv/mb3/72tzqFX3/9dRj60+l8Or2dzxe0C7ddXftpAj8V/qckfA9Dj/hrgu3RzaiwkcZUfLPmJBLMLoGKMnmo361bOKtw8ImyTxB3DsRZNhODzCVtgHQ3bvGF2zRghxTmUq13Kjz7aQuEWbZLhsib8TA25QVS7yCth2mZ/BTQflNcThdfG4+r9k1VG+LlXS1xblVUTDEM7Dyg0bLdpRUGI30xzdgGYwiHiOiAJy0TMIVCFEm5Gzt2/WOSpDoZO+wi0LPL8Ld3cP3HCMACZBjJIUBAATMYliyw1VbtERKYFMmHjE/URMK/9QND93wZ6xr1JzQttKSPT9DHvA7nfriczlc0YLXWihqW+fh0rGrvan+B9ksJGXmmyL//l3+GQCS41sZjUehPgwXbL5LOSSiL5+ePZXGYl2mYejQb9OeX0wkuj4DnXeMpv1igDXOaEL9flzAi5EGAREM9UzAMIOU7Vwwwt0KSgZIsb0NoEJJXDnq1TIk5C5FxDGG4ouIxTfPhcEDn5VyU1yEUTVEfu6e6L5rL8nY9nS/wi3akHoFSz3ArVCBAeuPFmYoUWTf4Esgbqh0GyQDr56QaLXUDFbU0wjWogBw3jZifkkJDiAfr34A+Do4RLDBQDEMrsvPFGAbvi2Zy3bS0LboCGg96Ckoe6EOvpSfLIu00z75t0HFBvACH7Gt8PJoxDke2n41XcPlmX9W+gmnV5Yqdt4ao6jz301s/Xr+8heX8+z+GsuqWshpQYHDYYDHwA50dCqpMcnoMgX0JY9GB9JgGcypOpp6ffA1P68ytSn3a7Ha18bqCCAETLih6VUtxaNq26/RFosRUFYulsLAefVOLApRmmVJo7WcGFN6QO2zjwloU2EIFCN+BAsteCooGuQbyqNpfZOsreRThCBB1nWb0K6IZAFLa8wK+zVPXanlJM0XLjm5fsgUwRtBSNm27wN8CB48SLDq+i6kYUyNBrIEYAxad26aiilRIVfyisNYCKfmsAbbeQ36g8arMEzJfbC3w4Gq17ChAtn3yR2pN3jAKVqv2b3pIeOY7/sCUOr4x+n/3cfueu/HW++H4plx1U9i6/dWumrO+vrE6Wr9RGsZ3Dj72GCWuW5wzDw1u7nUwaw7JKZqnwyPECIocNUR4qBMilgigBBQICcIMqWX+JOkZrUXWDIX2LSzOFAQpPS3F8TVkDgCUoZmw92h6g0zBsoxo4LJkvSZSUlWz9yYqx+itHMEcpU6QOXexvsvOJhRVt1d7hzhurdOKnPu+Rs8W/a2Iqf7CoaVBOQDFeVkLXZaibegzgORkDgsk5/jn1SC+lOmQGI6IUobI+3ZsFqqq3yj/xvx+6USiRqedkbb3W3bQbtRtxzYar1Tn4zHq64jsmtp9jIyr8jpeEV8UwEFIgUDpfS6KrgE3UUux0kW2gFMexNiAkkvTf5URMsvNf6t+AaliVNCPHVvZ2hIjpvVcondJHPvbRx5uJpOU3ey2Um9mBGaBoARG15slg0UMS6DGrHNbAsAUt596fbiCRyJjEnDAJhQQhGTlb+kpUUhJpZT+Og7LsCyh69qXl5fXLy/qL2yapjugP+zTp09t23nXHg6H62WAMesQrqG/XgZfV7VvnQdMOoUBhBZ4CWF7262h2Zmu2X5Su+JRrYtPMgvLW2CRH/KKAZSKV5isa86vqpwlH5bdDGtFeFAUvS1nRYBm9QfIh/GN/HTK1kvAgNh61egc8zYuZKoRQqh2KiYQYQEbkAUwzaGc3LoAajsmdclPE0hWvH0QAkkUKW2f6/VTlyG0cUwLiNlWXP8twY5TzkTiNwsvOITkmCfq/+5qrDw0fSUCKRQPXdIMIP5YVX4GAEtNRNahdLcVRpK/ZNEzLa+wk7+9vjV1OHRLVxMqLhsoSJbh4w8fwtRP0yCtG/KL0BCK3BJy+eDHTxQjXdijdXrhcsRFDlSHEPoCuihti0DQzQs9hHRT0CH8en5t2fd17J7Lp6Uduv58uI7DL79+KT38CnzTNa5RQYn9BvxsNLmaIyCXjQkjj/rrSwk6HKoLSEGWGfI4ULGsoGhGdZqlpi3Y3COuvX4+X3957dvjAYh66S7Xz5Wvfd0Wvu7nKlRNqOZQVdcR8jSoM/OriwKBJxXP0FORbK4pBk07DNwYk3xiwYalQSLNxIzQv4BwkhLYLCEaLKuRZeYpsFcZcfhYBKG/XUJsyGGsBtBp+3Ea+qVtl7YrWuRjbghXaGlOchmDAxRsZqYJqUdTcwCi+4UknXmal7r70I/D2KM9AKn77MZhGZcJlYoL9YSqaly6UC7jUlyH5fc/f/buUNXovQozNPc484u6hhJ+gjrUy1QuxXDtpfq04/zc7QFQf5TWd03EVEK04qRBF/Y/mOAO663guQmEseXY+ePxg7qw2A1itNJq8YUrhhHMBX2njFMheMruRHmW7OSqKftDIT+mjiR5TrhAFKcpkc2XjpKETdPBCti7yNss1Z+CDZrpOASeJkp3gZMGehURfGdCcwvEQBPoIGNgLUSypJChNXNO1KGyiorCKjwj44oiWCZ5CAWOSO7gIsBlpSopaMQQH9w5XGOUPSuaBVZobFM7D5oYRbeLty/dF1vGH1YA+DBzxHz7SeLo3/bgVnTvG76FuvNV2s8W0n3vo9bA8QaRuku92L3n9rdmxHP727ih7l43Y69b3OsBAIwhe5ftEBXT7xbgUmSZ+EhsZiJFPV0NDiXKT/OVqBFEL+mq6uopSuxH13sF2eBAq1HGkkIcOTQs+D5QK9m1ZbyYpmst6YjS5lQnofazDq8CUdK6dQuprJg/n3nsoS3HwiyDLbPoQlz5SPNYH6mfSz9i8BrftZU09sXsZZKCtRfgCTkg9NYImKXiQ2gOarRBuSgmBqydiB2E3kUS9Nb7JWVI3d/8vt8ddemJGO23cul3jecEKhhJIhPuzcabEoB0oZaqaFVABZ2DmBVqh0VxvhpioRXG1D9pAhSzUB22ad5HgFbxk84xJGMyO4UY/6SKjZ3jZrpwMFtpVedrEdVdJ5BNE6ddOi5tBuGbEVh2hVcZ3PwqJYmGGpwoGzKlq7qxiV2wEI64XC7XgbRya4VVnBdt1UhZoX0lOij5bxi1zkXx+vrGRVxzp+j7/toDqP7dP/+LOEISxl5m6US5rqPf+zj2/dpUir0nNXlrExA/hVueQsh8CEWp2o1+kfYP87vI14rt8sK2e2vySVNIVa84t7QZZ1Kk99bMPVASe3XyQtZdnWX9jpJVVkvj3+rTHLNIcc4iniqhZGrVo40SurFTamBjwLopBAkHky5hvmYa/G/XyqSEAYjQAuXR7pjji1l2OpOFsVL2HxZG0iVqoO7CcmJw8jE1/1cQfzi7RT7UX4lZpyYNsYJBjcfS3TwtS3E+T5di8mXV1g1EaBokI03jD4eWXNAioL99GMeqH3v0fNMxyjEPRPzvqx//4e+pt4n39T1pD0weYp5jU8/cysr585dT613dobxAVNI1h84fWqyMSzlMoR8v56KvKohAFM6DTg8GBeF1fmzgS03TYNVlbztp35P3RQ0IaKgrNAeQms+y8VKPc6jr+nztwyvc5a/9vEx9WYzYFaAeg1h3RuBbDAEiE33AE1NowC4CwvnI3ugag4xRF+JH4QSYczCwQz2YtpRrT+UyjT2q6tEsGQ8OqHN/5QiAIAT3R/bCVg4BtMgo1K/HaJsW2O3WuPEkFBbDBHj74ufSB6SAxQWXbgCOwBFPS8Gqta9DuAoS1hLQQbcgHThA82oOvlimKcAYAa5kzek0luWlrPxSOcDV5aHEH+Ig2FEQpmJCyQkWDhWN80KJJj4sWsgPOD4Rxt6EKEgqMhWsvCqYO8Hnv9ptaoZ2xXgMbQc1JNEWRBSzc+WPP37q+/5yPgMl6ftlwZFyFo+qe1rCjPmCfNfEVOQjviGtWHBdobOwcaiOQLHD3JMC6loVGp6RXC3L8tx9iDUulBO5O+Cddd0OPbS0rpfR1Qf4cHSNBypEkIjxEtpvYvSS4j3rluGjLN2A0pWsN1l9X5DGoLE4mKKm/MK0rRF3MrUAXjFUHpT2rGsvgVlFNGbcjsZgzASpJ1PAQoGCdiioSqR7BBMQffGDhc7ueH5Bi+95PO4BuF9JSB2DtzT9u0++JZHIn9y2G75fBNhuFeshvZMw3OX/PAr4tpb1qeQi/en0tjz4y6gd2wuSXo+xJ3XH55DvHkaSZoyU1a5NJwe4L2UVIJ5CiUJsmmCVKbSidhVBKGOxgs05gsNGHqf8nChlg0TUAiUI39L4DOtrjQpVrLTz6KUeu7TU7Vb3j7h38NRZygm5rVlpKApLbQz3k59Ij0sBk1359eavt6kqq7qBMkPX1B0UrNH4SYpncA7mlJAGi9i/KO7TaL5jTPbZgRTVRdSnE6PkaCP7zdwzoySxmzUPlRLzZPc5CVVfkwRtVCJNWYBqu0/6lqZDAhM/Zy2tjJlxEnZou5AMb+UPEYeUXc9o76qBpBNgQL/2P+XyQfHkV5pQOgu102WxVJ6ib055N/UiGr1WFWKiu4ZZWaPz5oI3nrIRhouT0gZJEV8UB3JhERxcL8OV2iWQKbz2COIvvOupBw3oK1WmyVsxGJ6LW9eB2NMIiUFxmwB0P8GHiMdnEFcMT6FsGCUmV/JSRURtHa5rjmsqT5vBE2/rvR6AO6NOP5lIW3Yd8Wz25MnQDcRYIVImF5x5NufZ7F16zyN/gNy4MJ/CTKGluFXEc7QGHqaImIOYtCAi2jdStRzCejArizbqZQUHUKGWafzLzY8N/WlSWjcFFdCo75hqR0R8Uwr9aLZuKIWkhsih7T2zy+1SgDsee3K4znHrn0FZlFk1FcgVjpGnTpKyUgJblNgrcDi2AFkmsGvYFOXn4EKYvnz50rbh2HWAxV1ZN/4AnZZuGNFlBV92+EES3F6mZVreXs361NX+Y2d6JlVV/frzH9NapAYGqlOi3AHhrDN6XWRfK+ygPRwB4oxhRBM9urEn3NiZNrPsDVAxQ8AOli50N5CUXDgfXBVA0FhCXQ1PILc7gZXO1WGeQQXpjovv5vqpPI+n63gepuuEgvVPT3DMHZC1AK7tKbU5oKEMN4dzHZG7pHSRPopRYYUXKfTiijYsVcsU0tzxuAojwqesPDYoFrKwU6IzuuZNgsAGxk7MbmZ0L7CyBs4Zaunk16LugyZSco/muRzGEtzSaqxA8UeAGAA4g1muJozG+Q4CqNAjkprQ4twyVhfqpDINBo0KOyTXlQsMsFiIgDSnq1yNmVPWcwl3YKQUkAp1oLKW8xBgulIr1yQpFCMNboAYz9rIdsL/u/GcBnzardIiplA4T303oRRfr6rqcGirqg3zWNd+XgL4uCCawfb5CneCBRadsWHJNvMszUC4ov5Y2XnE2ccjwel67zvYYpBbDDMEuiynZoKo8KsgPhGcKP/Ankeki0jVlmVuoIYMQz44KBCC0fVJbENF/OL/NE0j6l28UNqb06JX6g0FOJ8zvOX4ENzC8vL9R9QZ18GbDxrlpJlGoZ1I48+cgg1TseU6iz9l1yMzeukbUPCRdQW2QpkEZFI/sIX7odLIO4vdvccuDVjXzR23nutj5DTEayd8OTue/U9Jvxi1wRRLeDczwMzKUY+OM4WPsgkhQULqwPRM0uuShWRJRaKEt0j/g0eUW9UxZwowWSyT6V7LnHNDcXu3pI7jxlYWL0QsdZvMj/Bm+wR+OIB/oIBWE5AEAPixYn3bfLO4HpkCG8iSYAZeipEl9iFSK1KnwbIsx+4pWRlwH7Y7LiEUdUWWbWc26CDrIYG1ycn6GlbeghbfUY+FFifxsom6wviXDd8ks1jpCl4em4JBBXeCri6hJ901HeM1Ao/hfD4rbebVFpKPUdS1LZVh8BVIUdghQIBB3bgSSoVcjEZVurz5Cpju1w4jIScSAt474PDeqOSwBEIvBSIjTtE5hn6HoCRBAZBSIXT84iYE3vMaTargjfHcNR2NzwRgrP6mUoPOkw1rK2AzMBQGUynLhqK4KMDuUiSanYPNpsTjtBBqc4rZP7Zps5F5ktttbHzn8XhgG9k8iluRRoWt1Pp4YUdy9cSV0hrvy7ZFK6FJQCxz4yt3aI/HY1X5N5L2X5a3y0XEXxDmwjwfuidyi+kZz/HMXQ1uQYRaDaR3SDLR7zdcrxV0S2oYnpLeq70T/hhrBQZRHzOG2dUtK9tGU05SnjZstgsXe9oNMYySUHK9idrYec1MKZP2kMi7EwZOqW19JOdRvCWKbFi9S6pQ0Sk8a23XDmNt2Vwed9H/bi6kqgzzIcxlYa6CtnRiVniMiALrGraMxQwTuTglenEdnENlUvx9Fph4MhVEC3g6+sCYAJjidhwrCd9ATJoWFgnA2IMqSukF1cHwsaB2xN4pQS6WZApjZu1CKJfOLBBJZQSjQWlSC8SKHdVn2LseGxCSyhzdQXm9zLoV2AG0X9jMgEQc4e/cEkUfh2Wi3mvjURCo6/pD1/Wg7I9YLxrXgpeyjEuFVnQWtihDu57v04ePlsROE6ILLLq4hE17IO8ABBdYS6FLF2f0Zb7wToH2UCr64UI1Ie+IV1QrJnnPYbwi8gZICuIWWz1AATn6pa3LtqUgJskoVM0vIRHDAl7XuetczCN8xMYx/Px25spVwLu6aqCSAtbP4p0BH6hzQI8ILjdlMbmAYE65IrwNaNMKNX08IUlVISUFZxCIg4ezTAu6LFB/AX6LD1XFm6I04M2KC0L3G2uiReRZzsrqsHqMo/RPawcNYkXZoCeBIkWRGVO9h5YwcTuLU7npFcWIkd+PMAoYwzihFQLqT8gqmJNcrj3KAhAYQtfpBHEzMB/PrwOwjtZ3Bwh0L8s4jNdhGA+HQ41mWaQ8WjkwTWSdy/FgIgpxSuYy0BuICr06KrMg4kolo5Q/qHq5oN0FU9hX9TQNlSsPeLQ4TlJWfvn5V0XVZGOx4QQtMSRpGeoEYvIC50M6FOJ+StocQQjnHWYUCykU23euaaqmBsMHy6ty5woatSQT1ZVrKldfzr3annGLekwkx+bqkfpRXHt8XTelq8YwLNfywxG9EzpBWTekK6PkR2IPegOkVnyj0jgCM5bUvFua1rMthlkyNwQpeeIJdWZjDUluIZGFESsDqiBSFa1o/IHUsYhSQUdOqz3GnRaqtOjhyf/87/9e6yhGJ7du0SAYMuOnVKWTtnQMNPcJwFZfP1WxIa6YhyyKDrO/W7vCBS1Ed3rBp9p1bIORYv0O9I2buvRP1p86p9vXk8DzHk3cPsliDmkD25VJIovpZ/66loooX70iZLdxXtzYQAqM4nObWOdR5SQqne/B77ufXy6zvKJNaeL2MHbcqqLoJzYB27+tzw1PTaBevzO0FdDDrDbd+Jkx/yF0IUhYWbjVqOZxMI/c7SWqHOR+s5FtQXC70Y/XqMD3ffnyZaBQuqXCBJ+i/UccSxHfTSJLvDXYU40CVE4f66r1y6FtKNWs1/Fr9FyR3s3S3sRqOJAsSPZGmH9eSii1D+NAsQbWK4SYru4KkPa7VzS7e38jiad8Z76sb+Yb+nHUaI8GTUIuodqh9F1VAIcoEoV0EfX1RebpCasv3F8SgtYPt4+LfgUK1JLLgQynmIFkx2+t0ulMsuPeycZZs3WkKsUhpJUuUVZujcDYpi0cbzWltw2GfSiMf7OqHac748VUYTAL87Ztn5+ePnx4en7+2HWgaVZVcfryJVF0Qpgvl/58Avj/9naua9CgL+frly+vL2+vYFPj0vsZZI3YLk/hlIKJou2aXL4x2IgU0kZUoATVKsz5vXANxr8BUcgmUmWpxm4ZAW8JgqzjPPNJ4EpVqq0rBqDrcMsypdzELSH0GVs984bHII9iAJSZY0ORtlba4REuzfAa0YS4wSM5WDO0zefniiLbEU7bBkJR23G+CSa2Cx2MCU2dlDY6/CbstdyA6dbHKa2EJAEl1i/ICy7Z73SV8vGGEAtnARl6R8awfs/FIWUR0ewM662lxnaPs/68eMBpBHJexAxD8zddCHAPJEilWlpc02i0lC5N2ouJ0pisB8cawWxXhnK61iXU0NlbvkB0EA5CaGbNVQv7KyD8PiyufQ6xyTUxQG0qRS0H+XhwbM81EhesqCxPCG01n4w40TnsXV1DxMYXIxgXkoyj2TX/W8LhQMqWlBpYGD80beercPnSVFDZh4zRofFsJ5iL8svp/Ha6fn67XMdiqvw4l9dhPF3D6RqWwmMtoJwLjVf9UsHXAvcFQlvgfHr0fFZwqoH6hBJLgt3A0pFL4n6jFlHKmDkVo+AihgAVuUHdQkt+Cks/jVB2j9JOAVmZ8Wc7GtJZRkFBDMb6oZaMuGWOKAgAQlb9hg2fJqnHbKRcYPQG7L9xLcScmqKYhwGN1xcYXEnCcikD5E2RB89F1x2J9Sy+cW3bQGsJbUXL2yvoWHGXxCFzuFgJkVV7wQT2GKMTmHVJRVxfv61lH1LBHlHEd992QhIsJIzzviV4bzuyQAmpq82Tcizv/Y8/fvrpp5+WZXl9fU2QPMj0wN0JN1Ql/RMwG1E1dZ43COJIh7ahghD6GeUxLbSC6MZSu+pwqJ+f2iN5/lWxXC79RBe2aSxQXShqG97zqBWSlSCyNLk5wSsDkTYWC5pRswujKj50NfqBM0BWgX7XdYLPjsfj09MTSD6Sph0HGW5AKsuDLbhQivN8PqtHJWINqLG7MngMK2sQUieJxlVDp/lUA0lyQ2gPZywUWdyyWfCxZyMjlPLh0QCuXRJJ82J6GpzPVgAw16OdoIH21TyySQuT1uuMaZrCguyhiDCiekAp1OSUh6Q56wCdYamBhFtM/CTDAmPl5/2fpApoLbZ/xjuX6SAKxEoYm2nyR/djUbTme6/Dti16V+0D3Kxn4E4CkHTpvl46eK+isqMqYUEl4CSBDxGxlQ2unx+PUA9HQ2GL1aK2ZRYI2v2wr9OKnxNlI9p8ejtTvBeBFEASEZGLpXt6SpNkgnchWEXg2Hmo7kRFRWTYIjsgvs9CynjZU1wopzmRU4VDrNG/vcOK+9nrDB+xQzKP86VDj2bXAJGxIY1UnrgLq9JYtdtW7EmoV2B3G3HwSz8O1wGqe6VrkA5Bt4OFcTJx2Jb0lRJQ/rAiW1Iat1t58zYbmdhHPxy6FFsknIaMR7E/FGaB6lgWaLcyyruWDAsvyrpCD5EioDX3sDTAyNeyP1c/BH460r1EgE1UIszg+9S+faYac8XdSeWlW75tw7HmNObqRrBtN8U0lYUKr3MhzmAVSSP0bIz+aZqgW/L2SsYOys7HBqoU5aCBh6t0YG6AjseiHK494qTLdZ5C7aA8+TYC8iFzV6v/AouNeR7BqbW+rZryHZgIUGlL/nQJ0uNWdQGEamUXXnaTVY0DI81cnZCdfgyYsgTAcImtgJt69DmcIGa4CUZv0YT8oVJwnPmIQKMmndxt7BN0v2REhVFEaU0K+FsCkGJuJQDxdst9wcT1VAu0dWodGGsRYrcqqik9eSIw+8aZLkvZtgel36RTSqOdDuImgKUamNmHq9YvCXO7/FkqJPRaq55k9QjISv2fM8KOLl5hSULahrWX0UsfKSg07aK0PZAASDo9Uu9Mr4PFGa25cb4zFYx0AokGLuXIFNGVThZ4vvS4FRDzJf3AMZVb5v46eri9gwwjfLRrWzeXF1wsfodZF2EioGGswlaSxKa1F9A2QPwLJpMiLlGttIA0NESn+DmgUoZlrsPcFkpsNFepgMDT0/YY1Z4hAN2j+jL/zW/+JvSXfrh8eX17eYNWG/JwlBbQs9W27VwGtF5DqwXeqr4+ThS/Z7MviTgVEJt4Fxll4Y5AZp3FIl6tmNdxPCF94FPx5yh/EWtn0mxAm8Q0heUqsu44B9idYT11YG2rE07rjjxG0G7k6wYWClTMA9OJ4nqicOn7CNGj7MFjKGCTPKOzHfS2y4Dds5wAaVdEqlj8QeTPVnBV52gxC02I+ZeXt67rPv746YcfnjvSol7ffh2ns2+0wbC5jWOmppuY8BZNKqoPS+RZQI+Bm1EBwJZcizjjgyfZAJOj6DnzQ0afpFWtYBw/iRUqJIEw8PLIH67X688/wyjdey873rhiUEwi7kUKDCgnK1iEbnolKE+U+wRyR5YXx0iBBJ6hFe2+xnJwiImxL7uq5hgKrZtmN4UyAH0Hyu9BZPCqRiUAmufFxYtahd4X+A9oVCwCZjpyci0Qo4GGJHgwH0AbfQETeEo9sY0fxWMaP7MB0NIk7WIT7c1LmClZ1xnTUmCUUYQjBW/cR0hsknU3aXYYzWK11aj2xKwUdwilFei8bhb97Pkt+8gIXu8zeiz0T+/XphL5A1YLFgavSWL1blsb6QKTviPRA4g8fUcg9Wgz27mM5VyjW9amVQxz+sE9wuuGjfOAvJSXyNPF5P8INchl++yJuOD3ziC+wxJt+6L0VZnDgPro2AS8jaLulALiE2seR8sUlxTb9RfHjDOv5lMejablJEKtR0Bk98PHZ2EbGHajNCjgytOfTsmaFBhK29Altep7a6DBshTGgvETEoOt6hG3ZDIbcWcYbGcRho7DLhMHlrZbw1xTtriGjSXsuZumbo/d8dA0NbFclEwbKocqLpHVl6bfGYjLdOmHivYFshJwtR9kEmIA3To8HiVyj17PdYrydC7/q/gTZ07tstQSZJGvmpJXhJXtboLjQABNED7r2qrweEdL9nvueFmuqGOg+AB3foZINmFjwP31x23/T9pV0hQwwbhV/Gplr+2y612CvR/qDDdTI7mkzVncBkKNaL7vz2ckq6jVVuWHpyeSYxDTkxIAv1EYt5DdMU6BlGbqQSPu9//L//x/EW4Jitr1osc4jlSQTA905mHnLspjC0dMQ9FAO7ZFnFxwVnjFHWYmLZKJwLlsANxfxGLtZSWmxCcZOccqyAngR4CkD84Wq4cj1mCF+HU5dJKxwzdvjpWu9SB1L+JtytcfxRdsb3382CxZRiG2QRNzS8AN0aHPjkqQJ0X6QHfORPfsa11tyYBYHFyIRB5m+6kVeATz84+4TDJBFfXLKD33sinrQNDzqNVrAOnm3Bjx51X+CJBF1Qc2WeZIW1azs/8FhqGFm+CWdgyMXtl7McxwJRoWnRIAFqb4h+DFUGpVb0SkxOgJ6ICJIlI3Z52GZoYQoKXPfgDG/eKMSCh4HU6W6DoUDcm3VwwHEjJce0ERkeICq8pLGcayD+Xn4s3jPJqmxQIFQcaXaz+Nzx8/QdQfcVI1YVYWkf8CRg/vkbpRbQRSxHPlC6jPZQbiDk8BMRXgtsxEhp2SSe4f3suVjMALVLbRd4riM1n6RKYl/ohSBzNYEEvICcD5oU0XDtZNXaPKjG+wRYGxreYPLioDzDUzXwm3seIkUGAcwwJ/M/S0clCXxFzEc5ZilLSs/BjC6XRCNXKgH/1cNk1HuogpHaudRwpuVkfilplKq9ryNLglEK0RRjFwpetJ2Qb0GPQOFmhEsK6AKMKRHtb+F8NlHQbzIoh/oH2Z7bMJ3LlV0zJHcxPa0kQml2sasZS6CuJgOEILYAHeQe4ZjcUimBijkmTZEhdVRlqLZFXB3pJAP3dLrZCRfmLti3QN4s7PE1TuhAIJKyRmW9aZwTzKa8NlnlGTd6QDqSSGSpq4zZQ/1DqsTjapRYn9x+w9X/oET7tpnJSKaMxJoI9sINKm4mKbWrCUuArxiVgYAgBrTbgNONL6s65OkZ6RLcb732ahv628Uoe83UhuV3Y7rKitpqX5qynH13oMdg/hMe9J+N8caoQW70X2t6+Lz7eLtt9NSO47LTykAN2ppWz2m21+QowuwoR3g/5dLMVSrlCclR4gFSAW0zKNLSJFAV2ElgDcMgLRs88Nz8PivmtqP10vMpnnZJuGcVIhu67rSZ03WBpIYGeVGPPVvm1TB8CelDRpGJ9LcTJWJ+0ELewpgdpL9U86iRaIyBSwhKcQO1+BUKgig545mRVwdlGPjB9au34cYbxZez/NzTS3tLR8O1/hGQzfAHQkyJ4n3os7Ac3DxMBu23s5gJ2VGg6nEWUKIjHqaxNGHgHCNJ5k4Vz2cAiTcJM14YmdWUqS4aYCcHvMcWOwS7weropnd88qm2L3k8+sYpNj0vmQTtD97bjNV6e8Qp3etuZCNlRxudjJF+Z5GnoUfIZ+qlzx9nZOJJYaMhAeIoaunnqoTxB9hczaUqHjbp6v/+W//Je67Z6fnz98+PDx+elv/uZv2hZ6HT//8Q+pig3F8siIgGAf1RxAqsReQvSxWuq2k/HFOI+YVNyq2Bq5UQ+7SQLLd9cNUU1sA1jvV/ZIfhHrR21u+kZTb3c34888wF2HqJ5o3t3+1W5cRQg2aU/fgP07zufN8ZiCP/d9djJsuhJNVpyiqLdwDLndze7gs4dZvVoRwtoeUJMWpbDEgmnrZN4rmWh02f1ajza+4f6MsVmpv0qLgKTp18+3kiv18SmlyG4vMjetgqEYE13BtDJBmAnIHKr8uBrjjIAV8RzZDnAhqLkAyvWgYlyKaAsMZW3Q0uOJJwhtH3pccb0OhK5ndEgiWrZiS4KKIcEiuplEcXh0Wp9FdE6spFiWCb/7/eeubT8+Pfunp7r2Jaz4rvNc/vz5BFetuerDchlnqtrjO3p2mpGqZjbZ6pnRwAA/qgySOVNfI+rPI3Yiksa4iIpPyco2si12+JNcgdPp4AtLbjeUhaAOJoOzcz+AvL9M5VzhJliLFdofAMqiYQhWDoFlWzMgp9sf7W3QoAxcIYTSEbhGiA27WtQP6VPBI8NaISKKGo4ReVMpiIg46H+45TjRuW3B+nh7Pb2+fgELqEMjtXM1Dyq6U5EfHDXjbaXkx64bZ75mWFMfaxpah40XHEOFeYEKFgB0ZSzQsE8BErt3JAdC8y9Oyaq/XurGH49HBAAy4425QaoZbsAdEt9ByzJmH1G3pfAduGG+gp5Qel37qQYhkFx1xXJ7bJxHwzyw8Gme0EmABFlupGriMgV9ulbTiEGnol4eBexIiTEYwFkg/x97CslBYtaN84yWgwECGzKbFxVD27eNcyp1TmYuYdM5gZjqNI0qoWuMjfFD5JSFGtuucXwDkEi9X+QFw0+ZADBokjSqLTsZwfrBRrIuNzGqygiasfqRnm9DFtFB1nqxLX9YURKOlTRE0tcUf/EHjTni0Fw5CWtjxIpL6fDK2/fbJ+1fV7pgzKJYwViD75xxJAQrBnz7HONR032ywNhtYPcrGFJipMFNul05wpqmuUFFFBdMzF3yu610nihA6y4eS6I76SH9tAQcyIOpvLBTcjwcWjZUGQkDLjQwBp7HqUfEg4otcCnmyNTXh1pFavyIBB322iLUDliA1YUhBSBLfLmxsJRpXcmGAxHVC5p6nDvj5PsyFCfoRDPeV0kb38JmOabsXMBVpJN8BYtoSrtXNNT8OhImrSLvn/TYzqOHbyNFAGIeJs5P6JooltjnOhidq1aFsusOUDGKpUDVA1XivJsArIFdQqQE7krnLoJClodt4OnN41YoZhPIpi2HFYY1eIqJXPY5G8LlGmhKOYG7RfopWT59od4V42A1xSrrYE1/grtUal4SA7IqRpA9yysCr3GGvnjlWPEXwQD7w48//gZ6VUP/8x8uf/g9/5yL7N/+7d+KcKLDo0IiECqqSqOyARFubC3Y80IR2vZg6h/8KR6LjOp2V0yPVCHJkHVSbvHK2liVVl3zG3kA62xAkJswPT6PwNKapq4TPo4ZC69XsGp7m26E3XaJzd1K1wZAuU1K7eBsoRZNqjh0T6IkKYaQOU8I4XgANeh2HPKamy+V+gI1pAGDRxQqG/A8VdA0GG+DImNiCQWL+PHD9b/rK5uhq7xCmp8yzIn70Epbsga4bHPJK/PZ3cTdh54PhmVVAZUUAA/+gEwgGbWIpg//oYkAuXk94PfEEmfIkq4jCiJUpJiYKl0CTrIryEIA8AUy7K21VxfWIkkR6bE0EaTkwiIFSJOTs/4HIK8K7CA5Lendpv0wzfMfPp9+frnIywwtOsfjyy+/zEU1hbIP8zAWI0TiS++a6io7mgWtCrgkNkQl+Z4PJ9pX4jcTVgMI9NTVDBstDy82CuKHmbwbO2/o1xVjtdSiduBwfUHpd3CynYdCHohIkKOFkhh3MfRdLWinnsOI32A+c0fCAkUNK85ZBYLzvMibVhcQIT+8kYG5U+WW4DyuMHxtKY+hnRQ3CHgYx7CMonFGJTrWKjptTSOsRkJ4e3r6hCAZVxkohrYJ7vL0uNMNM8aJ5I0p3qQCPkombPzXbMHGE9wcmpjkYy82uTwlFTzTrY6WDEDFj4ecxhUGW9MIf/S2AW+eTgvGmbF0gOs5MxfkZmWJtJNqSAgvKSAHlwRJ07KolUo9ARU/UVRDgWEyg1tQVsvxB1gxz41DQ+95LK9YHWC9V5Nd5oD+UVB0pukXkgPEFPB00CjFSUBWyYGW1qI85ccRLf1cQwKa1Al0SnaTig+W2yBv0Gy0Ony2AG5mVgRWOKWsRGBpgEJ8/secP8kxxItmfuSsHpKkLSNBk0m0TUoqQHtIOK7UlgDk6zUppJmQvj2iyJrUJDeSl9ZMrhTQPoT6S/FvdyJxMyCaFFXbt9+vGGR/9V2P+3D+PVqCuhemb4f/xXnMlePSwyKPm2Ph/Lvz/seqW/k9Wo/kFjHlM4VTq7J4jsPloKx9COiXek7UMOKCeeiRBSKIPwEob48//QkkGqh8wvDckKqGK6CMqDTbsdDP8+VygajmhOadAgsCUH2UrctaBytdAdiTmSM265jiOTFiE6XWduy4hZE4u7bcoaIQnV9pTF+esbQGfx3c6SxYRCsIJKK139DwWCMWC1AFsAjNScR2+zH04zhM04C1hVbBzHdUR6VGyYNKzuMKwG1F7jYAYgABmLOhTkWqk4LryBOVoqnFDbHYCobo3KNSYUuP0r71YzfDI/vn5lcZ5eP9c/mWqbqDh9M/V3rG/lM28y79zA0T8sqAY/iV41vK8OPb6CyE5RXVGxg8RyszEQDmEeoZcjtA4M8ClWm9ASwkLy7xy0RsY0H8d7/7nfVex+KMvr1rnxPVBIPfeAZQAUqLIkJDUADpoRJhk+xyScpaXVibBABxBaDcPN2yytXWR2J+dO/S1n7vnm7u3+5uxs/PYQh+Dpv/9jJPa1VhvXF3H48KHbcjU8lqVNEGqEYOLi5+dHdu0JtBh87byqea5BL2nC2S9g3rH/E0jcgqE0T2GenhI6aW6lrxCBUkEaXPYtB7JyaxCtvpd5dCjQpbEQ4eKseDejAEx0qOs/QzY1jgzKTuaZ8qew5m46BL/5HiooAtyXghkm4za6YDbzTuZR0iKgzPMKumAxptjEuI98N8r+a+o0VZdRfg35BXRkAsbQhwOcHGRroTM2QTjpQlKlCGzqMRvz9dr2fwK1poJjrfONchFS+WcUGvAE4A7Qy+adAyinyXcflKZjDjNsndoVVcFCVSv4BVq9NQGw1722mRDmsQc79jj98Cd10WM1jqj0NrDOhvnqnzyRtSIWZVu0BPQi3aw/Gt7GCeQ1F3LZFlJI8I39CpjOiZyDojOjYdMf4zqJiqNywuEHuR6worW+hJ4MzFVRCVSEJcuCnkqbP+iJsMq3L4v6EcoGFmtpvUvrFhG4FBRZHi+iQ+iRxIlLTYDk5+lIC5fgB9PzqHbTMuedJGrx697XA4wEXhfM7E8pkkREf2xK2P0y9n/6tcbBUVphb6WysO0D5s8XWBe4bjnop5ZF44D8PQNq5rm9pDDHYcwzWM12GsD8dqPVSrPECNlEwK0K3Qx8Wgn2lU9PrF//JqwCEhUT+V52DA8j0sQHNQqDeJhkJZHVWxLjK3TMgODkPKulXCjhslpdqsC0tVDgvJ4jq82rdF9BapvSy9o//sbBpV8frma82drOCGm641iMfKZmIL4jNfT1sHoyOM/SriiErNM4Rpg3KtG+L3Px4lBvnumO89j3oAzADy5v3Fe6/fOeC0/2YXWdhOulC7N9zvAZjShbU3W3ggBCnJXKav1a5z5/pk8FG0klJzjt0mJfRM0VhLopqBGYUqledBLkRStUbEQ8ep9tdzMTd1WdS1O3aHtqvb5tBA0Ywly6WcZvBQr9fr5dz30/jpt389TjM8PyCeCF2daQjQm2BJX5AoMFeu24x0UDY1cSGtFzQpchiHkXyqDZR33DpDdVvFpqXzcR+WsapA1mO6U1UAG9jgOjs3usuwqmrANwecm7TbJzKlTGPVtKleSGxmOHzzh7x9PAx6LKK19+yG8TbowSY6sS2IJyzx4AjOaneyLxKZHB/d9/2M0rmW7zUBkK5/giPuJgB2z61X0jp5Evv5ker8zfnFBCZLbJJwVko+H/mE7Kgmt8933DmYy2fRXvp8UQ8I6hDcUdFnWYLJFJpi4xxYlVqwyqN2FNVN+FkgW1G+M/b5eS30CF+6xgJBLtr8G/LZLpdLLllrDRVFAWOdqKCFChT2fQRSBZHa2zPNE6RYMb8dUbGDQtFLvLGbGsv2puDnYw37pJ6cKplpzck/La8eRzX97ENyH7h1oCmktHbbbA9K69webVmPMNoJxVQfP4bhDIiRRm9o7qe0APwuWOlKmD4yP9uMUq+IGQDGkzIhVI0csy4kxEDFLemyrfM0UXfWIMoGbAr9U/05H6hp5xZiHcVT8xdtWK6Vgm1CZvHQdkMnLhu1E4XMmpVk1VhEYJwh+OUWswORJSoYpbujASGx57RESCd+BOkfevmmuyyFw7SFqcZGqn7Egjfrm4ALuOrSVWMcQ1mOziF5g7D9UvVQWIOhb1GDJHPtw+e3c1jefvrpNzRQYFeB7CwwVWnmBzNn8JrE6LfUjQPLxFulac6Tg4YU0iTTgJrLZURUDUV3WN1DMQcxNKFw4acVdahnDirUBGfK/CDhJG0HxyHPbALgc5hKk2BCzE0ZiWUql6EH4AzSkIJ8vb0K0nBLPTOUAobMGJYpSsBg+HCvsllfeuYCYO2qXsF92HkkNvhjqOigvFP6+lBVoIhA7Fu9gboLbEMiZqx+36qWuKQN9biLUtA/mZGoiIyKeGwE1mCbWCqKCp42Fvn5Fr4iw8mEyFQHME0GSgkpDUgZQr4JioTMLNdUjFJq0fe9cw6iOSSmicvF8Te7soIWSV1WoEhBOZSXMkywaOjBIuuvfX8aYR2ha4xOeWpIqTMa305fCMDTNXVZW+/aunENoW1+HHYH2nBAbYlnQbgQzd9NC/6VQhR2CUIAlF4SJtTDBcwc/rSzJ6xK8X2ahVxKcWOS0ZiyVqa1TMjZuY+5FtvWtRoPAD6YRZLrG+f0Yk7ACbO5Ww1Yd50M4dBSH9clTF194p7Rk5Zp8mqztd42MCoeb0rDN2v9TXHkX/24hZ3yuGR7MKui9rd8Dh3Y7hxr3t+ze2ISctvXHwVAiQN995BytrSF/jL+TT4O8acJjyYPCDYYARWXCjUmb1z9tbnKDzjDzFSXtgm+Vgbkt1D8n/7T/0TdsTD218+Xs3PQ5ega/+HpydcVJN66Y/X8jDLvCKwGkT9sOPwwtJATCwDVp1C+vl20kKQTZBqAPSPbaK2PrcTUB/XGbpk2UxWmbEff3m5IthEP1qcpedP5zsUIA3b0MMiuFeLJsKbpy7pACRKCvpSjYRrHxR0824Qi6stotfndj0d9MpuD59pwCSOxYvQtOWuKwl8PF1ids9Rr92gpcYSuqbH8GrhiVUmFcbcUoG3BZ1MBiP/cVMPog/PQL2Y3PvPPXKO8GMTE/pObi5DpkORfvStiZAjuunxlUywKkUa9dmsgR4wAZWiLEKGszB4vlNRRCUTvRyJYA8mbuFJHKQyGWdrJDuxZtKV2Nn/rGOTa5k0ekKViFZywzeYWymyICyBg0aqGcxORG7kzVgCS340KQHm5QxoAtLpcPZLTtYrycCv4HQu2t9A7Q7ubi2/mOzYB11scVw8tblkhK/v8dDzxufKTzd3M0cd35oVSLMF+6XhGMjTyUPv5+TkFHOmmpEGecMqkxqT5lC01Yq1IhSPpYa7K1/Nob079i1lyu8L/jx8G7ZuM9e3oX/fQjRK3xoP0ALKiUwEcQmJaFQTK5JIBx9yG0TJp6HSGsswHItBICFSmd4xVtGGkhuuYwulmk3cWbFGWBhVlBcSSYOgqNQWngFxAvMX+XLjYfSDBR9owkcXhwOhYymaYG4hjFn5aygltk0UBh8bij1/OjJ0Bx9d1qwgfVQ4ecKrqq/dXfbfg4uNbpeNklh0aWsrfRdJAFAoy/+B82fh6qdEkRkJnNRfL+XoFzFtROYJKLzy1qseLOPK6arKhjgXVu6ptu+bQOV/PRQnVuHE6f36jxSRJM7gzM3wIisp7NknT6k4zDnkXSbwjNPMCXb2gUcOlZj60Lbdlh2o4I17C1cUwQjqG1Xc/A+liqjqjRTWhwhqZ6gkwbN668KimX1VAAJNyvDba2Exv5jBMABLqwVGJa615ZwrdrA+gMVurZlS81QP7NVq8cdFSGpB/Y94Tgtm67qcmMqphqYJP/A0NHHBA8zxeihl5GmJwpIY1pf8K3rtyHMdrP17P/TT2zlXH2sPABbNIV0YTGTOxrZFoAS+g1hWHNUWNuB/o2wUF6tE0DbU+qS3BsoaMLGgcqd2bBOaYAEDzCReeavUZgpDhWXZT4qq+IhS6OJbts42CF9nuqURNFkgKsYhBofPUPVz+5//wtxlUn6tKr/TAPAHgVbQV344xYmyJ5CSpDTv0tbsvdprHRSTeVmFs8f0cKBGqUujPEq0Fc+s571f/LbPl0WNH4Lldjrevs2z6Pe83h87bKP/eA2tqMPv63RGmprTdYzTL6MefuUskDLPT/RYygVyWreJmjpb/lEiAvZJF3ipKJywu9dqW8JCP45XbG9WOyx8//cAdwMNYS/YlxMIaj1ND9lxDIbT0bh6nSz9iHWnqEhC17FdRHbj0oaiaSz/Bg3sESY+8f4xocwdjFiK/bNYjp0MNtEtrsTWfcapYiZ/1L9serDMJ4oyqOHO1g2jDetdMcsM8ASo3I04zbVzB59zXy2IcKH+G2q8111rPYByMj8LW/Ssa/7H4nkLYSAnLKHPUi9aqy/lPFhT3fuw6sZ9ycxOjLGnUYF+Pc+hxfdS4bKGMbaJ5wo+bHqke6zxl9GAP23FvOEW709zjC/Gap1jKxn+2IsXxnC0oK6i/Gs3sHtG0YX8wCJRBoaIEGRvfFdYsUSNTBI34ftzW9RMYwopxgaAmO6TE+7cAXWgMT4QBHUDDnGPNJEBPszZ64lsautU0cR/aKL7d+gAouOeP9XMEjK5Tdb3yq+C9JCNudfrTHc+uGxZ6hiAA4fI7ko5HLgfxT/AedDTHz99dPX6CESPj7iBZ5Lxrdo2nb4cTn4GjTOn9OHRVMedDx5M3hedUzFsS0e1ziQ+IeOBsVcE/a2z8VkxQr6ASkMrDkTduyeu3JzqQQeI6KclQpumwjvb1SV6c4TtrSrThqsJiHUEGsVnt15YCxdUPBDgwH/hpWYmGXdLoCp7IHoF3gtaxcgTxHf8nHap0JNrX8iuj4QeAmc3GQBOrsmtcC2VHTGiYD2CkLDObZhSRIUsGzRIkCodeSbClwccguZ/r/2imK0gJysPH34aZpuxU9hzH6TpCfg3hKVs2qSZpMDTVeIaoPEk7IDbq0NldXRHy/UXMWtXYNS49pDwj/4Rc8WkYR9iyVhX8wvXQCKqWmeE2U6NI0Wb06wZwvvPoSrlfOByaHvrv01K5pu2a7lC6dincl9fLZRjgMTIFXCpPa/Jy7sBLx/eS6Moj1xYHHysYGJwu1y+vb9dhAsP2eJgnbJ1cpSukLbDLxFWpPZITFRWNfsYQPWoiaTpIMEgrsBa0yLFJC1oUxV/VeJJBJFdQMznB0eN6vp1PydFcUJpYKx1VtvQKB0C0oGGF09aadN1i6G9hRUznIGcJVVubd9GNBA8z/ELdHt5bFg/Mw3NTffpw/PjhCcR9iHhCvhlj1eN4phk6oeMYBiD4QF3c4Rm+aOOIOaQYmlF017SNFxNAE2hBQxgVQRKgkI4zpTQpa7Kua6iA1jQvWhWfIwy3CoekJB/MizUXyP1ATFApredpiWBBzgxeLApiuYhAoBEXxbszU8V8c7193L6e15o1J1TkZa5py3RuGgBmYPa3WTtzOno7KwkVxSGrbHEPfX1jcP/Vd37zI3Vkf+WRSVnvGQ7v5ADI/i2f+lYVoEeVgeQQuYuuWBwnAwu3SY4SIYtvlCPaT36BhBMs2su2ogfAGyvMK3DrzDzlj3/8l5aGSl0DxmENv60WDZWX12WuJriojtMIQh1uNDQQQQSFTMqE5ibM0rZZyvH13MM53RVt6WlUworhUvbwsmdvH3IAFHLpsG6CR6vsoxi6KVKMcEKWABAViiV1caDTopNboghdm9BDpD6EGLMqxmfdXA4D1vJuBgr767bb0ffPY+tNeiWL8DaUCZ4nrMdoBgymoOTfJujxLQOJtjrtuP0jxkQpE9nTio7nsywfiVvsd/32lACkX6XD3x7qN83BuIrlpYb3qh+7Yt3XM+21GhYnowWgwlq02tLTwKiKJi6ZXYD3ajg5rG6L9Ipqk2FtjFWUhOeygM63YSmxewpFJFRvlD2KuGydAQoPNxfKeqIsxIxY2oquxSqdNtosMzGUKKYKCae3D097rQQibDWO8JKe2461ihfYV9+9+Po0BQqaWTlGEw9go9UT6Qab7o5H6+HDFDoLW1mf2/ztRl0nGz+7QbtmUMYDVhKC8A6ZDjHC6OxLeJa8bPU/pogm1UBSAhAhZ3sDiFkMoeLpx4JYdBZgbTObnqWTAIxle2w3pBT8VLMyn2Y6QPOlQjQAgJlIuSEFBoEo4BCvmdoIMoAigK4eePquph3NKmAxMrOYBtbCpKCgljWhIQCmiadiDs9PT633ZY0eKhBFR9jbWj2mWrxz0xw8oixmqXUTwuLq0pd15YsafJZAS/Ty88s50NsO0C8uchmKpvAzxSYVNkkf3Uq8JiABMg4oNYi4CK8rZbLLazg3RsWh7YCsj1Mf+jAyVgNgfxCaOU8BLi8Tou2mgZgneny5zKdtUXuNKmwKtXWfwb0vy7fX1+7Yfvr0NM7L6dy/nT7XvnO0YQZrFDdTtRpivwRQxukyT0PXtU9Ph6qqRnqPeO9BMqXqXtMdF8gyhcu5r5m0bJz+eIOG8VohEkYoLPkg7tJrsMjTFwiEv6obvocfkLdRBQKOeUSu9cVgZq4IKiDA5Tii+CYWlK0SwvUFUSUKkEQzlTDoDYLMxQu6hXQpemFHE1v8reKaf1Gq6rjSocOY/ykdqiqPjDHMX778CjQGUn916V3XeObjVQVdbaQWVgak/j9MBTrLElWwgm80XnWYfFlKnCB/XRMdvC4IE4DlFQS2CCnGhIeEN35CXMnWBS1GMnn0L/pdXE9sYOvrjLaU7GoTXZmE7qzWGq//O3B1gg02ITjaZThUomExCSDQHhCSp8NPZ6KyuK13tDinXbvUbzWBqCwbWU5CFi1029z+DRXsLxz3f8djF+snmHz3JD12F1nx4nc0Ad/4M9jH0iEiPl+fiBiQxe8Wr2Q33V5fEejk0seI2eJY3i9zruEWqCzUclluKxQvW9R399MPP0RW2tRfhv4yX0v0Vv3w6ZlIBvv8h4HGNbhEr6+vbJ0CvFVXNWwHWFI+dm0d5r5Ebw3pdcMUQNM8Hp8dlIMKGNCjL3eh3stMo5C4YRtnqVh1oKPObDzxlUe7sjIEQ0Z6Q9y1jdyCNtH1PjJf1Y0m7p4490n7wyS5s7Usj5JX0DereimM23zLer+yu0+9JrA5JQFNZFKhPYTlQNjk/WRakno9sJHLBYa/TLmGNXhl5I2o7pLX3LicWeeA3mOHm9BcGRLdBlLvpMGGNK0w7eYc96vTA9Q26Z3dfPj65qhctN4jmw6EP9cZIvGrmCTfHi0rRXxOxldal4k323umAbZrQA7lKRDjcNjJ2iVjsGiACEK0ACSpQmpsKu6sCaPkvSfkrKvKDWgdZcONDJNBv2v1wG6NSh/JfTpLkvO+sbUyoHEgdZDsFqe+o3Sv8vUQmirRbSDv59vNhZiisKJle4q1HMS1K4+DNSfNMlstrPH+WK8tglM2wqjjLY1G9J3ePLa5q57Y3JHdBns11FJZ1UTUjDOIqA01fdn4hAUtmJws+kbdZZ47JREjbqf7Ilr8eh2Sun5Kh3LwVSVcUs9wXMQmrZenCLNrue7hcE3kO6Y6dEGmJItRvVX/S8zNqHwcabmIKCmiSoJktEDROGB1VJ+F51VRtdCZqVlFZRqNpXhc5gmxLMmkovjiSoVpnEZsLY72WCiKoXrRNodD468wcoK+DsvQsK7EYrWgvgyFHsqly+OQhAZam/HUKahD8DGuA/SVgfueKBwUaoJUTr7GUmcdFGzvW0KauF6iCIGBQ7YGzB4ZDANzRpCKgFO301OLJtqZYXw0qPwYIdQjQTKdynlpjRlCXoqbq8ulv76e58KhLoK6owKnCTO/mK79VBaQmVY5qGl81/inp6chTDKkh4FTVTVNM8glV8pASp7JcfFY34sxDA56ALAci5QnArJC3AwDwk4gWVs/e5YP2Slhp8Wh7H3sOlG3XbT+pQoyiuYz/BRA4uIBs2fBxl5uATDPYQ15N2bkUXMoW9Xtz7fJvwKMEZfXeq7MIjZWJNTJg0aCAVURkHBq5IBQaQvBz9WMGh50BYfher6iZwDDq2Rvn9YBClJ5t5S+mKYCtRT0uAM/VwIc0FnAruplQeVmhoW22GuyHi9h6e6q0s9AJyU+ZtwkAvL+cobXmNhBaBy3uxfFcDcrOceaVWiNic16jWUFsdFZF8EUVGtaZWu9J0phXUzxYyOQR1OQAgpdm/31TqiRv6G8j/qw1DuON97AeJhZxbo52EFnTbFpQcQH4XJFIMR2HaX2G2rBBmi8+/xRJvBOIHL/QU2GOy/fIosRVTUc7Sb6zyO/GM0wL4+iHPmxPTpORQe3Z536ZnZ/vuuh2R3AnpDNDUTSrHFPkj6YmpjRAp9KfpqEP3x85mcy76d7lysR9/z688+Vg9qu91XXtIfD4XhEMP90gIxDVVXXEVQfhYs0dj0G9uZDGo27xQR+3uCaA7eZqqnhu45NooZr988//8ptNdC/A5Yw6oPDDCUFaC2+m14Fr0YcxXlgKcQILDw5CwDFiXoF/FTupkUIKDLWHSzrlRExQVdv7Z0mll3lancX3q9rbdc+QwwUm65DjqEYdVNhxbmOrkjWssJ9jMkEfYP1wqrEbSJK8DezXIkIcWraW8PATIHw7kB9fw7evjNHlDdXLwso7SyyhK34nofOYp+QxzqNmcrqYy3ReFjHiEBaVSxBAIchZGv3atr80KySVj9XlL5Wh5mZ1Bm/C1wg3aPA+vycqZdacHz3jNK1T5UBLlbGIIpjxjbIvHJi9xoh57puxPU2R81X0qadAhPdVOPFY765RzfJ6obDs/UW2M4a/bfJE25OeTPLsu1Srzuh/jHu4NyJ9CpRnvLrkJ/X40EljWjg9eoBUFVdUEgBQTM5+LJ/I9srcujOEFPxoaOfkQh1eeME16MVcU/rWNLz4F6pflYkYuhZJAYDIyToFtKlieMzFnfQTQuhWctO7WLpmiBCZSxBBUdppBklabulKriJ4DG6F+dQTq4smha2tA0o1lTJBdCCJWsa+zD2Uw99XRagWZ2syh4lAB78sIxu6aqybl1V1wdK0+CKQPZ5moGQX5didHULEUzK4xLpJTTLq6U8DZ3IKuhFyMWAKrbXQxGS1g2cp4oxJPdjmVffI1Gvqgp7EqW6shvnavXDsm/yer0uy3Jou9lVSzW70tXSXYaVmkzDYUVGQyxkNg1L303rX97Ob29nlg6wSw8emQ0iRpxUAVor+9acQ8YFpezOHTqkE58//+Kc+/iMRzH5cTj3pMsCea7r0tUNXGwkwSRD1QQbFV2H7ZLj00Bx3VbFCYJ1DOnfapasM5OLE+zL40PEqvRPgdxZPcGGipUxE3rGFTLhlhHjisJBhMZ1tFEVEI/Ys7QWDPl1yzj3Bdqy9+4omsICFteKQeXrpvS+BrGT2h1jWPp+PJ2uFO+dp2IE1wraTtBBQj5zeaNDEUZ7CedSLOCCLC05mZZALs2MfudwvQ4hwISCDgB1VY3O4cgpYot62Dii3Zufg84NB2oWWdKkjqV2Ketx2i6JEt3Bjm79DgmQMp9DfgK7klBdYBu5Uy+HkRVTy0AEXywV4Q1Cn8+eAnSvCLB/or63HEBR8qTjU9EjLabUo01R17rIWskjFm1jAiAKh1UAzInapIY2yhV3Y6ZviwnWonr2c3PS2U+1MVR33h/x0bgP6SKoaTteq61kZy7RYzUsgs4bw6b4q0eI5jwh6Y+RShbc786mzJuS4+WygC6b5LsLRsXIlA2K068WWlHJ2ZxoJeCUA4j0hWWwQfEORV/v/+63v10CTDD6/hKm6XJ+G4frxbsf/qd/37WgBrVTfWwbrRuhWP72t38Na3U6s0ph/XK5+PP1y+k6YLnEg5wd7+u2Yplwqd08utGVkMJR4xlhP26gVlDiaEUUkLi/6foLH9I8NJvAAsoJyrPDgNKEdnn1CkpGE00/+QXjbVzXqVgXTinBo0Qu723a1AFEgTMpt5gBrwM7mwWM9bU+p1ZFgl2aQ6PadRNuzqrOzGlkp2AJTpaYp69h7JRYIvEkyJmJYj+a+etRZWBtHPDvtjLbBdzUGfTKnDW5bgDa3Zy6RYnuPYyhlUa+sEIqspmPqw18Xh9TK7C1WB2Q63FuPhW94QiKoEohVMawTqx4imbQ1qf+EYOCodtkt8QkldRSWULGEQUdqjUjhslAoOx8U6AfzXE20LVddnQxpPqG/S01TNJ1sP4O3kdb3GLwzxpc4vjGcFAwTfw48kLWCD4/vP2WEQGLOOnYPpddz9WyYDO2t8Pj4eDhJ5iSQfzSVcbQSsurcRXfvq/IpfO4s/3p8+NlBEWA+YuOLBXlgbnCDCyiW6wGcRibGe1avgYpHdWDjLEZ5w7xOWHlOjVbUdi7CZCIVCPCuuu2K4YSfWRHQwiJaKgOYFeJ8GCYYFrEdkxOXQKA1ue3pK22LBya4O30JWw2w2aEHHp7s+r+cuwMQyjKpR+ryZWjBHPgXbccn7ppQTuMSDHUiwMnZbicYZwG8Hsqiglqb/NyHeqPH3/A1gIfJ9dgM2mKognVcHkdJ1LbiYAyAnX1XIDzrWzPShK2fulE0L5WBaqtcExie6oBbkcam64YV/XRZL51TeAwhf9LA4zkFnZ5isgx+gmUEPO0BfRCJ1yHUzJHM+HfqMGW1XJ9GxDEf/x4OvcvX86Xa7+U7YcPH8PLG12ZiS3Bmab0cKN2h6Y6HFxLV6zhGi6Xy3C9vry8dMeP/RXcdBxJESqoVMNwUDKhRp5jcxzLUWZ4Al0a2FFxTzfpUiWiuHBcE0AmidifdTMhVObvBexGmR+qXIBSE1ZAQVrJktXOJ+W67GiEomai98uoNgUP85SasJOGr/Y7UnSNC6d9FZsS9PkB67PzKm4WsdiIh5048HhrvQWsDK2opZyANI6hGHBVRlRclr5um+44d9WxqdCUMl0GdNYVcMVGZYsJXe0RsVAkCnU+mlQMsNLAtU2wL7pLAhMMEd0UNugsrPcShgCN5qGjk7PWB3UTCaTbLT8MaSzzTpZNlC1GE5v2Q363VKpgTyH1KlGbI6kScfi6LAv85/etFYB7YMwKGMTXZbW4UsRMr7csm9pUL3YJQKKypGKNJS/ZopxawUj6gY32LYJ49/kj6PR95v2fpQfgluWvqCh3stzVAXLQK/8rAS+7X90HVokhSGkmz3kSvrX7xlQhuoWoN02N+aXLMEUZqttWGhGXXV5+Op2oioyIB21JXfd8BO3f6y1hmsJxpilJQylcVMtIEvJrEsylhN30h7aDQSK/fZrCtR+LqunH8e3t7fX19fR2uY4QHS5Kh8QSeTrkKir1LtOJYpnMxzhdHOVXdhY3RALpLnOx1las/Xip6SxIHY01/ZuX8nTt094cJX/4K+u430S9D8Dj9Uk+NuzNUkvge3LKRMJaNglAOTdY5nAd1nMk/8ha8wUCmtfLOtHiYdnSz6G7OcJsrJqFotXSI0Cuxt/0N7cnuJsF7z82KVBGU8kFhe0Db67n7oA3HwuRMQZWscjGt92+07YZkTfyo9o94VdqHkmNrZhnBBB7VcpMwUz6hvH1oDsgTyHyyUiPYVsC5MtFVMCKr7sIzY8darAdwPllX4P4eCB3IHN1KWRHq8qAKTHcVS1Lwb0NS2Kq6wemxCOBQdsLmH9s2lliQSBxqS3ZUI/ZOxNn88l2liZLGleqTMUoyROlC5hxi1OOnZ9m/nWk2qwpRfbtYgmuV8Z+T4A/MagzKHWzjabl2lqutqM9zmKTr7m5klivIgMCbyXuCZ8p5eUMgU16iMry1BahBVg5TTQuBYoRlQWtykfMRe0dYDURfUPcjxGrw+D3K73QyYECDYrCpLAQfE1Xzr6q0StdXE6QxUSjb4vWVXwJ+PTL3HjoYELj7cqO1Xl6O1fn4nTp6xpdY+BY0QuMbt31UuK8pFxJuyuBLKLGSYuUhOxI+GGFSUokbAqTnRpCZAgxkmsNMBhgDntFXAN3CNSbWXLBHta4tm3FTR/J7lBmL0hiBIUc2ViN40HvmWLXrquRm6E6MoKuNIGp5CcPfQtfoxehKH1Tu7m49qF/PTdNB2GisDiHsnnp8aV1U3TNIszteDx+eHoehuHt5eXL6+v5OrG6VzkP/dYwF/0wVeXoj63ZWsauBTWVCqaZ2HuDnjnUxrH0KHFK5JEk6h2xeU3kDFgRpy3h3zLuiSQfFa/yuoFz5sO4Vq5YhfBUBwrsUc0nXV3D9C0EaILbfs18I5+JaUZUJdR7vDOwX/I7C8lIWTiKGClhDeOMVLAcme7VNEWAQJXHgJ9AIAjDAuUfh2TRB0h84m5UqP4scwVtjxlFHhXl4P0cT1+ypWt9hMNyHJdxvOQiLp5qgRZ0EXMRpC1zMU1jZFOxSrN90MxL/n7KXwnqSzYXeD9dwvifhdNeGS+FASXksdsUorCS6mblCjMntOndIsDuEPf6mLeRa0QVk+/xbMuBBTFrmrGTz08Ao0pI286q/Zb/6Plf9HG30/c2BL/Z/24fWss3YOddQJNNw1C6jVM0I3Wt5aE8TEJZ91sCsjXWiZUZAZqMmRmQRaFq2Womj+6OQTwsuNn+0vDRts1f/fCJ7w7T2Pfny+V6HvC4enechuXC7p+maXyDbEA6vkvF0hqdZfiZ7tA1v/+XX0CQmCbv/eHY1nPLpax+fTmDUIm9SsrlE6mYiTCd1fcNexPiiwtFjYpogBXAyUPHFmmhJMdhnrLb3xY3tgJLx7f0NaTc8mzWLj6b9eJ1lw/LhlSQp393s0F7PVZyUuCS24Dv2nRx0GFkE6nBsOrMo28Dl2AlALZXUqMNLHPFxLnKzcPHJvS00MpOMc1ZgSD5+29H2qMvWhfP9T0rcJBiqCzU3fzh7jhvPl3oZvKoZvQZ8dz4ccsN2W/NQKxWUN5eEMupAEhlLxJuJHa+BI5GyaOn2gjTKYZTirvoRgeLJIxqDiB5l0pmR4dwb+HNksDslTROVPSPWhAif+8F+OIVs1A1cTVBMUks3giw8SeU2LBXId00qVaLe9cBvO4gEdPSSMgChY0g8j6xybCn+wvsJoxec09darHymLeLwXzzVwjWYgmVYbAd1a2/hBAQENnZ8kFvKKL+aFRQVgCIO1EvwJNRCmC299YZHLX5tdXu03j9bndn1yupUZoRawmuWdTOlgwdKnTe+SuG7vFGu8UvYRSdjM1IXCvBhIiOwoQtI7Nd9UO5Dsk3NLaqsOfA0NgS5sVAyhlPe6w9MSWAOSsv11Jcz33jXdU0Ca6qXFm7ugMUv1TjWHlI644TWmyHYTpdrt6he9L7BoLLrglh7pExrBEMY3rq15cIsES6czgVqrWynkdBBz3X+sj+BlE3cJi1BodE4sX4FDeJQxRR4RL8PIXm2M0zZDRrX00TKODUm1gmSPfT8Tcsfirn4JZQLwFK81ZaX1CvnqaBqlhumpfhdA6hqH3b1Afvm/lyfns7PX38xKQCUkPc78oaqU9VFRNv3exc2UFQic1y8zwM9MSBiy/+CHsi/jM7pxjYcdDK2VCjnZx4NGQQfZCHPXcZLINqSMHdorpjUn7LcWhXA0FHMYuqO7jzHiH7MEBmWl+Y59jafRSRq25gu4+Aanb3anBqRfKR6pOvAEmWNA+KaMcDyK6ufdd1LfRPkc9cQBoAjyvJceI+ifzCggxI5dIlmujIi0bqsm6bosIIBJ0KvnKYnpQZRYHLobvduaod/AQrSIiO4HEZMFxTbVw9hWDeyXGCpm72YPd1Ekg158eoCZKMIAWx3Y1gM0AJjmGxTUs5VdGCaJQ3aK3d51kVRTnhrt4YLYS5G255JhB4S8ehPuLdAko+NFqrsKpAJZiFjVDM8zDNFV9Hlxv0t+j2it+jrlhg2wCbifw84F5DSM/107EDZSLioEEIYwxKK1DAZrMFPsL+d4v47cP21OgGYp4g2c/8dR3IO48HpYaZJF7831wEuw6oSuLqzPCh4PWLpvE7lE7P7zYBW5Exq5DkNey7uYedRDq7/LPsSfbTdlExlM1DgCsKzsc+GCsgXceBKxTzAAzG1mJIlfkj7PXcz79vD4f2w/Px2B26p0N77ArMRHCBQOiE1S+0T6CzTCLU09PTPM+n66XvL+fzVavDvJTXMUApiFscgmzUYcMUlg8fn+EL044O1t2iciI1BmADccyUmaMRkImNLAMjAkoIrCqgilPjP9EKE8ANrpVq4ljsNPUQr7natxPNhUPFqrrs19lNf+P/tsogSlY1URG2+r72iv0NPjAKtFlz/NqUuXPORrEWyIDl4dz4AhoVSRgwD3DCo/bFNCxQgCIWKNFmsmKiAnGGrUI3WEFx0hSAFKqNF33pylyMFQwJyGLko+kWIx8zmBxkzgHcEfspYeO0PeSzOIoI7xUhDWeObPEIOu+jKLuqWj0lF8EWL7pdaITTsJlXgMmuRv0+7d7m1fFTmUvpH2hjXKN/HQcarEALoC2lLOvtjLAexhPkvZP9sFxgMC8gbViSNrMiI7t1OEb+vE1xZY8Lgv1KD3GaNTZkDg9B8agqo65om/Ucadqr5mAAm1Km5Gqp64l1iRzseOPWTj+afqUbYXtkHMNrGCeZ0Zj3KiA2GbHEatwV01KQsV/2wadZd8t8HBjDmOMn7TLY26lNIq427ru5oUiLW1JebOyPrGXY9iBrw1QwN1gW1oW6KcWi+ZV2VEHvYgfJEh7LY2awQ+GjrHqG25HqAzHfI48lU0PnPJP0pPzFGbbx2wAPSl3F0dEWVkRMLQXw0wARaQzMrnA9QFjm7bAOY52XqZih7jomQVX6QMruhbUB+B1xSDJBIDN+XqBdCV0QCKbM49wPAxeG8Hw8zvNy6YeiR80WW0N3cLXvB6g4AFYuxeYowrSMcyirNpR+nsthXNwcqhLuMBfIgWK1p9gnAh/4UaplE2OQFWBuVDSHAoe+qTwjfujzMhdgTlLCYVdbctT7Ul0AvQxgLTV1t3ha0s/9OIxhOjx1FQg5SGCmYbz01/l0Hoa+rByFspEoQMDbCrN+eTvXFIYP46Xve7RkgC7rh2nx9cE5f52Wl/MXXN6qfv703PcwqmOAyFof5iq5gBC1bkvnLn14efvC7tJlcW3zVIFWzpWgcq7zDTSRwAVir0hcQDmSq4wyjRh3ACdFTaJbPDdbSZg3UsaDDXDrYheUPdCRtwSRx/hg8UOSxqVWACaQxr3FrkIOJCciB7lZopslRpiXkRq1EsyPFER8V/r8tI+zMlBOU780MOF6enqC+uoweH/23l1Ol4TLyy6AFX3IDCJpYDUErQUQHgT3n9WMpSp909Qfnp4Oz0fci2J5e/m5hGk4WllgBFF4UrrY3YMvABMM27lzwNiYAqjrxlKXqBvYdshm2YgMuVmu7Xj0g9rRWc5hSiZ/OdvElZTqDq7S0JswTy7IrLQgu4sopMzR0BGYbV5Jo8UoYQTSI3wgi+7/83/8d/FaZ/B/FCLYvY5QT7CFwvIUOldYVuMGr9f1f4UHbMLQATn3+jNgJigWs9/qeT8pa4k3E2xoNlzGvUoL9RoobJSqvwL/m4yUmZJZQsJlFRw1JSR6Pf02+iHsH3chT4SeQiji5yoNSP+Xv87t0q5n2uRyKdx81xTeHJYCzTGxXv+oZL9FTJeN0dH6fv3y/nWTns96381xl5MwworURl48WArYlrxsUGrfUeX/2HbEzPQVbHXgBvP8fIxa9QhKojBt+fHp2QS8UFYFxtD3/XkcL1Nxuk5QfuZowDpeAiSS9ck0TddrD5cArLnUBzbBPtUeY/ccdeASSGkXFF8/HiAZARG3SB+0/Q9KwDk6bc2JcGNhnRyiQEoP9EFR1MXqXTH5YJyH74xByBq+5zFrVvlhwJbfFL2eDJt2D2gOCP7iGoW1jeok3hqDtAWaRQORs072nzRXLrEY0X6VqhBQOCKhE8cqctOMzgtLIBVGm7XWRroqzkGqDHEeQdMCCTBTXyXE+XMBBTFISm6pNjYThpSsT7IZ8V7avB/8sVKh/EbZlX6CLiv9MoP+4vklo6/NjMjaPNgdqG9ke82kcS7RpYreivgnCpfQ/icySiiRr05oHcMARBPgXExaoIuyhhoJmx3JMUCUbETuRPmIu2yWQOaHatj/qiiQr+epZ8C20vWSmi9vNtQZjpvjcfQss9GAcTjkNgIp9E8l71iLyvehLPrfX1i94z2h1R0gsrvvym0jcLgektFQoyO4jWG2NUoH3YANrsf4/oBMGjrpa7qLH0lek9oyDO7RALrUcAZlLUQrhjpvZhdmB7dRkSUYi2Ck5SoRgIRWbZ+M8bzex9UrWruecXkxoiBuk8dFnOOkCqizJVoTkFXMj0UHJHdYW8PzhCp2ueUVEk9RNfoxsVKooqImkVZT2aYrFmlr8F6w4FRlA4Xh/nI695fzhJptUzddWbfwvihrZXuIbrj+L0vRT+PQow0gQHCHEQxJ1whcpmVgsKU4TiOE6j4E1olYQGyF8HRZBJDlOA3nadI+BVaqczXVeHxZQVBIqDkugWnrL1U5Xi/i9ysBFrVd639z6A5N6+Fg35beDZfrl7cv2DPQUh0dl6WDWRQ//viDUaMLlcdDAbJ8tSwtkEwSoBiFB5S8zV4ejCPxVdKYHJdQaH8UJh2KQRFtHEX8Q2sejTZ2UHzTSJZ7Q0q8U/YeRxcuo8i6msvYVpS/MUZEQSJST5GaOARv2eQiuKNhM6EvXFVDs0wmxbdrIT0kLzBuytiPpMkT8Q5W1L2Djy6Mcut8cYgBSzFOfRpyjKR903SQsB5OtS8PTVt3RtM6n8/X4VIVjq7HpscPezi2Gcj4L03DqkDLJeYvBfIrTIypqsq2c0eolDQpc0N25poCncHIbn/9/DJNcw8fcROB1cceug5VIWoctV3dNL70tl4pAajbxpUe0oX0NyXCwkYIARxY5Gm4tlmF1xbnCb0969KXNoJURoi8KfCCyrI41E3yJ2HjIjpA4rZl99E0iORlvd3k4lLFFfH2dQCIYsoqLNR+IdYggTVBaYwu7P8GNgHfbtLJ7y3ftoEvAyNHKY5MO2EVpnz0zuO7aD+SRlGya4r3jN9U/DDWBMMDUw9+8LitShvtMpKKpdlkyk2K9QUyRj95zkaHUm1attkFn1Qp4j2zW14XRQ8S/ENa0S0OqpBUZxGtpNYGwaR4uPYLJspQlIhQUZ6blfWXNGwnUpPTMl0ptSGLLswE9se7rusoFuo0xEBk4+PtdDV8UTZMCljL8ueff6XkXKhQkPNQ7xpgx7I0z/0I/bjADJ5MwbK6VLA0Z2cbLIQHLJJciVEjFXaXVAuUlMO7N6qzNa21T/limcdztVDimihFQpe7FjoMaTWUa6tIM86KSIj/CQoKFqPqudW7rSuUn8T6g649d8AU7txnyBhtIOsKePdBTxwY63CglK5qJMmH5ZtlGkCJFg/g487nN0tIeKIEKoGglc6rQTG24kSKVGwZV72RvLBbvZTElrE+C446bM502qK83PY5SgQS0JMXbzr7B5y6lPkr1zL4Kr2Njq16ItJXAiwUOyloQMmSMS1CDO6v+8YkKnKlE8t2TRAXI+NOVGnBp6nruwpMMlO1gNbxsK6IGyRaH2X0hCOpyrpw6F3H5gJ188sVVS9GDCacuCxuLpcWeOedBCBdpSwtWZUGdC2z9TxSgG7K68mIKn3ImlXEOlE2SlVoXmNuA/6jzqDV0Ay/1ysrnffhI5dZy5KBDVUmq3Ws+0VM+PV+qcPE6yPyvo3htI+kCjfXUMDnqTDEL8bPuC+IcI9QSaUIfr6NV49tHkt8/C7+NQRrNETUVA42N7vmLT+0roQsT5kMEISyZbroYHtgdMVePWyw8SxV1UuXiGatPHejbMVBi50GJ+hQwxDlg+VQfhDPZb38a6kYqsq6gBD4j3w/ymgGcJaBx/F/ZBYJ2GCoqvJQ+7bzB+/RPOX9cOhGOLvP/TQP4yksdUAtFAOv7aikyB2EB1b5+uDrajhdUf0ao2o1No7a1WUIF1ReIZ8LpwIu51WK/mnMIPd6avNURdni1jEfsCow4Dxo7CDQlE1KmCE2SE0h0Lg1zGnzhmtuToQVqsrn83mekdweDgfkBmgRBl8fMMY8w+d+HIWXL59P6BxDcG8AWYWcx89Fi5SRCQGcsXTSrjwemtqDepKCOQGmYYIC6gTP2SBp9RnLlgsBxsHSC4syphKCaVA85Pqskk3ybdh5Wqt8fwsiSIi8RtXBgSQfGYD6Y7VZxIIc0TpzL8kKj0Y1weuXS9+0CHyb9tB2NXgzvfVPp/UkYOksRnhUa/9fp6S20pVAaDxDHMswXOeqfGqgzJRYjibBCfOgkckFCkEcYPoPlR8b2LwwNL2ekWX5pSkRr7fo3uAJjsNp7JGQODgwankJqJ8gJKNx2OhDQTlXMAHgbF0WdeWDZwLJ5hzZ4ZXOHQ6IH5ZlhgpQhWK4Yu6+Hzn5mJ9Tw4qt9wR2V2ibuD6r5wJhdsCWAsUsAzQXxajLlNSHVRZYkSAVbBndAgArliwBSLN9R2t59PruEQ0f8xq69S5nC02OQGdlpnRiGFmNWH87SPudWOiWZv3OI6+03o2Y7xJP737OvQRAdYDdixtuw+57AXKIUCtNhzg/tzGQzWEWTaRbksP2AmPWS2jFQP05LLbSuRFjtoID+0huui8yZlDaaSQNYLmCQEOwJ9R3BXGrLLXj6C9K93a6YIqYcSbANq2KLYNviQmSN2R45EeCjpTWAq4GtqUbi7B8uYotVKE3jO4uoPBV1cfjR3YjhI4G8mDj8PH29raGRNroGJIg8ceiCnLlMsEY0uGYig7rCd1olCxEnWPJ2t6CKOPYs0+Xc46xPqBESReLOrBhbJieu11H1nhvh24e6yerst2ofjS2JT+MRiX2SEkDwIF820D8Dz0StH/Ex2LJaJpOOaESAAIRiJNHcX9vSC9rULIty6qku3swW1i7UvLjz59vZey/Mtd2p88Lb1FmWha4ad2ryOG2qqqThqhtNGrpi75b1ijJCgbMvxXtodLJrJyfZwxoLdBmI0zSp5ge3L2Mv5KWTQk0IeRh9iNZppjDJJoqhhKJtRQvwTuRJrCYaxTx29Um4tzrWUeqzyZf0uqhn1Zi2lrjib+UfhtzvFRhyNMBXoWo+rAeRuYbkN/DqCeWq1B/6yO/6Xkd7PY9CrSRYKd2Ru5BgnJTOSJWQu50gNvnJNB9PbWV2ZyLsepjJR7Ad9Hyyd7Jfr4SROcErltuGSuQwtNTOF+jIqH5pRVek025nHWVUBmIwKO8v7LwKJV64rXK7JOk9otFapPaZVpf22ZuDQ9SgGLWnGhXM5hP3HbWvI8XZApj7ZAUIEAti7qujs9PZflcgP/Tv5z6E2jT1VSU7QIY/np+VaWNZCrvfAOBntK3cGhCiy34zhDEEnlrBlpegkbLgF5OrNhSPKM0LOpIw2EcgO0GGyjqM1bnX5lXC5SaKijBACxnxiWagd6aLmZa8FMbq26lWlRHdDxDHKauavKAKiBLnMVDT/HoqqhGQOms9pXoYC78XKhtdAT/jHuic8LLLaXHvZdHKu8Dga2AkoXp+Xr9B9qRsUe4pbKXEpcrOuPmq4ESgE0qHx/6lSZyAgXSmqCKBLpy+x5WzOyV2CzjXA8h+oc9ZR2KDLXLMEOOFtQXnCXurKvIQAJzXixc07XTRVal3TbfiEWmKZ9WOeODFMtT002MyyGYRpkjwIO26BnOo40c9dmqDMHU/JjYg8rM9hZGIw5hdwfGgg+hHwdYADPwd1AEIjFlhmsv0ryyQLWBWudY6p2D1y90WAsf2F2PEwxo/fZFCycAlG55a0b45IkzIT5SiuAj2qiQb9WbYd3VLgSG38bP8WE11YarqPKZKlrSG0wBKjCoBerAS4HOoXUJ2FYq778unH+3hGa15nyZXpfRu2v6fglWzgLJjP2QzQUK7y/f35YG2DW4F/0/ug6PegB2n7DZJ7IE4Bae31TPId4wwMe19OBLIxIFxIJbjsscRBVinw4WRSyFaGRfTebS1nvrEHxPTWh/vnnAt2J4yQiM5Fz9alxm+LrHgohoDFO5wJ4XIT9WEHSGGfHZX69C+qekaqODqasrMX4to5YWO+curBqbzBnm2TgOYQizO3yAAwwS6AJdUi3IP7FsqnVqqj300XQdPnz4kPhjUcOSeWXk08HBpETQTO2IYuon7RM5nTGlYenGGYWuKidwc1dzDbBruVuLuLG7+EbmKe9c5928WKfGDbVjl0DejkNFDzjfopiqaZ5rP5EVKgoKSaM1jr+mzwa00GwDhAY10TxAAabitX57DHfSpphyy+RLsh9yBN9zBP3Rk2x+7SfFrtF5u4ER5Lj5qFspgvRzmsOGMpGzR2LymVrWNFrS+sN2P8v9djBEmiwMztSGzbwCwwFs62EYagf5dAqjEyPjbQJWx8xR+TxPDO72XYeNDaSBgFgqxdsKNFNEkkfeuwu7S67u4g6bm/VAscoUnW0k5ENxL1C2+8w0NnY34rtC//zwssMwWdJ7J7KiYulPH5240Hoz6l7PfS+Slj1PtY7VA9VoR6R6MszGAmB6e1FkNh9vtgFThi95qaYjZC+jCQGmAQb4Y0JNICbqDLWyYOHmODcXPD5HKwqQwrQfWZqX7xfrubOAWULa1nw6YwbDOmGDiplliWx9YAtp5RbEtVirC8S66Ft9Rn9mS+fhtqh8fa3Pw9QDncY3NuVxmgZKJQ7wfVmuIHMW0EdHdFwS4kHxEnTmJYyqbVKdE/KcyADYt2HGzOz4ZoUNgvUIxxz7AcTzj9i3XSv2T8PMBv3fWP2dc1M0icvHzI5okT7EVTVZPBWVMGHv3TagvsonAfs1zWPBaBrlt0ig3iLaCUdI9UuoBzOcVT1KqwzJzmjSgRqYWBDWUiXDG5q+kakJGopcLi29XCGqNAx2of9u3YhrmsIVvKKdF+gY9Tl2EOdmvmgbpb5QMnlK4YfIRSL/VJSslS6I+voibp0rlZGvZXqATIdU2ci+Oo8wr/1IkpUNYzsXOkAbT25lUPPcq7V5VMoapGT4w9NBGgA4JHx5XaKU4i5DL1XV0s019QaravYepQxgfRQAgIwWdYN4P9VcVoxoJxmnIVCgvGKnAHgHsyuUoJHZASncfFVMOJEAx7Ts2EQr/LT0upcrZ2+LjOfYJawoBsraxqJBfsc3kWe8uf592PvO63n8HxV+dGD5SpSvnqlOpJ9394P0InkYm/ek23n7V7d//i2bja2rOUyefdIW8vkTH7fRf8bBXa8+KpYeGwC69eF+BUgblieUB1GbtX5KtwbN+OBkx5ROc9vOKtvwUgSQh2M8KZ0Zf+b1GeOh6pdyYLZxk+57Rf5KhIKnGX6HCLBo3gnGsyziQzVO80DTPVlWkhVjEGNZli+nN/Tdo5sL/ZPJOlsxZUAHJAS5MAjQYV68vV17gtMa30I+RDiW0C/blV0JgQ6UWLvOl5FJJU+SWNG128oGTU4YEDFRpFejkk4zAOM37CRdz8yPkyBrWhkXEMYLRwrLyMtFprHdENvPyxz7T9c5jg0NbN2XVYchrd1fldFMgWksExUT2W1XFiqSFH1qS4jqRqDgkI9rjcKx69qSf/7Y7yL5crw9qjWBf+TY/eC5ms2NtJM5OMeINuZOcTnnSNx9SKwC5ONfPzFfAuQId9Hz7upt8mfLL8hzAJI7o68y2pLEb9b9Yq0KLbycbhKJT84I7BlNPG941VE/ZKKaPNroeXt1oVX1ArLFHgCoWNjIkUGrTHBW3D0X5tsVkRicrrtjSqgMzzZFjk1+u7spW8nUPF/a4CN5vnGbXMX/RUVid4T/msfth0jYbyNWkdU00q6ig8EyYP+0P1nHc4TJkxuebhxoWyC+UvgmRm+UEGBvRvSEJkCTqPx3jnObg8bdgWbnNFikyAFvrNzBEEaIL0GZ6IT4OCoA3s2l07lsr5hEv6zqZPkFCu26BBwf64ZYtHWD7UcouDR/9BaiKKpg0QYOBEtQ/8GtBC/Ggfy0zEN/DePUXz9++HDs2uOxvj6F82U8S8Wmqlr3PAzXy6U/X9EP3A/zdQgD+OLjAjG5hgzlpvZNBf1ENy5XuqdB7YepiVJt+S7L5FylkhJdxdgygkyPTRA5ouNYCqZ5mpdxAosD00QdqTPWw5TkJ4cm5AYTnHdBZZomB1LH4enwxE4zwEYUyCfkDE2j6empY4v9VM5M2uESC1IKfs9iDHYZNR9EAJgrPncJXnD5sMF91tTDOFJMx1ObI7oz6A07j7HpqKTTdk4H3wEB+fCTRGa2pEeiS+ST8DtmeZgkxCfphOazHvG9DJizrkUVEEAvCUhZkI9hZ6f6Ul3zlMG+lE/2TuRaKvtKAMwAK74HyVoUG5SXN9s51i1Sjn/S/EWeyMNhsD955yA4o+5B8t9UuwCgUCLKwJo8YxhXRV0X1duVZZ4ZTOvaAcDRQfIAlqb1cH9B8ABNVw+6jyoFcMVDMwX7/oolAN7kcWBJx9ExZ2NHQZIIYJceDko6HrwQFo9t0BO5M4syy5uZ5DdsahOBAAcHHKckB5TiczybZ/g5cGaYTaTdr22Ib4usFsT7r98GlFq3bP2yNsr0uNUvfwT/k6ROy4Stl8TNLrBb4O4EFo92GgzA7RJ5KzC3gf93JY2bP7xB3fa/fXT8sfrDYtm22qUrlkp44s8FUt4RIgAvXA84Pdbpeg8I3H15lkduIDr1XUjOg/KXckpFFiGxAltqdTEtDEKcA51/OqaX48gCaLkEwAMUbDCcQ2PO09CXgszlhGgVq84ww3iLmuhWmI11gGJx9TQSD1vUB4zx7X3TdZ2SB3xdiX4d1BvRgoWmGbYj1+r7EfUl8HqSIWEKXKgELHPTVjXXDfXEpK30crlsOpOE5KkUoBQAQ92sACzWiTZVXJZ4behxFpsB7uC1u8BFjah3x+ejIZ2FX/QjUh0DqhdMI+XdVrIsTnMALtBkX8GKBF0l6lF7PV0oCMhg13ZEjZMVQNpGcvcH9m6OP8oB4lkrxcxlUjZzZOdYHKO3DbKQf/hNvoTeL8VouyBVnTabsGxThRA7Jk4uCadsFzHrWZLegRK/bNJ1XeuLAHlyDgGyrRhkUHBQnwAkbClhXbFU/QKOAfsB6AbHLYyhIkbpbfayW1fXEZUs4dZtG9htHGPrmhCT2Oxq38SsqyO4Xf4N6Wj7LXdu378m7s9jjnd8S/YGfwxabwGj+FeBzev58h4PcpPWbqz3eCtoiAHyoS4E9GiUAMRMX+bIqOHcTQDyICnpVqFJIAxSXbEjAc2aAZP3+GgRgVVkIift7mqQXZ+bKaYG6PXu7C/j5uphcZzUFSQ0gKs8/iR45gP6CGh+GEWi8VVTNwfYADu2VA1weL+cHOxdQ3f4cCTX/RiOi3MQBl2GJXQT1PKXYQyX6/j2dn27Dv24TKEc0OwFcj1OvCawwysM9r31bIN8iFKnImYSmqtlcZOS9aKpcclEr0GqxniX+v0g2FHxH5vJhKtSA9Xabtkwsmzbuq4/ffokFOl6vb6+vp7P577vIcJTUX8CTa5ovgLIjcZjvA3cES2syBex3FKO0qMXCzJH2KCUr/LPB0Sk+ufETR+iAOUI4o93rmGS7gnGoSvSmDnIB3AF2DiNbc0Xq8x8viDkKoK5UqeghHwSaY+EQzmJj0niM/qHWpE2fZRCz9soTpsCFQ0QaCclMRXn09hXwpDalPNGpmiItMaZ6Q3rWXAjclURgmhOZgLAhMRWAyiwJS5vNUC5FVcL7Tbq/C8KN4xXCPlUvizqZSnGASkC3ZkLMJHHBeKv+gxObIUHSHrZm0k4FOAAEhtER2Vb+5nsNCQFxD1nOKGiMRnera5qm4N3Dhql6x1ZV8jYWbf2HOoK4wBXguW6tu+yPoU0clPLlpl9BrjbR3Be3wf/7x5WXNQR3BYBcozZ8Nd7IXWettrifbs2ffXxjUWA/G276vA3sv/f+xa7l+vnP/o6842Ck+IA8QMqJiR3aHG7dVNFjBlHsOXcXIwkMuZJvPLAlJ4lSNi+bnNPbtU21GViOtbpJTuGGJaRLWg3yBrSKLGG6QjeMu0oOE9kij7DOL0X35GaUdhJNOjN7519zzwiZOSlq56PH7DxcVORWyotfefKtQDeyHoqlhILXwCl9O18TZUv+gNTQdq5BpRrMxMp5SbLxsp4jpZh6AcN3oeB70/ehDplh2569r5ppdUlRbV7jGB6ngvRxJojSHfDUGH2X5r6fPKg5QexByfByRZW6E9Mpz9OFYtcHlTA6FoO6TvDetmohXE1QdtB7r8SaVVFZzpfo/UvVxy7vTZ/VQFQqKqZm8ykUiXReJ+PE4B0YrczZRd1SXmbcqP4ZwySboJUPuy5bUz2JTffnpdWOL7oipq41OlPVGA3Q9Ms+ie/gf+0m4C6O8kOphSO1nj2T8k4LJo+WPfWpnCkD7afVGJEwFqPM7x6MY4DNmqeT3YK/BOTsAKTFOY/YjwYiJtf2Ni/qUsWawqJqCN+PnIAm92mPbXmMGm5uPvYXn/j+t9rAk4ARH4vNj1g35oGkMEfy3Uxdc6OMEUG9rlRLcqus84pDQBru7e/TNXd7CATBmnfvsmm8ACHeHYQ92GbvGkNdW1j321kPhu1ee1ls+bnG7bsOvhAsm6cK8bZepMpfBKy0P+wPd8Uf+JH5dMkUXqyK4nwk232admPSsRQOhRSuIkMcCQBSCH4NIhIGDWxVTY6iqaFZnGQsSmI1QfvqkNTN3VdhHbofd/3b28vp9Opci+ubn3duaatXN0P4dgWjV+eD23dHorSna/jy8v55e3ydoEu+DAVKCAjbAoBMPvsa+k1s56J1EOgC8zHIBmh68DQxw/eu+V4LNB+T6GbpJnCCzs6CHIvQITRjmsSg9QdWvMyzPYZ3cq+rltiTCGEpm3nP/zhdDqFvq/88vT0fGiA7w4DOopJfC0h/I/qgYRxoBMxk/QFXy5FclXh68p7IgCsaIIaKJrqFCZEyeyp9jUwcI0sFfoWUKMMckGIOTssRFLEBgk2EZYSYpgP4DxRF1M/lTssQFAjFInmiZymmnmc1+s4SR8VC/I2zqOwPVUsERGotxdin7JQgANufCCI5lXgeF27j9IUX4EnlutTgMs2bvDvwctB8wc8vtiar4IVNEmMG8YKP9VphwpAzILRyoTAOdy7gHFeS60oTIP6KOZigUkwEjYs0Y7/0QSsmK50ROY+QPcXtXyHpvbQzIHPKdRcTFUGYlgDLOdmcqtGWkyDYeco87AubHFyx9KkDsOkxRGSOVKqbFXIkPvUnbJWb/iTkQDDshTlc0Wqa/pmGB1AAoz0YUir092Q91tC4WwlXZe/dCMT1/nudr6vDJhtTPrA73589a9SD8Ndi65vP99b0DGHSG8x+F0SbAezzOM8quUrNXTqV00DkSxFzIfDIabI5a/nC3kCSAxWpbkHh52KKdbvswmYNu+3PHILh6wXjSiHatc7fvwwTpgVtOhgeiClIBRMZQOOw55G4Bbc3U5vF218ij6t77by18svFQB9CPJTggr7S4GWKln3ofnfe3S1y9QaeAwaBUxhQJC/EoDa46KpD4kLKN7f2fXk0mAXWbGdnM3Wi5nXUtO8ivgcNNpju5R0sSSHpSWdl84aq/Ec/ULb25KGXDQB2UQkkhXchbXvD0hb663Bj1G8tQWjti28hu1oDCdhZBbVjQz3tD9bfQG2CGZKALTBRGAoczx5cFS7J7cvSqBDHPdoF2XS9Tmyu78CEdH8Jn4U0LSVvH17SJtrqOekGIjAk6gX8xycw27BECnDKNQLnRi32Weia7CEHDU88pjho4+lqsZCG3yBSjOkkF0xLXCWQHGfooYMmxEaqLeHJIMVMsgTjHtNwDclzThQBTgkVC8tUFug/SZuyD9QGcXaBBxB98w+YnMM+qj36lfvP/IkMPcByH/Oow5mXWkj22U/NnSLoo/FnYctsdkjv84YCegplKqY1Pe1GAr3tTOVrGg6gfThUaWH1wchIxGQaj52Xbkg+LM4DAxzfB3kZSI0kMs45MhfhFGLbL5kt4+tPZxdSk7X6B/rqskc58kDSKht3TR11TYdPHmXIvH1x2GQfDXDO+fhvrLUrqzR3x6mPvTF4l3ZoTWy7rrhw4cPpzOoPjgRXod+6ZfQu6eybMuurZ66Yw3HyIpKw+Pb6+e27p6fnrxrplCcrv3p7XLpr6iPcemixRhCX24pZSmYgpC+1lK6yy8IdEjxxxUW4176oMPIZjXUjOdi8sFN6AnguhijZ+0EKg++vr6K0DLPs6rBx+OxbQ+ldz/9+Fdd03z58uWXn3+lORi66gHeeZh5VeD8YH+eFzBPhoHCshDyQdzp4Q6CXbkBA5XqRRgZamAj7VKxPpYa7FwVBC1BSH99hbhFJHxT25kh+xCA1qeBmlO9dU9zU948AVj3cZ749ToAQWOdwUY+92aoJM1RYy37WFUkVleTmECj5hyAyvNksedqoIrjnmb2KnYSq23ZjMM7rNRvSk74rW7NPI1M7kwINV92mL3j20WuKUYPHbV5KKsAcSZfe6sMtGg+vva6Guh8QAwN1c7KOyZ12jfReC0Rk6JEVUTXPRbr4BBXQN8JTSEgHEKLD0cVkDRDxJxDAnwHmiBbaWVxkEPdrmNUeJ/z65MQFi+FkR2OnChVGvmbD7Tbt5ZWdJFjX0dWb1HcmHwAbAVY71HOIl1H1davdx/ux4PY9KOs61Z2w/INfrMK39H11zDNX183A7M1eQz/59f6LgauR5LdzA870h7vvJ7+mU8/XLRxlFDzLsnZJQBWniqWpphcpLjteL3pbWkHQvHTN2YorbiVy59U8/OYNT0wSsk+kzgmuz/X+N586WLTBbSEXZ1o6KKUWMbP8079svYAqZHfoG+Jgj8cGgxw7dttfpJNAZbzyEq5rUoI+Cso+Qi+JKkObr+kaco5KTb9sIef9zBukCtFRwvFAfpc9sli+2nQqyhsi5ZEKFiw0zGn9Shp/pjTt8R7o2qvLbJ5OCooR5MwauRvDAEkLZdTNZSKxTcw3l79AURMvH3cNYbj29Ombgq2fJhtk9ZTeSDobWscvA7RVcV/bYBVRgpVh/03RnpTHk9HsydegfnuvNsaOUXEERSdWJ1IOTNVqLXBCJdKfV1ViXbDu9fhZoba0M2i1ZyGkfSnd1NGsVD817rHQFHJ6ker5h2Ip5BPRdAHDql3rYMAaFMVbeM95Mk5ZdgDoBJ0ffwwoQdAmthAZyX4MwzjSJ1pAFKm+a3Nx3r17tZmb68zuMFpOkTR9yz03+09Sw3gagsHcDzH8bZze7BoO18D8tV+m7yqqPSV9X8Xr+wM8tJDG9jtAyhccv+haL0trRLytMea2Ev5enP8xDq1nuzyOLxuRn745MajTljDoxwGcOY0whBlXYjMIZvjKsI04FXHxCP3T63g+jZ6aN2QymhYNUbddejTCGTTpz3UXJhfLjJD43yJJi1W+CrgWpXyWC7ISewFPBa7dDSU5Y2dj9B4LomfyNbdYzi74uXzF1IkcDg1DR+bpmvqarqeyKPnlZeyAvNt59w4hr7vL/0Iuk7hSkRgofOXqpoA0LSHw+HYds++6SrXXC79P/3uj//8uz/Mofj0408//vBT4fwwhn/6/b9oBeYajiT8OvTXKwXs41jlCVmz7NOTOxzrj0/Ph67lYh3ndelGUNzBO+pJLiXivgdo8inWtlCa1xbQNM1PP/3044+fClddLqdje/zxxx9fXt7+63/9r59/+XI8HhGmo4saBhENtPCLgKwpnC+TFj+wRBrftK6tva9VAka/Pw+dZX9oQxYvb6eBx4laE/zJDk17qOv25e20zgXCWAyOl2G85iINaWzr+qRtK68S7Gaodg2NAXUepFZ1IaUEXFYYSCtqVOi3CouikXmeno4HSTUkfYVxldE0bWlRa5gexB4HPrRPCaUGFS0JeceACsCod5fLZRx7yHnXSUSExh9hDNNYMNhtkcgClO/aUJFWh0saME2eDx+7rlNCMkJC8LoEhO/0ZpmKqpE3S1kuDaYBRMkrVxxoPMzqEXDDNaIANAlSwxQGqbpX7MpAvQhxA46wa5+QSS7lNJe/ns5SxE7xhvoT1DytYZyuHlWS+s2OGbcwJQDJwiLVZMbLOVGj+fnGJK/hbGysKGTP8XF/Vb07H+L2/BWAPDF376I+X4fuIn/m0WHsnqSPzffFPwFwesDp31cJbitr9xRI1pA0va77scm9pLC1jCS0IQFVB1LK1PPST9qbrpfLzvtMw+JwONzmJ1VRjP1VT81kAKACuuiNFJhd85R83541uDhqqoukIBuOqfsm3nYJ6HK/hCOjxRz4P9P7lTKATPRiB9IyzyO5kuA7LByzaN4EaglY9PamZzdrrYOnI0/KJXKRwyoDFSPAQiDF63TKwrO8OM/GHcwFWPP5lm6cQn9r1tn6/rJV0+Qx1Cqtmax6dTrmR9lp/pCDxu3j2wtT8c6r9ie9EgLXuvxWpjO30wgB64UbURE03sELZhdl/rkeusTcUfaQtn3dLnkmYHf3o/JqW4bQU0v93pvzhDwLRg1nymJB46qRpqs/sVKs6tGs4pu3B03nXaBWdFOLtwxDYOrRCYmpzhIQodYhN5qJKi1oNGXkJ5FQPpAYiVK2B1Pev6TZ4rNygSL2E6tW2UV753MS6T/WDfYjJNUT3vmc7yqrPnps8vy4tOJk6DMTLZysL0IJQf5mvYHg7kqCj+KY+GdygErzVF8BmgseWoRZLlwg1c5cIlBmX0zE1Gy9Xt485EoIqOKZWAEopCK5HnZBEUzG0yIDmKx3vB0Ji02XNyvNredFGhFWkrptV79CNF/a4LcsiZilchPOr2nqz8j64dIKIfpxCsCh5+Kn33wMIKpM4zig0aGY4NM4LD9+OK5HJM1Eeg9hp2HGQBkicGNqkuOnOTSeYZGv5jm8vPxyHadxCK5u/vo3v/lP/+Hv387X3//+Dz//8b8djk8//PDT//v/8X/7w8+//OF3v//15cs89m3bPh+eqt98pFQo2m3HYephGDyhKqNdblouPa4220Yt6hHCDpUNyPQsoNpDkx/8yd0Y0wOR4vPz09PT5XL55ZdfrnyM4/H/9f/8X//pn/7pH/9//+3/8//9J1hQXa91U4a5pwUFyDporfKQNp2nxnvQmZjJV9CDcSvM9PHDURkXYriBd74sal/9+NMP4wQUADlOKMLQn6epKM+2ShjLjE602L9s3CZm/24M56n+3Q1od+7L9rlEddQqnk86xCesw+PeSs/bLL0A5FGAn6UWFBBCUUyZs/uGMrTHazJi0iPIQyyJKDOKK1DX7tiBXxQmN03IHJiLIlhHu/E4tq3rugOQTSy4+KgeIwYVMBue9IahjKFnjkudIE9OQQMGG0RdNVPKpcGSaLFZlQ6JKgEhjKcLsksds6S54XgGxyTP5Z71Kok+ZI98Cu8Q88Te2PVC7AgL6XJ13VFLfcYN4dAErSl9zrrEPUwAthFwHrLLPmVtId0GYYKU1+BSonKK6jMpIOycd7/XuuZvJuT2xTUc2QXiu8B9VyK/q1W0/nk6hvjE+jJuRuFtyhGfK6ZZp8r9c1zBJ1R/wZxDRxEHLnMAFR/lxZWlfVj8PSlp1hyMEYVFd7V6zr5XP5+YGIiMqBw3hKVG4cqOWrNS9pPVVkQIEJKa6yksY8YAgCYQCJOtv2DFk72NfJ2iVwBVLIJyAHMoSitLCRqfjOTQAkyAp/INsVWBpcmesoQg8mozZChmpv5hAKfNIpa9F0jfy/UZVEkt8FwxeV6GiiMihvMiZCIryi5txhJ73yARRK6hzl6jKAmt8wdpERaLWNjNN8tomejoOg4zRDlh/98YWD8aS/FgdlSBOI61rpGkFOsDbEWQK53RM7T3k+C1/RJyPNGClmO3XyXePHrc/StUaURYiEuYTNPiFbNxo9+ghdMQ6zufnjLYLE41/yPRQvRK7BMgdT9OxBQoQ+4wY/SoJCJkF5JJcuo1YSuOEOwX2tsQToQpVFTwkhnz5MGPRm4v2pIaxauymj3opdoOyfjkWp7t0BEwluBDbMBNJ5pTK9dFdTdOqPeca7Wp/pNKnSIb3a+oxMjV4pVYVl679HZNU9uD2Ty/Hbrv5AOPfiMKjQisOndLBdFdsbbuqG5HUBFcLuS9qXykKhnhgGSDmKoiTd3pnu+xj7UihFozyqe0QwLHwRXBoZQBoS3u9jufBDC6uZij+j8aAqIuGiWTaNCvQWuHNoqEUGwjIseX5XAywcyebvWdy4K5FEPo6uWREyoY/SAzIHQDWKMhKzP0QvFNlZugY4Qe66KkAimOBTZGxCDBphHwWddu8VCyAuuhmK/DCFVE5VcO3Hdq3gSIXpUsIZInx41nuVbjDx/bunPd09PxeKzZZ6Ui6+nt8vvf/be3t3NRlYfu+OlDM46nf/nnlz/88z/+9u/+4X/9v/9fh2n653/+5z/8/MeimA7Hpqm7Al3HkM25nPtzP8Bbe1mGaSgqtPwuV3A2GrqxCvzkxiC2uxI2ux1ZlGzXFglbPw4///rL5xezaCiqX7+8vp5ff339+R/+4d/9/d//nXPuf/vfXqYwqO7RwJx+qV0FDNgBeRU+y8ARAaCGoeSAy6noL9caota1q2tukww36y6AFbz0wwh72344X/qetUHXtClqlLwRjcDIdI8TNresycdwvq8lAGW3Gt8pKsY/zhMAzjT7w9R9q0w3NlzlUyapKy/XC519SRDmUmZVKe7am3QlFx7IoywrShObR8+5R3d1WS2N913TsnulHB2aDbl8SgYO3qF11aLfG3nqMo1Tz4p+OrJA/o/CBPa64Fw9MnPXOMT+uHdl0XUdO3ZwVKQG9ANaVabj8TmEqa7QO15O1eU69MMVrkV1SwoH7m/l4MaNcg9XCSiLmdSpXFi02K4GizKV4ZWgvKyaC7GMiNCFa0jsX+CpdnCLCgE8AT6VbiyqKMSUlQ+UFRgVCUTDCX2lArAG/etLmXBhfGm/8dzjqu6C8keUhrtw7zYO3/1qg/7ehv75UX3LyeZZRIDt6xr33H1z+memiLfPX9P78x4OUYDIH0cxkqKVyxD6qh9CMbe+kQBoAZ6lL4GgQAm/cvWjjoI8SrPDW4rmcJCov6eIjXYdLO0D3UAiEUjzfC0p6OKZyib/HC6PhoTp6/StFDmnoiSkz2Duh10EcIY2POjPcAXRBUTflnGaNZLYBkeLbrZLrfGZ8YoUoGQjalX/tetvZQnOgBLVA5BwWWVxZQXR1HhruGXbMox4GFLWFh/kO0H+JCXZaQytY29NeBXtm4gqdSowIZVT4Xdr614Opd8Z5zsB3PzxCPl+VJBL2cXqvKvPYbwpdHir9LWrYukJsxt1Ua9XpvgTHrd7ku1laKvaTpkNuXN7ERgRPara36kARN/KtAqtZaIbgEBP2Mu1vpkXSUma0fBku5Y+YXYo8du/FCey8IQmMwozoZ2SZwaRdcgvdjjn0mPcoxkOucFSFNcLw1aGZ1nXZrJ+2hzkN15nW5TieFb8kV2ifVPB7ZXcrbq7JDDBQ/d3ihvJhx2k913jXCQQu+axKEqW8KqBrTyfUR52/jXJMRVX0g65fsZzSX5n1joZ8YE4OhFJRHobZkF6j8IsGjSgN0BVALY/Uh0ox+qMzMk+LovPSPHiIc3Dwgoki0UKFlVFlPJAtAazgABOrqkhYeUF5VXZDDAiBUgdU/mwz6FiMYJ0BYiQzM9PxySdKYKRzvrl5cVUMiWvEFXXzi+vpIKQrCmGMPY0xB1MXcgiNMUaeFz8+jK8XZaX83Q4XJ+6w/F4PByOxyf3H/79f7pcT6+vr29vb3Ld8mVTVb6/zvP15Y+/649P3b/72x9/+1cfPr+8fn55W8IVOFLddCDVPB2H9nodLuPkl0aC2iMrccPUV9epqq5N0wRc+GKiYIOU9AyY3G6a+vnhw4dUI0psljCP//iP/3g+n7q6fXt76/uxbdswzqfTGwNEY4GDLki5iBHaQxyZ0Ce1NQh1kjK8vFyaxk9kGQFEI2ReN65AxaCqOnnVa2/qRVafpbyBQYtLrsOD4cAWM06B9a5ilh5Z6LJO/8QI2FGA8gQgRi94fyyMk4IWXUqKYv7h00cmP2LPGpSTruR2bdEIl6MAjzkCHAA0MzWzbEFBDd6AHMKITCbmMI34nDBKC5Om0TKzmF3dkGA8Dn2YJrb8krEPSpLHHCHmCPqQFoGuO4J3D1kRtG+hc3EGYVkVMwTT4haC/V8MYZ4v52UKbdtW6AZmobiomqaFwx3DtXkpZbI5DgBfm6ZDpSDyirO1MWZQnLrJOBnS5nFk5mLQW4PntKiWVKNKhBHcF364myb0isBcetsT8q0UoFWFbdNNmlWTTb0hhkXp3qlAKNQq8nsMmrv32G3MeYifvfj1P/yzPx4pe+4ygdvH+4X7uunos+iQBIRiDAP9/pCnQgGO6O1QBvIE4bmbz2rdwsgeu5ktlKRBAy5HgIIW9Kfgm+QGSnm5iIpx8me6aPHYYykc+pc5J5vA7VKGibbA0VQSk5houmkKJdTQ7lrtW7muGg+uBEqDkwcrUweW0AMD3U32lJMxtn8kdw/kHpqncAPhJdPXWunJmqqKgYuU5hcyBKgPYUbV2xw4H0VWgo88nsgW2ASgKfSPqbHVUohjWPHOGi0slGNRL8daeAeEe1i8cnf43R1ad99pEy4GUjGq1vGmA47h0Sr0lH1uQhq3X7eJoYvverwTaCb9/4jU5u/fz50V0d4+8lL+qrMe1X5uHwmAuNmWcNdSlSateCogxeh/g7LHfTcAnlomM2Blbs0y+RoiY/u6vqC9zAu29qwaUU6UJkJ5WRRK6za+7AKlK6hcMV2Q9BPzffUD2UAzgWjQNgGQ8Kzek9Wgv34fN7vO+xSg71oM31lI8x6ATcRDHkhqH0/KYKoQWsJguuMMc1lB1XNTH2fbt3HKbT0Ehzv2XiUdO4jocq3GIKHcocQ0FhoLQooEMjXRtyFpqmhU+xYRm4mZmDyxWIqoxUrOfg4LpZ5ouqIWEVaZrKlOOcAMuf20H6XOq6Tqkxkh4dF1XQZnCJZGMRiK5gVkCilybxQpKFwhUIgsbQfLRpk9DRdQSREOQYFHakioKhw+fCzpQgjiisjcZB0Pg1U82Mmobqyqcs04nIZ+Ol+GXz5favdyPB4/PB+Px+53v/vjh6fj0/Oh9fXr65fz+QzqUVn+w9/9zeV0Atnm1Ffl1LbtTx+Phw5NscM4DpeeZI2udtXiS6joMrIAvlwMOMGJXTVoxwATyVVt6bxMAJhmz8jXsnGVZoEoQG3bXi6Xn3/++XK5HA6H5w/HH3/8EOZxuAyoHC9+Gpd5WlzVnt5658vZ48Ki4R8fBu/6aaQIHsOY/IuYqc59f5kmV5MlEsbpVJ6YA1ZyWagbVwfXNPVSlv04kbmKflyuB+TGomf8jj3IzjcwT2h3MH96WKZ6kwDkieVuPuqkkl5QiiwpLbNiRgFNtnfQXvX1oYM2xrjasu14omVJ/ieO3Ll5HJAXO3gyU/d7uIJENRZLgBAP4neTCy2K6nDoVGCjmmIYB6X6xYSofSkxZgi5KPpZKrRxw6QUPHqoWrE3YJ7nn3/+papoata1jccdwTLulvPpMsGMdFzQk1Eh1kd9CeQhAgRVP4VlwLKsqmThwYKbUAKgoC57wNbhl9BXKnaozT2lT1o9Ngjv9rbqPUn5KlJYTEpe34IhFMtf2IHurrbZTbL9ZQ2+7xV5JduU04S+2tT1tW/cPE95TgoLdsfzqG5wF9d89L27UCCL+dYX70L+2Tc+zGpSO3yeDav5rMb6Cw5PCbC/Xfwyz/UM29YNLAFgkYps+RklkMnkNbPcTjRBBVQYlRwHDmUNZtvRHWe9UOQ0k8VjbcFaxixARECLsAZYBYSKtckujlTMHF9gGwDvO6EjdeBBtIFbpfc1Rr9k5jlFQXtd6JcR5hFmerBOnzDyQf7ZpH8WGib9HK6qIv7wd1B1UG2BpyOFRUJSQsQ5s5aCukuM57BRDZp2t2vl7k7pMEjgs+sfR7agYiEOfL4OBmp4ZyjIzcq7iYfwhDaR7wzUzbi6O6rXLPv2UbG5LAUQadxu5nV2hIqAss/e4kb/mke2baV/rv82kvTN45Ec6v3J+yAxTohyPl/4jwIbyd3Pj0mFXNXsgIu5rhBIFehWQQ1vWSAbso7S+OdyVWBugfjIGJwcFxwyVenUlGypoAgk8NY2ku0dPOz2wTbu/fq8BTjXCp6Oi4pYaxO2SG5ZmL5bP7Xi7cbw+8/vjqvHp/DgPXdFI6QitdYtYzNPrnrO27ryqWLoHWUVBOQvyxAsYF3TBkD7cCphwp44NjY9bYtlXkFiAi9aObsBQrGWh8QcIs0vW5ZZ9FICNg7XuL1S/IeHsVChh6JQZhpNaWA76JiP5GtV8oPPtifcqXke1n1QaJG1v0fF0ZSWWBNhb7KSZOnHZb5cDq0oUlzEVdPF5Z993YQwlhDYRCyMaA780PnK5kXhRBNULkqPDcR3Tz9hvtDpfZyG03kcp/PpPJTF9Mc//Nw27q9/8+Pf/PVv/u5vf3s6nd5eXn/3j//7b3748d//3V+Pc/jy+vLL26/H49NvfvjYNdXrqf/ycoJS0DSWVc0Kbzn1kNwHKuTrAgl2AeP3cbwOE6QwHDgeFezqKbZAjZW8wpZmx+fPn89n9FP2fX86ndQKPAzD8anruubD848fnqsvn19+/fXXZS667mmaQCaFzzeEVHXHMCrYC4f7yFBdg0TjGRuQEdsEFABJn9AqgRjfoUwBUGCSvSSpvyCaKTjegYDp+FPJIq9d7FaPLGKxfX+NJW6KBjkpbvch6WNNa4kZ+Pl0qZwNM4U3VO6OtPisGilMQ74Bd+qWcdbkX8STYTqMi6alC9cbkf3UA9CHYjjlfihLiF8Odp+LxVOeaZSzm5ota6ZeK0lrCVBqJW2MclZYN4YJAqBvb28TpdsGyhAVroJ4K7I3wLJlBds4uiGhtkClUT/iji4jvm0wpceqhFEe0lGcsuXWMblKNfb8Iuc+PImqkAcSWfUPT+qaAyhKbqiClxKABMWmG/GVHoA8rr0NFPIeANlvR5mRNXKitcLdz3/0zXcP4CvH8wj+vw3gHj3ySZI/eUCNsBu2ywd2R/7odFJkqZalMXZw55PZUb9wDSAit68hcpBcAtKIgVV15mFun7YUR3ATKTEQ55I2MjQePLgOcoAh+8N4/1omkIxawwDtYUBBXOqGPY4VPL849KWMwQuiUjJ3RxAj1A0wO9t9CaVTAk2C6Fgl6TwA5TpXAkp9LNqkrW5lIAi1VdIfl6tkwYU3YVWgLKlEhRgtMRCc1pQ1rphG4Mmviuja6d9xTFuyhJ98CdQn629h/+Z+ZK4WKinvT2HW++HRo9/mtP2ICq/O3Lp79kZBxALILPZfh1i+9GRguozWEwti3Qnutyp/8yP/XiKmG83c7D37KfkI0b+dp+srxpFYd5R0KXg1OJCtmCzKdRp4Rptan1stSExKNX7OAORQUPKFX/GSKMadEj8xroquQfhl05mxnI7GQrGbi2obhCXy6cVsPGzD7EfrXEyosrERw9xdApBKZ/FU1oYK1aZvewByqCj7To2ZbFx9Qw7DWOHOLRYBfX9zrXhlPUYkURZLNSV+pFICFQZ4FVJPThJ4NcO7WMnR/hrZMqLqcpsmaCKUAQ+akkqSXvLJan1CE6S+VJz4FTjIroxupboFXG2VAYYIkVvGHJ1zVYggjT+RkMB7qNpmrablEnsA0u1QajIOY6ZnYBF9WZY9EfpoE2GiigxY6zBXYS7GaamQ/WBbYS/Z4iD9Se92Cikr4blcozxohWaXxQHSnef5wOtJE4HobxDwtkAhJvpeg6kPasY49P301DVt3TpXvXw5v355qVzR1nXXNH/106cwXv/wL2+45o379AxJov568s49Heqq+tBehuuFlgGhKMp6muYJAtJgVCEKRIfRRLC2ZrOOPEHMDp5SDYP5oiTHjjiPTpezPIC74+HJPcMYeBzqofn5j/9yfj075z58+NS2T9Mwnt6uh8MB2Tdap6FpwUogRsrx2KBqA0Iaov3KzYEJaQu1OmgEcGxBAEg51zheQX+poHgdUEoHzV3cemHk2o0Ee8nNcUfrSgNgFxrmc/BRiJIg//WVrHRxLyhf6w9ayadxrFjhF8KSRauKZWXlqWjHJPiYTfJQV+jDihhpl4nfh6KOGFOI4HnFaRZUtIV3bAg+dM0B8kDcmufiy+mK0B8tkMs0h3HAf+jNQPWglIJQJuoFEgEI/ZDAQhOzRMCQHteeNYRpmEI94Z/Yiua5ezq0FGXSQbYt5Xcc7MfoZzoP0wRfO+ktEX41R8hVPNrOV+fOJ1o3VugnTwDy6HF3HzOQNEIY63jQnwsbZU8w790uAYh68fiL1OmrwEWlB2uliu9c3x8FaHVwK7Scq1MV3/TYvC0i/2sr9DekB1/9BlRX9VNe3AlRTtveuv/xf415jA1UUjjRYdGgX3p36jokvdLtKeTB06Y8R9Go5PmVJu3lcom17FXylrsRXIFYISLUFOeGdbVjA7MWG1Wr52lSOYwTi8oS5DRw278RQDC1TdvwpG9obzC4i8Il5aTXqzKM9QKic41mMj6AG1WhqoFw6PJg3ymcEwrKFoBIdJPvRt8jTQTgz1FkUtO8LvQU4xUHFpqbymXhnZ6otagQ2kf2ot1l7tIm20jgHzEkVg0QgSDnqxEBFHdB+xt6fqtimWY1z86oclTp59pxEceAgkJTIMmuZ3xuBj3rdNUA2c6GlCFEFkY+v0RKMfWe/OddMsxmpCuTQ383zmQNF+8w2bTy8rvSGsDCzS0RSEWQ1Nqfn/g7Tfa3UaM+RHolupbWo7q+374xvd+jJ5vY4/YnVfsxXPUKxwt1Dx5co1RhSLNPh9+oz2srd4MjJJc6AlG0rKN40TIH7cemBRMDMmJ+pnDHOrd123qHEgGRQpvraAkuaOuTFQyKwlUckMLlEHpyDdL/Ye0mILz7Pw6u2MCzP988i1NDJ9r0Ad+qE5kVcGZCuc1bJHNy26ARoFXbdj0AaXTEfutVrNlyXd2hTCTn7jDhRL3znuTcnJgGcfmU7LANFEL8aMHUSp08R9NyW7fyviTMgDBQXOqy6tBSqMKMaCwMym3Osn1WeDwbapbZeRiIJk+f6DWxjBMWFgTz3GFsC18KuIQmeTIGOnLAMDRANl/6CC7LI8ZVVuJH8sJWfkrJZIUOS1ZJBF1rjGRL4tObBrrjaooYR9PziCLI6p2I4ReiUDA6FzMQ1E4g/7nl9XSu67qtm6Kl2SnTlaUY8eeU/oRQfwGBOapNLG13TPqOFbnIekzIzqqimIjfAOJmGbmY+mtd+sLVgXqY6KpwRb0U5/78oet++OEjko3+er6iJ6B01RjK7vD86cPTU3f87M7zy1lgeTVPjnec7dlVtbgCPJGirltG8GBBwTyxCotvPNUQ1EeGeZg5kS7LfERo90RBumUa+2Uua+dfX1+fn58/ffrxeqFDwtx72OA0l+tIt78CqvPUkdE9YthpfRSgpzPqrVxxPDxDDpRcr7GHDJBzAdpBFNJj0RqNCiCIgFBSmDTwtv+JA9dig6T6kkf5K94Uh5rovhjH3BNInU1aFXdUgCy82e65jEMY8vJ4pA7LvXvpuiaM04DWDbOl10/o668HA8iFKz2g+uSAGXU4JBeeumCyzhzOC7hPtE1dw3haOkVN7coZbC70Vbf4JevoqMiWVTMGunHBNhh7f1X7Fs0jDnSeunEeh4SaEDydl9ZB9xZ3ht238ziN/dAPfX+5DqxlWA7sfN0hhZhRTMCbWf1aPAH4hcosoDLQzQV2cdCKwOl530A4DmR89P3M3MSBDhABQIGe5tILu5u4nKPRIYH6u0zvNty9jjIsi4L/+BxuJgFN+Z48Rfb7cw9YlvI//8d/2HyA7Zd5I/lmOWbJZg2g04L+EKF8EPc/jNT38bMeZnt2G09HNZuHRYAdHEhuOoMnhjuJbhGJLtm3cFd0vkGifRNw7EKNuO/ODUK4TWlmdx32+cCDy3DbDMe9gSXvna48nycfg3XPUEQ3oycmv+wUNI/BebT4NRUgnPTmujEg1cJRZT0AqopDBaJFPGbVpZjWYy/sus7qx7FbCNuyuP+G3NPVEYsGMpMBTfXzOISBlTWTXS8RkZNSv/bz7YaQrquxnti+E7EEC2d1nGS7yVnJ7pYFjmp1QuPa/E0/M0hPn5ALHN0+UgEsz8W/Ni/2gX76SchqHb24uw8qbOsHYnuz438cn+uWb2a0HrCdXkEFCyIRGSAIjd0LecITe0juFA2ySxQRWmvYSmucOuNXxkX0QMnGeYR7TaQoNqtlgWeqquA5+Lg5ELK802xK3BXrA8cklx2eI6iYkTIkyXN6X+Dg0cHHJk5eZRYE0LuP7YTz0GF60LkPcuiYAlakgpIidgighVSscebCpp1CF8TA+MWB8Wo/qwUQG2gUBcQrAh3p9ZzjeWO8aJB+xvSLDwMz+IyyFJj+AGgLaIVJfeJOcdXC7QeLm0ZABgyhyJ5GNZH1lbEjCDkLVnI9lrx4kjgDK6Jpw6eYazgs3+gJQgscTr23h9q0dfLntotNg0UJ8CefBxk1LHMxUb5TvktGyeLan8ZPOjAuswuwDnLoVYFlYDQhHWB8yTUU0Q1DNpYgqINgtyR7pJK9fT6wYraiTiN9M1IRwC46hcYxwuJFE6DoQGMi/YCq82bRwZm17BhTTPyXsm5BTYuiVFQ+UeMxhn1dIT6SzSJJFPMEIypkqvgjNpjpgKPsYyJK8dPm8OH5WJeLp5JQtUzVMhVTXyzT6YRmYgoTtRU9COq6hUtveKvd0ta+bVvASzU1dUv3+nIZp2UMpau6smqu/fTL57dfXt6Wyl3GifXwyoOt3fAilC9vZ7VT06Elx+A4TJkYIeXORhHnNZo+kRlCxoixPHB8Wivg1PgfZ5yvau6lU7mMxTJhhLDlh55VgLNEHaTTMNr9D23X1P7Q1HAbgD6Auifmq2SBtRSxisOvQwKcpkNCBtmsAqnN5AiU4OHU+2H7eDRZX0hxJKCw8St6RNVWjLDOuIxgzLjZ/imjLhzJMHpSAFZToziWOH7WWayzMAtcrirKkJnIFbU5OJqzR6KitXUV5n4Js/NliyLAModxHgc4UvuqrX3X1l3t6wZA5Fz5//2fvwyB8IGV5Od5GuYwHtv26fnww/Pz03MLLxHqBS2hQEsjgr6669Q9fB2GYS6Ly+XEFcMUQZADtKAJYV3QxpTPpqUC8D/N5+t0gVOVLys/QJ12QLuw/ENYe2AEijuueFqQYvJBgsaR84KO0jwVfXQDomUPU0SM95dQDtIk2JYxmZDoCuMpzPcbCpCATYzsxDXfxg2KD/Kf7z4eBUaPE4C7gdG38g1u44x7zWSxEw4vYII/+B7kj6nEpRp8+vmNR/Qna2DfpTOhOcy6sI2crc001pGM8GHQUaRysK92PT+9l8nzKjujpSVgg0/NhroENkMRlDOITnU9KHAvoTy0rgxY/kDKq9WsXLri7fVawIPWS4KSDGl0+dZdy35x1SKiagQLTFQ6KNZq+Io6sAiQMRN2dJFYL6OtgtkSKM7Gqk63VqsSIKdj3ZvRsJUz46Cr8p+R63/zMzbQCGTjN97PPOPD3Wlc+Uqdqnr0M4pCJvz4azG9La3i531ttkbVoN2ru3fNWZyfK/sqgfwTHqYHxTq46sjaAKQxtW9TY3qtEAkgp5rZdaaxYkqjdnsMEzS11pP5hgohi0bmj8ZoXHgYhx/FJtyIUrQS/iMcryk7R1EpsHVpCoZgSw3xdkhCo92Eo6mWGWRkh/55BPAVuAPYSWLYp+Z1pgV2TnCxsEVL1rPASzEeHENYPYffKq2zswmyctvsMirtxYygbleeXYFvgJTVgtF4i7WY2Fi6oeLcrG8q4RjDbRWPiGm/lPLvpRDvOQbkRo1ZAkBnK/vYlPCbArA0xriSIMDTbwMoMRADyqobxEMhDWBDm9EscAdqoMfvVZ6Pi4dVY6T/gLSZ5S8e2TpY57i0SaiRjUELTHPBb2TLJkLDaKV0i63ezXww8PgNNcOgW+YeQt7MuzNWJKqq9NEIrCoQ/cYpq5KoxhsJMQzu3ACAHPkgwgM1KvI9bYP5OMmiGhbWhaP8ecuYjjx2VrnYArxbolXUJWmuuF7eZvZalk3V+KWGs2VdLu7Y0mMhlKOlwaTrIN2vQzn1oRivvevBR2JPbXl8+kTzDLeAeAfW9g8/docPP/78+delGiDCNc3jMAH25GU5HA6BHSOAq6d5ChPx77lpmrSSWpQsIopaMbFlMeFwngOhvgwX8FUn4Lsm6cA7eb2evavaGvR3JosjkDZTs0nkFlJliwYCqVMYJhzAGHo0nppPSMnVasUxssDOUsQc4JfNUzKEin0g+Er0tmXlssTQo9LlKrOd5pf0avcroQlvrI/UOm/BKGk9UqehcYR4vCj0s+N1bQWM+e36vZqmKNVwz44cZ3uTqX6Ve9hixNAUc3OZpoB1FZi5lP6xa1RIKqoZN5m23XU7L9Mwj/M0QEW9Kpu6rhp/6OolTOfLi3dPzdOxa91UuOs0XK/jPFfl9XK5AClQLi1rraSnOU1QbG+bFhpQap5RMwPKZ3NVNpD+rOBLPc1DH3ocM5fTynv2jkuVG2rltorBUBKlGaZ7xBa5aJHxZ7TAXWFHJescDclun2XhsUWQiAjF2NWsloev36oC9G/2+CYOz73HrQnAXYBKiXhMAJQJUOXDClGGH9vBYCRLerrY/TQJeAbQQkh2syePVm+YsvtE5Ruvg7Ww3eBkGQVrvRp3jyS9aK2s/IFBl10hJf2ye0h/rkRc3nvJOB37aX+uQFZE8DNNwwzkAwjlh+MH9DwRoURoRAykKMKFxmSJiWsLPVEZihRhgm1UVr4hf9rMAC7K7/+J5RbvPh4nqJtw/6sx/RpcfS9R7dsG+b/Bw6aD2TjufkdGOHOGPy3618PGcJSqxEsUFRAmlza/1JSWyyAKGknyCEnhx5ipDNnWwDHqaN1FvJBcy4qafePWgmkValqy0zyADSz2JyNKrlhWcazMVPH3wlq4UnD/Z0LCZpm65oCfUaLGujETmCmWflhrHdZQwscqsB1PIc33HV6epmoS7We6i5WN0Hb685W2K+ZS2pbNHBpnzoVGa0BM9qiCLfsDNSavbIl35mjkk22w1exJ/rdl9tNajdN5RXrVJgegDg2q6ELlidDj3kkkxVAA3gbVbouy6CmHpy4OrfZK8ITX5wsDrhurPfuVM4bOu+SH/wBGo1xfZ0LnVBVj16Zb+kabfOcu9N89ySNpfaP3DaIHRar2JetRWWQWs60ZDbHc0biUo7VKbjIRQFok2aMQEwkGAtHkPYPF+2aMMVBDwAf+tEcZDGUNErxSWwXmIH0PUj2TJwsiQl2E0pc1qFi+Wmi3BEOn5VDWVIAoHKq/+JZhGKZQ1NLPZZaFUrx1dVe/vlyWuZpC2Y/Fucf0mSa0LJS17+fqGsrrQMdWB1kFRO5tXDrgNYS6XaqIqr2E585Jy+sjypz2KcDsJH44V9YekeU0BbCJRnXFTcVSPDWQ5G98WfsCnXBAc6tl8cPA7juakIFoUsL1ua4q+PcuS4+8DXGgzH2XqsT92JMzrfyS59uZqCuWu8zo2lSwkgj/isQbZmIKH+mjbbSXPvWpr7HmrsfsBurKF2clISKasn8v7gjRpV7ftpm/NDROIrxSvLEKFe9C0umf5yoEpFqgyLBFkJx+XOKGvRNa2Wg8DBM63FP0Ybh5rsslUKwc1xX1K4hbua7zxRwcwvBpGK9QLkTXAb5xxN0NfTUaTa5xFZoFUIOSfzZqAjNKEM4DS9A6FkIYLnDvrtuimYu27cBjDmXZhzBMcxWqClkEoqGYR9nyfi8+jKYwshxUckhJMANw1cEWV5r1jsDq2OBCebRzD5HsGf8612vB47sTgO/Fsx+Wlr6zMvDoe3eQ8C70v00D8p6EyKFmzJG9zS5trBIAFrt5gNq4lhESlKQyznpUt5H37sAeXc3bySZMzvD7e7tFitSzP9x4I+xyhrvXVn2IemGXw2hBaVuUvqzZvFhOL78yUQfJZIHyMo0gl+V8HSKv3sRM6WrAzjS0A5m4NWaOBW0I1diEubZR5CHC3YRqvWX6FfnUthOvV/i9JOJ79cjhVrD9w29J5P4sOcD96P/xgH/neP41j68XHb7zkaLJKJsYizOxsLW545kqhWmV0MYoDey8RZ7J3ip8md/TB9ehdMmaDUCtllq+H3kEDrAqAV8iFCAWG8YJ+wRCLHS6l6AQAZZ33CpsrsmCEQkABb9EiFNbqY006D9mkb1Nv93R3joY7IAA/KWE622DZyMQ8U0A0lQ54knEcByHRmosI132ueC3qkVgMorda3MQGpcAwaJMUJ53Pxp14oTkLIL8pPI/SuvufmxkA2D3XWS1mg8h2/RJ18hesZ/l+hP1djNESbUdXedUk9wsj2L+3MbBufuKivJ8t9xeLcdSVCcjCPYwMQgn4cr+kG3Gt9MhyXru1u2yLK9DLyNhcI2qOtqcrYQuHSmEBhVkxJNlrGXMEVUSyEgDrTk2q4CgVvlW+apOZ02qx5WCIgSZh1dNvZxfa0UyiSJC9prIH2BdoHoNTBgMbEHN/Ea2AoBMA11nSjO7snXjXPRjGIZrCKGupXpZctIpCkeT7IDuzyqUHsFdGfoQTpe+n0JzOF7GqYcgD9h3SK95Cae+5+BTCkRDeppWFWzKTRc54WgulrA20WpZPB07SKVOczeGnh2lYwDz6tOHj2jpxp2fIUjkaHFYVae5nxbAE2SFT6XzgcVAm6YT2OBw5WEagMNqaqu5ZQHJDZMnzRHp4Kx7unXH0pc3J46LI4S0javNdsZtVpibqbd5ZxqQoiSlQ0qzIF43jhBBLnpDlCtNkE0izCQsQwmAKsBY0ovAJMokE6ySgvQKyy9dTWewfNqlrjxSBHgPhQoDDjyrZQrjUpxnNy+gCdYAL8vGVbVHh7Ari+Pz8djVyzwNl/N5Gmqwz46YH8KeNJKR4OJKqpkhbTpa22F7XNWUOh36voeqLubbgJTXNcgzQfSh8iKBTlC2ovlmNq5WKacdrifKd74CpF81kBldVbzSb5tms1jFe4cVPb7HZL40Nv6HqwD8eZHRW9gpR8rl18Swo5L7LOrpsTlW+Svbpe6G7xuBi93jnWj1T3hso8b9rpB/464gYPLSa0+nda2xZr5ie9uZr9nIXaXM6gBcRC5sujhwqqMoVpU//PgTl1VeOXoZzNMclvD5l8+GMWFCwm4bhkdoYpOc3bp4KYtFCw1PYkMj/zqav38kf1DbFm0PT7iiOBR/hnuxuy//+rv8XV+tR74uvx+H/ekPs7lVZYz6UBw6UjWRjjw5XdF37Hs/XsNUBATj5mrwEffNGj9S8LGLhjXUm8a45vkDlBiaCtk7Gc3qudwzbo4mnYUUWdigkilgkcatsQVYqLKisyUABeVu8Xuku6po8Wv5nUx04ZqpCgD15N1csU85o+nnV+ad8RZ1uLcpvYjlcqOLza8k9c1o38RaJ9B4rXnKiIcN1PLSLubZQQSGMO+Iea+6iJEHAf/atN0MtrsynSkB2NAKN3o49+fObYafTnxn9RiVglkPsDbyzX96Pf1WvUARNVMDgGovDDXMn9sk91UrTrDlToBvd1N4oKSI87yZABBBZMcUeh2N7K/LzIPAkAFLZVPZMCnPLI9Ls1vdhPFraUCma8DOBLNyMmzFDtYckelAxZsoTSTx4nQ0kKYtAvRKZlimLrA1SJruEQNmjp38iYDXLBOSRdoI1DViMnl6M7yumrZeIAkEkyhJ3yLUJtStcHGe5lGmwfiKiW3EuDIzE0xK6+K+jIOug5gkkY4CmZwmwI3BQ8u96grf+K6apuU0TmEGdd87cHvWgSQcOu+zx5fDsV6Fst26ERF39l0Q2ZvH4Iqp6VDwq+BS5hvnBweB0WlaiqkvK9T1QFrCBV6gOFUUh66dQtFPxULrpzChk4DrRx3BQpJkOcmQInn0LEcbipRdJwwuuy/xVymeTu0BuwRA+LqiaKPFZrG4Pif6YKyQZlpddjvLLhLN30BhTRntxXpmTBftYKgYqMU+cZOyyy6FMc61hcfDibKWQGlshJZMGLRK52oJoZrnytUNG6bZ5UzLN+hNzcVwOqNxXlkjGED4f5g1+7KufdPATHoePU0sYBM2YQK7yqPbxHS6GPp3XaceRvQcM/iGp3A/lK0bBkT/SK5c3aH5wBfo7kVfMWyGmqkcQLzRLYAc7nqR90vcvqIYbRxTinULu9zIPeWtRPwcWoDq8kY/gfSNf/kKwPe+f/nzMX9uj0HBRj5e+Q+6sotCEA9ivbJmLJV0f+JP0YVkXiG312hk8Q78f5thf/XqbCL7uFXkZ7qLG3IygKjZadWLfW8E/ARrba+h/j47/vUDIajAlBfD/QLKoNCkDh33RV3Z/xE5gebP8fnDtOD/RuTi6K5hcXCGXLQF/eqBMwZCvCnS+tnmwd8Gn9tVktCnJRNfH3uPEPGH/hXl92Hq+RR9vyL0LZ92Z8D/21YATPjoz/ewBMAqAGtHIkxWmADki1k+NvSi5B1ExUlENbNs5OxusXBLjGRtlXs4hGJQqP4Yo6hxuEKqVq0UI7ZR58vggIZDcxpdLwio4TDkkBWbQDWoBcWEsjjMXyBavxTTANyzWDwTAMJWoB6YNdU7pTk90rknBC6/PnBeRc2NLA5qmniKlboSuJdUTqlzYDA/EKOuYVxVsREbsQ5IBXOBLrYFvTvjHBw/UxQgtP1kRZi8Zv3oFrPQkU/n1cdX7jHpN7dj49H6lh5grPP7BSvzrzIfBqPFq28B1BL0kBDI001OxGMLkmJuE7MLW0PSl6bZt1Mlst2XcZuuRwzG5zAVoQx9D/USz5FpHor6nMxXJC/N76ofhj6ixGFKYYrCEbPzZKOmuOk08K/hcaXUK6bK/B8FFuS9GLgTrViXYkYow3U4mkFZuNm2rVJKwbHmaAa/XhBXWEagKga1TxlqoPpEAFUCSDPwcewD7DNn9zfdYZgtl2UFtSKIrKMNjItMDTDb9YOQY7Xzsz2DKe4f//jLtZ9OPcL9ynfOt0vh0cDpW4RsJFmxuKPhitcoB0vLMw51bRNcDSy3yXM8KfLlEDWY38XkAKIvrvIFjq4qGirAzP50OiH0O9RdW+M1UVRCUTdtNMqdyhGVCtixFeXYD2mxYrun0yhQ5ScR/9IwyAv7W7qvVebTnyRKZL6xxgzBoweGjY07A4HdUpPNMtOnykteeR6eaj66hm3dsVWWigcmdozXHRKbOzVA1Z9irLX+1tZzKS6kioErlwB/CZtcKnah38NJjTCyOkDzpowSy2jIJuaxKpZ59F1T1Z2vYRgwDdfLMrZt/fHTh6dwPL+9nqHstEwL3ZvjxSeVEgDTMGC6Sb+fCQAOsh/QcY5SgPP+6cmD2oZ9YEFPkQiggIpAzJQunK1IayRgdIi7Ihkm2pPeuaZSeVN4GgD5Z1J5jr/NtNes4SC7xf/DVQD+BAjzfWL0ngJkxWKW/6xz1iA9jZXocUskhoPHdC2WzU+TxzFOreThVGh+D/7/Ll+C/K/s7Gzc3OmFvU3QUwKwFtpXb3nuBymdyK+Sro9aoEw7NirKM1lC8DEX0zCVZXDl8vIiK3tf+bJ2TeVLNQGXSL/hbRygiGwymwVUO7A5ET+2QEKHKwBDCkfitZG2pv++KQHIGBQUQi31LeRxR8nrKPGYxfHfGQ/vrvw33NDvG8/vG+fdSXeLv+wjQrfAWqK78Iql6RZFP1n2dn//V3AQcGQqJ2RQmH0vDyMl7dt5kYcjKQHIXTUabEgQhKQwo0N0DmLoHeqFjQWVyBn052hXRFUFQ5ZMAvDeaZwRBsD0HQmA81VATxpbSqkKIxkVEdLJR2IbLEWupKuLD4Qa4BrKxyb+9ectCi7fjx0vBaCXa3iZhD1bfuKoAsHKhJjvZIwQmTs0UE20S04CXaBu3TCNLFqDRMHCDNoXK5htI2y7FaR7MG6JPu1rZWuQHX2r1svP/92Vkh6PcYqnxIuTFsPN8WzX/4UVF3by2svaBQxdW48zPaecrK3qckyXMGKSvbY2aZUZoYbPvURMZS6e0CCYx2LgqoRUUNVZ9begSXdF1lduVRRPWxHZFfNjXULQeVo/JeqgKZPlEYunOqcOlTUeKViVEIPBXxpTXy0Dvqwmia6REaRgQx83mn6LRZP55UXrIqXdZnqxAwBS6IJZJ71d8DtZCZMWGYWETW6WqgaoSTE9DbBXUgKgP1ddgF2YkHmJe0vZNofLML6er69vw9t1vF7PS+HRiBMCGFISogGOgDFcA2VHaY4W3HhRZrFFVV6uvNEUXqQDBI8bzRGUsedhrrrsC/wTRiQSM8No2gkLrnegz43zUo0BVGz8Bfr0wSqj3nyDdyJjozGOqnPQwZyLil0UiZZGxjGXDZPVyzYdLlzJ8UYXf4tmEl5PNuCmHp3Kpuij4FoWP00bpf4wX0nSE9Y7cTTKBrNkku1QZE9I158DwwIqzIKlqqioS0UPpOmEHblucPjiImDeQZUor7oY8Uxihfo2TSEGYuivIK8LX05QEuR7UHGgaRBcNVIbPWE9dUM1IVK5ZViWrmRAXlhGRD+EsR2nsuk8RNCmcO17ph0g21S+vkLzdQDhEy2PKBf0fMDDFNUwLC3UiSLVufR9P4APPRXXa49kkiYcvAFaprI7y6atuP6svW32BKwUlUSkHYZVRe1dycKO7UtsOKItOttCbDONk9TKsMi0MYGw1Ev/9S+eAPylKwDpW74KxOpJyp5ZzbFfCiHg23B5lXJpkQ4UpUraJ9/w0+yX/5VkjNuChqWJ27hzlwbs2EHQaiCLbl1BIsQ1xc3Gviw+l4zm9vhRCKPBDUKKHQ0RRifxSyHiMpVTMZQQvrOjUirlsBpqLaJMcvxiJVEACW1mGpCwLkN8193QfxeFR0xR2NseWXzE6X/0ePR+o758Tw/uLfz/J7fw/nmpZf/6IkAuFpaz6r73M7c7iiwb8MF0lc7rm+jiypGkxGDOp8NI6UZd4bf5vB75N9RJ4n0hhh9NV+PVZl+oja4IEoGKzK2UTyHZVpUzwn8OaRr9gBrNiNMXUMKDETUxUbFFOFEtBov77npz8wggf+S9fWlAyiIKBAm2rdUgvOI/Xy3HFrKYjubyThxua9TTdbcqp2YxttxpRDgHyXCLTQidIpbK+1lvHYi2j9VJPbu2+RTe3I7VNOD2g+7fL5dC2F1CnjxVtjkAC5E4IWuGS2+IXNu4JfA/ABj2r/3BsNluPalE1YVIlHOlh2YI49BaiVbjwRUu5glSZxRIQVhDTRKN3tTHmSDb20uK2BBZuA1RnoFXAScB+fFDYj89AqBVODIeVRUqB2bOZPyQGHYUnfeSYsNgNlYG7kh/uXAE0CA4C6TCgDIXaix8QYVlV5aH49GBoYQ8B+o+UwF1zAkSEUolovyamrYWOPVqjjkvXRs0k4Xi0D6DQFWU6AY2Cgn+8D/+u7+fivJ8HX99Of3h589fXs7XAUpa52GC1hJpVpUrm7Js65rMb9I5ZIEDTRiq1oC7WqcoyEAoXt5pZIJtnbUpc/IBeu+4cjPsmnHsVMArfdOO03Q9XYs5eLccoCPZtQ1skjlisA4AmEDUAbzwcGiEqUQZNMm8otk9s2iITc9xeKQVL43DOVi6uAP1RYncYQR6c97zkJ6k8Zzn9vyOvdytjXMOmzVOjfN3GNFkj+5wOc8hV+Seboi1fR1PyT5n7W2w6B//66jWmHSo4ryYm6eDTNJVMUhLELsPxLoC3UY13xFEZeh1wnYNFSBNUmwQ8zQ9H7uu6+q65nAbSue7J191T+7cn8/ncerxoROu7bL40+kyL8MMNxhVHaye/PT8iQ4cMHeonIOTxgJu6Ov5tSjdMM6XHjqgcBVGn0w1j6osZU1E6/an6bZeIoT7uZt4ttLukrH0V+kxB9AtpLMcW/+VrW2KOUYk3T7+lNDkYcAUV8a7j9vAjmnxdzwe0Tx2n7z+00jLRNHgtIGsFMeZafZNMexQ9TxNmLsV+fwe5N36j/5kf74Pjn/jzJomGBgFKydsVynOv3GVqWb0a2VmhtqA8Q07ipHc6oZuTpf6QvYUIphBcyQNs6KX7DoEtdHuqnu7PCQ/rWS8wK81FbyiKOXnYFrgNlAhfJ6f7+4SvdfzbeJXKoPYusltKlMneJe7vINd11PbliPeL0q887ZH799dw91tvX3bbt7tFohv//xHDxad9IG48YRzUAcSlYKoqNUB+FF5beXOddhdWAXr8j4SbprgCiH68nLKT62fIcG2W8V2yj/5FJjAVL5Tek4iM7mcDjdaqxMSJUseejGxFAjKP+TIX+pMnIPbr4pOhN8oAA9Os7GzMe5gW0/pZ9KJTAIvvzsxOjLsP+U2uwGpDTtF4au1OwrQiFyo90eNIYD4CxFc4lQRWERWXpbD5UyyO6ac+uquw3idAnQP0aCAe5suVGqZShB1evR9v9uBdEnrGg6siROsy59uR3L9XNGvm9ESN7DNOM8m5noYaTFWQGsBjKnl6DF7LyeN1CRgH9W2ZpiVnMjYsodo+FaAeMuZ3hyP4PChGCGEqFyAg8iDD4x/8XzpNzYpd5UpLdyekp0TlEbi5+dLEPRMUFl1dg0NnWe1Id6OKBXC8Qxgi1C7LI7pj+YrcFX6cUBwXtOJKbXOg96gWAGm7HYTkQPCMU13ChNWjsKglVWOLAtpGCLAWqZp7Gk6NHWNrw9w83W+LUI3yq53YCwLiDJAS2UuELnF5gEmmY7OeG4ZwlyEl89foNQJncYjAzlJPIWXz3/wdXNojt1f/fDDh+cvb6eXL6fXy/DlPKAK5ovG+6e2eX5qf3h+PoCoimoYFpD+eun7cRzHIVzGuZ99HxgRIuXR6KxSj426mlVRIAgtX01dUCRiaCmXFxHPClsa8g+3TNXYL9epPzZsulbfR2YPjvVKSRnIedHSoYQVjjr3AnmzVYUjAXoM8A1NocVSjbgJoD6GECRjqtuXeLlVVV0ul3XQZ5QtHbqMzFOLMH8LAykG7fTYtVEHYQMRdVgRWqekMfVlXw4DChwnjYn5W5bmTPOK63l7OKjqlWWbVrBNzQAM0FMhhG37DkAJDftQBXIOlU/vq5qGu9IqWChjsGakCiRKFIB8Cc0SfUvXdYcW/QljjxXOVdXr+XQ+n4/H7uOHp7Zt1MQF/X4UqoDdYI0P4Xy9kEBUNi0o/eM4nC+nEELr3eFwWJbl0D0dnz9470+X/u18OfUnX0+nC/zHEIXT5m8Ic8U29OfDkceZGcXTJjveCKlAWb87c851hVHlLRU98nJ3tjqpKkK9V0xMmrPWa8lOMOtqpFj8d3p8Lzf6L/WIWmB2gSxhitEAMQ2KOrjchik9j8U03aUNv+q/O1JrR0JWXB4rWxfZNzwUikQWyKr+cktP+uaEUB1xpvOTs8lFgYiov0UPYCN/59WzwCJyC7Qa6UDvvv+7h5x92J1s5P77YxTyZxnn3z6WvrvydveQ6Pm7GcwZPCAVFQ6SP33aptx2dyR50L5jceRE2LSKPjrf2wRph4rtsjKTr5ZFhrkSrBaMTCbX2JTa4aWnSD/9v/AZnvrxCKDjITBj0gSEeD+HJ1cP6s5hh3h8r26z6zyFy3HiuJ2YxAx35yJA9Qdidf0AFhRkNQB2mMsYdH9qBDpMUFChhoZG5cow9/0ITRtKiNJPWr4EbGS4d7fVVL2L/ql9sYba6ZzWygZz8fhmHrVdqPV+5eJmtzl5okjl7380nueyHAL8Yj1AOvvYVBAWHCDKCt+N8b3aBW6pdw+bnuP3RhBdFRTxaxbQUwTJIKzEh4wBtgErLBr3flWxbnO/Cj3YqSaWzjpLFDOvJSQA+gN7KyLdME4yGIq8SHL2yVO3NE8aGBzOMr3CNbWRto49WTy1aDaV9imyTepnspdkDtM49Gh/GODrVbtj11bHpr8g+A/jBIR1GickDEEjzTyMKgqr++YJgKn/8AQixTT0L19+Ha/++fl4/HBs2/bp0A1TOA/n/vw6TEVTVn/104e/cs0vb1dQgKrCF8GVcw231Wtx7X3X1BTmaTp3bOFS3F/H0zD/8W0UE0C8efgEIwQMsPBTyZypTzJgmZUIyeKNkiFQODLDxAoJQelqJPU1yxXlEEKN+4X4eSR2D0EMUcKlr8WaAARboy9eDu6uZLnk48FQOBGx8hJc0kDLlXlS6K+PahtZX9tg1qelnqKkJRqNt3wCcHOU4REYKk6R/pUtX/gp7fzEdOL3qqJktQ78DSB7aFGlRkqVJVOq4H01zQB00pHIWVSAt69LSnUiowD8P46QhlUIUIA0f4kmM9418zKV4GwW81z1w8wWePCaP7+exxEjAQgXbePYtIgOApjTdAion90zMsZxuF6vTV1eiyuqB8fnytelG4d+OF3eYCVO/RUwbcqi5C2oKhieCvhIXRMQLIoreb6XpUQxLVB54pTm+w5jzUQyIiJglZ/kcyICo/35ny0B+Cqi+c0fVPyFHwalm5sX0Uy8TKqPlbtjqCH1KkY6wVijsiERa9EiIHWuc10m2LIDpzf8tn/z87UAWPSYPAaNQHmuBcT7aFChhf8sc3KBNpU9HrIlSQaFfM9dZkIcAwIrgOp71QuTAMdkUvadgaz0g9W3pJeiovDd883hwTufdpvIbbX51s/5BsT9u1T8d0Svbykr7Y787usJKdl9yAMOt9XH9FaEKpLJpyNavBix75ohYn5tv+UhpQU1mCSKCHGjhzyi26g93yDzgikQjt210m9zPc2c8I3ulPiZCkmjkr2tv6uTHsv0EJYuXDV7oHyFo8IGetEqAJBWb6S5C3sX8clw88VKTPaQVb0Mqn58fdY0IJ14vmHE2kVWPrbdkU2WOIw5jEgAWGaRkzEFEcvl0HZWT1dnKlEjRmNQaDT9Soj4AhjF37ICeHuciLlu4u95KVDvuEkA1sg7M5JXAiDXyzWdsT8ortfh3hSQOOBekn9HaVi/WGr4cF9TKRQ7NByYoyVCMucyzNyIBlYySrWjdxN+0axJFKjQDEmpF9x+XsAqlJBSpQI6vVQFW0adlpz1sbvv9ozNU9qe4smKPYzxgBFpl1cJKjjvuGt80brhJ3SiFm0rdzn1xFJakRF/dLxWz2IZAnpBCjU+ygeCEU0i0zrJPBHl5mWEHTs1sJgGTGPPXOCKryjLOoSaupcIgIuqUY8AfcXVnsK5ibENklYx06jL10uLrMyV8zQNp9fxegayCyLdXDQMVOfFocN+mf72r34sESiWDkrwQzVP5TzyCowOsSz4NWVRDEg8LpfziDbmBcowpvPJeQkLL7KoGV4ip1NvPwd6I2EAxgQ07yaCS3t7yE0aNwu5NHpAhnkiIRCtCZMM4qQZonCZkrALroBM+eaZgvkiyUfNA/ynvgoGwmiLQGcpg3vrBWKqBpp4IAsrgAJE1vgc2HqRMkOEvBap4+SSuqVpnTHchxImm82pCmz3Oskrp1Q55asp97BwP7mw24QgHsf6CnZntstYOZLiIhx7/CKHPEFcoTmQwmfLg8GyrHQBtkiqo7b6VcswjZXvUEfrWuccCnRuqAaUSsqqmkIxTiOV/uHU1oEXh0IXtyx3HUIxgBEGvaZh6kd8uBJ1HD7EQ13jXU0TpKapfdURg79eR2QRqMa8vvZjcL6dpnkYw/k6Vr5m/s+okfNaK/KwyKCtyBKAaa045cRswbVCUBiGmTwlK+YwlOMoQzKZLclq/SVwofXciKmsxFoLn94htoX/tgDi0fN/1eMWFt2Wa/+7POQKmWjlmId8XbusaACY+okqo1ekKG0iQd8T571PHdm/+P2ns4kjs7BvuyFnz7fOlPE5WiNuX09AExIiqv3L95fa/9wK7Xn6mQLNFUvIA88d7PHdp7v+lcV26fnX3n//9Tu38h6B8lsOLO9V+MZz2SUPuxcTRvJd5/V+k/Hdv9h9Y2JW5F9zm65848OqySuWab2MygNvs+bt167JwKPzqqAIIikFSV2Cil9WyzSi55AJTuAOTFKOnQJCZRYBGDzbbk3qAdnV0OyQKjlA3JnK5BXaDfFmeH9GiieCPkWzXIrhxESXu4TcsLVLTsjfUIzd3dPdfbEyOlsn2TVHDRRCjKy4kfsu0RU+5wZehACqAHBLnARsk0DzwJ8zivNoEBZJxfbgB6zFXWkl/kTgQpL4PgHYMcGyE9mcY/qoHSK+MohWkutKgL5de9PzWtzoDDNVO7iq5DHWT3+oSu+dcu799Tkefpqb3IAR97MBoFhKhjUVWs50RRU/pRgrx1n3i63+CTm2/KSyYR9zW/tiSfOCiC0iqynD4vYjcIQho8gp1PGU0Sm8AuzqYWwwqQiQSHTo4NLmlkm6lnM/XMXagf5PsQD+J/LIGYFueM6aeRiHMIwYV0UnQrzmCLITsdSoPYqo0oIjMKTGEPplBIO/djUyzEVI7TL2b5dTXTd10+FryiKM1/NlvE7zYS4rX5s2nUPve1N1riqn/krpIzXhFsM0Xfrr6XTpy8NEIjSd+nwLmLmol/l8ui4Q72KzagklC1JwYEcnF0AAIaUDxYPLBIB89P+gy5Pmz+UEG6e4neFvASYS/scE1ahjCIudUSeN+A01hE2JL6fA5apTgoFzC5TbiZNKAekz63qVPEorZ17/yV9ExoZQUsE2eWtZe0A+ejcJwHaM2GGLqaKxa6UGCiVhaqCjhn+EwF7HLFn2ErWRVaR1nmc4xDMMwyckWcylGsdRcf8UGnPlRqOLB2dtACFLeDpPE5n98XjQoMV3mWbREhZX1+0wDePYX8PkK1wu77umO3x4OlToMbaaRtM0bVs/ldU4zJ9fz6fT5eXcV76dl3IIiM5hFG180f0SJErVbmpv696Zn0ZW0Ev1gZzytCsCmLxEWlqhvwKiitf85crAK2AiQv/DqQD9GzwyVDlLVisMLHlQSAtIVzS5gK2y8vmmJTA8Bs30eL/PD3lYIflLnWX+FbBE4RNLUwxtW1tO7v2VATL2V/ETrIMrvY2q51j6SbnDFWSohWXSWh3zn+bwGcFCu1aR9x+PJH/+vY/I1Vb51m5KUq2xusc3fPIjwL58EP0/lg1dK3F/claTmB7fXgR4dDxfrVTsXqWAjR0zvR7MS5DRrWTYcdMtcFcd7M/xiJ2RVhtNk44Y5/6w7zr76pAmij+quR/BDxgu4Ex7I++jskUGRWzDhTymXCMpm08rdnj5MngGzaHAZmntkK7wfnLg6cItRKIlyASoi2QyYzZjZPTlYJRBzyN0G1gPvDlS3X3sqkx3x0+e1TOUkDSmFPFscqlrQ8UwhPcFyD5AJqFJiAQBZPFqhk8HebTmgmMdIAaEK/+6e4NT4/7dw7a6a74z2fq5bmDvTw1xnfM9UoPQhI2ywCgdT/6lafoyZNHr0CyI3Bab7GhWVf6XMoqVjbC5KfedpCkEWkIFHKMXAKpklKwhhIYLZTmSAiwEFfuOVgk6YNCOywIycsFZG4v/YfRmEgpZgZToHkcohjuoJVr05ia04NsrpHDIc1zd8bxEDgGVHIcW5qWGuS9Y1zLyIkHILhcU9xX5aTek1RqxY5xXMYMlL6oT4WpG6iwM0sAZGbHzoUZjQR8goINPQgQCOpbJuzAKhkY7KcuNhy1TVVVjj1DsdD4voYdhcNc+f+ieuvZ6vc7zfBlMChTpFWsPP//8sxKArq4OTfnU+qqpHVty0aIaJsgwEVmeq3pxw/V8DTMaHnB50LrdAEWunPfg4FeghbMLYi65kmA+m7Wd7MlK7a10vedpI71QqX0KbCZECk7iq5tIULeiOusGtKYD/8eUk9DUi1bmfIyJIdN1HZcdq9Xwocm1kn/ySZSIQDHitPC9atqiLNR2kJo6ZtRDBPToRYggDctUlHPn0JqScY0sapLBuprNIysAHYPqOLdevqw4qdzeTMK4O8MQiEi0hjz35aTkBqYNXxGraM3tWTDaVBotgC7pXjKOMOQKSCfwkShCyfAOE8r7pkA1AJyypqWbBD81UJwWX4Rpw8+XCZd6ZDf6m/hOVR7q2qHTGk9GGPRdx/EKRYjCd65ubaUUMiMZNS7ySplyPo+DnDQYSml9S7R+/XZXWdXFzIGDTUBCYae4zJqeEvGHtF5ZHqEF+79bBSDfzL4XTP2TH+8EJxHn1mXKqskR6javxfhuHateMRKQqTSQMnsDHj9EKL/WNLl58TvPN+2+yUlEsNDdOsDdV/SX68Yaj2DdjI07bCQOaFyDBg3icZTUWH/ORcUWBAtnTelLCKsygsjrzeLv72MB3V43i66+H5y+C2nfjXLeDV+WP3mE3+X/7NOA75wyWTPr5qPuU9RMFDaBGIr048yNXJrso+7SQ957xFucd7QbyH/3fHd3JMWCudhAdpGXGbrRlCSPJSxuJ4WnLnUskWE1VBfKJKA5dvqmD6vgPUnKinY9MEawGZPKMYP3z95FUiAKhFrKnhKbgtsfgHbohyAogCrJskCck9r0GST0/rW6uUXZBQHfKQr7aftUGoAbxcSJ5AMcpQo79CJTfiUZFx87O6jbF8lOK6CYEOZ7jztDVBZxjxHKlABkL95P8Awj3D6UALCzORPj5yMHDtccA6h24vCAHGP6naZiO6nuxOYMSztZMtqw5t6vdCnHMgzP9FNFhjJnAAH0aTsIRCXTQ9HSlv60pjGQrM+uj/YlrsGqlek4scLGs0azoJlAVxXkz8G8RsDx9PREnjToQBp8xhRnfo/oEnwW8E3K2vnFn69Das2KOA2+h/5fJfs/S/pgQBIXUwCLxYz8YglqQijxZl/OrDKtgpZqvYOZ6zCN13murn1du0PXHI/Hxvnjp5+mMPSXc38tx2kowuT6UFYjKBDVUk5z6aAsRNhdoA8AznEccRencpkcaglh+vD8zPbJ5TpN1358u45fXk8vr5elQvM3vCthaxy8n8qqyW4ie3VECROHb55QsQCcgFZKYh4cJKB4cIFEGoZ0X5dpAnNJJDDw8QAMRxaZXcI54ATY/prya5Hyk9JO0vinHCoicnNEZtKYJwC7uZM6AdjljDecz+eEX9z4cG2mp4L+6zyQlLQZjXnBbfPnnL/qnEovkm5HKwDnpERrn6C2b6rTWOGLNGw297oOFDUsWunz88LCDk3TBVEXR99DdjNuZ8jcqIejdJrtAVDJRJNuVY30RUYSa80SSzkF+OHJYp5tAOHao0G8rV3buqY+YB1C8syWCaTPWNR903WFW8b5OiGZCqWPvgdscRZJbtUpXjcyq3qtFZ4NinH3puR3Nr/4EWbKQ47IjZzBrUorZO5g+xfvAfiWP8mf/Bsg4lTpsOV4RYW3b8j/QZ1/toKRRiBYTEVSaiSwpBLlp6Vh/x0soO8PTL/rIXxsa++VbSH2nvX9dDxFJnSzl2uAqoagIa2NRvvNxmPi4aOcqwocUI3e+O2OdSkyWYWJRlT9TwgoU6ayJ65kdzmvA3wVSt9/zoPR++hz1BT4J8D/OUci/9tvLAJ843l95dNijJxuFRcbbltS71NRB7hPdke/52F9tmLVm9S0ZdzcJDayWre8iBQ27WQZ10gFbFYKb5KbTcCYxBya98ozNwpg0ukAfS4o41MobOMJuC9sM8AyX2CBudhleC3WFgOpbVGZAd9EPNTKyCodcvXHtvSgQriFve/i6HmYC+XKLZHUAIm4wgHXlxUYCEIwTAUYKwlWabnz5oriuOvoIOZhBgJ3j3P3oKDKusTl4WM8ndtFUspgtm5lH669TWnL2lcwF1CRUpVGkLl9ihIbAQAcs2kVCIt14hLElvIoXndFw0CMoBlDbeG1CkIS90xP7ubLNAASQ9/OwhCOOEi0vYuoqzGSNvLIoLBQ4FE5RUlpNiqMFmxFuVWZUSdoXoHkglXzCPhzcbBYaugUK3svSbNkiYeo4FL50ui1OcmuCZl8IYuB4K0nYC0czCzYcLZt25KOgLZz+CcZ2XkaC6TAiekEnReJz1BNXma581xc+3Gc3krvnj8UUFDqjrWvxuvpOpyHl5df34rn4xPI3HXbtU0Iy/U6nE/X8zCUzdNcuQn2M7CDXRDbj1dfDSE43xRFNczlJZRQ/gGoz1ZUctGBRlHcCaI2aJ6uAQpHlX3VdkifZyUAd5hDgfR99HVQ4QaLBpFkc9pmzWemXj35RAU8DuToxjKIbijSF2oFY3qxElegQOTVvWZmZAz/cHGQSACs8BRdFbd8F8FvGHEs91WL80Vduup6vpSg3QTPLJdWehCmlUzR+iEIz11D87VEOcvrbDtmjtGNWNfgtGY2Yk1OK+oUW8nxoBsiLkhMwWVRYJ8mSo9GRxbOViGgLpGfsp6Y5huSWTgUxeWoHHoO5RkNGNO8OPgIY6hde1afbEpJeHaYYcTcBYinIfdzICARDaHqf1G4GqlTQ+neEkq147iwqoGEqnWdK+Z+6pFvoGcSZVT2bpjVO2VUomHlup7fryXGBQF+2xSL48yIW2wJkajdfY+ufwrLUoXBzBlU4XGGosjcbfn2BEAKMFL8iyou3/ZTW++D31JScGXictH8nhgiht3f/tCnMxTY/sIG083HsXJOZg8Ra4sjyOoTQThtk8oNbOFMtNHsyZ2jQf4Qn2y9hqXReeM+bA9er/VnTrNZsp/Rdm5TjlCapc+MXSHZ+aZjsylklXS+pA3Rqh2GVcBojPhLnI9y8+XMyasjxAYUggEkwdpgy0cW2ubVCSG133uDI0Nk7dWLQYHCsXWy2bq2CVweN56y1sMkcPv6TVy++7NbrOK9969/qNbth9Phq/H9o6bznUGS4RBc8LftGHwPL+MqH8ACGUq3PBO1x4ulYLb2NhpN5enrD1wfIESxc0wRMcIyxUq7BADxRAx86apCGIlNh0mVJert8O3Q0WvnxQGy0RFS/JJ7FQYuF0fcWOYCGLMOLP6ipiDwVEALgt0Ba2Mx8h1n0igqB1DnjS5aqPU7Sm9WIaA5T553XL2xEnK/a2G2pcSZ84Q+OXGvjnkqJxkDq5gsrNA7ZRBRrGQTpOLyBMBRqdoiTrsIchaLk9ymW0T1gJDSGothHV176FBA7DNbKdTTw4Tq/si7N7BTfY/hru0gqfStE03vtW5l/sm6mnEL3fykngWLLCml0+0rN+unMOHkhBSfs3HDGIIktOGrp2VpQTFawOmI9BgtUemkvlUFiHQQ6nPakjPDbsjyR8tXyWwWBl57USzMFSLFWOCwZ7uS7fTMTFOSnLBCuThJg9+8OKQ8i1hPUoIY10gNwZJG4hqmiR2NQJTVogDIeZ4AxihZ5eEJsF7ozI3+Ul5I2AcgGiZ7Rc5OFDOd0FhSDA4BVNegq6BtOn463VL7yxV9mLiRzDgF+mLoFVUxMDppmsZXLfa1GdHVOIy/vp7qpmsaBthhRKGqBLh6Hpea470uRsJuwZWhdvPL2+fFQ0YUTbJFEdwyOtQwzpf+cHxGVaGBF+zh6fnp+eOP/fgvf/y1quHihWQFKUMBTUu094IYzhGKJmld80yeDocoZSwxXifqVaY1EBQ/dhzBOWouQP+iEpDIeUAC0LrAbNtGfxw/cl8GoKEODgj+Oueu16vGQOoXF86dq29lqzpVvFatQvuVc6ZcmYPQmeucfQjml6sQ7ALtXse2aEoan33f51tbrACwB0LXYJkIGCEjUOstm8S1qqCtAJrISIwGv5JeLFYoi7m/nOu6LpumhXUoWNla/2d8LEmO7JJOZL9Y9bKDEeATlmUYJsj5lmUxzssyOIf2cXRIk8+1SO+LDCkKq06fDh0SBS7uEKMFtAQNq3GQs8A8Td38dKhdNUE9Nvi2LdFATF8znCUwTl4CbKrrkki4tFyKfpycr5rSo2qm3WGaxznUleP6hjKRjCFQ/eBKoQ5KMNLQWBK0EuLKMrVC3Kx10gDNvCqj3ROEvQBvjKWkwpbR0PB6KP/zf/j793bo9QbLbUQDmJafMpCPrz/6SXzgzutamG9ef4iS7qDQNZCKTmm7GOtdDjTLdO8irCvnrLz/+u7AUrgMhOB7HuxtupMAqF1xnwAgbolbmnyKeS5IOQJuzf5zwHltb69bpnu6f8QMM60OFoZzQ5LmBhHfmLeUYaBbkzjWWDC06FA8bX9/Z5mFZQVQfR2ziPUg0SkVj3ZiQPNVxD3W3GFLv7ePzUpvBHvS64hTOUNSmM7P17eYdpB9SwpwZVT0TkB/A/ZvmobvVr02n2PsEROcXaO+GFHnSPSO+pI/HgUoGUFQKSVY7Vajr9C/YRbYa6l3vVlgt5p1rRmYz3B6lradQjxgUqR4brxLdIuzq7TqTIuzbvsQIxmW1BFwgFGW+QOgfGRhrolwMD3AyKxKU32RrLp1TRA+mqaB/nRstWVrK+Q8EjwmFaN4rxYs0JhI07xQkQ6dfGJVQiNdSyqCM+y79HZZunYpYByCqQnqsEPoJpRXw0ah3gjfIfb7LhXMYnAlhelRdwji7preihVjeZ1CKhrPnHqJvoUzYtJm/jhxeLswcke4wY/zZSoPHoluzsmrGz+5qgdL8jlzeS9E9MM6EGUrb2vQudGmonysMrHiJvkTmxX3VJvw0HyP6xtZ9Gy3RNXGnstVTSmJr5dQjvTFxehdwD0Eix12qzTZZBs0forJsGnxzecL5Y5SQSldq1GyGvfm1+aws4dWQmtyVfpqPhV7kkYxl00DbjoGC5OwFGCFydRCslkv5HVdanhG1pcprlF2/AJowxxGMaploEc+DP6kVgsyMudK6vE62BHqK6YmjtnNoBUTfEIgJ5qBjkjxVghnrB50Bqg9G2NAnoAMaOPL1peHxnWejtQAZt1p8v0MMcRhgESLab4wrhU1RdPHxsIyj9zjTCQaqLSpbx0Pna/mzlddUzy1zVNbH5u6qv3pMr6ez58/fz6dTgsoPb4BYtuCAkGVV35LjaoC7MVwMBdEdQCix3k5XfvTeRimUKJ/VKQhuwWyBJ5wq6wYjqsBCosJ6UjAxKaDyiTl0h1r5ApEhdPai4ol25+55MaCJD9wNkxW2C1NxNXIy56B+Ih7Ih3/pJQpOrE98LEekHcopDKZNg72ppondDxUkuQz34k0ywqGtLGHSn668fh9gyEdXXqwa4/TGKbKEdmDdwJGlrD8aZrqBu0n3sEj2cMpmHQmtwz9WR0KauPwHlUp0Jw4HiJ1XhZpmFTMKOaR46csYOILCuZcXK/X2oOjwzUHqy06E6tl4AShtwfWC/CESo8i5jyjzwR6DuycLYNMo8/9qW3bw+HQoPkBMJGmZF25tq3Rgb+Epqmf6Ud2HfqlrPoxDFgmyqJspqLsh+WCKB9iA3blxRc1twdu2fNSedfWPPgpjGEK40RA1ta65FQN3TDcQ1TPAFQgy8fqB2NBJAC2r0mBMkYOtrlQwxZzH74f9GlRIGE+MPInuRsl7DYPG//20yL1OA20Du7Z3t/w8+5ffeVxuxbfjf7feexkhr5XuuTR+zOZyBUwff/I89fX6kP8id3Y+KKxwpuAeOvKo8iDQLQknGv9yPFnzLJ2357fxfyhDTojcqzwvy06yioS83yZ26aTXevuwQXlzv2lLXwEI3UG9voqIyjKxN0i+N3LmL6UERFRW3udyxkvgqi45kKgA+LFM6UXVi10Aw0qjTXE6NRo1x+9bt/gX/FOv+bXXk9psKo1a3iXX430vY+Q/seJtPp0Y8QmJTQluqRmqSpppx+RWn6iuQiGGTTelXDAiATAjmRh7d1CT6sHTdUpKrWOW30XLy1NtObSIWCRta1tbNp+CJRSHw7GumDhN8wYEJZGt0js2VTn43uZplJXT3dXUlQtqbRx6sUsJZL7mBQSgIf+h10J3Z15WcZ5XgaYiZYwdiyoKglpIe+Cr1xdQQtlPXHexIn6mbBHmnDoZuAl+ImLYeTFkW8Y2S/IK2qR0J10tExGQxAb/50mKYcL1ebVOLp97HzT7BlzKYCwBQnxpIcTUoEaCRMjkYyRGPDCLZfLBUcVvdhyU9hU0c4U+kYCEPikFQbYCwNY/ZeCiIgA8IdZq3ckxsQ5nqJqZT7VxJ2e7QvZY5xHyvewYIWhomorJeKzG7oG05GcsG15XHxdp6bDnGk9gXpk8uS1py0RD/F6OcXBDw3MKf5J13WR47amXmCkDPBktyBeBmQsRgFLpO7yeoT8Y8gTRgSFaiemxjtc+7gV2gKmAN3RCVgxY+frtj20TeN99fr5i7r3tcYpCMwd4jUn1A0ZnUQ1JElYQUWLE1V+kjSPJsktzGGZXHlofSjgK1f2qHsFXwLJrWAk7auy6brQNmGc+nFg12ZAX6psZ7Z4Ns2eqC/MIhZmelkDgOjDsUFM1nbt8eAPTVUDvVh++tA9HdwPz935fL1emWZMGIpde0zjxwSYSNY5vbxdxKzwHq3+cufCooiSBKg4CT7n0c3jYviUNIFj8S6OSd4OFCWljTcPYTS1elpCGJGKuvAICpdqoY4qa/X4wBrisHZ/rezAAxClLR+EejYuY6qlO2jtWCoXZiSQ/wd7/wEt2XWeB6Inh4o39u3c6G6EBgGCAAgSEAmRIkWKVPQo2eOxZVH2yI+zxtmWx+u9ec9efp55YdbTchpbtmSP5vnZ8ixzSWKSSYk5gQABMAAgUgPd6Nx9Y9WtqpPPeev7/7332ZVud5MAQck8goq369Y9dcI+e//hC+RA52mYmbqapnYixoAqCTGYC8kJURfKHLMMw1FEcsGFObpqtAAxPwee40U2SnaBpa+MDO+j4Iwr6lokb8Q1DrZWs2HRYFshOZSLzgYD8bOkzNPQD3C9aTCboCPTvEylJ5Rg6OnghJe5v5aJhK3A00TKSgj5M0zhYLFg1kGZiOJhmBQL3/SSyGCmi+M3zCorq2zBb1C4HVe22QhbpmHHMfT+3UYbQDYUWsEzTtPUD/DUC0lo1PIpZ6YB7Fg2Hn1JtSKNUxKQQkjvcN8Li0JZwdcgL/IcHVfRqqSIHh6OAFsacBOTG03EKIOZhpmRXIGIDRiNwshzMpSwibrNTy4x3FS4roMKiK45M0qYCCDGipR1dHUTYpevyjYzCpxXUr2Rvc0EFt/s58ffv8lT2jMxGOvyqrVKK5/f4C242Suz105UECUhseRrP5kA7PFdJEkhRxQilrrAwiVYjtyuWzJX28Q3c29Cf4c7GATz5dCf1VHEleTfjnWf+BzlVefPaB2n69zjeTflBt/XWwrMyBMHJlM81egUl+0mEwDateiAkRyk0rASf6f+HOEIWH78bzF9sEguLZ50bHxUPDHs+RSNH8/snyWOTN138f8ioBkzlxEORsRBZDlBbiixoyTX2+gsZHdbrzRrr2L/orVAdj+kpQOpQqrUEERH3HehbgFIaFVkVYYJNAeih9sUZPVqOTZhVGSNULSSWLqushP0TFioQcg1cD+EmDREAhPaL+LCksgNMbFpPRBpDKRMeS3gVECIfnIDXTN+0u65RC/U2Q63+1HCkQxYgZ/KOcDjp4mAMuxdjLvfaTRUiIw2RFYiHYIUBjDlfGMcAUbBfSoKsKqF1QIdI1XijCRHyYyrWSxbw5m3TTeyPmy5KRIw5SuqLwdheGkgNSYDyqovkstdn28SxyxDPpEDcMdMzV+MRauMKqXKWR070mEo1SPok6ZpQvAMbqm2G6F6FLhLwWJKFS6v8JTQpzLb8+EIRuGvQwEcV+ZyyJ7SWi9bdawhZKHyJ1IsNKuwK+yzGTZIiFk9hXR4BPah5yAtc5T3izwt08xxrADof+rklaBJqs4eadiwPo8YmSLn4rYAz92CvUs+Z6SjhYiWb21W2EAaILq1DDCAM7PMHDNwTY9oq4NkYDiuY7mMw0NN1Q8IRURZinhy60m5BIRD+l2zvlBVOpaB60MOWh6S4KrKrdRhQ2LAPFzXb7UczwP0iC4SLFF5l0oSB4Vp0sBBlkbdDdjtAiKCZsVwEEmwq+BVo9itWP1iouJVgyBAVEFXSgNyHDHcj5JnOZ5FRZ/qYLwjndBpo01er17KFsLzMfAkuiGXObYZQ7VejgfS9RceXhUB05krTMmDsJ3my6xtoqEjRmz90Mk1CE/cuBiAmNwEtlDzb7FsoxEEGZjnIF4nQokIY9uGxA+icYwgTdTOdjxWU+CkAtkg8ZUzQFYsXqGoNGFTJduKI3SchDEwUXVLA/lAWYC/kSCYRg7Lx8kVJeoeSEpRmRdUC0LiUYLx5dhmALFPYmnkZRA6sG6rTM/1A3Q/zDKzUFPkEj9xjYu8iEaDIveChi97a5ZZmDmeTJIVM828yDhTVrxKpu5AxlS7wvpyr6L8sXFSb3KtpOmLuQRMIJZzHp4T8qYEeIvKswLnoWAC07GumM6ut2CLQ5woeX4vc4C52Ak9gNB+NTewlueydwV3Yp/zPj/9vgDszj/+iQ0DZv5Xz7TAVP+cyAFm7EH89iaaJPN4nBLIQSeodiD0uUu9aSiR1jMgTBWQeFz2ZFEgGRcIbBN/Bb8/mQDMPAU9O5JULeiw878YksSQEpr7uVtFaYBMPGq5gDqr4RetRK1fEy0Qn04Ip5+LCQHEiZs14zkau/tj36JdironMO9uzjWeqzfeibJSImKQIbCFVDSi/edkhVefPdFgeB3iq6WaI0I06PqP0vgPYwkAa7Fz45gEe2j6Fh0ApprxlIffyP+YBEyBPt3pjFZEcnaviZUTkwMv2BOji9A2qBqTxjZLLtIqLhY7deNE9ku8ICqIk7APCsYmRVwkyKwSUImcNAqoNLqcpfB+uAzMOBxEKaIAR7RLpiXkxD0UY0M2hqj2z/xiLhixAxuH2GAtyfup7qro/UgFIOFvy/mdXFpEekMVZui/kFoN1dGpWUaZzG5/Rw+4IfdO699g0OdyuLqe9Bm4oqmOn+pxVpXhB6isC6Vr2RVCgI6AW3wd7js6EwD/5GnG7SYFfeS0AbEO/s+BkKbsk5RGEcep+lm90pi1KyQ1aKxbpYlX/Lu0UI6rbCgmsygL3q+qwvdDJSOrXhFHEMDIIpS0gj6aZjXo7wqYiizG8jDgNXj6aa2kLCDZ0HJSgfis2UACQz1/mQBwgMhdOY6HGOBPW5YmRJlREEH2WUPJkxyWuPiM+5umcZJUrSaw4CJr5ptFxmFwJqayu34bKcynWiFTBECC4Qi44Ge/nrERXUHdMk4y2yqp4I8Sd2E4BfJieEzBFyxLgYoRhB+45zGJg3VaMRuLcqgFcSqE39Q5Q0+PZW1Kz3HSvBwM0zxNRwO7EXoND92OIk89x7VdBgRiIQqaoed5XLgwDPCM0zSNoggUgzx3XNcsoPxiJBmsmsndG0wRRJYCelRX3HOGw6mGm65PMFa0kje6dL26IMXFCrbQoooAjWJGqAgHQox/IdkqnbZ0hSixzMGbgWEzRDwGgAeUVJHF0cZ+DnLeE08r6uXkXEzpx2QdTc1pM+ZtXbNRzVxsV6achqFjUIShZ5iOgAsImL5IfTElE6CFa4BEmsgd2/BwWcAQQFfAsgoHtfwkSbisQwkMbgdh9xH1A8cGrZ3cMvEUGMjKHdOwof8TQRxWqG6SvRwKCnA2pCdR6lfAEACAzcqGJTiMAYmD7rhQ9SwajcD3Q0CJsjLPCse1Ol6ryLBeeJ4TBH6Rp4NBP8/TLAWiCc+i5xWVFeeVkRlFBliXDSYAkTxouJKlHpXMoP42dtn5RoN9rtmAKN0nPVVTtUla2ViprJ5SRBeR2g28T0Iv4tu1eIkiCi2gmdsB0COM8UDnex36fwdNgNep/H/z9X9sswBD8lyo9kxVPWmRpmRDRY6r4vv5X8AtQn23e39+703aE1LuwTMh4fSo0slmS3iFtMC0DwCFJnzWXPoQc44oX/LUyXrSsuFkXuemqwlXDEiUULEqUhcTqGBBw+dytSynKSSFsM7bu0KvyTq9puV/eXSCWCYfQ5F68eGKUyYmFJ377EBfIXcm3+eZhWs6dG3IloZuA6OAuDWIOi05yJIxDeZqEsUXhpGiushjEhVnEQHcNCl/LCvQKeA0XXKLWQXKQqKXycEqs5q4LxOBvhJWV3Mrb3muX2GtJMOJAA1m1YWjtJSOk0U5RE+JIhgUPCW5nIAuYNBSEM9Nfa5rcxEIqZVrVwb4fXQqda2PUhcWuhGgP4GgItEV5RVA1U7xtxwZ1q8csJPZKN1hCkmRsaOoDnUROi806CnNIzpmmcepyK9QsyWxSHELiGgoa8McglSm2WmHXAediEsWFjs6gL7OyRHMYTkyGMILqACuDIfSLhACAi9PymPk/MrINLA1EDIhlLGocqaVGFRBIU1z7MF0QICAlgsC98Io8iTXQ3n+GY7mQL2CE4Bwkl6Z+QCzK3onK1K0NeiVoNF0GVAdhD4gKCW0rPphkyu7+AzWeVqSjbLRaOhKnVxsBQ9Ypkb6cC2JqsDaL44LOpgaD0k0lLggWc/g1quQVEdIkfKQxi4KqO7I5o9sxVD5AnB2oi5B1ESOZ9PMklR9nngm+BmJju0SNF0pApFxXGWQ3xazYWtoH1Vt2GIJhXn9cQbMwzJ8hOJc+xc8/3YzZFXKLMvTPGMJ/8qAtiayDBtl/PrZQUvEpQfRgrAPXREI4RimFQSWASGXoqwS0v0BUKUyQy+wHU7gywJJfmkmKWYvm2Baru2CjuDBfsFyUCqISitFMpAVCcg/mCAdA3Gmy00gasAh4QEOhqF6NFMpNSS+nWj76fdX1tLHpiO5xqESDCWZnEv5vHMFEBdzYT2h4bHKi1RD3MmOSIUAtLIs13ZKjwTvZThOYgecG+SG4TD3AXhthIM0oYn5UHDbZMrHR8gnAGU+QObIzpxV/wQsWHanyQhCAlTo5gx2EybvC7q7pMIUUPXhyYEZzJQAoHpv5iBswy6Zcf6mVy9dHO0UFRhZFt3NZiPAQlSgQkSSrxWyySQJGk3TqhyCaRHFgdQrDDts+CogBjgbx5lXRW5Zle86rmdTywUgM9/zPS9M0sh3XWYeM/CIyANWjkg6q8rMtlzPt8vcSdDMzcssBfiThkxlVkD+FFkKGjHmW3AkqX6Eu2gDP8qFADVJKjElxe2eAjXoTQABvIVDhZhs2ba8xgh5DKWTkYPu6cbjUaYN1+sAzCtzChvsqXLm96wDMLnGz9FZ36MDMLOcv0cn5MbL/4pB+qqftaplqjb+DZ4viXbc6IdvZKuBH+qfFNWD6EbrMqIchvEwdV9/Zcbp5EmqqycDIJbo4GOU1IA9jlxXtqHyqrpWmKTo7gJTy/7EQvoIBCH8b0F6Wrpav1BD06BWDCSoj3fWxde9usZH1FSIv1e7QChDKfbfBADsxu+gInVNbI5DjXUxlKgqzKQOqr+r2j+vfEIXkscPGzjALpEvEYl509mx0vN1x/0kmE3rkMhZr/4wS1yLcEX8UrsColylZKfNNEVAw8V1BhIIOAshgHVU98TxjPW7mXxCSOaSFKN51iWF6THvRg6UGUbKIB8AS3BdWF2BEDuixyKGFkYpVIeYJC2U0JiVLnM/yU5Rl5KL8UxgFZpLIhECr1AsxoJdqE6MZiS0AOQFrBQURy4kvMxglyurq3XXSbFnyMqVhLHF4iGq+5YVJSO00mhjgIEkVuKfTDjj91GWc+wDB4+iAse+afJXpmkuLS0J/UetUm4YRqfZUFdY34IA9lXq83JxtIOgQUJtWq+DXl3Hm+4/ku8Sk8iRp1HQwirGLCQi3i/QQcoZkOxaAAfwO6TMzuawxdbWNvA0KYyq4jiJ4ygFEzDvb21y1MWeRMx2JeddvOZ5rvNfOYisTNKhL3KUSaFBg4G60OkC40PhAiUPopLHGCTKwOTIEdEg5lYag4jqWBiEGnyY4wDTKiJCIADFgKiREnqO+zmUB6ANNMyAdL+4LygkGin1xxwvwzlqcdBzSTVylgDg1qHYwJi0QeSBHzA3wUgLazQa2Wbl2K4DLRYvK/Ikq/KiSNICMwrqDewezPO+AXAGSfEg2HGoE0ATfhyltmNarouE0rFL04rLKk8LgryUAIfYtuECKRHHMer9OWzObM93HfiLAc4DKxAwgZyssJMkKzPI/4CwgKGU5Fmd6FIqJYsjVN4SoKTaOlcYJIqeliKsGED8ySeOfxYdS192UerZj1FRUt9W4p6YyYaTrd1h1exnJEmmHgpOMhW/SCRmnLCyUr5oudTyVoKdoI5kYpmTuYheaZZzBFlraTapsFA2rCSOALynXJb/ikoOFdi6LMfDPir0zFGtjxSoaKSLCj1NTWHQJAo/iVORXV2apo5lZKkX+K7nBqgUALhTxUbCzxp7Hah4AC0FakjZ4FkAFINgmWbtysEfhoEThJ5tEowQ7AsD/tEOEtQoilzX9b3Q86xoOIriAXVUyixLhqPCd9CX9APQfOlEcjgYAOWElYOATFkFhzhEOyh9ktg/O/EVOcElqMI13RXU434VW45XnEX6J7MpEXZOB6XcIpIk/joBUF9DPYTrdQCmK5TV61f+520iBrrxUPj7svw/N/GYPgYxGsbsLW/i4n+X0b8MT8eOmXqANYKacoNqRjBRHwR3DUTPX2ADZOWVS8+yp8EhDWebM260DozR74IMbqhGqyAuRPTnsrqqY7E3B4JYeYHl/+gdlamv1mbt6UP6Lsv/4si5XyEujLjoctJnyAaRW1mPaEKqXW7z1IFI4527IrzGC7IugbtI9YBiTPJ3Ewp9/AUcT4vOv9Db4XIE1ZyldPu8LECfyPQfJgajLFCqSuVkAjD+GXmTUOjkgFioc9JVUs4VaCNw67y+ZZxCEMKdy/McitG1oGY/rR1s2oUaIFUBudJVsSAiFZlyOmPGWxB8nxRMcSCU6yqDBMRMpJpCSGoEaiRERwcr8xAcBcUTCp/GySdbEcnm68TlouqcuqqM9SFQTh0uaIu0DMRF2G2YySDWgN6iaodmdwjnURZRcTwgXRHQW9bh40cs1wmCoNFoNJvNRqMRBIHjOEtLS1JxReQAYAU4NonYicCd2X8saFVmRFJkNQr9pJgzoJ0h/1fEsUgSsIfaMikT8ohSGU1KHyodLf21QochpEqFhVfWCWLJQMiuQw9evEq56jJiIy25N1H/Lg0b6ijiZ/27kNPR7csytCco1i/LcjgccuU7oY3TgLwqd3d38xwsw+FwuLu7Oxj2Y8jQpNeuXUvTOKWwhh270gQ7iyDvKKJAvsie7dcBnjYAAQAASURBVDiuQ5g3fhwJjs9ebmbVChscDEjzAQT1XEcnJVwxPcpWQGWgrirQa8zuFoXsMiUWCmzfbaOwcJ4Ye+gxUWjM2ov0YcxLHgVfbJMLOS0JMc/jEdIPt3JdH6PQdVzfRjdqEGWg1qPzQl0B1pW3c5tuhIyrweWk+xKniZOTeGdlA//tAvrpGKVVJIVr+H4F5VBhmIogMqFErbIiUky0TRui+IbpFiW4yY7j+QZAG1kOcJdpWVmZUXSKchJZmjFVvbQIGoTHEZZ/AvNGCTYuFPWxtAQAlBWuwsqGpLSAjeOYwY0imxXCscix6iqYTADosqLAL2e/egVMIxh7jSfGxKCnYQjTYxkOir43NXyVjiyHy1Jyvq4Ma+hisknW5LP5cIqC0XfCp5Z+UdmW2fA9PAGmXVQlgZKoXaNdELVu87ImEiiS6aE1hV0USgOkefQgWGWOolhwkwZ5VCRuGqRIH90AE5PnhEaw2x+YoOyDccPabWTSZlV5VoAPgYmWgHCk/mcgG3TQBLBc2yo9o8gyo8qTtHChyiXqNUx0JshcVADoQ4gjmo05n0HOS1LE0lZcBOWy1iOa7LyGEN3QQrNL29R6pDA/+q/Ih0L0Q6jCQQVNwbuj/EogBZgoUWODOeuDKhMxl7UKcp0AUA4wnwQ8NzCVe/jeh/5jRzG/73+Df/4qi/+MHcmrc2Wmcd4UdVg3fr4QFZ464FfhkOoOANUzxr+kfgZm7kBWOLRLx/vUdzLpKbb3+eo2OvrvuVnJQVWegjRDRj3gJ3CB2TIqzuwV5lVPpfV683XTTnXuM4/wxt/XcSm6nRmrl9C8ifaidmw3privLmsB60L6Q5aH4mMgfUpaMjjexozPgutYmmjg0R0hKqNIgqTWTk1+R4t8zlM1fl6zf5Dq9eoK1yUomSIKDoCWANQ3Qgv9uYFQuyrKuyZZdNKKVQloEMWVoiPaGbEj2eRMFGFQV6w3TMRQo7DKFN/lQOuc0dbUTQHNl/ScaxIwg9wwnTMoRKD3pUatSML4vhCHlu4OM+zFL+p8STW11RVEmA2oPuATsvpIDXipmROGIWtgh3Lzfd+27bWVfa4NfC2/GTTwvuU63W7X9/1ms9lqt5vNphuGBuC2ppEXKGFpAsTqlcAblAQp1wXThhcTHT+QInlVEZRW5r0kfyLTXX7f80i/QpK4mZCAkNz2GNhOZDzWoME9C4MmKQiVJKaDT7MYqA47ZMcA7vglFNMQHpjKl+RYTp0b5GzUNWdcQ0X2AJUXBMIqgvbAcqIycUAuAtQtzhoqRPiCNBWwQ4IFOI0Gh0jNObK8VDvUSTawcqDnqkyiaHe3NxwO4yji9CCKoosXLo9Go/7Ozubm5s7O1nA4RG+hQBGSi601jJh2NxwOUYOnDe2xoirSpCqKAIKJRK9kkXtSejVNO81y06gAGeHxRVVNyonJUtW0QY2HQAB742D+pHoEE4Dq8LRMkZhxEYIroOgHWOXi4jJLl9LzAVIzeSv5oWFZWZ5VaZ5GaZ6RgCHKnFkGUi/F6yIgZ1g0GdhVCWm3p44d+i56Dg6pa4KYhtme3WHpBf+bZsUoTpMszYoKXH3XMe0iLe04TVAmhVyAmdslHt2qarVacn6BuRQaxThx6qyygqrIoYn5T2RZOYzrCRlvp4wTowhMSiGzjr7jWJ6DbJnWUNGipE5jPYequY48p9RcWOsmc3OKP1qLnBLEiOTS5MzMiUdh2h5D6LQ5k3peLGsreERqMFIoqUxOxaotT40ZUHLRJPssksmkMBuTHUyn6cV2HXKkhum5QBBYiNKdosoIHUeWytxRgfCCYVZpOmCJZ4Kg8dWGe7rverZRcR7tOFHgN+jIBSTGgQFLkZkYYCT3ZHgEXSMuM/VPCaeE+QCycZZRZrbvuYabEmsoyVK/MNBe8NEiiKKISMnwWxjFw6VgsdkUWlI+aR7keQ5/jKJMCyoY4Btdxykcp6hMl+pLHBtxI4RWGwQq9bSssiJmCOgyyuJB1sRghP8qgxhFmkh8GdU+Iv0pCmbY2ozbiXwBsEnbONXS0RKAichGBXCTsU6Nnh5bv+caD2mhlb63my2Zv9YJybw/lyoxkxHMzX7dvM8D0Djze2UlYGLLJt/d8zJye0gLs1VVeZ5PwkTgrd6Qc8YkfkPXcVdzis5OHjt35f4rKsciLKM4Vlsg628Rpb49Aujx00ULX++jcQO35tMgTsBiyRJ7AO1i9RpTShXlV9FiY4JmfRZEJdzrANQ0La+Ddmzzh0G9H24L1i0Xof4OEQ857dIV4f2gmDdzh2xyrlddZEnKZTYtnyoCOeoYk5SBAU1wWWcW1RsZ500tS8JemhmrlKzw5DXZedDj9HmJtDxIOTvRKzQgSBZG3EqWQQR8k4GPgvAoKIwWGSoJzCjNoRwouKzORiGlWLoR22ChAQSHOgbkxiW8WQHfFEpSdHlFipVkVEJjORoOQkosvV4QUIWQhMy5dEoo4UYjhGZcQRVNABsQDTq2mUUjsi/g+2Ox51RZFI1GE4paKCSi2ESIeFaPEQs/ljfX4TDd8dw8B6qN+uC0uZbn+FBid4MgCJq0hWHYoM33/bW1Nc/zwjBstVrNZjMI0EPHPhvNmcORXvX0kqEehuE2CiaJsAa9dBTLswxifYyYIhKnwOhjfKlhL55IdsJiCzl+2NWoiDO6C2JUkvAjByI5AmWWyEEaQOlhaZT9fMih/7wEgO3D+OcaUCtdU6CBT6rbuueAfCXDI6rsKj8B1TNwLVS3uXjA7SBaGEFOpVliHHxEKZPu3CJ9RQjtJx9HgRkzCX1ulb7r+Z3uyuRNoS4rNwXEFpVZfunSpSSKdwe93d3dfr+/s7Ozu7M9Go22N9bpkzGBATD7WYS3yKoiT7M8zwiwIXyaTCP3HZ+cgPG4sAgvWIsE6HcRXHJnl7oHdDmF5BRJmHBvCdRO3CwjJ9taCnCNPMuzOLEgVxozg9m2nbIywQQYJVleoKYaNJYbXX8YrW9tjgYjhFk+iTgW4CIZuGX8XKIxJWq0RCagngFhekxztz90rYw6XCMu9AgdZ6IgExDULFKkH2UBUZokhv9rVZmkYl+lbDFiWIVFzzJZQziuG3gujYoqSjJQkSW6Akk/iCp2kVNrkJR5ZM4D6mm73aZQDHJDcAPhKyuQOahNGxSsOzYuAMnIpizNX/f8pVu4WlP0whCK2dSI4EJDWeZJhsvhuvB4ZvwJ8x/4WcsTOOw65JFiQx2IhRvMlApk5ICr9IKp94l1mUFEcpDS8sEFKTYZUMdZmqWLdbPCiLJcUH4pr8mS1CPDMnYIpjYqZroUposmjobie3pKyJEQuRbxd0m520axhSwZDcN1vSKLzaokQ5JiMOxTRcv0ghBJZQEMmN8GjBDYoSzHlSly9C5teMKkaWzbBpA/wJuleWaWruUFge2EuFCJu9kbBn7legLWGDRbGRBkkR8GhmUmkDwRMjugENhOGsVQgzbMOMtGo3iUlgkM0ND/cpC1Oha8bHiOJ5wTpwHA8NSoSMuyuE+oCwHxAWSpgAnRgkuqabj1oNKLej+rcMh1ni0P5D1CTCV6KOPddVVim+wAzIzbxpLCOQHH9SObqf1/B9vNfvsf3+1mz2hegjRP1ee72fTv4uV8AhmlTVX1O4y4UBAgLaLkAFE4E4jQcs5xXzcTmFADJKcMep9JCvxhNMdJ5pAsJ/nQtMSG1gw9jZGTLwLrOZU8XZRJnbuooU0d8B4NqInSuICWiIRNUR1UFl3O4/FP5GBit2gJE5+LI3c2BUSFDyVnyySNEa4QqXOhEjQ6lxQCEWKGkTbwripga4VPCKuE6yWkN572aw2B+p86lGh6V/wX6try8SinIZWNyd4KMRyog0FKGiIhxcWgoJQgT1zcGgM3y4qXIObGw4HpuAFCcRSbUMJK0Xnd2RqZ8EVCewArGAOpi6rTCEqCtOYpDgzenJ7jOMHW1rpA8aKanTmuBQQq6potVsAIggBlewrcTcc9evSo7/uNZrPVajXanTZtftBYWFwBeJWgOCyggco9XQhifBMqSZ6GYVRJnFIQWtN5+QNxCvlLloNkODEtTRYczRCTIcxDVRRBDVN+SLSagBLqZ8aTsSy3XhqgQjkgQNNjQxYmRA9EqetkGciRnDjxOxQbVJZNMHptmx5p+gMIQRhKAFhHSNmNsdbQZBqAxDvXCmy12KiSaNPJ0JZhcpg7DcFSWBF9DKO0STwbEJhZiYvHH540PNdcveTEXbi6Ql68Ml3P9oJGs9ugdkFZ5gdvu0OdLj3pUEcv8tT2/DIa7u70trc3d3Z2ev3t3V4/jkZXLl5Kkmg4GAwG/WgwHAz7aCbEMa5lkeVpVla5bZCBF6JFsxU20gJWRLZRQWXHRpOAJkMEamYFb68kifNUFFw7nU4cxyMSUeeIlqvmRVUieEHyBAYogCJQTITcZ5KPKiNJcvQZ3CCkGYrkJeTDLO8vR0gA2sH+T/4K3rdZ1uqGgeX6ruf5OHA5kVfbvX4GbHaRouRDjgS2mZYZAHswS7IMy8nBMSiINCSWMBoBwEwJ+YjK8H2fjhkbUYwQ1ZFxWz380Otg1qmJ8QBxVUFgrldGWQKW+BwK3fTyovo8r02qPibUtwSrt3ID5ELAeCG5Q1rLA09zbISYrIYCJyKsJVjpyEM0kijvqo4RBdST+5STT5Zy5+CZlZIHPF9QlS3KLI+J7yTs6cRzTY8q2xLQ/AMOt5UbgNbA7BnZlg3lMLfIUlT/JeOZqwEWoFMj33VAtbftJE6LKCotwwHZhBJAKuSpOR8lpDwD+A1gOc9z/dSushwD03GsomSalpgfANaDhKidgg5CJtOuHfqB7fmBhQ4MSWeQWmBpAipWQHGIGsVVVhhJWo7SLMrgEF1U5HZmwvmMwPpOYWY06aDPpHxUdEdnFTCMt6zrOVPcF+TdqsQmAbfSKlzqQYjyF0+62gJaS/ioFrpzXT3yycrlTQaUcwPTmw/Z5+Eubhb/8321zYNMzMQRjXdfbjS0mvkV8773el8xNQsQ70zHFGoEzfoHhVcR5vIaVodbRCwJKtGBVJcQAifXQdJPTEmkdaGaG0LigCxvGNlB4jUyiGPZQ/W3CngjiuP1995Q5DozoFHfxjPvRGo0ayc1oIrx61wi5USFi211h4SB6LM2RlCo6YSBV9z6Y5gIeROSUQy11olSQIAuLvlTH1wI4TEGhe1sCD0NqKbQ2Zc3F/ACcAb2uEzTsJ/rXcy6ADaxE+118kpyi1l9hqiT8mbyrsjhS3SExDzIIGZSqKd2MesZ8dyLkxV63RKGJIVwTaNqt5qisptBkRt9ZdhYVa02IhjofXO4APIoUNhZlXnExSOHI9RxktLObfvE8WPNZrPdbgO7bDth6He7i/RPLwibCwsL3aXFbrcbNhqe57GVKSDgxKT0/BAcWc83DDNP4WUkgmkWMEfobDqo7DKmpu4v44xcD6DvosiSNNb4qWGzIeXSEUgyARYexoULth4q9IV6FQ8sVbn1Gjd1OIFi0itbe0/audBTYrIlBPykK7rA5RMd01LvZ1nMHgv6esmZVd0D1NKbNN2pV06R8+FVBv/itW5BEv9zeujqHW9tNJbkYD2ZGNQR/7iBmmmUoetZwNex6CkdMBVZpbmSklERAxU8V3y6ZJll9sQzDGe4vStUWR3Yo6LI67m258Nh1G909je7Bw8Rbp8quBCXtcH7jZMkHsWj0WCwO9wdpEn08gvPx6NBb3tne3urv9Pr7+4M+704Gm7tDk0Dsu6+5zSAJrJLw0qzIkviVqvRarT8JsI51q0qy3JnZwdhJUZyYJiQaMTQSgrH9/LKyhiMYRKci1KBOElzKMCjzm/bbgB/KFEI5xmZ1gbJi0WRuKLqqmN7yG+hMg94U7HbH1aeaTcd37dFGkzrgeP5w1HcG46yOIWMJjyjyiKvXA+CjxRRIxszbQc5ioyJhUU684doZrQdK6/QKXVsSDfSk02PtrQKJ/nForTtskD6LVGRFDiq0gubhQmReNbIEImx9CvQH41K8Sgk3F9gugCJgbQ+WXJQKEksdYrjM5rAORmEYzD3aSnxgCwWtLFE7C7w6XXUx7IQPPMKqi4NeUGcE0VooVZJD4IE1poFHKYtAP9MwyYRBYr585Ikjhk/r1q8WN/Zb9AqYIkFPD75dVGHkKpSvP5S3RtQIrtKklGVJVWRI5MnaBAeH5fQOBC4oKFBzg5EMHEc6riYRo6cz4VPo5kIyc2MmrqGRcdAeJ4sN0BGz+ipJ4tm30d7x/UgMAViA5AKOMiiQs8zRhEHC0RWmGlWRsgcDLBFUPKpHIFZ5TtdWwDyT3qaJxRCtclkvFyiejLaFErof9Y7QSGER4nQBRXUbpYB1f6crV3GFl+hAjQRWtWU3yncws3X4McSmhv4/OxtXl9CQ5eMvX+zEKPXetsbwjTj7VnXhxiEs1OwmZ+nZqHulPCdb9NlVy5vY+ySOnVFi7XC3bqWLfCy1LBHDw8/86FK9yIOq4DF4SoOE544rJPkJ85r54zPicNDGUA4VxKxjwxG1AWiIJWBgGy4qmdBY+SbGvLET6LWOJuvrlPTocZHu7hue0OA6o0Tea3KyD8IGUEC7o9NFtoTPvOW6a0AYQJMJVDmEDMLGCUXAhByzYVCEBSWePrAGlYg0MtKFPyxamOaySwDpoYEPaekhNi2lLLNQJdNh1AqN5l38POeGL1OJscIgcKlChAr9bFSqoQIUUDMV1feXwTHLG8PjDk1mSuzzISgPttiod3P0KA6raV0QuzPSJOhVGQpHcoroFVt28P+DoAaHOUTEALBuoOIoNNsLCwvLS8vLy0tLa3gtdHqGIbR6rQXFxcbzSYj8hHut9ogrVoOwAoUBSQZrE3zPN/p98qiSuNilCVOUjij2HZ9y3YbzQ6iqhyV+TLLqWqL4mB/e4cq9VSxh4QQnoLCtDZ2dlDIxVoJ9DDLx8DB9OpmgVKaEL4kG3rkTmk2STLmjfxAJmcJQBqShGEzojsgMfR5kmoUXPHb0kTZWqjTj7XRROVywisH+VUBv0+9cqYqrHMSgFpOUe/XhWE48/gZ0jPveZ+e2BkCpwf9+utYu4CICIEDxDZz1FlZihKXyvMC+hmpTi21ZJgtyB0CX0N9SpIwphAibLR5xivNKiWPCBLRNX2vwXMEj1nCP2JEQlvH9oxm4Dc7/rLRpb6eUWR3P/wOwr1n0JcZjnq97Z2trUG/d/bll65dvfzKmZcvX768Pdg1RgBXUCpilHEeFdD2sUwDKBbyKesurjCEegQMAwDirt8KXKc/ijB9pDluuPCgQiqT5WVaQBWzsmzCy1ETBuehdCoZxVeQQSEATLbhmA4iQ8eCBA2oBLabj3qJZXpphtCfkzSqcCx0up4fmq4HNHeSR2kBELpVwHcCO3AMfC8X1wG9EKxZwrOjJE2SMlAGKwr0i6TyFQJHBPx0jhK6zYE4B9CWA3CO0L9Rjt3MORFIbNFe4/FjmU4d42kjRy9Iqa/mIo7r+9QJMfO8iNMkGiUxESeo9i/+Rg5O7UpKF3nAxokAQLOokAxSzUB+1EQXAsAhstbFw4jOGP8Rf9h2TM9yQcq2LD/0iEgNO4hhhJqCSxkdVVp4x2iXqjNC/426VkhfOGCgLjNF/kJSlJBjZrO5lI4G7B7teL5lo/dSpAlw/SlR8Me6cyap/XPLDzmabZuNRmAYQZqBo8L1IJJjAOaoNMwoiWCejOTKsR2/QFmM+gSOW5BkAbSobDcvijgrkyQfxBneMZ2igvMwlEpJ9BmXFnRyQZEjXTlRkJ+oaaoFemomwW0iJ/UZcYWWHtSDhylooi8BnJW4+dyBUT0HJprTOxICtLdQyXeD29Gx5jcaA/0X1gSYE8DNPZGZv2DNk+/BpiYyWf6nFFjiUjh45ykOqTx/gF6F9gx3uAnDS+p99LgSw1KMf6pLTsjv7B36a2stvpHJ/oIDSdMHB/2qgq7jcaUpong2ZG0C1D69Uq++fR53gnn36p8TUATtcd0L/8Pnr2ZqebJaFKsypBu4TTPTTkRZpDyOs0dsT64iVJFCDEwgLFGzEJBkSgAQE1oozzH4G01MUgJhLScMPptm61pgbo+j+g7ycxHQq5/FsiR7EGJBFYZErAVU1Z0fGmoqSSBUN/X1ySyGy/zc4mcuAEnQssQfcgjCT8qcQojE0vCmWCdLED5gBUX8kmRZnOP6Og5AvV0U9ZvdxYXuIrZWo3H82C2e7Xgo2QeNZrvT6bQXumGjFTYbDpSoQ1Q0IVIu/QQtjxDXdGEtxwt8JyCuhYMKfVZUwHkUKD6Vw6io4s2XL5CuZIHSe15kBYCwwF2YAGsB3JFnBeOdCQYTthdYNDArUqCpM0CI8yonMhkVHADABZjCBt7ZTFMYeurPHd9Kz8MCr26Q+pn5D8rrl5kDSrNH7xfwO1EqUMUTjTKW0ZxIAAyrUvKgOjhnooGub6BqKEkiuSKqYGgCosMOzdeFAMloDEWOLAN0amInDAHSd173BKSZlII2UdhaeaByEg4YXkVy/6YZeD5w+abjuOJ7wWHgIImcEGTHwHRIpJGaP+gJEEbNRcHcCk2jHKaRjbIkaX8JPBKA22kU2Y7pOqHRbLjNxZV9B1byrIyjN7717fB2SbMoHvY2ts6dO3fm5dNXrly6evlCmkS93X4SDT3Laga+51hVYRS7ERVaEfvCsDZL81GMDg6cjOkhM3KChIJFzQsDIcEd1q/MikKYNwndEgwQi+lalMq4SBOAegGhF+G/6ble6Np+uOyYuUthUBzHeUKmBoYxHEZomlSGY3u4pIZVuZZvWKNRzOx/xIeCg0HoHSq4cAKAuglTUc0qzvFQSEkioDssqywQG9YewyrSAzeG+gWkCjNu6kQxokoAhPO3gCzKKu4e0ziTdzHzghKKqwi2q4N+I1xxccDUKuGxCLdmngNZLEblVDXwj4VibEkXlgkAN5m4QyXI3LIZxemulHgqTRP6qkaRS2m5sUMlCJ/sqLA/AKUC3IcmgXrxzBKLgk8ftm/AmCE9oKFumSsr+4o05C5lmgDNQ9OJ5fk+EzNAgPaEKzksk6vKxdPik/4HEgDH8W3HDAyfnCIYVUguy0hJK9dr5hWtZYYDxCP85wjdZKOXQI99hWkSiP8kTrKdwch2AphVWG5Z2RnhY4vKdMi2Litieiqlm4aJb2TxqAmDVz1C0I1ryNxazWb8SY4QBDmQ0zMxqMaLvROzmX475C2uan/pCT3yaTyDRHHcbGV9LJK7bqR+I5AhfSf6bvT3/9h0AG4WUzVnm9+ZeXWPfyyu5aZz3SeVECA1HAXNV6urw72dHcOIlCRVY2oMIlGBJuvf0+Nz+nwFIAS7p5oL1Y+wEPLyDRFkYbYiDp7iQhAvSYVMuagIziLlJEzev5Eeii67qR+b4vWPX8b5mzZ0NRiCOuUZyc/MITSPlE85kXD/pbQHQnFCbgaxQ4E1QjMY5/tDMBh2ICRzUkYxsqga5QYYZ4ScmHeppmE88p7ufTF4rcQBc/guoU8kDEffJxIy7qQzEblOGLgLLkDirOvPoqUl0I+wxCJ8P5Ic1jZBysB68CJplQ0omRoKxBOPdBOuL4ZJZsnQLLe6zaDbbjXDxokTJ1qt1vLy4vLqCqN3Go3A8wLH9sF2bDQIzBNgmFVmVpVeo5nk2XAwRI0/yYdxNBoBQR3txllWkJY5yUfCdYonfhOhf1bEGQpsaZalQFFnXtggroZQ/FTDT4879UC2KC+z8zE2F58XzpRlqiLpsoLHAn9+cWGBciOjyMGeZAOtqio8yOexHjwvlOJnRvOzYZb+edcF2VT9Vsp0Kk9Zc4IDgGAWxj4c7hDqHKGP0R8OaMohdTS2KGS+BQJD4YXM8CR+BWbeKpHgwMcCECbQNyk14c8z/Vr8FeAVwHUhDRJ+y9BbUu9Mv0JckCOb8YRh5oNA/0Z4oEnfssmdUN9lU2EpAU+pAk2VzPvkWjVTXZm2yHRKVghFFRPCrLVXAxUwMS26lr2yvEgKVYi7OLZzYKZsV16QWWbKNoMkSGUarhm4HpGDrTR1iqy9cvjI7W98CPDxNBr2+73tyxcvXD5/buPqpfVLly5eOLe5fqXVapUFvFo9yJR6jh3aPqaIYRwJESyJg0FkjOabsDUqrTJTyja4PPVcgeMUj13ph76wMQY0vLSrwipzszIQ3QsJA1JmpFDYNM1BnFquV1oOHh/MUuRU5riNhlPkVSb05lmJshIJLYtbkGgv1AAAWmJEipqaBMaD/k1UcFLOVar5IMFnpKLDcCaJyaZAXCjdyUEi6uh5Vs4hAY+VuqTQU2W6GMKg/ZIoQ1GWtmOGph+liLhF/5lSd04ARM2ZzpT3o9gpSnekLtTKThvx9RWIRSSc5J9lURqCVYP1gmAjCFWcpDSMvKiysrJNQPxjQTKmlIOKa7Qv4XGOUUzm5tIoXIAA5UApgOYnnc1er9dtBd1utyiKjfWt0WhkWXaz2bQcF5WLjC4LddWQfxbFKBm1WyG8u0iriR4oXJNGo5FnZQ4GEcQv6Ctzw3TChj9KcrROkyIrK9c1Pd8OPIcdETOjsCEHVcXYUpjQ5bArdkjzk7BO7JAjF6KqMPIc1tY20hgHnASyRuToW1vrp8sWNGBwFlMfoN4Uwi7ut89Z5ZkfjMuru7PrkTMyImcvPfJ6kdaCb+PmthsJ6G9q+xPaBLjR6/b6pjWTYVwFGTiLfaW0uJzbzTpCQ4T56kVpC0kYt+wq8Civv0fqVM4u/6sjUVMjZMahAUyWmRQZYN1GLMceKxVc53mFZjk/m2RiKNCXBUaqQ1ARgtWdlUjoHptesNn7/YmUYGIDkKq+1JwXKe1/QVDWKMu1rOr0NZmRI3HZlGYioBzZcZXWS6o4k41yXZBA9MZnDm0aKZajLtFkkZURZ9e7UDfYBFAlNFX519MwDsUpchT3ZiLdEXkRpQ18QtzcZ8wrLSuiw8OTLeUGQI46aBgzF0YAfWjvfJHFaCBKBdloIRQtmqHX6XSWFxbX9q0cOXjo8MFDy4tLQegFQdBuN8MmUPtkZARXhdWVg3mBaT3O8q3+5k5vd2N7e2ewe/nqtSRNR0maoERfYi1Dlav0Kk8McIQWjuU6toO9pXC6NYAwAM652fDtgBSFcth3CgkI1vvnWxZFEe67A+pAbbxVmW0XnQSWpU9HA+I21j6j1DgnBgAtp1VRbm9tYC0mEjCBiTKm/I6GsdLOZ1iPwvHrCH60wgmKhKWafqt/EofNMqBa8sBpgO+HCiTDr3zPm60udzBYB4gpyHD8hZOr6F3wKx+J4/ryb7FnTkuqqmg225xsUAW9phqbDhsIUifEsPlnlI9trzQKBEDjr5EcbBPNyQkHUPGUGbBBJc2QUiMb0O0THQkaY3JPlmmGPqFseK6Qzr6maYYBNJ24vgFQNYitbN1QuXJzHMt34aPkuu7l9XXHtuDxwMPKdX0fvygtG/IlPAtVhWNagef7njOKE8eyA69Ffkrqicu9hdXuofzIqbuNJM5Hg8HO5vrly5sb1x750pc3N65dunhl/dp2HKeGacEyglzehLwUJ0icv0ChpZAtL5KS5IsmmnZET1JtUFK8DVDmZecs/gA77xVpWtpW5YAYCudbFwAcqk3AMwDeySQwg4WAGmIZSVdChZIIylQPIhYwo/pQeSYhVNx1KlbA+KAwoPgl7wIBYywGe0yoqoDKTfV4LjDBR0DSwJgySydfy9YZULlxkXNK/3IV9rm1+Z1Wa+OOAcYzoDMsCkfQIjn8+IJxvZnwVMIgSi8DU97CE4WOS+FvttAJJDMErsWQdoZI1yhZpt9ibBdFlpaZQx0JVv6lJ0uMdv2geWrhN8oKHTmR/DDKkHGl8jEhDSP4AIah3/DtOB74DlGNSZANTADWeipKZH4eYZmwcquLhxmMAIq2A/IUBnbODgUlVLFoMKAmRtMyZC3y0kJLxyjLDLZ8GWJ4V6GeXNsuckCbysqwXT8w/cpyDbACLEhLEcEMiAZx/0k2kNrMsCDGCioaQdoyJ37QMAjqA7yIC3ejWQso3zKb5gYGs/Jw4mIBY57xKiGL1D4l8Sn+lkkI0PjXsDwiZZK8BFNLWAmc3cgmS2Wvsm+A2Bsu9+w04HXaeF0R+ev1X+mjxvfvpl9eOjXhuFl/AMVUYZ1VR4RCPlXrGqmKCBVkqCrLrEoR1pGwoBhXNpd2aP8szI3Fm5dY5kGMW/wIBzFWCadKLnjyYt/sKWMCzozWmwOIELXGhVyl47noshFlEVALDpgMUIIKBBJFRo8sS+d8BwNsIqOe6MdNXe6SVzTZlNf7bRpEQTG1MVuOJSfqHzwLiAJK/VuGb1NjVzALgcW0WIwZIZJwT6OSKJUgqElDSAFyCKZ2vGVgsiYFHVTNudxbkmIMg9WnnRwmNrUWaG+NHSxPfPTVJGaHBIh5HWyCgq/JUaEUCSLkbqRGnVg8eOTQugknVbKIEQAh7N+mypVRFWaOpgB7V3PrWblaIw7l4UgHWzBGFvYRWG8t2yoeeOD+tZXO0aNHDx48uNhZCoLApQi73W7DoAnmMR4tMXxbnc988atb2/3L1672ej1Yj1IxEnooUBcB8sG0saq1mx1S6gwsGBVRnRcpBApWpKePChY7nFFMD/gNSGxFOkiiJE/ZF5NB2My/FIU/6UXFv8qzYntjO8/hU8v0X1EXJA4PCwuKvjyFJEZVYOjRAJgwPIJ7gNQnqSExJokbGpZrG6bjIqyUTKGALosu08mvJqwDyPWH9ElE211WAlgGlDt9yNqq6tqlSySBwnwHxE7cAQiDBrn6AtZMmQvyl8oo4xSOt8J0VT5P5BWFZY6COdAN2XNKoL1JtpKFmDhK1v2PZWyNDUwSmzqcimUhX6VsqDhTPuvCNKMo5kyS66myrS8gVfbEkm8YOzu5kmsUjrwUGrKap+gSUDhLYw/Bfe21DE1PUGN9WBrZnuN6FP4zddh1fdtxStv0wyD0G9hTBmS1b0UQkKX8IasI+k+PHPoSpmVbPrmn+YblOm64sLCycPTkbWn60LveN9rd3dzYuHzp6ksvvfTtbz/70ksvbW5t4eGgAWPbCEpsHCoJCFRktk2JELt3kfo+AUwILcJ9RnbcsyrCNTlu4OOoMDlw06AsfR+mHHAgpkYm+5RgVNt2Cpp7kWAyd8k9GJK/NB5ITxndBu6OYtHgyqtcpzG1gUyMXwF7xJZMEv1FVG0K8qZxzn6TVIMy7LAUABtRwidkkWSEymqu7/sl6agykYC9ovVpky8eP2pkb5M7pOLqwJnOSKGplKUgudLELLxQhH0KEgVufTN2hyWzJRBILy+KQg9V+KCszZgcfIaaFSSryoggTEqlzWbTeVXGJjRYSScKwqmY0dKsKMDQlYNcAnypFceDuZKrCRccKqP04VeAG+I4Vuj5zVbYbrebvh1YrTwdRINdDBMTCMAoSgaDAWjZjmdCxdoCcQnlEQi4GkYzr8wozqIsbxiB4wckWmUmUDYoqd8iyLRZViS5GcVlCml207J90zKSPIlzTBquC9VR1p+FQyS1tvww8Ao0DvLCgPkvWhVkBgdzgIJKfUigcNVpjYQQNd6zC3CM6exZmoOGk2hTww2czSex/GBVpulqeg3VClQTaytPk8InlEtp0OelWIo5Q/WceurkMW3FVb7WFDhRLYdLj3VSQkuvjHO1b6WVnz2DtB3Wk9fE+xM+A3WcRI3dG//8vJr43ArreA1muh458b4STZ94f08I06QDpd7mHn+dq8Zzs4HmXB+GOYaw88JQwcsS0wWj9DD5suk3v8/taZqKK5cdY6aa3ROqZyLBRfVEoH7kCVKSymmxwASPXQHU9hAoWAV0C7jYQFdPqzI6pqoLFtBzM4BgFrhYWezn1jlTAlAqECEAesd02BwcosYL6qcBT0rWwMkJzMfS8lRioQ/fcLsJyKMp4K/OJdDHFfHbClUAk4uDMDZX74hbQ1D+kivZAnZFIsqiuIiPs36liDAIvWnkZJFDMmUk2QwvBNMosW7SUkeoEcFE5O+nhxokpjQ3kqKIEWiaKJMgzrEy/AreKiyRxjdfXaI5SC3tOZKrvqx0yqKmyAYwAYmCBiWSUL4QfUw0VW1MkaRkDfQnxUN1r1y0dbW8S1w/6jE5SZpjrrfsNK/iNDEtx3e9eJRwORAazFkG99AytyyjEQTRcJAXWTNsLC0tHDqwduzYscMHVhYbbujbUNxvdUDpXVltdrqWjZpQlKSjtBiO4qvXNs6eP3f58pXdKDYdv6CB6fu+R0EzIvU0Q0BPMS7Hl3kO79gRiUxDnjyFSY3imZimvbOzkxaAwEYRg4Ug4ZPlgPsT4habKNxLjLvneY1GA+soWQS4LqSEOu0FaFpTdMu2vgjlHXt5ccnxEPWypYBy/PV9n4sAE+PZ8zzWIuSyIkjPlAix469QHecrT7MhdMHZqo0icQ76CzpyJSTAvQQlKqCHzmQ5hHhQIhkATuNX7h44jify0vH30zRHqTLNkyTin7kDEEMPPuf3YQmUREAUFMXly1fjLB0OIZjJ15kvaZIkjBhUHRLOkXISkVJConIhR+RtuxhgXuCHfuAFvu966N8EAfdq4OhL8HS+pOjYWBb5QcjyP02weYazdqnqrMOFwYVgKroyAmNUlw89eHIkg3Oz67oAT2fx0tISjE+Lwvf9VqvleU6WFVEaBUHQ6rS67W4QIAZDIkGzh0/tgobnQYAUyviuH7gBrJkKtghEEEPPqIzuqPxbwFw3jeJer7e9tTXaHTz77Wc2rq2fO3fuypVLw90euWcg8GiGAZsToEvDfGcE6Ah+iBQGnqYFExNyJDAN17FbDa/bbnXbLd91MObTuEizUb/HVFwe84AfeYFpuzv9XdA0S4BSeMri2bIwHcKewN9XPjiSwsuDXBVb+NFzyG9Ezt4q13XYz1dAtZTkQwmeNG6cDUhMXiRpHhOLX6FukN9TLkVcDpCMFVNcuXTpuHxhQOaYNkYH9FNFNkhHIA61NLe3tzkY0/+IFIowRHjc6shA1ZdWb4rxJiIXnA6jsQRyDIOTHnMPOv6KF4inQ9QaVDGbEh7FmZEri5j+85z3gzMi13P4PpQ5GA2WEbjA5ADF5pidZqvbDjqeaaMuXyZ5kcQZLmaBBDtBIodmGvVuKAlHtmiXCSnuIzeGXj+ZF8NgjmptFsMIwYrKqAuam4XZSAsb1QIsEWQXTagbSOcZuWNWvmM3XMt1THouKtsxHNdLsmqrN+wPM8qE/RSRPiRuqYIAsGxRJJgVXZIWoqqNCxYP3WKaNkQaTzIJZmlCDK1Ag8JxUQiQpLd6MXVd6tgIEXPxsNum4bkOA7zUSjFFXhLxvMAmnDp5TItmNByzFE0XaYlczs2yRhSN5QDSIOQGE4D6iyYCBU5cpj6semdTO/k+TABu4nherQRg7vfO+YIbSAAEBIXDfQKNiCsgzF/IJojis3EOgNzDRALAHM2CQmjxK3FsNSRGnbTKNpX1rHpflL+FXxfDMCQLsCptq9ACSpEDWOB+cUitJQBAvFZVnhBJzFK1WDx6FhIPsJlKIyOPWMRVuA4W2QrMSADmj7ex2r+6StOdAR5s0NqDWpL2JxJhhelG9HUZnMolbvKr4gQAKH20bYlHR/ZJqq4uw18D1QtAgPh6AYAM8b4y8DE5AWVNCR5pAVHnRpgimFjKAXkskgILcwRtGFwNWk2RMlF1wbruZZl40BjxrO5XvSDJxUbhoenf/DBSj1jeX4ftCaqCVdUZ6MykMqjNSKwO70dd/7I0EiweJsRzvKA04M2ZpYUJdWgnSZLBsF8VZacFIy3bNDbWrx3cv+/YsWMH96+trKx0ui3HtPIkagbm2ury4cOHF5dXXS/cHUaXrl27sr6V5MXV9e2NrR6UENsdPwipQuwkOWAGFJyjZiZQ6ka1sbGZJPFwOCIfJ7g5DYejJIW8hT6pqq3Vgj8Ax/S8ofnguu1uJwxDQJKWl1dWVhYXhZbowYMHVQDBlUvyBgIMmqWKOCZQ0cbu7i4ixTSFC04UxXGMjgHcCxDjq8BXRRKbm5tiBCojG7rO8XAgUFZUVVV1zTiOdRquym1sTXVnoqCgN9DUa6PRsGzTdTw/8Hwv8HzXdSgkAR4ezHb+mWr6gLy1mm0GucBjwQuC0Pdc33FtDxpK9ecBHyFqYHdpWfoVjq1TSiOV0MC4OEjAyuKV8+dS6r1wzjAcDqMIdNj19XX1+SFto9EohW1wLe2nvIFs215eXlaoAE7ekIB5QRg2yXgOQ0f4vlKRn4moEOaXwubCNI1MWFk1BTo5nueTaExZljB+DgKYS2Ywh4JDXLtRGgIyRNR2s+EHrWaj4QceSdu7DoV9MK+AqVzguw2HvHDZdEI9tWQRhUYE9x0ME9crjrIkdU2r3++vX7l64eK5c2fPnDn78itnXt7eXN/tbzUaYbsZurZVof0DcXTHcXIA2iiLKzKjRDztubbv2GWRuo7V9J1GM2wGfhCC4owbCIFPuv5xlIA+UyIgNawcvSHAdHISbufKaGFapueQMprIppR6uuB0jds+GpbpumHta0ExEq9HcAGh2i/Pq3IxrYwqw3Jj+5jpSisjYfqiKiPy2eCSB3FMhY+yTi6fWD3rOVOFdIxT0hpB6pHhEgB39jgX4soCymi60azcJyzSVMCubaiISTVtXsvUARPsimolvJpQ0lsA6CTGrUjDVGSniDEyhKRkuYR7ADWGMICIl2OYkGg1jDJwbLqvGMutZqPbDJZbvlkicYVsVF4CLQnFM6rlg9mF+jooG7RGo8uS82WB6AOx1grS0S877aZqg0iqBdqUg8hIAQcyMDYgvybU8ByssYVjFJ5VNj270wgWWmEYuEUxsmw7L+yt/mirNxrGZV55pWkXppOSYTws9myI5iGIcu0sR4LnIDPFObMYdAWmMh9wTf+gLgBNjwqIqq0CHM9wlVMQuylg88iaQ18vpkUIdLiReceJo9pSXf8lHbQK4GqFkyrXJmXt0RAFVE2pQ//66YBAn9zHgFBzYoiZwCne09gjOrXPie0HCcB3nABocapSCaCC+ZwEYPreUQIgOJraaeqYeM2Hjo4cpeXx+84TiirMqARAZCZGQdKflN+LMBGbqNDQOyIBgMoecgDiMKBCw9hD6FOYFZRQtASA9ILw5Tn+x9qjQzWxyarJGP5n+kLJzAqTFHcAFB2QbwQ3fYUSs5YUKewmh+Dc9hW0Zjpm1txQ95YL6jR3E0ka+taInhtwO0GCwX12yUwkJCdpj5ImppHmRYrmvDGKshyq7Qa0M9CfkRoFN9AeGTtlbfDoCYAjsETcpJZ/RUwNPQHADEuVGCwkbKuEAhUjyGk0GFjgRRtBXj3C86KDUgAcAqWdClaOaRyngRvQW7SwGWaaxbu7u9Eweuc7H77l2NGFhYVBfyeO45WVlaOHjywstlYWOkmS9Pv9re2dYZxksBKq4rzcHYyurm9fW9+I8pxFBil6LgajIdW5izgeJUmW5ymFbRhpvu82m+1mM2y3u51Oq9NZ8BvhgYOH/QZ8AJZpW1hY4Dpus4kFTBfG4as9iiIuZEKBcTRSgebu7m6SJMPhcHd3dzgcqkr25jb02jnW541jdA7opwN92yUjLW2B541raWOrC9DWlU/yfzrIVbe6FAlADm1K1qtTze6ZD8uM+UrESVJXSMJWdQIxcwb4Z4gSsao4gjVg/fm3YdikaAbhNBFoEVpjcfXg8cblc/ZUZmo1/8BtE/Ur23FWV1dt2+aOCm9Q36GYXmae4u4gZyjyy5cvjuKo1+tt0La1tcV3an19nfuE+l3LssJ2AJ1Cydh1gIMP/NDzwQwxTC8MWmHDCwPXsrmCyMux7aJgr3RUVSjGEbaCssAZ2nHSonR8BPfNIAxCrxk2QGmnBMBxbHwjYYo8h87RNVueG/ou5582sgTgjEg6kUoOeCplDC0YnQwlpdUginY2rl29cnl7e/OJxx+7eO6Vs2de2t3tB54TBF5VlFEStzpLPIB91241QtexkmgwGu52WgFp8wOi4ruOH8A2j5TxLQFyQxuHwTAEtbAcru8QVl7YT6O/BP4meCPaQyRuEye0dUQEtobhOIGwckXBg8NHPBe+C1S60GwVwBtej3IHFwK8Hct0YZQA/GDFZGjqRIC/Qiox9Zw5ga/Ty0ZjQCMDoBSVAOhaWJwDqCe6dhAzhM/AxK70BEBfsGjVq9cyCvRp7nUoVyGAAYsiCXQexPLHCn+sv8etLTHwJJ4W18JGF0nqC1FNB4iDHGisqnCpoEPru9EIg1bgNlyTWOJ4jsn9oCKqMTg/RDyAIix4FRWlQCn02CA7VhWWbeChdrhVmIOkXoo7zkJAMO61vP4ggZon3RO0DKQHqImDqRyz9OwydI2FdmOp02w1A7JRRid8mBQb24ON7WGUFaYFunkGGVDThieHWSIfhsoGWs6EGWNmv0TM4vrzFEtgNpEEmjY5BMv5T7cg5VKm7OzUgTpd5voOqlssOgyaiJloAXECID9XdwBmJgBSME+s8YLOKWO7m+oAaI7T44H+lCL7vOhfhYzGzWyvVgJws9trnQDM/+KbkwdV2eREAsDXQVaiJeuXlKol76ROAPSD12eZiQRAD0z1u6nK/0REndynmFAEKmRGAkABvbAmMS0Etdw+rh8bVjWmeNenzIZFElgNhlFAGWk2EC1M4H+4A8AJwPRo1FWA9I1dySbKlnPHm1liytMSAK0irn6uayo6pVhdK1a5EVOkAVwmqioiDQBkX1aeRG+B7OBLqp+JO8tNAIE+oiqNAkflxJeFcQ8kEEzCRwmfrFI4KO/V8Zt+3PQOACdm/KuJBEBdH35TJgDcqcABU0UEOQADEggzQE5YaApz7Z9r0jCf55DRDfyqNIZRPIoyKNFS3JJEENphO8nRYNfz3HvvvffBBx/c2trioGdxcfHYsWNra2tpEl+7du3Z558ry3I4inZ2dnb6g97uYLPX7+8Otnr9nFolQLaajuP5iBHDcN/KSmexc+TgkWMn8H8HDh/Yt7wvbIX7lvcZtuFaLuPEUYGCo2SV5kWUJrv94cbmtatX1q9eu7y5sT2KBoPdEZxNY8gyjoZxnIzSJGeVf/pOEzUygPtRBS2KrNfbBfSDhD6hJCS0dOrAYuIV3pzjiav8WXJRxt4EgpYA2mORSlVV0e4AsB1NLpM/w1VnTgDYuZOL30mSTMc9M4+Tb6IcSDMgl7oqEUOAqC4g4IIc+vN1IMNfjuRQbOZXqmnRQ68w9LJfweXzieoGvyJW9jz2dOt2u51OhxO2Q4cOua6LwFriqbgiu3booB8gnWu322EYIgrXTgmo7rLs9/vb29u9Xm8YJS+cfjFN8sFgsLW1tU7b1tZWFEWK3cHGos1ms9vtNpvNOE24U6SICvy9aYoyKovAMKUSf55nQbtruBjnIY7G9zy3AQNq5DBhiAo9WBAEekdfwjJantMMXHQPmk0fh+/5SBJsFyUjYAurEk1fmpUQVbEcpGs7hucQrpENzitjMNzeuHb6xee/8Y0nn336mStXL5V54XjuaBh7oRd4Xp6m8WiQZQnBQrwySzGZs7UMbhzsaCjLAIkfZBCa7tDsJFFdMi9BSEeDSTBqACm0UQfAUyPBNhwWcr7E9roqIsd+CihvyuWGOwZIMlyKcIVqk5RthT6MDYYVxHwx+4BiYRquYZlEWCE37TwVMEiu42jriK5vq3xmVO2WX+lrtVhQDtQ4jtUjozXfKs/GvZ5eryekKZRADWkai/fQRcNVo0tIixDgOlLhgx0UHZsoT9rMz+u1A6OZGiIlv74ijwVS5oVeHzkb4NeV77kWcS5oVscoDXzPdx27SLjhgHkjA1oIMYNt2YD84UIr5BL6cjB9Q+WlLHPY+sJJ3aOHGA+Lyf4PYCVxxwAnkGdoYvC8zd1jsZWFY1WeU4Wu1QzsVmA36UFohkGK7oNdWk5/mG5s7vaGUWW6puUAR2RargdkMnD9BO4iDrvA71n1uMKIoqCcxX/kjEfjpI7N9LiCSpx8uxU6A7MZqfvrgb7Cj+ltIlU5mtsBEI46UwmAzFR5ydcCIMkemxpG9WFPD68ZnQHIBs8IHaamfvWrHyQA34sEgNFm0x0AEhGrVYCmj1z/J8JrTZhUueRyYDFR++eNg9ppCNC8BMDGAGWSIk9YXFEgFV6pmyE7A1xZ1zpRJArJzjPI/lG84JCXw2usKCQXM+NM5xmE6X2y6cL/5CA0kACIS0tif2qqFWrf2nXmZghnLgJ2KTyMheIb10hoSpGtOULU1s+auqEyklK1GY6S6Z4IGTtK25BRwD6Aa+f8T+rZ0kiuE4DvDAKkJwA6BEhPAAiUScQAsuZhsyRInQB/QB9mYQRRvyNbFmruYsYUmiqiY0NKlGaMAlkO5CESQ2t7u0/EMsA27rnnnne+851Bo/XKK688+OCDsOPtdtM0ffnll5966qmzZ8/2d4db/f4oTra2drZ7vaqqGq12o9W2He++Nz+wtrZ24tbbj5+49fDhwwvLyxwItgIE1lmWD0a7u73Bxtb6xrXN3u7OxfOXRvFw0B/2B71Bf7jd2+pt9wejYW9nlyNMEF1ZtJJW/8FgOB4J0EIIOXCXr7rQWuT3jcr1A4YbMdWVcUCWJWTmpqe1CQTCRIZQl/PFd1WeG/BjQTdQCAuSK87Y/KPuL8epfCO4FsXrkw710cOUmcdARmwgxeqVfg7rqaNQq/2oVwpAx3oC/D5M0GTCoL+6RC7Xr4PexJ6R2EQJRzwTn49HIwbqqiicIGGG7btu4LdpIyw+Qm1Aj7pd7jy0Wq2FhQWykVhsNpv71tZc1+XeAjOS6auNa9fWR6PR+vr6+fPnz549e/78+fX19eFweGX92ghGv4M4jm0bgomtVsv3/aWlJYb68F3g5MQLG9d6/ZQ6YMI6wHOQnDRboAEEBPshKgiTjH3b6PhOI/CaTSQ20GlpNKCCG4Yg5yDURbRb5+Ro8LvAxZDvL00cNFdblRU2DLZQcB0jzV554dnPf/ZzTz755NmzZ/M8NQlj04DSkVkkcZwMwM63DLIvJBl/qECRAL/pUtme5SDInIxKBBTUUwpHGGwWxjGt0ndKEqbGXZYeXmJAcgKgEW8I4lKQDzAXsvkuUyjPAS5DgFielRIAYihBeRhBv2k4FThh+Jn4xDhmYj7gJyFkPD5sVALACbmaVNWTnxfg2OgJAAd5URTpyH6FviO+3KQ73rzAhg0ZVKgq4Ea8RjBdm34WoHPi8LiuT6tUrXTJaZJIkEi4SXazuWRDZGgSoxDWZsTpon9iQawqtPTpeQGU36lyTjOrqkK6W5Vg1mjSWPxDnIIfBZc36ggVRYEEoIlk1vFwr0dwpbBIDBjzARZN/IcZFOt+aQA8BnUxNi4wPEiFZK5ZtUK73fRaDT8AqKAKPD+KEthX+2FWmFvb/e2dQZIVJiwfDUq9QZ8sigyDgeY3qH7xYKNFiuVoOeaRaygPA3pHnJWuEsalTBnxU5zAhiF40nISCZhKAHiCVTe9TgzmkYDncQDI1kBmokrxXTrV6QmAfGwmE4D5tXw6U2ol7/2Z8TdvDuLyaiUANwv1+X6DAM3bPypjsxKAqhBOnxxn1xeE8vXpltM0KZmHtEoAJsA/XFnUa//8V6oDUPeO6PGYlwC4eNyESgkq2VL2nirKqL9wSoAlR+jHQPGLVL65YEX1AaK0sgssSYrVCYBOAtav4bwOAEqJ8+/X5KiriGsh/ArQ6BcRkEVhLv+oSfmyQB4nABIFhDVW9VtQ0uCilsjVhfijaM5qX02xHO5ZXXMVSl+oz8lUX3QYcKEImyvtOc3pDsD0wzvz2WFo1jQEiOU9pxMAygyEwQ2IYrIi5XIHgINOlgBiEBQteFJJEPEAUyV9z0tiIPEBX7bcJM9GozhJc8f207y444473v3ud6+srKxvbnY6C3fdddcz337u4sWLL509e/Xq1e3t7eFwiCApbHmtzuq+g7feeusdd546derUseMnFxeXqT9uZCXsq0YRIBzr6+vnLly8cuni1598fLS7i24BIf17vd7W1lYyHPrNJpYrCsdt3+eiLOG/hY6nuGVyg/7dVEiKgJgqRjqTT5/0J1xmjKJ0XcLcT7UAoKkiSbpCVIKeaN8XzpQ1+oeIa4i66EbQay1lSwVe0EPF6KF9Vobhex4GLcUOtdpPhZVe/e3M0GTsSEuz3SYZUMlh0CFGM2c5kJgltEn9iVGWLp3X9IOZp7E6GEG/JAgQdy10UBP7LrWDBisgT0CkgiDQCZ0ixTLNYToSJEsiDZvQVKCQgDSIlGUhKJ82zEk58g7DUCUGnQ4Eo+6+++7FxcUDBw7s37+fkweeEIqiGA6Hm5ubFy9efOWVV06fPn327Nn19fVr164xTJxdjRnRZDjuHffck5alY9tBGDIPntMDjvvZINW1YUiHiN/zmq4ReF6jGaBjECKTWVzodJoN2zJ91274nm8ghVL8RQDDhOK/eINNPcoktTyUyYmdk1Rlbnqh4VjPf/3xxx//2uc+86nnnnuuzLPuQrvdbLi2lSNbKE0gkrkCAddbUqshqI+0cOHmbVFVnkfjljEshBKhNaNwjcSxyR2MMj26R4JGrxIAzgHEJGaDNCwDX5T/WVPf8ynAJWilSgAc6MvlwFKMJwC8DtKyQX0nmQDwuqnGjJ4D64igGqFUVVEMJ/Ka5yubADzIdRkAEZHnY8Tfid1OpNwoVcgEgFezOh6ANr8gqYtJhQY3iLOE2KmVhagZS6mRTJipMIexju50KpBFkpaGnjma82hukEBU4ZLMEch8gAtmDQjT4ikGw6PMRZ5KTyXfROqGJXlaZAVsv/kOGmCxew7EYx2SIrSzDHbkaUK9QaKL4xGQPoR5CbCrcMcBQ6Oqysyu8sCzOy2v2260Q3TVLMNN4ZxYEQbJ7A+ind7ucIRJw3KdMESfgLwPc8+2gyCIY3Q4iwoNtzgFRI2koOyCLDc4pZJOcHQLhDdn3bdXCYAo+tH7zAvHRSzBV56Ox6atYMR0d+ett2hzqyAI81o73QHgVGRmAsC/nsUBmE3qnUT+qJlaLh7zJvEbhAD9IAF4dRMAg0RwRd1LE7rGrKtdmYlwZOLYyHirDhHlrdc+o4X+IgMe/7BqKSpi6AQJGO1pwoZyAUalKw5pkDCxlf+WkXNIykFsR52YXaK4TkVqBij/qwSAjkQkADfOAdDDkZnbWCsAjq011IcbyXwrkAyQgUjNiKXl1CWeEB9GDb7EQkgpDRTb6xiRBbFVQKkbhah8jJ4ozTrEEmbJ9f3i6yDdAPQ7zm2TvdL7qcdHkplmJwDTECAeFIIkzQZGFFJqcC9OAJi3gASARws5zWB1QcJQQdVnNBqRn7xXFOVwhI552GofP3H7Wx5465FjtzCkpyzLc+cufOupp3qDweLSyvLqvlar1VlYOnny5H333Xfy1tu6K2u5YcRxvr29fe3atUtXr1w4f2ljY6PX613bWKd469zOzg5IbXluJGmr28kLoC+UVxefWqvVYgiHqjiKmFJDIetxwGg0mhhFoq085TylxuFEpZDHWCbJiEpjhwOphh8UrNuvyVmSYgYWMMTxVM4mBRWArOCnAY8BBFKqiFMYhe06vB+l3kOWXlaVF4ArFWgRsMJPmcH6QK90js3DFNPovxIdgBRYnemNuTEqRleqF9zx0JdDVTGd0Y42Kt+1Z6oqKefjsY6cYeZppig644WweuTrWZnlWuzZzDYLcEzAsDYH/V3HcwPPt12HPRdYGLXdaapsRx8SSZLwzQ0C2CStrq7u27ev0+ns27dv39rayZMnT5w4sX///na7xayk/mC0sbFx8eLFy5cvX7lyBc6+Z85cunrtzIWLmVE2g+bS6kq32yW/asCTIoISua5nQVPFdkgX1ffcRuCFPhIA7km0282lhU6n1ey04X/RDoOA0PFYMuiyjEYRuZMRIZXqI8A9AADmF1lW5YXjc8pQGlkZDfphAFBc1O89++yzX/nyl5544msXz78SR8P9+1aFYgzU9aFDRoUhVr3jRwCPA0PY6X4FIlygRqqE6JS2kaJpDGKzMmetYWlggimJJ+5TUYArZ2iZ4BkFKeEgOGOpeOW8hmoOYjmmGtvoepQ2Gqe1wwPZ0FXiOujjRH/eecZQT7dKL0G2FrX5MRSQ4ziMCuNMRu2thPBlPWPXp6KRj/UhLWDh8kQnDo+XJFHpp+UAZhzEaqLHiss3dQ+BLgoUvdgbBDW3KucEQJBkCM1VGRD1dz1WiC1gTe26UIWCSYkg0aqiBB+2x3bXhGOl+5WzRqDtyCMkbQxwlIuyADPFzdIiSaEmVJVAEOGvHafKUkyDdCIQVaMEwAZDt3Dtykf4mNtWFXhWO0TSa5pw1zag25Zjh1kejRImeFCW3nZdh25Cwki/MssNyykqI4qT3WEUJWlOwNXKwDxJa5YQpZ2eBlVsQDemhhazGAa3ZfB0s6rq+N+q8EzP/fBXb7jtuDbraUo7BLeVY0UbNEyOn5MAKFDQRAIwI9Afn8fryXdWdLXH53+QAHxnMqA3mwDoHICJDsBYiC/Hg1JSG/tSk2SZJ4ki2gCVl0PFoxMJgIIA6XEwYxOZnwTBL0oApMgae51wbbhS/5QHTxUX7M2uYTOUelSkbCMgNBQCs9UiJai6bJGMfeckADM7AxMXf2YOIB9Q8cSS5Bu3I0UCwzuhhIdUeujSjiUAhAJRiYE4Hkjny4oyO8qapPguoGKYmNG11o4NJGBo0RCQiH+vqXLpJ04tlOs879Oop5kJgJIBHUv2CD+pOgCskch9EsVOwySIcJb/z4CjO4W2ZJxYorBE6v6Qfi5LIj66oPlGyeEjR+54w1333ffgxctXzp8/f+UaGJmGaR8/fvy2U6fedO/9K/vWuovLpmWXpdEb7L700ksvnn75/JWN3u7wypUrFy9e3NraitMkS9I0z9JB5LdhfQQiAFTIsSxCbnIEeUeFflExXJIgwOJ8gKEIom43Hj6qa9vtisr3xC1gvpco1srCP8/76o6oa6zkUyfuDgXWgBaojEKGCYJcwXAIXFe69kSyRGnaD0ktFNgqEQ0YDhw8dEV/7gAws9ioKtfzwiCAkgZxFhnrPC0DCoCH/Ll+NSzf8Tg54c+rn/kznNhw+qHkRMGKkemHSnvUHvT9cw6glgD9IrO4it5O4bvgUMeGvAdAlodZGtURiyxXkqDwH6bfcqCpY3ZVYCeNe+pBwsCbJMX40TkJSs+Rx5Xqb6jEg8Mky7Hbzdbagf3Hj92yb//aG07duf/ggZPHT+zbvxb6AXceLMd66ZVXnnvh+Sef+MZT337mpZdeunz1SlEUYaNx++2n/EbYbLb9IOAhyvtfXllkYkNAddlmM1xcaHdajdXlpVbgdxqNZiMIIMKEGczGRRVkV/R9ZFIKB/KCyDmYm3HG5FDikNRDbhQpQnvXMqL49OkXHn/s0W8//dRXvvQF2zY9GBq41DbICU5TQN9YhjhiSNO8NfYEqcaqWTYChKHSZ4wnIikWTAZzCOxk7kfi7oJMyTZeKgguc57nGc0igGG2aUBczSiLCsqSRW7ERcYqQOw/RnKupOcG0UfxyCvkj9rU86hOSgHnfIIUikLYOA1AD/vUuMKsqMmAqrk3yzKFZ1NRJnUk6uhfn8wFuEjYU9aZQ5KmJLspEgC6jjQ+ZVUOUk0klyS7shLLjio7yT2Rn6FVIQGASQ3xHPA4FCDEh2HIR+65oOAjz8eVS40yh1kYIP5mSTkPDsO1bKewoTHkmqadZgWcFuM8y40Ygb9JYTeX16iBYFlumXMFHbJTIuUD49k2jVY7bIdeWWSjQS9LR75rB37DNN12q+v4Pisyc9LIN4s1ly3LGo1GUTIKSG8Xcr3gBBi7UdrfHexCi9goUUOxUXzkFiYNUL4RKs/nQqeCW8NmW220kFNFrvBdhxpqSga0tiSvu1iaW8tYB2DSl2emOpBW3tDp3sTGoBhEGys0L9UdgHnR/HQHYLrYMy/Aui4HYDLg0Ab9Ho3meqBPzf76bqf3P297rROA+V9sfQcJgDyjWoNFVwFSAbSsB++VIE3cYnjtmXXoXx+GCkAnAuup66MnANqDwU3ZkirKJJfJxQnE0zgR8gIFE0B/kMTQIp8BwWgXFt7ox0pEjSiuc/RCC9iMBGBeR4u9s6bfnw0BQp2s1B9AGYmXHul4MIySNXwYDsQEMniqSMye2uGEVR9fSdib1c+sCMnQTk3BWGLpMfI9FX9FVjxoT6rXWQ0QrcthjlVwp7eZCYCYqvSqhuBmTKoAgaqr/qROUxD1MqZLdHiADCbSHkEfWRzRoHa879ie7xRZDoP6OB4MRs1m85bjJ1dXVw3L+fbzL62uHTh+/PixY8fuuvuefQcOoKUbxRcvX33hxdOf/cIXN6HTMrx8+XJlWDu7g0azNRoMjLIM223f99MCS5fje2ZppkWaxVl7ob21udPuNKschwJeL0mTsKcMizNSazjm6J8jeC6EIzoEBBaaMyzTQdQFFF+73S6rfLBwuIKmqOCMLyMshwkLO+d5J7j0JPynvk2T945of8wdt13HcjyD5LOgOkVeZmETKHZArnl42iZEtKRxpP7aCMKLly8tdLo//4u/4LveRz720Z2t7SzLWJhy+vOs8TP9Pvm0YqwI93ElRC9LC/Nepb55tcfnARqUFYcbTPiRXcw6TsgWUhUc2HRKCRi4UqYoCqtOhVq5swxYBPWo1pU4DZo778maiP/oMWb/5dqeLIsTLwy6rXZ7obu2snrklmO3nTi5un/frbfeeujwgbX9+13XHQ6Hr5w/98gjjz72+ONf/epXB6OhYdkr+0RvodPptNrd/nDUaDQWlhbb7SZjPxa6nX0rS4Fndzutg/v2dRqhXZWh77XDJonFU+orZgwFoy89F/ddbOwUxZalJZRShSEi9AfyModjwzeefOJrX3v0q498+eLFi4gXLXjlQqmIQJwMvGSSg1GaaY7smgASorTPAaplg1oj/KrrrbZcZHUgRaLlsHIMLUPlGLaSUuVFgWah9z3gFImZANikGcOmC/0clgEd617yvKc5/k4+q9KWW5fv5CBYnB3F5aqOoEaFyi2hxToaSarDWN5IieiM8QObTAkGEeOTSkvcwJmIo7iIJiZhWb0CF7wyKrhoWfC6oOsidDiQIzDTF7t3JHqKBGflHaP+G+JgShWg1ExH6NqsaMyMWpGlS4MCmg+RaRiOW1lu5die5XpGZSdpHiVFkhY7vSFkrAsTDQADKg3IH3y3jCO2ys7IZSUvCs+HJtXCQrfIU8c1fNct87jf286SyDTsonJxihS5w8Cx3W62gJ3jAiiPK54WyBCtYLkw0/WjJNvq7e4MoigFOyUr0OemR0MEGHxGTGumM8W+FB7HA9cLk4gWJHAPvoKektRXUPPJBLeqRn99xwlAjTnmL6BZtBifs+jn2RVBff4aAxjMUgHaY8L9QQLwvUkAuCzNvxKkrvEoczqinb7XNGDKVzcB4GlX3sfSFdZ5/FvMqjQ7kJeHZAPLaR50HIFaliGvaH6Rik41lei+ignAvO4TiKqa9SNmPRn+cuAlMvj681L6EGARFXCUDtxhx02COaKh51FPABhqJfwNxB2pey8TUYju76aNJRWUmPDAmr9Nn7KiNHBBSP2KCbuTHQCU1zRmlDaEKT2g9IXIwRArwP8hXuXcwAJ/C3Imw0F/Z3MLghBQYkGtOgga+w8ePHnytv0HDj708DvTrLh27dpzzz333Isvvnj65dMvn+kPRoPhKMmL7sLScAQBTb/RTNO02+32+33bcTEdW2aWpFESo6zkuaj0JfHy6r6tne19K6s7OzuLi4vb29utTrfZ7hZF0e/3Pc9bXV0ty/LatWtra2usxckteyEl6aKpzThstu7K8zyKIqgiwjG0tnxSQFg4l5H0Hgd8aZHnScppyXQFXWmPzEC/zE4ASiPPuOXCvhlkJOCbEN/3Xd/3ghCYH/LNYAomlfiEJ4P+CjdNzz166PDbfvjhyxcu/v5HPxJ6YKbu7Ozot/V6Gw3XWVPcdefPPdYj/Xzh4ymhUOqVvX5ndCRMUiGYvxSMR/Po9zucCciUgF8RLObFRMLABq4QjRmrs4mz4EEyIREDzgMFCrOvnUwROdmgOBJh0yr5Why95djdd99975vvP378eLPdSpP87LlXvvLoVz//+c8//cwzo9EIrOXuwkMPvaPZbuVgpfcbjcYtx492Ou0sifbvW11a7HqWudBqHT92NLCcYTRgiz0hikrJgPSPAi2+Dk54tqOeLYlP5PiZHHpRTC8yUHsCL93tn3n55a985Uuf/exnX3jhOdey9y0tGlnqUwRZlmUaA1BHBAYPHGiW0yFjbaHHWuZo9BLoUVu/6uCbg92xCroeMJhah5wKFtIgj8JfKkKxsAEnANwB4ASAZ1fmI5nak8jQMj0H0HNOHYyk+4FwxD/BVOEPTPSFcioZ8E1XOYCCCNZNfmHYVRK3ivvA8pGhayI8p1WiQh9XQ0sgc1hsA8sZlKYdMqIWKnbiEin1NoMxU2rOhy8N2UvwqZHwP9zNCWFE9udw7BA3ia4OuMKI+YVBAS8iheuX8Jz2UPYxTQdelmmZZOXuIM7B9oamhe14ILSToYEDKz/YJRsgHnhBADks33chsIY8E8yWssh2d3u7O70oSvLSAjKOOLgwYIFrBly0fc8DNwCAQ/ITkM4hsKn2PdP2hkm63R/sjLIMBAKP/C5ECCSuIeNxKESRiDW1FgNyRs+wkjMRy2VlFJwAqJK/3iWeyPFenQRA3nOGHIxFDDSwrBtx9q3fH8cQ7z1B84HOm+D0ae4HCcB3mQCQtuaMBEDItcy6DjMTANU0qO+vDP21D9d4Xyo5j226D8BEBwAJgIvHhNXehGARxR/ksEuXg0sVfF7UaqPpSGQy7CDIj6uytphKUF+FBGACT6l+0FWJxAXg5UHK/4uHVO6HoUE0oeqBiEgAxoYl24dZkGkTU4MIJExNvYfxg5qJmxRC1jaxYEzcaNFelE7e09tM+JwSiZnoAMxLAAyKyOZsQtKROgBCws33IdcIub0sKbPcdexOq91qNVjq3vfDN7/lgbe/7eF9+/ZvbG5funrlE5/81OVrV8+fP9/fTSCgQxbztuPujqJWu8sAd5iJ5rh2cTQSoi6WDV2/LDdsGNe7gd/wgyTPbMNsL3RL6S3aaLUxHOmZV6s7LwzLy8tcqmcmQJZlYRhCybER7Pa2o4gsWkm7mtnD7XZbR4CoHADydmT3BshBlmdFXqLXjYByujLNgcvMOXZeAmABKoDfpgClV6Zjh42W12i4fgBodwDXVfKMI8duC9i7eRVxPwxajeY9977p0oWLjz3+tdCHrA0zDW58mzePvUoJgIEGx6yOAVtxzegteM7ML9aDdfUDOAZ0F/Uux8xXlQDogAydZKyWeU3Okt4R0JTJjY3YdBwRgpUyb/ouiJZZlpeF77tLqytHjhxZWV1973vfd+sdt596w50LCwu9fv+pp576xCc+8YUvf+XSpY2g2brr7rvf+uAD7XZ7c3PdcezDRw522y3LKPevrbaCYLg7OHRg7fjhW0zQwZE8pRTue5ijjCRL4jhut7ry0OqFgGZyXCVKBnjeA2MbWO48t6SQ6Gh7+2tfe+zjH//4Y1/5YtOx0tHINk3kJw3ARdIEil5oBRT4UodqzPzYZUVuOgB/jq+S2hKmLc8z5lJNlcVj6JoOYqQWNEwAcOjQ/tchQDyvTicASn53YiUFfH9WAtBstpSfw0RxV4cSMdgMsxCNEYVompn517gRjDqoZsnj0UC5fMVE3C+iybKmqwq1PfxMUaGJAj9mZUzyQBAQSQ/YfewLsypJY+HXNIA5DDFNkG2UTC2M83S/PDoZqPShX59bkFGmSrk6fSMLQ9O2Kxc2f65h2FlRIQED7seNYfudlsTr4H5sVeQL7YZBs1cOcoUdBCjqNxoNlOVwYFmRQW05SZKdnZ1er2dXsPSF1qxrEf6t02o1eEUYJfFwBBVm7N/2KroLIMQ7dmXYgzjb2R3tJkUJpgLs4Rl9oGIbPQGQVT+pvooZXocGqQGDBAB9D2k8MiE8INZoLb38DhMAUWzQEP+gdI8nAGKPvIJrg0wkDxo2eux9eQj6RDlzCpt+XGf/+gcJwKuUAKj3x7TtZQQ3cR1mrq8YMPJ8bzABKMaRLXoCUD8Y9XRZwqSboMqiLSCEMktQD0kIcoxMA84xB81jtBumz06McPErQwS4330CoF83rZtBmFBt46uNio7sBvCZyj/TCLtqmYQEqq26ASLV4fCLW4dTCQA/d/xPPdQXxykF14m7JpQWZp64rgI0dhazsp3pBEDrDPCb9LQqEjCG8w0+j6KP4TvBzs6OZRhLSwuB548G/TIvwjCMo+gNd931wANvXVpePXPu/GOPPfb8Cy/2doeu723t9KK4XOiGQaMFWqZp7o6iTncxgfS4A+woWsZOnudQWLesLEssy2k0Gp7nSQA33KOgPp3nd95555UrV3q93s7Ozm233TYcRmVlei7MmaLRqL+767lud2FhNBymWQZ5FNuOo6jX7/uet7jYbQTezs727u7Acexms2XDGgZoeTKSxzUrijyDJxt0TjzPJR9kpIfgpKVZnme8moPPNhsOY8y8j/MSAKcowLUnfD8uhO0GYdNtBAa8dD0naFqOLdxDDaitw/lo1hTKS9RwOLzjjjtgDbu+blnW7u5u4Pm6zcV1t3md4VclAaj7jVMdgAm2QN0BIIXHecc58aVmWTl43urpdObh6QdJgaYGylbNBE22Vf8hGo6mOwNcfeDIQCcPwJJtODJAu8QGoZIshutcuzUajZb3rR4/fvyuu+584K1vedOb3nTgwAHH8T760U9+/BOf/OQnP1mZ5dvf/vYHHniz6ZgbG9dWlhbuv/e+1eXFZtg4cvhwWRbRYLiyvNh0PVTewYqh7ix1L/Myx3xFB0odD5rB6fiFZKTIAWQRiZTSoemaZVZV2r5vVPmVS5fOn335Dz/y++defuni+QuAWwSQNoLYO+R4qjJLSeuMC8aEeLGsnH1ONHHziQRAXd4xdmztxc5wJSBDJhIA/gzkI4GMsKEplxtpVXACAHqMdAJmCJBuwTldR2Pz5mnOD8RfpL33xB8q0r9KAAB/gmLN2DBQuEH1V1rJ2Shz+C3gosgEQCpK03gTZRraAz8vdEqCzUUqn3Qvc0jUkLYPFdsA5kHgjLkKMSoyJRclDBbKhDaDA1RSQdqDyh5b5UKSYkGDnKjYWQIVB/YMloAZeLU3G4YLCJBvWUCH5RlIT3lpuE4Am/MEItAVqaxSC9XycBgAHw2jaDQY5GXZbbdbnU4zDEtQ2Ef9fh8Qf6uKo3Q4HAYuMP3EjCqbjWBhobPQgfN6URQj4EuHowguAZbr+l7owCEDlywrzGGc9gbpMMsLw7NcF3GFHITS/YAvaF1QE+49lFgim1R3WYM8EK1RXDFOGkVuPz35fIcJgKbzoz4to4haBUjGdjxoZlRMOYCYDvHJaGmsjfCDBOD7OwEAyfIGEwCaMrRxpWn+yARgEgK0RwKgjkclAJRFk6inCP0ZlEn2ugIpKIR05NnZZTEGAdKuDyiK+uUSH6huOgFgfcwbSwD0EF+cJL2UTDijEjtr3Yg/JNPA+p+yTYCER9Af7TESpG74whxhPemiIEAkAHXcIJrbfPtEB4cXMPFXsx7wiW0aIcY/cAIgkgHtgt9IAjB2qWrteb0bYKRx4tpOgBpSBYUWw4BS4eLij73nvZtbO6fPnH3u+RcuXr6aJBn5vxS255K6dtntdgeDwSCKDx48WFZmq9U6c/bcwYOH0yLvLiwePnz42rVrhw4dGvZ6cRwHQbC4uJgV5ZUrVwaDgedhdWm0mkePHgVcJ2x+7WtfK8uy22rnWQIJdsve2N4q0qy90A1cb5TE/e2dwqjY2zWN4v5w4Dvu0tJSnAzTNC5AZRCetexWu7GxRYZOLseWaDrDh8nJkpy9jvMiTRMYZQLy4JhFjpFIPpvaqza85w3LsZtolB7YXhDIIhdV14QsjFvZlhM0XN+z/YblOCUAAxaMfeC7OTtCj+N4//79u7u7Bw4cOHv2bJqm7XY7T1NhKnGjG+1+FmboVUkACBJH45ZTGvm6ByeBBXmvK9JQf2+eK+1d/bJPd9j47Ynroz4/Ibowsd5NJwCe5yUJSu+M/xF+z1kaOG6WQDzRC8A5GQEyXji+57gIJvii+L5/6NChBx544I1vfONP/8R/lWXZ888//+GPfuTTn/2M5zk//lM/+RM/8f7BoP/Nr399ZWXlobe+xafA7sjBQ51mK9rdboY+u1XEo1GeZ0hcgyBPU7hUUKlBskexCSi1nAoUMjGJYz8k2gDpnEFRpiiyaORW5eNfffSzn/nU888/P+z3CDQCnRnPscsyt8kFEoFwJs4xyTNyDNCfBXEB1WSox+WsWiZvCuUG9E+G7guLK5qEWRXH84jqQyTgsjAzo4QxmlElyMxZ2V3KUstxMp0KKsy9fn9lC1EE+rq0wITYCyticesgHg31negtAlHJ1f6KBNMyVlRj5V/MjXReQimOgCjklieaIRyeqg4AJwCmUTgmXG+BvwJqH5fLd1zHtaqiKHOgkri0b1mIIcuyRNGdRKI4TeUOJzzs6LbIAj9ri+KrCQKHp0MUxR3TBcW6CL3M8xDuQ4MBqlGU8JlumqYlbOnglAz/vkZjAYK6reFwF9V7gPJzOEQWORyEPYA8XT/IMjgqsgJbUZlpmjaDBjERcIF9z2o1wsADW6+oyiQrIszkcZQUlu0FjQ4cAD2sy1lu7MZpf5RFaVHCJdqn1YqnmmoiAVC+Q0LtRyQAXFCgPoA0HkHhz0eBgFlkPGZUq2eipP7dJgBCIVwFasxEnlg1ZAIwPc/qCcDY+3UlUnQ2rzeb/yABeN0gQAyhmZkAzAuObzYByAHI2wsCpHMAGMcO9ReBC9Il/zEWSQKOi82iSGyioj/jEqnEQ0tdbjoBYOm3aXMMNdVql1r8wObqUwmAUebCh0HvYMC/kEQDccaWdsuEk4A21CWFY2ygakmPTAxoD1j2AOEQTTkwuASHTJgiC+tfcdd08695alT6+/r5Kg7ARAdAEjkmIUCM2RWHP7b/MegRg1atysiSfLG7UObpxsaG59i33nrrkUOHbMt9/PHHC8PcHQw3tnbSrPLD0HX8HLEtEr84jhcWFwf9YVGVp06dGsVRvzd45zvf6TeanU7n2eeef+aZZ972tretrq7ubG1HwyEm2arq9Xrrm1u2bS8vra5vbd92222265w/f74ysFQAjuzYS61WmaWj0YiNmXzfz/N8OBySZw17zkJRriiKZrO5uNQ9f/6c64IlLCqyMRSmXdeNokgJF/IkyZ3xQhZ7aq9HGQrMvC/6cJs5OMeuqlH6wKMgAYBwouuZEJ1wcsNoLy5Znm95vmnbmewAGLY1zwcjiqITJ070er3FxcWnn37aNM1Op5Nlme+6MzkAcyv9Rv7adgBKcSFurB19nQR4+gNc/rzB8zVB68gmZFv55yLNdH5FrWLET/18UjJ7DvA7eV6GrjcaDLM0h0amUVHyCVBBFA/R2iK9daQNcdxot9dW9504fPSB++7/qT/1M3ffc9e3n3/h3/37/++nPvWpjc3ND/zKX/jFX/zFdrP1rW99q91qvPGNb+w0W3kcr60soVwKTSTW7AK0oqhKx/VUyKHwjZVpgXNez89MtOUFibRx4ijPUyQYngc35zgxs8JuN43KOP31Jz/+sY985Stf6u3sNAKnzIF+8RwbEXlZxvHILCvXc0pWFp6CAInwWhPh5U0lAAr8Iyv3AvdPL1Qgo1TLJRnZvISrTFVSw6HE1RaLJil5sgoQ1110B+6JMugYOEfW+5HRjEN9lMGF7v9aU3ipA6A/42q3dYwnRQUocWI3LpImYxaBlgAwaoUTAHHH2LWGQlWH8wFKACCNYFfkJWE5pOvvO67rWKHvkWc56E85ZQJKsoko3EIJh3MAy7JYllcqpDFDlmRAWZaXmtp1bmNmnh37nuV5AWolKADaJFIKMpVhYMzHMSzVPc9bWOh0Om3DMsHkIj9ydF0KY4htBD3csOW6fpLloyGwmmkBz7gGqGQ+on4HtnSWXYFmkaaVYWVFFafpcJQP46w04AXv+36jCdZZVtqjtBglWYQLY1e2x9p6ookE6lFJZVbysKNbrNIqoQ7CYp+ssKTUaCkBwIiig2ebP+V28ip3ACY6u/MSAAop5somTs+q7MQ0nQDMn3l/kAC8biRgqtMio51Z4p0ZHAuxGhn6c+1Z+/4bTQC4EiYxcOKrkZFi1lFlldorl4vrUlWTTXApAai8iQVm7JhZDFe/R69SAjCzHK4XsOszpRtQAOYx9vRxEbcAfAk5jqiaCU0KiqS5E6KJB0+8Kt9f1qPQdFUERIQXCajpF8BFYvaHoiMZbOX8vNcJALmpV0wam95qVb6JB0dLLPUOwLwEYFYHgKYXnTshR5dlGK7tJFGcp3G32z11+x379u27ePHiM888SxjYMiMViKSoMrDybNOxsyxpdaDnc+TY0eHuqNfvLy0tPfvss29845vuuueNzzzzzKFDh0zLvnjx4okTJx577LH7772v19u9fPnyxtYmyMFhs9XqeIHf6++eOHHipTOvRFE0GEUnT54cDqID+5ZCq+pvrSdJAqGJLNvZ2UHUSypyvMLx8gbP4Far2WxcuHTedky2fS2KghnAXLLic1SBvoAKWDYjRPQwgpfP6ZtCuk+S/j4+gGdOaFZVkkweP0jwTq5sy3SDyrYXlldM5AOeYVoZy1yagADNC9wbjcbx48evXr26vLz89NNPQ1Pe8wb9XVTfbjwBQO0rnwkxepUSAEvMbjeWANBjMPsDSs5v8v0pjtPe650ofOigPnplDwG9R8Gf5O+d9EOmognX2uELzTMnBNLBsKXYkef9soAYek5CyBh7cTykh55VFQojz0Lb9m231Wm/+S33/7lf+uUffufDz59+8cMf/chv/MZv+L7/Mz/107/0S7+0f3XfcDhcWFg4fGBfM/CMPCEODYV0NF2URpUnKUbi2EbevVZDKyAKuRj4GOzswJW40eSrmCUJ8mGHgrw0LtKM5ILzl19+6T9/7OOf+fQnwyBAQyCNUUe27SyJq6K0YRpGXVNNBlQ0uTk+lu/Xz4UmW8zxLjdwRG/ZppBUGDnxI0lirzIBICUKMgWDmplIADBmTOI2zOoUqUBopoOv6wo/igmoD2sJ6P6vvDeo+mgDTA0z5ZuhcgZGTwUu4Obk+I7/4cwCvXExb9QJAFeBsBjAlx21fLjas0oS6mml6xgBolLoh3H074CR1bBQzobEZxQh8uZjZt8J0jUQcHYe8OgAEOhfJ8AQF6KpnBDq9KlKQif1PcN1UWKnUMKGpR59xkLhvkDqkeFLXRfJYaPditMkiZD3EjIKAqxpkjsO7O98P3QcL0nzIdD9EAJuBlA+boS+51su7r5BCUBclEac5VFSJlmVllZZ2WWFydAi5fHS8rLKirMyQVTiFCxlhFm1HE8AoKpX4WKySVh9y3Q/UC4acgJg2CSJSzrCDKma0AWuZxLebjYBUFnvxLzFKkDTCYCat8cHXL0wTEZOCoqg9St/oAL0OiYAvN4I0jm33rRKLYeAMxOAiS8S5eTx+/7dJwB6GoBdu3W/mDoDHOQyiRZuAKouTtqBkAnlvU6MaD0B4NlNtP6rmyABUzNPsFYnPs9W3jLG5Wo9sRRQyZ4BBJJ2bOJRVxh9siqpdQBUH6AqoAgmL85YDqA25S7M36J/qUr8ZCWLQAJCYRgrc5KiEmmQuwrhcsR9VH+2dwKgzlcN/wkSsOp+1J8kgi+dDFG1tX1PIFPrXaISCrDv8sLKysq+YX90+vTp3s5uoxnkebq7m1aV0Wp5pu2WBTxlV9f2FaaxuLwEdqvnPv/8i71+/6677rpw+crBgwcXl5be/e4f/eQnP3nx/IV77rnnlVdeOXr06HAY9fv9s6+c39jY6C4tHjp0KI7TV86fO3josGmaxDNLbr/99q2dnms7B9ZWv/7VLx7ctxIE4dbW5vb2jmWZZGtfDgbDIPBt28nzrKoMCOoEoePYSRZnOZoDvg+dijzHDlmzT7VcalgX7g0HcFSBI2Iic/5m3hTi6XI4PwlxYRL1ROUYK1Oeug66+OiAg0Bnu2HDCYNGe5EaAm4J6VWGJTmmbc3/auPOO+/c2tpaXl5+7LHHPA8yfFmSzksAZjttk9GwJPDf+PzJkAbucRFZWZJtp0Jl42YTAG7Nz1Q9qmF42is/6ntnI2OLi2r3j79OqHyo55psUerFVCWKzFdRK6yMEu2ygKGDVQHjB500ap/mVU6yob5ZFb3BbjIaoiuYp+kwquIoBKy/TLJ4eXX1ne/6kV/4hV94+OG3vfDCC7/xG7/xkY985NQdt33gAx946KGHQKb0nG7DX1paMCx748KFJ7/++KVLF7qt9v4Da6vLK9D1p2EQIrQPwA91XMMJKL8hly9OFng2trwiSzNiKpuGlVFjxLV8qEzbJICW5VTmqfob1y5fOP/bv/Vbly++snH1immUIbpMODvHsUZJZNgVatZyjmIfAFbXZXl4/kZxnfNiXAC0ro6xBA2TNdXVhjYA2TESMYZ2bjmGBdQ+30/uUatOAnF16jEs4x8Bwp8w7iV8PJBaOpGDzb+olIC+rQroJxbo8TGGdUf5vSotUZTqOaklnXecBWrJteW8/PO6KlNWORvTOsDgA+FJ5uslNDQdq+E5rkdO0g76TraNir4wuMiTaIBGKI9G0xG0BM93yGQa2pqmaWRxwk7bQtQITQOovoIAQH7V3CwVukZF2moYrkO2gKWZp+hhsE1ZHIPcEriiTE7mA6h0JXlCbQd8YDSKy8psNputVru3s5umuWmiZ1uV5jCKsiyzbbsZNjywnyBL6vl24LlkA18UpTGMk1GU5sitwtywR8NkFCc7/YHteCbUSZ2stDKU7+2SG0esIkUQIIJO0VA3HAO0dResBmoBIjUwoCakZipWVeI5uiCHFaUjx5dC0QD0KUVsd91+YnxmlINvDHutV0brSsPMmXHiB609NBbzjScAmrJ4NZmhTsyGk50E/XdTH7txIzD90ug/jF+HepvXUr9uJvBdfn5+IjRnG6M3XT+vGAvUqIQssLAaVEO9L3B4HCrvNb8YmlMshLxuMIDWSecT20Qxm0NfIu/m6iAFIpPKM0QZYhkc4UnJf0vkYA7IxwqfEwFHvWDLcGPiOCdIsXLwW6WFKpNSu+ed1Zh6+guOHLju7mD5oLbp+PVUsm4TmyAnyKKvmMTHyorqZonJfXY3gITTxitw+BVX+iWkhPE/CD3TFKBylbCVtfewfoN0GaKaQ8J3gZHoupqTnqUIgUttapNVzVp+UV4CAYPhCEa7C5Zp5Z6DmX3f6pFzr1wd9DPH8q9tXWmg/ITipu8ZnmXcfcepbnuhyKq0KKOqWlxbO332rNdo9kfR8uq+7vLSMEGq8P73v/+Zp5/d3tz0Xe/yhYsH9u/zAv/suQvbvZ3Nzc2qqpaXlzudznAQXVm/duDAAc+D+GC32/U8b3c4ypJ0/crlhm/nWZxnSM88N3A92zRsqJNnZZYnRV45rhX4jSD0YFlvQC0UyNEgYEB2FEXzyvnyMs9+YPZ48Gdi2XWMu5KnNKsidK0yz70gGMRJZ2l1Y6cXtrrNbhdkAMe1Pdd0XK4Xcn96HvY9TdMgCB566KEnnnhie3sbyVIMugWw4LM2HQOtvw/VI8cMPdEe8TzYUaGDX82fPeis9JSHBWRnvD+/vDRvvlIVk4mEat7rvPsy935dj/Q8Na8aN7WxKhrKE3Lq53kVxQJUdfG7Mod+Tp5mVZENdnr9ra0iTQEZKmFqceL4sbvuvON/+B9+7ejhI1/68hf+8a//+lcffeLP/tmf+/t///+aRMNW4B0/dtSwrd31az/6rneaZXHnbbdCKqcomiGiwU6zdejQodXVVWh1LXS6+1ebi93FxcWw0bI913A9w4OcSxrHbtAwDSsBhDy3XRcik8gYfKDKKdyBrxPJKhtlOdi4+q0nH//8pz75zDefTAb90EVQGscjw/MMiMpTSZgr2XmZQbQeak5YqlhEwhZWiVXBWp/SUJIE5oTcDRVBaiYAbXGKiBZBcw1nwH2H4o0wQRNzJEc6+AixzfVGHHdrgCSSRX1Ji0WkLRzK8DHaSe0SLZSjuB7MTTbF9WJ7A5EBGgUibipOy+YLb4VPzsdILajFqjcbRfmfdWY4atfXkRLK/Y5lwayN9P5txwpseLA4gMqIsIEJJzgP6hqUrECVp2ZVuOQFwIfnOE6zGTYaDWZ2JUkyGAxIhsGyTaco0O7AJaXLGAReq9VihFjgQHTHpX1RgiT6pdwhKXNMcyQMiw9AQNNKizyFbZ7rp6DEx3kJBBGjrUBlRogOFzuqs2DAV1Xh4fD8ZiN08RQI3kKOm26AeF7ZBeqNTmH5L53bKE2PSyRAuEnkM89vDNwVHSQufdIzZ1MiL34L8BW+Hc9lISplspBhkPxaXdfWOzx84kozSrSVlBMwzy71T2OVV23SsWYXKuYmAHIGrScmTXBQ/kpLEugP9ObO3t/yKiYAMyEZ49fh9U8AbnrB+O4SgPGSrTpg8b41lQDowIPpnbNTrJLW+W4SgJlGJHqLVomRyfdnQ0qUw7F+8PMqjnskABMdrbEEYOwOi5AXj6KOeOF4hVWAxo9EnMs4Caz+Q/ExjSoz965VE+c1MfinWwRyx1ITiRIAZunkOWsT1rkcQ4BUwj8zAZDVfc1IjnY3cRPnPxeMh5x8T52BfEukJaZZBo1qOBz67sLlS1tRvwzDVjwaLHWbvpMV2eDuO2998M33v/LCGbuyrl7abC+tGI3w7JWLCytrF65cGaTpsZO3bu2O7rz7rrX9hxzH+YOPffzELbdcu3K14QfHjx755lPfKkzrzCtn8zyHXHqzub6+nqbp4uJiVVU7OztHjhzp9/sMcH/55Zfbzcbm+jXbQv2Vvb2kcX3BXEzGbnLlhudoDmoB7i8KlgdVs/mrlQBc9/P1w2iUgYNcNC0Kx/VLy01Ko7KdxdV9BQF+AAHiQEFmlSSyMSO1aAThkWNHDx889OnPfmZ7c+vIsaNFBosDcYISoMJgFUKbgXegql4AqZAKBfP/uIyXswup46RpKtTZZ01CewTuM96/3vWZuZ95tfzv/n5p0hszPj9rOjVubqPbNz2vKmi4qiVjBJaV7zqD/m4yipJ4tLO1mez2DBNeYGHg/eVf/Ut/8S9+YLjb/8M//MTv/u6HPM/7f/zP/+juN9zxhc9/9sfe/e5XXnrhr/x3H1zqNJ9/5plW4AfweIqrNEebK0kHA2N52b/t1B1m6Da6zdX9awcOHt6//8C+g4fW9h/sLC/ajSbNbpZpO+gS0AHujga+1+YqtsR4oGhfFeAxG0W6efblz33qk5/55H8+9/KLrcBfXl661ttBrRSaWlYcRckoolizmeQZT8noaBE6g2M1BMIAt3FhhTHueOXeLDTopToQ0d0o1NbujrqqE5YC8n4hTlYVHb7soj9A1X3FqKF7IZs20hVYSPoyhpB+S62IkomVAtXjCejgRLVIQozEHdcDMH2bOH59wMu8AiErmTqDP2HDoA27tS3Td+wQdtGuS/CnKkcIPhrFOEUoNQEdhCic0oosiQDpIu07NKIspEyOB7c3POlZGcVDQumgFJTnyCIc13IsiCJQ8dvzYVNYGXmGEgvOneN3sbQxKStLyywrStxgluAuQw8KZ5bjekFouUFeosdummavt0v4GjCYHduCvQOuR+kEPurxhul5jg8RNiGxGgQBFkTDLBDlm3FeJEkWZdbVXplXnn5tRaI93tupe/xOzXIU7goCaajTf2s+bY6EtB5X6n1eMviu8VMs9j8PArRHAnC9GWdGAjD2pkwA1C75Z9UB0Gv/e0f/r2ICMDP42CMBmBe4/4lJANTUo2Ak2jHLtJKGo1pl9eu2RwKg1HX2uLk3ngBMLFeM8h8jzfB+xP+OO8uOQ7z0ITEvAVAytZPjcFYCUJlWIfXR1EbXl549MedrcP9xcvPMHyY2SX6dDK91UxV5Xrz/yVvD/1QqIhOv43g8Wk9oD2ADy06GcEwQZzUDQqauvPiVflM1+Tn9qOadr83C2mMnQAvzWGagQMOF37A2NzfjYZkMiyyt2mFnqdNu+JZtJLfffvTBN99z8tgtZ146+6lPfGZlcX/puCOjevHCKweO3HL6zJl9Bw+du3T5jrvfdMvJE/fd/5YPf/jDu70+gA+7gzfccWp7Y30URxcvXRklcRiGy8vLZVlubW2VZdnpdEzTXF1dvXTpUqvViqLo8uXL+/fv397eBK/OFRINusNorbwhqb367KfjOBVV4DVNAMTOtLvDTjRmkTYa4e5o1F5Y6Q9HdqOZ5MXaocOVDfAPBjyhBdRxcocBKxfqx2zUhtc8zRqtZjQcrW9uDHcHK/tWHQplwjAUaArHRnXPRq3QtK3QD/hvFTyJz3RjY2N7e5vKfgGHPtw+mt8BeM0TgJuI/l/VBGBOYc54VRIA/kHZeKmbG/oBcNR5nsZRf2fr6pVLg81Noyr27Vu9duXqT/zkj/2Nv/bXHnrrW5966pu//du/vbF++Vf/0gfe+Y6HraLwPfe/+dO/ePn82T/z8z+XRsPPfvITsHqKR7Zhthpt13X7/f7W1nC5C4y7Hwbt7gLZrHYWV1YXlpdO3XX3gSNHjhw9GnQXyCbMNoLQ8D1yCSjp/+iIHRcZgmlmw123GcLIrrf13NNPPfKVL331S1987rlnV5cXPQ++4Mi0XXeh3TErg4S8PCFsSCqXIowxUG+G9B3RzPQEoCKTAaHlUwJBBEoFj0aeeEUMJyXzZzkqkmsW0ybFb+lvRABH7+h3nxODmhTL7lc8ZUPSkvix9Dki0fL3WNDUV2u6GvaQC6sPr+6wKf6oDjTSfQYYK8TcA5TVs5wlPomhAoQeQfpK17FdywRABiRg+hauVTsuz2yE4EIaQDAqIvhCf8eB1y+lE2xCjGOA0jfkjxFfo6Zv5kUKyCsEVR1C4ODWgCAS+B7gPYTCAjK+YJKGaZqgVOXoY4N7zHSJEsFDp4kjR53JhMhBaVhxkkYROoq4wnAatQPfDTwYDePyUBnPMpHeuPSmgFxChc+ybBc7MZ1RmvX7g94ojzIvJxrhBAl7IgRVT7TlWvXTJ7QcWOeDhoe4M0LkRyQAU4s43yk9AVDP71zXnr236bE7U7ZMV1LXQnw+SQ32o8kE8Yw1MzSc3rl4CF6NbTofmPhh5ue/99u87/3OFvh5+1G5o5ZEzn5fWLZPvz/reIS683ROePObItXpzw9+oclKilxYYE5EEEwpqLZOT8eTcyRQBLRXJLD6t+xxCgiayZdM2z1F+QiHLIX1JzAM/1pzibqRrxDGTzwpiEVGTNa8YEyciz0GktESLensOHEpxjd+h9p3GhZ5zNF5zjZ+RvVYsiW0ad5jPrHNeF+OWLVKqSJWaZi7w2QwSke7ZbfRbIdeK/DXljpVPmw3mn/5A3/+icceabfCl188vbi42Gg1R0V56dIFw7S3trehSpnnjUajS9vm+sbFixcPHTj49Le+df+992V5cv7ihbW1tdFo1Gi3UDKkDfZGhK5eWVnZ3d1dXFzc3Nxk29SNjY1WC2YBfINALUuSsiwdx0HwqqGzlHAbr7iqwqcGs9aFn3GBbvS67blNKANKVY0qT4uyBHjJsEzHDzC+bdewnBzGedTadyzHsFGtp3yGuxy0jNsAWsC/E2TPLEmGUXT56pVDR44Ya7DTDKnvAS8wLc7Qzar0EEqMJXKWjaJoOIS4IUteiKH1Ks2HN7vtURGb9wd77+dm35/64dVZp1TBZcIyNk5BZw8azUartbi4uO/A/p2N9Z2trcuvnFk9sP8P/uAPn3zyyb/2V/7qX/zAL/+Df/APf/M3/+U//qf/fGVl6c7b7/BMo9lu/cKf+dP/3d/8G0YQ/PV/+A+/9rGPfvzDH3nmmWc2rq1nWREE3r593WoUxYN0sJUO1vsbPoQg293FpaWll775bBCGS6srtxw/cerUqWPHjiETcE2j2zACz/Q8ihqhbVTFUZYXXrtbRFGaJGF34e6H33n3/Q+cuPONX/zsZ7765c9Zhu2FgeOFeZoNRrFPvgdZAqo9Xz5KJvCzhYorfhblHVrrxMc4RKPZlZc5wMBZLpkCdaQSJuAi3NmybZcQOISpptmafsv+csSxVnO4/IFRKGqFJWb2GE+Ss24Gaqm6L3qJrNUMnE41jISanJ4A0HM1+74rgaCxoI5mLX7iWEGfQX3UH66Y3YvHFMtfASsxw2z4HoCOeZplABMR5Ad7DsOGKk4LwjR5LLo2kgrgZmzgNTFhFmkKG7XSTuHuDN8AAvbQyKxGJKSGSQhnZOYQdUBj0LHtvDDYXxH8BG4F2HZlstwzOCPInKjiAJYgmL5uZVpREg+jpKqM4Sju9/tLC4tlhZQD3AWyMgALpiSNf/TEQIy2KgMKzbZRWs5gGPG+Hdc2XTspzKR0UlgP1xdWXd4JURz9oR57RwwDvtF1UU8949OTgBo5E7dPfbvguNw4eRQSIHP2q/+g/sm6yNMdAP0kxwIRORJnBpHfZdT4g+0GNz2Un8hKp99n0JYec183MXu17uP0QFdkOCr0i2mUHhE+PGURoPraYldqMM9rX6htmqQIdh9TdlRjSz3nRNiv/0RoeHH6y0G/kLYggITIy6dzgPncDz7H8SOs1+nJAidYUBIYql9AXjb02yabGHxBqGQjqGjCC7UG+Kk05nrbzARbnfBY2j9vFzOuA30WShW0WMpLCMm7strq9eOktCyj0252w6aZZU4xtMrkp977/pZrdpvBt5584vTpFxaW9rcWuxdeOhMnSVZVTlG0up3nX3r5537xT5+7AAbwl774iGPZLz7//NLS0tra6pOPP95ut597DlFIFA2LImu3245jZVnpef7KylKWJaPRALiCeGQYpe8HplmFYVikKXHEgPmBM7xtM8WN9T11CT8OoJWah0psuOA3DxL2Wm+lAZBss9WJs6zRaG3u9sPOouU5eZLYjuuFgRsGAOQgCkAh3wMjk4BtFpHOZR+gKsqFqhyNRoePHgEuIAwcy97Z2WEZxOmhAmiQ7ILz480DbmXf6sbGBlMj+DHh+hYYi6/f9nqtU6/d9+pxglYQMGzLIZsV0/KchtdaWF1eWVkZ9numbW1du+r4YRTn/5f/8e8//vjj/5//9//yN/7G3zn90guf/tzn3/Lgg4Zt+WFzOIox//V2jKp8y7t/9C3v+JHLL7/8ta997eWXXz537twrL7402h1aphG6hu/BiWnQH/Y3h5fPXrA9e2VlpXdt+dxzL372Y3+wuLj4hje84cSpW2+993a36TfaXaMRAhpkQ5nKCxpGmtieFwY+026NZucdP/bjb337D//u75x87JEvnnnp9GK3u7C0vLO51R8OGoEvoZil4HDTbEf0I8yCUF22DNEGpYgMo1sLqyvIS4NKXFLYTXwnzPegcLI5PQYwg0Br5olceqhwqsFs9DycIVgUxpE0J4a9zW6QtK7RI2aBqKPqqsQmqkpYEdRSVGoFEIIZZDPFCxUvg5SZ1F5h6r5ztVw69TKWm48cKwQ0/nEIJpJ9XAPYf5mWEYYB3M+IEk1wKUGS7vd3gLenLMJxfGB2aEvSjEQhIOlv2ygiMHK3LBNS+y8MC79Ai5C0aeHZXfWRtnFMC3k8O8+MnXRYkth/UaI14fu2B8CXSxbAFTwkMDkhJWGJ/dJwbK/hum5h2kUV5QUcM9rtNiiFCJdxXqZZ5OT7nhZ50GqhW2BB5cmE1RsLo5e54SRZHgNIVlpuWZpWktulCcKJ6vnRWorKH6+t0809fACXQKzjOa3pLJJATAAi4pKLEa/IJJVEC6Eo1FESzEs2Vzv5PprIHWnQjotnT3639i/tp8lO/cyacb2NB1X0g/7LuSG+/s89mgDVqwetmQ4BJ5oyN7L/13rG/x7sX7uV+jfOeB8UlNntgtnHyaS3atZ9/A6gU3ohqm4CaKNR/5hMDAT2ps5e5Mcmbv0eI0s/homfJ/ZjkqoSqfyor+JCO0oj3P5nkU8RxlaFCdPKsWK8auHtcSkmOgDar2pkoRA/5Xs2fvD64J94BYVKK0GNZwXqjvPe9kqcpq+VuDuz/mYv3foZkIkZTSfob6RplKW7/dQLnA4cdd3QtYo4zofZkYOrP/sT7/ud3/n3b7rv3n/zv/3vjuNsbm8dPX77xavX7Gaj7QelYQwH0a0nb0/i7Pbbb9/e2Dr7ysuj0WhpaenUqdufe+65NE1KWG2lnYUFPwzLshwOh5ZlNRoQe2axzna7/eKLL7ZaLc/ztra2Dh8+vLO1CZEIqc7E58ga2Er+H6B54rwyTIj9AfTK9zQ28rXoAOiptVY3wvdmOfhtw1HccIIoTsMFx7Sd/QdXTd/1Ah88YJvDdIxJ1ySVElKmNwFcJRZeBTWPqxvrO/1eXpWNVnN3NAQJ0HdNqizK1mI9FIN2U0dQ8LFZlRFY6J/oCNfXtzw0s3e91/G82h2A73JenbfpC6LCquEuuyA4ovabF65Turbf6HQbzeZtp+745hNPfOPJr/d2dvatrX32c1/6qZ/5uf/l//U//eVf/eDf+tt//dd+7deMNG512lv93d7OVvfwIaOqovOv5Gm2//Chn7nlmOH75WD0ykunn/jSoxdfOfvM08++/NKL/X7puka37UMDtyi2drbXNzfwXIfN3tb6hVderv7IWFjrHrvt6L0PvOUNd71p+eARo9FEuGllyTDxl5YME+llQRbZnhe0l1d/+Vd/9cTJWz78u7/3zFNP72wP2q1Go9mKRsNGEBI6lBAXYs6hAlNBnBaJp4QWJqD+1G3QNtG7My0Lftkk0MhhG0VlVYHCOIfXXCMS7wtr4RlP38zFjtY7nhbGUPsqT2A4ChcUIHqQlawaNH5bZXJDJTMNf4hViSwIa8yPjgjlPXDhn+cxypCgw8G/RMPCMqlYj2gV1XqXnm6YlydpChEn4peDo8x7K6oyK8oM/rykwgmJn4yUqWwSH0V9nbD7lVHlRmlmWZFlle+Xjum4Tij9nW2HkE4F1YDyssrKKi8M3AvbNtOiMG3XBhAfDjrkPI0mPYXjBXypLQt1fR+NhCIyTTMA4seCTzDOwDLh6ZaSELIZx5FnBKQjBEcJ2zccy82hpmsnEAJK4fhm4QxLsDMAGlPVLb3FOj2rT8Qt4yQB2B/yCOQdiaofi/pKpvN0k18HlwrT+vEJRft66zoJwMTarYya9XOjH8ZmZEKA8Inp41uLBKq509nUnl/NWX7e3jj3/S9qu6ny/x7vX/dbJn74jo9zLITVotWJX9XRuQxVybGPsxk5p9dwptlfKh0bOdnQOwmy8aqyJnJ7QdeYC0h6BIyqCZVdJqT9K8xZlYm5j9+tf5g5Dmla4EBfy3bGDn0iAbBt8mdUpyA3UhXgwEtWD6grwc5tdFnRCleCvzTdiF3VGvwMCNtzm4AA8eymZ1B7J96z+gzcu6jnGRZ5ADKE1Hvazc7a0lI1HFTpyDGS0DF++K33VtFgsRU8881vWhVcaRfXDr/w8mlm+y0sdK9tbvpB47433//c8y++4+StX/zSl2H3G3p33/2GsiwvXbq0tNA989LLx44di9O00Wjked7r9RCnep5JIuWLi4uXLlw4uH//1atXTdNcW109d/bs4uICM/NEZU4uq0VRsK4/U2CVoh/LfY4X7QSI03iNt4myjiAhGIYLcp2Hdc2stgd9VH9ts9Ftrx5Y4+ofWu9lkVONyQC3gSugVE6EhCBQdGifG9Xm9lZpGnGamI49iiPf9QC9oCvAD4vqBovbi3KYiJh4QxpNcvKcPgG7S5c0z3NFpn+9tj9hTQC9B6VnWQCEoVwNeFdmlHGeOQHUWtKyfOjhh9/61gf/4MMfOf3cc+1W8/z5i3/z7/zab//v/+rP/bk/9/u/95Gf/9k/9UNvf/if/ZN/7AeNdHPrxeef+xf//J9lSfrBD37w/oceKqLI8r3jP/TQ8be93UiT6Or6iy88/9wz33766ae//uTjzzy/3mwYrm00fNv2jLKIh0UZ+H7Ta1y6eH792qWnnvxWs7uwdujoG+655943P3j0tjt8zzcGu0ZlV7Zpe77dCKnOUhqm/cPv/6kTx2///d/90Kf/6FMbO9sLrebi0nIcjUrSueSCEYsBUoSOqZgibllJoSmfp81MFM75keE6PfmlSiAEfRRYOcgoE5+FAkLxPkJRedMmVrSJShZDgFiZjRMAIOSRVnAlCMgcoc8DJBL+pEDHsQAjQj1AVAnjZSgvACUlUoNgGsizkPQvmfyJXrFYUUwcBDmTEP8L/0ZMnRckrIryfYDivod0Ar+guju+07E9JCi251IKY+VFBXGpgrKzFAqbOKMC0p1xik4pqRSZNgSICfKegxJdVakdpzAJBtMDdzPNUovK9raN5o1lQ/IV6oOUDFQZMoe0MNpNwBfp1FhgQDb2PaccRI6TYhrJyjTNjbJwXKsZhJ7v+Aj/CyK9gPYbWOYwSb3ANyprlMRo1sa5ZSVpbuyOsigz4hz/YfBgQiKlKZrOtVifAxW+1+Kay4mXbisjbuj+Uo9JwNGYWsj8Qn2qU/ddoSH0GqJKC2vfmHkJgHG9xGAi2ptoEapXVY6sJ6bxRgftR9MSkZ3bveev12JWnS7/0w/fXwnA92Y5mRfKT78vxD1uOPSf8D34jk9nnu41B7GyAF8XTlh3XwXuenAzc/83e2Bq/I/nupJ9THIm4gDwACgRaO3JInBcngIlOH09Z19eVFb5e+tagtIA5ZllQjUSFZ1xFB//zDWYCci/ZRopuprqfY7+cQaI/vmox9O/G7xu4nurijgAWvtifJ3b4zrr79EFqDkAAP9gIUnjUeK6TrvZXllY3BzsVFnu29VKt/G2t97/zDefvPfuu3773//HCxcu3HnfWy9c3c4M23Qh0Z3AIsy45eSJKEpO3HbrY49+7cyZM7bn3nnnnb1e7/Lly4ePHLp27Yofen7gVqaxvr5umubKyorjOL1er6qqhYWFjY2NRqOxsbERBJCQ297e3rdvH/oGVY76kfS2hDckqXwqDW+1wCuMkLogQhqVttm6+K/ZpoZEd3ExCBpb/V7QaG33B42FBS8MFpeWoHJI/1cAGYEDRXPesSpqiguQgpa3JEly+DCsEnq93k631+l0XNfd2dnxiANQd7NkjjSh+iVuvGkkMWQW9TycRdxt53VOAHh7vXoRr+n31pYChuF4XmXZjud6YGkbaVGkZUEdGbOyHdu3f+bnf+7RL33lW08+2e12r15Z/8mf/Onf/u3fwr3xgpV9a0mWf/mRR3/0x99319sf/q+uXP74Rz/21//2397a2nrwwQd/+qf/1IFD++849YbuUjc8duSeI/vv+eG3/exg8MqZs2deevFTn/jDsy+fPvPSuas7hecYgW+4o8jp7bimEfiOM8i2t3Yvnrvy/LPPf/lzX+our7zv/T+5tG917cDBRmcBcMEsA8mUHDeMUXzoxIn//q/9zTffd//v/If/39Pf/NauXXVbbQRWUuiALydiWxmZMbpCn5lVUK4SgLIy0zznqUldPY6z8zyXmo9Ymjgw1sQqJud/xYRR7bgCcBrBdZaynmydzCRXkpoRpX2B46kqM880mUiNA6CMxmiSqd1XlVyMaiwwxE6JRqhuANEPbALDlyRjSvqV0NeE4pnv+1mWxMkoT+KqMmzXaYRNy7VGAOfgquU0oSFWtxzHI/BSbsBrtyyTFKbpru3ZDsi7RJxAZTYvWXMHtYZhOgxDzLRZmrP5LKD8VZEXSVnCvxJlKmCTXBBzLae/O9JXOoV4L8KwyFLHteA8wIqZleXBXrcm1FFtA6dguc7+5RXLgdxzum0ORnGcDZPCiOIsL528MrPcyiub7Mug8Idsr8r5Zk88oaqArjd/RI9ILuiCBE2dVe61CD1DKkTyscG9eJyOq8+NukuaiKCUChCfYd0vkHM1v1/PKTc5r4IEU+9nhgoQvV+TgDkBUBdC/TBhCVxfqTlQgYkmWl1unPO+2iY/P0eG5tVqrc7bbhZ6NC8gYMvuiaxsj+sz9v58GVD1eaWqdINbKXnn845nYpunAqQOZrJmzPJYAgsjIkuaWYrZKkAkSTZ9PBwQT5SlyQhmLCecuG5Tn8cqoK6klB/FO+w/wLlIfRFMIyc1fb0hqE/E08cpnYknLfxkkbi+AlSpN0nTbsY27/rnVHSVsEIqKgCACW9gmnn4yaVXaQW5twwoXw0R31WoarCJpg7w4JVGP339akyPEVo4Yd3SaDSiKAqCxpUrVwDLieLlfYduu/XEhdPPd72q45YNM3/z3Xf+zf/+g2fOnPnaE1//d//xI7ff9YbtuDh3bXPtyLHYMLcHiRuGWVa86d57i9JqdtqPfOWxJEtPnjzJhvMXLlxI4mh9/WorbGBxSrJGA5jRLAPUVJXMWIyS69l8RmxyBN1TalDwr3zfbzabYRgOh0OGLbHRL2NaJMN7r20SM3CTgd+8+845IWly544DrXFIvjQbJ06evHztqu14duC/eOZs2Om+/V3vai8vJSSmVyDnptlaHrWVjlG+6nnDtp999tndXfglHzlyhCVEwjBM6PSnn2uhCM5LrxRKMsuqYbvfevIbFy5cgGAI4RCY+FiSoRLTXcantcn++97XQRUO5g2/G3x/YqKYvl/zh/fkjm/q89fd38T8r/p7E4Ar9TNffBFJEDwCxkpkqOS6NlBgJOffDoNW4LeDRivw8yT9zB996itf+OL+tZWr186duuPkP/3Hv/7WBx4Y9nY++H/61fvvfePf+7u/FiejoNmIdna++tWvfuWRRx599NHnT78UNoNGp3vbG27/0R/50bf/0EOHDx0SEjaWle/2+73tl59/8ZGvfOWrX/riiy++kowM3zHs0mh6GB1FUTZajeXlZcvxRjG0dI8ev+X2U3ecvPX2O+64Y+XkCSMMjTgzGm3E9GVhOI5hm4OL53/3P33o93/vPwGulme+jTgyi+IsS9ZW9124dLHR6bKuCUXVlI2TsIy4aISpRgEirwgRg/lBr9BO3zX98kJSz5wcpewJIMnxdduQWw1xkpWiCgOsPRkD4Ma1mxDCl3L/YkPRAVwFkFbrEhjNzNIoalI0goGIGvFATO9U1K8pyLJyU/pWaZPrDh8GBEBJu6vVakH/B/E0SjNpGqN8b5aG46KUnwmcEkJuMr7FgeEaCk194VkoIO20f05F5IWCgSAp5VOZnDs3RmXk7XaY5YAbCQySBQQUBUvIYTjtobWSBIvzLIDfoukSURjkYgP1fvifQMHUgj+LRxhOWY/pLq+YFvBHWV5u7+xe29jZ2Y2z0ozRewbVuIIOuG2YLhtZusDp1GF2HfdqxFxtnGAdUQ1hVqSEnCmxoulno747aMYVjmcjgaMmgK4kMSEzqpLJuRyAaRCOgk9c9/M3/tvvoFBx41XG72B7rcP6126be+TVd76f8bVhDLbxx2Kb2aHiBKBe8OY4UivnvPGLwGa1ggbL5mH8s/6Oep9bD0zzEpq98q85m+cvrI+4Mh0HssHTge9MlQA+g5lJueowamUAkNYAGp01JGY+U5iraB+KNsySY3v/1U2OMUYbje1tDz7JrBEoPul5Hgsw7+zscHi9trrv8OFDZ55/4cBiu+nkWX89MdJf+LmfAUQhyT/9qc/vX9vnhs1Rb8NvNTLSsLZdZxRHp+54w9qBg888/WxhoJy8ubl56NAh0zSvXLmyubkx2O35vjuK4ERjmQj0GbuvEDtsI6oseyg2QiPc9/3trQ2l988ZBfrXxHzlWZuP/PWqHKuNT4GjbYU48jzvxG23Lq/t9xuNK+sbV7d6S/v3u0FAVqeo+wlAsYQ8QDSD66xyU+cVx6jq+b7P3QBeleFgOpVyMwSi1BYzUZmjBzkajPhRpc7e688B+JO9TT99woODpigDEY+oWloOuAFZWcR5YZvGm9/6lsDzH/nyF8Kw8cor5//lv/hX9/yLN7Y63R96+9u+/MUvnHnl3PE7bjeK1G+23v7OH/mR97x3Y3PzhRde2Ohtf+ObT33jqW/8z//T/9O0qjfd9cZ3vfOHH3rzW245dqR74MCS63aanQcefPCv/pW/+tzTz3zsIx/5/Ge/0N/ob/dz2zTabTeJ8pdPn/d9e2lpwXGcC6dfuHL25W8tPLL/wIE777zzwQcfXHnjm4w8NYIGcoAkNhyntbb/v/6v//TDb3/w7/ytv+l5TiNsxKNBZ2FhZWnh8ccfP3bs2G4U05nyAOOzFdGbHLQYn6aDujs1wpC46qALNUVMI1RLJgtrEyAnYtzUUomBrDIA3GM7niwAi/jYAgtWrWsiOq9zNgaSiDSDny8E6GPy39pd5kalrsGlDns6RCTdH6ZGVEUF8dTKBHYKqMjdAYtPkn+aCOtLlK/Yx8CELw6x4SgvwIVDOgRtf5dUTMUFJM6hKJZjJ6LMBpQOqOgUzgulfOweVaG8wPyM5oZgIPFcIkzQ2NNGRJWUK5GQrOnZdgm8L9wPARsqUiN1LCsxbct3XMfD/FOaVpwUWO9zIibD8MvOKyvNS8PxKLq22DxAXiJa92dp10/WncWQQJaip1jyxEVRngDMaMXImoiZEeILwDNh3Fly4kFOz+yALpxUmN9y/QSAj7t+Z87UOnfOneX6NOsrbjr6f9UzAf3qG/+lbmMXQesAKK3PyQnC+L7bpnMYDW9N5RadxyLlLIVCqMTqK7KpqtzRz6S9NsvRE/UH8sFVOuVcm1BQBCL0U1REHAQqkcJAhB9rOSXzZ8XcrSvNMSVr6qmZy1BRKkDaqkNEBGCwZyYMc/ZDzt+EZwVDS6YBkGnmA6BpqK4M7FGBnnlfuKfJXUxuzPCR6FoBIkUQV2ga/i7Gp+u6UQQfn+3tbdanW1tdSQfDQ8uLebTtuF5aJO9698MnT56M0/Qzn/tSbliLy2vPvnA2XIAESC+KU8P0mgunn33hz/35D3zqM59ptTpXr16N4/jwwUO2aQ0Gg0sXUWlOkiQIvFGShL4fR9B249Y5h/VsRlFCsQ4qn0ZV8D+zNI4jm1vnbFyvVDJVLU0pfupCnNe9mK/RpkaOjoq8eOlKbhpHlpfyqnQDf+3gAfQ68tJ2yXYHSzeGGexk6Z6i7z4rkQuCYG1tLc9zdkpms1L0PahyL1YZ1b8GVMwWol4Vmih5Sa2Vstrt9ZknrV8ZJiP+YHuNtjpYodo5VSwQKbGsGd066LoCCl6SA1eSnTh52+rS8te/8aRjZFcuX/rYx/7gL/7KE+95/3vf+573ffj3fv8bT33ryJEjRQEvvKDVMnx/td1ZPXYsj6L3/uj743h05eKVbzz5xKOPPPLx3/3oJ37/48sL3VO33nbbyRNvvv/+w8ePG52FUw88eOruN/2dv2t86TNf/tqjj3/98a/tbG9mSWRZKcj6o+jy+c3AN5pNp7+xfvaF55958olvf/3JU/e86d1/6hcbCwtmEIiJPnC9fasnlhf+w3/4D7/7of/0b3/r33TbzTTPHn/yG0eP35KT8xSs2jVaCmMZqEdqWAiXaSa04BVmWZUnjbqUoL5+DSfstPSHui6rS1oLvV3jILAU0VgvEGBSvGjbpDQE+E1iUSeND1QCjLCciP8oEBc7ZGUMXuspIJQqBYzIQJRJUj/ywLExtZn/E1Mz7Q7v8zcUCH0xNuhE62q0VOIn0rNZpMLTT9S5+JuI3OxR6QR5C0kDoc6Sp4Tsh44S7Zj953EAcUYmgAZ8H1xaVskZxqqqBOo+8Hq2bdiEWVlWgFvA84zB/gLMvDJIMDWjGh+if5TuLagNmVXFHC38eVHZpWMZHvgPlZEVeZKOUuA6zTgtowSZT2nZtuNVSABAMiQuCd1QrqVNzU10vuoS1u/yX9GMWqHqYUFRrUJzizQDKySFILXgEsArjZKZgida5d9g4YLxcsqsAE4emOQt8APXTwA0yMF1Pj/5/uwd1gEH/VMv2+wFfZmI/sfsqb67bTq6nVGg/R5uN5vbzAsIbjZFGk8AdMStflm+f7sB0zPpOJaAftbG2Dzyug6kq9v3WO/wC3YkZS9S9AP5QTXpZ4SoxMfn+RWiEfqkL3F7hC4jlgCyc5PyeJFhiJinfugmftbPV+bn+pv6J2u4v2xUUGA2lcDwQjb9vhCqZkKbiv5Z/K7+lvrZNG/mvkx/eOL63xgAhjskIsTs9XpFUfm+2263bdPc2Vy//cTR7XRnd/PqkQOrf+bP/GJWFn/0qU9//alnOgv7NvvRbpRYbSMfRoZjpWnWDoM33X/fYDQaDEZveMM9n/3sZ9M0XV1dzbKs3+8bhtFoBGXZiaJRXqRBs0tOxuSoQpvqlXNUyjeOFz8+I/asVefFXAXuHvD5MvhnIj743m8TVUAGI+VFdf7SJcO29h08ZHn+vgMHjxw9htjcNGIYZnISJ0YKFQLBsuRARFLhxUjzHHdpaQlro0O6doR/gC53Xuhzeq0FxBEWadgJJCxWwWp7e1tPAPgxpwTg+3F2+uO7zaz+IMalpqJdVTaQKBTCkRoKirsmMNzNdis1YRS8tLrypje96dvfeqLTbJqW8Vu/+W/f9uBbb7vtjttuu+3Rrz723ne9p9VpkYphPli/luVlt9u1TafRbQa2276l8YY33P3f/IVf2Tj3yqOPPPLUN7/xtcee+PQffarI8uPHjr39hx56+G1vO3HypNHsPPzeH3v4Z3/e2Nn5+lcf+cLnPvXtb33zwvmzVzdGRw92sizN03gImiaG9De/+c1vv3D6M1957OF3vOs973tP95ZjRh4bmz08zZ4dHD74c7/w891u+3/95/+86PeOHDtaVkWSghtKUzfrLkAOlGUcC1LlB4e2tAD+51xVAiMVRkil+griWMfUYs9SvlrN+WPgUl0gzqlMM83gv6HE1qksjaUkL+pSl37HbDIx1m4lWxNMJCG6S7H4sN7BmEhU1N7oyS9NC5YDOJDS4jozzWIOivtFaVYWonrkASWwPylPcWQbwMEpnCZL04SWkCsvHckL2HZlU6VNIqbwCtU8dBHjkWgTlKVBTos0GyMHM1HNp5nZgOkYlloDVCtTae+QQAECbNvwXMxHQAHZtkeGBqzb5nlelhYJhJSy0soLwzVtDPQ8N3u7ca8/SLKiMGyK/oGHI7M4ZCm20P2j2wE+QK2Lo7f3p1uX/A6SGkN2km1Ul/IildUi4eWMgYjMk8Yhd5YqiyjUVH+nPgz9jBiFRBhYugoz7nWMwG4YmHidbTx8Mb/LJsBr1+T9QRNgXrj2x+76TMeXHCxOCNdy41Vl2+oH5P5jfyh/RkETxX4q+Ii4v6KOGkvnqFdKIGDDzpmArPGLJi+2AskAOgdFAW8R/mowtSa/dGKevfGLMP78ykidA7KJV2P2K8fhog1JzW6u/XPrQcGBZDfg+g2h8eWDRbnrAlL9mbroP/7nM0oJ9KWVUQCQY25ubDXDoNVsLXYXdns7+xcXLr18+vCBpXObV9720FuOnjx59dzFD334Y53l/S++fLFwwuMn73z+3NncNZfXljuL3cEoeviH3/VHn/7Mj73vx7K0WFldXV5a6Xa7L7zwgu/7J0+e7Pd3qqqK41Gn06lLcbT0qkAfRjaE6tGdMvloOZLmjjx/mEN/BV5XqcLrGP2ry8soJgVT9n0/bDZ6o6g/igzTbLRbpmkORyMbdrBYWoXAER4pwXzk50A5+JJoOWKmZBTZHqC2OeC/FLAjHigDR/gATARASRSpBEkIUELGu+zv9BRTQiEx1IP8g+1V3PTIr+YGVIg1rAL6xRbLMuE/K0mi9vJyMhjFaeT7ThLFpt26/81vfvobT4Rh2Go2Pv7Rjz31zacffMfDDz34tt/9vQ/1er3WYhcNPqfRDZpVlpmeN+r1vCR3XNfyA6MojDRdWdv/kz/38z/58z8fbW9fvnjpm09+/Stf/uL/8Xsf/p3/9LtHsB1734/9+OHDh/ctLd734Jvve8dbjeHw0S998TOf+sRXvvilJElt22x0GoZhDqPRcGfgJ3k/Sv+Ps+c+9Z8/fs/99/3Iu99151vuMxYWMZ2PBsHhgz/5gV++6667PvjBD271dkajUStsBAFkvsTpS4EHEqkXptdok1LFBBRdegKEybcDthmeEsnmn4j2GLqO+XA8AVCPIX1wTNcFVW7bQq1JAK/ISIvmQ6D9JdsKWBrxFPPHuGEwEXqhSMxtcJwNE52pLq4E7lRzUhciGwfTkiYRLbNYVLGyVjbhglzUNcjxSpwgAtOyBJFXnrrs9pF8PcncmBk7e/ETDasCRwh7oJMAOSLmGtAOBPmKhESR6FiG4RDzysHRAm9ZlTb0QKmC4FoIpkl2CVpBZVWSD0Lpk4gx0ImO43q257gIu21rMBomcRanRWnZQWYFDct2/co00jQbkNdkXhC6yoKMBHm6EQAKLBECfMrnBVULEtdjZ2P+X8rs+CaOP28CrcsjDiQIQhHRHghtAN+4qkoNtJ4EGxPfxyUX/oHovBiWzD3m4URDlRb46yQAexh+3eA2DRSTY/r66cHeRyICJuPV2ebhE16f+v+rmeF8JwuhDky8zvX5PoPbTsRMKsofE6tRIHtS1NUD7nlht2zG4QnneVQ0ROXvpMkw/atumVGYYmByEQeABJwq8Jx70I8oWSIwgsoEOsgi7Jl7JPqpzesATNyaGshHEwiH6vor3Clp4tdf9a/W4jH9Qpkznt9ZD828+zLznXlFpokLovcSTdPKMkAI8txoLoFW63levLPTXlhwwmD72qXbThx61zvfWaXphz/+B1FWBJVjB62gsbA1jNPSPLD/QC/qveGOO0698YH1zd7Jkyc7nc5XH3nMtu0rV6+MRiPP826//fZ9a6uPP/6YaVb7D+zrdtubm9ve4gKDsyBAkWWQgyDCGbv88nECh0rq/pwP8PGzXIOSZUhTiNnpgHsdWPy6bCrysG2bCQydTicpijhLL12+XJmW6wfbvV30yCG/wVRHKbdFaTKVh8Xp8PrEr2Drkrx6RYAKbsPBkVNGP5SUknuAlA1lCdGqKFPqIaCLD35yPhwOpaAK7a9OAF6vy/Ynf6txlQg0CgsBsGOWhVHCuZWf/jzPXc9LrOH29vba8mpnoev5/qGjR1ZWVjYvX87iNM2ML3/5kQff8fC9997/O7/zO88//+KBw4cQZSaJ12hwlOf6vuP5mKLTrCgL27NNz0P5vSjC/ftPHDh44oEHfvaX/vzVS5eefvrpbzz59bMvn/67/+e/e8uxI/fe88Y33/emu0+dWjx04MGf+YkHf+I90cVLH/rQhz7ykY+tr28YpjWCNozRqpJWXjm2eSUaXL507itf/vwb73vTe3/8/fe97YcM247Onw+PHLnljXf/5r/5rb/4gV85fvz4YHe3LHJgfCjoFEJAdDEQcFawfOEYC8EdtQFESK1tCs6uT6QqAWBRUYKvjJGAVb1AqYGhcG2ant8sFcKE9THFwqN1aDUjbQCGMNPXJbAJ/yn9UPWpWBY7JsX39L+FGy69QlWnsgrIXZsFA2KhvUP6FgjsHZJGQmJSlBkyGMtG/AzQu7DyZaluZYkolHCwC0b6cw0FkEvQf03Tc4GuZOU0VAaIlEVrK1oyVu4Qnr7KUvgG0IzBV5iNvVyqS1S2hW6KY1UuORZ4ju2hcwDxINtwKqvIyzyKk2FUWoPEBO0AC3uaFpbtNULftP2sqtKM1Jxth2+BWQIgKv2+wNCdDqd1vp9enTTgHCe4WHxeuAUgUBR8+PqtYa40QS5VhAJ7afoY26QwKVyUQel1TyMwdSg6/huz8axtvqPwZOYwK7K5oaL+a0oA0L9l4of/orYJIzDtght/LCBAvM2LLMUPajwzIIijc/nKH5PRrvazlH6DIYlQ7a0jfgtTkzEx5yIAwuZoF1FgFmnloDBHxsviwaJFZPqMtIdR/wFCfHtehPE0AJAedFBrJGD9isOYeJ+dv+c/ZrRgcStES4pu4r5MNcH1hWdm+UCHpE9kqqiFpOnSUov5tWmaNpuNeLB769FDT379ynv+7DtPnbr9a08+8Yef+vTq2tHTZ68cOnrbzjA7febl7tpys92xG06n09nd3f3yI1956wMPPvr410ajUbe7YBlWt9u1DOPo4cOWa7fb7d3dXqPRsF1YUC20F2xTYFWTJNnd3Y3j2DTNa9euqbNgkivjzRzHYTQwpwTqRDiKFcw22RHew/3ttU68JyZbpjeEYbjT6wVBI89L9MCNajAYtDrdPM/jBE7GLDgotKdIbrag/sb0CqeQTlwfFeSHoqwy4tNRGdkkph4D7WwTJVU2GaqKAqgpwk6x8pJQySDC4uubNf1J3SYezPp9o0TcVqL9YyGpg9w73nStwbAPVXKyemiGYWUZ3W73xIkTW1eupGl6YG3lc5/73F/+1V+569Sdhw8efOaZZ9793ncbnhftbBsW0ujOwpIbNKNkgGkTUoqW4cJfujQKmG8EzSxFsu157tqp29dO3fZD73337s7OC0987clHH3n0kUf+8JMfXV5cuPeee97x8Nvvvffe8OD+X/p7f++X/sbfevaJb3z4ox/77Oe/fPXaRlRV5u6o5Zl+s2EZVm9z44uf++y3v/306n/Y/+d/5Zff9N73GGlm2NaRN93zex/+/R/5kXf7rnNobR9FocIOWFSsCdfG3S4wTYnFykE+YdaLjGyt6o2FRblsLxccKiGxSQBVt2Xnrazy6chbKj7X94KiZOzWBiCLxRoIkIqIXGgSSP0LfkzBH63/XBgZz5iK61tNGH6Vxkg9VG2uhvYrHQStMrQuUIXdMNKsQIxNAX6GUBZlKPYP5uI0ifsgzkclnhglkllBRhOic6zOmsNZzCG0IyYGoF/BIFX0YYo0RxpQOLgwNiHgjQKSQ7gUbElm4lJj6iYCbWlUqWXkFnUtSOQT+H/6ldlsNivbTYtomA5HEdQ+TYT4drMRgL/kBl7QtGyvSvO8SAqYHaMDYhtQ3avKnDvd6KUXLlccJwghKr9Sy5xovHCSSXaiFeP6ATpVEFkaKAT+YcwZ3RdGNVNAQnwP0TRA10Cs0kQsQaqwVwdgAof6qiw5c2r8fNpcQuKG/l4z+Peg8PzHbgmZd0G+g9OYjjXpbVUvZp0btWOOFa0be73pjdl8jK3fUxKUxfWRYMuKdi0vQ7vgxhhPciKhoc4t+bbPAJZUMxzEZl3N8as0FpLSosipuhL5coSQkF6lkX/JOv0TfV61ccA86xhm5+T0pEEIUfZVlciEeLxu5HVm8238S4ya/My9xz03lUDO/JW+TfsTcz+TG5kkpUT8Q+IjWKaDCTLN9i2vDAYDs8jTKD20uOAN+v3tzdtOHHrg/jcb7e7HP/bJsNkeRHFhGuu97Y2dwerB/U7gnT575v0/9b5Bkmz1d9/7Y++/eP5CI2wZuXH2zJnA9S5dOP8j73hnlkbXLq6bVbHb2x5FbrlZtlqt7c0t13XZADhNkySJsiy1TWtlaZHDfctCayLLE9fxwzC8ePkSC4aS+DW0AlV7vYA7KApX3Bmg5oA46Rk3d68JsPacrudRQnwSgm1stNR3eXx/HJTzxuU0JC1lFaf54uKyaVtZUfb7g53+oNkGCGdpeZlWafIp48eMtjgGy0+4g8rXoqo8xxnFcQVnIrTn4zTNcU1K6sBzDVWKzY8XSpUGKB8YN0zwtE8Uz17XbRJip/NqtPdpU9ddFROuu3fUNAvttZz3OneHcy8Ry8xQqQN9GMnb0DGEYzMhBcI8x7GFObIAozRDv7GztX1o/4F2q5WMou3+TmV1VjsLq/v2k9QWKrdPPvnki6dP3/fQg6tra9946ls7OzsLy0vQjW+2XNRSyyiOLMfxXQ/kyyoB1dJILcuxPT8pc8vzQi/gwK2sKrfd3tdsrh3a/8M//v7R+tUnH3/i03/0h196/MkvfPXR1dXV9/7oj7797W8/fOddd779h+78oR/6K+ub//E/fejf/ea/GvTTeFS58TBsm6bt5Fm1fuXqaDD8l7/+T+757Of/wi//cuv4LUaWtg6uPf71x//B/+1//OYTT1bE8C0rG5kPMSAwYoEBIQEbKnEjxKU1xDasIufITai1SAxbpcvUimoIk6ptuMlCDtN2Gd2dV2WRZoVZwDQAHWgJpLSsOEkrDt6Z3ivq5+hGUkSu+tw5qX+aNohn9EUSYcLJDNSEJH0XVWStX8GqdigmQ2iTQlnbSuOEf+aOL3fq1NhS//FJWZUxHA6ZIgWHE3JLQDu0dpXiIUW2aGPCFixtJDojJcrhNteNCF7E5WicE/VdWUiIuwewbCbes5FB40iSiHgdxq1m2QaA/j0P8zSD48ssQ70fJAX8h4Y/QDUW2Q2aFqStytJMqIyHUZyTogZK7IDCoXaBpoJtofCBi4ZbjwQZvwB6FrkBYDrqOa0sw4a/RGEURIHOK9xl0tMCiMhRrttIAGgyxO2xigwLOrBFtmmT8oQAlGZwHFYZxcwmwxiQT/kA0KY5CGjZof5+Ma5GcgOBuLn35+v36VKivEo3fuLzBfTXa6e0ungmF8eJz08U8utVoVZ3GXtf0XQm/3xO1DnPqOjVWn7mB/SzdesnjKj2us6zDnjGiU+/zwGEJhEgt72CfiKbi1c501l73K/p4xT0QUwFtUoxq+Kwig7fJgq1lX6OLPHLzwtM9vR1nnO/5smD1hWbqYRh9n2h+yXxsvXxOzXHoHZ/nAi7dRUm6c/CEqP6DZokMfNPpbxXk3ooUgJo3vWfvA5qt9zXrYvWaj9UZEK7Ywz8oyrB/E9FPlPIVIo2KpcytQkTgHn4H9Mok3S0f3VlfWubSizu4tLq5voWZ6RbG5vHDh185czpO+84NRr2XNtsOna3SOwye9/7fuyX/tu/9NijX/31f/pPdqOksLywsxyb5rWNfmtlubCsY7edPHP27N1vfktWBYZlNcPG5tWrp599vr+1GfhulqR/6qd/stfrrW9tXr58eWNz0/W9paUleFdtbXc7nX379sVxfP78eaDYAy8aDDvddhRFlmUFQRD6webm+tGjt5y7cH53OFpaWmERTMMw2DiMUwImA3AzQWjeCStQcWUk9Q3TfZqmBCjylGcwbSmuJ2lMoWrK/vZSqlHKQEloKKpwRmEKFjOpcvD7Irx2Xbeq8EWmY3c6nXan4wSNXlE4Yci/ysmFF8jUCpWvGWOYSCN8o4X4HFPW5IC+8fLAvGYIzwPTWee8+ZPPbg9Ana5uTs+peOBmPuazjlNgnIS4iTz3+edb3vz6grCBwoP6tcgQeU69P/X4i6OvBaZkRVr87Ah5GOC3bMNGE5PmEdtyUb21gPS3bRdFR1ASoT0PjDG8AGzbc2H4FAae5zWbTd93G6Hvuo7v2o1GsLjYXWx2zzz9wr/9jX8dDQetduPMiy/8s3/+6//tB3/1P//+h/71v/6Nf/SP/u933X13WZVRmjTb3SSOHMeTmObZI6Uml4ubi+gL3iVGAaRQHJ156fRXvvSFrz/+6DeeeDLw3TvvuP0973n3w297e3P/fiPPjTj5ww///r/5zd965tlLCwuwkHFso9topqNobXU1DMM77rrzZ3/xF47ecau1tmL4rpHnf+WX/8K3vv4t13VPnDi5vdUbDaIDK/uLPDdzYpIWRVLmSVUUVlmB6upWKWVpNAKk/wmXsQkQCGtbOcJ4Ms0pMqYECcE+rbZlVaVJkotEHA8aFxdM2y5gHQN8CEJqYscK5XiSfKkKUWmuwHwVqbKoBdRjT/jGWDbnJ/VUzOGiGsPcl1Nju8JoQUXfhh4O3q+qwsYHhTm37jtbM261CjdBd0TvTiI5RUuQWiLYDyYYnCgF5WZBOFlqcFBjCEdpWyYARmRakqRGVbgQ4aF0BV/mlAW1VQVftnLsyrGg9B96Lhk/Qk3fc4DyKcsiyWLTrFwayEHQACzTckrgS83hKN0ZRP1hGmVFWdkVxj31+elkLYrC+WqiBSFkXoWRHN9dYtOBBzz9/MI/Dba/HPZbNE+hIeJ5/MSJK6muHt7lMsK40Zbq+d9gvHdDPgA3UpaYH/hOVDHnH99Y7Z9hCNZ3XP6fBhqJM9/zaOcALWad1WtcZ5q7//HD+Z6i8Dl2FBGkWuTVjLzXK9FieCHda6GfkbfIajTHL0Q/nboyNEdp0f+MMjnvedosbe+7uCduba/3p/cz0U+T2/QyX3dXdHYsLRICtqjbuOjmfWPmehRxy+umXfNXf7RgANA9vok9axcEOgVKcLo+/pl/ZVZB4K1vrTcanavX1g8dvmV9HT+nUTYajQ4cOHD+7CuHDx6Kh71Rv3friWNWMnTSqhUGb3vwoXQ4/MIXvmhaLqQPPHejtxl2F9Mq8xt+Y2FpFCWV7R34/5P3HuCWnWd56Opt19PL9C6NuiW5W5abZOOOC9iEC06MgQTTAtw4hJBwCYQkNyQxNQ7BuaG5YcC2LFsYXNXrSJqi6TOnt312X33d5/2+tdZeZ5czc0YjI8iv4+M9++y9yr/+8pX3e9/pHU8fPzMxtW15adF1nUqlMjpcaqzXCjmzsrbieV6zVq1UVgPfz+Vyvh+6blMHj7/i+64DzkEOMgWKKvuuo6tA+8iisL62tG1qcm1lgWKkrGCPUJaqqqVSgbFDQRC0qHme47pxxp+2eQ3V4kgOpFTcMd8oA0NZfIA9DVHUPadJeycMNyqsjfeH2E1OReczDy/p2w0PUI5BNfAlwFuEK1FlVQGtHWkJRcDW0gnogWUFATP8WYKawCR47DJlBzz1JJKR/b0hZXF5bdCg6/JsO5MusTMGTeHE/uDLp4R7AuPO7lkcUOg9bQhkV4CoaTwvUOYjCZT6gFcudf0eVGUGiHq/xpCqLQhBYrh0vZe4QORYMhCC/yATQwp9hEwZEUMrhl9opEAq+LRA4bcgoPbaEwNVUnVFViBnocPyiqTAC33XUynGoaqyZhiKrnhhUG83JrdN6zmrsr6u+36uVHjs8cc/7HmHr7tOluUzZ84cuvaaMPS5bxEwVhAxpZKlrj0lc4OZ/iMCGlDQQG9SEqRcYc+NN+255pp3v+/9zz71+De+/jd/e99X7n/o/gN797zuda970xtfP33DzXe9//vu+kc/eOTrX/+93/udxx9+wm8LetDOG/r544u7dg09+/Djq4vLh15y/Vve+67RvbuEKPqt3/rt3/2t37rnnnufeeaZ7dt279ixa+HinOgLOcsC738cpgkCAT65EAVapMcUoZSn5FAWrWTkvcTFuzyuSPBLhR3JGS0sFcl+n/ALE7kOLQ6AzIWhoGBj5VLduEyYWprqTRryZnjcflweE4d0aMGiCA5SFKHkAS3En8STR3g5m5ziaa4Q4QH8AZbvZWse/gyp8REcPeZGSOoWUqX52MqPsUSAtMONjOuMcdeMjaREH1PkZTYFUl4D4Ax0S6igIzLMSBB8z0WKkgUE0D8IJCMGFslKRHV1kuBBLkCCAyBLAPkoqgCeHxAMCRpKOAJPCL0AXpTvIW3jBrbiIGwfimKz4dle2LZ92w+9SAFSKZBQ80CoJkgwB3SeuGPTTZkhWPFQpT5ME7PSxt9Mwxe/g9Q9zTsih+jgvtJ9k9aTLnMwjqn1jVZ02ZPpO5coAn7+rRdHlI21dB7tZR+tCzi19Qh6J77YN9DYXTA6YEPa3IV4/m1QxCvdFy7HS3kxtMu/zs3HQ/osLsmOsvnzvczWezHxpLrUB7rTF5l774dpYacoc/FJAjQp0xG7HGNOYXbujpKOzEqUyMRw9IYQFLy1v5iGx4bnyKWuiWBzSnYx8PlSTMgLwmqtPjI6XqlUkYR1PVWTdV9ZX1sZHipJYmS3muOjI4HrjJbL6xcrd7zxzXv37T5+6vRTR47YthNgl9VNRV+rrE9v31kcGq613bXa6rXXXTc3t2BZ1vDw8NLcbGV1jfch3/dNs4xAuCg2m81Go1EqDeXzeZQlBkEulzcMw7btRqORVmtpmhb6HhvlrRY0503TvHjxokjYBw7ksFIBAk263mq1ZFmu1+uqqjqOw8F8Hi0pnSgtWwiq8XdhXSRLKIm88At8gowNMAPGtVubPvyBzE3xiI1RN2mxcu+cYm6oQZ50SiFyOTN3EwdgUER8kFg4o4o7EZ/4nsAy2bVBxqGBWGipe+nQVY3EdLrXriDob4h7LgtFxZKAmbh1GqHY8BvFsP0aRKP7Na2/4zF4fevtnSQHwslD/lAnE85YwQzinwm/4mmLPxHsh6gEyIkgHHamODX70FPkeprGLJWGtm/fvjS/4DiOZVn3339/ZW1t165dw8PDzzzzzF1vvhsKvpYeBd4lBu6AJpOvCv/JcyPHAUukoljDw7e/7BW3v+xlH/rQh+7/9rfu+eIX/uB//dHn/+oL1x489NEf/+j0nl03vumu37nt9mcfevizf/qnD3zjW7Vq+/rDOyurq4V83redI4889sTTT7353e+4621vE0qlH//Yx+xa44v33KuI4cryvGHoOTPXbjZjhmR20sl1DAIHiu8EOid7GoXqnHFhSsd4JeTHQjluH+ZsBK5JIeDYMN8XSeYR+AMjK6kGJr732GdFKpBge/RHScJCkWSv4seBBS1OjPMT5wvjHPWGIcJYg5hWMtX5Tewn6mesY0miEkdnsI7vuzE3JQn2xXq6lORMV4A4i50m78l3oC0LJGkhSPrhW6ZuAqA3G9xy4EDBOsyKV1QozGhAhCqI7ofjYqhycB1o8ZD8Fk4A5zyShUgF36ek6Qoi/HSRvudEnqjouQAlCEIgymEgIu0SBX4oNBuuH0l+CJZPyLyBPpWZiDsVGt3glL5tgMM/6Cu0LnXTsWST5N0r6saz90WCZE3xrWcABgWmB95z/8zp4Bf9T5BcdOefSVHLZstE76Y1COuSvZEuH2CTI79wbfB5pcEw/RdRy/behuuMrsTgvvxylEHPd5PY/CXvpRdgM+ia+7w5gEQr6wD0cpYPHrfdpXipw8BAIlrisefHBg1FcHnaJDbilVRiPP+WHajZ5xhSWjYNb/faiBv+CXJoEJx5XjCsm4sLa2NjE5COCiNFEtaq63sPH15ZmB0uFwqWrsqi59rlcvk973nP0srKQ488EgRB03YCSdEkZKoNqzg8MlppNN1IdH1/aGTs6IlTt9z+MlUWVUleXl4eHRtut1tWzhgeLnMtb71eD8OwUCioqmq7LRb4ZdudQa68ZBuG4ZP4j2EYzWZz145ty8vL/KeuyLGqqqZp2rbN/kAul2PFmaROIBSEdmdfoeAf+wYM/klMc2z8BNP3DS0uMEy7DiGqFA+aeRb8Fiv5JO93/soNIFNZkUnUyfW9yBFDQn5kHyvHEalWLnlKGx78hkfZFZjvM062YvalsKXe1jXO+3og2fGmaSSys7FSOYpCz3MTvMSG2yM5kD6NngYyPZSDIU4O/JYgQpRwb3d+Jzokl7z+tKkJi9TlrWNklxAZy8Y6BM5VcSBBTt4nR4VvNllkUgeABezIU4jRaPwZIDHITLRtm+qXEKtmMyytyyf5J7BIgUzd9w8dOvT0U08EvqfI4rlz506cPPnyl9526NC1J04ci6FxomzbLVDiwjpUtqI1GXqur+qGIImyrguuHfkkvArGn4IQBiO797x9z743f89bH3jggXvu+eLjjzz6/d//gYN7977//e9/05vecN0b777uTXfPf/Pbv//xjz/x0CPNKiLZ+w8cWKiuOS3783/yqTPHj//Yj/6oIEo/8+/+3Y6p6Y//9u+OjY1rhrleXbWsfAy2oawXug2E/CTWxEKHTKDCTymAA5BedDxPkXMTfY+UaH3fgwQXYtqctQMfJpAwpGeFAYUBGAqBF/gxSSSgWLCT2R5VyAFIhG87vEMywYSSSgQCIJGLqFAmIQGZEHCFBchcFpbaIFiWPuXswGN+GQo/xKIo/Jks2XH2CHTQOCVCxj6g8CjwQJUXBABoFMKJ4MFEHpIcuLggmjvYO4DsSSTGFFnWVUo7hX7oExMxqQZKKNegVTH0wAkEhtRIkYH/MVRF11QV6B/QSEdSICsGovtA5bMHK7jgKY4EWSN+VHCEBiKluZAr8Cm1GbM/Zy2NAfMxRlBvPn+za1SMhupxp3m96l2yulaNrsvo3X+vWgZgMGZxK9bSZbRLmoDceqWts+72QP+pn+31d1IDsHn7hxf+vyS0ZgCEZuB5u15c8oyDrrzvxQz67iUGeUYRLJnM3U4OohT0FjtLmetP6gEIUpAaVkqS4mf2Zbam6Qi80mABZgxDmP7p7671zQTGvEjsLKWyAEmLydTiyYuNsO344+OTs/OLpVKp1WpNjI0vzc077dauHTvWlpeKOWuomGvX16d37Zw9e/off+D92sjIqceeOHLkSNv1NN10QTknrlUqh1/y0nNz804o7tizrzAycXFucXxy2jTNtbW1paWl0A9kUXKDUNcA92/U6ysryysrKyhB1DSXCn5zuXKW/ZONudRCkiSpWq3mcuAknZmBhDAXiMVhMKqyZYZNVtpyXdfzvFRQjD9pmib3ku/7joMTtdvxx7h7EjYR1voMqao4ZHxqyvnREYi57Mb7GYDGhD0gbySKVE/KQ/0g3XguJ623eYqs+/OD1tUtXT0Z1ul1ZiuJufYmM63iF74fRyi7rzmE/drVBEHg59LTQsbmMs8LxS/5FBEL+vQobQxsA7sojCd2V8s6YJkmIRCdRJJjWBL9hg4TUQQEGYoFWknIDUirKUG8gtemadHxOgBxCljLIbmXSQ/H5SgEUZOIgR3DA0XwHlY8mINBQKK/gaqidsS2w4cffuTlr3jZ9ddf//DDDy4tLE5MTWaLu7baMC+Y7zBwATwDbSg9U7sV+ojtws8uDb/qzjfc8tJXhLb9jS/f+6k//qNf/Fe/9Ief/OSdr77je9/5zqlbb/03//7ff+lPP/VXf/65Vqv1l5/7m7/86p/+1b33PHrkyb+95ytrZ8/9/M/9c7Vcfu/3f58iCr/1279rm62du/c22zbMe5TVwE7UAO4XBVUIPZBRJrUlcW0PRawR5A7DeKFgOw+OkqJDxBWxdF7+Y9JR2/WlUFRVhD/InGXmF87HwHMIQ0BZ0hJ5PilLEEMbQMBrUt5iRiCFgDy0hsQJLpju2ckSUq4sNSm7tAsyiMRMbF4UTCMHSE+mAADQfD+UZXXjUoBcCQmlA2dIhbI89URJVBSZUhkgl4CaFeEfeY8IPRu0oaxkDL4lDuujUzJVo2wrg38b4xqRfpSpUOpAFFVF0VTRUCVLVw1dM3XUXAG1FOiSG7aQBkB5Lh8q8CPHD3wvklXZDwFI85EcYK0TJAqQdum2GOPYQb/hSS5F/z/0sdR5HctCZjjfImF0xf3JLEn80Cif0/842aeWfbE5h2DnX51DbDExdzmr/4Y/DYbcDNABuHQGYJBFuMlfOx97gaE+g9qg41MC8MUe/u9r+nflcLraILcwrefNQkcGP5ZLPN/Lb11+fMaI777CTe6FJ2XfDkm+FjsAg5h2qHiL15eB+gycYwVAlyx9RgSR7AyJrSTxA4l8gAHQ4he89cLquBOY8qXrk+mtpS8SkUvB90PTytuOJ8tA2BdyBc9xo8DXZTlvqtVmdWRoxG5Ux0aG11eX9u/b/bbvfdfRhx66MHNxZm52abk6vXe3KintSCoMjTqut15t3njrrfW2OzY1vbCyunNsTBLEyurq3OzM0FBxYWamlLPajXqjXl9bXl5YXHAdZ6g4qihKu9Wk+L0ehmGrZXuelxr0kIGkpqrqwsLCtddeW61WeSM0cwWwWOLpgDmU13eO5fDXmcda13VOCKSGOAfSDMM3TdOyLCCEoGWJz3NxaVyIBmiQGw8ifIsEszpcH1vIAOCvkohCREkKotBxfdkPJEEA6d3GLHOWcSJ+gpdRTL/JOOn7/oApvJXoMJlFrNKQ2vHpCzZbs/4bh781Nc+4u64i9f4RehI/7nvZaQS0+wYGsOz2PT6sOn8rnhzqTVlUAdh+hFBjz4PIRIgkJn4fr33SKaIHmgCoYoLLNAMQi0ORiYnL4bEaC2ATwxMpE7muokDwNQzjv3IP2LZdLo4UywVZk1F1CVtPuP/++3/yZ3/q4MGDURSdPHlyeHg4cp04wKmo0SYsxH3vmCPr4I+lyiIfyO/A9bR8HpUnto2FUtXkolEwc5HjvP3d733HBz5w5IEHPvGJT/z+H37y05/+9N2ve/3b3vimt77jXa96+St+/ud+bscOaWVx+QPf9/3fvv87e3fseurRR3/qR3/0oz/z09e+893vev/3NWv1P/qTTzdbdajZQd2WOj3AsquxLY51OLHUGJ1DhTUEiSErljqWKXqEKFA0HbpqeDAwLQniGddpM2lm1puF6YsUU2wAJqzTFFwg4lF+LqmZji/KSA6kBGXUZR194mwsmTTpY1WaTE4sfsG0xRytSGeHIEZeImrJp84qHvIDymYMWEGZ5hdofinen6k/hr4c/EfJjwmLMC497i6OFXG6CrkCUOO7oYPUB3yCCAUIAXxaIGhCSVJlZOJCRRVzuqwbmqHLBhCYkCeQJJlKuFFN4DieJ6mgISWIFIzrACXOpGIcepwZIPExFE2DtSiiwpgNt7ZJuyQSoWeh62QAsh9In1QXAC8hYu43NfrBKK5aBmAwS0N8e4NQHJefBMhWr10+oLz3KOkRsi96f8fHGXwxwgvZBusq/IMN/3PrOzC2FP5Pz559sdXnNZAFaMB1ZjObGz4/qAYgOUw34qXjGnAGkwdsoglFgR3inutcCJv49BeiGIaSOsrCSOGYKFoQlqIvxvHIv5s2+Dl2ysqzkiP8Ouk/dm+AdNKt3OrSyujwiN1sFQu5hdk5XVU0Q7FbzaFS3lAQISlYerVdf/973ytI0oOPPHz63MxqtaoYWst2CsPlVtsujYycOH1uz4GDo+PT1QsXWrazc+dOopj3K6urYeibmtpqNPKGLkvShQvn3bbdbDYty2IBYCLHU9rttq4qrVaLQboc4zR0jQGp7Xa7WCyKosjgfn7T8RwJwvKqripAR1AIK/CQPWD+aVhFhPSNKThZ5paMCV1VdEXNmzDCWy2Ii3EigkGwVHrHwwyFp7SvA6BBILAtjP+4ZpTKBokCT3B93/N9XZdIzrNjKKRfuaqCiYNs+oHX3xdWGGYw+hQy5K/LECADcwl5Rmm9oyCUilA1TpEPiWMQojIwM0kvYdATOj6WQ07eSEKJfT8v6Xp/rD87Kr2NMgz9jtR3gSVCxA6EKfORZFXk7yZcX/H7bHPGX2CQoes5HUOSrDpmhacxH0M+mOkhhiJIWELb7bYohrlcjq1PUF0FQalU2rVr1/kzp/M5K5fLHTnyjFNv7ti+yzTNEydO3HTTTfXaenF0NHLdKygD8OwmPGdZUfQOtkqSlHajGTPngFSU7laSAiFUxsaEVvPGl7/y43e+duHU6f/9B3/wrfvue+Shh6/Ztfetd991060v+eY3v37PV+79idf9+lvf+tYvffEvdkxN2vX6r/7iL//w2Ytv+pmf+oH3vWdtbe3Pv/jF8viEYuiyqmJxRnVqKCPJIaFSlAxcLtdKGW+4aosi4MTumITbbbAdMmaPMJwSSktFIdRUBc8SnD9xACUNmcdPmnnu2WLm4nOuYqd9BJAkPJFIBatMbLinGB7O29BhCLRGhcSs+A624rhGPB0QfHrkjsC27wcQaZAJWSREHuD7kST5qgq4IwO6JEVy29BCSXdDDmNzNQOlOWDEQ1crFiQWFUUj3xXZAdxKQB/DNTGPAGvaxOVuhDFD5ioIPEkQFRlIOSkCMbRne7LoQ8sL2XFfEQHh1+Uwp+tEs+xD3IsCL81Wq9V0g0BlvoK4SoLkDLC3EuIKZj/nxBhSFAWUAIsn4KAgyKXn6eBG/mHH9eJ1SZZlXh96IItxPji1eTbGXvvsv1vOAAy6s4FFqzwQe0Obm/5z83Y5BmXaI907n3hZZmJvjvgy29WyyAdiZOnwL3LTP21XfJ2DIEBXcAFX8K3ey7h8FNCgzw+ahOmykc0MMBEfrXC8n8SZH6yOSOGzXLuYzcwmRcJEPoxIORc7cpK1U3ksKeoWo6ZXs/U+x5iDsucxDXrihm42W23TNKvV6r7deyorKxCSDEPBD4aGy/W1VWNsaHrnjudOPPu6195x22te/cyDD67V6k8fPdqwhf3X7j5x9rw1Mh2IytLqerXZPnT4xqePH9+778CFudl9hw65tmO3Wovzc8VCznXtXM6MQn9ycnJmZsazncgPcqW8qemODRFaNwhXV1enJsYZ/IOqgATKDwyurCwvLx88eHBtbY1vB2V8oY+QVGJ3Io5PyB+yk1DvS+B+JAeCIHCpmaYZS9zHkcIYiD00VAqpZo6/btvwBDzPIRqOdLfAyOHHPYC1ptN6dQAQF6Zd1iNEsioKiqam5n/8rUSNKCsQmT0S58cv34ff0oQlW6D/BEyLerPBe0EIjQKgLCnuIvUBkvnSCVVSCwGQ37DPRpvud2wsJSHMTAhgUP+jxqDfFrN5GO9yGxi2Ml20YVHKrmDx+oCCHI6qcl1HJmfLgV52ADjXRPSL0LjgDgvDUNNAAKrruqIoRGZlt1qtMPRUVc0XDIab1+rr48OjBw4efOaZI5ZpWIX8/MLCmXPnr73+sGXl5+ehEdZsCsXRMd/zFFnZXKqot6nA/IhCgJnFGDZgcSRJNyxRwcMk/WhfECVVVpRcDmUDnqcW8oIiTe7b9/O/8m/f+/73/eWnPv34dx78Tx//+A3XXuNL0vzCkhCFb/+Rjzx95HG7smTXasPl8uc/8+mZmZkP/etf+ui/+kVBke/9xtclTdEUXRQkDD2PETYA80MUl+L3EhXos5vE8QJUmJJwLRXSQ0OMHhcXCvOIJXp06N8SyTVRO6SOGCUQOtj6BH9F440yIewAEA6I6gBg1/spCjFr9vD4T9y+VAGEaSQ4+bMhb8ZkBrwuIfoejwrB0NTQRxqTdXlTgBAXAXProIaYChUURhSHF0FmwENR0zS4QPgXfZEmbzzvuNQioU+iJSjE58NAikIF16DpYB9D/bUrSxqetCxGXgSZkVDGKQNZQk4MxQJ+EAaS7QTNZqvRsEO1wC4JOyh8h8g7I5sGylDCXrkBbhH8ooqpZw1x4UpbNlCYmeNxRjf7sLj3mByiq7FHlUUTbGL6c4u5S7sClrwCZN7vhDTSKoPLDKz2UvttHjENNqoyZS4sPm32bjnGkf3nJVu6vg/Ch3Tf14DY1iCHZ7DhflmWYu91dh8/lnmLnmdNwlYt7MGDe0Nmqvexdl3GljMq6XOgGHCKDE3CEBwXj8PjVxD4HzT+e33odI/s+/mtTv4EL05rfZq6TXkSaRsGGRzYuIk/gjCRYApGQAI5yfiMycRm+uH4YkTB94K4NoBSmclpKajTz5nZqqfUFSDoYjdKtooOZpoDWv2OQyKO2Q6n96l6OX6mlGwleHHg66Jcr68XLXPnzp216nqzVtehzBnkLGNtdfnAzp2Grq2tLmuy8r3vercQBN/+zneOPXdyZqF9+Ob9a/VWrjziRlJ+aOTpx5549eve8MRTR/YcOFit1w4duqZea1qmfnHmfL1RHS6UVpaXTUOTJWlxcdF3bcMwm80m32alUnFDv1AakiRw+DDKmfdjLnfzfb9lt0dGRjhIryrIFbBZz4Zgq1FXJNG124Ghz1w4L4QBQpYkTqkqMmQkA18WBVPXogDQFEa9psHaMIyajTqbAZoqa2q+mI+xAbUGZLkcH1HFOPZMdHxxzQB9B/ztqIgL/CCQFBGIWz+wHUeRZIK2S7ZtK5pqqKqiah5J2TNhOQiOTFx/toyBMRoyFRHGf9owOzbMo65R19tUSfYDaBgxhIAr/NI4fe8RmHixC6AviqJp5rJ2UvoVGdfsZ5LmmHO0mHMCvWteA6PNafZ0YKflrX2HcxjACkk9n9RB6psYFAQyf/q8P7j1xxYPCFMRYJx9NkJF0ydTlEgitcbGJllgaFQ2m10GeZ/FysTfICsWFZuwsEH9GQsVsZHH/WMYxsjIUCQEzWaNXFPmdREVTWs0GocOHTJN03EcFsZ+6qmnrr3++le/6o6/+PxnAt8/9dz5qV27SWpAChK+w8tO5NK1ixI8geQNSvrg4rHSSrKqoRSWK7nF0FfzBSyeni+oIIPfc/NNP33jDce/c/99X/zSFz772d07d8wuL9qL88Y1h37ip3/m3/zcT4+Mjs/NzCqK8hefvddxnB/7zf/80Z/56Vy5+N8/+b/3X7MfIlDtyDJ1t26TeALhq7DOc95WTNdBKrCm5ylLAAfBXoVKLitTAmMOJ4vUthIhEIUMZczpFP7H/Dn0rImoNVZqS4YTD11SxKI8IrkShNXBytQZbzzRslMbJr0quiBV3ejSs8NMn0/lSpgLjDNXlIvmY4KuIPlWJzuUJtdJIMsXka8m1BB5GrwBUMEGf9enKYqqEihBB4GiIbEAXCIY0zzPp+kfhaosiCqJmIE1WQE1nKrpCooDZCnUUO6rKUooo3bABde/Ah3JpuNU15ttG4UXqqphpEbwogzDyFmGouiBj8xVy3EhtIFyCjfyfSiEKYogyp7rcWU8F/akvlYmWxZ7O7F9y+t5JjCRtZCzwB5OmpEjlKoi4iF6XkCqjBunfzwvQiVT+5T9a3aXz/5WtgK/eb7+Te8RNrefNvn882m9pv/lByCf/0kv8/3N7/SSjt3V6oe/7+35PMe+g3NQh1/O8xrUw9k3U1Ue2oxj5V7oRnIWmRIBWA43agKzAQ7MIvOBEh1eTAvN23f8uU6UYoBFstkY2NL83YRC93JaujLyVpcsmYhUDZWKjVpNU+TF9WoU+pKkjI+OiL5b0IbGRodbtfWF2bm3v+0tOw8ceOBv/+b4qTNHjl8c31awiuXzqxdVK+8E0blTZ9949/dEqjqWH6o3G1Pbts/Pz2/fvj0Mg3Nnzk6Oj60tLUtRaOh6zjR9u+3asm3bpVJJkqRGo4FFGeI+4fDwcBiGpmnyFUI1Jll/NdCiq61WS9d1z2kXCgXeGHxs8LBr2TdwXTdlsUgj0By0u+SISq1VDtrxwCkUCq7rasibR64bttrtECQYAD8wQyBIhPjpxEZtvBmoVGBIgXMY3CAjEgTaX0GkguCliH8SxKH/2OjdcugSt/TYUcTM9XwMymd/KcXb9I43XccHuqz/rqvKfkumWCyn0dNL3eSC+s6LQY+GiBU3u71+X7xCifTLa6j8FKk2FD1JNJE8tNI5xSxS6eUx5w9U5Eg6ipcbmFeoSwVlJIE3FPoSMCQhxRSSMQzrkG0gUVRd19UNdWhoiD/gum6+WEAPyGJhqIBSFtehfJhy6tQZwXZvvvnmT/3Zn8zPz4+OjjrVCtTHfEUQmBDmsluPznjYq3HOXOzxuohQMJNE4rOkvisKwjUvvd33/S/dc0/L91uOc+SZoy+99tri9h1vfse7vvC5z0xMTc9enCnnpKcefeK//sRHf+LnfvYf/+MP6Tnr47/z+4cOHSgU8mooun5TlwwB4rHovgAnhX4CnR3KVrDeEbDtjG0mYCJitA7dH1Vv8cjhXE1seXMgnKFl/CjZEGZUjK5qYAVC/iRG+MTPhdFFlE4k/yL2LThjlpXAYwKopAShY7OmZmvqRaezDJSkMeUEd3AcrONVLS1/Z+LgWPg4Qvck2BYae/T4JJmpjeG9JF8HpEdFbMsPfFy7rkHEF3eHet8AMxsvSBcv8CKkLwSdKopVWdY1ydAlXcM90bzwSQ6PlmsJ9ShYJQXZUlV2OUkiQCIdOynMGXnXg46vIPpB5KEy2HO9wA0DUQJXVfcYTMoqsgtj39UpDd12CaWlNkbW0u9ABvottvwlZiXqnRa9BbT8WrkcQyeFnXSlei+/DTI7+r3Y4Gn0vO7OD2y1peNskFnWZVVfLZv4qh0no6z8fIoBBvXD3wtk0eW05+kdDbKPU4K8y+z5bN/2y1F0mxck5Mr4zpgSJ0FgxvY8nQ1+QQwSjb8ocdCO9go5I/2TTWDBPfDCLfrYG29wwLTtdu+zfX7FPlg6AXmPIWEgxSWz+bprDx89cqSczyGqJUA9p9Ws7dq1UxKF1eWVkZGR973vfYIsf/2b37o4v9DyhZ3l0bnltVBUzOJQpFhDYxOFoeGV9frIWMnzAUpeXFxsNptzM+dbzfrundMXz54ZLpUNVXVdu1GrhX7gOvbQ0HTbdRuNRmFo1FAh/VgqlVYW5jlIEwSBaZqQKXBsxh5IklSv13O5nB0E+Xx+fX2dokMxQU3CjxGr3qRjlffmNPINeyCTGElAHfHgYVBY8qDwo6s67GaqGWw07CZUCGLOPsoGpLViiJQh4Al0K9LikB/24ZZIkqLrej6fb4NyyEZ+X5HBdgoy0M660bUJbQhJZbe6La4nQRAosgoSlMDD2FfJOiGXhQ221BXkU2gknJRd0Pg3DNy0rCQzi8lKAmw90zB1UDLDoy6uy0/6m2pnJNAbJt1OLPn9rz5G22dzDumHo437V/YIWU2fS3bX1qZSLDOEckb0B2AMMpnzIYiDkvRIx5hzHWCL6cNcmhmDT3i3QdxTlaClqgLxjdSQrvU1UDgYbFr60FA5DMNafY35QIlbRhobGxseHVmamyPgkPboo48Konjd9TcC2rdWObR/38LCwq5D+/2WLWqXgK713HDn0SbLIA34FMJOwJjOZ6hPWDI5FEAP7MnwOcRi6frbbzcLhdV6XVWkBx556KXvebcwOnrXD3zg/gcfiFqOaRUCx52/uL6+/u1cofDhf/kvfuBHPryytvqnf/rZ17/mjounzxYsU8J6LgHfQ84/GPVh+9OanlmiKbRMslb0d3peMHvTUDr3JwnPxrdBlT0oHwph/CZjnzQCGOqGZUSSiMKXyw9iqXB2A3zaBmDwxmyhhLZBNoJldulRcvEIQO7xzGOuoTRRxkF/Xk44ro9ULPkRSelqgtKg+oRkM8O4ohOidpdC5+FGoYwO+wUtfiysB1cHNbmK6NEQUoDzNyUFVUmCT4UCpKBLJWAolUGtMzImBNxRJVUTTV02DVVRQ1kUXNeLRBnhewmzIxBQ4BuEgpE3qKIKnBoyBHcFy9BVXbNtl7pX8kFDFzRazdBz7SAQsCqCqYkXDSoPIEU4Ks0DeStl75nINE2Lb1iREmDPhoxK2g9Rf+u/N2/fOWw2MLRReqh3U44VZHq39mx4acP8uiIDsTcDMMiqiNffnr+mb3RbZgNWzM0j7r22b7ZDN9iOm97R36Fj0MUbs9VMwqB+uFptcP+8sEmGgc/xSm3QS47bzfs/GzDd4Az0xAM6oJnYmEvNms53B9Hkk42ChlWHdmwGDqUXS34DEaElAttpUdHm0zy2Svr0wGZeQddCc2WTJWaiTAgxudOa9fq2bdOyKDRqzfFyURTCcj6/srhQyhnjYyMz5841W/Xv/+EPjezd9+0vffG5U6ebtrdr77QTiucXFvccvM4XZScIdu/bv7yybhTykqyMD4+sLi2Pj47Mz88fe/bo5OjQ6vKKFAn5nKUI0ezier1aLRdLwCqEHkADFEO1igXTzFExLgqRUyWalE8mIhs0DbWy1i+MaRKryU5AJv1k27e7xBbbMQNwN7DFs2/QO/yYkxRnAZgh0fERQDSU3TNwOKrilCQxiAgDS/SO3OeqKucKeVlRQCtIUUBFVVRdk1VNJLxB9uGysdD30aeG75YeukzVz5xOSWsT05OmKfWE3gTkhl1jLz5Of3599G/WDx+Ums52ddd9bfZ5BjJsrGPuOkXPPvvCrocASwCZgHioJAQhlxFLcgQjMBB9PxDEyA+8MIh8xJbZ86TlJHEAIMTEmgbQO5VdUVEwSCQFfpSlyOkYVhTo3KX8j9z4UTJSrmW3c4oeRGG5VJqamlqamyO3OXfsmWPNRis3XJoan1hbW1MUpblavbKdYsNKtfEvtBojQ8PrIj3+OMYC85d8SlJdCkNJdlZWrVLpmutv+PrXvrp9avq5E6eCuTl5x7RQHv7Rn/nZn/vxj95x28ueuP+ByfHCeq1+7xe/3Az8n/qVX/6pn/3nru186S++eM3eg6akNZuN0EA0nyKtLOGLpYJMXfSyF4R+SNk6jqAT6UNsDWMJ4SEawOv3AAqMgAviZIGP8lyozyrZBBjcMkoGYsEB332EWLaKEDdngYiS1RMojcDrquehXiKBqXRH+skVjGc6r2Dcm9lVvUPdI0he6BMZUcxIQ8tD6u7yxxh1EiOCVI3yCST4QNyvVHQTG3zgVYrpfqhomEopAhWepygpApXw0v0EviKBfIglwzSSpYbshKr4rg31GNfzRclX0dMyRqsURVIoKJ4fwF6XpBAPXwazJ8n5xhrFqNESPbBZQetdUjSAImUwgcoO1dcHHrOnZsdeStqWdYZ7hRT6rgy9hQQE+9kQhu77scQa7Hi/XcvLoPBcNwRoUOAzfbGJIuOA1v+GN+FZz9xnnzc3+crzb8/fZBzUtorRv+TZL7l1/Z/crtZz7GXn3KoDsMEkGvDXDU4Cc/LFwU4yruiE/GacB0gCjRtmeOIG0P6NUrOEHpQ4/9hqFKRIEdMym75LyaAR1TsfM33S//O9HEd9PtbJ78f54vgfkugDUhwRXyDQ56TJ6BiGfvDAvq9+6d5DB3a167WiYZqK0g78XTu21WvVer167bXXvuUtb1k8efIv/+oLlfWa7fulXGG90SqURopDo6cvzspGvt5yx6an8gWY9aZpXrhwYXRkuFGr6pqiG+qJY6cmx8dRw4a0b5DLmYoiiaJRq9VUxYDIl+8bhlEqler1esrZzxOc63qp3hHGN4t86ZrGn+RNkWjy8BsqpTG7H9sFSGDHg4EetyzKoMnDCIzr8ChCQi4iB8WJTIT9TMQLJZGVZUmACEV4sMBkXCHJhGUCbIj6haDfJjuZDTUe6pqhW5bVarfZk0np/DRNkzTwk/Y8/e5UZEprewXuPl0qiqoNw4BwW7NJ/KeGRpHgTEVvnGZgCyk7hPi6sjoASU4CAcgwpKBjjwOQqenq8m+3hM+hc2WC0Jm/JHZAkgSI/ZBOhe7G0w5oW1rMqAScgs2cMgzxn4v6kNCxbQpKBz6sfqr2pMsmzBUBDCFnxr0M3hPWMRCpTIADugLyMqJt2yrYbgCJTuuD2ZuVZcn3fU6CWZbleV61WjWHRzzPlSRpx44dTz91xHe9nGktz8898sgjd979xp07dx999ti73vUORVEuHD++89A1W5SvSKP+3Y0Mf4RHUsUDAmtBso1jIz6saYZcApgPB1JR3vKWt/zNffdKkrS6unri2LHDk+OCY0+9/JV3vuUtxx5+7JWvfPV3vvkN3xZ0Vb73r+4LpPBnf+3Xfv5j//K5p48tzc8d3nNoZWVZVi2a0jHtDelNocc94OOR2kJhbyCg/Jc/RiRMpHuF5wHvgexnVuQF9hP3gtg/rhJIdhUKYcy8GVfDYXnxXQQCOO6gIjQRu8z8pGITX0QBBpUtbbDHUGeIhQUBb84GMct8dgHJcP+Tph3/jhUP+my7XSy6ycYjRYDV0G3HfG9UpwE0PWLwMdqItPVU6B9EsuBAvlc1BIyu0EENPboCgzXRxKTcREyQSbrAiHGQmxP6fhSqQiTI8HgFAXJhQBtpmiAHoSKGohuwwIWEtELgezbIUG1KnMi0CguS6KMwmSq2kxW51xzPMixtAFFtxLD0tf430PhQ1jV+rty3oPToUOTxfEwCOxtAR4PcgKxp1MkA9FxNlgZxg9Dx1mZkv4Nv8mZXRD/jSMV9232dW8wA9EXODKqYHmTcXEG7epb6ZvGkLV3PIKr+v+8ZgL7Pcau31htozxo0vcNm8wxACocYFB9NDhIzcmxy5R3bZ+N5OW6XfpdCGtQJ4FNOF3cOTsR/yqIPs2fMdmZf94CN+8znN8T4u6gMshbY5Te2WfkCUrSMrIjXXXv4xNFn8zkjCn1dU4eHSsuzs/v37i7mC8eefnpkqPyWN79VkqRvfvObq6uroqJGgTS/vCrK+vbde9cbDdsP927bbpOYgOu6pVLJ9/1SsbCyvOh7zrbJCd9zDE2bGBudnZlxmg1D1SQVPJ75fLHWqCs53TJNX0AsTZKUZrNZKpWATCXCO9ZDjVE9KjD3mqahoFZRfNBownpmQzzF/adx97TMdFCCaJCf1vUZYtOAwieIgQh0wY5HvL1wijlZ4QOBPs9II/oTtI1VwG7q9Trg4KDwk2WVqFQoiph4pZnh0W/8P5/ljg+VhhvZrORigHT4pd2lyNka982OGWcMkrrEy7zCrgm++SYIMAGJmw4KE2TfSQ4uvJBNAj09niAST4CAOI5tQ0iOLL8U801SxWD1iWFTdHFkkLLgVFqqSC/pz8zULrouOjRJzMDVTO9XljEFmk3wchZL0Ldu1GygjMgw3bt3r2VZbqvNluk999xz591vPHz48He+8w1JksbHxx955KGd1xwmG2cLNzzg0RAAhUInLGGAelseNqDeZYE0+ACIAMPxjuRCSfC8W2+9tVQs19arhqkde/b44Ve9WhgaFer1H/mZf/6BN9x9cGrnwX0HZ9TzC5WVkiV94c+/pud+7Z/9wi98/L/+l3/0/g9ePH++PDxcC1xU3SbYFwH1qQDxBQGx+JMLT6W7sHMJvwR3i/7HeB4WlwBxsCyDx0iNzXJW95VcQQmpVAMzPQ3EwyZGRU9IpRcIc8Puj58Ru3kkKQxaAnbyPQ/PMTMk0PwwEGWJmIfinSidC6noYdrtXB4e60lnngX/7pINToxhOQw9UQoDgBBjrjvWyY59UAkupwxEJeL6ihzJgm8aqmEaSKt6gWRDexsKyq5H+QEorHmCDwci8GRZKpgGHndiQpObAQoNRYFAME4qowA5EiQ3EJwgEhQ2pfGMwgD6Al7Qkh1HNw3J9TxA51CG63pgXxJlhcIq3TD9SyIsNo9O9u7svXtxBiCQdS445zJwUvQCvzscW31j/8mb3S7FlbW+q2f3kWNLqc9y2f/zV3QNg/7U+2AGff55GpSXcz2DLvP5O2NX1SH5hxn+z86TbF8xucflj8NNagD6veaAwQajOTWy6Ve8k3VN4zjMwGz/tLHFJKF8zXQwJJ77UbKkC3TqE26IQwwwXzbefjbU2m39X9kjSPE/bDT7vg8zopDTFOm5Exdvv/ma+YsXpicmxBDh4ZHy0MrSsizL+/btu+WWWx566KFHHnlM1nTZDSPH8fywXC6qprW0vFooD6makR8qgHkTVqW6urosCEKtVms36qVivlKvjY+PE30h18tC1sd3wbZpGKAyVBSlUIAAcK1WY6XeytoK0zUQHafNuzDvrLZta5oGnsGEAojdg1i4h5H3GTa9HgBoDMegsD+sAu5tarG5lg4A7PcU/wRaSRAcxyE9JoU1lVJXip0EkI1KEB2w3baqwOJHvJ/C/HzZQC4psqIqQG+YhkI1ALHzmZ6xZ0PqHRtyJit9OQ1yaSbgIvV6PQiCXC4H+tRM6w22DRo/vZcXRyKZ5jwZrmm1fHqGzm/Qk1BEFuHwzMgcaJOG/Uixel2jPs72C9REGXW64NIJEQIFcYoDX5ruGuYuLWgJIUkkhCgR58qBGPbNYWjCcHOpbEpqg3tUFBUMOoRzY355TgikRkk2VMyjPfD8Vru5a+/uQqGwvrIaBIFhGA8++KDgBzfffLMoihfOnT983cGcaa0vzhWHp7Z0v4zZ3VD5xDUAeCdbpkJhzXjpohlGIsksp0U2qCg06rmh0Zuvv+GRBx4wFPnZJ4+8bW1dHyr6iqoUjY/+zM/+/r/79Q+8892GItefrgW6MpUTPvE7f7lr1663vff7fvInf+I3f+0/Do+OioEsAW1CXisttDG4XGYUPGDt8WSi2L/gd+I7CDcT+C/WrCCOLHIDJElAT/qC6Dq8YnTPAxT9U3A0ARYG7KbJKnNqoWYsisiglURFo8rXpAQhyS2Tb02GflZ9LDlTRxygk2GjBEzERIVdpidxdqbrB2MORYlIqHDPZPcL5IwRej5JJiBrzYhWOgywZ6IY+oFDXxdUjaA7KP3tLEEotMLNIwflALcWygrwTjwUfd8NQ0mUVa7u4RSDICvIwAYhWI9QFwJJmAjyYFRrIbqs+x0KyJ8HQQhm5AAlwBB2zDoAiU3ORTOdQD77eqTP0xmZmX90BfuyCYOuXH2aQumy/nmygUFuQ+az88nORWYuDACybLozTadSRipdQ+G1xiLhzw+Zd/nWfO/SyW8ntfB8JVfuA/St47x8dper5QBsfpF9/7IlL2iT826SBvn70KROsREFTujS41Hx/G9kkAk7yAHYHBo3KBIQv5N5hkQ1hvBPMsL5K+CK6wj6oJH+axSmrCMBZWBB+UEbjURlwbToIrIEZgmATEJgT/BZWv1YRT2KKUf7J9s33Gb3xdObG0I7XX+94qfA+BMG2DC9YC6XGx0df+qppw8e2Hn27Nk9O7aHdnu5Wnn5S25eWViorq5ce83BAwcO5PP5hx57/NS586qhNz231moPT+8YnZyMREE3LS1XPHX2zHU33ixr6vj4uCzLqysrldVVIXSbjYYmiWtLyzt27Dh39sxIeUg087X1dd/1SuWhRr1VGioHoNqQiuVS2/NXq+uWoQURYpyMkOE0halrzIOuSHKj0SiXy7V6Q9f1VqvFm1Aa+2c5Hoa5p0TdWUu6M6jSrXlDz3OKPH6fZMDAMhRFWhD6cAA8D5AmVSUrECjwIKR0uSLrumqauqrJCwsNWQZ5EfZ4EX8SBKFt2wIo2MG9B/y2aamaEYoEId94HTwq0o2K1xAwh9NvvEWhyAEt3lM6kAwxsl27XMr5vt9s1MCzNFQq5K1WqxX4sYJvXLdKmzZ2KFxTujcRYoEKWMmeCfgdYl4PqKIP9Cssc5vdTZm7pu8lspxCHJtM9kc6mtx13kwiImY72fh7w/vp7H7erXP2jd3MRDeirpm259t2u9Vqua7LA0wUZB+KqjHwid0/9g8tHToJ5PugWpXYxOIkQOw+UcE4QcplQRaAiEM0G/RNnN3iYDMfhISuIQvAlQVxXUcU2o6za/sO4pwVPNfXNXN+dmHuwoXpHTtGR0effPLJa67dv2fv7mPPPP2KOybZwErqLDulHaR5nu0HbuKmjkESn06L+wi6QvYpw+qShBJjSnLaLbff9vjDD4d+cOb48YXz56fHx9RCSXC9V77zHU898OBfffVLd73hTltwnnnumBQJh/eZ/+U//Lep4Yk73vnu40+f+Ozn/nzngQNMDouIP+UeqD8llcqxQkraYn1mC5vKkbMcobGrJQl2qy0rUegrqiqTrADxQqI2NrZ9MfszhNgqIkB4wACCCiEVbFOGGdK4OBPAMBTvJ/wOa06mQJ04LwgfgCi5eHXiCEWKdcwyXcYGpaRAuov3goyEM4LunCWmkgD4IaDjAikp1+5StoNK1DhGT5s66g9oigMuGYRwL6RAkhQv8ByvBeoeSREiqAVztVUmKB4XC8my3Gw2NUWULVWPkCrxA0iKRULguY4gaX6oBoGoaoqsaYauOEG0sLZOgthUss1XQkibtt8GWIt6DD4TKzfT0+vS3uoKjmQxk6hhTlaJ3jB/16LU5QCk6fq++YT040mPYw3mgZ35HTKvF1HJ4zVoQ8nQzwb40wEIzzMT+ydfiPoi5tXaGOwZvNNv4N2HjxKPic61x9GGjmfZJ2iUCrVw5pFkT/ElLnLvQlD1TaDEJ0yBYp3RueHzG6HI9MwHPLCrEunfsoPBaZKewspB93uZ5+3icb9kDqv7gi47Mtf1gfRjXRtw57zpO3hJEYL0n/CzeWOOP0+k+YkwSnJZm19Jp9+Sf/ONIE3Y89FeheBLjv84PBCPc6zBLDOeQhLIAEmmfSQLCESwgZh49XSvrBKDLTkWDeDVHnEOPhEzEbAVQHMaKyaxSYD8kSkKMLVYJZgcaWjPEvUDgqK+R2tNJwOQygVgm4lzCzHUnPuVjb84b5cKICWzKY1PJw860+GZtQpp8ThKh6U0nZaw72TJbrfz+TxWXEkZHR2vrNda7aBYUAr5oSgQfMcdzluqEK4tzuzcvi1v6e9699v+95/90RPPPluenj524qRZGlIsszg8JKryhdnZiR27zs7O3fSS242CMT4+4ThOo+232y3XbuWtnKWarXor8vzF2ZlyrhB4fuB5IIETFdvxtJxVqTdHJiZLoxPLtVoYieXxUUUS6vWqlc9B9NSx4XHJkuv7EmLwkabIlpqrNeoeWVeqoQdC5JBIztDQUIP8AS+IGk1IBNhui3pR4cfG5baEWED5IO003O1xLzJEk+zRuI8RpKbImaKKy4tgHDIMIxQl3TTWaw3PC2RF8mzfyuktp62b0s49exq1uqpOu67XarUURdJ1U9W1tuNVG01Blk3DyhVLummK2HQZ4aHC1mPjkiK6cYKI0Qxx9jaZfeQapAoJ+M1RdSpAVCWZAq8x5RXLawpCpGuS3aqLovhDP/CBBx98sJjPLy+t6KjADskY5Z1XhHqSAI+GRjWPm/iH5gHqm2MENSOeYtp/1kNA+BHKoTR//QACqpn5Gwcz+TeP/DDyk8JRDmPyvGZwbOe3RETg/RyD2C1J30kqI+OwcGeN2WSp4vUkVvegpx/Tp+DUEG0iyVvG+PG/BElx3bDddhoNWP9kkTOSSiBMfzqWYk+AK4Y7dgztlYz/JowKOO2ppohwD1RyGoSRC+kDQdUg1uG4rtiqB5FpGSYceBFEkr7jK+hw1dSs9VqtlLO4VObWW289euRpWHlUTP/skaen9+zYs3tXZX1VFKOpqYmHHnkYCBfblc2cQOpdgiQ1Wy3LyqGqudNfpAXB6wYj5zP9mA1IE6l+tjsRhIZqF62xRJyAP4NAR/BDSxPs1svvfM0nfu/jTqsqaOK3v3rfD7zqdX4rCNstbbj047/6i//3j/yTv/z6lz7w3ncHUvvJI89JrjCiib/487/43/9w6iM/9/NHTp06+uzTN11/w8raeqvZGB4fW1xeKQ0NAVpDVhmtpjEMnpV3qT6VkXXx1pHYzSJyJwg9o8on3j2ARxcjEUS9uHzaMni62Z4vyYImRbIoqmD+DzEmohCZAZQ7kI0oK7IAet8oDBVRgloCHYjHFecNBD++HjZCeR/A/GVdEabJgnVOQ6XTtxCJIBkNXt5x+Ugo0JOi6D/8alEQDC3O71EBFNGlUige5qoQ+RFBEEVVVqGULomS6/C5ZAFCv2BYcr3Q83BfwPgLvgoddcEDmlFHzlZXPKfVbDjwTgUrFC3AhEIvDDDUwwAKX1hAAl8KJV0Uhy2/0fYargfOIdGIRCUQRNB9xvLAkSCCLhn5dHhcwPwxBCibIcmmv9KkOq9APnb8zhRLf3NgiHwEhP9IUBI+dqtlx3VCbLjGX45HQMKFgFOglhz9FXv+/BsrJKtrxUm7GEMQu9MhwoJsSadeS4eOlEvW48QxiYnCYcXOBFAWv6AVBy8Sw73rhxJJ/VpXJiKz/vZPGSc8A9RUzjVKSGMPaF1fv1rx4Bd5+wcM7Olzg1xsBwOAVq4INJdxPKPPuLqsw261A7tAkFtqKdoyA7uk+GKy7SZObQcJzb9lQLJpQUSAh2u/Yj1diLdi0Sft9zjmhIUdVAe0XlGVFULFvODSO8hyxoGpTESH93vu5K5pm+0A4YVpiAp7/tDQULPZ1FWtWCzWao1arTE0NFKrNUZHRsRIMHT1wL69s+fPTIyMCGHwgz/wwYWFhQceerjWajU9zywNgeRNM0sjIxfm5nbs3W3mIA6VL+Uty2B66dmLF1qtRhAE62sroR9U1yrEJkF2HLglOO5C1JGSYoEbR3M8V9WMXKkoKXLbdRgtw4q84NNMCoIRVE50YXh1Zir0tByP+/kS4y0uJ+2zJGbHdnZQiRIT/sHPIDMC4A2K7pOutCJTaV+ULxWCyBdl6BVYllkoFCA5LApeEAiirJmGaeUNy1Q0Q1JUQVLZswBL4OCEz4bLYzcgrlTrDPIO6ibeyGgEEqEh+TmhrirFYr7ZqF13/bWT46Pra6uaqjh2G6XgCD4FrJ4QoKDPiwLY3NwHl/m7F8x2eUvEZR2fJXGFrf2+4hZueAGoA1ZBqk3k2Q6L0HPB/Ug06gxE35BK6r331JHq3BV9hJAQHU59/uHoAEQD4BhkLQcQsSdPnEcqmwHQ05AkUppTlO3bd8oQ7NJ4mjz77LNCEO3du7derzeaAIAVctbS+XOyAug8E+d08OXp1XbyopdcurFBhEiNJj+iEEhhAIrUDWpXUMAIQtk05GK+PDay78B+XVedZvO5Y0ftxZXK6ro2NCx4njAy9JGf+6nJg3s+f++XxiYmhgragd07cgjRC7/2q7966vix//j//qeR8tDMhQtiFIyNjVQrlW3bphyUYbS6Ar0JEw7KBejBhAD0RR0hLdg7is4lOjLpjcSrNGL7HFUh/RABuBXwO5GDC9J6Wpo8z0FykIiB4IiTJHDoYR65tuPaLhxUiAd2TNUEONQtSLLJrhpreMWDkjNmTCbKSxjGCNQJiMxHFmHoy0RGCiNSUTVV1TXNBOhQpzomLMVxXjREbE+VkEpyvKBl+62W3Wja7ZYNRBuZuYoC/mIWog59r9lsViurgevhkUtS4IuNpl9rOC039CPN9kPXQ0E8cl8Qk/E12deVYKSUKxcMU1PEMHJJFcwLJVHRfUH1RNmPZOKNVULUCihg3M6UTHQBSbo8AUpJDMT3p7zPqgoqLd4a0qh3Z2Qmn09V/LJqDKm8YWq9J3sHexc8Q5mhi2FdGHW0qm88QfZM/AgpidMZDendZm97k7aJRZ611TZvXfrtncr2zF87OeIBJ7qC9vyPcAVtkNW4+Ve6XvxDapeJItvquOodyZtb7b12ML+TnYobpiUb25m56meUSAPQuYHoJf7hCAuWO/wkkfgYUEjhLQqbkM8DQmmCcVMylH94DiiSqJBDlNxjvKmTQd/B7SSWHB+NaOHjz3f4FzreVJfHfrUeq4S4aR9LiLlffAeEIa12Y/u2qdXlpcBzFSnUZMFu1CPfueGaw8uLS7wXvulNd2/ft/9L99y7srwmq/rcwoqEtK5pFopBJExOb/f8cGll5VWveXXgetDokpXA82dnZ+12WwiDenU9EgLbbjFFRiromD73IAh0w0CknzR9LcuCQU80+emuydV1kAJICECZhYN7jHPoKeCExx4T9TDGaWv9tvHRpNcpyzLt90T2x/UAiTJlKjggSSBiR1G1LKu6ZuZy+ULJzFlcx8wyrvliwczndNOQE0h3VtomPellXm06/jsOwICmKEq9Xpck6aGHHtqxY9fC0jJLraVkqVmHeaudlu2rrd7Ci79lwWNpTNGmWvC059N2Ffe1rlp2HudMOd/l9UkS0VMSP1UUwdYvFAowBolC96GHHhKC4CUvecna2tp6pcqlwM8884ygKHECMs1/vcBMEnGmVwQR0NDIyE233KIZpuP5p06dOn782NjoiFutICMhSPte9sof+vBHAkl94tmju/cfdEMUBRUs9eTxM3/4id83VPk3fv3XFxcrkNULQ13V1tcqqixblhU/Agr0wyWnPHDniSQLT9qBbPpr1LBGcUFOzzogIuGLbqdVERFrlmtQVRW1PCasa1XTWEyXdNzQ+u508BCAhCc8Pf3gePQDjrO4FmTDD18Psj0oV05VcOPhwdAilUjJGL0ThXj06T0yKpJv0zRNNuVjARNCSeG+cOWqEIlBCHLbKMJupymqa8NaJx1uQZFEQ9csXdEU2fMdPrjv+41GY319vdFoOI5DsEAxwlFCKQpVSdZVKAfj7Lqh61hwoGWRDGPuit60f9b+7pp9XcRHWQu2a6RlaSFSs5Yn0SDzr8v6T6+hc7U9Pknvhzvl+1ld4sylx39Or34zQ2egwdphJuq9k8u3J/r2QjoBui6y13DpenH5re9BrqIBNMgw3epxere0QU/k+eydfc97Vdrmxx90a4Pu/QrG1WX6AIOMhs0djLQNmj68BPTOo5SmI0Fhdo6Ad4Lu83IWmHP38Q1m4/dxVqA7qND7ILoeS9/Z9II2jqPDfGnbQ8WS02qrsqjLCGkWda1dX58YHtY1pV5bF8Po0KFD73jPex69/8G//dtvWPl8EErYrRS15QSTU9MN28vli802ZEf37NkHLIksu569trLUqFXbjbprtzzXtpsNlcrrugINqRox2+tQqkKEyW83USjMm1aanGH/gSM3jHPgz6QROzbF+GjsTrAkcO+s33xe9Fr/HKaVZNnxPXIyYcqrqpoGh6APQLej6XqxCPojwo0hIa/qmm6ZmmEomi6pAP4bOUvTTYB8iEEDv0lCc9Bk3ORR9g6wTYaQ7cF7MY3cvV/+ahAEe/bsYQG1dFtFJ8fBn1Ttegtt0CyOrlb7O0oVdy046bjlDFU2JJl+vvfFFUxt9i3T0/HZ2X9O019Zk4gdPFVV6/X66Ojozp07HcchVLj61NPP1tcre/fuW1leW1paEmV5dHT0/PnzgusKIMGMHxzXg77Q3UysUxF4Ii3r8PU3KJoWiYLtOo88/KCgy47jCIoatdpCEF3zxrd85Cd/phWKTTesNuyxialt05OT47mHvv3gr/7SL+69+cZf+sWfP3fmrKIonPcAL7Cu940cU4w8fgob3gfOJwZ9UG0u6Y0Qeo2h6tnjgNhGiFAzg/wYDEpd1w3DMqkZhkU/pmZYmmkZhqHrukZ19n0HQNcVbm6fiFB5ltj0l0nwBPxT9ILkymQEp4iUKr3HzjiJDVfe2wSY4LqmoYRJV2RNgMIAYv8ECQIvWbwE0JILwx1qB6KIaJojCpFlaKVCfrhcNCifoOtInoCiCgXxHRlsgYYTHCRZ0hRZVfFkwzBUVASPFA3XiZJfz+f0SMfQJ+cLFXdJnV6X/dm/A2Pmhj4ZgKwGfNq4qCZ7hL5L6CCHpHeh2zjY0DZE06m2J30n9kVivEHSmGWWtkkh+yLJFnX9dJ87vb6u+7/8mbl5ZLera65ikOOqHOeFbv8gI1uXH/5P3o0RQfw7xQj1/en7p/RbvT/Zr2S/O/ArfEX0GVQR0ZVS/pXzAADTA8tM4D8sfVj9kMdHzIMVIql8k7Q8YxMD7GTxDw6In1hLkrMNMXcHwTYI9o+D0AfiwRvH/mPeB2qs6eiHoQdPI0p+OvP0BRpaXQGkzvsknqWgOiHYt2f32dOn8pYZurYBnc5g9/TUjqnJ544+OzE6JsvyBz/4A4Hjfu3r32i7XrXeXlldn9q2y/OFZtsdmdrpeOFzZ86NjE5ce/11Fy9eHBkZyRnm6tLy+XNnQtdp1Ku1akWMwlp1PZcj4DJR56i6LmuqIAMnwDrEbMpblqUpqm3bgQcKczas2WNh658vnl+nIZZscIgZTnm9YuMsK6/T1ckbEAuZn0iEbA0IXjB+gMxhMIYoyq7DZTAxe2Z88BAFwnzSYrEsKXIAqwL5+ECUQknWrFyuXM6VinrOVAxdUXHvDBxiTvCIQCabzbtBj3jjXtW7CWWb5/rlkVHX94vF0onjz93xmtdOT29bWVkF7CdhBVXgpzGeZctD8ZIX8PxbipC5rB9haz+b3Fc2A8DmOOeCsoRIfdOkz2dfi6uKMzZrusunlaNp/kGW5UIuBzUA01xaWooE4drrDtuez5NlaWnp5HOnRdMMgmB+flEQpFyuEAXh6tISBGaT6iyaTXQXMVER/VzZ1dMd9H1XkRTfc33XETR1/8GDQyMjKAyQpGeOPL545nRhfAzIalkR8kWh6d727u/7yE/886oT6FZR1cyxsbHQtSdHjG//7QO//Sv/z5t+5COvf/3rzp85MzxUksWomM8tLy1EgZ9mTLKIjvRxdPUqofp81/fdAIgXjksDvILCgLiHY4wNqmvBnJbOFz5O54mQDFjskhHJbxxoz6C1035gh46x+3GtBVmA2Xc2/CTpAk4d4HeAjDblELlIjASIAT5P1QACQv93Altp8JscQ0XRwH5E6mJR27FdMJbSBsf9hv0qGCmXhspFyDMauqkqhgKovhiGpVIxn8+ZppnL5QqFUj6fV1U9iETH9hwCb5IOOtiE8QOHCaURoqxwkXGXX90dz+tB/GelMNKJ0LPm9EXLo0N8P3ShdY8fHxxEHfxk12Lb64ZlB0yv3d/7ZGMiimyRMnGPpOXMXDoDIcn0BqRMnVDXNsBBr97GZ+xdnnotueTi+q9yvWZ9cp/9PzyI5P6KQd5dy+XV2kK2vPIOOG0vUOy74wZs+RRb/PwgXv/sA828zySYGyBtl/PcL7/HBqUdBgUje59LVgqE/xYrq3PVTswqQDWd/DXi46L6W6ZezrJ6cbVfZxtLCvTjEl4iPSaNeTpBevyNl8QCOThC8q10eWNO6vSd7DL0wnrCjuMUCoXK6trhw4dr1aqmKs1qVY5CKfSHSvntU2ON6qoQ+YsLcx/+0A9PHDhw72c+9+zR5zTdmq9UBdkKI2lxtXLg8A1eKKw32kNjk4KsFEplQHRkNfDdxYW5tZVlFZB5BPU1VaG9OV8lxS62m1E2xouJJFEBgGJaVrFYxGYZhCpIMhXPdrwIOQFd19PYP2FY45wAP6w06sFhFCboRIrZdZkapW/s7ZK91BWcA4tgiLQ1eQIBiFxgCriZz4eSpI6MjLRbjqQoAHrJKq5LljTkviXVD0CbCrwYqkU5ioPvEUgBR4jH24YrvCTdU/xX+jjviHDt+tyPZJo5x8buNzw8fGF25qZm8x3veMef/MmfMHOlBNOfeBoxYuHBJvyAl9sG9erA3t7qfiH83bTeuCDrQPUaB5uHyba6YTCQLIsQy3ZmFkrHaBBd11EJI0krlUqz2Tx06BCKT3wvUkJRlh5/6smXvPL2vXv3r6ysCGGYz+e3b99+/uy5ofKYqJJ3TRJdg8R/rrR1dBWTzQPGqh8KCgEvd+zavf/gNTOnzrietzA3azeqgtNy2m29XCQcpiZE8kvf+i7H9v/y0586e/7C3j079u3eNTs/M1wU/+a+r+7/7d/5hV/91Wfe9S5Q8vu+ZoFpl8pykLGjIvAkrEsXwwsO9WPanbCvmBiIfsUsbjG2O/0oP1k6iK6gSIzD72DbAeUn/AGbgsoIPBHok1ghiNEBiYUexxicZ3EZ2GWuS7wAUjk1JBcQQaceRW0uXPY0FBJXwzNOKRb7zTSuFREQlVfJiWEUImoWeCxnBy2i+KKoKrKC/ENkKKIGzQDQUhm6ajuoF/KJ7AIZABqSTb8tQH1AkI14Okgonwh1M+e0I9dH0TyKigXK7iqy48VTiRho8BXS02Sh5PgyNigob1RdTI1GoubZYMNkTZQuyFxvPGhzW6gX+5AeLYt2zraYD4S29k4eKk1Fpf5P+oOoktT9o8lQm+77k/WKsi0bLYguo20COhoUGL66YfvvchJgkxTH/2lJgC2F/7c6rraE/+k9ePZFf2icJNMPYDkwy5h1IV6oExYPXsqJSIdL7SneD+c7/qHoPhGwcEgFP1wb4EdC9geB/LiWADLmbwoaAAEAAElEQVSTAbIDSAsgTkz2PeLZUHbEKThHAd+C1mUy9YjmizMVGQKy3hu/io+3Q7GeCYcQ7ziS1+VSaeb8+WLe8ly7WDBzmjw9Omw3auury6Pl0nCp+D1vf/vJx5/8xre+s7Sy2nICRTXMQuni/JKZLx88fP3s4pIdhvsPHFJU3Xa8kdHxdquxuLi4urAk+IHTaiqypKtyEHqFQi6mqKNYPvQHQBIBg1dGPkCPrfxIaDeaURAqktys1VMCK84yc9JW0zTWLsjSejISl31FRuMAg0tZhSuD/GUfRLr9eIHvuC62uuSYMB2iAGhgOpGiKCPjY9VGXdE1EPHJCmDCohyCmk/BjmsaVrGgEHlo5sKS/YxrxqgqrOtF/5+NS1kKRhp0X6qura5WdM2srFXDUHj00cejKHrlK18Jzgeqz86C5bqYLy+z33rfvKpLuvQC/2x2X1lD3/d927azRknXmOm69yvrhKx4RVeEMo06p0Ag3vd1XW+3247jtFqtyW3TU9PTgRC5ga8o2kMPPSyE4W233ba2tt6qNyVFu+aaw2fOnMGAgSkqBiSz3ZdzmTOeW21ZyFbi/VD5bAivPibDLZVvue32fKnkBn6rVltemFlbWIQ9LenNelMojToNTxDU13zwB2956SsVw6xUKjt2bNMkoVywRkrF//ZffnP+2aP/4hd+wWm1C/l8ZXV1YnSMqVVJ7ZtjOvzD78SrUAzTp8JugNUp3k/p4gj2uqzKihaDgigkT+m6QMQGADIcmeZvigvne3Nd1/F8h4B2qA/2fY9yCBt2w1gSDPF7SiKHW/0Bq0ScnImVI/jp8GqR2G80ZhJsfWc3p72S117HD2zPdXzP8wPI+cLrTw8GvyFRCZQ9zwk8Nwq8KPBlUcwbeiFvFAvI6IL00/NsUOHa7TbMej8QPD/yEBtDVTI25ShyXRfD0g0agJ26NhSzia8rsdHTWENnx6d76Z1W2UnXBRBiIqC0pB4BOyJEzb7DP6jnZg22jInba6V02cNZ0H5nkPf7cLKEdhtAmYexgXd8YASdPy8Pbn19gF7ba/PGGyontrItexldL14IY/27BgG6YgfgH5j1v7W4XbTlcXUFGYAttX6HGLyLQ58lvQUY/clfgEQM/Mj3aA9IkqTYWKnCOG0w8RNcELN7MZooYW/rDt92IED9goJZctiuXhWuRiMvBK1357Ysa3F+4dprrjn2zDOmoVWWl6Ynx4s5Y3p8xNSVysrycKm4urr8Iz/yI6HnPfLII2fOnWeTU1SMtus1bOfmW25TDHNlvV4aGllYWd1/8FC5XD598lQURcuLC2ury2IYVNcr2DJFsBAahtZuN9MFFBttELg+KPYkRWaCyUiCSFatVgO+NhJWV1c1YuRg34AB91zRyCYOJ7J56VdV1TCMLkbtLLX2llrvGKPlQfb9wAVlZppWxsqZio5RHZ5aKJRs21UVXZSUQJSI0Q6+ohfAGhBlSdNNiZLixBiS8r30QUtc5kjIrl1ZyFNvc2yPCxJyuZwsy+v12qc/9dnDhw8DqaxpzCXKtkVaXHhlXSf8w2q9SRheIrLWwCaL0vOBAHXF4LpikKnBwdlLz/MsQ2u125EouIGfLxTGJsbDUGg0mq7vPfPss27b2bV7z+pKZW11PXL8HTt2LC8vxylREnpF2oppe65SS9bADaM7VjKOIsF1BFXee+hAYRjAuXar8e2vf314bMTSrcj3c4Uhu+XoI+OCbgm+8MEf/tAr7riz3raPP3fipptu0nW90WiIkfBvf/nfHL7hxh/8gX909uzZ6elpvEm0P1nTkB3k3lhyp29jWgiwPkChW+FqYHnDx0If3EEos3Y913btVrvddJw2I+gQ4pFkGigyuOHgOcReZU+UJ5UlST2TmHeYPhIMorQCAYUE+ldFElWCkSMLQXnQlIYrOwjTHFGXcp8iY7JT2VXgOF7bddqu47nQK+OBzaIrCNDQssxJV9RT2S3XccIIwpGGYWgKyo4VohCDVAUECVRFNenHkFUDTpSsBFFou27Tbq9U1qu1RtO2QW0qq7KkhCG8JqaP7SxiMdQ27a7uNqgCeNBkyQb+u9z1vnN2UEw8O9+zS27W7s++7kCAkqfIfKdxkIYffKL+TZ/IoJEYupCAETpXljUv4qHbYz1koUfZI6dJyEGwxa73ozCGHvVNBaRtUDKld+Hrer+LcCD9+lb3ni2nnjd+oHPZGSWU3su+/OMPyhltnkvKHnZQB15m6zsTetvlQGs2vB+r7cQjkibS5pcRnz+5nkscv0snIr3qQeMqFq7jRZaCYrHSJNu8NLRJsQuHYK4EAnMn5D1xBBnaRcmFkkp6fBXIBGy4nUR0iNh9+Zt8YeDyp/nSAR+T2g0OTFOaP0VsQRHD//BWQGt9clMdiCAVdXWUaDu9MxDKku3PtJeB44BSFWVmPVb/lVB6tbq68rLbX7q2ugyUvBgYmqorkiIJ42OjS7Pn8pY2Pzdzy003vuzOO5+4//5vfecBSVEDQfH8qObYvqTsO3hw76FDX/nGt2zfP7h7d6lQECTpwrkLhVw+dLy5Cxc1WZqfm925fYfntJuNmqqqpeGhs2fPXnf4psXFRccD+xCvgYZhCJJYqVSmt29jWpWcBaWqSqWiykq73dZU7MHNZhP02Koa0p80HYl+UFIA34xFjxMCKeyn3W5z3iBRUd1QJ5DaAX6I8gN2M7IyFPxXcBPper1eb7VapXzB9f21hSVVM2zbNkyrUCw2Gg3f93M5XLDvebKp79q169z58yNjo822DXFfqJKqURh5ATpfUTVFAS2jqqqthu15gQZok9RyEImDqxMhWtY74Af5MHyF7IToKsBOjoP7ZRAUSFeTdDljxL3A11Sj3XaAGxZIA84Lfv/3PvGjH/nwH/3RH7kuMLuaAf1Pdmm8AOt/b+o8ZVzt4q4YtKANapusb73Ad7yb8OsPWt+69q9BEKY0W7LBMiAMTN/Px3RPVPQJnS+ykLpsh+yemxXo3Xh5A282tWM6glM0O9ixRLyc6H1UXwaqJ5WdpnHLkTtNUfJWrg1RBYz8Wq2WN60bbrjh0YcfyeXzmqqcPHn67NnzBw9e47r+7Oz8xMSECorawpkzZ6658QbfDZRczm4246LV5FJT5vOr6NWBSt91EbE2TcFujUxMHr7xpgszc6aqPPLAA9XFBWNoLBRt2ZQNq9hqNS0jJ1RtcXzqh37ypz2v+Tdf+dLY2MjUtu3r62dGh62Vhfl//tF/9v/+4SfPXzz/qc/9+TU3HF6rVHPFwszc/J49e+bnF/P5fL3ZMgwjIsH29BroMWFEBYEXhdg7PKrkgQsgBBg9CjE5s/cPdJBCC38EFh7CilIukCJBfhRJIepWgb5DbyFQgDg8gEBUehafFFAa0gLDZ2gUMbUszN7EECYlC+wiIPWRFCLoDQOSTscqAfIAqjsSQlAGUfgjjk9FPtLWcQtjrBP+AtJSiXTKRTFqu1iBNVwJNrmAqPF8wVdUGZdBTZVUMIViaQ1bLVtToJSsqLofBNVq1XOgwi6riq6ropz3qpGNBc2tt53Ax7DUDVXVjEBQnCAEqaemFQx9eanVaPn1hu37EigQKDjCagaxVFw6lUih2PNdbKAZ8Fv8LGSsk9lVMU7AqnqckIFLK1FBYBgEwHd1zTXqhkTHeqNV1pXu6/K3s+sSKfGhoWgt8bX4i3xtGZWHjq+RLd7tXm66kDwbWYN6PdoBKgADAIhdM7Dr1L1exBUHci7fbH2ekfgXqF2xO/F8WtazfJ7W/1VvL86QXkYYJW3S5nmAFGxNMjxyWrbLsXK2udmyTw6SbOqMLKLDUgKRAD/xNInDCUgFiN3dFQdwBrSr1xn9bxcJfZS3gbOSbQVep/bs2bOwMFdfX1cVKQp8Q9eGy8Xp8bHF+YsrK8uWZQaB//Z3vjNy7D/7zGfXm00vjIx8Yb3R9CNhdHJqx649s/OLbduZ3rbD8fx8sTg3N1cslnVNOX7sWafVbDbqOdNy2k2EJMGDWWjbbqFYXl4G72QQBI1Gw/V9WVUArA+C4dERrqrk+gQ2rGVBLOTylmUxtocpt9nQ54h1WgMQ3+3GiE42MpT2dioSnBL/KYrCUXO2oti2K5fL+XyeS5MZd8scK7KqS5ISRSgvdl2XfRLDMBzHgZNTKlkWpF5bbYL6w1olcVdFBTOgihPZhM1wAx85DZI3bpPpr+s6RmFWjyKxsLPZ3Y5aC90C+1Hs5DAihd9Po1C8WbI9SiSkMgKckkJM9sCzIaTp+/d99Wvvfe97YSFFkWs7hVxOEoRWq9WVZE87uUt/pxci/3wH7sbnmOo6dwX80l7qCrylLRjQ0s5J47voxgGFdr2tK556Be0y+6p3L+4bs8yE+XzYI7oSgWPREWSJ2Wb9SGi2W64fPPDAA+RziktLK7btevX6NQcOLszNY1TQMTQtdq37ti2mhLoFGRhfQsgPSdcM0ADQwpQfGtpz4KCiqY7dqq+uPPvkEVFA5EKIJFcIgKOLQqE8ImiqoJvf+30/8No33nXy/MWG7UxPT8uiVMjl5i7OfO5//MGPfeRHX3LLzSeOHhseHq6srU1NTB47dqxYLPKoQI4rU+LVGwPu4gViagd+gwRhUNOpKpImS2LIib0NWO5knScJPeQJQh8qWpienTA2yc7E50hmq4IouqKoQOTzb1D3s2wB8Pg0UBHvl3RNlUQBOETH9j0XQlRUl5zsP3E4KTtHshyyyb3Ga0J67yQLqSqanq4YvDxSokCJBNHzfdv127bTbNvNdrtlA+nkBaD+bDfrTLOGhVQQ27ZfqbecQHAD2UewSxMVM5I0L5LaXuAHcPqw2zL6i5eXnrAgOUXYcWVJ7bWBs7fTN/TeC93sC9RhapCuAZCub4OCttnj8GKSpZnuGg9cipH+dFqa+uFPpj+XdAB6nYHNDejNkdy9y0rvrNhq2xLq8ZLX/yLHxF+t9iLsh+/CXV+FxvK7CUKVoJokWEZ/ytYDdFIWiN3EPwBnE/0/3AERLGZscTDdA2QBqGYg5v8JAfRnqfeUDsiHQ081APQZBHti0L9Ecqrx2ZmJiOSGRZBL4AdFBS90UyQ5XaFYGRkFp5I0NDS0trrqex4hSqPx4aGiaQpRsDA3Ozk5vryy+J73vfemV73yT/7sTy/OL4AXQlbcIGg47eGx0b379udK5WPPndQtc2J6irSEw1qjnrdyq0vLF8+dr66ve447NTFWqVRKpVIQRONT06vr1VyxtLZe4ehIq9VKrQ1VVYeGhkCv6YOxJHA9iAlwETBlolNgOtMEDQ0NdaVfU0uxL1RUkqTUYWBTjwGprVar0WhUqrXVyvrKWmVtvVqp1tbWq2vr1SePPH3+4ozrB/liaWxislge8sNoZXmtDZoMX5RVRTNiHIjn1mvVXM4iwC0e+PDw6OjoeC5X8PywZYNWw4VnAXSBrGhEF54TBMkwLMsCzZHvIBSKwj408FelPG+8cURRAIFSz/E8x3Vtx2nzj20jqMl7uWmazAFv2zZnS1J0eApPil0gJkanwGTq+Zw8efLsmfPvfPs7GExVr9cNQ0trDDZMOOrwLAY9ZdO7ukO3i+WDr4Sxy/zDc4p/UFBBWqYsuMG/sx5CV8sOD+6cy1/i0tF4Zetz78K+yXFSUyO7DqcwgaxFwscJwxDADE1jilJJkoZHxvKloiTLQSTIqvrXX/sbwcxNTEwuLa6IkVCr1a6//vrZ2VmfYDOC76F4nVpKc/ZCtNTo9BwHtmCxcP1LXlIsDcmCaDcb93/rW4HtUkgGQQFV0wKOkcuqoGjDt97+5ne9VyuNLqxWrXzB1DXorEfBF/7qL559+ul/9bF/Wcjl52fnpqamWq3W1MRkFEXNZnOoVGy329T1MQ48270xoi+uKMMPcVB23N3U+tJk8GeC71PHj6mrhqppskL6W9CxQjkZE775oQeOSyI3BuVpH6MLnEJUu8bYnvRF+k9S84YenyREKoh0+Acf0xRwa0KZl9UnmUAyJcgjSFcaO0iHCsetWGE2kmQUGJGcgcQk/SyDkBTUIjwPNBR9MhQcz2+2nUbLbbSdRttDlAO1AYD+kNugirKOom1ZdwPRDUQnlH1RDWU9FNWWF9WaTtsLHJQt03Fhl3eSZhkTnEPnsbJKVpAqHT8b/ZmOWc+ufbrjw29CvkSJEwykdcEUfAyM6jrC5tZvFk2TkoqyHM0gYHyPsc55oytt2RMwym2TCdb33rpqFLpCOF2e0BVM7L5u01U0ZJ9P7/X2ZG/rC1vvmrTZ96/ifQ1KAlyt+7qCNqhPXri2+ZX0+fwAZFPfdwnF3nWojtpxhsSTfAmclJeMTnQlWwmQoP8784trA9Ibyd5R9gaF72qLBYnxQzNeUZRcrlCt1LheMPD8Yi4/NT5mNxvzFy8Wi0XDMFRd/8EP/fCFkye/9OWvjIyOIzsuSstrq8MjYwcOXjMyOT4zNzu3uDC9fZumacPDw+vr66VSqVZbh9qoENqtVt6CqhfH3nLFgu14iqo7LpCjMZRfiDRDlxTQz1mFPMv6psaZqRvFfEGWoWzK8bMU6G9ZVj6fZwZG/p0VeekKFKXjJ63r4G851NqOHTuISdCL87mqqo6Ojmqatra2dora8vIyZydkFaE53iPTDICiKK1WS5KkQqEQClGj1VxaWbEBklEsK89ODryO2BbAzsPZBpFcIM4zpFyoXdYejy7iGidOcbq8VBvBtm22+/mvpmnCq7CsVOoyLZVGh0iwAjFoKaNBZfFs5eBevvKVr7iu+773vLdWq0VB6LtewcrFksMb15bU9OwCyF7F+d6xV5K+4nvJhsPSzklLvdO/xi+o+G+T83blSYCjGLxTpYYgy1ZcmQNw+aZ/bxel73QlD7MfoEBsnO2xbVuQxOGx0fLQSChgoKqqeuTIEcH3Dxw4sLq6iiBFEBljY0EQnDt3DhcTCZDIHVBDcsWFAUlEpvNOQMEPnypUCQgs7d23f+ee3bqqGbJ67OlnqqsrbrvN5i+g9IritW1BUQVNE7xw1823vusD/0gtlBYXlyfHxwPPHx8ZtZut3/iNX8/lrJ//+Z9fX1+vVdaFMJqYmOB6XIgDUCK0b8KQn2x31FWC4UifJ0VXXExAOYSomLPyBSuXN7OKWnSLUCiP5SYJTw8K/owETbZbCAPUbY+l15MG7zPvCJHgyWKgKWLOVC1LswxFU2Doq5qoKhK4YhSWCehYDpwz5Kcfy35laJHjBCMnCSVFNwxeheKaXcfxwGkK6I8gQ6DXCwXbD20/Iq1fLFkEXA0iP3Bcz/UCWdFzhSFPVO1QantRyw1bblR3vFrbX285LdfzmPkhqaGijupvf/ai07vs1d6ZkhU+S1tW0Db9ZPx5cjMGMZp0JRn6XmQqR9N1F9w2DigSjePH2hlj+Mk0MkbY88u+6PvPLlRe3xh/X1u2twlXtV1+EuDvCBrxYkwCvAhbv/uVXkQ/BMjJ7NmdiELMAMDaAgkpON0JpyDxOynnhVfAKxHogGJyHmYKQggkpIQAdqmow/3PZycOBoT843xCcvY09p9kMgUUbgko+gQzDDFLXBk7zVYbx2Z43WeTRdf1XC63tramKkD6yrI8OTGmKsrK0oLjtIdHhpZXV/6vH/6Q67mf+exn9Zy5VFltuV6lVneC8Pqbbx7fNlWt1U6fPVMql0dGR1m9SxTFUqF44vjR1ZUlWUJGPm/lFucXtm3btlZdHx2bmJmdGx4fr9UbQ0Mj4P+hSH9Kom9ZVr1eFylOz8s0opiq6jluLDNDFcCM5IHhTvj+3pZdcFPzkW3HRqPRbDZt22a4PFt7OmGdU0QQW9Xc6vU6w+tLpdIoNeB8PLdlu6EgFIulsbHxYrFomqaqqo7jTExMMDK73W5TyEyVFKVl222A+8FNp8iarhqGZmqagR9ZifxAEaVioVDI5YUwCjxfJUhuFu2TQoC6tJOzmzdDwOv1uud5jUaj1Wp5xOXCXgdbP6xATFAZRqwlIaSkMY/HV7/61VKp9NrX3NFo1FLPqhcRm/3nC7SPZCFb2c0bHUIx0NhpT0S+Xcfv/XFsr9WyG+0+P14Y2Z7fdr2W47ZdD4Xd1BmDricbjuFdn7v0Cm5tqzjPrEXYG/LvCjFQiQJjvUQHrq5bLpcnJibAWAqlOXFhafn4M0f37tlfq9Wr1WrOtIQo2rlz58mTJ3EQqrHp9lJYReRq73hOCKEtkGWJguB6wlDp5ltuFQJBl7S1pcW5CxfddksBRaTohS4R6qqCHwhWLnQ8oTB093u+7443vbnZdiRBLJfLQhjlTKterf3rf/VLr73ztf/og9//9NPn8wXr5MkTuq7m81atVsvlcr1mUpzghYlPGJ8MySIpdXTGXmqcUHwI5Pqxam/816SAExsKyZtwYpl+uuZRx39lTDgxfXXxfaWJaqQGgetHPlBE0MkHcp0DUGIoyYIqiyqAQyiqVWX2AXBOQvmBHk9VkLVgrS6+EXQ9PC+JPg3DNESOIl5k4gx2KLhe0GzZ1XrTcUPPD1xUHSiRqIaiEkrgDxVFUZNlnY7s+z6mm+05vhgKmhPKDTtab3hr9fZa3V5vOrW267gByqWJQ8+nPAmdkQZYaoRTmhoPhXyLvoi+9Ammqz03pvJjfRWmdYqjcsmDSH+40iY7Enpj/NnoRpddmvXQ+sZB+FZi5Zr0S3zwTeiMB/0h3dKyzKZJKi2+oOxCsFF/IMvZ3zHNs3nzLsLULaVEN1z/gPKDq7U3XC2b6XJQ/pfjBlzF6+krrbDV4w/q5St+lN2D4QW2WQdd51XpZ8DNo1CmimQOd5H4Btcxx9YGoSjDziPIkvrHhbtohPNBho/KfJMSZ3Ieeu+FNUCo7pgfa0xW0MVn/EI0COsijCajXEEUOX4cRz2pXna0VCgXipXVFadtb5+eqKyv33b7bXd/8IP3fepTTz39jOuHa5V1QVbX1tbHJyf3Hdi/Wm+ePnfW9/1rbzgsiJGmKWtrK2OjI9XK6unTp4uWaTebY0PDdquhqmqjVp+cmF5fr+ZLZYT/DQjG1Ctr7DPEZVIqIAetdjuXyyH45PkobgPLOsyXommlcNUUyA52BQ6WE2g+XYHpgQBn34ty5J2vK5tPz4v5mXAx7BvwczGosQWc5nnn5ubUXLlWq7VaLaB0o2h4eHjPnj2GYSyvrHAI3/U9VdMjUbBMU5AURQV7Rrr1Iv9AoKZ8Ps+dANWCCFUBjuMw1UZ2a0lHUVqH0IUCVVFqh6pu27bL5bJt26qqFgoFu9VMw9UoHaQyVorzEQA35ssOYQEIoqCg68rl8uLi4p/92Z9+6EMfml+YffyJJ7bv3IHtNKlJ7Z2DV7xNpG3Qd9mE7VL9FASh3XK64nO97seGdPzg86YkUQxCw7dI2GFzUzcdKqCaVfozRlxBHiC6vP00GxLOfizNY6hUDhFFkWma7Xal1qgP7xzdvmsno+3ZJ3zggQfe8T13q6o6Nzc3PT0ptNvXXXvtPV/9it1sWUCyYdjCjnrebWB6lmr3/QiehiIpAuCQYCW+5ZZbPiPJYhDarfaJY0f3Xn8dqphEwXbaEYA3VrtaMXMFaXgkbDel8sib3/We1ROnnnv88XKpuLi6IqtaIZ9/4oknfve3f/vHf+InTpw+9egTT8qEaCJtEFb32mCf9Q7qdH4RrzQNb37BqWAimRBBVtYm9xuBfzBF0FjywiiIlQN46HZmDTyMBIlD7/BlwHzPmmRZ7yAbuEk2I0Ehsl64LcQuKoXg8wFWUgI8Nca+xBiYmK4j60Bni1k7Kww+G/l0tJbryFJE3EJyQJmudruNWzMDRLCkEB6DpIiqKipaiOC1oKmybFiyIbUCdb293m55vtPSzRxdZeCD/ycSIhRDOL7gIWpGt0x7JVnrfH5WGSJdHHqdRvRB3bfxAQ0yvdJnmkUq8p32hejQ5za8OcjM6Dpddmnqyg90NaWL67P3IjJvcdVwN3vPJiYp36jYL96ftbk3vlA2P/J3OQnwYoC5vxiSAAOP9nfXPb0O4Yu28RLKuyj3I/MCxYU3mFOk9kXTxacKHCGKZLIxKJ4Td7RIS0ZAyz3XwYFHAI2Pxo5CXC5Mj4yIQ9gHoO0iVvNKEER4gUxE2nucJr7q0bSBLQxDVQXwAy90zaQS1Wq1ymQUphyVy+Vms7myulQeKlk5ozyU+4Ef/MHauXP3P/Sg7brzi0u5QtnxUDewe++ept1eWFpaW1sbnZiemJ6qNpp6oQAOhGbrueeOy0Kka5oI6SLIDG/btm19vTa9c9fM/Pzk5OT52blJgA18RkxyGNXMWWYuz6RAnBAIicIfoXrHZShLav7GMeyMfZ/ua+k7QcK20bUi67reZTVSHEowDJOZ/jhRwJ9k5h/btiuVCjIkk5M33njjwYMHq41m3Qk1Mzc1Oa4p6tzFi7Ozs8tLSzMzMyPDw/lCYdfePdVmfW21UqnURobHxidL4MUDB0iY8MYALxv6wdLCYuqEIDobBrIg+o4b6YQlEMkuyEQJDRO5ke6IeCSCJUnTDMOoVqsjIyNnzpxptRp41kRSztWxEflTRABF0sWEwMXWnOkhJlqtN6rLy8v33Xffy1/+8uMnTsReFdkx2fh3VxBqQzTqKi0UWZcjjfwB1x7LMHdvXl3J/fSFmiDae+dF1n/gRx+y27bpVfGRCVgVyUhEbPm+uv95qf0x67J2MVf2ZgDY4lEUpVjUV1ZW19bWDu4/tGfPHuD0Vld0VXXc9mOPPf6B9713eHj03LkLt956S+R5Y9u2BUGwsLCwt1wkQvYXfLWnRwu6TESaXVfWdcFu7963d9euPbPnz/lt++kjR1731rdF7ZaiGaosgUZXCBXNCDxHVsxQVtu2W969773ved9na+tzC0ugHKDnMjEx8clPfvo1d9754z/+4z/2z36iPDTEeT/LylcqFd3M8wVkeyxld4F0N+XHcG3Av6MzgbSWiDiOiHExU1RU4nKSjrYd2hcIgE60cSLtAVyPwlFyMQqxrKX/TA1cEqDs7wCkUQAenPF41mRQIujg+3Jd3/EdtpMpdkGmdex+JBZtBhiDhYCjJLHQN8XLkXiI1woEpgJOnEOgli8qAi1s6LhuhEpljvWDmwhwILDroO5cJrqqQknOtcN1p2HbfiQFEchBEXHzgHUMUAaHVDn4i0hxTU7U1WglY6Ustv6jrBuAi+61zrMK2RsAL8mb6VLfRQHXxa/I4zA7Enpf9K5paXo2XZ34eWWFAmJUpxjCAJDAN5j+xjuk5cZBmES0jbqDvTIIsmCRJsuGYzD0GsUepI+G1BL0n2NfSgwpaBlSYAeaROhg0ItCxB4RTj4Lj5F0esOfFVHnCFaTJKHZZfYBKEHXdcXz/Hl+4O+2XU6i4Oqeqyczc9XPs7VLepE/oF5k6uAyiM4qwOtvQFMfFPQJSpVW+VhGkSx6hEh7jkMzkQt80mRCQuuZ9RVoOY6vj1TA8MekSCCNSaTHT24jDgFcnQFGyVCclOPTpq46bbtZWdUUCdLtBb2gqQuzF7x2e3zbdLvZ+N7v/eD2vQd++zd/85lnjzt+YJWGWk5Qs11zaLQwOnl2Zr7SbAWSOjI2LitaFDXEKJyemnzmySdmZ2ZGR0cb65XR0dF6tSrqhmblp0rlheXVaw7fePrCOU03zXyhsbLkI26vRNCBDHNWPlcora2t6ZomCXLgeoDFq2qr2Qx8f3xsPBKcWBMGnBo+/bhsvfmeI4QiBKywPcf9laFXjhu/5jLoxGcgKjzsxmKj3SJAv0xVtoGsSqqKyoR9+w8ePLR//z78Hh0Zl2RhYX7pm/c/UNRlZOJDVJ2OTozv2b9vbHgkCALLsk6eOW27Tstuj45ACKzZbp05fe70qZMiwAsoXSgWi5MT28vlsmVZpVIpXyiYhiFQtqFQKmqK6vsIucWgnCS6zN6KbbvYx3kJz7B55HMFwzBc1z169Oi2bds+//nPHzt2DP3ggaaTgWZhiF0ADN1BpBoK3BGKjpF2NWhEpCjSTWNpZXlkdNj3/UceezQSww9/+CP/7bc+Pjo+DkrdhOuQnFlyS+LeRf6AAHMDh2ssnh0P+t7xGcdHM3scQeYASyCRoQgyo0Cz2I4X+IpmxLvyxmKPtK+6fQOK+Kbh0PQ3Iv2sHMSFgRQaD0XRwv7JuyWzAydXldyNECGCRneMj7Hw35UB5XuW1hgaENddZALDvVCobN9m752RUZoCeFsYBvV6VZbFsbGRXD6/NL+gmYbtBmfOng2FKJ+3ZmZnbdtFtbeuq7K2vLI0WZ+28gUh8NmySJ4RXxIT4wBE2e82N7EQkj+RaU0WMiBvJPjtB0LUct1CseDU63qpuP+aQ0uL8369dv7UGadR9xotbcjUUXBP6uCmZbcadr2RKxQjwRYCd+IVr3yn2/4P/+E/DI2NLa0s79w2/diTJw7uGvn3//bf/Kf/8pvv/p63fPYv/mJ4fAoLjij5gqCRvF3ab4TnhDUFtnNJBI1nakGiWAZAUYrJ0vsMlVdBT2DlMA6ZVsH2XBdeNQg9MbN4sCBxQJVLcZkZkb4gv8dU7CJAZ7G9zX2U8sDEuz+gOaDChI2GNZNMR1mWrXyuXC7Lstxq2bXaetNGCZCXoGLijYwul+w3liqLVwwOl3TcSGREKM4FPWOcQTPMKPA9IISg005kTaaoi75rg9RT0zUVCDzkGwJAeFxP8LxACtuqpQuioSiWIntCJHku+k2GLifWGuoCxCQ0KRJklERLtCDJNJZkUQ64t0OGPcUwHgrjkSVLYy/NRCYOALypJOAWJ8HSEvbUye/NUqbJZIrgYUPuNf35Az3vd0iiNzIrcNUMXxIravCJBAXKosTWj7KQOONBSwbjknEFtEbhTugMTOTEn0kWRDZNUuOGQj+wTIhunHuK+MdFlnGH9R8HMMmMYVF3AWMIXkcnfsbZIsI7w6UFw0lHmSi+1fi26Q4YEsEfiAdubxYmlbTc8Pe0Xjm5kTQV1alHuUxAZN/3B32xVw/hErb74BzQlb3fdV+XqW/QuR1EPjb9QM9fNj9y9/O9VL91XX+iUdLzgAe0qw5x6S5r6TGUeb5QbKYTwU+hfWQ6JDz/NA15vWZDIbmfNL0mQWOl6ww0+ziXnPZG7LNlxDJD4hkN6MtkNqVmfWzDsf+tiBt4zdNL7VCRpjdOSwH5HHwVJC+Pj3EPs33G30O8igAeYNpoo4pODqJwbGR4vbIWut54KRc49oiljpUKizPnNCHYsWObHHrX7N9311ve/u2vfO2Rh5/wQzlS9PnlRdnIO7J855veOjM/P7dcCSV1+76DO/cdmpmZKRQKUhg1VlfPPHeiXgcLUHliKoyElXpr9+7dtqSGXijq+ZmllUbb3b5j58LcrIaaPhmmlqQW8iDDaVQbkR+ZlmmqhqiJ7abdaDSwRena0tJCLq8Nl/OyrFUqlVajxvfJRVe+79IGI4sKjGVE3wJfN8GrgxLjTn/GGwAt2ax9g3JSChfJViFvmObIyNj27dN79+7ff3Dfrh27h0bKiqKtra3MzS08deSZI88cffyJR0+dPFOprguKDkwp1dX5tiN4nqBppXK50WhomjY0Mjw+Pl4ul3O5XL6I9su/+DEuusjn8wYV2BFNuKCqatNuO612o92q1+vV9WXXcaJQcBooLI4leOjFer1WrVbqDWTWQQDUbnPhr+OjE1QhJiqlO8JqHwMYFDVB1WK4I44YRI7nFGWZsC8+h9kohBQGUeD6gZ63PC6QUNSjx08EofhP/sk/+Z//83/u3r27Uq2OTYw32i1mEAyDQCTglhjQfgGHgnSzUVYOteYgQtpdolJpcNB6HnOtcnBSToyPIAo11Wja7cgPNNPQFNULg9BDdF1X4v6BiqoPIIEBgEeh2bLFTHVEV967K9FP0UlYRxGyPYDHkCoHQpJBKDmelzNN3TQC1CWGkih6buACei0bptZsVstDheW15RzxvOAbriDTfu84niQiYYK4KlI18emSiH48/dN/poXUiSNECUm28PF3zvwLMpgeqdIIOzsqXwHOBhYaIfkwgppvAGZ4BGGBZgwDSBXqsI980q+VJEUQZUWUXdeuO+29e3Y8+eSTrXZ1fGJ0//7987ML9XptaHj02Innzlw4//q73/jff+93L87MHbrxRqHWvOOOOz7/+c+/7GUvE3Slvb5u5iyyQFA4Tt2Jxw2oC+w2eoy8vFK6qktAIwU1QX4kDESMQDZrArpRWmqxv8AHCKLAyBe8IJALJSHw9t14+L6/udcq5BfmZk8ceXbXvmsE20MwWtVQixWGsmGp0OPyFdjlqiDJ29/wptecOP63X/mKnrPqtfX900W7Wa3W/D/5/d/+2Y/94hOPPvbMmTP7r7ux1mrnSyOR65CUL1TSsEpAhVADTEhVgL5gr5KsKASoUVxLT4NIa2R40ELDdZuOa/qAkqaxXiT6cBQk3Fhlhkw6rjFA/F5WKBZPpi1XfSoKTG4KHsMRYBORqOh4t6CDomoZfoJOa5cMUk6xaTt+ZR30X5JqFYqK5ruu22g0kj0oHnjwTbCDSV4oRD5MecIA0vQPfb42AYIGKHdA3tt3HSewRUKtS0mJGkUbpCiQRQh6mapSsHRNDmWge9woEtq+KMh65EqB79pu6PqyrOQtzUdYQZBQEO05QeTLSmSZumGqpaF8y2m3Go1WoxH5oayCR19VZccTPF9seZEbuqGgRzKiFlEkapLKYy8N7UOyOQm34wl2iPzJKBeUeD+MBBlUSbTbeh1rJ7ZkCNeIxwHV4Dhz0Nn/KevCZ+GEMFdhcT0VCbtjhrq+kyD/fZp6ODFGVUe0IFIyDv3G3/G6wBY6bov29thg7/08LW/dvymSEVenU0QRgy/xHci9wNTD3SHrQudhsl8eI+SHxapH0UCjNhaoS8yp6KqEkL/LoeVL4nletO159tKg6ourWJVxyQvY4ue3dvytqtOn6ddOspUd+iTSv9Hp51U5HAg66oJIcTSlm/E35gKlZABlgRHfxPICBCV87nROZuyYK3ruvb2tQPsGFmJxqNy2W7IY2a06oC+SPDFUUoRAhMHl2a2GqBvvfPs7qvML93zxy5qsabpw6uS5yd17jp05f8eb7l5rNFcbLaNYbrTa+w4eWlxZ1gwLa7ckPvX4U4IXDJXKiH2J8vmLFya373ACVNDJspLL55aXl0fGxtdr9UKh5NtN7DgK3b8gR4EQBH7g+YZmwjgOYf3Q4h7wgg4JMLsden6z2QTqOvFLmXmDyzmaTdjElmUNDw+vrddUXdMUNYgEEGZ6LsK4khz4viTLuqblC6VdOyd27t61d/ee0fGJPfv2lYbKY2NjKERuNs6fP//M0Wfn5+e/9Z3vLBG2Z2VlxbVRc6wYRnlk1A9AXjQyMjI5Ocmx/OHh4ZGRkV27dvFVsWoBI5p0XT9z6iTjaGu12jq1WiMGF7Ucm3k2WmTTwyuQNd9BSRx4iigVIKsKDAHPNQoFxMJBfelxvWEcynZpq6WTWblCLpczrBz4zhVgvonolsTxCB4gSYQFwgvYHsSETZFFCoaDAAYvYKG4frC6XrkwM3vXXXfde++9N9xww3JlTdE1z3WBHlAVu+2yRwr3Aq4u0gSCAFiC77vYBQlKLsOuAmkqktYyBAio2o+S5hSV9AXsnaKuiqJse3AViMdGrTVbTABFtpIqBYHt+U6tkSsWIgkWMWYPBWlFoL4i5E9QxR+6gS8EoNmNQSM0IWD7UMMZyVTNFQp+tdpotaJm03Ggw2BZliIqrVYbgT1FBksvHD0ZtKztNjlNkSzrMcwPxyAvXk5jrhntwY1xkcTQ53hzdp1Jc4DZ4kIqRogBhN0rT2+6IxEijDEPsqyGHm7H910J+hNSpbI6Ojyxbds2VVU9RYNSnh+eO3fula+8LZfLnTp16tDh64VCYXRoOAi8hYW5yW3bTMtgRcUQpjeSHgFSQDBNEbvnwCPnRjCCYswK3wt3DROmoeOTdTWJdBP+rNM/cUKULRVBlHYf3D8yMX7hwozvB88+deSuu98KKz+P8vqUmhO8DGRm43umJfjt1739ncurqyefeKxUKqzU101JEA3hyEMPPvKtb/3Yh37oV/7zf1teXMwPj7RbjkE4HjaGfJEI+4PAx7IjwZGCchb6npOK9AQg74Vyc3Q0VdBQ8sert4i+RaYMAo9oDAfMrjhSjVhrx/DgtxBnElGdypFp5rAmwy0QAgpMsfAAFGTJnIsk9peoRl0IIxeLZeh7ke14kiB5AfSIHc/RVR3uP8fJk9+YbTI5GlhuaUqEMEmxApN5CgZSmYnNpDAU/EBptl0oQgAVgvoEMj5RkazKQhh4jh0qggN9MBCShqIstuHuY933I8H2ZNuNAi8IUaasQioBZ/VlMdRl2VRVS1dCr1U0pZKWr6lBfW09CIK8VioPGZ4rNmxfbNiCG7kCeE8JKkN9TbzIVL6KvB0AWVikklQ6gV26JkVvy+J/Ors2JXeo8GBDki0LMU2ryxjnQ1R6XbRFWOuCgKUAMvgiMZRAVpCZuhk/I46UpwDi5BLjeOWWDKm4aolxzXFkPz4+52Y7oIck5RofM+mc5JNptf+g+oFsrGXQ5VwCQf5dRpYPuJH+L16EbZOqlEt+sbcaZJP3X+QOwNW61Bgd2XOagfg/enmZ1dsI+pBWQOKhb1DAQRkwe/Q0k0hFDGYMp9XSRQdBjUzGLHuETRslqWMUQKfKQILWeiBJ4XCpvLq0pMuwwGRJ2rNnj+u6c8uLuqJbhaIXOq975Sv2Hdj/pS988eTJE5qZbzn28FBp9uLFV77i5aV8bqlS1RV5rVbdd+BgFLgKAqlBPmc21lfmZi+WSiXXdcdGkYUfHSoPlYuNRsv33KHSKBFjB6auNWpVq5BvV1qea4cBaGoUWdRUGVBRSVhbWWZ2IJJURG2xYeUM3fQC122hGxUjp5p5kBu22m4QNFvNXC4XiaLrubpZmJjaEUVRtV5TND2A5pHteL4qyZPT2w7u279t564bDl83OjG+d9fuialtmq67jlOvVmuN1sXZmaeffvbZo0efeeaZ06dPr6ystByb4VLgSy3kb7l198TExPj4+Mj4WLFYzBdKKaOO4zjMvSOE0dnTZ5rNZo3a+vr62toa/6m2WslWaMU+pyQmyrLxc2fcNo1N4HYUTQoRlotIu8AKBAgkw56SFKgBMfkPhSQVSQWrFGUkNN0Ee5KOPIPj0zBMqK9oPMtiJLoB9nJ8HboWEAGjnBiimUyNzeyHnu+vrK36vv+6195x8803P/fcc6WR4TAMLcsSZXl1vWLoFodK+X6k+DUCimGoM50IqwMAFs16zxT1R26DeGZUpoEKBZW5fejpCwHCmY7r6IoSIrjFsVK8BuVrGDQbNdZJxf0wjIdGfbVeS2seZdhlkozkHYojEfIn7lcudTANlE1Xq1UhDAu5nCiKNZp94GbSLacNJ5Mjf5Ikm2ZOlkXXtfMFi/SbzQDB1BiiLctSwNLjPWtE72RN1MFJbB4s51ynRFTrCbwqqWfBI4lFZjsB3T5LabaMgS0VXVFsu6VqsuCjV3Vdn7l4cef2PYcOHbIMw23Bk/E974knnnjbO948Pjlx/Pjxt9ztSJaRK5WKxeK5c+fGxsbknAVoWLq+ZV/Az0my2WzgUvwCsVd6LyZHiHskNl8RecTjoX8kSZAkH0qOBP0IkXDw4MHde/ecO3dBkqTHH398aXFxfJcp+L6oqALWseyCmGRqI2H04DV3vvFN9eWlxXOnJEXTNcm2q44T/v7v/s7/+NNPv/0tb/5fn/qMJMmFQkHwiPgeyT+VuHYIPeO5kYJKeiZ95npfgvyTo0My8XTthJjDwwNiBRYe4DCk9Ut2IQBOIQnNMwl9dvfjG0xSwIkp5cuk3h2XcVImmrJUpBBPctycvhPhq5AjQMlqStr5UiS5AdUB+G4USjDZQWYdygL+U0QloAoCMBoxrz+ZsBAWVpSIxHHTS0wNR1jWQAUScjwglAlZ8VDtDb3Ql6JAE3WCJoG42W/bdS8SPE90A8UNlLavuG7kI7+I5YuWBl9VBVUzrZySz2lB6BmaqomyIoQGVaaVSqVSeSgIBKPhglKvYUfIASIHgpgI551olkgCbo2iDeR8x6H7GAjDHBuD8BV9SXshB5DAdbpQdqnpz2nYWBgBGEz4h8RdyxxF8aPkzyTGRTxRBCHjAGzEUST5wctG+vY1pOCgYuDFx0x3mcxrTpJucIAyvouwGXpywDu93+3q1d7IaBfgZMP7W3QBno8huHn1c/Liu5eXeEEM6KQgssvW57/2vv9C+2BbPT5HXi4fSrRFh6H7zXRGdKWw0+lJ5MubtWxZZJqQSNKKHT8ZkbB4n8OyQ0ok8NIlisld3sVf4jLSF0jcIteHVdx3ARQpkaGD6lsJlHkFSx8bGzl65Cm73Zzat1uWBF0tf+AHfvCpp5689yv3FQqFSq3ZaLcK5bGa4x6+5tqTFy7G0yIKJsZGK5V18GMW83ardeTxJ3RJqSytjE9O2K1W4Pnbtm1bWloeGh1rNpuWZS0vLw8PD9dqNdCStFrgrvDB8yMjHx0nYBRFMQxw14WhYFgmFcti80DZmAyKfVaa5JJWMRIV3ZQVXSCeCkHWAlFebyBgXKvVpqanDx48+NKXvvTGG2/csWMXC/oahjEzM1epVI4cPXH6C/ecOX1udna2UqnYtn3hwgVi35N1XS2Vhm644YaR8YlCITc5Oa1pim5Ykiw0G+2l5YXTp87WarVKdT0VH2i32+vr65ya0HUdwCRwVmB/jXknwqiomxzwo6B3ZwzbEO4RmZ0bo8IPEd8XpEBUDAuM/jCpcKuUnQ/DQqHARQsJSwkgB7Ig6qoWwaTjQCYBCYiYlSFn2WpdGhfYqKiED6YCYVDjXQtgDB9cgzKrR4dhu+V43sqFCxfe8IY3VOsoaUBeQxRr1RosPx+pBDZPqJYtHvoNt64okqKpIjGkQKKLtot2u80dAtMZFhXsKiqlRUQWFSCappN8le95LdsOqGY68InFVhAUVS3k86IkaabBcFb+DQgHRTzzE5Nd77Mz7LSbhmGYpsk0halswq5du6rVKm/bpmnatr2ystKot4bL45IkOY4tyWG73VQ1yTBwVfSUI02LAh/5GdawU1S91q5vvmek+YE4A7+BVwz0XEkZIC3dpNjB0BvupN7FJ4t66uIoBLuubvhRqMmQnhBF0bKsmZkZURT37tlTLpdr69Uw9MLIf+yJJwVN37Vrz33PfqXdbudMXRDFQwcOnD195uWveEVg21CtJighkSbHCUnCk9GtIJNJtVKJLxBDVcmyTmFA9KeMpABVLib9wsZ7FumAgiyhWN6378A3v3G/rsiLi4tHjx4dP3SN06zrpXKfMgOOnqim0Ggcvu32yvz8Z/+/C4Whshz4Vj6oLzfc1dof/M5v//CHf/zpp5995KmnJoaGfaJ98pF+pHpcBKlxnWxex1h5SgjApkQOE0+QkPgMsogXcZRKMyiKTGTO61IUBtkpSHslv+OKMgL8M9pHSF5TzyUbMefhkLLDVoEALmOPqH9gUdO5uKswwCkLI8qKrMmaIjkOVHfpbJ3BL4QiKDnlOBeBwLyEqhWME85wiFk3ktjVwCKbxKgoqgyuawF1AYosKrqoG4ppqpokIkeJKiw38D3HFWxP8gMljDRaP2S73ZJkUUWkQzR01bIky5JypqrIOoq4fM/S1OHJCSopxhLniWIxpwpCHj3RQPqP0r2SwigkDB1FliMsYKg+iJBUpPlDtcPdFs5lNt7iu/gMuKWscSz6kSk8yJBtJuo0KUq4y7DECt/3xHHtUW/cMYYQbsFmotRu/Cp2qEnphfeamMwrrg5nyNGGgujUYUg2eL69Dqp4o4ncOW9iMIl9DbgXSfg/PWnXi8v509/r9iIJ/19B++6Mii5POOsLbRyiWO8Zx99zoZ1DpaEI2B6c8uZYV9JoyrElExtxSDhTjSFPtiQElqbrNr34DlixQygcv8cZPMT48RJFCLRIFYvFZr0hhpHnumPbtxct4/y5c1EUbd++XdP0RqP+zne+08oX7rn3qyuV9UKpKKmK34iWV9be8a7vPfLM05M7dtWXVlZXV3fu2evYrULearVa01P77v/Wt5cXlyYnxpr11rap7adPn967e7frYxeUZTmfz1erdRG2td5qtYZGRpfWK5auh64rQj9LEYTIcWzQqUSR4KBsA7lp0m8CeMeGYkxxaFg2cpaZBwqTDDiPjTZDt23bzOV2Tk2NjYxu27bt1a9+9Wte85pGo8b26+rq6rGTp5555pkTJ04sLS2trKx1VJ8SFRZRFF9y222apuq6ISPG7NVq1bNnzjVbDY+0pxzHhV6w4zB7Zxj4gMoQ1Il1Awi3o4AeQ1YkQfRFUt1KMqlREFZWKwpn41MKFzLiNdoaoEDhJRJXKA9QjYJh5fOFQkHVNYDCVUByYUZ3s7pRxDGKWi3kK9JAMEJgsQudBGHJkGG+lQilrmEgKBRdRAA0qUYDmgGYFyAN4JmxgHQYBN/65rcdx3nta1/7mc99tlgstlpwtHbu3lWvNflSUiM3qTYIaUcHdR/RolCiSwBZIROqILgOfSWBb3t0tAyOVEFsu06r3mi1WwFQRpFnt0XSzrA9x2k2AiFSUVJIHSLLGuhVdYsU60xdp/AkNiSFAGQqqp9BZCiK4vDwwYBKPiRJKpVK27dv37t37/j4OAL/tRprQs/Pz585c+bUqVPnz18MXcEhYWZFkZr1um4oIhVjmKaJ4Ce0kERVkmH12OCpZTaVNE/I+ItsLWZSbhS/CIH1J26BBJYLeRCqFgVeCygXqlJlgjEMpKxp0r18ZdnHY350Wl3weSp3KRQKp547XautDw2VpqcnZy6cD308oJMnT3qNxs6dO1utFtQAinlBkg4dOnT/gw8GCL/GFDApFhEBbhSDY/CzgUQoY+ILosCHgCpapj5I0o8bQdUJR1tixMeDOV3u4kJJQZb2HNhv5Cy77fme/8ADD9z5/vdHeP7AotCpmKItOYKoCqro1Op6ufzyV7/2/OlTxx57ZH15AaXMy41SIffVL3159979v/7L//r9H/xgdXHeKpZSbXiyL8mGVlWXMmZkl8dlWkA9xTEd9lO4oBbvEX8wdQ5x6FAWI5SBX4wkWWUfDk+X0Z1cDEHkQrEER1zlistHsIMYoqmyNjb/aAUBAAjeAGcVKF2c4FHIAZMJzk3ZiBCVH1okhhIll2RRob8qEMKjaqLA49qeWMICqTbG/TBGPkk/EEjOTwPIzNgq4YDw+JlpQRJ86BCroiioouSpVt7wPc31DU/2A9WPlFBUQ0Gp11qiDG0yQ5MsU8nnVN2QVDXK64ZjowhHUZSCCclqnoORF1iqppUsxH18G5UDIdZYwcf1ICkK/Q/ZD6KW4zqeq6h5EdwGlLSgKw5RrZISbW+IO2f39yzOhwcvsXLzrOEftsAZWMORwRg3QyCwNLpO/UPYKtIbzjICd1z0/hmATJFlJzHBT5/kvfrEHLPaBxuOmRjc6UESC6bbkuiy+QaUT2WN/o6vk/71khZzCnO6rPD/1jHfV2a2bn7Z2b++uOL/WzeUmZfmMsP/3zWD+wW83y1mALqQbGlDdVSPU0ohS5JlGXA9XeOK9B9ZdERIbDFsXRTlwSJC4RVA0hk4HQpS03E5eZk97NYfCopq+ULSWC/n4xWF1G1lZbVeM0D1IRuaGvrB7OzFg3v3lAq5SqWyc+eOt73v+/7q03/28GOPjw6PtW3shmEkTm3fbli5aq2+O5dfWjmhKAo0ZnMF13FGR0dXV1dnZ2dLpdLS4sp1191QqzV27NgVCUK73S4Wyr4XmjlrdnZuanq6Wq0aVo5ivYrvgZIPNpUGkAPFz1CfZuZzgNDUa5CeDFBAoOumkcs32rYfRpGPcFCxWDx4zb69e/dOTU4eOHBg586dExMTIIoJAk1DJn2tUr3//vtnZi88++yzsPsXV1gi1zTNnTt32TbKi5vNdrvdTqP4586cYXxILPQrywpJ8yKcLyCUHrguUOxUCiaKhiSJqA/zgW/xbCfBmkcKlDIpbEgaNrCiycIulqxYZoJyAEDIO8jJWJaFhABy0BgtpmkWCgWzVM6PjiiWpTGCn9kqaJNmKsB0sBGRDzNARB2m8oSOlmrRMiMqO+VFjPN0N8FYZIUKIGwVSSDCQaqhRxl9FBi6Ojs7a+Zyt9x08/mLF1qOPVQqry6v2DZyMtwk2LTxuG3V6/FcAJJIVhJ5NXR6G84UCoIlOW9aOQs1JNW1iqopoR9WqpXaek2QhHKxPFQqbpvaVhoqjQyN5Ao5y7DMnJm38oqmeAGQtaqqqaqiaTodXpUkcWhomCg4wO+kKCrhHADqcF2X0VzIaVAlBkquq9U//uM/fuqpp5aWlnbt2vXSl7704MGDU1NTu3fPPvLAY83moucHheKIbbcURaOCi6Ber9MLSSEfVYLHEbheoOkxbWi6c8QEHsmbDORPbYrYMcsGxfAZhJiJIQfrQhy0I8bETrixp6XIn/SFjzySKCtKEIWypPqBUyjkHac9Pzu7Z+e+gwcPPvHY4y3XNlR1cXn56WeObp+egBrA7Oz0vj2C74+Pj3ued+Hc+T2HDhLonMZWEhyMHUysNACMxfdEwwqDR9OIgIiNSSQO6ONctBPHCinblxQvdtknsfeEY+7eu398Yurs6bNBEBx54vFgadkgSBJ7HYQr6azCmIB2oI+MCbWKPDb2tne9e3F2dmF+NpKj4dEC1qKc9Ye/93tveNNdP/mjH/nVX/9vU3tUASJ9KOREVQdz+aPAlRMp8IE5WMOnofVfJg4eoouD3w47kG6ATEeahoQMwQ1L+G5C5xPfapiWFFMJAKcbmLZF8NyY9Qv1UjThiSoJGl5EIimhqIC8gWTYEJIcNbhiKKLWRqSyFoWUvFBSBl+D+gqYvgiEoa6LeuJ09ycnouVhXmjEgExQMyIOoFwIk5gShJ05/0UUEVDMCgxiged6bVUxDFMzTFk1JCfwHTd0AtEL1TBUvEgJQrGYt+BDkXSApoqajtUk8r1AdnVJ0SzwTtqtdrvVwPojS4Lvq5qiqmLRVFqmKvhKQDA8wQPaVAY3G77nhVG9adfbsuP7RHQjE8wJWpzo13g49pksg7ZUpMo3zqZsKDC73iZJgA1BQ57qrCyZsaU7BsOGGoC0RCAZ8ZTtyV5fvI72uYNeTHD2i9mIfszPQ1Bk9rdBrsR/hM2Ret4puRm75nyrvDHwMYMeE6fXYehzRS/y8H9fs/hFmwQYdFWbdOCLKvy/9RO9sBeWDuOultX17EoI9teziUdyekw27SltnJlVDH4VmRSF8bKIMmEHCAMhYKAhY5rjHTC1HTa5iQ3Jt05WnUVqMlXOIfGg53O52nrVd9yhofLE6Ejoe8trq+VCsVQqNevVUqn0jne/q762+qV7vxKKkidKspmvLi2XxqcO3/SShx97cs+BgzPzC41m+8DhwyIw6Iog+vlC6Vvf+pbddqUQJXS5fPHicyf27t17+txZWVF1yzQN3XE90Pb5QdNxi5bVsB1R1Zu19XbbjiJRBeseEtGRHMmKtg6h3mbbsSVRMQpoIyNjhVJp9+59u/fsOXTw4LZt24aGhhhpYzfBnGMYxtFjJx74zv3z8/Oaps3Pzx958qmz506l3M9kCMpSE7HqJx57UkgMfHb2gJPxHFkSNUU1DCNv5QQJ9iKQ/e22rusGsfekCpSO43jtNnIrZGZyEEeXVUWHZeC5LmoZRDEi4AqsMQKGOl6LE8oxtycB35n7X8S2hobEh67nCoV8sWiVioIGrjxyk6hM108BpunOxKlaoplToW8AdFHCQ865Wc5OxAMl3hIA30DymbIObLoTGTdhoQH4FWUJfhTtEURoDTskrFar99xzz+tf/3rP86BUoOrzs3MHD17DpQh0B9Bp5nucGB2hKl5Ft0zDMjUg6cEFYhgGBVzh7SjA1ptDxVI+ZxZMs9msV1bX682aIqnFciFn5kVZmByfsvKmoZlwsFADiEpA13c0zfBDz3G8Vguqx81mvdVqe57z3PHjgHK7vuO0Xdd3Xdvz0BfNRotDjNk67FYL3K+e52mycvzZo489/Mi11177nve8521v+Z6733j3kaeeWausTEyMnT9/tlavzs/Prq2tMfmS5wWKrDoOSI001bAioe14GwLcGwA+mWWHCcco/E9hVGb5jvFX9AGZ8D4EseFdlBgK01hgF2J7UA2AFwaKpnueLSuy7/iMHLtw4dzuHXuuueagruvtVkPTjMpa7YGHH/rg+983MTFx8uTJ2+54tRAEomEcOHDgiSeegAOw0fSPqXFo0COPxJdB8VGWwQJgKBPOZ6SaIMhM+smDEHW72WhHvGqmixmSRoIojU9O7N63d3Z2zrbri4uLTz3x5Ete+xosbjRQ03rqWF5XED0AnzR0YBQVD177ite+rlmvLc6cj8T20NDQ6tJyqVT6jV/6pf/7Yx+7/5vfeOK5k5KVM+Uc4D8AxQTAJZG7nRWFIlAcknXEu0S8VR0cXTYFiwB53EWJaUgS84j5E8MiEbxTwXtK+U6QuRgvitLqmF818pGSg0FLUf1IlsWAlPs4A0PTlbwvSpXQTCIknQ89E9v1GQ4nSOgoUQ5lJJREg3op4cKnwl+as76LSvGYMYzGDqWgIk0OJXLbZEVSKRgCJ5v4dGSKWWkKrdpkOVPpkUpoTkEJRD+UvUCWvdD1BdXCPPU8B1XWoRC4kUeRMdGLdJADiL6HKRkEnq5i9ZNE2fdsLJ6uo0thMaeilsNQZfKJURVlmIpmeZGQbzv5lnt+dl6MkICiEAhVT6PTZTJ/N6iUbF4DgHRcvHXD2WPfjdNNyV7L3R2HGpPdPS7m2ljKTyybeKcTwe8PAcqE+jb8M1t42NV4Qe9tXVH8NFyQvMMTNUnqcNFAcnzwKKT22QY7uKentmglv0jIf7Ln7Xox6AP/MNrfOfnPi7b1OgDp3OnrAGR5hQccrfOCqE8IM4qATYC4TRSC0EyIdGygcZQuDCKXmAhdQRB1i3eGNMMf///AGoau6dOx/rPv8kGQwI1CQ5Yvrq1KUWDp2u4d0+dPnqysLB/cu0cWEQm+4YbrX/Wmu/7Lr/27+fn5vfv2n7u4ODo15YarNx26zotEJwwVIzdz7oJimoVieWxs4ty5c7fccsvc3NzFixdlUQpc7zV33Dk7O3fo2sMXL14cGh5x/dAA5ZuxuLI8Nb39/MxFWdWaQKoQ/AWkcyrJS8mgziZeG0kI5heWysNDt95w40tue+lNN920a8/uiYnJkmU1HZiq65XKqVOnvvnNby4tLc3NzS0vLJ49exbMOSHKZG3bXl1dbTabCgldwRAAyjYKYbA63B8jYyMUzYeGgCSEiqoYqiYKpkrVzL7vOQ54eCRF1nXNNI12u+35ruPargdpAhUIdVWRUagKNj1BBmDej4LQDV1wYodeKEkAusgoo0NcHVB7UVJ0luKis6B0zyMLL0KYWlctM6fpKmAEgd9oNV0x9HVVMjRdgewXo2NBt51ALuNth6x/Nv48r6N7QGXE8TjihEbXUAFkQCb+7QS9KlNROB8foXoJVxvHQclqQ4gzCF7/+tcPDw//6I98BFpyprVnz56V5TVRAYUfKSZbKD5GvTLYDuEs+Z7re81Wa3V1dX5psVKpBEGwffv2aw8eGisV2XwIfGCk3FZrYX72iScfY6h6EATnz58/deqU7/uscEzMNjgR4yXI4gxTbWabGiN8UoM4O51NMw8wF7n3qaxSGASKCrpSvmYhDI89++x/Pn/+4x//7R/6oQ8dO3bMNPUDB/a9+tWvHhkdbsHVqM3Ozs7Pzy8uLi8tLi8sLMF2gbGN6R5D/BiQwhzzFCJmG78LAoPPJ3s8I8R7MwZMF0avuqnJuhafbIqeIgsIX6ME3AlVAnGhTkGWVldXwzDctm0bulECiZMXCCdOnIiiaHJycmZmRmjbfuArlnHTDTf85Re+EDgOKweTgdtJgMJAJZU6UkvE6bxQQNYhjNrVGsWSySgkmhg4e1IkKuQqJxTJoshFrmysbsysslUchmIuP719GwCEFWC0nnnmyEte9QrQdKJXGZADIDsbXKqsB0HUbjTNQlFoNgTBf/n3fM/q8uJ9y8ui6ti2C9xas3niyFNf+uxnfuWXfumu971X11RJMHEkKkmnxVqlAp20P2MuIHoauPYE9tQpmgMBfhKS5/WalhwwGsQsjiQTg/gP4YgSKUPG1bCZiD8oqgJngw8dV4ghPORT5opId9lTZ3wQIuXsRZGtT6eX4dNDyysN0DK5L+GPms0mU7Wyj8jsZBj2FqpiFIiEhIGPxGQUBRTjDxQRlQ8q1iHVMHVDUxVV0giEg7p6DHG41h4SYFScgIEn+xEqsnwvcBwkBChS4wLhGbiqJIa6CieIvu+HTvwlZHUEL4gC283lcojsOMBbRgFYgHVED9Qw8EiWQ1QVUQcnqEK0ZcrGIDnB53jK9DMyU+B+NgAd2+4bI9RdiJVkve0sKVkt+firBNlLPs+lz50/E6lqZw53cHwpMnDDDMdv8oP7gAEGWa5ZNiEG//GRYLjEA5rggOwAoBAc77PpT0sNZZfSsGWmMICPwyOY19ZON20ohsj011Yj1pe0yLv64cr8h8s3fK+Wf9J1wVfd7Rl0O6nU+fM8zmDITf/7ulrPvesDl/Gxbv7pTa+Ty126V4euIuOsWe9moBebOeTxMTGtHNctWflWvSFEYbFgNWsVXZHdJoogh0bGLCsfCfJLbr39lttf2vaC1bb97QcfPHXq1PHjx7dNTtm2zfww8WIRbwmklgKyllgbjrH+vMPEO1aEac94QApYxMwqhXxudubicLFQXV2541Uv//bf/m1zvXJw3y7UtoXhjunpH//RHzvz1FNf+9rXJsYnK9W6USicPHN+9/5DIxNTjz39dHlkotayHS86cPAaVTdPnTmzZ8/e1cr6o48/oeqa73rbtu9YrazrZu78xZkwjAxFM3Wl1qjXmy1DtyqVqqYaxOAnBwEJy9uuIEq6YZSKQ6Iir83PNRqN8vDoRz/6U3fc+drbXvKSSBAajrO8uvro40+ePn3yxLNHV1dXF2bn1tbWHAe8y8Qv43Ph5oF9+1/+8pfXarUvfelLq3MzuWKRMugo0QMUBJsnC5/DKleQXIj1gDlmSs4aotwqMRGRcek7dmw6By5sa5mMDh+Y1HgLCRBbBoc0rCFwh1OYTpKhWBWEAEqLUhRA5gzDSFWIJRMeQWzSIw4eibLabNWXKiuargwNjxbLJVlW/TA4c+aUIEuKhE060Q3Ak0Vkj2z0fD6vqnpq0brkHjBGyOPiVEoycOCwC0tKBblEkpPZpdgI1RWE6p0WCppzuZwsyyydVmvUD+zb909/7MdGR0d932/Z9vz8wvzsnKYZ5UIxT81DtBImzMmTJ+1m6+LFi88eP/bs0aPHnzuxsLAgKnK5XL7jjjuKxeJXDbPdbq8ur1TW1pq1uuu0g3ar1ag1m0027rkkN5/PE9e2qGsge02TJxCvJkARuzo8efmfKe9qdmJyEJrfZyRYzB5Ld8eQsHq93mw2iXsK5RGf+tM/o9fe1+7760gItm2b/h5qr3z5q0RRfPbZo5/73OcunLvYbgId5PshnhVlQjiYyqRAIWV4AH9SkehCcBfWFeiaFEIloQjE0CVJ9GADSboBeANsNRG1xSGFaWVNDT0/ISAH0auqsHsGM44cUSqlIAVrVVXDMHRdDAdRFAvlUrWyzNLae/fufeLxJ9cqK8VC6dWvfvXn/vwzqPotyPf99d/8yr/+5ZGRkcW5+dmZmW17dgthuGsXkHKnT58+eN3hMIAbZ5RKkL6TFdd2RFlxglDXrZrTmJ2ba7tOo9VstNqqrgGLkhS6KBLyQZhSkqAZar6QKxdLpqaikCAIVVFQFdlzXVkAQMV12pquuo6j6abfdmEQB8Fr73zd1+77mmmajuM88vCD/9eH/3FzrZmbnkKVruiLEDpwLXCCAa5Dknlq6LgI1viY7G/9vg+ePPHck488ND42HrSbvm0rovAn/+vPbrnt1v/467/2sf/nV8HsWm+PT2xbWFkh6aUA2ak4bpDkD6GMC+xLLAaXGEzxnGIeHFoTGMpBBM886ROHMME4AwlDxMfxsOxsMeSvQhuNjFf2UePyXFyKF4RYa8jcZ6wOOg0jATi0tCJAlhRBibkpk7JUSjWHgULnTcIHtKMRU69l6CyXQmBC+M8a6MMEXZZ1BafQNMWC+a8KGAZurdGyDE00TU1TsCaCAghHC2yQ8fsgMQj8EJoDkAcIhEqlSv62JIUQDEYq1CENZy0Q6Y6QyECgAUNX17VW2yH6VInwqqQK5ntOGNCOR0s6PEo3EH3H8W3bK5VKbTdo2lTTTcIK4N8LAmQrYt7UeGHkPkc5QS92TqD+iXdaeh5JRo0EE+JqkExAjUG8aUvKf4klVpKxHxAisXOi7vDhVlExlwyZb/xrxl8ZhCHgHFaSaci6NV2C6tl3Ug25zoX12HbZf17SfHye7/99D41/1+53kwu4nPv9+1Ih8PzbIIG2QT3QtyYnFCJN091azRZFU1VFz2nX1iXfnxof0xT5Na95zY6de41c/ubbbt95zXWtas0am2g6/k/+zM+uVdY+97nP/cZv/EatVtN1HYtgRokwG3iI6T6Zbiz+E3CfQRBwwDhev0SogWqaVq+sFUxjZWH+zle/cuHixVa9MlzMGZK4bWp6ZvbCP/nhHwwD70/++H8jxSwhbFxvB/liacfuXY8/9eT23fuOnjo1MjHleV4xXzB1FcybUbi+VmnW12VRMnS1PFRo1JuNej2kQkkC5PuKDJIYqM2gjo14XlCjFcm6KlmGFCJAGPhuu2nnTOMtd7/5+z/4gclt03Pz8//fH/3R408+efbsudXV1bX1Sr1azRu6rimmaeZMvWAoYM1vtRzf3zk5ds011xQKhWNPPfb444+vra0NDxcVRalX1wmEJW+M0kh+vI53SrUYeN1oNbDLkxGpq4qkQvMlnh2JQdOp302jRxs9Sy4Wi+GfBM3h35Eg2T5qCRgGgGAKiQ0JUpTP5Xbt3b53z/6D1xzYsWNXPm/5fthybM+P6s3m6upqpVKFWYyKamyX0BhuthuNhgMtMPDY0L4jNhttTdN0HSAcTdPYrm026zxUGHKQnelGIReBiYlUM2E0K0DRK2qj0SDzWCdmntB1bTAy6Wo+n5+amtJ1/amnnpqdnT148OD4yKgb+Lpurq6u/q9PfvLY8eORJJ89e3ZxacmyrNWVlRTWourazj27b7755muvvZaJgKprlfV10CjBOIaqgK3rugvzDJXbsqQGodeoA9+FXApiyAplR6IghLwoML+qjnikaiiqJEswhFRlwzswzIgaHK8lSSPoEQuHsZnO/cCeAGu0TU1NgRqrAE3lD3/4w41Gg83r9erac889d/r0qd/4jd8Iw/Cd73znm9/8lo997GNH33H8mWeeOXXqzNLSEpyBdrvZaDm+I6EUE9avKIsTY+PNdrPVaguSYFKGhOTWvEgSdA0+AyHCfSRYvLDhukiaUYNumuPIpqnJCZcrtb7FAL1vwrbLWxFEyyjsHoamaaqy4jtuI6rv3bfbsiww3otirdmYmZ0tFoulfOHcuXPbDh/21patUnl8dPTEseMHDhyQDR0Ak3ZLFFQ/ciRwVmm1tvPcc8dPnDxZazcN0wxlEeEBivyT1w3vFgNKUvE0ZCFXNOfWl8UwKlr5bROTY0NlQRQa7VbJzAlC0Lbbrutoui4oshu4mmkJXlOwzPGpyampqcWZBdM0L5w9tzI/p5dKQrsl5XKB60JABJBrVOMomowQLAFpMOqUSFA0QQ2+/4c+tLCwUFtabNfqO7dvX5qdmZ4sffJ/fOJf/tf/+oHve/8n/uCTE9umFhbnisMjc/MLpeERpJX6AR+oOH5DxDOLsMjiJmj6J9VX/faRTkwqPT7CxTESO/uBtCaNbHoCp5DtjgyMELAX2GVGdiFBYiobUAl3QKGccmHLGBBEohvimgfKeMhiECk6MqRiFKrYQSQLiSAFuB6nBfFBp80gRlGBXxr4tNIRfSj5MVjrSRg3tFs2sx1wWoenXiDJ9YbDDKSY3XS1uhgJSDpQZTVlKUipAxX/jKf1Qj/wfTdoySA7lR1fcL0QmVlQnzGqDnoJzMKBSrPuytWOFd0dFhQUkv/uBPuzUewukzhxEmLW/eTIGbEOytcxJUMfB4BDd1nbOvXJMgZZh6b/chHzCTSvU1gTY5rIAUreYrnzTBdwDQD9ndxbRkIlz6uPU0HjpvM+14/3VpTCix4Qrb9a719Ze/Eg478797vJ2S/zfr871/MiaRur+DuN6eEum5Y0CjxfFiUFyHZouGiyVMwVpkdH9u/b47UaSwszVq7w+c+c/dCPfGR2YcmqVo2RsefOnZVl+e3vfMdb3/62X/i5n//yF79kWZbdbqfdTuQG8VMAJDUKlDgBjrdBLMiJYGKNIJJoWpgDFKT5dtvKWUVTL5nm0aceV6Nwz7bpvKWtLc+/+Y2vv/HwtZ/8X3/wza//7badu2CZwTAUXvqSWzzPDT2vsb46PlxaWV6cHh/JG2oU+boShl6zsjIfuc2hkVGUF6uR7zeF0M4X8qapeq4jRGHB1EVRcxmPjsIxgVR7BVUWGu3qtomJpaWl+ZnVt73jnR/9qZ8sl8uPPvbYfV/+4rHnTpw6ecZ2HWwwkjiSN6fLebvdBPwUtNZBPpcb37tz+/btY2Nj9WqtVCpBf1cMTEWwVFGIvMi1J0dKkHcRYWNlHQBNY2JEpmDirUkWpahMIGn6V8fWB3aWeOtjmGdm84CELGPZFWxhxJcCOATRLREfeOZ3gKJaEWV8TP/HEAaKG4mi7Hh2rVG9/4Fvyw89VCgXRkfHi8Xinj379u/e/fo77pie3lYqlyQBxOVuENrAMkl+CBSTiw3RdxxgYKrVarPdWl9fr9frTttOitgip9UOwbof+j6R4FALhajWhHVr29Ago2JoO3Ad37Ehjwq9XdIeIkwyziGGldWVv/7rv771lltKpVK9WvvqvV+ZnZ2bX1hYXFw+P3MxCIKh4eH1ekNV1eHh4QvHjxtDQ4ZhFEulqamp7Tt3DI+NyrI8Oz/n+5ByW1pYnJ+Zra1XobFgWaamriwve47j47Ip4ApwFKDvNUAXUG0R08wQIa8oCm6zyghtggIBVcf6Gvx84qpMeg2dCdJq4Oe7cTwgg5eF0KQfyBdKzPpXKhcmJyenp6d37Nh5ww1lSZKOHz9x331/LUnS9ddf/+pXv/p973tfLldYmJtfXl4+f/7iuXNnZmbmZudn5ucX12uVi2fP5ou5oUJJVETH9uxaTZTAFhV4rmoYKtlPqN1UZEWHZjMkkH1X0BF59TzR8x3Fh4xXqlCetfWz63ZXDYDteKOjRrvpyJJKPKt+qVQwTH1m5sLw8Pi+fftGRkbW1pZFWWk02489+cQrb7jp/MnT506feRUHQRTl5ptv/vo3v/mmu+8yLFPSVbfZEAVRL+RbteaZmZOf/sI9ipUvDQ2ppr5ar8MVtHKSrNRbLZ5CCliYwARLNp9Y99tB4OQNUzX0MxfOHz9+tJzP7Zye8l2nXCr4qFhQUScgiZXKWimf08JQ0oz8+OR119945LEncqZx/uL5Z448/YrX3dFq1K2cFYY+5NjoMQYBiCdjjh6OnYOcRheiaPLwtW9+1zv/+BOfyJWLju/lCgVNEE6ceO4bX/3q97///X/z9W+02rauavVqbXJ8om7btI4ym3xcsJ3wqyfVHbGmEgf9Y0Lb5H0uuCI7jdLJ8bMR+weYMvWccohCsBh4vsHqIrqZxOvgmmNSCUANEvKJlA3m0AOFyGHLE9abYC0xfxAgIRT7Z2awxP5E+ACpJ9Sd8JqYrHwRqXfFZ01QW4BbmbpBRVqoaNJNU0MqVfTcsN1qxVBTdL4MilUoskMQUOT9iSh2INtME8z1o5A4TUUPEH5BCJ1QcqJA8TFP0yEtieDDkhXkOxw/aBMVhCB5AtKkkhsIbRsApAAy02SFc3KTgJHEFrVhgmwC9A2pH+INoeOJ9YUepBgrjrxhqWFAZixsvbFcmGclJ6A7tTvpCy4I7jHF4mfa7/MDWvJQMx+7hLnWCSgmp2RHrfM746ikR2OtuOxRsufK7JGbYzB6Xgx6P3O1fd/fUuvq53Qn6H1feIHbwH4Y+IGt+SSb38Ll3+/g6/z7XUKQhidfmMyAZLfb5XzOlGW3WdUkYXp0eKxczGnymRNHPd//8X/6k9959NGf+tmfC2Tt8ccfHd2+s+oLb3/P+86eOytJUrVa/cVf+le1Wu3LX7h3YmKEM8vZwBC2GUQsopCqimNNcI5LxCVxuGBw/XC8MwwUEXLzt91005mTx+xGbXy4ZGpS4LoTI0Nv/Z67nnzi0a/ec89wuWiZeq3ZUDU1r0hT40MPPvRITpPPnT5+/c23zMxe2LljShGcWrXu27YT2H6zUjLkibIlyKLTWDNkrzBiFQq5IIhqTksRxYKuQbXJs/0A2WTknQPAHixN3X7dwaePPOW07He/9e53vPWulZmzj33nfKPRWp0/HzXrZVP2VY0EtpqKqKh5a2y0NDw8NDExUSrBGqYi3cbihaosSicvnhZF8dr9O285fKDRaKCmU9NqtXW25MgUicP2ghDjLlJLP0WEoyqAaxm5kTIoJ8o7YRByv3hjtR0bKyEoOxTgoQUBBHtRBIWsniEBz0WBfipxpyhg9k4chLbt5i1zGAo4XqPVrlUrC3Nzrut+fvWztK3AAxkeHdu1c/fOPbvHxie37dxRLA0VyyXDsKD4ZZrFouiH0b4D+xjUpiiCTlTkxAMdAxVioDG9YkwCCgAgExSz0/g+AE2+7zYajcB3m82m7/u6qtlOu15riFH4hb/8q0/83u/9zu/8zvT09OL8wszMTLtt53I5x/Ymx8bbJJFranqlVs3l86++666X3n773r17d+zcKcrSeh2UO40WADaqqq6srIA5X9fbjWZtvTo3O1uZm0fuAryjMIiB5vc8WVHgV1LKPi5shkBYAPFj1MzofFtEvQekKz9VxlhvjP3BAc1if9NlnzUxUscgHQ+iKC7OLxRKRcPUlpeXz5w5E/q+TAgiXdfHqEmSdM8993z2s5/VNbNUKL7hda8bHh6e3r79LW+5G367bS8vL1eq64889uiZM2dOnDoJks1crlwuM7TPcfx2fb0VRYaVN3NWJIm23XJcv1AqVuuNKAqGRsakXL7Zbvmux52QIjo4acPWSVdL79R1XVXVG1QJ4AHlBwWJQqFw9OjR228vTIxN7tq1c3Z2BuHYQPjWt77z/re8PZfLzc3NeotL6vhIUF1/6Utf+qUvf/ni+QsHCnkhDHVV8wmQeOLEib+458vFie2+qHi+0G60GrabLxdV3VhaWTHzUBqBXhaSNpDshbMLSvf22PiQIslrq5VSLr9v3wE5CmcuzI6PDkOyTtNVRWnadcvIjQyPgM/GcaQIJGAvue3Wz/7ZnzIW//77v33nW+9ar9ctcGMKiiw5gRcJPmHYCc3MigmYj6KgqYIY+dXWnW97+yMPPnD+2LNtxzY1tVmrDQ0Vf+/3fmffddf97E//1C/8i48VyiNiFOVyuZVqVTesrskbW1OZOmuulo23zlTlN5ViphD7QFNNzAaeU4sIdSIADaKvQgkQIhYa6wjWZuN0YiRosgh9bbDzyFDzVsLA84lPLPIBQCNuoThSnWVL4odD79OVB0wDQIqEOCBhfjQpVGGowwMH8Mx22mRTe75DzgE8Lg+sBKITYKsJfNGFZAugXXFBMx4hHABFIYY3LDIcWQGZkC9Iai4PBjYHEoQQNg9C2fdUT9CJ75izrwqANHAjg0gWQ7EdiHUXHgWJo3khsRjDkYhkEl1D6knEOszuT38q7bSGaiOInySPN67bG+ppeyDugQCFs2wxYfJ5OgtkJeBRpN9VNgnn99Yjsk/CYyr5/CVMulQILHFNQLYUJ6MSfnF2YrlSIaH7ETejFon1gDPVSUkXZPuoS9u4LwToRZIEePGE/9Pzdr3Y/P2reN4t3e//UUmAvi0LGtn4fv/Pq6KgSWLoupokFgyjaJoFQ40cWwr9n/qnP/aVv/nqh37kI0IY/NEf/8/SyPgjjz507a2v/NZ3vn3zzTdrquo4TrPZ/PCHP/zoo48GlP1PBekTYy6JRyPAk7B4sbgwV4UKEQRNNWDHseT5niIIwPyoYr2yOjFSNmSxWa38/+T9B5ws6VkeildOncPEMzMnp92zQRuVQDmhAEIChGUDBtvXRIOx73XgXnydfS0HDNhwAYMJwhiEEAIlJFDa1a42p7Mn58kznbsrV/1/z/tWVdf0zCy7trHx/9YelXp6erqrq776vjc8IQy8973zQ8888fgffuozlqnKmrW6cssqVmNJLJVKq1cvWErYHw2mq9aovX54tm5KXlENR8FA8kaS6FbUsDBdahRkN/CdyCubsHAiWHKglVENUmWvXFBcgp8CnCKpYYhDsky9tbHx+nvPhH403F75+G/+ClDmvZ7tuO122zCsqXK5WKwTrdRqVBvlWrnb7wRQd/H6Wyuhj0ULAiyyHHlB3VLjKHLaGwMw2LDZQcBRIYnwyeSjyUNXil03eQyzzHFJwo0Aos9HUTSpCcVCatBGAFNuYceiPNWs51OLrPK6A1qa7ePAtaEiCr4ebH2YtYcPrBYBpgrjUJbEWrnUqJbxIYI4GthRiLRkaI96w9H5cy88/cxTKPlHoWZYigqTXS9ES12Hoy14AoIsmZpeJPcA0zQU9LKiZq0uy6JO6CAjgQhB/bA5NaNpmmUVLcBSDPL9ATxpfm5GiCP2XIMqvz1s1uqFQuErX/qyWSwOBoPz58932x1VVWuVahzHTuiGoFi79anmAw++5sxddx47frxYLA56CPdXVtb8MLBKxUZjyrSK29vbsizPzswXLYg7ba6tr8trrg25fXc4EGLBI5gwhC8JgiWIIBQyFQ2Fcx1sYD7hzEwYB10stMI5UELvScpXoU9SKrrCEU9EUugZcsMwTVaxCcjxgaTWSfBb0wb9bq8bxTBTI+0RRQm90A29C8+fuxC+IOp6sWQx/n5Nkh7+6pdlWTYMo1qtLiwsnDx58tSpU7MH5v/23/yxKIra7fa5c+ceffTRp59++ubNm4PRsFqtRiHIx5oieSPY7Wm63mw0HdeFqWwUes5IM43pYsP3/e1WyzAszlTz4Uhe/Cc/5ACpjpDEIpZSFd8ToijQNKVWqzx1+enXyq8LguC22277ky99UdchvfLII4+YlnVo6eDFixe2trbmZpqO4xTm5xYWFh566KHjd985bPUK5ZKqaP3t7U984hNuEN1956tWNls25OthySTGIrzaYB9HImc0uJlmCM3USMCQGAzkWCxbpmWYYOsq8nSjeWTp4Mbaii3GzZlp33Ziw1AE2fZcUzME348d+/Tp01NTU9vrG/Vq6ZGHvyq4DljHtq1CIReJjR8STZxuX26IJlpXEhisSqUiaMrbvund/+HcWcPUB61WwTS6w0EQhj/3cz/3j//Dz73mwVd/5o/+5OjJExsbG7lq4I7YjM9u7kSPEwB0N7hWnY5DvAlj7jJyc26BhfZKGi8l6k9ZWJ5Id8ek1sUasMDvTwTuKUCDdJXiUBZlncywRE0NoshzHCGAe3gITAxqDmTCDF8S/gxOdjEwKKiDgOh4LRujPGQ10R1inj3Jg6HrCOMt+CWqcejbQOFQIQH/MyKyQ6BvFIKOgD5SkkYIRJaAJ4eKjlAEtSAtjKQA3hyyL/heGAt+JPuBZShgbRGWTJMlVVRiyEUoru2NXGEUKB4JE1CqAVEw+D+gMQxKOkXepL20l4R+dvtMMEsTlBTdyMkASC99Pvofl0rJBS8rCDLnltA+/LKkIUCCHmMXbWVn6J+NrfHHTcRk1IUSXmb5n2QH8+/5sqK6lOObGUDkHJEyoFtCJMhkUnecmon3mUit8gMrf7r3fD4fSf0ZhcV7lr13h8LJm/8ZZwGvOE16hcfzEqfoFbU79j3O/7UbAPt2APYlMe/zPnu+XoqFgmH6jhuOhrONSrNsxb4XuYoihrP1+ovPP3fPXWemjx89/+Qzqyu39EIxjkM3cA83m+vr60eOHAni6NTxU6vLK5trW7Vamas4XANLPhEVIAWukryIMLCTfoXaCckLsiEoythBGPr2VKW8tHDguaeeqFeK1WLBG/bLll6rTqmK9NBDX+20N+vVih+JU1qzUm/C37dotVqtowem3ShQzKIdeJVGc2Q7zYIuVAxbCWVRrGpFRm17YWSVp8M4BhjFdVVDN81yHEWjoVMuFYPAEACYIRuZGEGzokiHzxzTFHU4HCIsIMeushK7rnbHkaVCoQC7JXxf0Lkcp7d1fS2SRF8I4lCAcoeuSWj4RnHoen6gqOg4h5FNKj2yKqlBLEMaiOGvOC9UjKG4oGJRQJ+IHyQbqvGhHKUCGpmjYyyJ7EZMuFuqyEQhsAYAWpmku82aeugg8962nUyHnkmq7DJkWSr62SKpgyQaEQjQXcSjxMaCXY/KSPco8HVZisRIEVRDK1crpTASXCICekFA9shSGAm25zouYCqqqrS6HeB5BkPbht4lUPK0SA26PSh507lgc1G+i02roOnwHKhVy41Go16vl8tlQ0ciUamULBiiJR2Sqampo0ePMheZ+bJiLJTL5dBHqb7RaFy7cf2BBx74/h/5oVq9uby+NhqNWp12o9ZsTk/NHJgbDoedfs9xHMuyGo0G76enmoCB9WHAfPH8hdWbt578+qODXpdFnDi07fV63S4YhJnFVT4CBkc2zbiSi0ivYUhPdo8zziEOQ5T4cs9nQCBnOKQsMdkyASXHsUPCHikGRFC4VxDYNjosoigh6VJt24a6lCgqmloqwaJOEIRWa3v51s1HH/oqPkmWG43G1NTUmTNnHnzwwfe8851/6Tu/czQatTudT3ziE2fPn7t+/fpgMKjX6/VKOZbkwHUc2ylYlqSog36vKMTz8/NhGG5vb2eraq6VMQ5N8jlAelbEke3KsgpXOprs4jhuNpu6qrH3xalTp0jc1ovi6MrV1fW1tdOnT3/qM5/a2NiYW5gzKS+68847P/nJTybmvhLMpD71qU994Qtf+OEf+9sHZg8EkTx0bFFXO8P+drcniZAS6g1HyXyFZhPY9aToE0O81fOLulk0Qezu93p6odycnXr8kUc+/7nPFkzj/d/6zVPT07gfhMizHVOvIoOIRLXROH369EMbm5qmXru28txzzy2dPDHsdYtTU+P5luIjFltibzxiy5OylagJzui2u+9+89vf8Ucf/x1NEo2Ctd3vFovFxx9//NFP/eH/9Y//4eNPvffq1avT8wfIICv1Qs3hNRKWbna2d2pMYdbd6TxFEX4qtL4zluB8Il/X54sDsc7EkQ8/ohFAoTkXcyfRE6A9+EIkeBTXxtCiRY9IFQQfCaQE2VC6X/IVirFDRQKCxK9U06TshVVB2Y6XkODUQ6Crh+mDJk8qS0eRpKqWLEta6HpBgDwDEsq+E5KDMJYkGZQcgR1RyK9NgliToiqyCqV/2JxLHdsb+XHgR2BrC0oggoEtR5I7In8x8HYCRZI1JdS0WFIDP4oc6P8KQYQMBBM+SWlrmspNH4C1SL8pFa8fI2h2rOM7RWuyu4nnljxoJx8j7WYRTMRRWaKYfg5psiWwfGzKS5b/9+AAZH4ufzr6P/1ibIZMP/ChsCBaOuy4TJK9JjnokC1rksfjbGAy+0nmm+SZ8cGPg5LcCcqSnD9XTYA/b+X/7NMnHrz08/9dPvG/4vv+f6QJsN+32+9E7fk8notCXZZdITZVrWAaphjVy6U48g4uHrjz9tvOX70abW0+8ujDcRw98eRjx++8R9O0QqloaPrVq1dPHD7eHXQNw3jTW9/4xNcfY/Q/143SD6Dwl4oMjNHkshQ/BvdAJn6hEMGe1jB1pXh4dnZupnmzaB09fDB2Pb1szTRrCwdmz597wTK1xQMH7DDSzKJZKhvFMvxYRh2xoBq6WKg0OiOnWiqC0xjG/nC7KEemqfi+pxkyCsdhaFQKVq3kgs8rua4Eq3hdEaKoqOhx5JiAH0U+6pAUw4VC5Eft/ma5XNZVVS9CTtP3fVPQ5KqpKmoQjEbb0ItEl1tRNIRlQqwrKEP5JCASeUhufAi+A+fQbsURsNqGbrmeHXq2KsvFanm8aqYuLdl8yJc6KxOFolDUCyER/UKSc2MrGSJzQxEfcSQtJ8maKsmgcSYRo8Rus7KsimKs0Ukh9IqCHgzMxDRJkgwLHANOABj8Q6DlSNdND5U1ZGnEnoRLGjKQAGTZQX/YGw46/cFWq7O2vdnp9qGK2O+HUVit1mYLRS7gKVCxBIlXV5BCcJg+6PVd1zY1HSLnfgAPY0R+4A1HkeBg9Q4G/W5ra/2F559jSRAxCoPhUCkUdGBvxgnAkSNHTKvYXluTZmch9Kmow/6gtbmtaVqjPvXRj3702LFjV25et217ZmYGgbgodDqdVqul6lqxWGw2m4RKd/uj4frW5uOPP95utSzLuu3kqdOnTx8/eiwOo+/4tg+6tt2ijTV5NjY2Njc3NzY2XNfF14F323BEm+cBqpSpnTBggKyZI7jFhQAFCzlALrIqSt+yexzIFAppSuXKGPeFBouPISIKegnOD2Cwe14whDKsgLFaZDXSxEEiQPQvkQrqYDBQVElXNUUWi0XASLhfNOr3bgz61y5f+r2P/Y6qqvPz86dPnz506ND73vvuv/RdHw6C4Nnnzz788MMXLl0cUXk1RtPDR9yM7NZ2hkPTNKemprq9QTbh7Io89sACybIMWa2yEfp4mSRJvu9Xq9XZ2dnr16/fcQceTE9Pr63dsuFvLTz55JPves97i8Xi888/f+auM3KxIDjOqVOnvvCFL1w6e/bIsZOCorz43HOf//zn+93uhRfPvfkt740F7ebqcrvfK2iWOmUNwVyPSkYxQW+TUS5ZhUEOeTQYHliYUUVp2OvPLy2dXDpy4/LlX/2Pv/wHH//41SuXDy4emKpVP/Td34X8XojJVQ1cXKlgCb5///33v/DMszeuXVMV4dN/+Km/fuKE67pFCOGHaGfJShQEFGux8SKBwDkXECXfcXUh1urV973/W5579OHh5qYfBMVKeaXbKxTMX/iFX3jwW97/fd/3ff/4n/+rgmmFwyFBWMYLQa64mcbPXONPf0ufy54ASd0wyc34hz0WGNqlVgiUkPM/ap2kl5jmHwq6SdGRLLrGMu5gf5GLjO8C6S5EYUhSuVgFAh9VaOoykokfbg0ExkxOyEdrqYAEq9iw/gElwLEci74/FOQQgnOyFENeicezghYmiioyleZhWUBmgeowHAQiCjSknYpCjKJhRpJYfUggvoIohpHghb4TCgMnHAVw9qA8DVjKCLGoEPmQCSVPDYizyaKvKBGUmTSYfwWBGIaMjCJhJjjc49iJFpEEvZjWUR8JMnfdfBQ90QfYHdNOwMLzBNfxC5KLzlc+yxCSDJxeRXtS4uJN4afGUJm8CwZDfdhIIsWEZUPhZcZb7Mqdys1m4j+SgGuSmMWkCShyTSY15kv5OzodjCEjWBGEQXiV5O4eNXqy306AnyYY0/nD2++w/xueT9QtXv6eGBvhzuflvZ7/H7290vPwMt4xHUIZaQVbmpOmYzoxi+Nrx8N6/BcT+3ElIpVBi17xQVFp42Xs/+uuLr7ey9zL+7yPQon0Xu/PmTTVafJ71rHe+bwsRN5w1GzWPSGUoDspTU81F+Zn2ttb293eb/zn355eXHz27Nlby6uCpr/hG9/U9ePjJ0/Fsaho+vHD827kff2Jx1dvLbP/FNXCcbMl3T26eFEY8D1HxX52KkaZ0w68omnpxYKhQ82mUipNTU01KkVDEiuW8t53vU2Og8721lSl1G1tDnqtlbU1VTc6/f7U3Fxv4KzfbB07eXp5ZVUOXd+1i7Gwsr0pa6YXhaVKDRL1QVAsFmRRsp2hYEDIRIjicrHuOANDVQtFIzJVZzhyB21FVMqKGouxpesSKXXIMoyfJAXhPhxmFIUZqDLUJyLdhA8XhBJlQSkYcH8kaD6kPgxtFHgsNZ2FfSy2PBwOZ2tzJDiBAkjRLFDYKieQR4b9UJWHZ7wxlIu1kukFIOnCazOjCvC9Qi1y9HNxqKyxAwlJw5AVtVafhv69CiNM0yiYFmwDyIsWIT5Tg1mLBn1s9nZlo9wkegCQlbHCxDamOSet3pKmqAoQRxyTELsSCkJ3MOiORp/7oy+8cP7C9Vs3ozjwfdcmQIsJNRuZGj7Q0MTpVZR6syZJDc9x2csTrQhCMSVYeU5gAI+SIBNIIpJRFI5G9nA4aG1vj8ist9vt3lpb7w5HzVpTkOVqpdZqb3daHV3VFg4unTlz5o1vestnP/vZn/rpfzd07OvLK+3VVcEyBdcVVA1S5ZKkmCiWa6YxMzMzMzc7MzOzMA8rt8729m/+5m94jjs/P79w4MDrHnh1o1ZbXFycX1hgl4ZsI70je+TYnuO6vkc+XP4IvQ5YenGjgB9AX6jbZUdnPrHJ941DdzREGgDatA86AfjxuJ89NFSoZAz3Blw/7t5AWQQSq5JVLEoiVKd88oaDd1IQ8PuLElIvMJJJrF2IBdeDkCL+HmwEeH1IKtI/DQQcQClu3Lh18+ayJEk/8zM/O7+4eOLkyTvvvPNbvuVbKrXaQw8//MlP/aEkq70OkOiFUjGM49WVWzhjc3O93nlerYh2uscKlUzk9E24AOd6tigbYkDqsaIc+lHRLNbr9cuXrpw5c6eu641GY2V9xXVDzRSee/Hsu973nmqj/uwLz364+FcoO5YaU1MHFoECOnbylBALTz72yNXz56uG/nM/9W+cYfD+7/jO++684+rKzY1OJ5Rl1dds4pkjfwIiH6MbKC5iY0/PzkSOW6lUDx06LHj+7//ub//e7/z2o1/9ar1cPrK0WKvVbly77g/6aqXsDvqqrvlhqEmSqOlhp3f05Klao/HCC+fqzdLXHn7oB/7GD0NMTABqS9GsWJDs0LFIdz8mOj5PlYi+pFi3CgiB4sAsVd79/g/8+i/+XByimVav1Uaed/3yrV/9F//8u37wR770pa+cvXDRKJTJxwtQfEJB0JlNrJkR8YAYT0TjnJkXo72T0gG5vKQh4n6LIJUkUA3AFEOEZaxHPhF3knVZIh9oYsGSjhmHm1yZheJNJCkaWX/Fro+bhQckBILVhDkgSzKRamhUUEiZeYbQqUGcLsbxyHYEAcrIkMOSRajOASGEvpkohLCPEQUvEmTi9vqwHZZxkOitSEguMLfJoiCXqqUQFQYPgp6KZOiYLRWUP5QA1C9Akij690a2O/QiP1QDAOVhLgyUJnIWdHVVA44ssMEGio2VhNDEEuQYrIMAXocMYkLnQZJC+J6lPofEe6LpVIggm5ZU9/OV9J3QnXGBP4+GyPP9suVmxwuIfpf3uk17NVAf2infn1hlK9SKTkKvcWCXRGlJcy/XEsL3z1A3+Twm/wXGyRwuKn1Dtp7IJZ80lrm1nVT2qWOCERcKEZOmE/dq+j5KIrhK4SBplGXfkyqOqe44vYIyFTKoprZV/qgYDZY/+7v3+Qc8VF8++ZKNtXf/I/EHvgCTYkqJ5FHWRkv+ZS8Y71OgxV7z7M7WTQ6OuQ90ZKfHc/rn/NZ8tTimnjwhyQDJjv9Po3TvPjmJABT5yIxbU4wUpxkuA6lJoGtxYM9TWLLPB7V4N7a6oGIEJor8+Yn/NKgMnZ9EXyG3p/cFqhr39bimjaIsGckTvI1eyY/32eOqZ7JV2Z6f2eN5zG0JUQj63ImdJI6e9IT5E8f75MJQYZ/L+3TX4DMTH8Ykd0r2shirmiS6o2Fna3H6WBzHc0tLiwcPnbt2/fTp21+48cjJ+UOPPHm2O4o0QSpVZ77hta+PCrVY1alKKf3RH33hv/zn33z3u95x5513fulP/lhWJE0jvfMQMbCK6FLybUdB1VmmUnKoakrBKhQMvdmoWYZeKlhFq2CSMasCLx7RczqeDSEYEQrxguN0iiU9lqIDS3N+EJmVUiAq9UKhJs/4kVeZAlQDwsymZRYsXStIugrderZ09wPPcf3AFaNQkcVEl1ywFVHAiyRZEyQFgySSYwGKhwTM0Ez4RMWi6Hiu47ijoQcMfa3O/qxkQMMV+sRwNwiwpCmQjRCE0CmiLD4O0HleDuJIs1RqVaNwjrOBFjM540oqdKkTR1xSJcEcDLQSdUsweVH9XpFVTVSVQFZFILI1EyE+MEio4StKo9GAVVe6YVFFDV8OOBggTD+jDyjOiT3XJ+Vz9GAozUy6B/DaRVUTIi8QywZ7G4bBLL/GaxjFBUhBMQ4DqjqLAsC7oEMKekGrW+pf+vCHH3v+6Z/7+V8SVMUqFPx2Z2ZmZnllxQuABeKCH99b0MugT6LVAct5nvQmSzriAnhQi4qoioqmqLgbjVKjEvnzh47WajXbtvv9fqVSkSPhc3/wB/XGVLlcbTQa3W7/22jb3Nz8f/7VR4IgaPW6qxvroig2lw74dCl1TYNmp+87nmsP+3an1V1ZvvAUZHeQHgiC2WgsLCw0avXW9uYTj3/9V37hl1QVGWCpUq7X641Go1yrWpZVrdX4ouimYWi6WSnVZ6d1XXdHQwXlSTqrqR0YY956vd7W1lar1eLcAC2Ffn/Y7wQI4PFCCs098gHzCaAFOFYIODKeCclEFM0fAzgoVrRTdFmAb12kQgAr0VhilBQPV0VMEwPXwwlPNUd938uERyXNUFMraLNQdB3v8cef+OKffFGIo+O33/HtH/qOX/qlX/7N3/zNT3/mM4j752ZRtlcUt1S0db1UQrcnCH0wt6GdHkJjR9OiIERtFd6sUBeNJDlWI1kVR97AKFaRdUuSppqx6+P2kgXLKHiue+nCxcKrCq99zeueff6FQrHS3eqevXxOEPw777v7Sw/9id3eMotFwTQFUbz77jv/8DOfFhRZ8JyZSll0hlYknpqZ+ugv/LQUe9/24Q9PzUxHYnFr0MfgMbXuMNA01cf84DWrNSHwI8/TFa2myseO32Yo8iMPffX3fue3n3niidj3luamNEUxDGVre21tYyoShcC19TLQg5HnwzBWUORybeqAM7U0V24UfNfubDhXX3hhZmFJcANFN4ajoWQVZN0MYpcnbErcmQuMuT4MyArXDYS5A695y9vPXTj/x5/5zPz09NqtZU1Wpor6R3/xo9/1oe/+h3/v73/D27751N3NQX9gVav94SAM4lqpHPqBN7Ipp0elnbhEFPJA7QafE/ghEh2uJ8TjfZzo9iadWwq78bUkVUUCx7E4PEEEyKQCsCeLiPlRuye1tEgKMbQSYRrOEsBuIGk5KhhLCgTNyP4b9SBFkiGDS9V6EWG1KCFwhhJaFoiFWOYkIsUjQfXRQoHGK6o4URC4kRcHOtYMQTI14FJRTYgDUNYl4g+VZEXDPYJ5NSBMIxzKAMiUqOivKXEUiEIIwk3oRW5gj0I/EkNRERRdVDRJ1uEkLIaO40VQg6NzR40DGa1rEg9lNSdRFjHZpgUL3FMyMnQKULlqHqHRR7YBdDvyeQ5CP4YPwFjMJx9ZwfWZUV7pog2cmQB5IgbQ0agZb4nKXlrhz5TIoKmRIGqyiJe4QympgyOiEF2NeNwBGMf941JTRrrlT0sivcziZOI7JMLPO6NPijkIZcSRHrsiZ4Fj0qcgEhT/o8YTu9Tl2e2sH8zfgYWjk/Iv0aSzvx4z3RDcc+BOtJ+dEXM+Z9qNEXqZWJR9SuATvqd77pOsl9P3l3zl7v3/hCbAf++Ncrukrk+uk7g6OyRcSXoARUj+ke46HjhRltztvU/f4OUfTWqdzSN0330GpqThlxzVy9rju5BV4MvZv6J33rHxsSW/G58x7jknjTc8NjR9ZXnjnnvO6Ip87tL5qbnZ7/q+v/oNb33bN73vm//lR/71zdWNJx9+uDdy3/rgGx543RsKzelAUANBIm+T4fLNG+fOPn/88EER07GiyoIUUZ0SamcRvGQk2TA0U9cqpUKpVCqXCuVysVouWYY+HPTQ3gOt1HYHfU8USd9dsCA5qFhawTKMslUokNo4tWg1wAUUQ9R1WTcFWQ9RCxeK5SrFvahva6ouq5ogygiM/MDznNFwOOz3BsO+M4QgvRA6ZdMUAjf0/RjexqEswDNSFqWZmRmOAj3fb28PHM8dOrbteIYGUiPAAXEAJGjo0TwcGbolwsQe4Twnolw47/f7FHEl8ZOs4EkdjvIyJ3hIAxKsDoaCCzMslANRCkP0ryEPkqUpCDKqGmgKhoZ6fkHVNUmWp5YOxqjYQ9lag4cp+fzCvYB5bajq03SCClwQh6Kq8ehI6F+p7IRlFcIY1XTPQR87cacSZcd3YviVgqLABkE86Q/tIYFswQrAEghTMTjsyCpUESmgpSwGIQjKcC9eOTcYDI4cO/rE009tdztHjx+bmz3QnJlm5Q0mfnjpxpExP5lsPjh0cSQWrYRQixCWWgRESxbBCVaKnU7n1uqGLMvFYmXo+M8//XS/Pzx8+Kjv+8trq2EY/sqv/eqjjz/2hje+8S98+MPtXndlZWUwGmqaFkDfxpVlud3aYkwwH4PnpZV72obDoeu6G2urN69fcwYDwbbNxiwaESS+hKU0m6UkSTUg0l8ol6BVX6mUy2XAh04cN4jxXK1W+clqo66qarfbnZmfu127A3kpraG4LmHU77W3NtZu3Li1sbHW7fbb7e2Nja12e3trq+W6tuN4fuDDAFpTE86GYfE55AURCL1Cgbx1ExO6jPBNJX/VHkLgqFIpsFcxqVS5kOLRzcyhLL1A2EnkMqsoaqXe9H3/6tWrH/nIR372Z3/2vgcfuP3220vLt9bW1hpTzUKhsL29PbAd1UzUaXbgctMGFyZPRKS0qLMGIsLNIBIijBtRCSjOiWOxZCGh7/baYN2Uy7VaY219U5CEc5cuD73R3IF5z/OuXb95+r57BFmOhqP5+fmiaZ196onbTt/2+CNfU+NYi2JVkQ/NTX3so//xxs3L3/eDP3T8rrsLQ2u53elC+swMorBcLwee291eL+jascOHDjSbliCde+HZP/i9j3/uM58etXuLC7OVQnMw6JGgcaRKUqu9bbuOpash8jBBVTXcIgivY71QXDx8SDM1P/ScoX/5/LkDBxZh96uBmxFSgTMp+lN/N13pgAuXJR34ax+lE6HauOOeB65cu7F+41q5UAkcO/T8Rtn80R/8gX/7q7/6l7/rWz/6ex8/esedl65fXzxy5NatWyPXUQX4cVO4SUaQHEtQPy9GkYpK/4TaZyg//5aBHvktg6Rnw2aiEur5Lm5EcgkkgRmO/KVcwxMhVsIuSJYi/mNIBmWFEVLOJN9ZzKJgkzNZNvZFSVV1giNCPMfHXelHguM7ohRrsIVmRKOMsocaESxHRQOU0l1M4AGK65qqE5YHuUgcBEIkyjLaPzHUj1FuTmYSLuTBoE2KI3IEH/mhoLoCUlEvkmRJkwgYTxF2urgCuoYUJVtrKVAmcDtZq2X6q/mKahq+JL+nODc5z3lIz8SPE9E1h+/ZYey8cDtYr8mTOdmb3PNZfDv+uKQgteMjkcJn5X++b3f4mKYPspwhazTgBPHvd9Idxn+XPp+G1JmIbSJfm+QfJCxCQJ6dCUD6lcYk4MQWL3WaHPMEEqwRTUD8PSl12p2c7OY87LG9Eox1xpze+612fujLh1H9/9OWc3UmdWXuK6KFTOeEbgEmdwFfThpqJGuV3VpjvOz+HYZXcDzjXsx+W6a5SxBKtBhfwftTZsK1GYrI07h8n+eTOUfa3YHZ9/25PMs/jNtre3dmyPgpWjyydGt9s1Ypb3acD3zoL+nFWiyJ3/7h73nm3IXHn3omEMRL129+++ycVa71ewNJA4LbECJNVRamKuGo+/CffDaOAi12lUjUyY9S1RGSFwzT0NW5Zg0iCeT6pJCvkTvq+8OurmmkoAZ/JV1XC5ZVLELnxQscAkMjVHZCMbB92YskUQnjYSxDhFyxLKssVxqlZmPKLJUVwwSXC6RauJMytJJEF7Rk3QkDIfQFH0F/5Nvba1cj3wXv2fUEz5MiAElVUWptbQRBYBOEwg3ckNxRZEUd2gNSfQRuXsDaxP5Bgue5vHhTXZaqDdTkqdTqMRVdxphFnjsjhRIiBMc8ICnWB+gEQTRJN6qGqemmqmqiLDempmVF03VT1XVRN5jTmRtq2YMUQiklYRb9kuCPNHESlGwHUYo327W5+KshQyDWMHA5vqGZ/NgjgCtUZ3w/8Px6vcHTahD6GGEop4HPhyY5dfuDKHI8b+S4w5E98vzp2fnZpUN33vfAL/ziL335oYdXltfOvnDBsEwAzzQVCQ1tZqFUrUNIx3XdCXQ4H+eg289aLvlf2a5TNavlaoVNskzTXFtb22q3/Ci0PXdlZSWK40OHDi0vLz/69a83Z2e+9vVHByOgcSzSuHQIomNqer1WidBVTFZcBib5PhQt+bHjOJwMwHDXD/qdIScMpAMUuADqYFPIxbbTanXW15d9n/T+UQb9vSDEtTOMUqlUoa1YLOq6furUqWKxWKvVOE8oFArwKDYNQ9cPHz1+16vuq9drBil+tHr9Tqfd7fZare2VldXl5Vvr6xtra6vr6xv9TndjfZ0coWSNdAmhE+X4w8DmFFSRNZEsV7M4Q9fhyoy8uN/H1YfCklWpVNibmfMBLt7xCSmXqySn7iq6Bnc7SfQC33G8z//RH7/tHW8/evS4KMq247iOr9BbuUT64Ykbjk0xp6SMeCfcC1HMKaPGgZFqSxgFoUhmsdxID8OwWq2Wy+XNzU3HcZrN5oEDc7eWl3VDvXTp0s1bK8ePHFd18/Llq6fvfwCzmKTOHTgwNzf35BOPLc3NPv7Yo1BpjHwE5ZA2bnztT75w8eL5/+3Hfvw93/4dtWZtZat1+cq1A3Ozm2vrg9b20YWFI0uLQhzpQvwbv/qfPv+ZT7/w7DPNRv3E8eOjQWdzc7MMyWD0iwzD2NrYdG2nUqu6rgcfNUURwsj3bHgol4q33357tVrdcmzH9R999NHXfuMbnG7PqDXhhQw5yt3wAbI/E2LwULHsyULoCZZ132tft7Jy6/dv3nC8UbVY3NrqFCuFZ566/Lnf+diP/M0f/+RnPrt+awVUWEGEygIl/yiuJmvHHmXKifUxe0FGKt0ZbgJbw2sIuVYBvk/NZ6a5g3bOACHWmB+TN3Mx3u6INpW0SG40lu+hS54MUcJso5YhUuuK3ouANDTzMss37aQBZBZGoWkA2EPeLZis0HtifwleFTRNTO2oSYHGI0yAhAKHImqySq5cKdjJg1nJ0PVszwmgDKsIhBzKq85MnLd8lpvWMhMS/0QpeQKyv/vq5F+zW/0z+6DsRs4U9vhdx75vO98/c3He/el72o3tXc7fcxjx4yCAnfvEG3FnYM/3YXxQrr6ew7MmwDJeUGnC4PCK4Hk5ey/8ua7rnAxMJABELkg2lGnTDTRwtiViQ7udbImdR7g7YcpnVK8oAeDsaN8EYCL0/x9A7f1zlmNQq49aNZFInpjjX3E+vfMSIA0g/Fyc/BcB6ydne34mt0feF70SRD89TCr7u/dspJcxMRiHj9bk5Ocm/+1+Pqn80CyR7fmZ3c/zKUoK/NJ4n5i977GXsKxiokz6CLxlgDsqOqTnF3A8ceB5o033zrvOYKGdn7tya+3EmejTn/3MR3/nY0axVCjXZubm3/3+D/zWx3//0Mk7/ujzn3nyiUfLRbNaKd1///1byytTlcJge3006E9XipahlYulSrlY4yJouWwYmjcaaQog9cVisVAoWIZG+g2C49h8e0ZU4qFSZeAGYbUx43oA36A7H0VKKGiiKimqG/qypAIQIpuxYshGSStWC9W6bGioQ0squv+QWoPCGiIPx6MCPOmQK6jS8Uoye/w2wR35/cGg0+5utbqt9rDT85wRqy6GCOx8wG9EgbIWuagZZDWVkGJ5L0pxkfYZCI2RtUCBxlB95gUNg5bKUJEgGNSnMCxL1TV4U+qIlgBdKtUlskBWNQ2dDdiCUhqTXL9EOIIZohE4omE2uvAfrU7YE9QHbpWkzsmwHzROc7dUNr8xLCRBpEQQmAf2SUmERJHpAOeKEa7KmqGZYlFaW1sFXEghdbwU7+56Xms49Mi6S1LkUrFSazZnlpYMqRALQscb+YFvlTAagggo9oY1PXTsIAj6/UGv16PyNK58HEfT0zOsSgSrKbj9Yi9JUr1en+gkZ3vXdVmwn+m2CwsL3/7t3/7ol7+8ubYaioIfBC9eOO+7jlkqPfPcswcOHFCp8D90bGfTA6Q+jHzL2trawvUllBXyMKrHyzLUmVQVTtLlMljanCwpkgrZDMJIcMuD3EVxrW/duoXB4/sejHGB4OHqu+e4gPP7PuOUbl2/zif5y3/4h4j2LIuzl1KpVK/XS6XSkaXFer06Pz8/MzNTT7dard5oNI8cOcIXTsDtA/70cDj0bK+93bp169bNmzeXl5fX19dRiR8MOp0O+ih0GNzhYZSCXoBhHK+JTKjgJMc0Tabx6LqeyciKojgYDkVZskpFFX7fmqTIRaKC9Ab9W6sr9x2Yv/e++55++umt1na9Xh8ObVHTmMTJy3EqiwQibCb4kcU0fhSKEVi/cEVQyG8bqGX8iVksAHC//EKn06rVGocWlx577AlFlUdD/4UXzp26/e7Z2QMrKyuC42HRsCxBio4dPfrU44+df/HcsNdvlEqBj1FaKJhd2z62tNgPvH/xj/7hVx966MN/5fuOn77t4OsefO655wpidObuOzVZapas8y88/4sf+93f/91PqJI4PzNbKUI6zDLMEGAV4mnA1AH2I8hbVE3wbVKwJd0h6laJmnLo6JHm1FR3e0sUnaeffrrT6UimZQS+KouYFhKcO+OtQT/Obk0qI1P5H2KYkjA7e+ae+59/5pmrzzwlSgLkQz3n6OH6r/ziL7zxrW/+W3/zR3/07/yTk3cf215fMzRdkzVI37su+jfQMJvc8sHoxD61lJoMBwnqnECUuZBA7K6QCrus2sIDn6V4IraAIP8QhFc4WaREwIMqW4kwP1HwzFk0FiwkL8moAFw3IhYKAQsjxlJiduIRhA9DthhHEimGwesREBpIvWFUqiJsTCh0DFCgwUogC7ogSUEYuw4KP8ADKaqpKKahCSYyYJk6zL4XCoInelLoxjCVjFBuElUlRHi7Q8Q2fzInAm4CuO2I/ncX8id+yxpHExvLB2edz+wPeVV5ifefKP9nbYfdOWE+6M2/g5LdovyJnBul8Vj6Bzxexx0lFqpOQUf8l9yK2rVhCU17QikaPutDEEw1qbAyqocHx441jF/OncodCUCCyh5fG9YUy36ZVm8T6Z/kNTsD4jx4V/jvtu0L1NnLP+GVf25yafbrNuSe34st8D9xo1AjYWWQKRBtpMZFJX/qGyZGGcnFBck1pqYhaX8Bp4cfCXRIWm75PZ8ZAitKL2c//pgkbdu1TwYnFdppiUOYzsewcw/82l7P81egWm6c7fmZ3c/T2eA0idPWdL8PCihlU0gZ64A3uoVo1s4Ndr6vGtNzw37/2RfPHz169NXf8Ka/+Xd/4p/96586fupkeWpuMLJ/5Pt/8B3vevfG1tanP/O5H/rRH795/aIh2NCEdNwXn/r6zNT00cWZgnZQkcVGtaYqkg7zUBwtlocwEsRw7sBsUoAJ/V6n1UnD/VKpxJhjhp/TQgI1hyeeOy/IikGSRJVCuVgulwqomB49fkIvFIulslAoCpouyAr+SaLgOyh1SyiQE0OEuDUxkeqwJUwbFIkCRVSUcNQPvNDxYzsQnUj2BdWXNF8O+z2YxsuqLmq6LokA2Oi6poomHGJ8OjxQvSDrTHQ61wtw9bFkJQxdgei5kaDFYNbKhqoqmqprJvgNqqJbBYR6VlHRNcD5NU0xTcEwBQnrU1oahI4dAPgE1oWMNI1zBMhp/VuHbRBIq2huk9BF0oPi8c6tdxa6RqqJtHOiE80PHAcGYRnkw/f9ntODEKUfkee96Puu4wVQeqGgs1KpOJ7bH4BxC246Gj2osB06cAChoawJgjzynfWNrQtPPb3d7l66cnV5dW17uz0Yohqtaka5VB3AypcMzmgdQH1aBXRKEKP1tU0GZ7IvcraHtEMaf2cgdZIrBTSrUCjMz887jtPtwqy3OT117eaNwHYPHzm2sLTIllIbGxuPPPZ1N4wOHz1yYGaGEUfgEWOJjZVSmd8wqX97ARNkCT7viCI0bbJAVojjol7I4gG2XMAJlMT77ruPLxOH1Bksxx46mZPxaDQiM2M8n5F0cfCdfqfVvXVzRZKFr37us2oBeDlwPEyzUqk0m81qtXrw4MFCoVCv18GVbzRqtVqxCNcCXdGPHDn26te+DjZ6UTwajXq93nA4XFtb29zcvHbt2vXr11dX4f7barWGw+H6JlTks4RH13WLVBWHw6GikbwiBbUMgnJdVwenAZtAsN4giIjAIh47dmJ1ff3K5Wtn7rzj5MnTxdUVtEo8V0fhD1UOyjBQ/09rNyR/nvQB8A/FOIKNMPArdQ3jJTtUFK3aAPFmfX19ehrSYMWi5TlDSRJePHteEOUD84u3bi4Lvi8QlkmI4hNHj63evPHo1x4qWaYIbq7oBn5va1hp1r3IN2Vlvm499MdfuHD+xXe9933v+Zb30wQkTRcL7mj4h7/927/+K7+8vbnVRNnC0ETZd51hFKhEkIf9KgrPviRZmLhI4AAdaVkOvRDS7DSzi3FUq9YPHTpy8+o1yxqsrQ2uXLli1eqC58mGQXDmJB4jxlrqfUdAICILR0TRDgXHEUzt4PHj3/jWt9iba9s3bxaLxeHQjm07lOV/9o/+yU/+0v/7ri988Znz5z0htixF1RTHZUOuMQpjh1bKLhZpLorlFzMoguYH6iWqkgLScCIJw5Ae+LUT84fma6ogpb/lihj76HJRAj+FwNknZf5kxZfAauLAVgA2J0BBg0rbPAHGESJ47vkDk58q4QagEAdiHMkADlEVX1UN8K+BCICMpxwrMicedBRBCECBpCqqGYsapeE9b+Q7URT7nqdELtQN0I8V4eOu2oHtxrIvouIUgXMUQwou5JJxiilP/6Hw7Xu7A/GkeJiFN7mAPj3bk6iT3QXZnKFysuWD+1QKf8dH7y7wZzn2BLdzR/SVWxGy4xx3ACZL42lvKIe+oJaBomYyovt9xu6yOlNXc0KcHM3zSMrygSSCz0Ovsowr5RgkZ4pSUfwtWDC51GzcDSBBtKQbvtMNYOKYX+Lg85iT3Zdtn7d5ZeX/V1ig3+F78KdvQMRx+eEVfcT/gC2pcyfoiLSPSRHxTj8EpkRzyJsCZZKkdNcet2QiKC6+nH3u/Iu793kIXfqhdDx7fHImb7Xvl31Z+1eEXqK/4ikokb3izJ01hejX6fojZMnAzdXlpYXFblcIRenm+vpd996nquqXvvrQg6953dbKxv/9T/7ZkZOnZ+eXvuVbP/jixSvD/vbdJxfCIZQTdVka9lrTzSlTV3VVE8HUkkNEnFRBJVB7HItXrlzJjEuzTRTlza0OaaQlG8cisq6/5V3frFuFarlSr6GRIJi6oOi4Ko6bVse5UgA+GOTWVJNGg8yVckq8sBuSARPjEJkGTt0DtbO9Hbmh50ZurCqFalUv1aYxRvj8RFEwch1UVu2R4zu+h3UZgww9ARYKRIUtEpRSsQoNnYRGiz06AkC3VEElpnqpCo0JA3VTZAAmKr6yOr4CsIWRkVCEWHLpTmN/J0TvlmHSOEfgyX/BMnK+22cqAdNmsv6PKiOURuKHVCQZnDJFLfnpetwu5SZ7WgbmarrvQ0INWA/TLJRKEujbyK5iQdjc3oolxahUK+BbWDyQQkHoBfby9tb1K1cvXb1y48at9Y2tTg90C8OyClbJdrxCsaxpmheGJctaX19v1KeyA8gF1lKtVtuN86HbYFx4GtuaiqJt22EYjkajs2fPMmLnwIEDohB/13f/5Xqt4jjOxsYGWyaPfFeQxGqzUSiVRo5z49bN0WBokM2Truu1UlGn5gy3rLPPBeCHzgwTdnmLyP13IgHgnOQrX/kKuii6btHGb6iqarM+loHPO+B2Oh1uC/DGmBzHgRZSHAUcxKuqur6+/sILLyBn7vcFRZEMg+L+xhxt1Wp1cX6xUqnMzs7Oz8+zfQGnPY1GI9elDwaDQbvd7vf7ly9earfbt27dun79+srKSqvV4l7B/Px81jGABR6hkqiTj7YJZTO+oijFYsEwDEmSNra2DMNY39xQz58/cgxU7BvLt0qlsu36ggSBRQSGWR+MQ0BIpiTPpGEA5QpBGHhBaIRKynjkDKTRqBWL1vra2qlTp+r1+uzU9I3rV0RRuHDhihAri4sHn3vqaddx9XJFsG1BkyszU0cPH/ny5z+vyXLoeDrgMbJullqtlqxZsaHHgnDnqVN2GP27j3zkP/z0zxw+fPjtb33LYG31Y7/1Xzpb66LrWopsyMqw03UFsVQuyKLmjAZBHBmGgc4boZUOHTqEajcwihThBoFMWTRu3zCWNPW2M7c/8egjXqHQbg8ef/zJE7ff4Y0Gmo7sKhQCKo5TkYvBPzxRk2hlJAXUxhTDoS9HgtxoPvC61z/95S8Nt7fjIMLYsANN1Z9+/LGnP/Xpv/O3fvwDH/5wZWp6aLuaootxbOkGyi6QsZncJgrVexWk0yUNwl5YchWF9GeJ75TpjnBNLQVvk+wbG1zDCIVsHEj6jUVmOD2QiamyM8ghRwJJipIuAEpFSf6AwgYAkCppUmGaS6RvYZouxgpkXMQYKgnEOggCAQUWdA1jRY1VFIUiBRQFUdMKIUA/miDrQahGkiePfFmJQg+IuTAAayAA51pyY0nzwuHAgU2kD9FPPwb9AJzlMNTIGD4/f/K3YDmj7GSO6+hUT9kNKtkTc05zGuNRxhFOfq6Y6N5MlLWz53e/+Rg7tH8csmf5O8HtpEfDR58Wj1FzyiBfKegfq8NuDgBKRBOjjfccuGc5YhJXJd5sOzRwOPTPI7jHALXcDDJeM/h85QCv+QRgIhDffUtMbPnUba9EaI+zud953u/9/+eh///MgUYvcyPtGrYoZGWBMViFw/IEcAUEBHcBwBNAMAT9MVRgUYwE6TOS4BhIIsW5PfWvErdDKrT8afvxke0hmklvxhIHqQ570jcgKtLOPXG693g+gxPllBh2wIzyzyeRrjCZjMT77POdoOwvkl+lmdXEC5rNZn84qDXqvUH/1G2nP/77n2g2pm+/6+7+cFSuVs1C4Y1vfOOv/cZv3XHHHXfeeefpYwcVrxPbPWAJdL21vVmr1Qa9jhDFqoxWvjOy+8NB4AGHycddqoDyqOoaJQXEiwXIQms2m5KqmAaA4JVaFfiHelMolgTXFxQVgX5yoBEIdmEoWFUhiGI3CJherEgSdCG04bBHgTnzRzJxPUlRDAbNkLMSirPUdI+sYj3QXVF1RMWJPBfgY6KXjIZ9VVUtw6gZhmqQE6QKAq8/6sZhAIk9IJAg0cMTYOgHpKyDXgF6EZpKTQlVcOE/ia+A+F7Ck0l1n68GEK7UlojiAKMKKtBEJuaymABfSgxwm6yViZ1KkxXfFEKky5TRJqE/SRxTAuS4Pin4INdhmJKC5jLpIFOnmYyHErYriJWF8sgdtVvbtm2LolgoFGqNuq6Y1AQWXc8F5n3gjRy7NxjZ7ujUbbeHIFiF24PB6sbli5cuvfjiizdWl20/QKMdpRuQ91RVrU9NSRKEUyvVuqwYA9tG0hUKU1NTzamZ4dAewwxgQgbVJFEUPZCh8wtYQjnTDRgAZVKbFDIkmqRGwdJMyLBy/dgLg821NcdxXjvz4LFDB61y6dy5c+fPn79x66agyKdvv21paalcLkPcaWSvb25cu3J1a2trbeVWHGJdA2uFnN24VFQqwQ+BFFQRwZD9ELTcR/0Rh30cLqPYD1H+6PDhw1z4D8Ow3+t1KHkIw1A3LIqRCJFPkSIr9qC/ZBjlapVxR7wyIqKJgna7vb6+3ul0bBsOtrKCf3q17nkeFEVbnd7G1tWz55JZUjP5jCmqWi6X5+fnDx48ODU1dfLkyXq9zlAi4PFqjVoDqcjp06f5s/r9/vr6+o0bN27evNlut5944onhcNjrwQrNDwMt1tC5kmXX8zBDKwo6WqhPi91Orz8alqDbW4uEuNvtXb1yDTlMdxD4IVj4yRQNyhb/A9gFQVsCCoLCCbU4eZHlRIsahslMxXZm1Wp1aqqxubkxGo1KBWt+bvb6tcuaqj3/3Atut3fixKmP2f9lY31rcXoa91QMoMziItKha55nanIwdBRVGth2tVq1vcj1I83UN9fXY0l97QOvsQqlw4cPKmF87cIltz80ZXXgj6ar9dX1zenpWTEK1zdWxVg4cGDOMvR2r63IUPyM4/jM6dtMwxACrDwxST3y7AO0HcQC1NvvuMsslIbaQNcHjzzyyAc+9KFBr18tFWVFAUkei9m4D4+lKhWSQMUEXQVF1Okcapo2O3/fqx/0+53N1Q2p3a7Xa8ur7cZc9Wd+6t/+u5//f9/3znd++ZGvG4oa2K5KjtQU04wdc5OlbKfh6SQiJTOdIKIwMHjUTMfXIeGtZO5IZDmw6CZ5bDSu1QLaRX5+ALSkQsEhOpnkrIbZi+hfWBYh7A43LWr9UztPYXom3dciUJv0qbTekl0XtQyIQAalOPj20rEDgOf5sAZXIDeHdo4SIvoH8iekn3VJVPxQtL3AsV3ICkh6JIUhgJrQJArcMIidoYfGi+/BsNwJQjQf0NNTqY8aYVQmTZLxokpBcAJYTpUkU/xL8roEoM85TerlkilAZlcki6j5pOXQRAkVdsImjNiBQB7shKKPC9kZ1mrs2rBnXZ60g8dbRmkYJwC54ZJ+FCKhRD8oezLwAXzdXS/nD9g94DJuQIYITEP5cYAzLsynFdXULn13q4HUIRJNpiSbzpEKxt8iBRvx8N2RQu25TRz2n1GA/t8j9P9fWwsISpfpuEUslm3JcADcIguPCeJCUBa6nSgZ4PUFz+y5p0n25Wv0Jzc6zct77CVAkvgxRIZp4II7sPtzE6/HvY8qGh8/7fmZ3c/nz0bW/tirOZHsGTDBePCcAjTPvIAYsRtAxnqg6R/1tyjwm9NTW1sbP/mTP7m4uKio+kc+8pH+2lB07G94/ev/0y//0uHDh2NRLmhSsyh1t1uypFoFY2u7K0pKp92TYsHznAS8q+mN6cbM1HSz2SwWy2C1GsAR0PoEKQzYUSnAbWM1AOY+3h4Em4N1+eZmLCueIJKiDKKryEekxdCbMABiGLobEFlDIEUkwqBaLlAtijmyROek2RbRmiRAmwhhqYKCPFYQoVCwFFm3ioVqDWkEpJ0Tb8ss0Ur0KIk9jJJbFMCRFKEn1+mTMqaCHJC+kixHCuqmRA/WTBjokq4+jSZY4VItg6cp6jZAP4cktGOo5gAvjUkJ3zOpi5MoHkVCGF2EM0oE//3Ql7CIUneL9TponCg6nGVZGhY5UgB5ZjJdYe4ID+04q/I+d/050zQ5ZDRUwoULsRcH261Wp48NBNBKrVAqNoHgD7/4tYeu3bz14osvXr5+bTi0VUMtlaumaSo6FJrINllVRCmII88PA3ekqcbmdlsUJTLxbbiuO3JsVnTJAvr8JAyQyU4MK9/9LF/IITivHdnMzBAaSZIYcw9Cba3m+f7n/vjzS0tLJ0+evOeB+26788yVK1eefvrphx/52qOPfZ39ws6cOXP69Ok3vOENjVrdG9krt25evnx5ZWWF6+7tdpvduzI8DC9bBqwU9JIF5Iihaha1DkRSeeKOQSa8M655C8JwOBy3tFMsEyc82RfJAE6SJJqqYprmyZMnWaWHs7U4BrYnO2mu63Y6IKd2Op3uVluGGxooy63t7dba2vNPPcXJJ1Jr0h2qkXHB0aNH5+fnT504xqzf2dnZgwcP3nfffZzGgMHc6ayurt64cePq1auXL1++du3a5uam7foQumHlE+oM6BbuaFmWV1dXq/Ua9H+2tkrl8tLi4vrGRqyEaMYhVOA7KUEdElkeBZC0J5A2dkgbCxQ93CPJ2Y5FwQv8KTrOa9euuaDYqtVqWRQE0zQvXry2tbV1+NARVdHX1jYWjxwRTAPcWV8oV6tHjhx54qsPm6VitzsgSVNtaKOmIMlKvz+MZNWwtNZm6/v/+g//yn/8xbPPP/fN7/6mxfkDhqq0NtZVSZ5uzNi2LUTB9KlTkGrtd9vtbVGRdfQegQ1bWloyjIJA0HYExehzUrGWXTIUeWnpoI52n6JqwuULG4HvO/YwCnyM3TAQJIOCJxTPSY4x6eCB/ioIQRgCzaIZVOuCduSrv/mbzz7z5GAw9MLA7XRKBXnUG4Sj4ad+//d/4K/91T/41KcPLB3udIearIR+ANw11wd2xjYTNekdoJG0apSYzokxh/IMzWA0P+P5+c/BtaMN+W1AUM/E6RZ9IU50ua/Ir8f9SzMXX3QR/DZE9tAXBsZehvEuFcGYqR4LaoCaTwinMIqPUepRFccZabqiqRDZ1WTMdWEUREE46I9MHX6/iipr4IqGcewgxxxFqh4rquL4UbfvdrrucOR7seqFYgCeBABCUSiGvuBEIeRNJdUNSFsXvmQaZrMYrbOAXAB2R4CcbmVF+vHEla7afF9PTGi7+jAyrRJjOHqutL1nRX/vSO8lo9kdAIpsSxSC0+iff8REh0Vy/Hnj2Zb0/scQsfTXLIW2B3U4O6RclogtDCGunB7uOIlkjGAG6UlSK3QYlGRJHPdPk2U4e33+4zKSBNGxx6eG+1gpJe7lxtwT7Bn6070hMfvH8ftF5+McJrffF2+zH1opl6Hl95MchuzosiG0uyG146W5FGvP49lvwO13HhLb91wpInEtpeCGuRn5N1cVtN7wmPXQqe8Om0sKAvLkXVpYoK0VYQEhtf50T7k8HxUKtyRexrxzHkVMKGf0JKUZLKXIgT7QQwAB4jFiOvQZuBiQ+qBjKMA3hB0qJCglU7BGemekvzImBON9EPQhauQeBdCQRGKm3oWAV9HnUozIGsxphWDsw5DPafOdx2TA4x2Ss0YLC/agFojCaNifn521bafd7pasoiAJnj0qFC0pijRV1DV5ZfmG50579mjU7128crVUtB64755arabqJs31HuwVI3lltStDgFCO/XhqfskyzPrUgqZIzWaT48wwCGx7ZA+GV25u2N6tldV1x/V7Q3im9gcoK4PyF0eO7YWxgFiRhN4gIRnAOcYlz3ViyyX3DhuieS7mHy4cpksWSm8GlSWITAX+K4nSkcEVSSuiPARFSxbmxHk3SgUkBoT6sEyzaEJiU1PUSrmsm6gBW5YBDAcYy3AYXpyfMy08r5GWX8KXJQZtWugKPeBsRFVU4aQUSFbBiiWZhO7kCK400G3EURGZMGQnZILqo27t2mMvPBoDyeMU6UaNaNLnR+aExQgzNoUdFGqiSEaTuIJlD7L9kqroXOMJI7TOw8jnuLbf70uSVKbtjtvuSG5MIRo6KP3CUSuMFasoGVpJbdiuc3nlJir95y/cXFmOBUExAAevzs1abgAd2AhSSI1qDWU+LOgCvBWAhxJVkmqwFBXFcZL0pCZDKav0c0C/Y+HcOW+kswGi8ETfOoefyWIaRVFCuIuCU5HQ5lRFlczl1fWVtQ3WxCwWi/fc98CrNc227U6ns729/cxzLzz0tUcdx4lDf356tlmvLy4u3nPf/cz35VDeMAyGzXS7Xfb3HQwGru3cuHkTBOjRyA8CVVEMkjNi8zWMKMsqVyqGjviYD5K/e3b8GaYoU9tkcFHmyOvb0B4dDAYcRTEgh1E3WYgA+VpZngY0fjaOY8dx2HuYj5yjeV3XIyFsdbY3tzfCS+Gjjz3C71+0Cs1mc2lp6eDBg4uLiwsLCwcOwO+MCDDqwtLSwcOH3/CmN4Ukk+q67jPPPHfz5s0Xz5+7ceNGr9dzPccbIB8uVSqqqsB+WFVLhYIoxN12G9APzwtprILlogKC547swaA3PzMLoBoiwSj0Ib+FKU+WFbMoxZHvec5wJJkmLmgM/I+iyCNndOjwwccee6zbbs3MzC0cmNM0ZCCba92zZ8++9Q1vqtVqZ8+evf81D1LwrQq+KyjKPffc87lPfBL5v6L4YSRppu/4xWJ5o9U1i+XlzdaPf9/3v+Wd77hw4cKN68uqbHzxj79y8uihyDSjUHA8RxLksoWmk+OOJFGYm5mOhHhgD1zXn6rXwlg4cvyYYOiCItvtrlkqy6rmODY0fE3dH3RVUxNV/bWvf90n1zcEQaxU4k996lPf9Vf/aq/dqReLQhhSezdRN0/uP57Zx3AAbi5jdRBkXVC0937rB37pP/z88VOnr1+8POzb1Xp56Hr/5dd//X3f8i1//Xu/92d+/hcLpapZr69ur9XqdTd2JlHjO2+xTLGeP55ctkgnmm12qByCaRS+t5AC4NWH01oYeJGCkyQpuqbGagIgpPAxYadlRraqoilyLEvoAPCG7EAWFGoQEeyHbLykGHMGpfeRINoONEYJW0TsJhiM4UjMYjEMfXdk+45NZCq0/iRT8tAzQBFrMLBdyTdMsVTSTLMEc+VQdFzX8WSwg7U4GEVDxw9Q2idPX3I4C2ORrEeEOPaAKZC0WIJ3ioBVCAYskjI5L/EWcIbDUkU0lbHeTqasyueZqFyMiZqADPEQiJSkTjS55Vf5/IOJlCP7cUJ0JxsA1NFISv5jw0EQH9SJuTRZ3TJsaJYAZPNXEoMyAiI5H0yGSYhcvE/AQrnHk46kSTA3Lv8zOpBHf/4UoCjlumjrUwKQrgF5pFRuoNPiqbDfMr8yBxZKMqGEBTwOf//HYm/23XI37Vhrdfdr8g/SOpP4iozJXrLt8QqOk7eXf/ayHtOE8C2QldwvTu6bRFnFcYFM4NFHLh7MTZc92yVPB0xOvCeTI2o9UjKQR+PjcvsQluBTiqk1KXtkdwiFlQlhHbe0AjojFfzJ74KiNuA8sOgmOvr4L/swVVfBEwohL6yQzh3BQ0XyOk3uCqBQyH0vjqHahgku1QVKifQkG0OvJeVbfB/WNUrBkakjei7TpsRoJ2Y6FkI/QNtUVomrB1w634m1Uqm9vRkFcQUK+0YQeKplqqJYtLR+v6/K4uzMVBiJX3v4oXIFxkYnT55EBbFcM01gDDJ4Q0cSAtcb2vbGdhcq6bbjeU4UhisrK1gMXKAURghgXDfAeVZkAco1KRQxD1JK5LHYQpJC2FjK5IPp0ibtbOaHQBg2AflRHg76SyQGYaQQvomowIB9EkdD8nCtM5p4YtiOiX01TjxWqFKgpDxOZ2QDxY+CbrJYSiq4DEN7xFzMSqXCFMzp6elyuXzixImpqanFxcWpqSndhAI3twh0XW/3R57va6ah6oaP3BWq1a7jcjOd1oSE/igSAohs7lIjE2JO0kSPQJlOj6TIkOQXY1T1SZcTp0FRFJ2025N1NNWHIbB14jkVhN6Lzz+najIXfefm5pAPMLQ9BjPVJ6YEI2rAwRDE7eFg6LrDod3r99vdTnvQiyTRKBZa3Z4a+opklSqVuWrFJP81WZK2NrYAiYGNEjbfcTISC4NeqODNNlXjdWR3i5WPZNcsJ4KLmFo37qgN7RJp4N8Zhi6lkH0/DHqD/sgBCxnRqCzrur60tHTo0KHkrcJoe2N92O8/9NBD7Xbb8zxN06DGSWG9DlsriPMcOnQI3s/UP9EUlSwmPAbMbNM2GAy2WttsVMxHCAIAHBpk5jaw9ZmmGToUck1dVx3HU1XZNAvcPWGTL1GMdW1u2OszLgvupEQgZsAxn2H+4mxGZlkWTqAsgIQNwocwckfO0Bm5o852Z+gMR/3RyB1pEcRAVVJQ9zzv1sry9evX/+RLX1QkGR2eeqNUKT9w3/3TszPHjx47fPTI7PSMbhoCQd5vu+02KLLHwnDYX15efeGF55599vkbN66dP39x6AwHvd52a7Nk4T9TMxVZ1A0LAzAWA98bOo5hGOjMVKa2t7cNS9fMoq6hKQd5KdKUGvb7lqGrpkGOjTzyg8Bzy8XScAigUalcbLVahw4d0jStUa05tq1rwqVLl972lrd0Op3RaCQUCkKvg0FXLgixNjM7b5XLcRDMzM2vb2/3RkEoKyMvLJQr3aF94uTpd7zz3UtHDv/Gr/9mvzesFAuSEG5sbHUkQZeUSrkYhf5o2Nc0rVQo+CGusqxKjUZDN61L166++z3vO3LyZOg63tC3KhXfC3jyglGsIMiqglSkWDh56vQfSJ8wDKPXsy+8+KIkxsNup74wqyq5VvPYQwYr4HgYJ9KBBAUUJcE0p5YOnb7rrucfe/LA0uLNK9dCPzAU2Y3jn/43//oHfvTHHvn6oytrW1trq9VSCS4lPMXsA73ejfnO+jOJZDYiMQ7WubaaLZ3JQkMGt+RCOVZl3CN7RymeVbCo08VBCq/KcDoXQw09GRj6aiQcARNs3DvgnFDICqs7jniptsMW5IRBIhayG/gBGMmIG+UYaweovPQtAl9wxUAzdPouUhCJECmOpUhSsAYIyDBZ/SggkLGElQVK0wIJHqG1D4M0rJvowtDsM5FQ5eOZCSz3xAmZQPBPXBe2KchUhvasq05EXBwfTuQJ+4WyWXU4f72ykH7PPoMCigRbrSTRRqIqztzHxLU4wQEBpCorbI6EBjzF19SnQOpGnmKMcN6xJ9gq274mDGCG7WSF8IQAwBM/mDOMfEqPnvsGWY9p94nYM1ZO6b9/7hKAnUyAHCNn18v2fJxt+YH4EqE5Wb5N/tV+HzchgZpvY+2GFb70lm+H5dopoqohgsl9LDpucRhZhs4FP+r0UZGB+JCWXqIKPlgAMJWjRABKEh45HVKSme0lITJ1hUz8Jr9aPkHKn4HA8/dulaZL+xiORyoJoUu2t+iDjWsgYRQBrcioHOq60CRCBBXqpFF9PwR4CQUC7A3NoBY5N8oBCKF8NQqF8fHkr9pEAZUhtrBm0XRSSkVPI4Yqsg+dwjioFKuyEJcQ/WvDoe04I1XVg1DYGnaLpZLv+61u58DCoXvuuWd2bh7lZEHqdrvrJDm+sbGxubm5vb3dGwyGLuqLmV8Thb04J7oOHHPabxElzbB0SZSlwciJUfNhDgWk8AmuA5nFxPmPgPRUQZIFEV1droiP9RS48yPLiZNVQkmiyTMCmpTwMDTz8nxKv0pJI5GHPhPqPLguoiBpakCMowScygcsxaZp0sqGAiVMAKJQ9PCGVqnqx+La1vDGSjsILnGgDF4vRbcsoz43N3fHHXc88MADJ08cq9Uqsoy4Kpa13tBB3wcAU5i/Au1LGW5SbyPzRVUJKc/JQbaohAEtpfTKauSgCrnxKCwXS6EQ+h6qyJ7nUOVMUxWVUkHc3axbz1Vk13Vfdc+rAlLQIAg7rpGCtV3c3N5ut9udTieKIi5do+NhWeGgD1cmVao2Ks25mVN33E4d+eCZZ59fXlu9fuPW1atXodWpoYDk+/5MdUrXNF0zNUVXZU0qkI2PoiAyo1ObVbJDH+BvyzLhqJSiWTiDxddUJ53jqTAqsRhurs27o8OZf56LcLabcgmYnRbFkesLgm8LDlImQstktrhxEFhFSOucOHWKo+3BYNDtdkej0dbW1o1btzY3NweDgaZptVqt2WyWSqUiZT5wAi6VyrXq7IF5RvYjNPcDYPR7vU6ng35Lt2e7DsjT1F0EPAQkYVXTDEWRisWy68fCaEgZHZ0dBGBhtVwh3ApaCmSELJdNsKj7/T5n4EnckFiBRoVCwfWdoTMM40CRVM0AE0BWpehwjO4LERQ8x293W5vrW+D7xoiowMmhwsTQsYc3b4Q346cAHIKKl1kszDSnDh45fPLY8dnZ2SOHDjeatQPzi1PTjZn6iXvuOCF86AN8DTZa3WtXrl+9fuXm9Vs3l2+s3FptdbZvXLlsopNWQqoDcmY0GvZ9bwSeA0RRbd+H/JRuabJVVmRdFiUL5gfQHgUTQ9MRfIUA2/QH3dnpmUajtrp8S3zV3boqV8rFwHdVWTj73POx5997770vvnhWsEeAPBUMiOeIUf3Q0rve976P/9ZvoWojSqVarWu77R4o1IsHj/7zf/mR5sz0P/jJ/7u9tV2tVKabDWfYG/Z6/cDVRDkMnGqxMBr2bVGUGo1SpagZ6sh1eoO+5Dm6abz+Dd8oGBpA5W5IOKvQ9X3E/URjBJ4QegTqmTNnpqenB51uv28/++yzgIGpst1tm5U6Yekz0ekkFdhV8CNIDLn6obgxO3v3A6++cfVG2Sq0t7Z7nS400MPgjz/3+e/88F/4m3/jR374b/y4oesw4w5igVUGcivF7mVuR3iKvDOpkLKCGCg9VHAhMTAO1JIChRjTJEz3b1r+zgrebApGYTHZ0BOgMUHC0LTPv2QlyxAWWwR7I4imhsCdVhNFVGELLoTk4JU4i8kk/y2jbsY5AckmsWJ3FKoi/BA1OANrihRKyE8kUdAIfgkTIQj+4B1xBwpYftHS5+kiWdzROAagK3XO5IiRXpoGnxNXaKLQPvGrfHM+nxjsJunCOXjnG+f2mTgkexFkrVCeV5NoOf2ERMuE3b3Tj9jBAZ4IevM/Zu/LQFL2csu+Yb5Fm3ueXsM54hiokFRbo7QjMbnx98nC3KycTwedpwSwqGFErjts6ptN9PgTJn6l8kEc1BOgKB/gpmIyzLbOvcOO0yG8su2/rYS+x9nYUf6nr/oKPuKVQnEmnn6JFOil4/vdv33pNGDPRj9iGiRyHPTgGjOCRST4nQB1fyoeEvOS7WM8z4GUAv11XmhW11GFpaQU+4RhI8RC4KVaZlnbKmk6jb9L7n20pNUwKfcko/6/60sJgKww7zQTtGEL6yyJzV/lbPQmrs/pcdKpcLiHyPssGjIMZcKxgJOEwPXzz0cMKCIRaXhp0m0DdirIkoooaoNO2yoYchx5o6EmyYqho5YTxwcOHpybn3/Vq+6fO7Co6caVa9d/7Td+a3V1vdNDgb/f7XleJKPiKMkS5lAf8CvmsSkS7GKTlmJeHYU6hxF6p7IQZB05yGZGsRcK5DClF0tQjAuhxkCaETCDhMMDOGgsk5dcGUZVoraPjQVOEzRfTEoUlHXQCSeDeprfE8gfAPfAARG2kaoUQGQACyGIik7q0dQVlYVup4O1ELWmBFHDKrWtjS7Q/ESLIwSzEAbeyAli15MM3dT0VmewfGv9yaef/9jvfMI0zQ9+27ecOXPm3gfuL1crfdsF/CiK+33UFEUpVgB5Q6IjUQqIkRmSb1gq74rUllJCVVSp/UTMc1T+aRAKcau1ZRSsom6BehV4QRSRXIc0HPS7g3631e2PhqokVxv140eOmqbphY4OtjQm6navvb293el0HMcpFAqyLE9NTbEeayIfub0diFJAoShhQUF/sF1n5Hj33P2qe+V7h7Z749bNC5cvb7damqZVymW7NwK8WtG4ywxlm8EQUAFFIYpEMjNommYYKOWBTBGzYEhS6yS+b5z32WChVU5iJ5zvspJEJtqTzwEiUfBdaP4Q0SKJOECJFgTbhv+A6zg8XFMJWtx+rt1ttVoZD5jr/cxJYCRMu91eXV1dXl5eXV3dbrd4LacicbFSqUCyU9er1aqpQ6JnbuHA8ePHOUUURXFl5ZbnO8OB3e21W9udVntra2vDcUdgzoAnguqnLKmEbzZUVR30ANPK/BaYHWFZ1nA45FmOYf2sMiTL4ur6mixLuqlFkRyG0Wg0bLVavu8VCkXyrhI0TTUt60jj8IkTJ8BJ6I/6fbyGy+eMF4Iq0dqaoGmeKAb9fq/XO3fxwqc//WkpFkpFOPTNNGfmF+dPHjt55q4zd99x9+LiAVGUa6Vi8547H7zvTnQ9wQIKg8BbXl6+cePG2bNnL1++vLW11R8Nht227SL7KhTMer1erqHBKMtiFLr9rj3TaEZRhKPqdYtWoVYv4U6VRFlFFqSq6pEjR5558hnXdZv1eqVS3t7YPHnqxCOPfE3U1Uaz1ut1Lp07e+zeewR3hPvWsIYba/c88OBXvvglu9sXVe3qrRtaoXj4+LGp2dn//f/4u4tLR/7W3/rbv/gL//Ftb3uba48GPUUMPV2RrUJZABYk6nbalUpF0dRur73d2SgUi1apqCjS9Vs3v/XbPjh/cLG1ulqfWyhpaui5sqxECHUUwNyCAKwj3xOC0JqeufPOu25cuWpZ2q1V7/KFi3c9cJ89GJqlSpLnc6UiTfspy0X3mOGOtOdfiUIQCoaxdOLksdtvXz53od6cdm0H4rxxWC0a/+Hf/8w/+o2PnrntxKWr1whb5cqKEeaWnt2Z886YgUpSKS4oIfAm4WCqLIxKBJxds8WTgzeiB+AOS1ElaaOPYNZkh4UuLbGTgfWnihXufeI2iL7vx0KkSmIYypEMbVnc0VIcsEpwEgGiHkOjIckv+IuwAQGJLcsgIkBCCYAjeMxIgcyxq2hQpxW0Cj8MPXywKEpUMUxsB4iWwsYMBDsQxmcMdwRAulRc2h0j7Y74c3GCvDv6zyuYTYj2JJI4u5qiE/FS+ldj5+A9D2Avby9M4xPv/BJRXxq2I5jegXdHSSz5myzipwgmRDzAGlE4kSnyGJXO9HF+zy3+XIU+eX/uXOfOLJnMYVEBIiufAHCekIIscxyApJvC8qDUQMhxAMCw+5+y7Su9nwD+MuQf51Sv+O1TiMiuK7ofNGhHt2HPYZBeBR6CCSdkz095+U0Arl2lwLiE8hPHoQ7ZE/I4TVZsSvoFtA5JJC6p1LLBnhQLaDPnqCnZ5zqj9o5bKP1VEPh5a5TxrbLPkaejaLJBtucEylk3aRQx9oiaALSxMygrUyW4I/rGzKjb3ULJcHiJlAKfKFEaOjY4ASnETkw7HjqcJxMYFASTIaaGs6pJkoDSPzSbIbWAmnMoyuL8VDOKwps3V4JAOHF0qVKZKhZLR04cXzh0+PQdd0ax9NH//Fuf/+MvDm2nN7BhcQ8lCkE1SqYlybyihD7RHRR0PGgmijCfcx4umKaVaH8T9jyKIjsMhSBUNZgpQlifpm9uM4PIOBzlWDAQDaViESJw9p2hZJAnmRxWMHHQQSMxWaDAEUKpirI98r2iWgD3kUlvgiBkjBESJMKe4n2gT0EDE7w0QVA1k9IpKi/hOlJzIBIVXUd8C3aHGIElhh5FHAaGWfDDYNgfYj2LBVFTvaEjq/LP/szP33X3HW+7fuPVr31NY2ZaUqUQ3W0/ggWlEAiiIokqlwp5taT7MVWiZRU9JHOAL2MM0ElLET6aok7VSwB4dLc13SwahUAI11ZWVtbWoiAslIpTzamTjeO6oqU1O4BDIiHqD/utVos7Od1u13XdXq9XrVaXaGs2m9PT0wvzC4Igbw67nUG/3W73BiPfRYhjyKpR1rc31iVVU1R9fnqmqFs3CUZy/fylmeaMH3iOMKL6umlpRqQlkCSocFISQC4QIHDTM1jSgWxSgNki0RGsyK7jkcAFKz9Ri4QhQLua6Xv+yFskAhvD6p+kqEoDku5B0zAyhi6yP5EIC7I86PcSfR5Z9sOo1elutdqMieJVSVXhW7x06PCJU6cJpgwl0F6v12q1WlvA/1y+esUejjgC4tdbhskdFU1Tjh4+qChyqVyYmW2apqWTDZwkidvbrU6nvby8srx8q93uRFGo68g6HPBkfF3X5+bmZmZmZFkG07fbPXhwsd/vD4fD7e3Nra0NXgGRws1MAZKNaAgdNjSBghhQkEj0fGc0dAZ2v9VpR3GAZEOUphozJOAzxSTjwWCAzl6vV7r77l6vx3YBo9EoRv0F0EV70HdG/e31jRfPPf+VP/kieDJmQde1u+9+ValUbDanZmdnFhYWDx5cOnjwUKVglk8cO3H06Fvf9CZJEv0wbLW2bt68ubax/vzzz29sb6ysrFy+eD6KIuoSAGS1tbzaqFdJIarWaDTqjbI/Gg1HYFzIstjttpvNuiQJ62srRdPSFMmxR8O+Enl+d3OzUChsbm+NHFtwHUE3vGFfN03VtBaOHptfOvjFz33+yNHjvq47ge+4g7e//S0Hjx36F//4n/78z/38hz70wVs3bopxMOy2VDhFRbJeAFnXRjqkqrIlETRL0AIh2G5v9Z3R/a957bd+4AMoITOcRZbt4UC3CnCUpXsXYa2GLkfsu6Kp3/mquz/9yT+gzob3tYcfev2bvnHouQL8zvTUazIRPeKRm4hf5/bEdJNizUDhpTl9z4Ov2bq5Mj074w4Hayu3FFUplAovPvf01T/+wo/9jR/6i9/zl+u1qTDwJFS+JzkzE0JAuTo0k0FR+KciOKcB45CR5CxyqycV6NLDBmgNxRMi/gYB0YAo6EdrDfoNuAdRh0o3Bj+SVpkE+TURUQF4/IJIDuv4cJb54iNPZkXSX2aYUCQACBcQZVyhGVRSlViWIqzxCqBUkZLAYiXZDyQ3jNwwdP3YDZA2hOw7nOjqgO+bnZOkpxEnBTjWZSBJBXrZjmjqpbQ1Ab3d2XVJAq0U2JLuabmSkrn9JSLyPTOB8aHkLmv2Yx61wYvIxNXf800SDsCO49gn70mRKoyXQrMn/StOEvArGF/v/X0Ssces/J8iK7JAedwLppRinBdMAHty+WiK78nFUru/5PiZ3Gv+zDsA+7//rvL/3uCf/f7wpZ/f/zU7wqmXxpxhAO0yktgHapY82O985sPoLNIlkRS6yIiQaHEmx3UxBrGP8ze666HEzp67UQA1YJpWaAFHyIjxXa8XswQjT3YhmcGElpTtJ+A9+W/h2gn2eiLuT30ndkAOIGGU2plmcy7/qGlaApJJTwshDqBvkQyKZEgnnw7dZfQzOW4Bbh4zqSjIuspSMRTs4/U0PcejfluQYdcigqeEXjEBbUA+EKKQTh36ALIooBQpCc5gMDXVWHzgvtnZ6dmp2U6nJQjSwQMLjZkD//qnfvZrX3t04LiaUfD8cOREjUZju9WGsCMn91T3Tm5sJQ4TawUqoqQB2mAwzFQgFJW6MXhF5MGRka94rvkdx6rKxkDJmU9rSHEYeYjfYQVDqT77ASYbWcFT9I9RQVU0KlejlkZxPcjfHDySCA/pseJsUfmHqgiqDtpwcrHYWB6zWChjvHF0SMcDAgIygNDzQ7gN4RuTDp0kY1HH2gRfWOhV49VRFHqeP3RtIYge+vJXN9udQBDf9o63i5pku6Nyrex6NhPakIcQM4MN32T07NmNk/oPcK6gSRyHT4ZbwGOhyAIugCQO7EHJLBZ0q91rP3X+Qr/fhxj8gQPT0zOJjh4Q2xhGrut6vt8b9m7dunX58uXNzc0gQOmdhYDiON7c3Hz++ecZfG9Z1szMTGOqefd99xdK5RPHjluKFQlCa9De3Nhq9/rHDx5uddr9oV0uV04eOva6+x/c2NhYXV194bmzjDiCfocoaSryvSBxQaZuTCo95AZ+GAR60cruo1TZ04+DWFEJCkgDPSN6QQwgp0yd3zIIaH5j4fDUbimxN+KALZFZZcm4EJa9LNrTbNSTw6MfOdHKZDH47mbVHZ76gxiex7qqVev12fl5lWWCkAgHnuMOBgMAgChk76yuBJ574eI5HlEMGDNNEKnhD0D2XidOHL8HGK2g1Wqtr68jNys6vW7Xsd2RPVQU5bbbTx87enx6Zur8uQv9Qa/T7nZ7nU6722pvDwcjP/Rv3LzmBeDnMMqLexeKgk4+UhdLtwoGd2bYKmdjaxO4oCAgUf9itVpdWFjQNG17e7tcLs/NzfF1YadhdzTcWluNE/FVXFPf9baGoygIL124yMVOfh6tiWKpWLLe8IY3HD169L577r39jjONWs2Ynplq1h3Pfd+73u0L3sgedQfd1nZndW15ZWUFgkttZDXXrl178dzz5WJpZrZRssw48qcbTU2VR4Nh0bKqlUq/3y+aVrVaLRat6zfWZhvlylTdNAHGu3nz5m133qEYmqRp7e1NqJ3Gwjvf894v/vFXzp4/1xn1ZhcP/PAP/cBrXvu6xx7+8r/7qY88+MCdK8vXTVWpTNc8e6QIsdvvOaMgIK5IsVAa9vuDYU8xdNSfXKneaBw8duQ7v/M7tVrV7gzqM9NxFAxtW7cKiqJSjTlAuwYBDxJQEdAg5cjhY1MzM2A46MJjj369tbVtVkqePdJKVn7AjvcYqwlQMq0OYlqLFTXwYHc7c/zE9Px8NBr0KpWVWzdj3x/2+7Vq5Q8++fEf/rc/ffzokeXlVVXFdZ/0rc1BXsc1pjRUZHXObE1MF04m7QCHk48Xs7SF/5jYaijOA2sbBcjt0+if7huyTQSEVVUTDBAgbaosyYqKAgzeH6+jwQnQVywoATR1ycuXcLMEH0LuQIQj1v5HJ8/3fQlNF79cKQoSmGCOj2aAEEKvIgxD0xKBsPPjIablwPZDN4SONFbKnWX45EoggRO42ZGATKmNQTIiO6BT+8GBeMtKnBMhBEOgJ/8KS2GifjsBup4MWcefmxjjTtRAd+cJ/B7ZW+3ODfZMPMR7Tx15SaPZ/MClX2aE4JdVD6bWVnaIuQRgrJaTK5mTXQY5vu565Z4QoOxg+RmgidPOC4vxEa6MLVz3aI29rO2VqgDt0wHY1anh+57S8b1IwPkLvOd53h3R7rNNYm33/KDs+ZQFO/mJuwGF+90e2ZYVJDLlO0WIg+FAZk+4JAaktF7AYqbI6AKDOYZVEyACRY7LBY1IrmCQ8ZaZg2aLd84xFIVxMAV2Oonyj3sevyppEzlx2klg7P4OBUO0IwmYy9sY7kzIAdbXy+40/hHTC5XPs8yB342X8ExcPIHYR0J3xLU40Y98AYCZQIA9YVgwCvwYEQlRiqHPQHeDqsqGYRUKZqFQgrK5bimK1Kg2oigwzUIQeMP+qDlVn59b8EXpp3/5125ttg3dtP2g0x3Kmk7OjJJuWIixCLAhA6oOsAJ0wX2X6yKZkROfDNYy59g6PUUIvqGZTYh8vu+Q1LBhXyqjtuMeFCNV5b4sy2OnZpnZ8CZ0oiAEBOtCxB+ingxjUaLQ0nxBU0yy4FGeAOAO9Q0oY1OIQEKXlRx0WXiHpe24ZEKDBPdiFAe1cpnUJgPfdzMn4DxMhVrhAGPIsipKUiiKcJ4ShTe+7S3f/Ve+98Di/MgZNqYbQeBB4FoWNVE0EMoL6OCIgmIUeCEde6XR6NM0DQswBY6qoMRC6JKgoBQFmxtw2NU0bX5+fmpqShIV13WT+o2iKgAvCd1+d21tbau1ff7ixU4POjYIborwVHbB8R2ykRZfKZB3fZ85srEEVC5YsMVyvd6cm59fXFyqNaY2N7eB+4/EVrfTbnejOG40ms1m0/fDwWDQarXanU6v12v3upDNGQ2LxXKicojGO4l0o3oq2YGXlBBZQIk+mhPm7P4a59exJO8zf+Zb6tkDQIB8P6NUsrMpL1ADUkAi4imq/dlkNRwNsukov3iPRijqZ7Dm5IEoWpWCj5wF5U18LnkrCAR5grqtii4Jh8WkYOt32luUXMBnjT2A+WhZs4g/l5kkUKCCCa1uAP9vRlHQ7fa3tzdt25UkwbKKsiwaBjg8oigjnwow2F1AnpJVnO17+31wiPn08qzFH0GoIa1cqOM2TNWHMsfihYUFdi5jjgTnDLHvGarkjobdbpcZI+D9u24chMPhcGJSJTFHod1uo4JuGMVyeWFh4fY7brvnnnsOHzu6tLRkFkCcMHWTin1JgIKiMV0IP0BfZW391uqtm+3W5rDXF+JQFiVT129cu140rVKhfPPmTVkSfMd++Ktf+/jHfvs3fu3Xr16/plvmP/zX/2p7fbUxi+xle2O9oOpGpfJH/+VjP/mTPzE1W/+hH/nBe171QBAJZ868+sjR+bmZhVarpQhxpVT2RsNKwQzsQcHU4yAoFArDoQ81YTEauo4fektHD3/LBz/w1ve9V9D0wBm5XlSo1kbDkQAuUEEGVyq2XcfSTT905DiSFVkYjQRVFTa3fvFnf+Zjv/Vbq+udSBX+yUf+4Wvf+I2SbtZmD9J6sGtAJz27HV6QgHoC5OKqti0b5upXv/LQZz+3evXi2WefbXUHoSQ05+tzBw/+te//oesrK//23/w7HLGio7S+a8tDU8bhPj6J51KeZ1Mx2ixYpK7y2FKemqqsA8nEXMKYYgNBJYjAOAsisM7wJ0gtZCXSddUykZQiZ5BiTUT8L4IHEMSBj/mZNKqJuSU7oRiiQQB6nSIKUKjDMYmmYSiaLImK7Tqd/sC2bRTQVblcLuqqbKqKTmzCyPNdG1pYmm6EouII4iiIep5vB7EPWCnm0kQbf+e6nyhxCdnZT4raITT6klOXP5+7QTv8gAGHySXdJVy2O+CEcunOOGTi/XcUK7HmjNUU87/aB6cA42SGafEAGKMlcweWr5myp93OMI6bQbsymPGBphbuewaIEy/nA9jrNYCi8ZfMv3sQwnk+s0TNkQcmI3iWz0p/S2efSnopagjNF0JMA9UWAkdN4fYr7gC8wi3JSHarIQHUQRX2ePz8S7zNzvG6I/+jBInskKTsMRtyj3WGJ5OopI2TQNXpBiQg9kQVn5TBEpWA8V1B3yiFHiVA3qRjuPf5JLxgFCE9x50mivD6UzRdlmpzTU2WDcMsFKxSEeKLhgHoJ6tvESokpxEkxsWSSV6AqP/znuumkAcFWQDPsP6GgkpMrBk6rMJ2Jgwsg7XHbRyn8pFkpKSI0GtXRKjTEMQGFZEs7KZGLpYoivrJ34aKBvwYin6knJMNVIp1gkKhRO6HCY+Woh8U5xI9FkDYxg6pKGZLBtQcvdD1bNfxXc/2PTzhe6HtjgaDUa/XGQ5tSPFQeDo1Mw0whor1XsNpTPx3sDC5nlWvB6EWidLpO1/V6ff+n3/5b4aR2uqOdB0i3DEoU6JmWH4YuZBzAeRIUXSYrYTR0LaD0GOUvIRzKtCetClF2HkykJ/q2gIUAEWg00OUZZJYjd6QBqoo0fMUgdNTY8v3wNuVAGfFDI7+M6lMHqGkwQEEJ5Wk0gID+2hxMkmDlFVWuMbGl5tyMVwyjGRVVaII2k2pmSWi/ziMtra20HmIBVGRIfMqayzlGnq+rBuQ36bHHipXgYAfhWq10tneevrJJ1999jW1RjUWY9u2VVXm4ya1Iu53JijUmNRCMRHQv8STR5E9D4EmaMAK+te9Xq/b2t6GmW712NETjN2HI4AsmIYlEoEaAymGYREFgkNwfOEtBduyQa/fabU5yJNl2dRRGM4ErTnnpEQ3guSQH7bXN29cufqI7QF5JivTU7PlamVmZg6l60JBUTTB97bXVqxCqWDp1epBVT0WRCFYsEMszxubW/3RsN1FMdy2EUzDiUFTDdILJyVV9AcAVwkBkep24XBM1hCsLE5+QQQAzKRgU4UwPFagDgHfiyCOpAhMEnIspfs9vaMpp0uSnBL5D/CC4ROBhO3Gi6XS2NshETRNIHwZiyAbaIIotra2UZZVNIKIyGhveG7g+YZheOGIqcAEb6DgXoxNQ9V0raTrUbmERgHJ3YZxBNQQzVzQpAqj0HMHrjtECot7n6FEWHOjyFQxyY16ACb1hO3MOYtkoHStALEE7lcoilItFZu1KvMZmExsGLDg8Dyv2+32e0No4cN/DpRsUDEloWgqsaSu3rrKZ9gn7zxJVQqGaRpaPwwMTa3Xy1NTNU4Y4mBsTcDJBk90NumQVssWUZhiZzS4evn81cvnP/67vxMEQaVWmZ+fP3HixJHjRw4dOrK0tLC0dKjZbOqyQSaJoqKaRkNp1Eqvuu0M2SZFI6dfMEqYPVxX1HWiykvAxMvyVz79qe/5nu991zvevrq8cter7hLCoDE7u37rRmN6qlqryKrRXVt/27d/UFLlSkmvVsu6Ir/u/gc/+K1vX9vYunDhRUVRauWKF3ntQVfWRM5E7dFA9/zh0JZk1SoWjpw8+aa3vPEb3vTG8sIBwPwwZ4uFat1zbbRyVLPT61nFoixBt54COQnUmlIRcPlAFMr1V73q3t/72O+BHTESzj539nWv/0Y/5Mlt7JFKM0I6v+WQ+clsR6UQXTH9GBPv3F13Fb7+aHlQb8w2+/bAswVn0Dck6aEvffGD3/t9h3/34088+4JkSTGZ71I9bNzuZvhoGvdnT8USFRcm0mn+JVdwuLbK2TjLtlPUQss+yb0Q3zcWUc1DeQcWJGjEMiUg1nURTuiKitpeRKujAue9tEoEMViutiSwzFim780xK/wlQQ+QIaMpi6aqK4JkukHokUWXIEuOD1a7ICtirEqC6EfCKPAcTw5dN5aCUFKcKHKC2IMlJGzGUGGkhTUJZNJ4LMXWiwRMwcGmoHJeIOQcU5GsPyGogJWFF4tUXpwMBpKrmla9GM60Exc0fkwNyhz3I9nT5yV7EhlnLh2tcZP1yT1wOmncm2RiaVCXKHDuJiXzj1iC773taO7dxisxgMA7n+ESC8+RiejnjgQgj00fB45+DhqUD7+oYzQpToTvi1b+uCOc3S+Zh/zOVpeUr/Hnspws9aFqJAvKYJymoz3/pXYmVRMXjEiru67ArqubApJAY80PnYzullP82GFHBUzsziPhB3l5qZ17jlcmba0ynfvJPTtPJHlYktTFCNZkWOshFiWsOQVlTAUhKBxJZJIgVxod+ZqOchfUeR2QyWRZ1BXVBW44dQMJ8HYKlHoBRjF1o1ItNZvNRq0Ox02Ub/2yWYCIiaKJwK4n+oZcLEyk7gqoiLHURiRKumWh+gLtAMjpKRrY/6IsG5pGsr0ILlRZZtdNQVIQEIxjvtx+H5lUAqOTvgaF+/ABgDE4/mPhzvwe1yvmCsrkeU60JvN4IdKcGQ3cdBSC3AmaUYgquwTes+e4I5cWVFRKNM2Ar6YCE0uQBxQVxMTYdT3HsZ944slWp7W1ue24NhS8NSUmtZaea2PqjGNdURFeeX7RpLpvGJmlSqBoAz+8/d77eo7zD/7pP93Y7mM+FhJaAqDpPNhS/4RkqKBsT7/HUs2gGvI6IDhPklrSiEtdFpKTjPQxcQSmezbJNhOzT/4E/nE8z9DLmQaXu++Ss507mERKWJb0PN0lq/6yZzPzgHNXN1Fy3fvS78X0UCFztgcdJJHtTO+0ZIqhswc3H0MLpeid73vPd3/f9xRKxVCKLMuIYmi6Fw2UeFURHQBkiSFEeFRCznCdJiaACl6pF0VB6Aw6ly9fbrVapUKh0aidPHJszx7fjsQ7V2iIooAR/1tbW9B02thgkDfBdhNTsHypO4wE3w+zWnU6uUmj0YirKRxoGoaJEFNX9WIphvoM2nSFUrFUKlmlomEY0EGiHosX+ACat7HZA3vQs0MfuKow8kF+NVRIYeqKYViyKklgL+C3rmsTqhiZCW6XIPQCP/B81/dCH0VGXdWAOKBgGjlzOvbI+5NkTrnTyGt7FBkGbBxYypN/C4MIFU4FvEygAaKgKMBFcUPXM51+/q2hIqEOQge3LQWEbKXHTGLD0FndlVIFGiawSA400BxxROR+AVUUZKvUM+JShQKbbE3VNJQtJMkAGjqprPOkx4lxoVDY46KLGKB84TkrAO6LepJZB4CPP5MoaDQa2XBJzOeIJjEaDn0iSaN8mu593x30+vnVMFtS0XpKy4phCF6ER6qyo3av3++3trfbxDXPuApjbJUQyrJaLhenpmaq1er8wcWZmZkjR44sLS3NTAEWVSkVLM2gKAiSOkT3z24vKew7smm+8YH7L1+88CM//P1nX3j2rW9984e+89tlTRaK5XA4QJFXlEeOY1jF2HW/+pnP3HfnmR/72/87+mCOK4jyt3/4O1fXN/rDgSDKCf4kDiBXWqlWSuUjhw7OTs8cPHyoOjubrJV0n8iqnhg+si4OL82xFOAIkcFLcazCEpv/hYJju9tbP/D9f/3y5Yub222joD7x7DOXrl5eOH3aqFYFIRoNBlYBcvXgDQNDs+u2psq4oKl2u2VWioLdERShd+7ZX/u5f6/H4flnnnnxhe2DS4ZVrrz1m97z1m96zyNPPvkP/uk/N0q1IBIUVfMCf+R6lSrc+rY77UKhJEPtBpMCLNl5kWNNnlwZmBdfnhwm2t3sZ0NOOXGu2a6mhZso7QAkmn00AwfFgoaqO9Xd5Ez0WkQ5LKERj03GMJ79CJ+uSbEqhZoYKEKkyuAKNxoNOEvohh8J7aHT6va7/eHIC0TRohiA1L1Qb8LclfW+0BzGUsAAUYj/0DqSX/qzgD5ZbpL+BscJkggSE83rFCVxEYA8iiMYZBP8KTHG5fMEtlgO4piPQvPhR/JZpN/PgQGXX3mfracscp7MbHQLpCrZk6HgnpBIWr8yDeWkX72ja7EDz0Jz+85o+E/Bk+AQWaSZ9PkYgfDSSPS8m+OeHYMdSy2hKxkMsHPxTQ8gxahlv4WZUPLFuF7Ip5Oq4nzLAmWauF9QFDcZCGYXb88Dy2Pp8g94wO361gQ7oHWHnk/em17AmHKgclPuxN4hPm/59nTut0kQtQNNOJZjyiKT8Z6d/9L8hC8d2iMcuEOrhJMNRklRAkCACarRkkAbJAjCwDR08LF8F5J2llm0dM+xbXtQLhb5ckiSbFasWqVar9dLRataLRsmVFOgbD1Ch7oEjEphNILOeqFQMhFRmDqMJiG+Vqs1JBWSgqquqIpORQ3UUMu1aYJMUP0Nsw+kwqnZT0sFuVJQ1MdJkRg6iePmxFndu1MB6j/dwOzCxSAfvlcJDr+zS8haNJkuzc4NNbkEjsZkFy6i1Ms6P0P1EoAJwsCJQzDmeYKWgRGPA+CJe+7Inqk3haFtkzrhrcs3Ll68+Pzzz1+/ft0sFjiYZmwxNzRCIdYN3bB0S9W31tbnmrOVYunihcv1eqNSrom6fvHK1Td903sls/B3/+7fCyTFw4QADHo29BNc4A4tLfoNwzaoJcENOcr5eVRxcoDTmgo+J21D0pFmwDtVMqjgTXlwYsmX9Z6z5Y9K+AkeNidzhlgpDfp36LpCJya3ZbF9Ov533MKc31ECMJmwJWoJqHslopxIg8eieGT+kHhN0OiiDlviMZ1O3XyeSH4ggjuY47q2rWiqrEqu61cqJdM0Q99zHV8xdVnVoiio1+u9Xs/3fZblCf0A9lVaIYj9Fy+cPX/+fBQES0tL977qVbVqDU2XhLmwe+jufDZrJ0aioenm1PTs9MyZ227PVvTr1687jtPv94FWJ8x6v993HEcS0dGBVjtYd2PWfqlgZWXyZEnzXS902922T+U8VOxTtA+qNrJkmGaxAhvaUqVsWdbC3LQsyrpoBUHkOO5gNOh1+91Bb9TvuS23UCxhasbwAxpXkkQktYpimTrXIyamxG63m/lqcRqDqFeIfR8dD1SmKIzOpAdh75qabbHCJg8MVVcpUkYZkaiD6FQoqtxpdVQVoYVpGugkUu0SRW67bxiaqemCqPqQxA1kWdE1RfB9KvmTxZEH0Bi6AaFvVMq6ohpFXHqymQPMR1GULIDOmpMcJpcKkPbP4vXsi++p/oGAiUAZMs81AGIz3xoiASBL+r7jeSGM9jChR2LU2tyicgYkZUkmFF2JQIrKzQr5T6GqSp0uqFextwlioCAkhEfgBj6s3eLoysVLqf9JrKtKoVjR5AYahoIMrjyBkdrtdsY7T9dHNGp8394YDlZvLUMWtgBIVRAEsiAWC4XZ2emDi8gEztx2OwyMDxyYn52plitI1QhlKQvKD/7Fv3Tz+vXFhflrly7Aw8vpy7WSAJWkQA59x3OMYhVDR1OeffaZ20/f9h9/8Ze9kQ38hyTrBfP9739/7cC8OxzGspTQQInJqkga2Wi7mMS4r+uCu49kTTdYhYx0xlIBCZSBeJ4huioFK5kQsqBK+lR98cjSlWsXCwXNcb2H/+SPb7v37lG/Z1RKAlrgKt2zVB5GAhBP3rk80v1I0yBIhbxClsqz08duO7Fy6WKxXKhVt2N0jnqWIl27fOHMbadmpprrW51CuT4aDmtTU5pjA68Vi5VKjVR3EtmbJMgcC7qPYSFZ5pyvW43LV4xCYWkgtC4RXrP+S4SSEIIFvvkoVMJ5AIY0hWzwCEg0PEQkrszoQmme8LqwfaXCnYLKKZZBeoxEzLH7UWzqkhwrGjJmw1DdSI5CL1TCQA5iQQ7ZwEqIYmhYk+Nabl2g2hOEfdhhMZ0cc9FROrfQKUpskJMVjlWP8jlAglnKCeuDQY24M+0ATCw9WdyYHk/Sh8jL2Y9fn2nD8Oen+71m/Ukyw56y79RQhboRHWla7E++0Y55FelI/v13PdwFGc8xJNK/zZ+CyWlrdyC7Z0yWJQAhOjfZk+P3YedgIo0l0orJnxO0IJ8YcAeLC10ZQZ67BII8jnTyWcTEYexEzuyIKvaEwo+XKwnT6O7IPm/IN4nlSpKByfecIHmkD/bDU+0b5qbzDP2WFE/oBAmJ/x8xPiPYBHEuJ5fLVerwOr7jxUKoSgDbqJrR7/dLpYJZq4xGg+1tKPBMTzcXDx4qmEa5XJ6dnZ2bm6tWq7oqY4n2fPToaA5Bo4Dk9izL0jStWq2TDHlRNzUCCKiSYQm6IjgeNekBwqE9A6XoktP5Y/YmWhPc6yCvX3qGw2u4ouLVirLDeTE7gfvcMyKq52m8nhsV+xmr7bNFpKI1uWFeVA0Ma88TQl+QIhlK2AWalEPBc+lJUdAUxYqrphUNR4996csr16+fO3dueXmZjYp0y5xfXPB9SIUYFrwzk6CMJqbRaDBst0XTMnUtDP12r2sUreb8fKs3vHD27Ls/8B2BrPzQD/+I44f9oa2XC76NWyI7wkS2aL/vK4oUb+9sYSd90j3GJ6e5idxyagbDfc98ArDDB0fcDZajE5osKSRbN55qOK/f99Kk00h2q0YyEjxxj3+MvUnr+EmBhpR/2P2cZmH+fwYSkrszfkNVm2SejhjhgzQStGBvMBophm6pJkcwvusqklRAwmxqEkBi7e3W3PQcEd5gyivK+ub25vXr1y9fvDg/P3//vffOzcyyko/ne24YWjpFAy970zQ9PwnLaKYj5jh58lRyYin8ykDqq2tbnueNRiM73ZjNAtAt15GoupbwW6LQVDQ9XTcZJS8lMo5KGMTDrXZ/YzuR5aGWzPzMoq6bBSC6rcW5ucP6IhRXpfjSlWtB5Dueb9tDx/GgY8OI0FTQcxwlUznZJN8JQQDgJz+lh2HMAWXGcOAHc7PTnue5rputuPxFNFUGIob6b8ARBTDRUyXh2KFDvu9SI8SLQwhE6iBsKwszB4dDGCzIkliuVuMo6LY766sbaOLIiqFqpqXXa5WpqamZGUSuhxYO6CqsfJn+CxwUNfNHzphjsEMeLSA/412lChq3u4Y3TYJZwWN3vQeyAoQqTCuLkSHDITgWwNkMffCyuYuyvrrGz4DLCe+V5HFWfWTAEj+OReGNr/sGB8FnH1ZrcAfxGPzgDkfMheCmFqBBtu04DqcB3IBiCopt28wA0Yi0JFMwdOvKtSsvnPMDiPlpilAw4ctWRmOpwA4Mo4F94cK5U0cPXr50frNh/bXv+dDZF5/1r19WZ2aEjTXBMI16dbi6UZg/0FpdPrJw4Iuf/PRXvvKVSIiNYkFw7L/yvX+51mwInqMXCgyT5ekpCkPP6fu+XyyWOFwgIBb6NCLAHlB7GE924w1O37iHAIDACKeCGcY7RKp19a77bnvksS/6ojDyhd/7xG++9m2vv7nVtWzbsIpcsiGnVkkWlZgErFl3Mz8bBqEPOnLkhkIEEf6p2p333rW5cuPoyaOd7fVex41Fe2t7vTJdO1o++va3fePP/cJvmQXX8504gliD77vkjgfgYuKCmspgp65NpM+YMIfJjoW8qyfiB55naYVJvJi4JptYM5HERVYayLfZSdQOgT2DHJPvldYuyao1SaIyHUDSYIN2AKHh/EjGqRmNnCAUg1hRDHy0rGqSEkgyXF5CynsFNgJPN+Bxk4/KLf0obuZi2NzFTAriYq6AtU+YylvmpDvOj/ZJ1LMTMnFTJ0HdPlTM/bbs3SYe7A5Es9dzty8XKI69yfO4fd7/1ycA2dvlSco7Xa7GJ2i/HGBiA0IYtjX5J5INhdJxFD5+rAkayYbmOwNJ55dfmUsLeARTizGfLqTsjfwZH3cGco/zv8qsmHd9L4RAuyv6jDXPrwHpiVImwFR7npnsecZSTxzq7oBs1wjj+zkdmlEsUSsq8nzQ4WntVXBUQnd7jXHDuqVFIVlgDrphGJbLEDaJI6/ZbL7qnrtnZ2dLVkGSpEqlwiRd2NcrKuDZmOASrlihaE5NTc3NzdXrdUMnPRAWHkAQQMV0KgOIgSjoBU7Qk9oqKjDMcGASCNUOaEpLvxH3fLJ4jtKZxDWEY8ykWrsHLCrbZ9Yge13K3RtxT3Ojc3yOodS5x5/HgtPtEbBekjUDxY04EgIPob+pgzoGHI/Xunb98Se+/tBDD11+8QVhNDII0WtZEMGQNVo2iHSraGO6nk+sA0VRZhtTkLAQlcbcwmAwGDnu3KGDHdte6bTe+S3fKmrG//H3/s9Oz7EjwSgW/SDhjmQAnhxbJHnMLcj0sRwg/qYmxc7fZi3L5B34eWqRMNg6sXROMwHc15kPTu4MZZqtk8C8ZNVKCv7j+W5/kv0EBCupt6UQuN1/kL6Y0wyyKUS/QclU3yiZ4RRIYglSAjVlj6k/gs5URMVnLRIkD45dMVAeshb5GMRmydQUNXADRZXKxVKjVG8POxDxLBR6vd6lCxdarZau69/4jd9YKhSLABnLiMXiyFA1SQWRZr/vu+ezQYAAJV/n4y1x6EzszODlVSgUwjA8cOBQ9tchRdJMD2DNeG4akM5NhzsG/f4QbXcSohkRcsT1PT8KS6VSIpILVSh8BDohkrK+vELSIXCQgEa4Cj6AKAuNqRlNUU1VK1k6+BSoOOM4O70+eh5kZ+XmkMoMkc/R/WmAxbFlFcNYi9Rxp4L321vbnNbqNJtxxx9yN+4IIEJTlqRidv+SeoCnwHtIFCEvTrgIatLeunVTVqCk1Om0hv1BqVA4tHTwzKnj9Wq12WweXFyanZkqF4oJ5xLzGdAFJNZL8V4MXawwjgxNz98v+crQno1KkjjZ6wrLFG8iYCbZaxJZjEUx8P0Yzimk0oJ7jYXlMWDJnwNgKU2X1UhlvsX0qdt5HmQiHcn1AjzU73a514UYKyLbFur2uLYNa95KFddPURLgpSQhqQBGEe1gN9148c2Yx7Ztb21tLS8vt7e3kUL0eq3NrX6/HwWhVq5YhqmrMneJEdzRte9sOdv+OvoWvn9wvrl663LoCA/ed0fJUgRv9OjDX7l58+bxkycFRdNMyypXzNZ2LMlKsfLrv/6rhVJRkuWV9TWrWHjNa14TuiOqCpEsCEGYRUzHki7ruqFBqRMBuZKyOSXYmweRrqjk006BdDwWJQMhiOc5UnEj8DFNFZEvyMLpu29rzjV6l1pWQXjs8UecYVeSBdd10YOSZY48yHCDo2HulSbtBbq6QiiGULt3A0lVYGeniHMHl8rVUmWqtrGy9OJzF0VZOPvi06/+hgdXV69/8/ve9ft/8JlWp21ZpX63LSiqpRuSClc+VQWkjUy6CMWSFlipyAWgOCv3s9oeQWKUfHcUFf9kZCUioePQiwptNDrGXK8snqGblM4yDexcfZNsYbJkJPsT0H8ZfeQLsScKISyJYeGl2J7vRSPBjSJZd5C5co1up0h0LuDZAbbZEU1NVgPzxyzSbb5/4JROESlXNi/9R4uHtD8ifxJYTtj+ychwv8/dszCdf2a/7zuhLLRDB3LXi1FNzL1trnS0TwWU1K9y3RMu0VELfhz6058y8yJ7+4mYeL94V0zJB7mNCXT5ikiGZR9XLunK5E9WyqzPBfqsSj6xNPIznreHHCQHopNEhZ0XZuJ9CNKwR9ODO2Tpv+Qxh84vJ/pPzw6wEhndIn9guxOY9A0ReCHHppCPVR4xs9EQRi1DElRQ9FAID0Mfs1SEGT1ZPjW1Wmlqmnb8+PFqtVxr1C0LrC/A1nmRkSHP5aKcJkiKXqyUS2RbI0lyrVabmpoqFJAnYDMsmCmOMTUooAgYTqiqZkRA1KtYN4GCSoXtJoBLQtMi5VSxUkEOApQE+unJ4e4BL20sTcLhfvb8+LeT+fRLZ+ehqCBdSurR/E2SbnwSSYzTRrzCAgAUhT6grbNyhCQJrh8MB9euXn7k4a9+9ctfWbl1E8qMzSmzHpugBCI9oykG9GVV18ZTqigWWFIJa7DoD4eNUkUQ5Xa7LaqaXixfvLXSc9z3fut3VOoz/9sP/eitzbagGCWrNBi5sech66DjZGQOhSJ0TNzjzPUIERzg/tIzBH/6V9jDqTdNpBiQQHAI1rNMVRhzVRAQWPca2iSQP1mWyPl+TPa74By8/7Y7sUdHbi8hr93zQPJ6anfsvq93h9TJu8hQtxBUsN5kumqIVmUl9INqtVxFfTEM0d0SVd1URMX17Vqh2h92v/KlLy0vLy8eWLjvnntBjlR0LK3UpENNmlJ9N/AStaWXvbEUN1t1vvQreeYc2aPsAjG6TNM0Em438wWLZC0RBHtgA6DvIeYb2iNsDlbnS5cu+WFgAwNljxzUgJ3+yI+icrkaxgQXdlxvZFOejM781YuXZVWC51XRRD/Q0i2iC1eLlTycnVdZ+H6QpVdyzhOj8CiI4vZWe+zzlal+ieKRRajcsJIgh6eY4cOwbJnQALXB35ViOG2xEAGLnyRfbTjY6vX63d5oNEQbQJOr5cqrbr/9tlOnjh07NjM1bVlGwQIPW4IUDwBAIXoUuiIpkDoBTibBDsuioGgKKvcB2M28UuJb8HDKDXuWHk//X/CRyO111QggSzhEslhFbw05tqaoacmEBzfRoQVEkwwEYUF7mZZXQKcCLxGBYGg3lYBkMZ6qNXcwXrg4JuDMcOrCHAIv8EM/CP3A0DVD1yrVcga+ytSQXdcdjUYstyrLt5HekNxa2wg837OhOgrDtbXllVvLne2W6zhBAL4HWGQ4IJ474qKlOHZvqmacPn7s9InDzz/9eK1ceOHZJ5rN6Scf+1q3N1rd3JJU48Sp03/t7/39v/VX/urG5poqKzNzs8dPHP3ABz9YbdYEXQemBPcFMy5DoPApOhEkRVB0gVQXkoiKzo8GzwoiM7FPSHruWR4giycJY0Fvw4Q53z149PCx0yfPnT1fK+qb6+6Tjz9x5jVvCH3Psx3dNLlEDr4V6tWoJrCPIYVRqfq2ogZC6MWhZZjBaKQ4nlCvzx8+uHHl8m133b6+vtzaGm1sLotS4Lu9ytSxd7/rrT//ix+r19XuYFA0NBnybfrAxvLN9y5P3UzHAkQW82eGSM9qrGJAOv0UCmMpoLIcGdOQCVM6C481mtFwh8kHiXanKwY4sciIsD6mqstc9AP6n02jslFMA1lQADiW0LWH+DU0bPCMBJaRE0QjuBK6kaA5keCFghcgnowBXM+XUPli7pjusnWD4f3JszuCq3ESksLFJ6O7/AYd0rTukE8Gdn7oeEtaJTsT+8xvZL9tdz4zse0O8/bMJXaum3sLgCaF7P0OJX2LydMR8nUbH2X2glzSQ/37JJbKkVD3PI6JZ/brGExsGeRgB1pmZyqR7bPXYCzkAov8mWJn2T1AQWQZPZED7L7YWQ8B7J69kpz8gMj6v5yt7QcB2iMFxM3J5hWTEKaJCij/SIR7ml+imCRRGNZNMyHVokiPAam555JonesVi5asyKqs6CZE3KD8NzNdrdSYwR+G4cixOSTlz+oNh8VicYY64M1m0zKL4PDH8eLiQSpaa2jDQesXemFigKISBeS0LIFMRT1tMVIVHccC11uaIrkOAYyvAyoqwQ55z63thJAakRIBBXo8VctyynClykdSvmGMf1boznJX6vxNMt33ydHpj9AhDsfMHJ5EgegkT71ssWDtfow3u99XJKgaU70/jgajdmt70Ov859/49Yvnzl+6eF6Ko6WFxZPHT3ie12ttmqUSEjLiZpAuKPRJEsR/yi4gtCqYT0IQSh4olsVqbXVtqzjVcEL38ur6d/+1Hzh5173f/he/Z7kzcELJLJSHbqQaRV/2qZNG8uc7x1teJnWMTxOFWEUCwGZkbEPGbsS6avAz2Z6viCpriddV7jTuru4ndVAqHJDMfwI8SJK1DPKXH/xJgL6vd97eN2kQ7qGOBRti6j5hkYqyfe6+JgG2VAY086nlPT9PrgWhHIdSFEJDBsAPU5ZVNiLTdcPULTEWfDcoF4v1YlUUhPXNNd1QH3nkkdXllUOHDn3bBz5YLZT54L3A0xRVEeUwCofOELVt0zR0I3yFHQCCALFAbcLq4++TIccy8jFfaMtMdMp5bc6qtqZhZs8nNls0mZq6KWhCoZCtqQm44Bte/w18+ryAVDCJnBpE4eWr1yAW5CEWhGp+v4+g0PfqhYJHDUa333f7fRSckPLLplUmegkgMIqsqZqsyJokC5Zaobud5ASJksumYxXD4kYTd33JgwzRZ2tjncV5HUSWkNABX9myhDiemm7Oz87VajVFkgjPs9ZrdyCwNRx2W+1+txcEgWWazVqttDD/hje9/tCRg8ePnGDu79AdKKJsaPpg0NcNVVN0TdVEmP1FFA8jSshsKInbkPAeE5WF3P3Fa5PnkxVqLlvmbaLDnN8wl2EZoGYevXu+VZ6siwlyHUosSREsR9+PhFhTeJ5Mxn4Q+wwNCjyAElEhR+pAQu508LDyTQmLogS7Yu6f0uUfN2oo1kcm2e/3LctqNlE8YuVZwM2D8MDUTOxBE42QWtgHLnwK1tdXu+0Oedyttbc3e70eelDQQLNlKTp1+6nAcx95+KEoDk6fPDEYDBzHCcN4aeng29/5TdPzC3N33PXF3/nY5z/3R4cWDw2Hw2az+ff+z59oLi4KmhT2u0N7pIB4jakUk3caO2EuoboN/MipjUwLAlOBfaplwGIlDX3Huj2ICrAOE3CdTjHuLzc2y/W777rv87//OV2xpND98he+8sAb39FyMAgRYBC0KgGCk9hACqJgsCukJgRB8n2X5BkUUdHjwBcN89jJ0y8+9dTdp04ePX5sY/NZw9QuXjj7+je/sXXryjve/uaPf+IPRsOuLIqaKjuuLUaxqankVpiTqCdJLRbeSVlziUUxLY48YBPeVooUwnxMffd0yt0nOM6FcBIWSIrg0yiZkE7k5Uj9hMyWi2daZNcq5D1B9pAFVRJithCgVAzjxPMCx3fdWAzg9ijBmpIoHNmbZJz+iWpRWpBVckHs+PhT71Dext8iEQ3K9Qd4Q70g1Q4eF+OgWrYjIs+HhXsmALuhSvvFG2nIt6MxuGdbIB9XpxN+Trg/tUXa/YeYZ3Z+sPinJgCkvpkG12PpkDTbY+hsEqzyoB4H9NwTyI+iXW0BmX0790gAdvzVzgPKDjgHDUpTpR1ipkm/f9dZeImKIyul7FVZn6wIpi/In/rxt2BOwu6vnJXzJ36V76+NAWTJhZT3qFympZ+dB5NM2AS0RvBEUj+cqKBlKsmCD6UNMBh1RSmYRVWWpqYbh5cOz8zNFYtFSQEIJI5FD3DJomYY/eGw2+3rur506CCxFe9hyBAwTojYyflIkFRFd313NMJto+u6rOh+GDquWzCsnUTMJMDyqQewQ7EFd0ukKRoOm/g8RMdEoEkqYgrzS2XiBiANyJfWkuQgga3EQG+TbtVOeVYCOAKInb+yu4bb5IbeL18v0kciVBAaKUloS9+HFT4lITJLJk6463RXN65cuvjk448/+rWHL14416xWGtXaax+4T5Ulz3FC3y1q6vShg8xtYkYyJNqJwqjoGioQXGCLCAJEOI0oCIuyFkRhb+TUpuc7njeMhTe/9/13v/6NP/GP/ulQUHoDtzC7KMRqwdJGI3tuYWk4aFNKO5mIZp2oXGpKsbkkhwj8IZUtC3IsxfwYEBfi1PN//FtM8mTItXs6y4vzZPJnJIxLRKVM9yBNHvKNSZ40eUiruxuEExduoioTQvtiT9WsLLjPy1CmMwnZwlO4yfvAh2QliU8Gued9OQ5jRTAK4LQUy2UwPrE6Ae0T0q1l6oapmrYz2l7fWF1deeKpx0+fuf1tb34L0D6yzGG6TfgKN3BkFP+1ggUFmMj3291uuVIRXsnGMqzJeR6rQecn9pRlQTNMEDrJSpnZuhHyfjAc8PDIeKtJfYXM2bL3yt7W7w9TVK9Y0A0rzR+WDixm02IsxKTpA+OgXq9n23a/D0z5YDAYgm5ru57fGZCkPcrofoQsAtAKctAcS/glEocYjViYYcjAFZMwjKhjwFZtsigapjVdrRWLxXq9XqvVCiXrwIG57e3t69evP/XY11eXVxiU4tnOcDAwdaIzNacOHzx0x+2333nnnYsLB0Ih8kLXhXuAgBfopiRIQeRVi8Uw9h13CLe1GBm+Dohj1uHElaBsBFrIyfqSGILS5EDNNiTMqjpRuEr+er/Ej/dgAqcqzEzwDDDQM1AQWfYhGiNQDatlM2GZfEkEIQAwiVZDSQKYR1YEmfRJMD/n7h6cUuRVKgdYdJ/g3cK0hKNIYFNQ6kWjVzUhzAqCL7+D54OGQbpGJg4tJmXPwCMNWA67cWhzxw4nTV1qx9v9/vb21qDX0uTg8oWz29vb/W57bna6WasqsvyOd31Tt9s9+trXD68vm1ZBml+KN7f+/t/7ife8531f/pMv6rruOI6maZ/8nd8SVXSBag1ImkooxKjFglkulorFomVoEKGSZEU30CWA5KgPRBA7qIH2PY6Z0tVaESI9VYglgADmUvwDX1kuCaPRXafvnW8uuYO+HgvPPf68EImuMyI8BbmWs6ZCYq873qgbQNQ8THc4plhAyKvJhiBK1fmF+aXDm9udQ0dOXL58WVXl8+fPf8N7vsne2D5wcOkd73zr737sDxVNDDwbNXnStlYgocE9eoIrsdEVSmHEiUrUh4EMYidirl2RjR79FSWZdMkJ8pTETVlsRi9II460mUBPEQAIrRVeVJNCG1UQEo0xJidDokck8TwITCMWkQDUoxcR0jWWFEMzIk8MXYENalDQZDAqhZspu4Eb2XRNstAnU71kEZR0OOdULhVAzdE0I9lJ/nJ5I9SJHIDXR+YX7WDtyzv0siYqsPtpS+Y/Ys/bfHzIu/48/z57A+knKgLJleVndlTHxj4AuzeADF/ysDLVviz0zD4g/zakAr93hXuvMiGS6bTbPJHZ+InzF70sm2cRlIyNiscnKNcBH6eG/OvMjjR/oHnn1x1nmY2A/rRt9x/utmjOXpz/aK6F7/X8nn0SVqGayDt2oMHyz0sQC08gRxSqMrQGWunQ8QTuUYQUbxyiij873WzW5+dmYOShW6IiB6GHKJ0cb0xN7fb78WBw8PCRt3/Tu0+ePFkolIPIc22PQwTEWSHuTGjqy3J7OFB1Qy0YUSwMkGB4YPNbRcd32KKV7qLkLg1j8vZO0Xhcd4C0ZsJqZ3vgxJecFzNYCDN5iNOGzE+Cax30BumeFmCVoLDUJMjvSRhhjztzbxUOTHUAhbHPFEX8XOnnS0DAJKBzWS0Zh79x+cqVSxeefPyJF8+90G13NEUqFYqvu//e0HWjwAtGA0ESdAVBH6VmCR8LE6Iii6LkhX53MPBaLlq0aOIkVRlZlVFiVrXBZqfemLmysrJwYuHW2fONpaVv/gvf9bO/9J8+++WvdUde89QZTTWdga9rhYNHmlcuX6zWqoIYsNcB7zmsVyU1H+Kngb3oEhRhIjGYGOfZgwjxBuv50cjPqfdQzTIb2+w2l4wCQqAiCkpxE5AlhVNy8ik8wSeXZb8OQHY8qYVF+rEkGbXfNmFERfepsmehxXGc3U0/QdBUKRSk2CoUrIJRLEIQk6EOUFj3/Gq10qw0VpZvPvyVL3c7ndnp6e/5ru8OY7KRSmXsZFkul9AHIOWZ0PNcGOTIsqSqtVodAGzhFWxw26MOwMQXZYu6fFaAezaKDAWdT25/JAUwGszFQjH/94SOCeDoHCupFBkFMxwKiaJaKGRRUv4PQ7B76bvxeoOQV7FEtUj6/Vwu5D8IhMD1Q9vxR47dafe2tje2NludbmvQH3m+M7Rt8C5JiSZLAERRPHhwyTCMYrFcKABKZFmGaRYwg5GRliQpQeC1Wp1r165cunRldXX5/MVzBFNyoyhQZU2HbJ6sq2K52bzt9MnXvfp1d9995+z0HCKRSAh9l/RoxZJpcgeVlqgAJwODVjB1HbEjf1MfrQZV0dlXlbwd4FWSnsGd4zaNmMYJWTrYJkC9e1xfclCW0yoDXzvcMKnvAe4+Tpq5Kc2NcjqkTFGBlBbSkIjTEhYqDhOuCNMzEfdQ7BMFAUhi+Pg0kkgjngR5RTElQY8SKVIeY/BKUzXuI4WBB6NJURJ0jUI4vAnQ82GIBinkhFwEVZpqzkwtzDSFyBMGrSMP3iP0+8FwANu/2dng1o0wDK1Kc/X585V6o90f/fr/9Q8+/vuf/Dc//e8lSarXmi+cfU63zO1W641vfmu33+n0ukNYVQyRbXbbruuqigSpOQl08EK5ZJgg31iWZZomKMhlaFjl6jy5QY0xoVDYyK2CpFyJor7ryoWCZ3sHZg/MTc1e7/Q1QW5vtCIParaCESIsJuasCIZGKMcymaTS8pwUT8kPEdcJstZ26EShrKk6chKtcPe9r/7NX/qFB+6+Y/Hg0StXL3V6fb/TmZqaioXovd/0rk9+8g+jMHZGw3KlEULtNCQFfELd0MzKLSCKHzIqFplkk+BVNnfm9xgOtNoguh/X+JNoYr/N9xM1DuZOUf5Ab0eyP8niRukQW7O7rgdEjwBWCbVgQB2OQP8VRUlVDcVUokAMfMEV/EgMYymFRGaaxbuXpHEgREqmuaPLPx5Dr/Nh+kSclm2JqAPV3TicSzxJU+OdcSthJ6pl4tiy958IffeMN3ZvE6CPice5Qvb4+R3hZe4I+QyNScATleksE5r4Jllcnb5+sr1CHzOu+hNmdzc8HX2c7K/SQI3PD8PUKQLkbxv56RfjFydvwOkl+mXj48mn7NnjXO/jZYTy43egQCRHe97jSuzx/FiLMPfczkGWaz+hxJLPz3JjKN+QyZ5GiLDzGJNfMUYtq+lmjrOiKFiW5YwGru2VC8U4Cv2RoxkaM7cEQajWykeOHj185JCia/agr6pyrV7RVQMN2liwXScMI8tSTpw8tbCwdOjIkWqtEUTQge45NnFbQTZyEbxQaxkrJBA/oqy4YRSHLghIpBIYiqIDph2XTFi5h6q/LDFAITdq8pyxjNWCKZ0l2AkpjiU1L662J6osYAikztCc4KR/me33SWeBy+eTxsgHVj1nBdT8Ypyd2CAKdMhE4AECNRUY8NC1IVsJ4GjkD3rt7e2VWzevXkHAce7s867rSIJYMPW5Wtlzbdl3UJ3xfR3Ox7quohEj8wIJEyjd8T0Aq92R78HbGtQ+WSgUSsyUgMo4tdRtF5bAvhM4m73ZxaMjXzxw5MS7v+NDn/vS1z71J18uTs0WZEOG1J1mFiUpkD0/Wjp4WFL8OEZ3m0E7bPLFNfkUxjOG9AhSrFIFaOfkwD+OoZCZ9Qnx68Yk/hShgC1h+NF9zTzF7N04U2UXGwyZ6DpUPQABAABJREFUEG13SU2zfdabS1NdBWoMid9fPnanQs4eWCOBNOPzcmSMcmFkQkzqzjxGGOgiy7QuMlswZyDNZjvZ903uL0Q7rlGwQiGcO3BgcXFRUZRyoShJkj0azU41fcf+7Gc/feXC+Xqt9uY3vunkqZNIqnMbzgOV7fnNFXjc4IJgA3gpFVp9ufMPRPInIG1ZlJZ/ZsypyMWfSezIj3fNenyoiVw7nd3s75KX0/OZ0BOvDJRmoKrKvUiWIAHxlCHjBOfPgkVLBSKgViovTM0LwgkYhwEjA4z2aIg7ot8b+oFbLJRr9Yqq6GwDvLm5ubXVsu3h5urK1tbGxsZWv9/F3wZep9Nrt7c1zWg265pmOM6oXi6NRlKtVLYskyBu0dKBxRPHjr37nd+kqLIqgyMb+C4SexSReFDDx4jTfr4gGqEcU12r5HTAiVCRCTq+44T8aduEfOE4jNh726n/PX59GkDs1dJnnbSXyoOTQ9lphZb/q+T5nWEKyUkkASUl+yRqA8nmMX4pHVKEOlRA+cl9dS6IUzIQ+oKpy5ZBX5Dsa6ifIxVLwhB4H2N+UfDD3s1b5dqUEoZCtfHk73/yJ773+0/edvuVy9fuuOfBv/MTPxmG4aGFA9/2bR+84447Fg4uiLJUmm3ODAZqtRwMegTY8JyR3e/22p1t4L5Gw0G/b/e7G8uJL15mnIe0vFyemppqNBpl6uxJ4BLoxHky8UUQuIdy7BORI4b4hzuEZINi3H7q6Ma1S8X5qbOX155+6rE7X/3g1taWaxl6teF2uqauSVEgaSqkQBHTIoVjFJsoCv0e2oAhUDGqZBaxgPqhIJqNmaXm9OLqeuvAwuG1jQ1J1kdOYGkQDFg6fujNb/7Gj3/8yzOzqNkFkagbRXC4CYpP0QYh+1muKJVR5umUbz6GZnCAiPFO/7hJRYXUbEhgGo+TEYh3A70HszMVxQnCyecikdtMpxm28kwjOgjs8tvBijLyZeK5QSIATqHc/YatwrBvD124LUaCGqLxiBUqb5+aDi3caTS/ZZKAydDNsD1ZYyC7QTLER4hFfzwoOQbIpLp2IzLGoRg9wyTgfE2dBw8bfearZvxuQRBMCP5m77bnrcmJfPbibBXbr3C/uzC3Iy9KNJ3Gv01u1N2TTpbw7arf588CX+iJP9nxbkA/p3DePQFM+2wcLlO7Ukpb2+P4ndQL+HW8QCbDItO8l5isTL/KfzWAGl/6xO3cwljcm4S3bwKw/+w9AelJMoCdDZ0/7bSkpj+7Nk3TdkdFPKqc0UAWpalGXRLE9vaW7ziyJEw363Nzc9Nz05Is257b6fcqcrUxMwv9O1N3Xb/b78mKNjM/d8edd525604/iAyzYOqFCOZuETlmU+uQEmLgrJObgPI3MRRR4WAZlVgEAYFBlKEgwOwjhWEk5F1CqkJ5AC04ovai0J7KAsKmivqY+T0hmShMp0yBGol5vaNdhgh77flGykCEVD0Fq891XVLvTi59QJonuLcVSQajcQRMBAK1WEBQ0vWGw4vnzw963bXV5UGvUymVq+VSb2tj+fIFOfTkyIWHrk+ZX+AhuwiEgqGDORAFoUNWoixiGIt92wcPigoMpqkRRQ88qbWN9aRsTHJSDNMVRfXg0olObyTpBdt1lo6fdPz4K1/7eq9vN+YWUZqOEJEg94oVCaj3SEZJXM1s47iNDxEUiCwACUozPPr+GDuRr6KImfkKJeBL5iektOFEbJePM6KFAQ1EFJYi0ORotJrghVPLiZIByrYSKicRi3A2Yb5LZklEDknufBbeyWbwIPBBEkmyjbFgvE5GTjunezy2dCNBYpCBFOxrPB8mDFS9pgQS9WQsloTt1zU45uYAeOPFIzUwhlJMejNGomB6nlMsFo+fOHbs+NFGtQKJFFksmsbDD33l2sXLjXr1LW95y4njxzRV86H5KPyvuyUx7T5fIa8olc6EgEZwlIH6MWv+paeUwfH84jAmRyHP0cyCBzlOqJMpiqoosgE0vFTQDEVqCPO4dzu97rlzLz722OMvnj/34osvwmmENpiNlEqLi4vz8/MsUHbiyOFCobC9vX3lypXt9RVRkfv9XhTBi82q1W4/dfquu+667dTpSqHkODaZkNK4IioSTw4hshXCGFKnMPm/bMlPmoEMaRuDql/RKf3/1JbGnwzlyNTY2IEAy4GPjjS0H6JYcIOoABlc2ShUgt4w8P3ywWNoIDjO5rVltVh9/ZvebnueHVxbXtvUi9Vapez6o6eefeae++8LI6HX65bBodK9/oDxbaqu66VqZWZuAdiWgLq1geA59mDQ6fUGvd5wiGwDnRxVDYJgffXm8s2rIpHFydKhWLRqZqFcrBStckk0dAFTEBq/kiYLoSuYomA7CwfqsuxqslKtCZ/8xO8+8O53tM+fnZubEUYDswarY0WK3UFXVjRF0xQmAwhh6HuBL9QqVV4cvWDkB4EUw8hdFBShPnXs1G03L50vVEyrVLt89dpw5FSWDoEbqyrvetc7nnjiKdvxXdspV+qiLIUBUm2abHGf0SxKmg550ZRdE2Z+4yV7jyfHuAzq2xKLItn2GPnJDM0VXXoNZxoJ5yAUJT8WXS8QRD8IIZ9A64gcCoof+14kBgDDxeR1hzphnkuZL/+PD2EvqPYEnEQURddF4TiLwnJtBJwvvvfzhfydi0JSBpoIsvOnNF/pz/fPJ5L8/J+89I2zHy34v27j0vAkB2BHcpBiwnadR/7/vNR98hva5TMMNiDISn2TR7DnkSWcG4r+6UH6eTQhp388fpLJBwkCKP0/bv+k3ypf0kg8hndv++m5ZuXkl3n8Oz4u/3SajGY/Ug9xx423u3O01/uM+zj5TVGUhAOXDr4kMFJB/gv9YGtrI3C8Rq02s7hkaMrBgweHtj0cOaVqaWFpkY08wzhyRnav1RNF8dQdd73xjW+em1+wPbfd6dSaU34YbPe7ju8FhErgkm1KvkkAYVTET1tDfEcl0jUEpItDWQwDIUCREwAR9JbB/yGZ+BjVM9b5SUprVDZUUkz9jn9pjyQRCkUTliudaXYUv4w9n1CO+yMhGo4GgiAUodmshXHo+tCzE0Gs1HTDIGARWquB6/a6nV6nc+vm9etXrvZ7HV2WAs8vmPrxg4vV8m2XL1760h999tq1a7qmmKbp+x5QjoauKooQBaKsyDGqTHEIJiNgBqR3giEbi1apJKQ5JwXKceTDX7lea6IfTB7JFDCxt7C0trXd6TvyyOkF/nvuf3D+2DH1c58/evhIpKhBJEGRWYIzIwr84N55khCFEOoggDp8HD36ZOB88ykBMzREIQCANd/cSx+Q2sy445TBBrDuUEjNFlGUVSGJ6XU3wcAjsXDO73WgXKCbyYBDQNHcGHwMhizIKl1cTueIwUZReNEyuAOQuZ/yHNrZ3sjorUlzlg6u1e9j4OEswD1S03TJNJizD3Q03TAsaoqCVhR77hgTz+/DB1wuwfAuL1BDt1tgwOBLqZZLM81GuWA5tj0c9gem/uVz56enGm968xtOHDtWNCzyu3WSnom4U+qUH/MV52ZF/qk/Z9tLFTjEyReQDQhhRhJkSoIzYbw45BaDAOKVtGmKGimgzSgA5UBqUiJivSBIrm+fP3/x7NnnH374kWeeeWp9fVMU41qtUalU3v2Od0zNzBw6dOjAgQPNZpM1xyJg1tW1jbVHHnnkq1/96srKCk+PnY3OwsLCXa+6+/77719aWmrWGwqpH261tiol0rFhnJrEKEV8Nin6JF8gGf9Jv3o8CZFKBCYQrjD9+bxwf1bbK+mqM+qaHhEpDY9YpAW3rRPAesLQQEKw/aGhWgVVF4R4a6vdnJlVKjoK/7Iyarc1TQsk7fzVmw8//nSlVq3PzvdGI7jQFKx777j/i1/647PnL5yGLpcUy4pUrgj9jkL8b0KpMlATVWN8vq4Jhm4Wy+bMLPCLQYBeRBShZu+6zmjAQkYsiTsajVbXb2CS0VTNMkvlYrFUMixT1eRmrYGMolgWVOm133DHY4/OrVy75YTCtasX1i6c297aGHQ6lfl5YdDb2NyYXljSizr1PRzorbJSXSxoour1WpjuUAMRNBTVgY/BlDgczC8ceuqxrwu1yoGFgxvtbVk3gccAxzW+4757X/3aBz/9qc8busWlUilGDUWIwHygnnpCzczqn4l4TvogBIUkiS3G/xg6xH/NV40CM65BcxE2jzhPXQNY+5nZoIgVSHWBXLaS90ocCXBokuxFQeQFbhirbkImlCTYaju+CH54KAaCF8YkZihLEdKYJIJmZj3/lNQ9Wac0ixOooJjq3LHLbrJascqWyMsWWVzyGyUGv7sQO7ku95hWSkt2SjbYGcpnC8dE9I9mf3Y75LY/5cbJRYb/jZnAhFL/HlIDO/FM43p//pn9Dm6iv5BPcSa78ztTtzTrIJmtHMQ/fReJqsUTsTW1VEhyKDuNmdOCguA6K0Zl1wxlGo7pX+Kk76jKQz/4FXlCvdR7Tob71BVP3AFf1kUdI7omtrwBdWbYToVtsdPelgW5Ui7W5qsL83OlQqHVanU6nVKlMre0MD07Ewjxemuj0+2HYfjqV7/21KlTR44eLRglP/I3ut0oFqrTs53+gGy/ueWLgCpkeZDE8TFtyKQbFkKO/nFEDG0H9lESQ1JjSz3qKO4nxAVz2dhnJPM2JjGd5NwJO/fE803QQBkLBFuid/DycgDQP+lEgR9mAffsBfCyqZQqwNljBcLmBd5wOHQd+4Vnnrx14+rGxkbBtI4cPnj77aeLhilG4dzMVK/VeuqJx//w4x+7dvWyruuLczM0faBYLsbkjq6g64sIVdO63W46BijWSNAG1BRlrEwKNISGtAK4NnctUcOmjZIGqVyeqplWC6WroaGrlqYdP7wUx/HQDfqDYbfdGw6GsU/ShEEYBZ4AL2q8M3ygVdXSk1iZZR8zm1KOfRV0iirMdtg9ell3hRUh2XEpiqJacyqLkv2ckuOppXkUxlOwo6qqlgUXaNfxYRNVKhXK5Wq1Wq81C6WiouoEeaK5khXckwwz6vXhCMtwTPYV4s/t9Xqu6w6HQxat73Q6g8HA87zCtJXXlIQwDP3JYIBkj7+vrlO8qSoxsJ56gBQJmRdVfGGThHQrIkUUJBJyQaLODA32QtGIfIh1tjvbZ194wbNHI3tg6tqr7r77rjNn5mfmRSGy3SEQ56rOPLjxOcyIK/tsqXjf/2LxXk7lSbLtEUqP1OFTIbie6GgwWSGZLBRcaL6aOEtx7Hveart97erVZ5599umnnrp2/fryrVvFUung0tLrXvPa06dOnTh58uSJE7Va3fVcGA4wpRzLQbi1sb65vfWfP/qbl65cHvT65WpFl5Ug9I8fPvyqe++5/fY7ZufnUfL3HHs4NE1TU7RmvemHcIFNwagkKEERCyOVk8CHoRKkRZYSOcdLW+q7zpylHX4amW/GHnpUr/D8J+z5P0fbK1wcuVuCPiFvSTe42+9WS+C7990+HOLVgh14F1489/yzzy0tLt5TqLquu3zjJt/7hmH8i3/2z9fX19/0jndcPH/+2tXr8/Pzzz333Le+/319275w6dITTz31wGtfo1uF/rCnWwWtUInAgeFLBX9t0htQMF7sPolZi5Dl0WU2mhMEoVkoJ2wu1ngGh2BgO30/tAf2oA8xq+H6Rnt1ndrsaFmImiSXLPPQgcX/H3X/AS7JdZ4HwpVT5+6b48ydPMAg50SQYCYhBpGUuKIt25JXa1uWHKRnpWet1dorW1awJcuWtKJkmvJvSYxiEBNAgEROA2AADICZwcSb8+1cOfzP+52q6uobQFArr3cLUrOnb3d1ddWpc77wBqOo3nj7jYIYLXcar5+58MKzz9x7770vvPDcrert6uBgrZTnpIhzTWIU4CvQlRUlEmjmFYV40thQ+wkDj/M9wfd4RRm76tjQs+ONjTXo/ReK7Y5Z7XbkQhlZTcS/733ve+LxpyVRs21bluEwSEjOWOeJBelMYHvXS/bmZfX+QJ+Fj30tghgnk9FuSyruDGof18uZo2JSWaZZXVS4iHcjqPy4YSDCmA8s3yCKbMt1PVDuApAt8E1El4yDhNTZYyeSYjvupQeUjw9sm+gFn1FizO5hu81Z5syk8IpUBSj91Dagx87w/U2Oc7fbpXd60129Wc6Q7G/nS9kydHpg0l6k1Z6Ga//JJVRZXP5nDOuYWBo3Rtk/E8UbUhhLvmxbh6FnhxLjQxiwmCrHOyZGtJF3bZfCxrwvl8ocbU8UKPENwBNknwm+KDM4EqwtIaUSZjfdOFlnssyp3OVFdCT2agz0s8IzPPHU8ZS9pwe+2m03rIm2yw0c+MSbQMQtkFYJQB1BGNiWK0nC+MjY2OiwbwHpWC6Xjxw5srSyUqlV9UJxfnnlysK8ltfue9d73vv+90m8znFC1+2utNuSJHmCDMHvzToJbZKQMCmrhJ4DC8l+/BILiRL8HKPzJvkA0mwgHl0+ZDouJIDMPoWNrWox046dhDjGD/t5PLuc/3S0UPEN7c63uNFXA5tAQnWpwQWvacbSygrTDex0OpcvXz537tz8/Hy72dg/PXHo8JF3vvs9aK14voTubBT47ssvv/zUY4+dff21vKbu27evVW84tl0pV4G74WBTFIQRzpnPsjKIJFIUlCiXpwj1OINN8DaSBNsaQVAU1iKn3yuJoqyyhGFtfU3LFzjeHxsd9Lotr9P48Q99cG2r3mx1Nje3lheXNjY2XNMkHVhMrDlNTxMAVm5hB5DhDGUXgajd2sJ4Sgr8KZax3W4rimIYRj4PIXXGolMU5Y03LhAkLJ4f6Y7EMRPpHPKmyC1UJZfLFculnFE4dPSYomgUDhHcAjYLEVgO5B4fq9HRtQIUA5jFqQR8Tadqz+Z1vC0uLrPqXbqxel6z2YTJXbcLCRp6ZKW+za0GBCcInxTLQ5DxpCrLobfD94CLNtYAqPN9f2V5/qqjV11/w7U3XPeOo0cOK5KC+IJzW62GJIilfAHRsGvJSUqZGYF0T2defOsD+P/57c0zlljaNXmED1osMxr3XsmbjczHbYeWYYxqz/Majcbq6mqj0XjiicdmZ2dfffmV85cuhp4/uW/6hmuvu+8d995x623VwYHJsfHq4ADPC0Hgs1KRSk55dN+EjXrj5dOvfPeBB59+9hlVVgqlYq1alhT5wP6Z2++849oT1xRLFTaPgZYjCiWKOCMuQhYhSdSD6+W6FLVjt5A2QeRCXUtSgg/Tkmbf4oWokuSrGHkyVuWnGkiMZt3RJ/nrlJb+3zQ8dlbl3mxjA4PIwlkIM54WjILjAv5eUAtu4L127rUnn37m7Ouvb65vrK+vX3vttb/4i7946MjRT3/609/97neXlpZqlYrneV/88pePHz02PDay1ayPjo3U6/XX5i6vb7a/+NWvvv0977nhppt0oQh9+YhzmS4SBD8JeIbrBQ06XlHJDItifeYVRtL2nGIgOgcPJ+RkUdILpdJAKfI43gxCaFmhhQp1qG673bS6Jhx1Qm5hfh4gfi4KFZUzjMroyKa98vKpF99x79tUWWo3NucuXxgcHCyLfOS6vCJyqsozVqtnc+166ERCvkqsK3KNYUuAJnK8GKytinnj6utPvPLi8+3Wlmwo642NgwM3coIcWbbnekdvue3mW2955unno4ATVI0iEYLa0DhkcyVJQONX4xtZuZy6oLQWM+1PDO/4/0gLiKF443AkbgpQWEWrMhT/IwbLQe+L1mym908y/9QBoGgOVON0F73rDoaXGPEAEUBiLYwgBgjWKDrSEAuDT4XMvGXi2m4cL+EwAC+M8RCpDCizG0vlH7eRa3uBeFZmN0pUE7A0Jwvxtop+do2OB3Mi7rIrsj2Vs0/zk7T13XdHJID+H0gCfnNtgLe49eckdADXHdmXxfT3avlJ66Ovus/adkkalz2h6Q2dArzYnyCwm7yeTQC26aQmfw1hwRELRPZOUIwb29EW4KAjlUb5fbF+0tvvoYHYX4GvSOyBsx/c9Z/EdMEgfesJQC912vH+be2eJBHq++cPusDszIdv7hDRIwBAXz+qVYqVUkXkhZymHzxwYN/kPlEUZ+fnV9fXvIg7du2Je99138yBwyHHbZntdtsSJMXzAMRUNeChTQcWPK7rUmLO+ZHHPDupjIfuGVFx424anDwYezJtBbCoEeoPAJawcZJ0CSgXZ3I8LCNnK0TfwNg94tiJlWJPSNiIe+ubQozedA+sFcj+eWXuyqOPPnrmzBlJko4dO3bjjTfOzOxTQAzwW8262WnnNV0ShYtnz7704vNf+fznq5WSJkm22VUEvlIqRFHUbLYFXsnKuKSqZKi404lKhTXxu0OQpZgRKWY0IaYmB0GQy6M7EQMoCMsZS68KspLTHdeXNL3VNt+4dLkyOGQ5dsjhDXlDq5TK1UqplM+pKJTyGxsbYF56oefDS8AnB9Yw8l3HT4RTe49IGAwNCQP9l5UBJZ0oXhEVXuJlQWbPRVEslUrIaWRV1WRdy6m6oqq6IPFjYxMhD3lHE4qLZsfqwDQ3Ck3LzRVKugHirEj2tLKCSrkiG1iXeJyEuOZEt/ZO34x0PtklgYHrhwjVeIJxE8CMVgUukDkl4IiASnRnqvSTyXzEWbbdbrXqjUaz0Wg0m91Ox7LtpUXwBMnSx3Ydx3Ycn6BZV1117ODBmampqZEhbHkDqq8Cz7mOzXEhJFBQaIwsB+qWxC+Ut81jWSXw+Hdl7+s9Kj27TxTMUWFvq4TdPvLDGY2xSXXXW2znLBlyXMdsM135eEhT1wjj2cj5vjc/P3/27NlTp04999xzp06dmp9fmxqvzczM3Hjjjddff/3BgwdHRyHYbxgG/KESvR2gOJLTgiAhitbX10+ePPnwww+fPXtWUZTh4WHDMFzX3bdv33333XfttdeiluF5ZFAo+wE00HDr8cjc0ApTNErNidudto3ZXB366aVhzhhECGY+KoSxpsSAkQHxBh+rxc7u/14VO5FLfUve0vZDrv8pnPK/ZwLww3Ae0i2F8bL/EQX0hyMuandbzz938uHvf29+fl5V1VKhrCjK6urq4cOH3/Oe9xw7duyNN974N//m1559+pkDBw6Ui4VysQSb4fnZK1euDA3WtjY2p/dNGLn8//Yr/+LOu+/WIGYldO2uquosVCTuLpdC+HI5neI/Eicgy9zYaDLwAEqE+CSRVeKZI/BDG3M2U7pkQx6YIj9sNIVcvruyIgiCbduVanlrs44GqeO3292Bam3wyEF7efkzn/kTw0BPcnh4UNf1YrlQpa1YKoiGwUkK13U4SeNUmZNkMmT2PMcNXU/TdbhJRoG7vNDpNl988fnBkeq173s/1+x6lisrOpcvPf/tB/71r/1G6MMeOxZ5IkRlkCCvEJ+wCL8XI/UkHLLqlilL1U8KuHEPP+V8E5Yq7kOzEBl3OdT2RKgAoqjErixoVnHjNy3/0+v0P7KK46RaEzHH0M7FgQFoDD6uLEoKYn1Q0hJmcgZnng3os4iabBSUeXNMZmO+Flwa72USADVjvJjdT9YFLFuDFylSzZ7JFIgR//xM3wCPO2j0bNsrARB2cB7i1/cgAaeu1ZnXwl0j87h7ee3h6d6fM8j+pLq/LVola6neXnpJSXw8mS/IJgC79lB2tpzgjIs97EgAyGhjR/sZ9TiPqQ/0qv4Jqwxc9dQGOKm7YxBp/Y4/fRXE7CsxmfiHTAD2qpHtTACyXZRt+9x7wdhzQk+h/6lULYANqlgpG4Ymi7w0ODBwy403TU9OLS8svf7665wgXXXdNTfdetvQ5LjH823LdMHnhcQFJyimDV93UQR8xfM8SZEZ1iIIIj/yU3w3x/Ou48TajeRqjIIeOYETlwfzKVVcSO2PDOkjEWo58b1EKjFsfUUdPsE3pShaOAhSy2Gv8789FoxoP289AYh4mYdxOqMPirzoBd65c+cuXLjw7W9/e2ho6Pjx49dff/2hQ4dEXuyYnY2NDUWRqtWKqihbWxuzFy+dffX0i889c+a1V8cGB9qNeug6OUPXZSkKfAEikQYvq3Cdx4SIyn3srsXmX/Yo4L8IbSZR5KPQtsE+1lRWLGemQmEYrq+vE9AqHj+MECzLcrvbKZZLhVJ5cHB4aXnVtF00doy8ArKAJEOmLPKAZW23Ww1EryT9lCrip4h/rBn0SmxxxSALyXtEXhIkXhJkQeJFmIpCOwiLCyQaAqYghFdg+sbkdGPTIDIHg2lOs92GsIWiyqBCyDwSffxNM4qlSjVfKCmKkisUBweHS+UqXCQUg3CkLAEgM7u4DtS7PbM3FAsut72Iio6i4AT6UVbdKOQCRVLTIxfBM4F8KWA/ohCQPU8k8Arw60hxyeaNgRao3U4YNRqloeM5qiwzDqsIf07Q1QxNUSTFtDu+74PmJ4pMVVlG9thT1cgO1CxyPPt69P+yBKCfjNW/7TxSnvNJGpz9upADUqter3c6nS9/8UuXLl165ZVXlpeXi8XiTTfd9Pa3v/3E1cePHzmsqABlpReUTSS2ZbEg3nVdVVU1skqwza4fhg899NADDzywsLAgSZKRbNfQdvToUcYOV8ElBdC51epoqqFD5xGX3zRNQYLeuOXZSIcxw8UwZlJ5Qi2fVTfY6WVWRiEfSrCCotdJJ5QBfjCnMX7UjvVu1+sl/PAJwA+38f/dEwA+BJLrh/hA/yBh45Xjw3a7XSqVm83GF7/8hRdOPq/ncBEbjUbg+cVisdvtrq2tyaqyb98+17aeffbZ+dnZn/mZ/9m2uv/tv/3XrfVmsaAMDQ1duLAwNlL5B//oH9779vuuuvYaThCbrYas6RykvagyxTPLg7j6y+5oIm9EFHb6qXe4LNJk3RPpxGDwI0jHEg7TCxyX8wMJ7VwC8DBvLwEEZafb4UXOsT2e83UpEFVpbX5h6MA+znG79U1N05597un5+TmAJ03ok5IAEaSBJVGcHpsy8rnS0FBlaLg4UNMLRU1WUBETBK7d4colznc4z5p77SVRlcYPHuI8HmQGReO6jud4/+43f+e5Z05CSUFUsdpSZZ4Jd5EERwQrgwT7kA1bU+ZrNgHgBN5PMDY0hmMVWXwqmwDQW/ARAbJ4WCMoAWDLeVIBjy/0tntBVCgeYEWQ2EUH70Z5iOqMEIQIOQ/LCkmbEr8hK9STjSezcX8/+IcdYa+Q3ydez/eKp2Ae9ReVsjF99hvj4+9PALJE4d0D9/6VK/3TXgF96qO1bSb5ayQALKDKHBudmWsOTSUvZf4WX7A+ZTGWQDAaW19K0DugNGdIbZ768oFssJ95SnTDJBBhCUDyqW2OQr2FM6s4QWELRjlbtsmWKKljBjzZRAGTAElYwGOAaMjkBvHQZIB0hAPbYwhxm7pFfAwZp9LemaYlIXYN7Md7CkDAZzxHGWwKXqJ9t0Q88hLM6M5vyAQE26d1hCoJ9F9RlFKhmC/ow8O1nK5NTEwc2D/TbneeeeY5Q8299/3vO3z0mKSpPse1zK4ZuAEv+EFgQndSkdUcAc3h4cU8p5jEkAdSbAhBGUkhUWMEPbqeYzUwBmiRQP+EmzemAKprSgQMihHTvAjXzP4EgN2M7P3xOGF3JZGERDJi3qniw0CE6eBir/BMbGQvdBzpoWWvDD4ZcJqicZxw8fL5J558+vLli4ZhjI6OjoyMTExMjI+P8zzfqNeBsNe0UiFfLhZ4kd9aX332qae/++CD5868roriyECt3WoMVsqGqlndju+5OTQHRJQxUBeRRQGS0WS4GDJkvKjI8VTFRZABlRHQKwJfK+R5AvnbCHWAivYoLilXqyzvEiSS1lYUJjlv2hbP85ZlbdahY3H8qquiiC8UCpVKybKsZqvebDZsqxtFgSYrKpxLdXSHaYQxwXJ2vh3HSaewFLiPhYESDU3TDMPI5bAskz4SQjTGxGUAG8+DkyhWTx+FdAg3hr7nB9DdQR85zBUKdO4FSF9omqoqogwkfWVwLJcvMpVlSVFRDCtXREE2HejHUzbJYkfmDt1TBdh+cXeANdkVp57VdgfcbLUmnYjiphmp46dt32y7ctt0wTZFkl3f9VxXg1KgbHlW6PsFPVdv10uFksBxpmuGUZBTcxHHW76lShhsfTNJMtp7N/JfOwGI3U1/iG3XeezNNlIvTw5uj/ekdyoiXLHr2lsbG5cvX3755ZefeeaZ559/fvbylUKhcPjw4bvuuuvuu+8+cdXVQ0NDClzDsb5ELKpAuBKrNLFVRpTlkDgnqIbywsrS4tmzZz/96U9vNRpBEFQqlWq1ypL2q05cvX//fsMwiEbMeaScmyz8IqoYpF2G/pCAGoflOqIsocPjeVgpWNhEmyrIMSKxT98BhByGhkiHT9y3hLIBW7l6Q4sChV0WbAKfSwzh0Hf+Yr/zva9Camj4A7fd8JPpr9iebdJKvk0nbbdPpYZ6HCUA8Qz8Vh5ZKh/7f7F+CjsVIn/y5HOPPPro+vo6OJoBroUgCIZhrK2sVgjw0zG7Ah9tbGyoMqo2ged+8IPv/w+/++/BLeHC5eWN9773vn/xL/7F5NQ+o1w2u20jV6DrrsBrIEYksruYwBuYT0JRlmjFBnwlOSZWvgiYEnoYfzSUJVnghK5jk9EH+eJFIQevdoZJkfxmXSpWAOZRNc7scLLKhTZnNYFDcd1Op0V1FkNSFafTEkTOcSyTzAlarUa327UsK/DdzuamZZl14IosN4xQCDHyuiLnNV3XlJFazbG7QehwfHTbHbdWpvZzLs8ZRa7V7rbN3Mj4K9/7/r/9tV/3vZDc8agdTsr/iHxiSDP0NHskLiYmkUaizMuPavlktAdMHCuRpGE6u+4EOQ4BM8ZKEff/QbCQgbKSRbiC0tlMoztWVu4TsUUZRY6TsRQ/LMEXgPfQYfWIcxhBJg9qHOhpkxtYTHRMvQsZQiH9Uenc3rsJkgQgfX8i7CZm+hKIDwLPT+xoeqOawYp676LfGiMGYh3VeOnMrh275gCYyzLvTHsFmP12u3kpPuzlCW+eMMQR1PYaUH/PIYmS439ec3A8WWayUW/Ptpad7t6PAbY7m0bEe0e1Mqk3pCoi+Be0YuKznM6VfN8JQvuUndbYqC65JEw0MF7qUOmPP8JCAVoWKPeiYIbdvjRce0Fe3+s0XQY+G/2Mwc1+LEUYAAEA6MCKrKkMEbvgSR0gC1zs9SgQz29v9W53HiVDq15VNamzssU+nWmT9A0TUjwz0hjpxQGaZrRaUOlRFIlp1qoKbpgoCqBwF/mVSqVWqxQKhWIur+dzjudOTIxxnLC6vjk0NHLHnXcNDY+ub9VdL5BUNeCijm2FPKfqmihLLrImoBJhY5T4O5I8n8cWPKbew9SB454+rrNAWvb4+cDEM4VM8oSNWwGMaJ/eBkkCQMkC5fEku84WWno9HW9UIUrxt2zgZtx8t73Oc6EsiJ4DyU5Yr5NRKJ0i1XEdLwwkXhIJCeOFgSyICq8uzs+dPn364Ye//8xzTw+NjL3//vcdPXpUUpTRsWFGL+EjrlzM8xFnm1a1XOY4//tf/8qXv/zlhYUFXdUMXSVsPhwdKIdBBCxSM4Rc2IJ8uWI5tms7bG5lvyudvFDmVxVFlNhI5jyP8ywuxNwHi1NZBTu2kBcVGUB1C1iscrmMy+o4nW7Xdf2cbiiKquu6jDSGc3zPtpE5tInCQR5JeSOvg0lMKpp2p8OjrxyYaAp0HYeg2LJEcqqYYQ3DKJYrg4ODQ0NDhVLR5/h8oSDLMvNtbbfbmxvYigC1x0lgzK41LcuypEgkgR1UrHhJRqIYcR4adTxVhmA3RlBb+F3yomB7nKwjtSgUCuVyeXR0dGJiYmBgSCS1096UR3VgYDaIxL9LpT8pGGdn/PimypS7sh2DnRMoqZb2QCB98+auFVyCu2Zv4HRPe1Z0eGVXCNAPG9Dv+X4G0twBkNsrkZAEyQ/d9AQymWpZlC3H0lW4+ZJwf5gUuiLHcg1d5wQhpJagjKidZ1rAIq1hvuNgLpClzZXVNy6cP3X6peeeP/ni8y+srq66rlur1e66666333vvfffdxwgk6N37cdMS+tnQLcH1DQKPYn6R50XfdyMf1g1Mlavb7T766KNf++pfnj17VlXVXCE/MDAA4NDNt1533XXVgZrn+5qmsXSRmUiwdJaoxj5rrLngqCO+QE4eBkizKRtnYXcyVwmhC3e8NICI1y+CLLAnbGZLZ7jktKPjx95OLrBJJ5xm+LSlQCaEQJT0RSHUYUjsSdnu4msXcyv4XROAvZ5nd0ARf+9lki3KjAvMQrBojYt5EGnZuZ+sn3rPIrfPYf1NHgXiR6DwQteXeaUFYdBoNb/85S87nreytrqyslKuVTudLlTFvJC1jyLYsgF8B2w8F505+9odt936t37iJx568MHPf+EvGpsbH//4x3/5l3+5Wq0CpcCmZApwUTcRpIDRu2PsQ1YqOltg2u2G6q3jdIoYBI6d5ZTxQpygXX4vxzIE9lkQoygIJwH9wCHZZd8PXJrsXc93eM9RQo8PfDfwu5aJdlmj0WzVbdMyzW4YeJbVdW1TVZUDB/dfd8MNI0evDm3OcQN2q3KW6ZnWt//q67/1G58eHTaAeopEaloptou+pp4rWJYtJPgcjPzAh24bC3eIjk+LNS19FLiz5Id1crO5Imo8SamIGmOkByjwkH2nBILJJDDYJuZDIvonyoq9iT3NPdiiz9gFqVsLy9VjdAzpCaK+mzi0ZHH5LAHYDoHOxJlp8T6zNITbEwB2U1DxmBUg2CPJZ8vplWUQWSYtw0xbtjWft5WWsty5+IT2L0bbEobsExEIiF1ez/YoMvMVR5prbwYRzxTo6VffcJRBgHqHwpxT43dnov843A+Zb0Kmbp2pMWyDDOFESTKri8eXOekeUIbFeCeZ0JAPmc44myJ7X816QwlhdNvix1RUMsef+WuGExxTAvweTwCersnvZlxDEmVB04AlCXTigh0mX3QUNJZi/u7eTd7eZ3djiuBHEfW09w3JJMVSNCZtmU0AOh1zaGjI87xut2tAEjFqtxpRFBUKOUHgNV3J5XRd1w0VJVvV0O+65+6O7ZTL5ZkDh/Rcsd5s2W6g5wtbjdbSynK7280V8rKqWK6lKEqxWlurtxGrEYwnwBKJ9VLTtMgPBFSxegkohOjJrTYlsrKIX6HnEkIGYF7SHID9omQRjZfMHrQuc7nTpZRd+szo2uU894HtOK6g6H4Yy/anng8o+3GRJiJErnfqiqzpqv7SKy898O1vn3/13Ojo6MzBA5/61KcMIx9yQde1DEVrmk3DMGQiim2trRdyeUWSvvm1r3zlv33WbNWDICgUCoU8kOsSHD8ls9MFIp9MzxmiiYIM33JMINoVBaF8LsdcZhhgMdWx6akNcJHgu4WcbhTycKqKkMA0O+1Otzs2MSmpqPqLkoLesYf+DDDNvOhCt8i2XAfSnKJMCQXkR/0YUgnkveU6rmW7jqVifg7JaZh6DmglqLKkSqpSLpeHh0drtRoDSPjoc/tdx7YDb3OjvrS8YHZt3VALuaIkCZtrm8Vi3nX9+fnZVqOtgPIqmO2OKslcgFY69Wqp7omaQVQoFBEQiZIgCZqm54v5Uqms53LF6mC+UELhv1hkwI80O9p9ThXlKB4sySCh28eiTkj//J6ZHnYMnn5DveStPOdH/g+XAOwFiN89AUB17U1UOHYe0V413j1nm+AHLBX9ewEi2PexdqKsCbUN8sSg1JdZusZrLWXYHBBSBBlijLzkNwauKyqK7zjtdntlZeXZZ5/9zne+88ILL2zW637gliuVEydO3HfffXfdddfMzEyBgn7HAe+WGDXkbhgEzAyu3mqWKxVRgJspcmBaD1zXNQy9vrGhadr8/Px//a//9bnnnpNEdDtrtdr1N95w+213Ts/sxxDSNV6QPHIqpAoEKpGscxoAzx3qumHbluf5IbwvIPUb+GEkgA5CUG5AQZIoBR8USZU0gUejkM/WRMLFxb1NNvUlIy9lPyXNzzgNYKMl6oM4QuSYaSL0uvJJcY4FQvEwYP+TEOKzFfd4XMX/uyMliFeTPRIAYUdAHwAO1/e924d3DDPr+5a3vsVAOhpmAqrvgucHpm395m//tiAIuULBdOx6o+G6rh9GmqZxId/pdKyuSb7LMipNxCQXBVRkPv1//YEg8F/43Oe//Jdf/OiHPvxjP/Zj8UnLTgKihIHNoMI9IEb8Ayl8f+uY0R+uI4eomd3BtJjT/5DNGUImoheTUwq4J1CE9oQwCDstiSDpyFpRfEMZLgg8VZPZNwSBF0a+KPK6rotaMZAMx4sMRYWhsuNynP/C44//6Z98ZmujTl00PuJlUdZFWfN8zrIsWYMvSmxlGE+oCi+JCKAxZGWWHjBJ3BSbnu2Zxycu8LIJQA9bz5b/DIuACbVn/ZdYwTQOJJKz15swaRyyg2QdhmSupvsxMaLZBsXZFl9lmwDZdSGbD3CZC9eL/nuP/WqQmUpKHzmYk7e9uLPz0LclyhVZsNBOh+C0I7E92N6l1tz7Ipg/o0+5ewKwaxbB33R8P/tdmVcz+40nu15FFj313gH1dpoUxLdVMkhDIdsHSSe6pFIl9oBilCkSx6A3nSYl//h4MtWy+CtiUSoWxWcZ2Vmtz+RkRQJV4pNkIMTriYBlD9/GEgP28WygkLr8Zn9wYhjcuww7z/6bqD5RApD8NTs3ExYpfp4tTgiSbdukKcl7tiOKYi6ni6JYb2zm8/lyuTQwMDAxMXHwwP7p6elSubywvLS0vLq6utbumG3TandMTpD1fKFjmdXaYHVwQM8ZyM7p1wQhlytXHR/FbCAaIiBDBEFAAkD8yywVJtV5J7VKekYEAAWGOsACSTzWxdgnni2EAmRJszdwWjnbNQHIkiN3Dt9d7gqOM9udXC6HlSOhQ6Qwz263WygUVEV98qknv/CFLzQareNHjn7wve+5+vhVIRfpqr7e2JRVydANxwUeRpFEz3GWFxcPTO9rNpv/7rd++9VTz5tb64PE3JJl6CMBUh8AD8CERBXUvEm7U1ZQvgqDgYGqB619jCLf9x0H+j/szWlMy1IsBulRYJZFXRff5wXE8YqmcqLA5DIJ8+N0Op0gIoKpoq2vr4uCDHFFpv0K1iJQmRAWYC0mZrfElNjCIAo8gYtkVYMOT7FYKBQUTRNFuVqtAneEGhv9dkXR9ZxsaJwkFkrFfK4oSrymGqVyQQSIhapigXvl4pUXX3x+9vJcxAU5o4BmVAjfZ6CeRF5RNFmTNc2QVUlRdVmT0c7OaXjUVU0zRFkm1gb102nz0Z1A3rlNRzlZSzjX312Wl/ybe3N0r8eaiFX35Qx7k66CvTyj99j2SgD2mAdYAvDW3x/TDN/6+2Me0m43y+77R2UV9XtwykUJ5sYk7Bsv50xjjYtItEoAhyHiHctiTkmyLLvANnQsy/rWt7719NNPP/vss6urq74P3PaJEyeuvf76d737vpkDB6anp3dXvGRWDKxWx6yhZNlxTM/zAOARxCCBgrCj+s63vvG5z31uZWUlDMNyuXzixIn/6ZOfGp0YHxgYBiXAsVHRRC831DTN8T3HcR2EkgFIppAh5epbTcvuhgGHiIoTbddyg5CkYaRIgKQEdYIJLkqa6ZjPEPYz4Sw0LVnhn5pbtDaJBH1MXse0l86Q/QkA1fPYNaXQh3RSkD6wM5GoSyVrf7bqn7nuO0A49KYdmUD8PLbB3mX8pDiBFKRKnurJce1sP/TGYfY76Gb8IXIA0uEmzz3gvzFLm5bd6rT/4+//frFYnF9ctD23WCq5LiYi07Q1RcfgJLOIMEDZy4NTR2Bb3Xe/813/8B/+A3B6Hefrf/VV17I/9rGP8WTSzEJbFoZCZ4ZAPf9jEgB2v6cJALhGSegfNxBjjkH8f66bhlgkh0dpthBx3TYlgAInCxzaJpDu50LeCyUMZkkG9Mh3OE1rXrr08Hcf/Iv/35/7Xmho+TAS2x1L1XPFUs2hBho7HBbbUIbh+REgQ1SkiyvrBNyII6ttoNl4AwcAc0VWIB8bdtOnmcPKl3HPIan/xr7HyZXoq83HCUDaBEjhqPgszGR2hOPA7mdUfbIl9lQndOcSwPVfuAyeZRda5q7EM+oA9JGGt31w53dhKunfyc73Z2vrLAF48w5AL3DaOwHY6yejEtmXELAkJW1J7EgAUqumbQmAGMv97JIAMCm0pKAbfx1g0HHoT20UgXSXCXnJYEcM+xl/jk13GDOwgM3Ee8xqMon7+85pL0vLPGEMRabKRtNCIvqZSMnH12VbayYeVdkMOJtxppqpGQe4bVs24MgelbQHBrfvyOnUJmMOai2KimWm7bU52FmEluvUypVjV191y403TUxPCVy4uLj41a9947UzZxqt5tjEeD5XNB1XktVSZcB2vcuXZ+cWlnw+Av81ivbN7L/2uhOVWs20nXzX5sjNmqHMJQU3tOsihE36bkQGEjGHi9A+C8nlmwWzghih1s5B71/y+AC5H51ypohPUG4ogqVtBJK0iRfMnjRqJv3rXc4dVgnbhWvpzcVKWeIFzwtc15YkRVXVIAhs2ywXqxzHPfLII9/85jfr9fott9zyjne8c//UNAD3gatqhu2a1XLZ9W2IRIQQClldb9hdc9/kxF997ev/7rdIXUER90/vM1SsKN0uyFvgI8pAPhQIJ8OAJexEsUHe7XZdMhRLE558HtV9FuOmQpzxtEvjX5AUWSGvXT9oO67XAVBnZGzCdoNGx+x2u6CqypJlW6a5OTEx5ZEgnev7cBvTDL0EwA/EH/yQ9Qpcl8DNrM5Kzke2F5pts2654kZdAFqUb7VaIyNjBw8fPnTi+Pj4uF4osPvLR0kZvFU/cm3bbbuB6DocH64srz32+COnX341l9MP7D9YqZSo6xNxka+IwFmx9gKYA/m8ruu5YkFiRmZJBOxzqDArouyEATyholARIcavKrqi8LZlQgWPpkCQjmnqJAOZvkByJ4M//WfS5qZmbpIVpO/cFQJENdUkENrjfuwbgfEss+sdvMdtjf7iWw6YUAV46ztn37DLffEmG8Zcsnb65M2cQGVQfQ9JzJdUaBXP89qddiFfUg1D8f1Op/P8889/k7bXXjvHcVytVpqZmbn33nvvuOOOW2+9dWZmRlQU17MVWQlC3AiwTcjlIjJtqFQqAOITZTwe/OxUBtDqUVUtggNenCqLonT27Nk///M/f+nF53O53MTERLlcvueee+5+29t1Iy+K8laziQwh4iUVxJIo4haWVgH9QBocWY5vmrhxbNfJGzlUW/2oa5moR/PkOx5wnmez5wj9e5w0TuQCREOJYi9jNwHwBy9pygoiAZKNIlJuEZawccRP0GAWysfNYroi8XVlis+Y+yjco1EH83OGtCbA6u5XLnHly0YqMRuq90o8wFBpJi/FnUkEUwFM8PikTYhicdx4YFKnGbz+riCZ+G754WRJGSKEobzYQsAqIG3yRalUKgzrwRagQqHQarQ9UKkg5kl469AwNEPTHdv4iZ/4CdsEdL5Sq33kIx/5yy9+CUJbrEOVllcTYQxo7f9NbD8wo85uOIdpgyW2o4rloiLCMibS4JiYEAfxHK/kofYDRDLScqoEEishP8D5aBdHXiAE5BgTodwTcABWhij9CEIki6JSGh2/6eY7vvFXDzQ2G1ouXy4NrG3UbdfrWFa90dBUlUX5KYQGpZOA3LVIvBOGWzHdnapGaXTT34zsZarxFueBSR+rt/WFzkkkkyqEs1Stb7AnRdv+iH2XS7BrJL3tPXvVZFOZzmj7Z7NqRX0dhvSHZBjGgF7vGu5n48BsLAekc/9hp6H8bvM2NdITAMib2B30srVMOJrd9oIYxR0ABnRPkrYM75tB1HvXAfC7HRkJoet6tnC9NACvSD30WOz9lh4TSwcTYcEY6gelnlivg3qviS8pQ9SBLJSQGGiacxkHoF8DlP6d6Mtn+jXk60XHF/NgqAMQlwUY8ZlNTMwJgZ5n/AFiKA69n2EKY0Y83/vGvRKAXcv/qFySH2F/7b/3nrT2n3wkFBVZz6EP7vv+1OS+VqvFRdHtd9zx/ve9z7SsxYWFi5cu2aYzNTV11VVXTUyNzxw8oOdzhp7nIdiC6k7AcZbj6Kq60mi89tpr33vk+w8+9N1Lly4OjgwfPXqsWhusDQ4Xi8WYA6driCY5jmUCggR8r8BLvMhJQP7zMk3WcuwbhdlEAacVUvU8H8kxBIgxb/ADZIX66azqn7AD0vO2rfPTcwbYcUNmz3O2XSBwvK6qUchbdpe4UAjWXdf9zGc+8/rrr3c6neuuu+6uu+6anp6uVquVUlHiuE63KcmqHwAIkddzK+srAsd3O51iMS+E0b/+V//yy1/8y4MH9hdzRQOyl1FOgd4lTCtzRqlUkiTJdWEFxfIZx0G4z6ojnu8YquIHHos42ZzLMisGuFeSXcVOwBw3u7jMAhf0doxCpVZlqUW73Y2iyCERe9qB5jhOq9XyPA8M3TyaHlEUWabd6qIi2263af2nqYqhJwkRIcqSns9VK7VKpVIulyuVSqlSzeVytYEB3w8tyzJNM0YT8XgzWNXgxUI6PfACURJURZMVydAM3/cMVc/ljG7XrNe38vnC9MS4bbeYgwG7IoiWkhSXeplQ0ogrRkjmBZFTUXSnPFzE4AR+y/HcnG4wKjxutOQRhGlFS1Ha2ZsrJYGlDWWWrKZ2BNse94Lc7BUx/8BI+v9OoPAm708qvm/p/VS87SU2b6EPIAhBxIp/rByYhuPsAnEc12w1HccpFAq6pkdcdOa11y9cuPDEE088/PDDp069ynHcLbdcf/vtt992223Hjx8/ePAgSW0yuT7Oc13K3eJvl8hym0whgNBDW4y6Z6jegSwC3xLHsYxCjuNQmzBI6mdpafGJJ5743Oc+x2oQPM+Pjo6++93vvvPOO/Vc3vM5WUXrDC7mFvByjUaj1WnzvOh6nuU6tm274AAzLDNX39jMFXO6oruBy/OintNkWfUCF5VsSjNZAhALSoDCRiwE6m+STguzWaTbmVF9qDjNWp1UUcvom4kcuqCUAEhU/I9RQ0mHM8ZAYpqnb2eaWdQJSUjA/SUPFIx64hx9pfe+rDL5FDD9mQ52uk4xBHO/UAWrOLP4LxbL3Ynj3zF+gDL/oRIAPxAJ9w+rDWpURhw6pV/84pdfOHWqVCm7rttqtfOlommamBv9oN1uuzYAYxKUKjyR51RV/dl/9A+OH7/Kc0xZ1ax2Sy8UXn35xUKhMD09zYkimbaT16QoRhwPITvI7/4NdAB+6I0Rq2OIBaumI/qIqcakaEtIc2aB2rt2yV3DABSMqNDL/cII0CAvwFjFmeEi3zYF35cMFdI8W5tf+sIXv/GNb81fmS+XKgJkrnRV0TqmlTd0F2rGqOjFTuRJJLpNAoiRfnGI8fnp6zIBKU21efw/fg5NGkIEv5oEKcBip2zoz+oZ2dYu4/fHwWdm7iKLAmQHrI2frfRvCwa2VcHTF3dF4/Rq03t0gPkMiD37/r06AET+7wtR3iQBSPtpu5b/d/6T6u/bxXh2nc/jc8hFCLh2Wy/2TABuufpAmgCkUX4v1UguT/LzmHHpNlhtCtDJ8gySE0fCp2kjOwUjwvA56SSkjQcGVehlUclEmUX/Z1FABLETIdu1g/ILgcLYegb2q/E0lwz1JAFIGNxQW6KAO1EJiC9bwgmOMz9WpKJfuWsC8CYdgD0zQnhp7JkAZHIb9qVREPmuZ4+MjKyvry/ML93/oR+55667T77w4trK6m233/Hud7/72LFjmmawMDTgohdfeqFrm2YXAj6SrEIvcmCoVK1JsmoU8jkVt5wdcY88+r3P/tf/9sADD1QqtYMHDx46dKhYhqA7rJsUFNU0A0AjQVLQLgdTH11vCvSRAyhUyU4TALZSMk6wCPlIBqLFj5HkGA60HQLEBmiWEBJ3tXZrje2BmeMjTlN0qwMIgY7URVtYmP/e977/1FNPdjqdAwcO3Hrrrddee+3wMPPo5WRJWFtZGBoY4ARBlZTFlcWR4cE33nhDkeRauXLyuWf+zf/5a82t+lVHj9lWt1wo1yplp9MqGLqiKBDAAR+GmYgBZhAbMNNUL8soq1NFihclXleNXMHQFF2UBVXWFE2GKRgHtlfHbHda3a7VAVCI5wbHx41czBaIiAPQbre73e7mxhbLFujckIuvgGbLwMCA69qWg+IQ65CqmqYo4P6SfI9q6PnYrgtkDw2XHhKj6Fp4FBjRVZYVWUsA7WxlYo1nzo58iZdZ2d0HwxOoJyaprrKLLkkKw0Fyke2ZmiylZXoCXtGl4XgHpDdKqNEpkFIlvoC+kYIRXkKOisKo47uk6xWJJCHKHilAwmXGe8AzDtPHMIqKuQLa6sRNY6/EOjRMqqXfmZVMbvr0oNIiBYG13moH4L97ArAdb/2D9w+8SmaG/IFHErgR4daAuQ+B5SUYHxe12x1q3ImGocuSsra++q1vffs73/n2y6demp+fN01v//6J99N27bXXDg4OMnVOiRr0IeUSLM3zQ4+1udBAaLc9zyuXSpqmA41GkovMFRiHAs0PT1JlBxiPSNPAazx9+pVvfOMbTz31lOM4DKU2MzPzsY997NCRw1wYlStDASdeXlg8ffr0uXPnFhYWFpdWFhYW1jbWu13Lg5sb7lBN08ExLxR0Qzt69Ojg0NDw0FAunwejRkb23rHMUqUcA2FJpSC94mDPA80fc2YII40Ak8JREj6mdBeCu+R1CPED9BTi2gYTS4b7jCRsSwCSuKdP1oKuyW6hPPtHFMnbLyaV0ZJK/jbFHYY1Zx4jfQlALxTu7Y69ScI6uFtsFO9t++oWC8u85Q3miUQcj3xQXSn9Q4FpdmHhT//0T4MInRnHcScnJ7e2tmzbNgyDdd6DwDfh3h1Ojk8cPDTz0Q9/tNGol0sFjhfa9S1N0zzfefnll6+//nqIRKEZg8lNkKS/2QRgr7tpz8IBCv3J/JOgIZgbMsUpmJ0IEsYunsAauZQ0AuzA5qSI40yzLcoCODNxXzySOBnqbYEji7IATL4JMBCz/vXc9tr65//iLx55+NFms205LhfxRqHIli2SeBFpHYZkBUOl6pqWiPD00DtYzsg6NQ5R4tMHlUUYgRFGn6CWSTlP5Ii130sA0kg3iZd61rbbEoAU/JNU2eOS7ja+bBaE3DeuMnr52yLsbTPhtgQg6i/L9vlZ7bH1XesM5HKvDkDfRxgudUfxfucA+5vlAGQpE30h081XzbAjzEb5/UeQzYTQAch8Pn1nEvj2PMLi9wchNG5TxGFyVphNLAv94jfHyEis8buoAKVY8KzNCgJ3OMmlOj89cdeUt47eW2rGjnidXY9EChdPqFgV2zVRPtDjAEAHNx1PWb4BWVIncXnm9b1k9VhNdGcToB9PmRkxiWxc//dGjmeHXGBZ1vXXX3/bbXecu3De7tof/uiPfuJHP2F7brPRnpubO336tVOnTl28eLnRqguyUK6WSsUa4DCKpuXQCnA8t1odmJyeHh4dKRbz45MT40O1esc6c+bML/+vv9RsNoOIGx4eHp+arNZqxUo5V8ijQEt9WRE0f9B/CfHP6xCbB/cfCyQF/jIlAOAC8XF/gFGK6QpGLAHIcgBijGxfsrd7ArCzA7D9roiE+mZ9cmJa4qXl9cW/+vo3H33s+522WSoXPvaRjx4+fHj//v2KojiWzfwNXM+aGB5yfHNxfqk2UJmdnX3umaevPn780IGD3/7GN//LZ/7E6poTI6M5Ta9WKzCH8T0xggQ4dMo8+GhhxlTwu0GDAKcNG9PNlNUYGkT0QmCLXdsz7W7ow55lbWVd0WRdNYCTB95eK+SKiqG3CcfMEAthGCqKoiq6IAg6axoIyAGY9rIiQYTItLuSJMgyZP9J7ppwk+TWxsYMEE4UjZEKtsTLEpi4VPF1Hd/xAQ1idwyFNnHewrRTIp6XVYUE2dDEoIwuXh7CMDQ0wHMR1TmOogD0Q2oraNbTcEBTiIXUkMY3DNbrR1oiAnlIlyAolcrk8S7JqpTT87mCYWg5SRF11eDQ0lZo2VNFWZBFhec5L/IiBgoCuhaUQtYZtNxuhM4UFicQW6OQuMixXnus5pA8hjzHlJfY8/QxkV37IbY302rcZYtVrX6IDsAeGKO9E4A9Kj27vR+WCB5JWVN4J4mKIHK25ZpWZ6A2xHHh5cuz333ogc9/7otPPPmY64TlSl5R5He9612f/OQnb7/99mqlGkAvGFGArum2Y1uWBfhOQjSkZE9wPWSnGCGM8hti+kJgxzSL0gMDqDDwfEfWFIEXO932t771rS996UurK2uDg4Osx3XddTecOHFiampqanLa890v/OVXPvOnn1tbhzAVLwpDQ0PDo+PFYlGUpVptgN2VnudtbtbnFxfm5uY2NzdR+wy9Qr4wc/DAzMzMyPjY8PBwtVbrdDrgCbA2HbXg2BlDJk98J5btEsoPCl/U8SPNA5ruiIMD2wgwqUnTjL0tdkvhkQCwtY7NaT1uAAy6Q1ZtjQlySe86BpH3DwaRkpPeuCVt0uQuiKVyk0d6DR2AsF+7Na6d0T8IJpcWVUgkm3Xmk/Ga7m0vadIfjgQMYzWCnFGKiAkBdzMN8a3GlqJoSysrr7/++vz8/MWLF9vttiiKvuvSWOIUSR4bG7v77rvvuPM2DhRhZA6dVjNfKLBRdOmNNwrFXLlchvY/TYTUbZCC0Edo9D8iASCAfK8AkUJkiKYAJiQlAADi0Z2LeAMqRgweFgaJiHlgyBqjaduhHflBJEYyD8VNWBMAIgEOMcT7Ap/zPWTUYbQ5P784N7++vj47O3f+jYuLi4uW5TSbzTD0QdaVSYMOptpB4MHtjtHWU2m++PhFpqsoZBMAckLBEuCRzkQseIM+Py8rqVgWhXjkCh/DZpJqZhL69wLl/so9farPPjPGzadQ8zQs3Hb+s8HxXgnArhcu6kG+d7+m2/rGvV31c67Sv+4V1jNruewOsx2GvzYHIIFL/PAJQKoClPlDmJItdnYAQKTqFel7R9Yj0/Z5DYQySDnBtugfs71H8jdMUKcX6DPuSwwHSvoambyq/+hJIjUmOyanNb1ivQB6m0YQi93TMj8NTEROQMjE8qC9k+tnXMPCJOhncPd0/1CmTV/fIwHY1khKX2dyMb3z0rtimf2n38tHkgKr2EqxpOjG+Pj4/R/80O233+EH0eOPP/nssycfe+yx2flFj84trDr4QNGUVrcFPpCRKxRK5Uptamrf+ORUoVBgzTvD0IdGhvftm9q/f//QwGBJl//wTz77J3/8mc361vjkxNDoyMDgYG1o0MjleQX9ACxlCCWhXS/ynKGg5E9FPoEVhBUiKGuAscPXFisi1QZiwy8iuab4n3QhlGgoZDs/7Hl6frYN391Z85FQNqqXrlx+5plnTp58dn5+vlgs3n777UAk75tiqAPHcbgQJFeMcD7otrfGR0Y7ZvvpJ5/K5fTP/8Vf/NOf/yfnz577p//k5/ZP7ysauWIuXymXgKH3fJGD6KrruqHnCzIYujp8v3QJvk9yyAGiY5roPzDakh9G6L0gDGUmWvgvr+e1nDZYHRThnatAdgYymR7QqzJcG2NtcstybbRxIPLjus1m0+pYngc9Vi6MbMflwkhSZB8QtjRHhbwpK5n4XsDimBiaKQgKZWnVwQEouSBFMYDWoMWYcNCE4UdIHQWQgCXOABI2eMAxKDZT6WHfJAhCp9PxHar7UpgV+gF0/SsVLANMX4iIzpC4c92VlRXHsjudjuM4LOWghQ28c4asY3kCiyZZXyKFqLKNdT9yxZwEAJKeLxZKhWKukM/phqTI+6amFU3NGzkjnzM0XSQGJu2b4eigshEFYRAhxA+pVbprBwAzTxLqZB937Rj8kNE/jVKCOO41P/xNJQB71b12bIIUKswYlSrlIGVubW1tbGx86Utfevzxx5977rlOp1MoFKampnAf3Xbze97znmK5qKua7Tqe48qqoikqx/Gm2SX9KRkEGg8AZ5EySsvq5gjJ4wcYxqghsC4Bsx9Km8cUEXAi5zqmomkrq8tf+cpXvv/973c6nZyRJ5na6Oabb33nO9954pprVldX/8t/+S9f+crXNputgeGpw8evuuv2O6++9sTQ0LCiIf1QqHsAhBlF1SS5QpzJMDr5wvPf/OZfwThsecn3PEmW9x+Yueqqq/YfPMBw5+hs0eTARiBpHmMQyjIxdmQRQjQCdLuB8CFjCcoM8EzmeQVs4nhyizXQqF6QTQCY6SHzEibyYr9bTl8CsL0JsMNPYC8UEDsBCOiBBMy8OQ39M6M3TqRJF8in4lnSiN4hNBT1B9DbjL1+4MZcWpi5ISVWcYXesqxisRREEROc9aJgbW1ta2vrpRdfbDbrqqoeO3L0yJEjECGgklIYeKIotRr1YrkcOI6oqr5th2G4vLI4MDCQKxSoGxigJcVLsffO/+MJQAynYrEcC2Moy2NPWK+VgI0peDgNWnqurEQagOEgCwrAZqfPQs8hDHgBkvt+6AhhoEpi6HuR54qyzPkuJyugFKOlILudzuLicr1ev3DhwsrKyuWLlxYW5zrNVkQYPCzkkMLCyMQawBh7jJIuUPGKjZxMhyqMticAYFkInKLGbPhY9TKbACRAoKS4vL2QnxT6Sb+VAq/4bGdiOZgxbE8Y4vVoZzz9JlX2bQiiaEcCkMX87Ay1e3vYAwC31/TLCkzZA8se8H/XDsDuB3bd4cnMWGVb7xBTEnAaoFOdrO/FrN9b+lIi+xgiCEm8G5KAPvPxTOeBLb3pASSLX3wk2UA57QZEPCr3MTKHXafkerBQPg7c43omoD6M2sWg/MzDg0H/2YBLBEaSnaTVfdILSuQ4mVJQb0Zh30m/QsiohvZtDOq9Sw7Qw00l1zURJIW4pI3b3jAM0uIPjJzmc2GuaNxw3fUf+OCPXH311QsLi9/59oNPP3fy1Vdfb7W7sqxEIe950Mwm9F6IkjOItrjNgyBCbiAIqmZUKpX9+/ffddddo2PD6+trPM/v3z9dq9WuveZqDd1A8X//1V/9kz/545HJiWuuvX5kfEzV9PJgLQw4QZVzuRx4ALIKqR9c4khl1X/KAVgCQAsiT9yAuGxMLsHM8CHeGDqWDU1wCwjxv+0GS/pCcbaQCg6wWiOkIRIVERZxP/n4M4899thrr702NjZ25513njhxYnx0pFQqubap67pAYHFyBlUlSIu4haI2O3dxfXWt3Ww9+v3v//Tf+ymz0/rRj3x0emxifGyslM9HrLeINmek63rgBhDtUVUjlwOXNwo7nU7XggZ+p9uFMroGDLQXQD5V1Y1ybUSUFUON/5NUSRZkUtzgG238Zzr4b6uJ/9pmu91tumQEhiScgAdkuwbFT7Y00s8MfCJshXwoq3LXhoTr0NBQpVzVDH1oaGhsbCyXK6C5rqo5AhRpOUNXVEEWKqWCRTo/sgxsg+0ix4h4qPbQ5Ac8LqoUNNRBXZCkjmW6rqsoyuLcfKVSYbXbUrGYUhdYvZ85gimKatm2aZqO4zARB2YUgEvW6bLBzK748ODQ2PSk7fksW2KX2/M80zRtG6kCJT+uaZqdTofhoBzP3tracAPInnYs0+p0cWwWPFxDeEUCgCHIkqFq1EvIyZq6f2pa0bVKsVQZqA1Wa+VatZQvKLqW1w1OEGQUTSDQQiwESChR2gC3Ni8EQh18RAK4Mu8IeFTRt/CSqEpwvccSvpsFDFOs3zFfhynuMV1merUDarKlHWrWrGfhcjqVpfeFpmhkjxMjbdJ6myyCrRuGiCw1WRM4wQMU39UV3fGh6KUKqs/57U5bEISiUTSbpmHkFVlpd9onT578xje+8eijj165csWyrHK5fPz48Xvvvfcd73jH1VdfTSUDpIWMjxVb8SUCDbs+pkSvvqUxng+l9fW1gUqVlySz3dZ1nRelbqueKxgLC/N/8fkvPP74461WK5/PT0xNy7J8//335/LF1dXVhx566Nlnny2USx94//33vuMdR66+0ceyyrU6zcWF5Svzc+02CACgx9DJkclMY2xs7NChQ5Mj1a4faRKk185duPTd737369/4q9OnTweOUxsevv/++8FooS3mQkiiYughvM+RMxPqTVSAYCNYv4SkOu4JEJNBEXjIWlFKQKE/1fspB0gTgJ41CqntU/ASQybijjeT4wwCTdaYC7Ub37CyRDa0tgv8NwMEBuB+ChJ07mEsE+dRhMfDAhWFAh8FbsxBCji03XCciuq5Pqya4hmVeZQwaAq0A9gMQMkJRjjpKLiKrkmCBC4OBaIRF3m+rYIL/UNA5nYLoDOpSJyWCLskzEzHM+HCJfHA9m+ZvXIpiqJ9Bw5yHNdtt3K5XEBw070SAOx2twTgzYFzb3GjwIhJh+yAde3h4dDntNDbtp3hpJpJIAjmZiDg3NH0QjpLuCVS1kD223mBs6x2o7G8vHjpwsXTp0+/+sorC3OzkR/IsMRWNXIuZ3kmuqh8RGLfhIygqjzT/zMtLBwsahJFmSZRzFq6Hqv0xH5PKZsxec7mu97cGOv6Ux2KEeeo9BSr+vQj7LP15W3btqJ7dsLcdjV3Jg9c5k9poLwNrJGdpXcEv2+WUWw7ABhl7vp6xvG394SMEfsQ9ZnD2Pl+TLZI5LbT3noF/Z3njRmBvUkCsO3nQYUg8XXLnoPUYDlNAOL0JaImUuLgkFR8YzIHw77F4SD9L0HCk51kKsHpEM6e9IjnIBfM9/9aahgxg7oMZyPuCqE21av9x3VTKlDFRmP9nGCi42M6Jax/nGngDWkCgEQ5M1fg5/4wEKBt5thpAmDbrpHP87zAhDihnO36pm3dec8d93/oR2666eaLFy9+8xvffurZZ2Zn5ze3GgMDQ6Zlq6oekTA8KUKGnudVB8sRz8mSKoqy4wBQ7tikHETxiiRJt91+yzve8Q7XdTqd1qGDB2emp44cOVIolzSR/9q3v/u3PvUT+w4fqQ0PHTt+VW1wIOKBF88VC6ikhrxuqDoKYrxK5TGStUGFD2QAiJVJMpXIgDBIEgC6weIgniUAbNsrAdBVjQWR27y4aRlTOp1Oq9WqVquGYVD48s1nnzw5Ojx21dXHrr322sOHDw8NDRiaDkSo59u2RY1jgB0935F4QdfVrfr6+Tde39rYfOqJJ2656eYPffD+E1cf3z+9b2xoWFdUz3PDIMjlcqIo2mbX98NSqYSSvyTbtlVvNC3blCVFM7R8vhAJXKFQrA3WdM3wkK+FoqzYHud6EWPlNhqNer3earVs2wbOKqE3sfsT3m3FfL6gC7KQ03TV0HUFMTrTQi4WizwPOnXs1VUswxEspxXKRRXGuqrnea1W23YdwyBqsqjIeBnMDaB9aAsCz7G6cXeR7AsgxBlFrh+osuKQXpAgSTldF0ipHXabUTgwUF1eXpUkoVQoCyK3urI+PDI4OjTKaNsBdEVx3ZFhRqHZdQRZ0mRFVGSo+qAMie9zfEeVVJ7j1jfh9Fmr1oIwWFpb14pF03Vc2/YgC0Z3fhR5QaBDyEhQ4bmJlJJwsbhVdEmFUCP1t2hJisnBZqdr2lar0dzY2tza2Kw3G2an63julUuX/TAGX5kdq2t1HMv1AreQK8qqlDcKpUpxoDpYG6xWyzVdVydGxwrF/GBtoFKr5vUcHItC9EPI1CZmDoQ++UYBsx4AQC9RVRhEUNx0rM+wrW9AAEU2raAdyoQNmIgEe9Q0A514Yo+TRy3P/LYpQEltD8XUmKbbsQjPpSqqJAoyevLkQeE6GAAyp4ac3zFNP3B1LafLqunaqiL7QWhaHVXRDXK/Nu1OQSs9/ezTX/vLrz38yMOzl2a90KuWquVa+e/+7b97/U3X33HrHVBmC8KN+oYiKoVywfe9H9hV75v3YlxmZsmhR1LQ0jrNZi6X4yWp3Wigb6PJ66tLv/Zrv/b62bO+7w8ODu7bNyNI4omrr52dn3viiae63e77P/jBD3/4I2NjY5gEVP2181dm5xYuXboEbAOPwryiaCjkUzcDoGrXZfedbTuCwN94803jU+MHDx7E94qCxnOvXbj4ta997Qtf+MLCmTPv/MhHpvbtk0VRz+XGRkZM1wE6RwT2WiaBc2T1kgi5X+p5stcp+qe7SeA0XmCalWzeI/ovPohGKIF/er4otAUcfHWYXVg2ARAFQF+gLiBJuqZTGTiyPUcQlYjnFV6CbgzHdx3Ld9yQ53IaHNkTkBsq+mwuVSUFa1imfOZ7HvKQNCBIqrOUwvqeZ2k6fiKLCdzAgxgA6sKx2rVPayap2VItL3L+7ycA2yBJsX4mgw0nNJjMEt8zWtmZAGxurC0uLl5z/Q0RCcgqmuYzmeb/LyQACeE2toHrPTKR1t5jD5oFKT7KwcllIhTZ+cGMSIHmzgSABaAEv+b8wOm0G/V6p9V8+dSpSxcunnn1tfU1aGDoMLiUQJQXoRzBsk2mzslatZ6LniEr1bNiBzO19H3w++Ofnwn6WYawawIQR3+sXYC1PjZupxMSq4b3Iua9E4CdUfLOBGBn9B/1JwBpoXb3aC15284EoHfRd7x5Zwdgl6Gya4fhLSQA2eP56yQAV8+MsgPIvJg5xB3d6tTJiyWT6RFkgV9pBA8wD2TQ4jekAGIkA9SbjaEgvQ9yBFBDK6pn9kY7jgUWUw/F9Iwn8XYW5MMWmLi6nxT/aTgISBj6OwOUBhDZnPgAyd/A5ow4hF8kw9XbR4xIy/rC93kR7C43tldmyZyPk7NN1rPMdBOhVeC6Xq6QV2St2Wzu2zfzwR/5wP0f+fCrZ1998IGHHnzwwXPnzvt+mMsXNd1otFtBECmqriiahwQaGAzUd0PckLIs63oO7XpFA95c08689nqxWHQcq7G5Njg6+r73vfeq40dNs1PI6bfffnvE81cdO+Zz3KOPPf6xT/zYHW+7pzY4ND4xoeVyEccZhWLEYyKolIoiz8kEKZGAT0ejHFATsghDS53BagksKwtUR81sSR2MoD6U8adwL5YQstfTGj+rtLFTxUD8uq5rmjY3N/e9733vmWeeWVtZnxqfuvvut9111x0DAwNsEoyC0HGtaqls21boB4qKKjxqDSg1eM8++8zq2vLcldnQ83/if/rxH/vYxwfhj1BzHatWrqCW73kyoX0q5fLAwIBtOevr66vrG0HgVSq1oaGBYrEsyKi/tLutTgcF60ajtba51u1aEScsrm0xAK4so3NSKpWKxSI8XAhvAJteAsd7noc5VBREKfR8B+kDyjkskoBIi4mOBzBHjJUYBOTkEoaCIlkO6uWkjF5h6or1ZrNUqpC9gKGTVNHAwMDQ0FCxmIcPggb59q1NuO0AQpPLRbxQ39xUcTKhveM5LidAsVEV1dXGeqlUEHgpjPxL5y9hklf1YjHfaXXp2PMY1xAyREIYAkukSJLK3D7JyCYWlWf6D6oM2C5VMUHDkDV1aWvTdB2wMsKAwZBEgPpAdQcuFg1wzB/IvSnQpwSZuRnG4XgaZLNAXFYVFo6zz4q8EESh7wau77i2Z7sWRFlDb2Nts2t1tjbqK2vLayvrG1vr7WbHcaxup4WzGnGyppYLxYHhoeGBwVyxMDO9L1csDA8MDgwPVUtlVdcZA0FCiR1q9Y7vsf5AvDB7Piei9Js+st4poEcB+gth5HORgH6QpIoSj7ScQnymb4Z2BKGAqRQXJwyEVAQpKYoCXc+x5IGq8lg6KYgU8noOfRHLEQQuny9qioISsms7jqdpClRuQl9VdD9wT59+7eTJk7//e/9xdXW1tdUuVPI333jze9//3ve9531HjxzlAR6HLo8f+uw84j+e9wIkAG8BXERvIAWGXRMAhg0zjJxJzOBStWq12hcuXPiPv/973W53fn7++uuvHxgeWlpa0XR9cXFZzxn3f/BH7nn7vXrOsEyn0Wg899zzDz/62MLKmukic2WTBGs3EQQORhm5XJ6pXQ0MDIyOjtYGa3ML85EADd+pqal3v/vd4yNDthdosji7sPTHf/zHn/7DP7z2phtvvP6GweGhlaXlgZFhHswpVVc1Rr+XZEHDzArmkyQJKjl/sHCfOqC8jrYnEvW08MESAIUCIBiqUeGDHql4lOjg9RZQau5JDOyfOV3QssD74dEahoHtOFwUgfEvqFTqxbhAtkX3Aq23tI4EEBKIAkgUQHcjQVt5ZJXI2FmUShDmJK4+YaQFYG4EkcDrGhBctmuTvbcgKqpAal0EIA2hD0DB9bZhsGcCkI17+yB0PeATC0eSv8VNsx1Qjd1HnefaL7744rHjx6lMA75TwKLJPXwA/rsnALvQhHbsOUkGoDqVBu59Eqx7aTEJAR/rNpGAA8PsMB3IDBQh+/uoiZSYEzM9k5DzHM7zOZ4Luubs3OXTL7/yyisvzV2eazbrgixBI4sggmToAzAexLsk0qn2fcA76Fwhdg+CfD6/rd7PoqaYD5YcSoJxjwn38WEyRRYGFuoj18YRIiG++7Dy289sEiWnkf22QDl9W2ouwPXj70UBFbHkeHpPtvUQer0CTLx9uceuaP7eP5NsdhvEaNeKPksAskj7bUebjf5jm5E9EoBtPgk/OAGIf0+/LQ4uZH8CkDmIbFuglwDIhFhL5aVYV5RuyNhKnSwVoajAXvd9jyjFmKzIUpoe6RW8jpZQIgxKj4i9tm9xNypNBtIcgAXrzOeLLRhU9qA0ILkXmP4UeSZRgov5I04kYiQRDc0sRyXF6Mff/qY6330zY3yB03/GZmQ8zxv54oULF8YnJ/P5/Pk3Ll533XX/4B/8owOHDn76M//5kccfO/X8ixzPVwaGBEm0TNsNQkmWQ14IfDTsKIATCvmSaXcFRSSXQexUElXUj1VDUZRysdRuN/P5vGl1rpx5Xa+WP/iBD9xww3WlAvyDx8fHR0bHJsYnJI77/Ne//jN/76euufXWo8evmpic9MKQTJ3UMAxrtUroeywBIBMrkraknjjQhBIPSXgyBScDk1gpLFvI357gseWJ5eJMeYZ61lnVdlYnkCSJlSKuXLny7W9/++mnn67Varfffuddd9w9OTZeLpdtx/RdBD0KUOwuF4S6oUZBaFldXVE1XVldXjl//o0rV67MzV4uF4rVSuVf/6v/813vfMfy4pLvuOOjY7KIkaAaeqVSsSyTSIRbQ4Mj1Wp1cHjIMAzTNNfX19fW1mKACqHbiSoNEnAR4XZJMfKqBhEewzBAaEu8wIrFYqvV6nZhd0/QArBvoZoQ2LICFzY4AYdhp202m822CQ1Qz4fGKPkiSYZhFAoFLQeV/cFhYH4GBwfL5UqhUBAoZdrcrLORyXSENjc31zc3zU5rbGjwxuuvP3HViYjcc7cadRyArpfypXqraVmOZuiVYpnnBMuzul1gM3IqIoCTp07+18/+aT6fv/7668fHx2em9xmGwVDj7OYh60rOcsAwo+e4XQTKc2K7A1lmPlMgUHLCytrK5flZrViielcEDKlAKkAIOlFZZyF+qt7DEgBYze/GpWEo9uwszKZ4RmvO+sCnEyLzYUjR3uyDvuu0O821ldWFpcWlhcW1jfV2s2U59tbGpuXYZqfrh4GuapVadXhwiKVzpVJpdHSUXQLWLOJ5Xlf0gEPnivmaxXY5VGIFi0dRUS+GmDd0i4LAl8GZYUsdzQukyRNFIXHpYwphmgaw7gF7naUBYGfJYGg4lk1nG2oxAaW5pG8W5bVCwPmWbV+5cvmhhx7+6le/curUS3bbLNZKN9100/3333/ffffNzMzIvOwEGJ8ycT9Y/sY4GOyswnIona5+UB+A6Fax2mDvRXr0fV/TdLvb1XI5zwZ7eH117Xd/93fb3RZDHwmC1Gi3zK596Mjhn/jU35qamipXBiJOeOSxR7761a+/dPqVbscCmyVnRCwzAQINbGN2WXlOJE1b0GZ4ns/n80NDQ7XB2v0f+qCehwXexYsXT506deTIkfvvv390ZEjkuK7jfeeb3/pffvqnxqamr7n+upnpfYNjI/VOV9JVTcG5lWBirWlKzAaWAAciSjtxANIEAMJomPfAVySTYGwK4W12SwAoryDNVQxRdJBxNmFjAnEFWSDLcJ9+l6rKXcsEAhPBPauFS77ndrvdUrlM7rpsdWbFWrjYy2oekTpp+yTpBUX8YH74FIEJ9JzqXUjmHaQQgkxuU2g7+A5sRoxcwQvhIkLNAT5AGwzIKIYd3zkk/m8mAFxf9E+p83ZkBbfX/l87fTqMouPHjzMCNsdLPvoY4v/zCQCLq3Zwh3ZnE8UcpKTFscfutgmzblNhyjItdxWLpYpjEHE+iTqgO0tGFJEfuh7oGaLESSLn+92tjcX5pbW1la/91dfb7Xar0bQdk6FSadeRpiue7ViWZdt2FISSJMCzUtFYgTutmTKwdM8IjF7vxcQ0LWcg3Bk+QB+2Pn1O++lHTe8ao6ffniUZZ8PrnrtY1I/V4fYQayHnivRtvdUk5b6mZkSZ792ZALCbJSlA9+yKt3EY0viZpv1dftq22n9chac+864JwK6+N/jUtYcm2G7fSgJANfgdNmlZ5+D+NICMbOKFORGYjQ+aRhJNSQIlAGkygJsWdT3mHssGCR07EzZLgoIEfypwUBnadoxsqGQSrPjiEcxHTM++TwkA8s6QEyRkfpQAIJ6JUb2cEICqGMtRpQlAOqwT1FB6rvkfmAD0zSwxhC8dWKCxRvRzux1renp6q9FYXFj+wAfu/2f/7J+trK3++m/8xuNPP0dyhzh1gNjIKg9aLWAeeq4Q8VwuX8ApkKXRodFmpynpBCTghAiCX6CWdlvAWBdyumVZfMRN75uURfGF55/lwvCd733nO9/19jAM7733Xtf3dC13ZOagy3G/8Mu/9JWvf23mwKGbb7lN0TVRlPIABEf5vIFiK0AajCEnqKjAxp4AosSrEhxhIWlGPpp02/QSANYQj+v9LMtPZEB7d1qEtj5b4FmrkQnIqKpar9cfeeSRb3zjG5ZlvZ22kZGxgeog9HlQ34oMTTM0VYTijR94jq6rfMR5jiUCWGWfPXv25ZdfXl1ZqVar0xOT58+98ZUvf/muO24v5gv1zfX11bV8Pu/7fqNVZ4I8lYHa5OTk0tIKIWJtFvGTEzNwwyMjI5JE6HNdZ9E8QkxFdlyfIdoZlCufz5dKJcMwwjBs0Mbg2mlnTBJ414PWJl6nEiYQHSrOANwci0XDMCSqo9P6HuUKeSqu96AOrg8GyOT0VLPZ3NpqwOuNJ9ESaDxw60tLZ86+VqvVPvW3//Z73vEe4kfC6ogZ9oUh17WtTrPl+F6pVKoWq27o1uubf/qnf3ry5MmZfft+9Ed/dHJycnh4WCIQsOvBsJMPiVOBGoMgiLLHKv9RiJQP2GcMcaoa4ou6bvexJ5547LHHDMO44dabB4dGIhCk8U7ofEcx/p7psGMuSB7ZK45jbZso2SMLVfvI5bERWN+8mYL1mW9DSiyJDSdRPobCad7I6TlDkUDsRqRDgKOQizzHbbSaq8srs/Nzi/ML9Xp9a3Oz0+k0Gg2Wy7Fic7FYRL25Vpuampqenh4aGmKJAReEBS3vwVPBcz3b91BbYGUO9E8oUY/IRE9WRNYZCFwvpizBNYno96LE85xpWpRSKSL5XjGqBaaFBNaIlBspAWuvh6dPv/bAA9/+1re+c/bs61ajI+e1W2657e677/yRD91fq1UGBgaQPFB6yYiwnU5H13VDBho+5EI3QImdOd1um8feJFQiX6HdOwCiKLbb7WKxFBLF/PHHH/+jP/y/NE1rNBrlctkL/Eajdffb3vbjP/7JkbFRRdGDMPqTz3zmC1/6crvdNvJFJGOmJYhiy7RMUh8C/QYSuBpr4jP1CpZ5BpQ54/jJdfqa607ceuutd955Z61We+SRR1555ZXx8fGf+ZmfEUVxa3PTdpwf/7Efu3zlyvvf9z43jGaOHZNI8Bbm6LKSy+uyjP0XCzkJBRUCuiUbBJHFkMmgEZA67nyKSQIAXnKSADCLbsi2xrLIVPXA2UHso0qSbXXCMDB0lSPzPvhAOTYme/QbkUkLosjJOheFXrcrKwpiOygTwbYPa4oHJbBAUCTFYOEvVirfJZ+piJclznNx00sC6sGhh1iQKP4celMUGkJ0kjr4iDVpUQuI84IUHd6xoiKjcLxbkfWHgABlycgZAjRtND+xYHdbzi/sHiDyfNSo15997rl3vetdMWFMUl3P2UsG9L93ArBLNX/vx4T2/Sbbjs8lFON0S43Sd5UoINYe0Y8TTRVcfcwaJNlodyOfdCZEnguAohKLxa35+RdffPH0y6cuX768sbbeatYdWMVYqH3kczzPo3/roWSgqprnk/A6bQEFKnGUnfQEEtw0TeCYzUjWOdFdpFcZDqJn1ZqJ1AlG3icz04eN2QkBygbW2VVjm7oo28iTjd8rAdgdAtQffG5LPHbeF1kn4OwxsAB91wQga8y1V2cjjqn+GglAVgUo2TIdvX4IEJUsgl0TgJSdkzmyWNKnnyRAATwfZVRfALNMPgV5lnQn6esAD1DlqQ9nRH7pLAHoX40o9KcwPbkq8bnDxQX3N8sHSKwACAjEuO0sAaAoH+A1NPTpnSzoZ3vGWt3jA6QNHXpltwQgvQB9hwrQBBzCkxdZTQhLbD5XnJ2dLRQrP//zP3///R/68pe//O9+59+vb9ZFVQ+iUFV0VdfgmdIxeVEwCvlqZWBoZFgQpYHhIYaeGh0d36xvmJ6NUe2jjBTBYTD0bBShlxbmeJ7vdlqe51YrJU1TVldXtxbmjt98/d/+O3+rWCxOTU2pulGtDOyfmI447p73vWdra+vmW26b3jcjSXK+VHRsD7VqQ0sTAEQtEKSEL1jGFCyxzIzXvfh3MixsZuzy2eubnijqIYhMa59F1Uwy4uWXX3700UdfeumlkZGRd77znbfffvvIyAiz6zFNM4qiXB4YepilIIQKy8W8ZXVlXlBVpdvunHvjzJkzZ9bX1wVOHBgY6NSbWxsbp19+5fy5N5r1zYMHDwIspCCbKdeqQ0NDER+StRZUnhzi5BULhcHBwWKxGAU4tuXlZaCPUcdFdYE577I7wsjpxXzByOckQXR9z+qatuvkdAPYSqiKSIHn267DRwjTG9DCAzQoXwR5V1JRYg+JtUwuEBgqqm4Ui/lKpabncl4QbiAGNSUJOCW2Rosivoh6C3qhUDAK8ATwvdB3XV3VqtXq2bNnv/K1r7Zb3Xvvvfeaa65xfK9arQVBoCp63igEXPDG+TdefPHFS5cu3XHHbXfffbciKJuNjddee61SqdRqtbHhESY5T8cWTwiMs8sLEnNfshybsQjaXeCizl+8GHLR3NzchcuXRkZG3v2e95w4cUKQxAb05rezmtjwyE79Kc+bdQB2neCyU2qaANg2QR2yVvPJ0aa7ZQ2oNA2DwQMIpAACAaBDMB1FlJgkX4QgT5I1VUcVX9JENYiQVzcajdXV1eXl5dXV1Xa7feXKlVartbGx0WoBU5TPA4tSKBSOHjpcq1QnJiampqaGh4dZYhCLtCLIQprj40Ihs/J9v1IqhSHyEgZuSUkj4KOzpCXDDOY4brA05EUgATOZptOnTz/00EPPP//8Y4895tu2Xihcf/3173rXu+66667Dhw9XKqUgClATJHUs5lfNzlvRKHadrmma6EYahq4Ahk49DVT030r0z6IZaYcRLfsAahCFYkhZ/fPPP//Zz352c32DeQ6eO3f+wKGDv/Irv7Jv5oBEMf0f/tGnP/0nnymXq7KibNTrSyvLnTbucU7grVaTM3SZcHExpBPoKp+w9+ikAcmmQEIXEboqr2+umXa3XC7v37//9ttv/+AHPyjL8ve/972LFy/+9E//9Ikjh60gnJub+7mf+7mlhcWjV109ODVpIOuGFK8mw9laVgCjKhWKqHdQByku/5P2sSKGrHLflwDAKhH4x20JAHwyecwY9ApxAOB2EfGcD/I3CfJgkHtOY2uz2+1ynCsFrmW2GJWI50WyN4BRoOeBJlQpVxVGfuCR9HOq4TkcL+kY1aEnwLUdaDRmd4rID7QoP3Asy+xyAUBT9a0N1ObIso0XcAKNQonLGX7bkgyDw3REbHn8EpnjpMADBmRnTv43nADEi2tGza9vN70EALI2qvzQgw/ceOONhUIB51bW/gd2AN5020bzzfz2PVXG+qv55CSQ/CvOBOIEgIc8+s69i4guWH2eNBpCD6zvyHcsu1gsCAqlmriDHF6GXUNrdQ3rmmHgXqs3zp87c+qFFy9dPH/5wvlOu9lttYPQ10DHA1PY9UPdKKUJAAVO4TYfgF0TgG0WruyvaQKQDZQpa94Ol995ZnetrGeXgP68oi8B2BUCtDMBiK1LE4B+zHVODvVvPAFIv30nvTj9VJKp7wqZ270qHTsB78oBSI6g70THnJbsOzMJQJ+HAL0BVzPJ2AjUkWQIGfmtTNYbMpmnfgswCgTJuiimhKQrOhdIAOLGghssZUgOQNzWSIr1OmPZwdgDOO0PQESEAnpmbME6A5gmI+iIJ/lAPBwT0nBfAsA6APjjbgnAThQa/Q9gq+z2jDsAuD2Q6nS61uHDh//xz/6T4eHh3/kPv/fwww+LgryyvlEbGm13O14QxidEVqf37zt05Mjg4FBtcKDd6Si61u12u5Y5PDy6uLJYqpRs12rWW41Gw7MBUMH07wfDA4OXLl2yzE6329naXK/VKsVc/uLsBUGA1skf/uEf8qKUy+WGhkaqA0PFcumb3/7Ov/t3v1MqV2+66SZNA/LE9wMtZyD2B6QBvXCFqMAaSf8wbQyWADAOAHNmzUpFpWS4tI0U/yHTB2BAoFTYxPf9hQVIen/ve99bXFycmpr65Cc/ef3119frqNPXajWmS6ApqpHToPUeBhLPqZoc+YFtm9T9CWavXHnpJVinkYlvqKn666+c1mRF4DmYzJvWG+fP7puahrcuD/aq43vNTjsIAqgJuT7ot+WyEHGtVgtcXg9hEwJ6uskQWaIlKgEsoAoS55OuTJQlg0Y8NK3hawsxVcCJFU0tF0vFMpoDvhcyFX+NHIz0nCGpJDMa8X4Es952p9tqNTsW4A25fHF4eHRkdFTXdc9Ds97xSZlHUlzX7Vro9oQhiUBpqiypnWaHE0WWupx/4+KDD333zJkzJOfflWS5Wh2YmJhggJaZmZmpqalXXnlJN9R8Pr+8uPSf//N/Xl1dRVoiiOPj4xAX0iBUwmJTmAV43vzKUjwtCGDRoM9GcerQ6EhtcODg4UNHjx8fHR3lRaHdbpumOTg4nA3xY6QpBa9s2oo1VhJVUOZ31qMtJnMoZK/6N3ajKTLYrtlJgG2sCZNCxpMpBc0lRtxktygiboq7PdcFnAnRnpz+FYUACx6lqalz2ilmSjJBEJimubW1tbKygsSg2Trz2mvtZpwY8DxfLBZZx2B6ehp+zLXaEG2VSoXM4HC3snOSCgSlCwZLMplAjQBJK8CN5q7Mb21tnTt37rnnnnv++ednZ2dd1wXX/7bb7rrrrre97W1I7FU19W2wvU4IvXHMfqRqm4NwEOQD0AmROTnkQsu1mNGyghsdbbS33gEgjHj/TMjWAlHEgfHCQw899K1vfavZbLYasBx+7bUzv/7r//bHP/nJbrdbqFS/+c1v/uzP/pyqGbliaXlpZX1zI+JFI5/jOMFybN+2C4NVo2DIsoqc07LQkdNyqhr/0+qCasKWj1wunyvkKgMl13eWlpZM02R26Xfeeefb7r7H87zPfvazH/3oR0+cOIHKSLd7/wc+ML+8csMdd41OTIyMjJAGroBcSENPVUPLS6CzKIMRQJxgSeRVmUsTADS/GPcJIrzkCMY0FhnDjTqjEq8IUYyNBD6WUBJg6jqWIkuKInuOOT936cqlS7BGVvmhkipGuAWI9N9pNnHSIOdluxMTExPjk5IkoVQRhtVqtTw0bowd4DgFFiaBi2shCJxvO1b38vk3Os1mp930XNtst1rtRuD5qizV8iX0K1QgGAvEI3L9wHLscnVoYGBAz+VtB1R1I58T9DwnSkGkBmjg828xAYiVTbNLZFb3Z/vSyfA/SQLA1D76jMyyY4rCmDASFOmNs2ds27766qsFQXCDUJEBWP0fkgAkCke7cSy36/wglInIVLFfSSuz9Z8fiP+gacjCMLLf7ksAYj5HllMRuCgNkIdPvEeqYePwfLCkLFHkVRSSosB3zU63UK6g/Ik2HTL/KPB923Jta+HK5VdePvXUE4+fO3fGsxwjpxmqJgiSi95tbNbLNiYDmtT+2VfG8Rsr8W4TccnW4NPwNa0vsyBuZ1F/JyJoZ2CdRYHuxQHgAcLaPQHYFQJE1J7el2YrUHtBgNLv7akX7pAxTRMACph3aW7sBQHaKwHYE6WZJADZVlX2uLfJgDIVi96ojb+gD6XUl68AaIPINisYjKYwA5UyyeHsZIFlDnUApghCrnKsLh43oLddyJCL3NQ4LG0ewdEQ9tgxCij7g2n4xOZfTPCHOQPE5KukIcByA+oJxCM47gxkUEAx95c1B6g6CBE1ZAnb71umHMLQzH2zJI9cmymGwPGKHTAAAcLk9PT/8av/qt01f/V//5fPn3pRVVHclTSt3TELlSpLqQ8cOHTr7bcPDg+1Wi1VA1R9ZX1NkNBb9zxv38zBtfWVXCHHPDgb9aZjwQDcd13LsgSOL5VKza3N5eVl6JzYAPPphjp/5tX86NDo+NjP/9N/itW0UDx06ND05IzMcfd/4qOLi8t33nVPPl/UDYOXpOpAlcnhMSi1gjAIFVOmli2JMQcgNsUkXfBsOyjbAWAze5LIZtYSAvww7c4oilZXV59++umTzzzrONbHP/7x++67j+d5JlVu6LppmiwU0wiEw/B5Aqxked9H8ZuPwuWlhdOnT1+6cNF17byeV2Vtfn6+Wa+HftBqNIcGqiIPOI1tdlzXtRxH1bXqYFWQ0IVQdc1zg7bZtTqW77uyrOrgGGioofqRBkCARjgoNZfTC4WSocsz0yOddmNzc3NzYwtoHPIQlWW5WCx6XsBReVWWZcdx2u22ZTlw56WJgpwWxEjgAwKfMKsBzcgbhGAuVyulUknLGaKgInzvQihTVdVSqWTaoCnX63VGIPZ833WcMBby1/OFsg0Jd88wDAhm5wqmadabDatrzs0vzs7ObmxsbG0BSgT7TEkYGx+B1FKjefPNN19zzTWGYVy+fFmSpJXFJcZSMM1YJLRULOo5rTowIKvkkKDrWs4olACRN/I5gEs8D3Y1IUkSEdQklyu0Gk3c8bxEuHfCHCamVIwIy4AxjGSMaYSXQviEiBFRJ9kj2axx6XMBBt4Bz3j8fhCStBgDEdE+aIkJQhC+SFg7NQ6DczPUEpiPcI96iy6lIKWKPSkiHzAzRd21mMSq6UyrKmUaiLwgixIX+o7jNZvNlZWV+fn5hYWFRqNx7ty5TqeztbXVbiPV1HW9WCyCNV4A6KtUKlUqFQYAY+F+7MtGWmqmac7Pz587d25+fn52dtayrNB2JUNj1td33HHHoUOHygXsjTJeTAIMG+NHfsS5ioZjS1CFKP2y6J+tT+xXAKpLAkUK6r6xsdHOpSUbSrEJH1l1+jpTPGNYZ1GM/ODrX//697//qG3ba2try8vLHCf8xZ9/bmRkRMsZzz578jd/67dOv/b62MTU2vrmxStX8rmiIIkd0/J9v1CqgHFRyFu+CY9xQvsUCiVN01wbt5Ku5zDMbPAZul0T6mfUuMsXjWK5UK1WHcdZXFhQFOW2W2696aabJicnZ2ZmnnjqyYmJsfvf/wGR416/cPFHPvqRUBAPHz12+PDhfD4PPz4doqLkcUG6nyh8sOifUFsCrytobBIzANAuxn1K3A9gS8doAIkgniALYMwzF2F0SkFq9/kolBSZ8yxSYvTrmxtXrlza2FiLfOfKuZcNicvn84qimCawhZIkFYtF23RmDh6YmJiwLOvypdl2pzk8NDqyf//YzHFeNTAXwz/Er29tXHjj7KULFyCe61iCwJWKkAHQVaiQ1UqlkYGhC2fPnXvjfBRF+2nT81hBLpy/lMvlupbNBtjY2Nj09LRWqAwfOBYIKtOoYuDcWOwegfUOmAtjG5NaCYP0ZpHeNGBY/TtdOEkDNO0AZJDiWeXQ7FIL0LAAUMqjjz767ve+l+OZV0A19gbf4WNAa8QukByAi/fC6b+1LQWqsKPs/2MfsIJOQqq1z7wr6DPsQPoOeNtXhEIEe4sYoJXAH9CTyXQAsqIuSUU3KUIjrKd4kQOtDjNdGLjkOaCqMo92AdG2fB+Eb1rFmXsBF3lc6Nsb66dPv/L0k0+9fOqF1eUV1/XzuQpMZXpxec/3KnajwxXCusYA3ox02TugFGKNkkQaBohMbpi1Z+Pa6ba4lPlpv7UEgCGKo3TSTjgVbyID2jfL0XcxwQamXpi+LQvrT9+8I/6OjUH5jNhDqvMWQ11p/28xAej9QLr8lACAG5Y+blvL+vSlrj+6P4PYYYSzXX52EmFHJOuWgdz04bH6UXpAGvYARTHEmz0H5Iyxp2MKUfpLYmF9WlzjRZv+yk50HD7G34jnVNHejqthQNjttyJd40iAIhhV92MIEIn/cAIsbHo2wGTeSqk14rHU5yvO2ZlqUGypyFIFChgol0XQGecMaRZBsmWZjL7HwffB3hNN0y7mC6x70Gy2Tpy49l//m3/75FPP/Jvf+M25y1cqw6P4k8DbvlepVde2NoeGhu67777JyemQi7ScAS6O5VBQWFleXdV1WLQKgrCyshJG/urq6rFjx1469cqBAwdWV1clSYHUetcsl8uNRqPVahUKhU6ns7KyoiqS1+3Ozl6JPOfv/7Ofu/Hmm/PFHHTlx0dq+crZN8589KMfuwE6etPFakVUoD5RNHRVoWo3SqCkAoS+uEgmOFD376lkxEMoVrtjEFiEMtSr6Xa7uRx62SnvMPChnskwsrZtt9vtixfeeOyxx9bXV2f27f/Exz46PDxs6Ai/CAYdwZxLEDRVZjQ9mrM41PUFZF+MlrCytPzSqRfn5uYQBYZhp9V2O+bq8uLW1pahqcODg5qmOZZpmqYkgpurKCDUxlQnLuBgHyuppH4jikygE5RcUeQVReP5yPMCx7EEUVY12XODTrsxUDIKOb1Sqw0ODlerVVXXYNQQQle70Ww3EfRbLWBkTEmRSwXE9gzawUFYTWM0XwWCnpqqw/1Kz+dkWfUYmdj3isViJkHtVcQZmgKTaUKfZWNYlFVMKmnzkZVbeK5cLMWKVEBbwYqYRfYrS4tU6VRYTE9ML5xel+qO2yZilC5DVFbYkTBXMkae8WJAFLPlih9ZezPp1/UmKSYDkAbi2x8Bk4AgnsCJTBYPKyHEM3fI5TENwYRGnOoFISmEpsmO15M7PZ2Ot+lvbHsdEjdJw2rnIrFtIWFTkABeL4QN0r4BI++yQd7pgPO9sbGxtLS0sLCwsbFx+dIsSwzq9bplIfZlOw994Pli7qaIwcoaMjfcdOPMgX3XX3PDkaOHmCRUt9tFbq8yucrYaiAhS+CjjJefEie21dWyaxiKexHNwyxQook1Di8IdET1J0x6JARMTRvSj1JECf5ynuPaTrFYBO9QEH/7N3/DsuzLl2a3mq2lpaXrr7vxd37ndzFXSMqv/Zt//Sef+ezBw4cCjn/+1It6ruCHYWt5jS+WBmpDkiQNjQCE5niOqElGPi+KYj6f39ysK4oSM+zrUDio1+tDQ0OdVhe5APUEFpcXOI6rVaq1Ws3stNdWVvNGbv/+/R//sY/JsjwxNbm4snj46LHpmemBXOGZV1760I98sFQqvf3t91UqSLkFXmI6J0D0STRFqGRujTQAkx5yLOoAUEtATB1ROExTxEkgvi+TxRMAtcG/DFVDnGVbmoQ5NLQ6gBZoCmfbmLxsc2tr48yZ1+9533tOfe8BieM2NjZUSa7X677rbW5uQtKU41pUApjev2///pnKQLXVbF9ZWORF5bqbbtbz+csXLly4eHFhYaFjmcVicWZmptlulUsVh9DbN954Y65cbqytri4sDQ8NFQy93W7Pz125dOmCY9mDtUrO0D3PWZidu+8d90ah/8ADD4yNjUWSWhydvPmeeyPPx1qdy4fdjiApQBmFkWdbsmpwmoYh6hHHIBK5UOJUnXNsvM4JttXV9FzH7uS1fLvbKuSK7Wa9UKpgRNkumAkCCgCSrnM855qmYuQ5Tui2m7IKdxRJUkB/8tHjEjjRc21Z0c3NLSNf+PrXvvHu975HyxejkHfgEQKHE1VHlZpNPj4X2lYnr+s8FQ9Irhgyuz60rzxV1tJUn4VKBAz2FUmBTwqzsaPMjd0d4Q7fDwK2IIaIXca3tS2YQzBP1r9sMiQhYdfsaLrCcaLjuRwv4jA4zrRtUIUkyXfcnK57vqtIiu1amqITyYlxnVnYwfy2cK9H/a2Y+AnLFJIACXX9zD3OGJ7pR6gbFfcwSKIUbgMUtENZWZQlysoCzg/am+uvvvrq2dOvPf3YUytLqzDbLhRI6cuO4b6SZNluoVAKeWFjva4b+VKp0uw0eTFFZBPGn2AUrKKaoXEmtOkoUqAIk85LGRcpWLLEyUZK6wpDX5TBL026yMTzJDglU/thWzqfZee9zHkj49oQWgLZtY4llOij9ryn2N7YdNjHlY03ssbCj2MlK6xOccGLXOxTNiwVvsnJ248w4e+69ablZBDiY0GYikkw5hhrljPXlswvjd/DX3t4etceyq4tDAjNYk3tZ2FTApf84O2tLsK4xybnsUUcrZfxCc0AWJn+hShJ7MaIK8FJAsBkQ9l+USzPpLUZHy4s4Jm9UQUrU3yiA5RY5Z46bmD/MnFRH04qdCezDkBS3acCLMtj4hyAGYrFcJ046M9oFNA1zu6KteRwfpKgoXdyeE4z9NW1teFB1Flt06lUqrfeevvf/Ts/9cCD3/uLz3/u8uxCvlzyIGTpS6qiaKoTuHfdc/dVV101OjraaKPuWygWNzc3y+VKFEUd02bq+IzSJ0lS12z7vn/82NXnz59nkaXr+rVabWVlpVwut1qdTrcLLSDT3NjY1CQpstzN9dXV+vrt99zx8U/+eK6IgG9yfGx6csJznH/+z3/xzBvnTlx3faFSFnU9n6dotJcACDK5BZMQKJcmAHBupNo/ar0UNrBeDlPCYCIeUC/1PKhfUupCNU4Mqk6royjgJzz33HOnX3opiqI7br/1Xfe9A4KYsug6luM4OoWkAMEbKg+CBJ4zuBprd9KUF3U6ndmLl8+dO9fY2uJ5ksdptlavzIUoKvDYB8qcMEWXyWvWdW2PqoapaY8bRpJhtEyT8LgcY77aBHkHyFcQhoeHJyYmZAq+p6enT1x1fGt9Bd2ETqfdtbrdbqvTBfTFcjbrjY5p8aI8NDw6PAwHUzZ11De3iDy6b2JycmBgQNG1IOJY9Aw5yyDyGfucKl2RAF8zBivqCWUmEKM09M8GzzZFkDRTZW9wQGsSlj5p+CSbosa6b/heGJChUh5wka6oKTE3++j5fjZoTlwkMfrTIB73BZv4CAywsze5bRbuzarkXLHrHJWdcLMb8WF3aYPunPRozSauITuwPSAufbF+4lm+R6Vn54aKY5w24K0M2hQbQ9FI66GJCKXL5fMF6ouEzP6s1e10mq2OZUq8wF4POLizy5rKjM/INtp1LBAwOA5AwbwBy2fHATxGEvoTALBG+V0TgF3PEjq3EaAsvbJl2gegWR09PYJUpAmA6/hMIBgYMRvEQc8xgyD49B/90Va9eebMWT/kXnjh1P/+q//yx3/8k7qut1vdH/34Jy7Pzh46cvj5l162HLc6NDh/9hynagOT0zwv+lF43dXXLi8vT09PD0+MdV0rojux2WwWCoXV1dVSqdztdnUV0smKom1ublI3g+YiSId5c3Nz66urqqrWKmVZEIF/abff+c77PvqxHz3zxplrr7/u/MWL99z7tuHREZ6PvvT5v/iXv/orE+PT99xzT75UFkWxVAQwBrMeHuPpjqoecL0vSCpU0RgzmABsMgkiow/JekBktsoSAJEXPMuuVart+hbPhYO1oW59vVNvDu+bDOqbDz7wreX5heuuu/r8uXP5fO7QoQNnz7zWadQnx8dajcba2lqtUj1x1dWNra2zZ89GUTS9fz/BteHsvr6+vry6OjQ0hI5iyC0uLa2srESCqOrawODw9Mx+qBXkc/uuOsGFweXz503T1jRtoFouFUoOpqg2LM5rVc5z2ivLVrc1f/lSIW+8/trpUj4/NjpczBtDQ0MvvvpaeWzq4FVX80w9Rje6S4uzl+cazaamojyUNwqyqviup+eMsZFxsVTlAqQ8oe3wYEwrSNJlnePCbrfjuTYXcJ5thU5QKRUUWefyBmJyxwQNGuEmF9q2oCjIm3yXOglYnGO6P+5biTM93MKa8dA3vz1z8NDU9AEpX/AsW4anhxBGoet7tufKqqSKKsXtmOGzUVpqPUmBZ99dwOQ30veTalN8Y6eQGpp0CFlEsoGkvBDfIFRBTd4jUPQc31UoDtLmksoipmg/QCAoCnBKTqm9QQguOxeGmqJFHCzkKaRKitDxr0A+ADn9tFJOdWVWtoh2Ejsp0EyXA+bPncoZR1BmizsRzJQtTgPAEiEmiWujciQJnOe79aaiyE8//P1HHvne+fPnNzfWqEAGdKKeM/L5YqtpWq5XrQz6XtjqdHPFXBA6rEzKpvcU9tOjMrMZnJ1zoIuy60UykeJMUTzGZB17uJcYn8E4UWymTeJDJmvWV6DZFWrPEoAw8vsrXcll5ElWdTdhul0gQ0kCEGcemWU49cjqcWVpT3slADurb+yfsShs5hh2PaT0I7G4214L6o4OABAxfR2AGKi0i9UwC5FJrycO7lkCwNYPnrzfklo+/WD2QVL6jL2i8Cd2wTDmUrIsW5/ZJyG8GDtrxDpCLAkRWQuvBw9kv1FA9BFbjBBjl+WV4AbQicawZzdlvE8S0ev1p5hXAAVjqATGA4g5AzCrYEJxxqc+GSTxYZA3YzZ14SNuc3OzVKowHGelUrnpppt+/ud//tlnTn7+859/49y5XJFqeKZVqpR5US5XK/e8423HrjrOMB7FSpX08oTLly7l88ByuK7fabU4ASAW9hU2+rxwE1NVdX5xAWlDa3Uyn6MGSADhdYWcjFRFzxmyIHiOXyqVWnbn1KlT73jvu3PlScJreFv1rYnK4Cc+8Yl/9ou/0O12FUMXSFyPTkrfbZNsCPSCWOguHuKs7EEzEFlAxNMru6zkVEVodR+qHbF+nyzKLzx38uTJk8vLy5VS6ZZbbrnrztsnJibAraTpTNU03UDHg9WaZZGwCkQYoPILEmJgbCxrdXV1dnZ2a2sroPYfMxFrdruGruXzeVS10UexJUGMRG55bkHV5JyG/IctBrjgQmQ7Lur/+Tw7Lfl8/ujksZERANyHhoZ0XSfDWoCzFxYW/uzP/iwMPItYsEEEXHihWDbyhYFSbWBkzHb9rmm3u93zFy+qun7gwKGDBw9WS+VGu7W11Tj50kscxxVKpVptsFCC2xerlbOzSc9R4QY4KqlqZ5vVtu1kE4M0AeBFcA/YUE9uPewyIAgMzU0xO5bNpK1OlzI39DkkQeSB6RIkgfc8ZATbKujwEPA8nCjWwcOe6X4UOLhI8oxqH7fUAjKvoXm7D6PP/ncbkjh94rr+TvDJ3glAb7Xe9pFdrdHZerFrNL9XTEx39i5T5V6bJCItpSSODtgPeJ5YDcyfJ66WUbWeGAXNTgfXBVrE0ElSidU6Ighmt+u4LqUDrXq7bjsOupY8XxuosgYxSyR4UbIcZMlKrAEvRSQUHffcmTAauk08WnHJ414/nIYTylYMuZtKQhA4E4MEqvaUAFBoEC8zuqJbSH7bwwMDXbPtWuZDDz30+plzqMcvLr5w6vS///f//qMf/aihG+ubW5/4xI83Wh3NyJ27cNG0Hdt11ze38uMT4xMTBdQ4+JkDB/dPz9Tr9f3791+4dF4XDI8LFU1rLy8PjY52rlwZHZ1YWVnT9ZzluGPj02vrm8VSpdXqIP2R+OpARTPAjN9YWzNNM6fBkSMMwyeeeMIPg0/95N++cP5irpC7cOFCqVLmwuDvfOrvPPK9hx78y6+fOHFCVFTDMBzHURSFsS+SrhuWIZY907+4EJ4YGJHk64W3wROPShKYlFghDIAZmIuLglguly2zE7hOrlKVOeHiSy9VysWxsTG7011ZWdnY2Gg06q5rnz3zWuS5UeDvm5pC27bV/vYD3xE4LBwlTBQ1dCeglAWfBNu2gyBY21hvNpu25R48ePDoVccrtaqm56SBGiernfn59YsXREWeHB2RZHV1DRwV3zQVGTNnu1HvNBsCtNTUoYMHhybGOd9VFWlpfv7ipSuB75bLZdP1Ftca5964yIWR47nUReSbW61iuXRlZd0k40WyUVMrteql3HnPD6uVwSAK86WyrCvFSrVULXFCW9bky+fOupZ5+uVXFUlQRfXwzH67bS2vLgVcAKApfAltFVyQHBOOhJ51vogsrlYzBgc5z3WA+zKQFUgiJ/qDVeOpxx+aOXyA8zr4QW7bDTB1MJaazwWmtdHttkcHIIMOZSNofdGNzJg8hA+Oo7oeQgGcLdJbZ+EmrXJsBNBkmClE0lOBsObxKtfPcwjAaoOGPtnghhznwXLDkQOfizxZ1STkJ0IQBa4PwxAAUFVVhsSCJQp8iDoC5/uuIss8GRqx40NayeIfmSlKsZuXBR5s2o+n/0wVI8q+igCb6ksQBeVFH7NVGkUxX2/IRtldWyE9hsBDHiYKCiepyqDqrq/f/t533/7hD2xcvPjAt775zLNPra2sQkR7cf7o0WNGUetuALmmKKqswKGHIqxdwFLQpqLiaUISSAi37Ef0A9GJTEmBYlI7ZjY7KOopMjX/bML8JPMYZvpd0Fy7ov97vsv9SqPxdyc4/m0fzNawEr9tViaO84RdA+8fuO21ymS+Jat+ucuRbNuhlH1f+o4Eg9X3rTTCgFlPE4C0DJYxGsh+KyUGUjZTiWGAzAqedQB6TefkUyykSFshPY3IOHWL98+a8QxJjzpinJYBH5yATVMfPVaLRBYceIwEHCt+whYMN0/AyyLDAkGRD7U1eiBIGLXV+IAaeTGNk4RImZlBQE4oJHaN8+cHATBd6UlnvbMYW8YuPzk1EikiEDhDz4O9Wqm2Wp0P/8hHf/In/+73v/fo7/yH311d26oND0WhsNVqFstgBKp67oYbb1QUZXx8vFQqeZ63uLJ69uxZaPaPjCwsLHieNzo6fuHChSPHjrVarVqtduXKlXzBYKACpjjJxENM04Qgvesij6EkKiBsOmSgcdMB8rG6svDyyy8Pjw1p1FVfW1sbrwzefvvt4+Pj9Xq9VKtyPnifYb9aC8u4kXBj9kCyRGAqlviyU4LpO26bMmATXTjTtIkJB8gNJQBEZ3W982ffePjhhzfW1m+66aZ7733biRMnNFWem5vTNCDvoZcHu1t0DyLXo5qJGEGkLk5KGbJZEEA5XVtbW19f73a7fBTZtt1oNDqtNthsIIphuCOEgfuv75pWrlTm+NDn+MDzwHFQRFlFsx9cW0K5qKoKHbRKmeFxBwcHbdtm6hwLS9iYT5nZ6QqCmC9VWTTmuP7G/HLb7I6PT+qGMTE1NTQylgPCgZDxfnD2wmWEbroxVqmKEpgMfhRtbtVJJx9lRXIWhUY+SzhR3UwxGen9h+pQKp5N70zKIvCpjecgVHmS2wrOcawgEoQoHjGTF8B4PGSSuDRuLBHDrh0gRr3ySQa0i7sLZQim/UDrCvUA43mcQY/AU2YfkHE/ow3NkhS21qDSj5buLijiIPRT5+23Mm/SEfZ1LDNjb7ewnhUAduQAez/ZpXqy7Riyr2CYxb89tsROeI1MKQsajkznikGnSHcqPu1BEIDX2u1alM2mmqekEK9q4KMoW40m8+VgqyDdU7jEPuJxkH0p9UI8IobAnFP/NlP+TK7vrj+Kj0BpZ2BcBjBg0zEskEUU58KQtH0ZFZHyZthlOCbPhUMDQ6bZliXlD/7kPy0tLRHmcHVlbeNXf/VXf/rv/4wkyS+98vI//YVfXFpZC0JuZX3N8hwjX1BFMVcsHb/qRCTwhw4flWVl/8ED514/Bzq+77l+aHluoVwgF7yy68L2WJKgXtBpm4qs+b5vGHlJUliDq9VA425wsDZYG7h8+fL87OVWt6Mr6sjo6Nz87He/9/CR48eOHD3aNgHMm5+fNzRVU6Vf+IVfePKJZ9544w1FNwzDsG0bkBv82J6IRzz5hWjQCQE4KBSnUq87kYtgazK1gnGtQxLICKNwaXmpVipyHPfQQw+dfumFnKKNDFReeP65gVpZk2TTbJ1Av3fk6aefxPcGarvdvnTpUqvVqpTKkiRVSpiC2u32iy++WBsc4AR+eXnZyOenpqZsFzrF1Wq1VKwcPny4emAG6v6dbrhVhwmgihbu+tra1tp6Pp/XZGmoXH7wge/4DuZG34OlNFa/wJNFqVgqrCwuyJIwPjYyNDq6NL/w8iuvAjgj6pKiDg8PB563aa7Ztr2yskaeGMPDtYFCoUAZDlgrjUZjbXV+a2WlXq/rxXzIRYOjI4ePH8vlcqPjY1dfe7y5tGTXN6rlyvryyisvPFsy8kMDA7PzV2w5anfNzc11w8hrmuJ5AS8KxAApQBWgM7iP97rd7tbWVrVa1TTYs5QqA4Wc9NLJJz/1P//dxXMXxg8e5oDekcPAD10zglIdX9TFol7hfIsNblLHJGAP1jDE5ekMkohmomEGeQYhZGVN5n9CjTzCAWYCmfQOoti+n86L1JnURSQRSUFic4LumaLKHFQQkUEEvoNgIiIakdq1ulhQudDQDMe1yO0rUnUNWHwkA4wBzGBAMGvGr0mBRgQ3ESI+QAdVSYFIKOWnB8UQS8xnMRYUYrBmQkCloA96JO8vUZA0Yghp4FmhpBaGvqsMDoadJtdxBw7s/4mf+9mPrn/s8Ucf++53H1Ry+sLqkqHnqtVyp9Ph/aBYyjebTV6kTvVukBOWcbFaLXvO3CV3TO+00pADTxpLJiabmpGH3DkTnHDd2I+FzgqTg0930rcu7OwAMJprNpqP37Mj9N9ro0/1ZRQ7fgjNy71UYZfOc/p853IT7wFjZHt20Z+B9P1kKdUxZVc9vvZMTqr3BWngzhLNXZZGVq9NS3dpApCW5VMIEOLqeB+7dADQLCWsCFuWmOEfQ4sncX/CS04+yUiBcdBPzIG4Jse6ghRqJ4hg6K4lRmCJsicVZGCWQqE/lMgFzg8C6JxHYUgS3fHJiyJwFansJYsi0mp6neX3GJyMg9+7UghVKEyNIriuEHuGp++mplYU8YquyKp26crsBz7wgR/9+Mdeevnlf/ubv7GwsFCpDvE8v7m1VRkcqA0OdRAyjh88fNjI60tLS6+++irjdAYuOtqMAwBkmwhgaKfVajebsiy3Wq1cwTAty3LszfqWrusQV+H5eqMhiCICQFnCgCF1CElRON/P5XK2yRWLxYZdeu65505cd/X05CTa63ljeWt9vDp42823fPu7D41OThiq5rueJ0syc5GPcXuhCEsm9LvJYYHhRygFw+lIIRPJPZAMROCZEfojMxEEaH2urq4uLSx+9Yt/mcvl3vmO++69997hkaEoRG7A4hssrlzUta2ALrdCwjsixxps2CEFTlIYRq7rLy4sr61udDqmD9GzoNM2O23TAWkpB5S/i0YwnKpFNB3CgLNdGNLBz6uULxcqqiYzoZvVtRXDMGqDA+Pj42NjY7VaTdM0XhTOnj17/vz5y7OzPM/XarWBgQEWSw0MDUMRCKVDQ9agx4fZMvC3NhucKESiYtqOIKqqoZfzRVlVjp8YCOh8ksQjjXFSEDdt1yNzezwSEF5WFOJE2j2WVYaBxMhP2UpDXHNm3YwsV4kqUkFgpvokRHHhGMhcEFUkyyyFIOlM9ikG1to5haEQALHM/o2ROjKllHjSjzgvwekxpGzaepaFGDubfWT31JvH5X1b0lxO3tN7zJhv9O8nY2ua3ec2Gbj0SVblPvv6NiGI9Llrp1jhWNWHHQzTgGccSbDlgQilI5QRvNq2bRLwrEOb4ziFAuw+4mJNGNkOGNaSbJdKJaa8FUaRadui5xmapqqyF/hAoUc8WvrJ1B838ftbyW+SABDDLDkzbK1lyso8LwS8D4ozyFoy5REBF4g8b1qAI+J4uFDTtD/4gz9wXW9lZdV13bnZhfe9/32/9Eu/3O50l5av/MN/+LOr65uNjiXKMieKoY1m7cyhY6VKudHu3HjTTdffdFO9Xj9/4RIMaiXl4uVZSVLaWxsDQ0PNZnNyYvrSpUuVSq1j2uXqQLdrjYxPrK2tlas1F9JgvJEvdG3LD4JO1zJ0dWBgQBKEZr1hmh0/CAaGhn3f/+3/4//43f/8n/OF4tzCPPjr01OXLl26+vixn/zJn/z0pz89PDY+PDzMC0APEmZv5zBHIBKAVs6aIxR+CQLWDEa2ifMlynEF4ts47tjo2JlXX3nh+eeKeu6qq65qbzVEkf/whz/cbGwO1wbOnn31ueeekyQxnzcmJibe/973mJ1Osw7WuGNa3a5VKJT279+/SX4UpmUtUvUhVyysrW1sbG3yfLTvwAwoEyLnb21Iquo7XqPVrFQqiwtzm5ubPM8fPnJM0/UnHn30hRdOtpr1Wq0GE0MDNH5w3gNRQ1kEGZTnh6+9fpbqO7wXcLIga7JidS2r2SbVMmO0NjxSHTpw4MDU1D7ofIT86urq/Pw847UfmJq8dOnCUCV/+OiRfLlUGxzID9ZaW1tWfd0I3dL48B2j7+Ra7QOjQ2PlQq1S7Zqd5tZyc23Jdfyj0xNjoxOtTlMQpCNHjliW5YUBTKxXlpYDzzSxyulCtGnN2o7X3lo1RGVqtLp29hXOC9yNBdN2y8NDgqYKnhPaluWYvCjqpVpoWVAIlSRE8XHYQZAc24x9ajHz0T0Cr23Vc3leQE+YIpk4acfkhMo9FQgJOJTEc8znJ7nw8QyTlNSRnHNQ4gz8iMcMKfNip9XQNUVUNB69eaxITNpE1zSe4zqddj5fcC1bEXSQ93IKHzk8Q4lAvJ/IAIwaRDDUOGQHBghZBm750MpIMPUYxmj6xLhlWiDi14mU3ntn74kKMgbOgIc1Aep/hCjUOc4R8jkoCll2FLp6rfbuD//Irffc8dKLpz7zx58+89pZTVdLZRQ9LbMhSTxgCEnkCWeypBAcA7dZTJhGVMxHjKGBelE769Iw1nnMFCV2E596m6QCyunaJ0t95N1sET2d/fr/tDOO79u2LRnphLBtLUhKcnHgky5E8dCgmJdhWRgqaq9v2UlWjv9JKRtGcJKzAZzbO2O9H4jTHnH8iQNjb6V2lZa7AMTbprufgZQlSyy7jtRoZrTzJAHoXU76VFbVh7GEpYxSJL3ecwNIQ/+Up9b7iqQDkGQbIdLBHr2DiArsxkP9HqkkC0EYByDksIKyhgB5AMeNvSjkfUZ5R/YMEQyCSZB1BayBKLol5RKfGYpxgotLwJy3yPuzvyVC39uLJAKe32x19x842Gq1Pvtf/nT28tzP/uzP8rzYbLZRO+UFXpTGJiZs11Nzxu133uWHYbFc4AR+YWGh1WoxTJuio9AV+CGCe8SS2Gzb5kiMwshpnW53Zubg5cuXKxXCGpFote1BuUWSFKbSyH5u4DiSE3Q7LTfyGt3m4sry3/mpn3zb3XfLojA8NKCI0tTE9GNPPP7P/9dfuvq6a0enp3XgSHVD1XIGaKpE9iXzL6LHxdARcpsHPZBSACFBGPbfZiwGpVYEwTyADXjhhddOvzpcHbzz9jvuueeearXa6bZ5ntc0JQhwS+fyOgOrQ5KD4l1NkXRRZikw9PKpgm6RBsjJZ55dW1trbG6BA+S4zWaz0+kQ15Z8uCiDpV3BBUlWxHKhDG0MVbWs7ub6VrNVj0JekoU777xTUSSeF1utxuZm3bS7mmrkC8bE+NTE9ISmGXMLsytLq4TPF03bWlxel8ghhfiCOsgSOpyYDx85Rla+OdtxtrYajLah54x2F/6mjNJAnp2xA53vUW0dAB26UsysmosMTMRJHzrDA2Y50rYEAIE4qdZk6cLsWrium0pu0rVgNAAvgLl0nyEXe/QdlwXlqboO3V0MHxLT5pCtMxMwDqZ7KX2WOszJRff8XUnAO3V44ueA6sXPt6n07KpyEM+rzIEzBiv16XukloLslSzXKDun79UQSHWgd51C+6tZMVQJxbNEjwhAX1puFUmCfpgPlSSG7EfUyHNu4Le6HWT1nQ4zUWa+0a1Wi3kXsEvGKMWyAPvbnAFIG2SCyQM4/isB0EmSl45ESFuvmM+gQU8jlhGsWcq1jWbN7l9WaiEdj4xAHGnYI/QnTzcVJrmQriVpfMU2rZKR8wLvc3/232ZnZ18+dWpqct9jjz02Njn1hS98wQ+iV197/VM/+XeOHDly8vmX1tc3tUJFlOXR8bHh8bF6s1Uol9717vcUyiUfzoP5p556ZmZmBuBG03nj/HkvcMcmx9rt9uTk9MmTJ8fGxtbWNkZHR9fX1w8fPvzq6dcOHDq4sbbeMbs53bhy5UqlWo58T1XQJRB5oVmvr6wsNZtNptd04dXTk0eP/Mqv/MpWo16rVcbHR3VNts1OtTL4rne9a3hs/O677x6owWiFSMASjD+IAyCTDrIkRpoAN4A+DgBRPFTiQal0uVgwCBIw8FGqbVpWu6XIoipI7camJsrjB/a1FuefePyRM6dflWXeQdunc/vtt3JRdO89d5udlq5qWqXCcfzLTz55+pVXwPM2rdHxsaXlZcf3br31Vl4UXnrppUardez4Eci4Te23LAvUYczSytbWFjR/ypWh4eG52dlnTj4/N3clivjJyXFDU2xwlsx8Pj8zM5PL5TbWVjc3N7fqmwMDAyODQ6yVytpQsih5jue77sDAwPDw8ODAcD6fZ/aI+XzRsqxOx0QdZ2kJ+kvgavOFvGo7Jis/5YqF4bHRYrlUrUJNrlAodNudF547SRVlv1Iuz83NVSol9tmRkRFZlucW5ldXV2MNK99f39z0qWjloVweVSqlrUZdz+cc2xsYGNqqN0+//vo73v7OlbX1SnVgcGS4UMoPjgwP7t/P8bzX2ES6qhZi/1wRtRaUzz0I4QiqzskCJymsfg7vY+hfyYiAYtg3CiIAd5GbMkj5LD1mlXjWBwCMhmahHbKnVFxhFW4I8hM4U4z92iA9AmY/mZaGiGADXyWHGcvqgkMfuJwo2M2m75l5KLHBixcatGBiEBAjijjHiQ8Da4hEpEWWHjBXRnaE0ECL/9kL9ClqImAExbr0BqL8055x24NRTRgJgu8AFpU0G4MwssLAFZFwBJHvSyR+5VtNSRBefuHFz//5n734wguQ4wsj27IKxYpleowESDWFuCZCHNG46s/m4t4ES8WoTIU7QaMwI+3441j+GC/R8SAEzBZ3FlingTIXd3d6kfo28m6yblL6xzSqkjkzczWlXef/bQiaOGSPgYE9lkLWG5hEReNmbwKQZu36HuIm3X/qK5Vd3ymRi0E9235XqrO0reOxJweA230j++h+3ltcmI/llrKrHX3ZHgkAUwHC4ErIZywBgAga5cas/E9pJXEAqBfAdpJFBOFR5LFUJWKgDH5HeXkmCCByAQUgILWwRZf9Hrrj4FiPZZgxIGOxT4x6L4jdwYgESeASMHx438VNi8SAOI1SHKjhpiKZUeoIJNhegH3I9gULa1bki8c6sdVo/uq/+JVGo/Vbv/Vb9XqzROrLdsc0CsVKbaBjdl0/mNg37bru7Py8noPV5eDgoMgLHdNSVbXbgSVtrlBUFMWyHNnIMYpqQOKMjUZDEIR6vc7IrK7rVqpF28ZdgYOkGQfPqacX8rFBEuIMTRMV+crc7J3hnaggep4siJ1O5/jx4+Vyud1uD6dEURjtRlIYomjLQ+ImDCIJfYCYyi5AiZH6HaBaBHGLMxmL7M4CJImIEL7vz8/OnT59enFxMafpP/ZjP7Z/eh/TKRIlAPtI1hLaAuzjruvKMmr/VKF3FQ6S2+xOZu9ptVpzc3MbGxvdbpfNBa5tgztLtGxM3JgGoTaEqIUkjHguajS2Wi0uBOii6/thuVzct29mfHx8YWHBArg2KhbzBw4eHh4bzueLgsB1u9bl2bl2qytrMseLSytLjulouXx1YHhwZHRqct/g4KAgoSDRJTyiUSybjtPorMuqMjA4PDo2YdugeJZqOS/AqejYaOlElD2hVwCbdklWFEOSwpCDE6NluV7Y3WikhY1sApDqFvdPl5znQxGj/8XtMqysR8r2o6pyCFwYCfpQpshKKJqq7gyN4/IFxjjOKMAr9BgJWCupvdyT92UlcDZRMm/v9JG6ZNy2kJ09hr7H6MZZNR6iuCWOof2PjL6dTSH2emTvIeDsboH+7sYugNHs9npv6s/W1xn5DHFB0jUkkA/zZKKlDUEDTJFRbQgC1/Muzc2y2UiSVUGERlajCVp/sVhkgT+tu0IY8dBYFcKhoSGCXoWdLhDYkiygLcZzNhI8QRTDhJTIJl7CoqAvB4qLSOU/9h+lHxAZZP/udVmjQMC1Q2mTMVnZvC6Q5i/QEBKPsgkVctBn4IS8YViO9cQTT7zyyqunT5+emZl57ey5eqv99Je+Iiny048+9mu//m9vuvnWz//Zn2ml8uDYRCQqxXKZl6V6s3XDTTdfff21YcRvbjU2txrXXnvtyOh4xAlnzpw5duSo7/ujY6OdjqnruVarUypVIJfMC7KimpbdbLVDDtgnQZLzxbIPtgwmQKwMsE5HeUeUZajdK1q9sSmpyrGbbjrz7LOf//zn/9E//tmLFy/quj41OdJsNq86fs173/ve73z3oY2NjXKpSmRiTOls9kMoDzoVlqiAg4yAmOEAEDUDsoO4sxLNOoa7jmghZyGsKHCB7Var1ZX5xe/+p/+0urK0f9/k4OCgrsvXnjixsbFerZZVRWm1WqVSaXFu/tS3Hzh75owQcblcbnBwUJa6A4PDXdN2oAxWXltf73askZGRoaEh23UuXD6/trZmdrpHjhzZNzU1OjzI8/zcldm52cuYG1fWhmtViZe8TqftCKVyUVPUra2tZ556kqjkIC8dP358a2vrpVdOMzC6qhv5YomPIvAxNreWl5fnFpYuXLoSBIEkQYWC/De4ahUuilP7ZqA1XK9vbazkc4qs8PA9hPHy+tLyAg5eVffv32+2ciPXXPO2gwe4peVHHnzwxRefL+ULI4OHpqen1clJRMytFs7PysqFCxfOnz/H0gBdUcQIpumhEDndriHJOUUNbcfptqZGh5589JH25npgdU+/eFkzDKJK73v7O95WnZiQobkv1i9fhPw96tio8IdcYDue7dmTk9MQk1Z1UaYpjQsFFOhl1xNk1RDZ7BcGIi2XuBHIsTGGyqQojyhAKM/gAWnoHwMARc5Dms9JqPcgBPct3/Ulo3zpjTfm5hbyxWKtNkB/V3LFQl7VeUmSJfGNV1+VRUFRpfGxcU4Inn/yAc9uwIs3DCQB6yNhKKDxzcIq6FBhZYPUMgg5xBKJKz2SkgBKRU5WKSsg7Q5B4tJwnMKUnscUAwjxEo+5RRGJqEDVXB5RQBDwaP0JIrlV+6ITRIjWAk4Kg+DaO+4sl8v/1+//wZlXTwukfx2GFCSki1BsCYHvRcBFaBnA5GhpyZDW0JdK+Ltx0yYp3jNaMNY+VvuPCPeYmL1kfAC2y3XGWw/b01+8JyGdXSBA/N7w+m1b2kbYGYXveFtsgoaxsmOv2YVmG6SHYtcYcJu+zjamKpH9zXHCkGY8afsjmytsWwshK4oVsr9LTrV8Fm9lOwBxSZ4SlaSKz5KBOGOjALSvP0LkD6i2ZFUpqPAvyaR4HesIxVxpSicSjgEL/dM99fj5sTBqcn5JZRZhJ8VMuEEJqaQArMey9Tgbpi8TXCC+mT0wEnUfsRB9XtcokKI/AYOCHlTA8RYSCTqT4AXQsKOEj+n3MSwhY7gTi04sl6u33XXPgQOHfu/3fu+VV14tlUqQq7NdWYPXbxBFpmlOTMEkaHZ2dnJ6emCwOjc/bxgGeYUiuPd9WFO1Ol1JkgYHBzc3N/WcwfipJtAClqypSwuLiqaSjjU20zTToUZhOpUGIa3ge7wjq0ooRn7Hz+fzDK0rCVwzDPIjhu/7I8MjIyMjLbNLgX+MCWEhIzuxKG0IsBdkl5hF+MTXJdESIGLJGIvBPdAJRy2FqW26rluv11944YXz588fO3bs/e9579DAkCzLlmWRD5Hc7XY9z6lWy8y4dGtrg6CfFaZTyUlS4LqCisJ/ys4xTVShmJUYgdo9gO2Zr2rgoYuKo/FkCSdH00An6HRQaGm1Wr7vDw0N7t8/Uy6X2u3O5csXr7r6ulyhVCqVRBHV1lanXV9YCoJgY2PDcp3Nzc31jQ1S0AeKqTM3Xx0cX2t2lla3NE1jWEZNMxRVPfnCaWiDC6LHDBlxHkSYZxFwDYcWoKsE1R2qu2AwBIHje64T1zOYg7pjxw4J2+r6WQhQ9okgofaWnU1S94z4XqHQMNVMCALMoZmOXDKBssC9HzcCQUMNyu8pbY7FzRFx7xhuJCUSJB/LuEFnjeH2eIRUXk+wmGkksw5AtGsHgNVdkl/HpIdx5EQxiIsUKX0oxsImriY7IUC7vI73s1QkYI/bZEMTxWh6D6h+Hif4IlXj4u4kKSWZlgM4Is0kvuthXG02Gh3IHdqB5wNxFULHRpEVTVVEnTzAqNsooN1LmFZATTa2GoII/2xJxRshAOD6tg1xMFFEqzNgun88NOkJ6gzhMp/sEKGDDHQHgZvjDgDJGEbJe3DCGc8KAHY2CVP5DhWQgON9gZPDXpLBhkXb7KxCfvfUM888Mzk53W53z55547vf/a6sqN9+4ME/+9xfCKL8+T//s4kDM/VGJ4CEoTQwNHTs+HE9n+ta5vkLl4ZGhjU9NzSkPPfCi5Ik7d+/f3Z2ttlsGvmcruvnL12cnJxeWroCEwzTDDyI2IIG0Ol4QbC0tOS6bq1WC0S5OjDg2l14xgm8ZaOIIKtyeaCqW7aR11dXV6uVilAuP/XUU3fdddfMwQOB52+urzP15Pe///1f/urX6vW6aUJGs7/lFi8QRMaMdt0YRhnTHeNIsHskjDbXN6rVqm9bYQBnjNdfffnUc8/7dndwcHBycjKv6c8884QkSXfce+/q/Gyr1Xru+ZNXLl1eXl4+cvDQ5NSUbVkSLxw7dqxarRbKpcl902+cP//Ms8/OLy3u37//wx/9yAMPfFuUUFyXJGlgYKBarYqi2Gw2n3z8CcdxDFWbu3xla2urdPgwJwSXLp5XVcUZGS6Xy6PDQ5WjRyUFCDSO45588slyudztWq7vlUVp/4GD1113naIoS7Pz09PTV3lX67per9chMy0qEBslaWPHc1fX17pdyCjLsqwXir5vapLudUxB5tsQRet22qYXBo99/7HDhw9PnXkjDAKRF2679Y6R4bF1tBqsCxcuFVe32p3m+UsXWW2rXq/n8wYx3SGeZnW6EsmxWo5raKrd6cqcaLbaUiRPT0wuLyyeuOba555+DomEoW+trDz5yGOu69RbzUqxJHGCY8EZBZZtqiopyLEd33v15RfgQZ1Dt5aBMDEuJaVaGckXytVyBQ0NWSYYj4AAulvnyGPHhf4WEdgc1wvBkI0niuxMw3H5XNF2HT8iEYt8LuK5drvdapu/8Vu//8rr5/L54kd+9KP3vu3tgox1pGB2KoV85PqdRuOP/vAPON/L5fSf/qmfGh3ID+Q1O5IbVtdyiMwQeKKCOnJ3tZuAqKHGFXur0xrMkSinDAUrWVZUXoQKiKYZETIRBfJWisrLMqUEAifJMfQPQ1bgeDISBs+aVNLRjxVdaD+HoqSoUJiAT4uPwrjgIx3gRElU9aLVbXB+MH34yMc+9rH/Zlpzly5S7dIiFEiv8M+WgXj2SHOlBK/B2EfJH9M1LAvdiRuesTBUGCpaHAzQig/4ZQyRJT8TbgcEaFswvHPbBgF6c+j/9sQAAU/ww3yqV7/Olv+TLGi7VEa27pm+OVsQ3Jn08Dcdmdr1IPaS1SPjjB5slPaRklyzdECujwQcHzeFIAzoxBKDzO9hwp2KgKJ8Gg0kCQCaI3GwytSmae1hyR7TweqFEfS2xDm4t5azVgsLxEkRLD1ULM50YhAKpghsNqF7iF9JAosJwdCLARzxGN+Vzi9KXmRZxPFuJIIiE0PimVowHkHsM53KwECr3bVdv1Kp1JutQJDylcH/+Ief/oP/9PsPPPCAyGFq5lGdCmzXGx4d6VowohoeHRufnJyYmtyob4kifL66pslEAwm2xOyuqHeRxXgR7VKSkCEA0UF1fT1nGDkY2ZAUvS2IMpR8BHgJBWGUV1Vro+Hapmwoa42N1Y31Sq30U3/37x0+OCMGwfDQUOAERw4f+uf/27949oWT1998i6jItVqFtdsAcaFbD/rXhD6iQCEZGAnownU8WZH4iPc8FzQ46C1Ayib0fMuyFhYWLly4YHY7k5OTN9xww+EDBysl6CAlgrtA4YsiUEA8zz/43e+028177rnn6uPHmAmuLEq6DAVP9hEG7Pmrr309DMPVpWUgbi34CZhtoCloqASR39VIy49yA1x0SOlpWqvV2rdv38zMjGFoNoLsoFyuVmsDS6v1LpGKPEK1iqKIZW99bXNzU1JAEWYQLJj46rqs5nxeth1AVKnrAmQakBoyWAEsafRo1bBcx7Uc1/edwPPCAGbAWIYwsTKIFLusVFNkCqrsdiDuV6adkj5m1Qn68v4+wF7qrI2yM/vf7DQUYD79AYWN/oA4FBPnvnhOSMJ7UYknXKoA9OYyQUBiv83xN7se9FyTqJav4r5OrSRT8CBpi6IVzxryJBQcryC9yWqnyP12iA5lETtxO9sKNpk9RBqOZ5fEI4UwMU+DtOMhCsSFCDCHYJZA9wJTmCyKluOYbbPZwfi0XCf0Ag/+ckCPM5UnnFhy04aYiYiqYUadiTnL8hpgb9QjhVgTcQmoicruR3ayYmhlbNvE7YT6YJAkEKAUFEQgifgXEco95lwB+UMuhgOVahh4eVX3XHtqfCLwXVhc8+L87Ow3vv7Ns2fPyqIyMjz2O7/zO//hP/zej3/yJ1599dW//zP/yzve+c7f/K3fHhobbbVaY5NT9ZZTKNduvf0207ErterMwYOtTvfAwYOWZa1tbrzxxoW77777+w89PDQ09PrrryNOHR2enZ0dGBgCtVTXh0ZHIOOTy7k+En49V9A0bW5u7sCBA1euzB08OHPx/DlVhWm0wIPHT0x339C0paUlwzCa9a3NzU3XcXRd//SnP72ysjg+NqAoEheJBw8evOtt93qe96Mf/TjP87lCHjMeQYAw6ZH8sSLzMANEL1GIRVfh/IUy/8KVyzMzM4PViue6Is/XKpUoCqDkBvuXEMIFnqMKUuQ7Tscs5TTL7Fy5fOHGG260Oo0vfv7zrut0Oq1yuTw7O7t/374gCJr1xpGDhwqFwvlzbziOMz09zVBh+WLh0uwVQYJRtKJItVplamrqlltu4Xi+02w9++yzq8vLKysrVteMfFQbPM8bHx8frA18+BOfePBb3xweHjp27BjsFHxPyRfWFxe//+ijly5dUhRtbW1teGTsxIkTR44cUXTt4sWLV65cWVqYg8n029/Z3twMw3BjY+MrX/maYRjDw8NXrlwRRZmRs9kN3qxv+bZVG8AhTUxOFiuQVUWw7LmFXL7Val25cmVubs6zHYPEKtrN1gC5XhKsHReUlfyYrjwretB9Hqb3tiygqYiui4TIc3Fx0ffCg4cPraxvQDFPFKemJ4y83mjUAy7aWt9oN+qOafGSWCgUeFEwLYjm5YqFja3N2tBgjtTewKVWsMZJvORYjqHnCzm4wjFtGV3Xy8UixOUgsY0EAI6Hvs+AfBg8ifgha5jFEBea2UVRLlUrbcvkReHQoUO/+Eu/8tTzV/7xP/nHQRDtP3CgWCwfPnpkYmLCqJTbG5tf/epffv0vvxJFwf7JcZzDicnhsnH2+UeO7BurVrFKxib0MvyqQ5AVehacyelBqgLKMmBoqBhgVhFlDqE/LKyhcYRjxZxMkEG5UKmgJC8pQEPJ9H+iCjQUozeiAIJFHlWQmCIkxSrPNCGTtj1yBd+1QTKMAntz47N/8sfPPvlkfXNLlmXwAxnVDV8JIgGbmT0q0TOyDFO2iXHgVN1PItlsGT+hNjHsHf1eJkrCwrkEaBqvhqwcwyXxUjag3xEo4/J5vpNJLTJSsIkM6PYweY8Qnx1+VkyWzdtoniSl7dQmlQAkYFRuq45lO9LbCn9Uh+0r/2dXup2rWJwq7dx2f52gNtvWTtYB2KEH0jsV6WoZ5wtxYzTGSPVSGUoAYI9GPdO0qMlE5/ykjUD+Ken9DttckprcngCwSw4oWrr8J/q+9LUMmcMiJzoSQmbSKk21LYT6VLDBcgi5DIRrAXGFma2SFJt8ARpEiQFicU5QIpl8SwkYhHjSJ74+lHJLw0XTwjAaGRlY29jMF4qNjvWhD33k8ccff/XV1zc366V8IZ/PW5ZD2G4jzgVRt+NM21rf2mTYTWZil2aB8UK+48QzGJLv4s3U3cC7Pcc1OYIMkW1QFPGWZcW3Dbp4gaKpgeeg50LwYmagA1VN6mJLkCVG0zmFuCW9kcS8ChcScjHxlcU596FOGzvSkVMy0DeQlyE5ktB3Ebub7c7m5ubq6qogCPv37z9+/PihQ4dGhoZXVlYx8wpYJ3RdK5VKltXd2tp48MEHz71x5rbbbtk/NQ1CmOdVyxUwHwjOLoqibdt5wzh58mQQBFtbWywHY2ZAzAyV7qdAiiBEw+Q+WZ0Ap0sUPvjBDzKkHco+itZqt89fuLD53AtdL6pUhwDE5IVWF4XV6uDI+NT+XBEuZoKEhr5pmi04LHRMCGDndDjeVlKQC7FQYOXD7haMaEkG50uU1SgMWx2BiyQxkAPZl30v8ME8SYV3CcaGMBXgGlRwWRclEcLNpAEZqklvMsLg7c1uNELiiQHjgu4w9i3xX3ly60hcD5lZCXPt9T3AumLnwgTqw/Gc50A1qOconiSiiLR4CMXEmjYsCKXsZVsnIW4mpFDIzEZddzqi/o3JPqS9i7QewXbWs1bpBeKRLEMFPANGwiM6BqyWQB9mR8h6DRR4b3+d48J2F820bX4I7JdSzR+VckwVgPcyIijpSdPykwFuwQgvGZ8oITIJJqQjRN8j8hIjWpBxZGySjCieCeKh2YYYnceyTwRfkeb/kMxhBB6tpCQK6TGpmBARwatQOshyIRLYFfVD4rHLBD5xd7O5hwEZGLtfFiFe5FpmQTNGBocCqMSGkiRsbW09TtvY6MTNN97y67/+b9/3vvd/6lN/+/Uz5/7V//nrH/+xT/6vv/gL1ZExVdMGNc12vVKlUiiX4T7LheVqtWuZYRStrKxsNRtkYCxeunQBoWG7iY5fFDTqdd/zOu2m57giL7QbTZ5ggaxJ5buuRyklLALJqqRUKnEcRMACVuvhIsfz/bBrFAuB58uqUigU2tQ2fPXVV48cOWh2LZ7XQMfk+SNHjpw6dcqyALzcI2ggMQyiIDLMJ8EtEPvCsM/1zG5XAY4DsaMgAFrD3FowzYiawkOAWAjgbKgoyg033PBHf/AHsswbqEc0bdu+ePHi5OTk4NDQ4489tm/fvka7derUqZtuuLHT6Zw5cyZXyNdqtbnFBV4Ufuqnf/rhhx9++eWXt7a2CIozMDhYM7Qc8qi1NTajVktl27LuuuuOoyeu6Wxufv1LX7r7bfdsbW1C9HkLqB7TtpeXl2E4UKvNzs7v27fv7nvutSzrC1/+EtzH291rrz3xIx/+aKvTfPapJ1959XSz3qgO1GpDg6PjY5cuXPS4sNVsmq5TLpawoAZBbXjEcyxJlLaa3a59mRfhZcF4LxurazRMYdKkKSovaYoiFES1Y3us9gfkPYZvBOd5Ef5ZVNtmNyUWIDcg+JWkRJEYBqT8EXCaml9trHOc5Jq+PqSPTUxce90JfqDCtZtcFLbq9dB1VpYXl1dXoLvFcYVcrVgulauVo1d9CM4DYQgpWh8VnJWVleXFpenR8XKhyNS3Nzc3F+bn1xdWl8jXPOX+yhyvSaKgIJx1PZvw5qxUA/IPQV24am1gq9loNRvLzc1SrZrT8q+/eHJ0oPrh+w/+0i/98h//0R/VSuVjVx0fHx9fXl3/97/9W1/43Odc2wp917HdC6VcMW/UtzY++ZEP3np8pmxIPupLJlzpZTlwwXHD8ZCFVzpX0j0bCGLIDPoI7kBlBVHiRCF0yXgelX2iCkCgQowEqeV2gMoQkOMinScgYijISr7E8TKxC2TKyUBBgOhRECJAo1YqRf5kJsZulsBHxaRYvPnmm08+/bShaQCYxS2FXlUlhmYkaj8sWu+VvWMuW4o57UXwaauNBY/xWraLzcxfZxMyW18k/Wal/B9iS1a+vqoTeyVVDk1QNr0CVjZdSXIAMWvIu2seku1L9FSA3tKWaF1lj5vF9bt1ANgFyJCcMxwARM0ZIzC2UwIZMfE7BCb0HmLgsEiXPsLGcpIMQfedtSBo2WNLM4MK4BU/zrEyfYB+5/Beo8RltYTE+5MLUBEjuC6NQDTOKdeB3izlDoBlA7pL6Qdx+fBbPbhz85zAkk4CcTAcDGS8UYyHHR0vSLLSttyp/z9t/wEnaX7WB+JvTpU75+6Z6Uk7m4O0u0qsEgqAhFiwwfYBNpw5h/MFYx9n+3DAB8Z3tkX0nbEAYxskdhEKKyFpJa0259md3Z0ceno6h8r15vD/fJ/nfd+q7plZJM7/V0tRU91d9db7/sITvmHh0L3vuP9f/vKvnD9/MfDBY1J0I0o8BulB4p3K9pIsOE4v2kk6nQ4DT4HYl9EaYTlFWZRCFr6kYIExHulXJjvm1O0T23foRk4iQlUABbBE6BEcyNQKsqwEjlMwTc+xE6q4K6oKMHq3S04JgM8aFrQIRoaGAs8H8ShBYMfVAu4xhUmsQgVDyvI7pLxoCbI6AmF9MrBagDpoFLg2rHc77fbOzo7nuiMjI0eOHJmZmZUFaWdnt1Kp6JYZuB5gS5Loet7zL77w2Je+2G63jx89fM+ddw3Vaq1WE2k0KRZzMsN0yXq9funSJYYEYPe17V670+v1Iij8UNopJ6qudR1nt9lhqtnk5OTs7OzwyMjGJmTC6/X6bqPu9GzN0IdqI6XayML8oUIJunuKAkdJzhkARkLA393ZxQE2Ngllaoa5tnkOiHjITMEK1fX9wA28MKihBNjP3dOLJYmlcjmvVSsilmayA4xdFzEN8Gcpj0sElooC6cGJnT+/XsaXDzgSZZ/Laym3whRAhvoCcSkYJhE9ZIPEW8UOFvIjJdjJvmo3rbWEh2CvD+qbU7sOc7JgouMBiCLB2/3YBwVWSHTNvEElnm7iDdcvlp/fV9EfgCDuaQ2gYwC0LiYkVcgBL2Qas6amr/MrOQMBu6CU5HRnTm1IlQgFM36d0yA2tObFo58SZI8+JGRpTctSHUokMHnp9PDtuGSIcD9AjpqNpXQ88Ca9rxVNTTOGYDEmNVUplEDqTTXJsGZiBlL5j1C2dKpYjgagVyyjvJdgPeB7yskSv8IJEkf7aEhkPQSkJwp6EWBOqJh0nDOXjFKjXS8VAbk+e+7Mt771LdM0Z2Zmnn32WVVV/9k/+xeeG/zu7/7+7bff+Qu/8I8OHzvh+P7GxubCwQOJLDs+6A2jo6MTU5OHjx5dWVvtQUR8eX19vVIBH/T06TfjILadtphItu06vW4YBM26R/pwURB65E3kwNbD9+IQ0mJ42XcFMfZ8pzYyhEvcojKBqoty6IcQpS2WS616wzQLmqKHQdDpdJ7+zpP3v+OetbWWpsuGjpLH/fff//zzzzebzdHR0cFJl1MJaTaB755Swsijin9QLpc9z2snUa1SFRTZtm0Nwj5FL4H8C+IIWksFQgqFYbC+vv7Nx7/2oQ98oFIpPPnEE+Vy+ejRw9PT08ura2fOnHngwXdfu7q8urK+cHDxmeeeV1X1/vvvf/DBB3/jN35jeHR0YnzspZde2dzcFkXxx37sL29vb548+Xq73ayWa2trKzPTcw899NAbp041m/Uf/dEfvXTp0v/7m781NzdXHaqdPHlye3v71ttvg7iZZa2tb12+tOT43sLCwsMPP1yv10dHR69cuXLr8VumpqagvLQwf/L11y4vXYmCsDY8dODQYrVW63W7p8+c2d7cmZqZnhifGh4dmRibuLa6cu7MWanVqpYrXuA3OqBjUZUs7UQhyAR5Q1N1VM8aHeTDURTVyjXUwAh9TDtxTJpykmGgRRDg7kHAjcrWcHrzwTUSEYViV44KxWrz/BUyvJHPnLv46mtvnD17/rY7bp2amqjVapqmr29CdrZYKJdL1VK1Mjo6Wq5WZMPwej0GuaEhTD9FH8wLn3vqiYmR0YWFhbGxMSWJS7rqqbIdeKHdzWxtkADCLg8sXkkKAaCi0ALnRVEEVuxzb7w+NTtz5OD80vLVbmOn3di+trz6N3/qp371N3//V3/pX3zwgx+8+753CpL4y7/0S88+8/zZc6dNXUtCr2gaE8MVp9MOep0Ds9P33nmH195yE1THfN+Ti4R3DKM4CRUWM0CNXwIYl03LxCSRcW1EnBsXUEVBDpGJEXIXYTwTAEjIL1GkyKV+H7qJKkQwZFWSlVhSY7cNkzNkBTrmkaoQYVoTEkNEYpAbPqUhoSpLSehDY03X7rnn3mKxGFPhL2vgcNEeGKWAWGYQ6qewg96hrzrD3kLZbslVHo50GZ0BLgezbjL/xwGDtv8PhzzQoM7tw3BHCRn5PRyp12Sqf0jjgpFNaQKQolWQO5EohbQ/+t9Xms+j/zSWyCmme+WMGH+Yv8LEDmC5Bp01B4+bcxquSxi4NZOykvcnADkJeB8EKAUfXOcETKVi1qflzamf35H6bMbfJew4pjhA/emlCUQoOVI0LiSAx2Tdf2y/N1b363+rVNOX+TpZTAbjIiYTM2yTgL1k8Mcny+QUSgNJcAPi0FTghcM2KLU0kEn4Q1UgylkohoK026gPjU5cXlp5/4c+fPHi5ZOvvh6GYbFUkmWwbKMIujTwVIojs2BVKhV0A6gAz/I+7PLDQTYkAG8uSgWjJSZno8WP17GI0rLr9CD7SIBimNqQvC4BVBS8cyTgHDRNa/VQW6BkAzQGBfKCArsQ8BXjUjppd5K7UxQlVGGAKmAOtEgHKfDRGQSLdZRi13U7rXav19mi2v/Y2NixY8cOLy5Wq1UxTvwolDW12WpZljUyPvbWW29+9cuPLV+9UqmUpicnf+InfuKW40db9UahYMmS1O120foMA9VSbdtWVfWNN94Iw7DdaiVJ0qPDpjrrwASSHNc3zeLwSKlAMX0QBGfPX7HfOMNOItXK0F33HhsbGwPUp9VutNpvnrno+OjwappmFQuiKHa73VarVa3VeD0Fa1IGDW5jp+F6gW7Cuz6DuKilkilXcX24ZZxSETLXAn43UZIgLKIomqKTPTw2yIIBszOGnQ028iSYLdwoy09J+fsx9Dy29yqBphJMzMLKyjBYH+D4C5WhG7y/bKSkIj5/GEmkKDpq/HK9OCN5x2LSI/3ZNBSWYA0LQ1QoKgbwsh+ow/MEDjzvhpo+Esm35SlHn7wLg540hOXglXWBPC9IoS/7uAcikrTrEgYgBwYTjH14pMHmA/1DMEidY9/vDxopDtZsuNXL+j9BHCGtdT3fAXHTd1yGDjKfAN1wIt5RkLTnrfY9H6wAUY8ftzAC+5nOJ0yhU2npkZa4ARW1lIjFVSYO//m5LAX7Oh7p1hSByp99X1EOxQS4X0lBmh9VS1Uow8S+kCSmpJ89f+bX/92nfd//6Z/8G67j/6ff+4N/9I/+j9mZ+d/4rd/e2W38x9/7g5nZuY5t66YhK6oXhCPV4YKoDo+Nbm1tKYaenD+/tbNtFiC9zxh6pEyua1lW6ANdrUhqq9GwDLjvGZYZBXGn0ymXywiGxAIwGLEf+uAjo40ZhPRTLLPQDCCXIYwnFTugrCrwZSdHX4O4QK+++mqvC/tkvgy9Xu/uu+9mlMvIyEi2iGVxP0cfkaBrGA8sXg6UKFycRC2KNVUNXA8QEd9ns8JIxKSD5oAsh66TxGHih7oilopF3+4cOXp0YX7m5Esve17vR37qp37rX/3K889fkWW52ekePXr01KlTlUoF566qP//zP//lL3/ZMIw/fvRRQZKmZ2cuXLp48SrsRI7fettnP/fIsSNH3/mOB5auXn7tldeP33LL4YOHvvGNbyiKsra6+su/+q9/8q/+lf/+537u93/v9x5++OHNrfV6s7G0tHTy1dfZWGZkZORdd73nvvvuwxU2jGq16rrQHeZU4Rvf+MbQ+CjwSJ12LCQ72/UgCCYmJorF4sgIyOjNZnN7d+fKlSXP8yQFfmetejvfoQiJkh5wGPWjWBaodK0oqqQblqrqnuNzAg2+IjS6oW8I2ycsO/Rfio8ju0FRRjxA/U+AJ6JwqFbtOZ4XQGdnaHhU11VRll555eQrJ5Px0ZGR0aF7HrhfMDSA3XGnSPm7221u7VZHRxDBC0kcBF4bhDdFUMaGxw4fOuJ2O+fOnH3t1ZPYShLBMAzLsmifzUIxtJ6CfkxHaxqtUwiGWI58ZHi4VW/s7NRFSRqfGN/c2f7KY48vr2199IMf/ct/538Vouhrj/7Jp3/j10Gn1rRauRQHQalcdrodPw7tpnf02PTP/PW/fuHsacFrzU2MlQoFVRUDPwyDSII5jBr4ESQ3yF2EYNMENZEiEJdl0H14ocD5KUyUotJ/EosyoWUQjQMMIcnQchXliC5oICpqAoClbLtdEdAgoPxkjXS/VAWdD6OKoj682Lg/kG22ipp4Du6j7Qll6/DiwovPbaiqDIwjxXU5aGewmsOKKYPU0sx7YbAAlCJkGAOVgyO4UHIjv6+/yCHuXX7fvsT+9u/z9q/v+4WsypMe12t75Hh1Rr4NanLu4wZc/6HQluDW+fdyXJ8A7PFCG/wBj6RBJ+CsJUAj7AYdAPq2KNmnCUD6JwPAXBKw4s2XUbZ9cjeNBa50CyEiWn5zKmxCbw8rg8bsvzTP6r9tLquUXS4iqorIm5AaI4gh/z3q8pN8DCYXDARoucnwV+l3It8Bot0kYiQANiOrerfnAPpvO5IbdB330JEjJ26749O/9ls912UICoR9OlhnUcCWDUlUarVatVpVDR0hZxKXSsV2u6tmallpGEd1prQixyZrlI/wJYUvDzsWprcEMMCEAk1BEsuKBg21IPCgipNoKpHC8QUBWgDsniI8DBLqqrNKj6kbuDiorqFmibsUQb1JjlJRkbxTlnOeOO/oh5+0aQae3243O62W3e3FcTw8PLywcHBsbIIBPIYKXq/te8MTY1sbm498/k9eeelFIU5qw0OyKHzoQx86snhYjJNuu1OyLFVW5FjQJcWTEs8LRFG+cOHSubMXYEDTaJNYUAifLQguo6XMFfBYEsfHZ4I4cKPY67qWVSwUqpMjM6BQ6rpZsARB2traevmNp3d3dzVNK5WroSAHEbwIXLfukTY286rdkBr3ila0jJEJqP5DcQ+kKDHwI6aFBUQ+5m9fqw1TAkAWZNTupJVaLBQKOdpblcGqAP0d+YO6H/RI1xXEkxsdmSrXPsx6iobcUwzIkJE0VXIhIJ7qcafXHjB67i9P3OW4ftb7PsliUHWfuxvs/kVZJVjgJGOKPgCKpXFsGXpKoKdXELNRhg0p2aw6mEGnkO54AalvkdketwPSpgCNenYRiCPSGIhRP2K++94NI507g4F7/xLJaOBd//oNEwAgXqmyvz8x6Kui7dkz2LkiApclhI+V6wF/4kO/R5UVhOL02eSdDfka9g3LrnymLkg1fmxvFDbxK/iy/LUAuc2L9P3iEgOW0udpzI9/Et03lfbcJ+qag5q47wEuFOzDqLqH9AL0X9QEEyWEhJYeBWHRKsii6HteySp07c5Xvvxlx3E++tGP+r7/6U9/ulqtPvjgg88897zr+F/4whdHxiZanfbWxsbYzPTc3Fyr21ENfWJkcn5+fnt7WzH0Cxcu2K4jqzAyB86n3ex0OtQz7ImwDrSLpiXHsaEqThIj/wNN3pWEYhySOxIhECVZNEw9iSNFlgCw70qmZamajoYmrMRC/EhRPDdQZBgwJ6RnX60Mra2snD937vDRBRToacDPz89blrW9vX3s2LH+DKSVLTMDZiyvFHANkq4qnIBpBkAZOZvAoAqQli4vsygoqLKgCNgECoWgVX/t5CvHjx3e2NjY2lp79umna7Xaww9/6lvf+tba5tZuvfH+D37oyOLitavLa2trX/jSlzc2Ni4vXR0eHq5Uqisrq7puNLe3JUlaW12vVmsPPPDglStXXnzh5amJqUa99QfP/aFhau973/s+8YlPNAhAtbyyWh0e+r0/+E8M1ued7ODhI/fff//s7OzKysq3v/2dQqGwu7v77W9/e2NjQ5blkZGRE7cci6Lo1jvvGhkbvXjxMgPYTp8+LSZSqVi8fBmvVCrVcrGMu0YVoo219WIBHU5oz2Q0TT7YWx1LIi2q/doES9MwjIsV6wn20241ZFnSVdK9oc4jyLtBKKMuhpAglqDYIcG3HHLMru9RV0D3O1iKi5WiWbCmZ+Y2rq1UKyXDNCFPkSSypkqKYljW6TfehIAE+UW2221OQcUkaTcaiiiYplkowoWNnFkC2wsh5JN1ABjYzTXWCP4/UQo/Zr8/eh74iayAhqubxtZmfafevP+d93z0hz71zvd9VAiD5sq1v/O3//bCwrycJJurq+9977uff+Zp14esiCpKtZIUu/btx4+MV61nvvM4fM2sUhIEYeBFQQi8gwIYPteWJcTMCTC4pPCpxCjhAaSWtRklLM6I6mk0M+aeNus4kWMZJj60KkLkQJbEIERLQRJVBWJ3SRwKsZ8Ebqyg3YHyidMRJFXUqCGg6gKoStAzFSQrjmzJMKNeTxajd95/9zNPfQuqZOgeEsYakisoKslxmKBTQAsmF3sZJjqw3WTrLXOw+9r/aQrBKyiJzP+3gugk2ZFSC/oUuxtD6P8CB5/toBIPF7r6EVNOYKAC02DtP+es5qhafsuBdGUfByAV8+yrAF3/hW9ylns6C/TSoDXP4F/R81TNiJ+mbWsGM+S07sEOgEzWoHSkjBk6YgICZsQLMtlOUwa0C9Kh3E8MSOMiZx3QD7ijvacayiaZN0rLUuNeKluT9Vi6F5KNAEl5olGPl2KFsLdk+sIAhTh108apYUArJDAWCzF798SRUKnULl5d/eBHPnH52rWXXn1FVVW+haKE+oeqQnOTzFZQXUAtLgg8oooalgk8EK2beS6YLTr4536PtlR+p+/JRleZQgc/9F3P12GqpclKJAOcIcCUhCvBlB0SOJUJuAGJiuYVXxa2Uxk0TwETpi5FHqD+58FTdoL5EMZbxZB5xrrZ67VabbfnhFE4MT41PTM5NTWFCJjiV9M0NdMwFelLX/7yc88955Gzgec5mqbddcft3/d931ev1zVJHB4aCj0/cn1TN3zXKxQLrS5caV5//XUWAmOB0TyB5rPhrxALysrmrlksjA4N10aGS6WKJMtBAPnF5aW1eqvZ7dqqpg0Pjx48PsPgflWSLV2zzKJuqGhcq1KxWC6VCs1mG6r3VHX2/bBrd9bWASJKfVy5AzBA4uFpzFeYdw4+t42NjZxTwZOWO6m+TypSaeqUOuOyMCZVlIR9ddxUIy3z0M3GRCp+m2H3+pmzphnpXMjg6VzF1ExtAAKUPopiYpoFMlsB5RuCEiCcEoULP02L6CmIhQ7P81CvY3MBjO/UfcL3iXmdIan4F/juDK5uqA6SbqtmWNgPUCTvCzDnMqb4E2CTCGdPcTlVRfb6lqSLy57SPj/JnedzedAcBsN3dt91YD0rQhjiFdJNSq/PDcVGUbqEDg+wDQSB6BdmCKmXFeNRuyMqHSQs+6pr16cT6WlnBbO+CkSGiuQcgHbwfrucRxQ/zzvY+y7RoJpE/uYgE7OLSqouImixyuriWolUnuibIG2V5BdefPHZZ5+96667Dhw48PU/+/rly5e/+tifGYbx/PPPP/LIn6iKvrW1NTI22rZ7u426qCnHjp9Y3VgfGZ0yNR1Vz0qlXq8ritKo7/qEo/A8r9lsVkrlntPVNNXt2YogYPyJIj+CVSlAaFhMEs/pYf7IShz4siQ5jsOSwX4UmZYFnbQotD1HjCLgohTZ9wMV5GCyFNTABLAM89VXX739zuNRDGKF67pDo2NTU1Mb61v59r+vAxDH8AiLYwkcEMyuVLAaDG3IfxkKFWtkEckANOdDJilgm4AwQwh5YrXdPnfu3Msvv7y6cvXxr33tt37717c3Nq5eXVIU5d3v+75yCRbIV68s/cmf/unm6trY2FjRArL/yJEjgBh1O1GYtNvtcrn8oe//8J/+yeelRPrSFx8rlUqTk1PLV5drtdq99943MTG+uLj4re88efvtt7908tXzZ85Wh4c6vW4cCXfccceJEycmJqZWV5Zfe+21r3/961Dzse3t7e3bb79dkqQPf/jD586dOzA3f+jQodGJ8ZdfOXnt2rVnn33edV3YL2xtOTYo1GhW2w4a1FHsklx1pVyRBFElhSiEL2BppyRPQYjtTpefx9lMIYntHkjmKeqalgVCgEhiUiwWRPjWhMgGibZKQnaAZ3hRwG28WEic0C+Uio1O2ygWOt1WmISyKhfKhViInnn+uSeeemJychKGx5LiOD3P9lgMNEki0yxAbzoEoBxuFjJN3TA4cPCwbXdd2+nil0E50yGZDaM0rvFT5xP4TCooputGZsvLXwTPjUIBShKhrweRHyazcwc+9OGPzr33A0IoC6r8H377tw4fnFMkZbfTnBkfP/PGqcVDB9ZWrzV3eobovf/73j1crTZ3tkxd0wwriMVG104iSM/B6A15AJUAqCigEJ8fPGDyJYgEZAfAEKdGfgCHEIcX6AUVKX6KtcZqiiSfRZZlYAiwniOpgqQodgX41+OEJSn2SRsY4MMG8DyqJil6ommiogvwHpZV34Q9mWbIbiT4nTtuO2qako32jpmxO7NFhkKOkCVWeKgwESD76UAtpt90DcO+Gh6XzLMV7L9ZgM7HYDj+F+gAvM3B8Vu/B0KabKRX2mcM57+ZL0F7/ch5c9//y4NMicEXEYHc7AsMYoj3HnusktN868YQIFYwTIv5+7efzNizv5nxE9haZxtbkv8apDM5m+PyHHHh2JyYrKWY9UiKsBxNiQQVyCpefaBR2k9PuYksokLGAHtlDekMOWvPCRMcTlNcgj9kbSqQg9E3Sy+jlJA6AemD983nwkRyw1jXDcdxFE1td9zZuYWJqek/+7NvuK7H5DZFUXod2zBMMG6V1GuQVaL5w2m3wGZGq2eEaZGW/gGg5CtMWMk+RAQ7dRyRDGc6j5Fo013TocUj+R4+3bBI/tLHYqoT/UBCjN6vI/IV0HWdozG2eskCOF+mTmMUJrKE1ZlpiGoWn2WVVTZURibqAPbsBYDvdh3HkSWpZJVGRkaGh0ardFTKRVOD4/3S1auf/fyjmzvbvXZHliRVlqempt75zne864H7SeS0A6dU9NbdOITtaI6nv3Llys7OjiyQuhEhrcnSMhpMnNDrLxQm5w5Imq5rWiwIm/VOu9tpNdtdxy6Xq7JZGatOaKaha9jPyro+pijFkoUNgHSBPC/Y3dna3TnTszuWWWx3W/V6s91uAgalSqZmqqrabXdS609cO4S+HOai001kzf7IZDqHgm8RhezDRWlANDiHSTiVarQy1KsSBeYLUFvaV8eNA5BuGVLSr+kmiYwNuI/8zu8vZFvTmdhPACIhUTQ5pZnvxcqHAfJVUo+QFRn1ehDFJEk3ikCSZtZUskoZjiQVi0VIr9GBLBeETF2E/FzKAdgX4HLExjd0AOAobezsMnd/n58xWk/9Qkg/YuZCwNt0bAfd3GOA54G+Y8duEGwz924yNyAuUHYFmDLLfciMXgxJeA73ObgZRNWnr4MMki7fGUARW1oqS4VrmFatWJCU1Db4N9PCP6OzeP3PX88t2BOag4MdznTjHKhxDEok5/Wf6xOA67MO2HjwokmwAoqKIqickQpCqVBAryABknB9ffWJb317Ymz8o9//kUuXLj322GMf+tCH7rjjzq9+5RuXLy2dfO3kiRO3dx13fW3TKhUNy+w6wNFNTc3EcbS+vrqxvbW+ubbbbFhk1E0EEtzcaqVcKBTsrmAZmqGokDqJhMDzZFxApFWKKoeeK8JbCfTrKIw9n+ABvR4V2pUgSaq1mmZApwvCRrLsh4EqK44PHqdvOyrEEdGcGR0dRT07E+jggsiBAwfOnb3AJON8XOU9elas4LwOg3NAeo98aQg0RREMtwvwnKXQs+Y+eF9+eO3aNQ/+gPX3v//9X/riF9vN5l/5e//j8qsvzy4c2NzYeu3UG09869vT09Mz03NXrlx58IEH/vJf/ol6vf7WW291ut1nnnu2XC4PDY384R9+tlIqF3WwGi6cu+i4vfn5+Y9//GNbO9vf/NY3v/ClLx4+cugP/st/LpfLZrFw5erSjz38o0QR3nnxlVfbrSfrO1ue5w0PD4+PjwuC8KlPfWpra+vsW2+uXF22u+2LF8699OLz9UZLVNSh4dGQXGJa9UYchKVCoVKpNJtNE67DfsfzpUQKvbBVb0VRQEaA6PYlYImJuWaXKMTlcqlYLEGXXtWsoqVrENpWJX0A6gZgLZCUknTx0vk4JEHnAKQiLE4JwO2RKLiBq1NtJRaTrt0tVUuNVn1+fj4ScIubnWar5Wimphny3MLBXteDhbYiKKoumArYSSSq54fA0kuJpMFkxuIEIIqizS3oSQAeayLjBYcnhDqzoYEXTnVAUvdKEp9k6TXEISkOZsCCV/BaruvH5SryrkSSVzZ2VzaeGT972QulK1dXfNe9+647oiA+ffat2em5paXLK0tX/tb/8HNTY6N2t7O2vJQIkd1p+1HohknHCxSICsWmCdgA4E/UgCKNH5hNsJGMGGObiODKQ+7FadUJ+AQMSWqvIP9lHRm0zmKFNATIoJbbuPhqQAGj0+Vif0FnQIqZi005B5DXUCZQA0URIlNQ9ETRElnzA1tVdMXrCokPIEZJHxuvLS9vZBEW154AXEx3JYp6yWsM32ZPVLP/6OvrEzlrsOP93+wQb/KeNy+Uf28nkAfv+YEMWMJClnduB0OFQRWWgfB//4cOpgGDZ5u/D+RgWQBu36MUKjd8PQ4D9tAkyWMhBjsWkpqUoyUDDpvseotMYuBsELswMRcbXWo5N+DPln6ftMyPP+DiVlbd452MxKiZWkAW22y+TZ9OMgFU2aK4mS9ZKvhEH6Igyb3+Qg34keUCo1lHb+A68kmQHqiqAGgAOY784jJSTQXuDEgH8g0mlCJwI0noCUkYi+Xa0FsXT/21v/7Dvhe+/sYbqqq67bY6VikWSzsb24Zh+L6P4jfJ9pOonASdPU1OwkiXFPS2kRNiEtJ+wortMpkRABtBJBM+db5NhMmmbxWjA82MAREAFU0N/KDT7dbIN8QVg2Z9VzZ00B6RzuNXQeeBDiDeD6E2NGliP0SXllFSIS1zUDVEpaE/UmPgjCiFoao0ezuB2ICGqcuH5zhxFBUKxWqtPDI2WqmWZA1AF9fxV1fWn3jiiW9++1t60dAMzTLNJIosw5giGwLLMJeXl+amJj3H3d7eqpUrqia7rl0ol1qtlkAumAnxm6Motm0nilBgDvw4jECSx4lC+tgyyzUvEpxGu9PpIOKUINYxOT1fqpTpgmGrDqLItp2tre16vd7ptNvNeqvV6HbtMAlhnRMHBBQTXdcHbwo67bIkKr4XNJ2G7/sFy8pMBxlTSVapCno+5L2Wcnr6kuLsn0ZuwJokRxJwsTlXmANCaF9loA4ig9KUQWiYNp+EGKRV8pKmeUq1fO4GRMDEpypYrIufVVMAfqA8PK1WMfMKFtMZAvP6leX6QogoaeQDwYJaqTxXXrnJaz2sEIr5qAN3wdKr7MNAivVyrVZjMVn2ZjapMyZK8vT0dEQ7MXcMUvE7aJJ08s5Jeq3oOgYgMed1xpRDgQ0+i+FukBjQhsKc9VRQARgPXLe9TQPiHmSYf06j6HEQlMXxNQflVNTHjBxwCcjmKOt9pc2KTHCIPj6Vgh4wiOnDZAfvRfoYi5EYYQbz9yBfAkID928fUz34eURIo+s7JIPb7UAlBRZjtPDQGq6gpkApi+SHQaFUllQl9lFTWF5aOnPmzKc++cM7OzunTr2xtLT9pS/+4yiJv/2dJ77yla8YplkZGn7rqaeMSpn5OQUSQIP5Rs8WSOzY8dxauQLPaQgo27IKXcuiVYDMous5UQyt3q5dMA3Xh85YBC4v0vswCgQJKH/0zaKQkGaR77kK/P2SdrvTHaqqmpIgOEv5b/RdYFxsA5OmhoQnLlcrGxurEQzZKNdFlVmYHBv3SfyR+egI9kgzCVsTln2JVNhTlacoTgIxwoYnBZZkRYEPDAaJB4D+iOzXUALA1aMglBIBwaJsAvlumVESr29shSMhRJlV1V1bn5iaPfXGm0899czHP/7xd7/73Wsrq2vXVmzXefOtMz3bffPNNy0LZInh4VFF1zqdXhQC97jZrY8MDcm6PloutdrdR/74T/3AXVxcnJqa2G3Un33m+RO33dpo9/7SX/mrL7/88ubm5khpCCbrpjk3N4clMQ492wlD/9uPf2Ntbe3I4UNr15ZHx0YajcaB2dnFxcWd3U6z29M0I46SXtfRdUOR9a3NXUVRarUhWAF4Xrlcpn5vp0gSdulwIgefNL1PRMvSElltdd3V9bXNzW3XJ01kzwN8hJTYsqVAtQwUvo8uLholdczSVVUJA6fTbrbqjU6np5dKfhApakwGHJHjOKZltTY2gtDvQeITZaySZaqavLW1sbKyZhWrjt+TEofWJyJKUuErAZyFIGFJ1Gn34iTk8gWgjCT7TVZ5rIWAM3S8THaTlzZCF1AlGwIYjIbN3EdxyJIaxoKqa/W15uTklFmwNtY3G43G1mYdiaEQjVRKju2+98H7BUHUdPG+ex4+dOjQtatLP/I3//sXHn30G1//M0jnkUKRKEuGVYgCgBJszxeiUFFB2kX5n9ARKAARLxJsqwQqJQjmCRTNTukxohZam6AGLCTMyYKaiRREYTrfyTAEFQyWEsDWxfpoVMCARAJuKImPYT8ClpM8UtAOAXTaBz+ujQsHGnEQjA4PbazvhB5hKih2ASlMQkUVEFBJxp8hr5EiZNSpxxprqnLcT2EcF7MoYgQLIzV/TPEHyIWyi/+2AXmclcm4fj5o9culX3JBS4PStLiabRmDJbb8Ub7R699TAoD8GLMjEiBKwWOKutNgb9CelO5ohNegOheDQ9/+I/alAUqU1gj3PwKvS6U2qiOi94ZsRIgVpJgU3Av9cJ8LzJAs7ScGZCKTEIN8IJImBArtZzAyyjE6dC8pQoXfF73MHF8G8FOUn2VCrE2XwYOoWkWXhdpsadks3cSzS8kRDPOPASAgWa6U25YCIfbGNGkfgfRH00Qiv2T0VlIcBfhMYl3zQgap0Ow2IM0FRZcaY7SHlirlxBNtQdhp9mbnDp04cdsfffaR9dU1UVKs2nAcw9ykXK3GgLRqoQeAzsGDB8UoNOF1qHedXs2ywjAAzkAFk4mLqYS5x6cXjdJuvVkqlXtU68JmWSlvbm6WC0VuhrH8ZalYNgzTcTxNVxzPMXTLixEJXblypVgpVyoVz+4VysXu9rYQJ5VCsddq1oplVZFcSbR9r1SqmMXi6vp6sVwql0qdVlvRzFhJEpVABpSQcMWX+o9pEYLrYBx+wQ/B8xy35/tuEoearlhlo1g0RsZqhYI1NjaiKNrT33ny0Uc/v762OTE+avfa06Mjvh8qmnrXXXcdOrBQLVmKFJeK5vbOhiorQ8PldruliNLIyNDGxpYgaesbm2tr661mR5OV3Z0dKZEcz7dtl2aMDGcS8kCxJbnX7E0aJd0q1EZGgdCNE8dxer1eq7F7+fJlzwuYOswA0DRTxYwjbhWGcaywjkocF0lnHV/T85MkkITYkiRT1yl76mP1gixfHxS6zYcW3h1OyX2o30CLk2AtGSCFcfOYEdTtTU2dONwjGShZVshjlrozNE9ZyBP9hD1LIWlZYZrfiEnMW1YGyhvMAa6XCc4mUQQ3sywVYSYWfgQsbL+GgWsHJkDiCBGzZXKgVBpQD4gjcTOB5LBUxTQVFdlCoVCwLMswDKZRFotFVQWDk1NTguYCaCTIFivug5FJDAQG9kURAkQ2/eCSLYmMwLGYeyz4qwFvRChd0NqT9SJQuZRlxe52NF1FOq0oUOVKXd1SsFmuM91f25EYM1QgW34IcScjAcOVoepoOhoYKpnjJFNmNnbu9P7kNyp7gvooc/2zu4KURxDx+g3b1t9TBQuLZwJVQMRDsmyIOqu+WsVhzbQEUe7ZjhiGSVF89pnnDxw4MDs7e/r02T/7ytc+8NC75ucPPP/ci6+8+tr65sbikaOXr1yxSAbecRyrWKhWqx7Zk8/MzKxubsBDAzavaB91W+1SsRj6AeLjIJZiSVdNIYq9nm+ZBaTHyEpCKBrlClFCYtswRoRlL/XSgDxJgPUvFvRmfVcSkqGR0TAELTiOklIZnom+L4LM47qxkBTLBce2dUtfXlk5snjQdx30POJkYngUSkPQaY2rI+V6s6FGsqGods+ZGB4VosSzw3KliN0glmw/1FW5NFT2HLvZ61iqWqnWeq22YZTtdkc2DSFJdBnyarOTE7ubm9s7m9OTE41e+30PvXd+Yebzn//8/e9699DQUBzHj339CdjDu85DH/jQ2fMXH/38F0pWYW5uLkyEH/lLf/nixYuybviAQCk9x1PDJPDjolXu2bZVLu32usNjY1sb6wYEHpQf+cSPvvjii1/608fe99BDP/lTP3tp6ZKom8+fPBWKytD4pOSHmqIEnuvakQY3OS2OAnRa4nh2YqzXrJua7LWbJU1pbq91vVjWq44HImehUCpWi47t+m5iFofD0G92XOyFstqxe1gqNcX2XAGQ2NSJNsoQpLCrNct//OWvXV1ecdyg62LZ8bFggNmT6SBmwQLt49VK0el0Dx+YnpoYHh+pHJqfqZQLI8OlerdrFZFvxH4gxlDT1jTt3HnYpUN30nFJ8QaFk3KxhqWREawEjqHgkmXLBCwH5HQFTKQoQySNTGVTWLYYh57PkSBl0anyNZdmB7ETjE/OLI8G512g6PJ2fbtcLna7HYCODD30vNFqifZKIxGFYcsUVFFQ1NHJ6o//3b9pb24cOHZAEKNjt9/63IsvXLp0ZWxsDPtFHPkuGumSJAdhqGYVJVSvKDQk7UL8MxSh04mecRQp1P6iwhwCOpCpSUOFuPVU9xeFQEIMyDhIlkMRsuUIqum4RBD9TOIIVEjqRdPeCLCQTASCxHfgain5umG2dpqV6Tmv3jDKVSlJbjtxywvPvlSAexCFc3KiaHA4TkTBDwJJlYMwcv3Ec8MoEsm+HpdahaYy78VYHLBd0LoXRzDUIRxHIqsqWR9QXKaoQQRCaBiDX8a4Vqq2ZPsYLhynLanJPS2JnJZwlZWArRQtUtRJwaMocH0XYjOUm9A6i0vDOybHhVyU7z+iKBBwpJqFr7xBpJTlVOAmx7nASJfs22jxZ8EGRprjetHizZqZ4GexUUsGncoi2P6ue/2KniSCgsvIG9O+Rzi/79kkSGI0CSPg3hBBM2MtfYRkDfeT06CBAnYUrzgP5BIXZde8LWlkWJNurlkLgMtkWQ8hNT4i7krm2cnXZtBdj3+ZoD05GD3HxWZQp2xLg9QanLmudwUadPocfKKrbPTTfzGraII8vR9ZJSheIgPDI6ugHUdkViIovqR3ArgESLLc67l33/vg5ub2lStXdF0PUB+iqjSpKOb3plQoKpIceK7TESMzFGHAruiqEioKy+zQjUvFFjHgkqRcKZbLJVEBKqbX64liYhhaIsFqKgmjYrkgCdiZJCHxHVsWElXVtnc2xyamduvbk1NTvh+WhstJ6GF3V0RdUOMoNA3N0JFOkJGQEAKMHXR6XdSxSKxXhmCvFJJmKs//mCriRC0iDAqVHjBVqCQQR6DTBaFXKJgydDBAQqiNDIuSMDo6srS09NnP/vHLL71aq9UOHjzoe87RxcOqIpZGS4cOHbrnrrvn5mZC3221GrIkHj96eHNzc7deR7VYTC5cvjQ9Pdts9V555ZXtrV0I/0e+LKme7QVBJCs6UU9FSdGNYqUyPFSpVU1Tt9sdu9dZXV3d3t5u7ta78E724jiGuCGfc1ZOzp3V2XqBJiTsTlJvv0yuax9lx/VtSon75kr8qEhqLADeEyUhv0INYtiQwW+C6i9swoSJLsbQ3qfVFjpoOJ+YYSiQqSSQEHpeVBOIKEUgIxWgoLEl8SuETQ9CLNPUyyIliGyaDurqDCDXSR0FNYj0fwQ3AkI3gq4/WuT8mP80cGGdh8VDxuJC/x+oUrSI6G/JWir9XyREiqGQMmjiZwE6E4irpTIH7pGQBInQ4zqKBJc9jH/C4bMBlgKGGRkw6VrBBLzb0OCCq6uarCojk6PkeY8UAp5Nmsr4ul7XBhmXCQmA4WYSEpmVK06KGtBsiAbcFnUYEH+kZvXYdCrVMt7E83u9HvnTp4rRisLqQJwJpMFBLEQU6BOGntmMfXGePRkYk5xppfyeQKYAHu6rJKUNhCzP/K7FK278CyqURODmkUCJlFMSMEFMqxhEcdks9FqN5asrKytrhxcPDg+PPv74b3U6vR/6wU+WiuXf+09/ANcR6r3t7LYg7KOi6J2vvdTxBpTZpzkYkuEJw5cD18u7uRSnkW6gJNiBzY1HKSvnc6TFho6p/zpdkzAmCTJZiUPftm2901Z1w9SNIIzCIAKEjcoWEaGboKVCBq+kgYZ7DRwFN2miWJEkq1BotjuEgdPK5VISFna2t2VBNMsFQSg2dnb9yJ8YHet2u7VaRVTk0dGRa1eXAt+NAl8ShNFa1e3ZcRiIgV8qlb7yhS+cPv3m3//f/sH6ylUFl1eRFHlmbvaVk6898MADq6vrjzz6+b/1t/5OEoef/vSvHz16uEvgycuXlyzLevxb39R1PaJaG9J+fEtINCBakNUwSjTTWlpZNlW907N/8GM/+O0nn1xfX//4D34yiIJzFy7vtpvlWlUrwFtaV9Wka+MWY16AUdr13V6n12o1RoaGk4htyD1ZlAxNBVJfktqdjqJZoqb00GiNFE1XFM2jngz1uHhzJgwJY5yxM6A3guYkV9tFWVD0nUZvp97ZaYHqhGVI07GcYIeD4bXA5HNBo9gK+8pqvaHBZDra2mnpivrMtRcOHJgaGxuVTSMhJkC/6MJoOVIPJUlw6qqR2EiO5WbwQFr8TSuAWT2R/z/XRKmymVZnOT7785EeWZ14/0TtT8N8y6CaKcm6cZohJWKILSASpbMvvXDs/ndaiiK02qGY9MhwY3t7V0ySMAigztdXhOSif9rdTSTwURjITDUZUPVkSQjSvjSXKEkQgzRNiPCVVqMAwkbzkBxnSM+BvAtRWKegFa/H0IYGDZJEuElCBHkbfM7IVpFKgRAblZUkFHodMQoE3xMScbRWRbeIjclIg0hRYk1lbHcCubFEUOUkJHwz8QBy0iOVo4EHo6FBqx6uWirXiDKXjG+dA57lRAIdE3YHtL4TGLl/R/g+clmFmwCp+EEGRcH5xTCbo9oQ/XEf3pyHq0zATBkNadVH3PN4oyLb2x30PrQ7p6MTIz97twzpQf3pgabF9yLrLwhKQN5J1x83IzpQ4+4GcCgssntgUhmMnjaJfkkrPU8Za3JqGpoKWDD8gNADeZGS/4DzhL7PQNpSyM8tK6dmV41OnqKyXLEuzS6SJOibKfRlQCig71/0fr+CSH7XZwX5X+27RIkAZhN9eiDGIYvhA7dIoUOSAHggq8o7H3zg6Weeu3DhglkshBFahxkFpH9wwM1ABdbt40Kl77iiSnAIanop1OyWNcToXIYMw1DXdZUcZ2uViqYpvu/vbu8gK4AKvjM5PjE8VCOsUWCNj4dxND0+FvhewbBCD85WAcpdgiYrTuANVyFDxPhXVur1XLfRaMBwhGAYkhTSogh0GG3hMg3MVHc25WqjVYpeekgoeIZ2EC4/LhaNqampQ4cOmZr+xS9+6YXnXoyi6LYTJwzDKJeqY6PDjd1N0zTuuOOO2++4tVIqs9uuIMAY4crVa063Z1p6u9vTFER5iSA8+eSTr7zySrVci6JoZ3O7VCpJqmIq8iqhjYeGhq1yMUrEzfXVkydP1hs7qHHEe7Q4NRJCZblVNu7N0lfc4iAKOMPdi71DlTr/58CPBMhbc++U1of8kTCY1CuiriOlBVgve50W7TcMaaMohP5naEYCnxzWymG4XeoIRUVphKusAc/jVFXBaMz6iv1BjeoID9iBR0rtwgxKjsnMj6jDuQz563vERuQay0kLFvnskX9aKpbglA2oO5VIwHgNEjE2dSu19kBvmGQm6Pd7XTftwVEtRkUMg/lt93q5ACXBK3BZUROUFLbWIxddQs0jESancEbv8aoB2w0QkxMhkhTYhBlwq0bHAOwLRZ6enpVlmbwa9JJRMCplft0LQDcGYCwIfB+ODQwqCsOUpoweKVGnOHPwHDICEwTL0DVZg9kHVRYazRZFpSoFPTkHEC2yrMtIi1vWBcWXySo2g9tEWvXJAoWsFXDTnWQQZnDz3+kHH98rVhVQMeSUaOXDGZDWQoZpsflGEASn33yz3W4fPnw4DMO33norDMNP/PAnryxd+cpXvlKtDDHLn6y4oCCcApFJqZylwMulgt2xVR1iaL1ez9INIYpVAxhrKjNiUFESJcBml5LynNKdR33cSUrBJhTBExoTJIEojmynK8lCuVLTdeRpYCKxBTWBiFC64AoRsYdZDC3djym05PKH7djV4Wrg+c1mUxGldqM5OTmpSLLbsy3DbG7Ug0pV17Td7Z1apXzu3LmRSmVseERTlXa90YCYjHT+/LVXnnlmtFbb3Nz84EPv7+zsJmFke26lXHrj9VMF03r9zMnFgwdeeemFh77vvVHo7+xsPfzww6+++nK73T10CG3kUqm0tb758ssvV6tVmskIt8IwkMAxwGXxPM8owPJlY2NzamLyjfNntpr1qYW5ty6cw7eQ5JnZudn5uVKtqltmuVytVMZQEEXpI4wD33Ptbqvd7ba3NjebzfrG+lpzdyeKIlvE+Pd8p1wuOz3XdxxVNwzViKLE82GmS8rRrEuXamRzeMVxyyCIOTUJ3q13Wl3HgXSkCEY3gRypEk+Od2zlg3CLY/tysSqEbs91FNEfu/2WNa9LRshSbXxUJuQLmqlxCDwY3Tg/ILAq4VlBD0E1O6XDEZEvXWhYCZlRlOydkUotpPXUhKvIe4HB/Tl1g7l2k0R6MH7INxFkcZzfMpyBgmEwa9MVg63l5OGRMV0zXNcrFSw0UV1fUVVA6eltwzQUp04jD/xcmoyMn7BhUPLM4SxWT9B+EamTPpCEH0PQA9gNhGi0ugPYhNlBuP8IXX/e3En8gJ3FUJxRodSK4o4oSyGSN9RDY1lSwlARhLDbQQ3LdUVZnpmaNIH/FBWgBnBy8NSGlijJJyKOxp4chXEMNBCJnkMDKpVooII3IcDpKqMTQDwNql2jVK1IcCfzYyzWoiIFXA1mr1nqA4sZIzSvKHONOFti+1gjUkiigCvVWeT6fFYXTmm32Z29AcB8cEBwQXvfr+d/tIfn8N1E838xNdL8uKkPwPWsYX5ClAyeD1wj5PMGDS4FsOYukimMFUqdKV62H0CD0596BNBtSX+HLG3e/munZId87lG1NOuN8C8M7KF7sVcRdeBTdPNeilt+DEb5EbgE3iAZ4Hr0855pLEi+gOBAiUMxDmRSIoSoOWwIlDgRdputY7fdNTY29sYbb7i9XqFcShsR7JmQEY4Z8tGHndA/4RUqJIEgyqSSwVAbTdfFRDBEkD7NUlkQhIJplctlDlZMU++0GmXLVIaHyuWy3XV2dnYKutbc2fV6YLJWh4YC3xupVRvtlqXJQRSqsth2bGztquT77sTEzEhtiM8KrFnD6HRa2PBIMj+TAeXslnhs7DpGMIxB7jnruwVR6DiOZqDqZttOrVJeWDhYrVY319a//a1vnT9/3rW9AwcOTExM4ItYpVqtdvvtt1ZKhcnJSVmWzl+41O20JiYmFuZmkyQxTb1UKkekralo6NP+8i//q+2tOrwkDaPb7bIKchRFu7sNGHx2OstXV1qdthOEkiJrmgEQcxzC2gTIM+A3fN/vOV26dEgzGGiWxvQUB+q6xpirfbNjMB/In2Md54WG/j4ZCN99eqTcifMnEmqF4gTmUaqmSnVyrrjHYUDdgiQgA7UwQdOFHDMGCcCE/SaxKsexc6z5oEtt2Oul3QYK6POwHg4qA2wfcHvwnECZYv93IShB5GN+FDnYp14GkW9ir2dTzUkWFSl/TCTRc3r57wPRKIt4nScfRVXIwgam0oCVb7Ye05odiiHtDcgNSIuScH2CgI58nyxI5u3UII4jX5QSR5I6SDAAFmLx8bOvvUadAUSuug7ugaIh+5hfPAjwLyUMumGVSxXMNUXmbgCyArKXTXVdCWTE7EAmLwUuXvSjUNeNnI/U/xYSXSa25KNsjdZKGkLcvcyEDhi1tW/tveE/9x35tnT9snnDJzdzgr/ZpwQJtnSIGwoAynOHWdcN9DwUhc023nzzzem52anJmVOnTkmSdPjIsamp6X/5f/6KkEhdx62Uq41Gy0fCiQQ7Pw1u0SRxXNCMUIHqOYLQMNQ1o9PpKDo6rrzB90F0oqAC698H1OWRukrq/pkPG7VroiiOALUHaSZAx0ZTkQ3yYsVob/7bOOPuEqMAtuKIvCgy8DwPmaqqgvcJJ3XEwZEHWTNYf6ytDY8NbWy2bz1+S7Fg7m5t3nLi2LVry5WiOTYyPFqrrl67JkuCIauCpkzNzX/ra1+xe90vP/PMQw+9T1FAbFUk8bXXTz733HN/9cd/4p577rn7jju/+thXSoXi1tbW5ub27u72gw/cD9eRanWHjp/7uZ/790/9dqFQSEnw5KSbrT8Yb37g7+zsQJGzVn3gPe968onvVKvVRq9Xq9VuOXH7kWNHC+USVJ41TYCSpUpgEShpymICV6ckKo8A9DR/NDKLBSH0L50/99JLL104f77da0oS3BtkRbRUgzwrkCwzf4Z9MNP2fdrRQvDPCmz9nRRUIQSBgQsNUBkYYCkSZAhlBYjbqKmGeBx2igKCWwwWMTFUPQySrt0LvUhU5OPHjy9dPgufh1oVE5w/NE0FcbBwBRZ5YuISIiYtZ/OA4lnZ3+UH0uPMKoPPOdW02xcS3ExNMcOp/zkJQPaI9hqhhlK8A+olKKbHX/3qV48/cD+BouT/+B/+Q7VarW9sjQ2PkH6RUywWCb6IDJwNxNMUAjlyP5YdPH9UYZBNpNJjVIsFjVphwzXGjVKSIMYQf0D3lqoLZLtEH8HyxzISbO4kw4tTjgamIt0GwoFEgivJsu/ahlWMAk+IlNGRIdPQ4xCercDsQP1Ihl8Y9VdZ0F+TpQi5NkJ7wJmShGhHyNXwsYR7RSeJxOfkRIwAmEHdXxHxtrIiRUG6K/ISEdJWlUQiRA9FBglR/Eh7OnKljAHAURlqEwwCojoFLyZoCPexQtQluW6Jvtm6muLZbn7sjTNv2jPI1rrvtnxzs/VcuZnaz83ow1xx59+g4TD4F2i9ZULV6bTJIPm4llE+kaAUgZCLQXKUW2W604jSUw1dDE7aHdIWXsb9ZbAsJ3QgEKUhPmdRKf6J7W/oo1IY1MDF5PfPOgx0VgNqGINPoFKb9lxy5hyDzq7fUIm8krXv6JUU0wN5wUSUvTDqdLt33Hn32trG0tJVq1Tq6/ddd3cY9yzGYh6bRnHsBoFZqWCBiEI/hJeq5zmB77oeqmWmgc5AyTKLphFF8BZ1e1HRKmAvNKOCrlet4tTYKOJdAT4AUrnSbLcnJsZbOzvDw8PdTscsWCQIg/qnKMhxGI2OjmJ3oWtgUPX96tWrnuMyWTmVyBAkgdb9HEw16KCUL8Q5QdO27Tj0C4Y5MzVdLpauXLxy6tRrTs8eqo0YE3q5DKP1Q4cOLcwdqNUqloVQ/vkXXz577jSSB1m+9ZYTc3NzQSTKfry9vV0pFWdmZp5/4VmwSK2S562Pj05sbaFMVS5Xu7bTbnYuX77MTWjIKipKUdVAMAoD14+TKHDQTORiBrIqy9QlyWy3YViTJ48ZIi9Vx9oX6EPVgbK161FAPhRI0VcFQ4ZCZWLCE2Ob5NUyOAypyQqxG4Zp4I5/o9YuDVTcCajaD+vhhK3q1F8VIccjM6yORr6xD8yTwntYnUYWIVvNj0ghKCzic2NIEj9nq2N6R5zDnj4ARPzySj9R4cEDZ5VcFPnjIPIHvq8sqXmCwWlBJIHK0ldtYLRl5rvEoWF6kaGJxhNKgs9qxjVPkAglgIlQx4lvXwbsw8KCmC4mAClNWLB2sglrFUqREMSuF4iwXuO/iaTk1VdeFDWJvH0s0AyKBV0DzWB+fh6itGZB0zRTkUtGQdOHNM1oNjphGHuBT+kt7L2ALCLfCXrCuDN25cVuhe0ntQ6mVTFDNlN3t98EGFwKMgePdLm54XK9b1377hOA71UGGlrBFAQQng+gaCQAqmbqRsHUr1662GnUryxf/eEf/AFJkp5+5rluz/nZn3t4ZXX1kUceGR4ebvdsRVF26o18ieBbnMpGKUrko0NIcN5QkVQDCZrmuNAc44ifZk1qBg/9QRJE47J/eiEJUYl9mS8I7Rak2gaqTOB7ogrxrTjwA8+JQhOcW8sg39l+CQYuFnQFNE3j0+NAqdlsqqinQ6GhVC7XW3VdUctWqblb9zzv1Guv3Xb7CUkRly5fGR4deuvim0O1StEq2N1eaNtOs1myLFNXZ8Yn7U6702jWt7avXr587MjR02++5bn27u72f/dXfyIOwvvuvuvB93/f//lP/snKysrdd96ztbk9MjT88MMPP/HEE08+9Z1isbi5sWWaZrVa/Y1f/03PC4aHh9lSml04eC7g29CSa5qmKIrHbjl+4coSzA4q5ZnpuXe9611DQyNaGTUjWknIZLVry8Ua5hlmISeniagIumBhpMC03ZucXfjk/MG19ZVnn37mtRee29hYmxkbMw2j3mp32j3dxMSBARrIrywqz9LY3LXjJSgfcpgG6foJPbpElQRN0V1MKCEKE01TCMyO+jD74mUYsLjd6Rgq9PhDp7O2tnbvRz64vgalVD9w4Z5CtlzMupdEWVN1xw90XVIUmXilaBCRG0wK6aEtmCAreYiSOUilQro5VI/BHoNTkpE0N554N/1BHmX0QUJ5/SJjXbE+GZWOhGq1+shnfvfhn/2ZUy++ePz48VMvvzo1NbW9va2qqu2jCQmmeRirGogKkqRQ4kTqcCRAQMEs1W6RKLLITwo6IlR2oiZImyYX5bUAAQAASURBVIjii91ASiCkjhoPUV/5KimkuE6dMaKSEb6RxUUwFVF3R4hHduEJOjko8sbEepLjxFMMwMwo6EZ1UigWKiWzsetKAiD7lKlnmB3qksaSoEoQVgP9lDTs4hiao7R8khsZYZ8JfxNJYGAhS+HGsIpiD84OKsXE/YMnK0FnGY/GEH8hhaYhxyLuFdyesnyP1Q64s8y8CAJR4YYgskvRVgk4/YMN1WwNuclKvLddsK8DQD2uNPdgLQiC0t/0uC6B/K4Tguy4qQxo7ti67wMIWpAG3PQqZT+ZPy/nBZnGSH7QHEvh//0iNzS7qL+PZRrzDblj1ppjSEwffpOm6bibfW07xmJDrI8sMAeSdWYQ8mXNlhuWReQkIXMRZUhXOuxT0EUKvSAFEy7RpTVUJkRztZWDMHqFJIqwZZAkVgq4zVialAZAiVOSe3a3VKocPLj4zSeedl0XDlzUBM87AIMHcxy9wOPSDnJT7JGAO3BYhGSLac1xQhaSiu96Ts82Td/p9gqlIuh6VHyOPNdS9cZuvdNomqY5VK3NTk3W6/Verxfqit2qi7HgtOoKnHJgT4K9LgojKdYUaWx0VNcgWcMGBYooXbx4kV054RojyiEcLYmiTgi5PIzO7xHXzjNFS0RCQRBoqmqahXq9cfXq1Z3NrUZz13Pc6enJd77znQ899NDB+YO2bW9tbDebzVdfu1KrVaIkHhmGteSlyxe+8md/du7cuR//8R+PLGNqckbTlSeffPp3fud3brnl2ObmtiShNbGxsQG7UCVE6B/BTkE3TPSsA6qQpX5oELg0iiXAVOhgoVWHbhuX90AvzMv5xAFybJv/nYtOph1tcjXnCdB/RIWevB8FyG8ySZqDaVXWOAQXoaKAQDznAFDPcc/riRjrqsGvSArcB9icCeE7ac+jdIKSCBIADvcJg56762YJANyRQBjOMfqJlCiikqP580QlS1eQ8OyDAPH5h37ECckgkyEWIrvrREkI3mDkh37kh14UxFESurYXJdCQQl4QJmGMOjmUtbHODBRLsvlumnA+zl5LWcKYhewKxLr2OB9E+NgAqFxF5Gi0EqI4ILHeyNKBScObyJKWBfqJKLqdTpZ2kGQ7l3YkoaBrkRQngd9r+b1WkyYw7t9br79eLBZrtSHIVhIFuVKpFIrlqck5pF6qTnwPr+fY5Dzqm3ocRKDfBOhhs0MLrjVKmkwCztZQxm+mlOC9R27f+10eXB9/G6TpzdKAG7zVTRID2tqoTsZwI4R2SKpJsDheWVmLPDcMo7nZhStXl89fvNRst37oBz/xne88tbaxVSrVVE2Hj14Q0FjtW+rkdXohBtxfSgQo/0gsj6xUy5UArk6kw0oLCaxdabVhynVO1MnzCuYMUPzUb8cRyT5QgS5BDgChtjBSTUkvlRuNBgVaaXMYwSo0YaVarRb4PqBNRHfe3t4uFAqaoWP1U7F7clug1+6oslIsFJr1xrHji+fPnbmreGerWX/5xRc/9vGPbK6t3nLk8OVLF0cqB5x2dyteMzSta/c+/tGPvfLCC6auNRrVoqn9rf/9H7340nOmbrx+6uQ/+Lt/d2pqamFuHka07fZP//RPf+lLX7pw4cL09DSaLLZ95513krV84cCBQ9/61reQA0AWM2DL8cyAL507t95+m6Rqr585c+vtdx44dPA973mfKMiddttotgvFEpT6YNGiyWZFiAKU52h1wIAiBwZBEkLHVqDXVsE/o2B6bOzD73/oPffd9Y0vfP7q5Qurq6vlcrlSLdk9t91ul0olCK5RXZmA53witIVSrpbPa7p3oJRkXRoKmSGDA7SxrhVsj3Y4pArQ00yxxIJoWKYshiGhwer1+vQcJImurSz7rqfrusBNG7rzLDIGLgdk1UiSBjwqyF+CNc0QVZY6AQA5iwy40ojnwA3kfVTa5q7nSu3hUA08MnjgBlPshvOadhlOQ9LaE3YYaA/DiHptY+OtZ5+9/X3v+7PP/L4oileuXHnPe95z8q03PDegoY1mVBwbAXS90uBNHJR6I30wrEG02MgsVpNqdTA6ir8dCtr0U4TTsqBSDkY6flyjQtWSXLdwNUgHPRbAPUlZs+gEpUruIBxQVCXBwFmMQvCvqQuH3CAOJ0aG69tXmViM1RtnBJQYcXJR7E+kWJGTSE50GS7QlE0BUi1iiILbQHkhgn6o7KqArgEUS/xDDQJS6EqhxiYmCnleiSG3oGL8SKASdlrUZ7QKsES8jnIEg/dno1VuN3OFk/XXE4ghcFF7cBV9mxX7zxUCuoGwW/LndAC+SwjQTTsA5RIQmdcfKX1q/7tLQCKkOtz47vTItz77ncy2gPYiCocZgJADbygr9qlCAJLPYEAP/wzwSbgoyLkpya2kYT0HymTFS7/AnSuuIqRdxvS6cKVzb02NOgYkTUXeAURbpMUuJuMwTgdQHiDgGhZBVgLgjRUtiCyZSad0Pu1z+jaWuixAJ4YoYkDSftGlTs8+fPxOzTBOnTplFCy3Z0sqy4f3b3OGb8IBWDn9NNdhlETJc1xmmXDNDBsZ5HIjUVECshTQZKXZgY6eoWqarnTaDafbObJ41FQVt9ncXl+7ePr05OR0EkZbuzuapu3s7s7Mz+1uNcYnJ7xeN0KRFXh9RZFKheLU+Lip6ZGQWIbJjdRzp88wHMj3Q7RouQNAs2QwVuOvk0qmZLV/3owNYP2kXq93bXm72WwUDHNuduHELbcsHjxQKZVefenV//r7/2V7e7tDhx8GhmWRDFWi63oSAd7Tc5xf+IX//Yd+6Ac//rGP9VznytLy8VtubbZap948e2B2ZnV1PQ5Cu9Ndb623Wi0T0Vqh3e6QIQPuD5YvWvWTOGk1m7JIei4STM1xngHAV6DoEQk4b1xwTJTp6O+dUbCQBORgj00sPRYNPQ/oOXDnsF5TdBiHQWGCfK1SlgAjNgVVUkUF/8sps3EQC7KgK7qsyaqk8uswZw9oR8MqjN4/PovSgE7bZvuqXJmex2rgBgwc4lA+7zPcQAgYr1MgThtfTv/Nn9Pv0L7ALlh4XaxNjuck4Px/sRgbqkFhf+yF+J8buDGSBITDjLxKpWFdeCFFUdRut/upf5yAx07KZ+xlwY4Eg74EPafLXgTsIEwpAjzKPMdmFhdnEIz/EUWxoFncrwtj4HqRm5L3lqiBL8Za1CT/wNm56Paclh90mxAbpRwSYC1V1eMEiqXjk1Pj4+O14aHKUG1sqGYWrM3tbUjfkTgFEssoDJEIQb2XYYkpsJBX1VzlYGD/GBRP+3PX8fy4KRJhsNY4+ORmCcBNXmbMFuN08zyBEfCe3WvWG0VDHx0Z7/XsZ55+ttlo3XrittrI6B9+7rNIyMNQJgHcdAdhslZObAgDz+7JshqLgmWYjue6AVZI1/csyyKdEMQGyDSSWIKWCc5R0QB+YFfpFLdD0xNWROgFYEYhH6WYAIYV8DOiIaNAoT2OAjGMVUPUFCzYZIaRmSiTUP/o0DCKNQbkRwVR3NzeKpSKgCqJQrvT0Qw9iZLd3TpqsUly4tjx5WuXNVkJPf/CufOWbuxub3fqTSlO1tfWDE2/emXpyMFDhqpYBrol69dWV6+tiEm0u7s7OTHy6X/371577ZXpqakjRw5PTEx89atfHRseefPyqXvvfeebp05959vfvu22286cO1epVI4du8V1/a9+7etf/OIX/59//x8kWYVqJqq+YC4j1kJQhe8oJmGrA6V5SdU++fCPLiweNq1i03WHKjXFLBhWCaB7cEIjALZ7bcFSJL8XA6GIskgYII8yNAjfC0GPyZiCKuuWNlYYF/zqjz78qcce+/LLL78iyJJhGOhCQPkTuGu2RGBWJie43HLCjk/l2NThSAzFMBwbmygVyp1OI0HigHCOSsxUqyU5Esoh0jiVim3gdNc7ni4K9WZjt14/dsuJayvLnudZgZ+Ae5MSP6idrrluYJhYbeIo8cOIFyYObCms40Z/HwjA0CBCLqTFYs4UsspxarydNvJu/p/MKPPrZ+PNOgP0skQl99RPXQLyqWu3VUN/8omnNq6tr66u12rDYpC88sorasF0Ax8JXCz6WE/jAPA8NuGhhnFGV2SSvSyzSSLxKgjNwtB2IlknCslQQ4WUqvvUBY6ocIGTQV0vhcGk6bQM5etUoAa5A4UqaSwQZ2xhcGmxzSVhKAtx5PZk1RLDUPCdqcmx029dFCGah09AnZ0jJiFR2fNEljTIX9DpUNuRoP+Ym2RASSFQZqOB8xEGbjp1eZDTc/MfJykBApZRLSISjiGWLZpBtI0ytInJQzT+uC1N2SRxWrF2Y1+kv8Lg8VNPqIyqmkGtbrpO35gDkJXvOV5lpaXMEeb/n4di29w/2n+wnNx1CQAGATOxcLcpIqJ+KdO3ODDiiJxzKvjIc9hOzp3pxc1jaNpgCb6cbgKADgx2CRgumwqHZ4TgLE/O3mgwCeNPoGGQw3gGkMRpspKXOanbS+mywhJRpJaVGuemiWDakWODJEoYuc818JgCelkDhDYhzCnUJJmYhexCcmz3wKFDXhCubmyUSqWdzS2o3xA+4foUkFqiKLRDyY6+deqQqgjgF8CAR4rkUAqwQnPoWayUh4eHx0ZHE9ISBQPMcT/1iU8+9eQTlXJRV2pj1aFWvXHy5MlqsaCqarVS2tnZGTo0v9toGZq8fPmSoMjF6kjgu3EUSKJSKFjDtSFD02MhsXRDFiXHdVdW1ij9UOM4gA8QpGfIJDzTbcxB2zk4noNonpmMU3Qcp9vtCoIwOTlVMExRSF579eSLz7/g2Y4fuJIA10zTNCcnJw2zsNtsEEQ9sbvdOI4dx7ly5crCzOwrr7x6/uz5d7/nXfff/66dne1f+qV/edutdyhCsrJ8rWCYdRzNiYkJzw1WV1eLRcirpagSoi/DRCby0ZEYgCelKED2Wu7DLliCi+CPWNEk2EvJYKyKiswSnAUDgTJk1BQ5fx2JbwhqFNXrU7FOfq7JCj9HLTsN/nFuhoEbpyoKbjzRW3NnX3jtUtQJMzi6slEce2FqdUwWpGBvUSuA8GMDBdH8ixg19W3IQzkUZ5AeQ1+8X/vflzzkfQx+PQpAHoyC2A89x3O8wOUOAGsO8e/zu2Fzo3VCFAUTGBJVqlRztgGrJMVh4gWua3tdu+Panh8Eu+0mD6MIip3kSEXX1dJMqtIJke8RXSzClZUFUzfIsJtRmwwXwneWZY/bVkwMAGpCRaIVxsgIaBviRmHa/tah64WCHDigXB6CRj2KAs3dnd3tnTcSdG+Gx8fn5+dHJycOHz0SU3UsiCPPDx3Pdl3fAw0+k3Gg0CbPARhwwiaJb3PsQ2Zef3yXpaA9nK4bHTd5nRQ9iLKVjg3CA0uSsrGx2W40fD80qrXJyem19c2XT77m+MGnfvQHtnfqX//a4wcXD8uS1mx3FUXDXGOUW0YAYDCh67pJAqx2rVyzbbvX6Yqy1Ok51aGa7YKMqxmmqoNpTaYQqd4S00JZkyAKiJgRRkXTAjdYkMDldoVIxIIGExiZBEpQ/AQRNAmC0HeJLUI7PXbzOKKJyTOhVCoFjq1YKVeh0+nAxFdVzGplZ3e3WitLkmhouixKq8tXC7reajSvXlkqWoXTb7x57z33JHG0vrp6cGH+5Zde+Os/9ZNPfOMbqqy88fqpOPRlUTp9+nTgOOVCcX52bmNjbWp64sMf/n5Flu699+7Pfe5zExMT3Va7UChVSR76Ix/+/tvvvOPy0vKJE7ddpOOf//N//qu/+qsXL1xePHKYfDCIoElC9X4I2JJBq/TkxNTmduO2u+cnZuYdGHVZgiA5MeBNmEWeJ4aCZhX97cYrLz134ezJdnOn0Wh0Oq1eB5JosiIBblQuDQ8Pz8zMLMzNzc5Oj4yPC4YhxHFlYeFH/9Jfmpya/ebjj1++fHl0dHRoaKjRaOimlSvopFIDlAFQfTsFh/cxfmE0NzNbq9W2t1uk+4SZEUZwmWReGQrWffIlJonnOiO1omCIhhx7vn/xyuVP/cBHL5w7e2XpIrMgUMHOBHsTdKo98q2B9TV06yiCpQ0V2LvMMJ30xUlzBTENK/+khka5RhB/EVK7IS12/AG9cv0jf2suOMb7HuP9+ml4zGQkETNn7nJIxYTE0PThsbHz5893mi05Sur+9vTIeJwknhBw5hcK2FtRKIElcYiRnHZL0g5AyoEkJWEqyqQ63eyeGiNXIetfnudUSkU5H1kA/Q9EYeyDSkytcOZtZvIG6ZKS5nrErcCKLwvI1BEBoUTPDBzfkxWdBBmD4VoVqnUkCo0UgZZGiucIHZnAmZjaEAgMmZemoX9HdjqqYkDSDf1bukwpqpwUWBAtUHMXBUpStIBKUqrPEgGEiiRTQCpAOvpiiLwZ2yd9C3QkONynVR5pABfmKGRF/YkQhTI2MXDL97qvXscR/Z6O6/nlb3P8hT8lP7CSJjc6Uq+TATQzg9MIWJuT7VLc8x574IwiQ4/o7/VrWllaBJAWXU5WHqFLzBcODrpy9k9OshguGxNpjBouLPOZAfJT9R6kawOZA0OMMj+gFGhLu7rUh1sNNlxcv2/0078NSUyA0j0eqxyuQcmsT62kHAipJSxxaF5EMnU8YswAORYV23EL5cri4aPXlle73a7vhfDecl1FNUVZKpeK165dK1uAPSQRIglJkkZHR4MIiNjl1RU2iZQkybIsx3EMXSeBuVrPseH/4qHv6XQ757c2l5Yuu657/Phx0hFKfvEXf/G973nXE088US2VTxy/JRGi+995n93tPfvss1NTU6deO7lwcF5VdVNVOnFUKpQURd7YalSrVUkUbjl+vForj42PrK6v8WW5dOnSqVOnJqdnmaNMEwo+NkIoQi6HaHyM3kYbmtLEvsUVzT9VlnzXgdRmCM9nt+e6HQdWjnQ3DAJfpyFREPYgNBGigF8oIBEKEOZGQTg7m4zVhivV0sba+je+/vifPvIFSRY+9tEf8Fz76499KQ7i3V4jjuGz6HhBnMSlaoWdZQFXoSN35M32oHQAs0U6Aj5DzwEYqS0dj1sNhlm5/gzmjwK0pCgIxVIpCkPHdQuWpRsGRFLj0FQZ0gMJ+6xCDdlKVvTn+jXvMKlYYYT6Nxw0O53IB50UMCQab61uJ3A9s1gAvEGRJ8fGO3bPdpzMK3bPcpDP371W4YmhpJIme+d1inVWFMXzPJOOIAC22HVdslmQVUOL/DAAZxoWmwXDYiIvAEkESyKyr6ArmiCLGqzrlIKplysFTVYFWdQVLe8vMIGYnguhG7a6HQF4/KDT7ECfUdETKfE8GzVJCu9r5dLExEjRLKoGDBwcz+v1HNvuOo7X60HYynXtZrMdAoiP7ZJ9eRMBmqc+Oh5YRghiriE8inDfYUuv66IAZk4SQNWeFj1P0xQVllCKiH4ke5wD39Ihew0Fd5PF/iFrJUiiZhhgODCaOQx2NzebOzuJLL304guLh48cP3HLyPiYJKu2Z3c6vXavq1AtKkXEZSh8TvUzAeUU+ZNnX98NYic/UNIc+M2bYX7673MTrleOSM7XQ26FUJsUryJ/FoWSBVLExfMXvvDoI3/tx38cKrqVsizLr7762tbmThKLP/yph//tr/363MKBRqszPDxC35Tk7Oie5PrCvV6vWkX9ot3s7DagxquZRhQHiqyOjA7ZjsOcqDAKuo2upKrlMlSbQLzwbSpPawr5JYqKpVgI5Jv1BomOxYoqlYuW5zl21wmBVQumZmdefPHFg4cWkyjZ2m0eWFws6JokxPXGjq6gNqGqiixJ3XZnbhYkpV3HhsFWbWhza/PChQt33/8uVglLE0hRajYBFSuVSk8/+dTBhbnzZ88iDq7VTr/x5oc//KEXXnxuqFpZWFhYWb4W+P6FCxfm5uaSMHr0kc+potT1fF/1L11aP3Hi+Ic+/IF2u/nyiy995jO/xzSwXs85fPhIrVZ78jtPi4Lw1umzSSKeOXte07T73nH/Ky+fbDbaUzOzrusz7JtWNgR/EmxAhI5ra7q+ePSYH8WlSm16Zna31e503bGRCcdzFUlxvbBklRIxfvyxr331C1/a3ljp7qwGAZxP4EkMxGZWFKAtXtM0ywDMf2pq6p577rn9ztsXjx9WRyYe+shHdd187EtfjsJ4o74xPz+/22iKokS2cbKmGq4P90fY5QLoL4uyCGhciN1ZVwy6nvbf+Kmf/F/+4S8aKlLuOBZgzgBxIfQPc/n2mPYcRAOETUKy50VeT7h0+YoXRO984MGlq1darY6uF6RE9Dy/WKmoqlooFLZ369VKmigCagA8ImRPic6+J9fNjRBTVls/MyeIC5yqKAZAFsFMrr7b+r44gUsSDC0h2PiNHrm6RLE1QucULsH2u3xCxFFMku2NzUqlkiGx1Xq9jrVCU2RF6/bgcWYWix3bhiYs9RrpjfqmgjSB44CKpSBrke5lGmvhLELSG0UKSd7FaHywiTEZHALtg8RJIlQrwFK04kEklM4bP4K9CqHoI4KlotcJ2VXIoIBe3mo0iuWqqii9Rr1Qrgi+Nz05roCSSNbyYYhuB3VuiaWAHiwR+VFKUyQhlMQAdGCEFmwLo2Y8Ui7XRDQkyGSWmzlx6HtYu6n+zLgo2lGIUwBDAZGUNXHeMUJRsi2jK5Paq2bQH3JIYOIRUUeYXUZFm2yh3hO1D2oSDBraUIBBOLgMr5hLl3HhOEsi0ufUveizC3LS1OCy3B+3aUWmbxCZL+wcj/E/+6ai9IZ97cJ9B+AWe0mNXHr3XDj5Dp5EBkVKK9kpGCb9aeZZy6ic7MxkQXBJ4JLxZ31AvxjrCiY8X1aGYfFfZelX1r/KIrMo4ypkr6RnxeEv7Yjp5cvvQIbbw2jfp33OMAlyBKTHNO2nkiKbGNAPUKEPg/TeZxV8utuwCOMEAIrm2DLVSIp9KYoE1TALZqF0+uJbwL+RDD/bEmUtkX7hXBCEcrksimKv14vj2PMgls/JLvt55W5HLFQvEQ6Vh6ulQ9ri3LlzFFiEE2Mjp06d2tnaXhWlc2fOdtttQ9Mtw9xcX4esTRLavV61pm2ub0zPzly8vDQ8KVuG0W42FU2+87ZbFUleunyFVdWHitXP/8mfDA8Pi5SNwJjGC6g9lgVYlABI2VAbEGLux6C+jyCeFVQ4wWPOva6biirpFFCTl6bItitxIjY77bW1tcD14E5AEZgYJ1cvXg6CwNDVqakp33GPHDkyMjLyp59/NPDJPJAhxbTcI1IhFy3btu0OrieJwquaJAcCvshgjMUKkpIk2R14HXBCUrTAx4DKKpSRBhwfByrl3W5XliRF1wuFgmEYfCt1FUkL44h81+uxciS1GvJHvhpcwofmicoyi6ks6WAlnrtAarsdRVGpVNpMNi9dvcYCDhyw5eezT91lEFXSyubdnn4lfSPf9wGfpWiMRfGxzWzDAhnhsiaH1K1ifZXBCvHgAlcqla5/f5BuLYsXblLdgYwVG3jVakNSIlZqFdYx5Jmb29zy9eF+kW3b3W7bCwNFUy2jUJ0Ys4yCqsPQJhHjcrHSc7qdVrfRqjfrrUYLqoI9x44S2UWeQFkC3CgxUCH2qpv4yvT+QiKhqkuBfwjjGT8SA/asoG8BFSM4y8Zi4qPrgqwXPDNNVES72yHXZkUGnE+CDksE15rtdb9Vb1w4f27+wMLRY8cnZ6aHK2VFURq9nhuCdK7R13Rp2uo6MOV5tJGv34NOZPue/H88/mLvg7IZGUZzLxbhpu8363VFkrtde2VldaQ28szTz83Pzb155rSiqbcdvz2R5FOnTnV6zsTEZOBHnU6nVJHB3SQHYr7RkC0mo99Op9NsNn3fB2mHdEVxEOTdtIq9oEeObCj5dzodFu8yzQKKnbgnqC/m5aeDc7PlcnFrc9N13dXlawsLc7ViQRSF5eWlK2fPHpqZadXr45Mz5fLE1traxMRE4PsFSCui/chd7CSKUYLBMiXCX8I03zp9rmP3KpWKpCiElECNw/NcGJv4fqlQmJ6eDsOwWhnaWN+amp4YGhr5+te/8ZHv//D58xe7zYYhq/fcfd+jn/2jd9x33ysvvlAqlHc2N4REKpcrnU5ndXX9+edeXL62tLJ8bXi4puv68PDw5NhEfbf5zce/vbvbOHDggB+04Z8V4TKur68HQdCDs5VCHghSlGDQIsBJxDBGSqnr5oHDi82u/cC73mOVi+ubu8MTY64XNFrNSrnmu4GhG1/56td+89/+WrfRqlWq599807UbAjCQhI1AH2TA0zSGUJCqYpFRTl9+6fVzE5PfPHH78e/7wHvuvfueB3/gE1GUfOvxbxqGtbNTRyAJnf8Y7iRUjGC9QQRqxOfmV1irIwi8er1+6213/fiP/fCffP5LqgE/dc/3yqWC6zv4UojAUP5j7qogJqZmoTrkR5WCrCtA9ey22oEfPvDgu956681WG3JAgixt79R7bijKCjw4wPlIBz9DkSnlRkK7Z5RnCUDW1E+hMqm+DP2MhCCEfY9su53HCZkOOQclqW/q2z8CpkLSCilwhs+EkgjAYpiczCgquh3Qo0sbHQhjyKAjqyzgb9gNnSzy8qWeirigA3DgT0FjJqJP0Fjq2UgJKXgS6B+OwqSJn2+UCJHpkWLhVIN9oAPAc5B6DEweI64+GhzkwUYfFQsimtlcRM4W/IyuQ00ATsBI14dl2hM5Qd1YVkTC/kAGiK4IVfZCaucQsIm/G70PS+TTZAX6Fit3FGEcEuVUYAW+zCWTkGZxmFBWT6rASDxSygSgRtwuIYtbMt/E3FBT9lnGCM0kOrinH2WQNeaI/nk8gLfp6w4W7NL0gB5Tmwu+bgMbbr5f8D8HneMHodoKsr60TbfnP8/p3aADQFhCyk8ps+UmdpqupNypDGyaaldglUQbh1yic4Yk+cYOoIColY8Zh9IdoL0DIv3MiM9KsPStSDqEkm1GFtF7Zld2gATMXz2DMWTgo1Tod0DwhwKmFIxF6RebEfM/yWAs3TL55PFPWdH2dXzwiaRIzrJU6W0QVRF8dC30xHK1Vh0aPnfhfJ7Eu0EajQ3eufyAJW0Ldjl5xob6mYaD+zYcdqfOu7I8MjJy9erVbrfrBr6maeVyOQHmT75y6WqtVqtWKkoijo+MN+o7kNMxEb5EUdRDEbXd7XYPLR7odFvrb+zcducdhqaUqpWhWu3woQOO55WrFUlSLl29/OSTT46NT8IEwA/QHYwiEVk6Y/IUDuxEMG/S659nwLkQkG3bhIkGXgWiYVBlRJXBd3zXDps+gE8kNIYpC6CmCh2QibERIU5c13UcJ/LhpffAAw+Mj411W+12u727vbO+utHr2J1mJ/LJulyEP18YhQwrJ013fCLWMlI7CDw39NEEEBH1SQAHUPSsSrjAqqqOHzvaz+Cp7OR7jufCWjLDP0BICOEedZyLxSIb8MRC0m17juMEYDrK7WadE4A0mskMp3gXvN6NDglJNnTzNAMJiW0Xi0W+mAUKNQzDWLp2jadHf7JkTAzuAKTjNnvCkND89cFRR1KziaIgbgjD0HF809RqtRqZC8Zkh5QqsfDYYzWkwX4lP+afOzAZcTDU8PqOhCRIYRQXLLNYLLKiPNOvq9UqJ2CFQqFUKlUrpanJcVXX6PLFoRv2vF6n2eg4Hd/2/djvNrt6QR8qD9VGa3OT03pBVwRg59odxw1CSh667RbiS+jAOs7G5jbPHZwhermh6wVJGJmGlqB0jGumEGmbF+7EJ5s1ssBKJW5JsLBgWqAtsQ8o5OGoN4C9SrA9t9Oob62tri4tHztxy5EjR0bHxxVZa3a7PcdhZnisIqPIaTPpRdmz4qXLy/VPbrKJ/Pkgou81lxgYKmDREFcPPXg5gZGCbduGDI6saZoXL14sFEob61uu63dsZ+HQ4s52/a3TZ0VRKpZLqyvrIUEyRFFWFKiIUmNd0lVMuTAI2q1mGAfEqHfCJCT37kS3TMOAXnjgh7KMBBLTwXH8JJBEIwp8qhdCFkSVFSIFQhvOt3vfeen5cqlkmsatx4+ur6wmQrS2tvbQQ+/b3NwcGh155dXXqqYZCmLkugVdF8IwrtWWV1dkSYyCEMqXjjMzOcX9ZpBGCoUXX3xRUZTRUVgIY59TwLV1HAfNOsfTTLNWqXQ6rUajNTw8Wt9t1oYqhw8fPnP67OLhQxfOnF1ZWZMTYWtrB5X7ZjsplLpdu1qu7dSbnZ7b7fZa7W6xZB09doskC+vr62tvna5VqqIoe0FYrg6Jsmq7vqaDixWGcafTQ5QvqXBdilCgDYMohoymEkWCH4aWplvlytjUrFksCZrheFG1NmQZJcduVMq10I+Wryz/X7/yr77+la9NT0w2txsvvXpSBkSEHii9SVcngs8hmIki2DCLqAz6XX+luald3Xzu9de/+dRTH3jo/Q+88773vft9lln63c/8jiBgjUJUhVIayASoqUKQHUBBDCEuIZN/ZeD7UewfOnI0CJ0f+sTHz104v7Pb2qk3fdcVpSgMPJaWpvCL2Eo0DuM48hl+msS7jeTilcubW9uHDh7o9TpWqRT4UaU6pBtWpwfkmFnQGX2qUHBMOjcphjkPXfKj7zdE5fN8x2dAA0nU3+TIQ64cypvafX1XcA5GHafWLQROR67N5W1E9kSVzVTnSU+a/inLYSwEEDfF3Q+jBKL5FNSlJxMDgJrGrqm4Tm5CTpZaBLcB5odgS1TLR+6HvyJaNDoGxMyVgP9JozUCT5F7AHlVEiMWuGqERpIoQ2oXuBvi8mJ+RlCaIJvCiKJBMnfRdaCLQ6Tu6AIQ91KAshsF6vTlud0IaVCV6uKcM0KwhGShCNzPXu4hZ5t0AhSss4w1E31TiSAgPmOAiEQfQCmRw8JIEGUFPD7iAhC5max5SXwqIx9RpkpXjHZqIiKgGwEl8VRViHLvLDSnyj1cmAk1mUrSpHDHfrCeCaVQEoE7yoQUVigdrKP34/Dsn+njvu4udxKuX8BvBvXEFjv4AfvyjP05QIwoIbsrLFkFj4bsJAbhQBSXQ/+ObmOqrdOH1nA9gMr8PFtSRfM+3zc7yIUhBUikrzM2Ix1tKaY5/cOMc8NvMji5eCYSmo/nuDTofZypBnHmn/sC8m6c5liDMTrX4wd36Iz/gKQWiDNuXJKvSSxpXsedPzBuWMXLl5ZkGSGUSI+ptdmAkQ1fJejNqapt23hHiJchJAEik9YgLo52u90wBi5DluEBXi6Xm83m7Owsa1SjSS0krVbL9b3t3Z2NjQ1VlGqVqtPttZr1W2+9dXxsZGtra3RsbGt7Y3R01HXd+ZnZjZ3d+s6uJEk/9EM/oIiC3e25vsfV2d//T7+ryUqv0y2Xqw7M4gNZhYysDCMPTkwoM8maVvvGFQfBDMXhbZWUEalIgMhPD6FBlMLxadegqSHaHbpTsiyXy+Wji4ePHTk6MzOzsb4uRPHK1WUSPjI3NjaWl5ftdgtrNBUG4hgQUtd1udvgEUrKMCCQ6tlO4PmKLBu6HouxpuvFYtGyLIOSDdM0NU2r7+IicAwKl1nqwEAXPKTUJfOKykfF+vo6vI0GDMXCMLS7XYCVqZvElFxqkhj7pDkHfXkV0QRIlWoGeUVBFJNqZci0dN8Lw8hXFd2yLBiljY1ube9myBFa0ZK0IQZtb9rkcj9g/iyoD1GtgrTPRGBi6VMUWWNnaWrFSoahlktVjKhd+Cpwf4mDfs/zwjBO/cT2thF4WN4Qwph3JPYJJBetYu5hx8V+VmRqNpt594YD7rTBZVmqrpkmcAjlcnloaGj64CTs3iSp0+lsb2+vXF0+b59l6zpFUQqlWqFUHB4aPTg/ZxhGHMc9INACx3U7nc7m5ubGxmaj1XRdN4TEfQKKDUjHJDKDshNKXeCfeB4q/TLyW3KZhxBSEiWO12VQE8BKikJOw2BqJ5JYNApJIra6nSvnznV2d+3d+sKRo9MLhwq6KYKJGMSCaOmGFwYuiZTn7nJZoSJbua6L/t/uuEl4MrhMfU85wD5UJLc5RSKDKbQMtnZ2Qg1WfSNDo5//3COf/MQPPfPU00KCa1WpVE69+YbneePjE3bPtW2X75RPujqs45zTCVg8lvIxCf1VSrt5dAGfBuopYD7s/KBRJRgUGzKyVAD/UQ0FNnc0CkNNle+6/fa56ZkXXnzuytmz7U5zeHh4+fKFU6VCtVo9eelip2fXi2hvVUdGnVZLSERT1WIfkCRUE4NQTIRDBw4KMfpgcApTlRdeeGF6erpSq9quI5umIGNG8Arjd7qC6wpBxBCsZrM9NjZSrZS//vXH/+W/+KXPf/5RWdXX1zcvnDlbrtbW1zcmx8d2t3c0o9iz3YJljIyMkZ20UyyUVd04e/Z0qVCcGJ+an5+3u87Kyorvh7u7DU0zggjGq9yflyXVspRYFFzf0zUDnhSSqCKgwaVUVLVSHVINa2bh4PZOwyoVdSe4cO5SpVxr1VvPPfPsr/7yv3r9tddqleqFC5eSKC5XKo1WS5E0wnhTkBPL0NOCSk8sy1oInLmgR5gACQG3Ein2uu3G61fPnf/dxx//9pHf/d17PvCha9euPffs08gWkkTVdFlIXCgLJbKKtQXoH+L6ERAzFRpJEvHC2TOWZf2Vn/6Zq1ev/sF//kPDGKsOj5y/cEE0Id4SRmASUXMtChKEIJqM9Y5dJ/1Q2NrePX32XBAEt91yNIjipaWltY0dNoRpdbob65dYP4pXbIXCvSgMYkllFN5ezET/KY/AlKnCqByGI/1586U/a95mTl53kM9JygFIzciyBICJScyjyLAqLFGYldgiQFXCJIYRAJfrc6BESmnNisHcLia3GdKJQwCKdIxoiyQKwaIqVKIia2LY/ZJ5Wgx1KJJloZI3F39Tv3oq+ENEJI7ISSNz16LoNiLXoCgMyQkxTZZME21Yrgym8P2sPpThSShAyIXc0+UCGyVSBNi6goWYGmGmzQ+Kgrmgiy8AUh9XyQAxIn8AtMhIU0IibRcKyUmfL4khgkhfjgFIaHbRMkleBwR2gCA9ZYYyuYXDo5qbMBnnhLM3MnFDusXfF5JFpF9BKTEPK/bOokQ0ZHutTLUyVZdi3ay0pJ7/WRo7cZ9lDxinP5AGXsxri9ky24frYy6kcofXYYJvmAkIieS6/qD2EASjKIrdH3Bng48GS04czKAIfX0ezqmyHgCJPPRhCVQJ5r+KmL2eUdcGOh355OVPZ6ouCplZcN+HJHHB4Mbstgxx0a+hcWmArn/2en86c7qWamJkFzTL+amxBEYAWSoSs9D23OmZOd8PNrd3ZOjH5SDgNAEYJGtymMWoAFroYUipMDQC7F8xSiKZmuZQ5kRlBFKT11aW3cBrtJE5rK+vwb0ojsfHxyenp3qdrgzQgtJpNy1RNC39rTOnNzaGmq1WIgiargVh+PqpU9PTs5VKJYgjy9TLpdLExESxaBWlAmznl64+9thjw0NjAjmPuK4vyiDzQekL4TEqc6qKOjojpwdbUVz35SjctW0SrQdVgNprkCUWRJgDDA1Vp6cWR0aGNEXudts7W9vNdoPHp6IoJRTzTLvXe+rp72ysrVdLyHYq5fJwtbaysmbbdqFQ6PV6RUMH5zQmQU/P9QELh2YLig1x3Ov10IsUxGqlMlytFYvF8nCFlAbJ25XQOK7j2L3e5PgEbxie57W7Tc4iiPYABDlH/6k1LC1ZjAfgr1wulw8dOqTr+rVr10qlEg1yWlpF4P/5uaroHOLHKKqSoy896pDZJbUKsubi59QlB1nK8wLaDSGVISrq8NDo9MxCnkgMStHZtpunFvz6vsc85eBXXNcvlkuqqjsOlFgA+dIMP4hK1YrtubplMTKHBzmEXDVtsLGTA720Af3+QZnUPJgb7HvIgthutwxdLxVJ9DY7HLvHZJJSEdwP9rhhoVYYynX9NgFFwhBzgW1ox8bGyuXy6OjowhwC/SRJeAZtbgKVf/n8GYabw2VieKhYKBuGMT5UOnxwxrLQutne3l5dWa83dq5cuuz7guvizkYhKZYGcRBHlUqNvhRJ+eReN6KgWwY17UmIJgg8is8y5VdF04yyrosFS4qjS2fPXL689OD7PjA6PT1aA66957usSsTNIloZaWlNfZyyVaU/lQbW95vEEPkSkpaOrvtx+qc5TV/4834/LaywBraAXhl5iaKK5nlOIiwvLw+VKj/40Y+cfustTdOWl6+1Wu2dnZ2RkZGp6dmnn3m2UCyZVrHVaSuaKiSS47iSrEC9n3XgKWlEdVYByT2IYtB8JQlDUFUxHwFH94H9UdVECDutJvcBZEkOPN/QdEkWdFU2NRWZuoziZBSLRUNzet3XXnlhdnJs+crSex5859LS0nitFti9sQMLW5ubh+cPxInsoURsXLu8ZFgFRdNCBwqkqCYmUckqLB44CMwSsWa73e6bb765ePwoSj8x7nKUJGgrtdsYaZ4X2TY6SKapmwXP810/PHvh4onb7viN3/ztifHRKIq3NncI4Ceqqr6zvSsmolUouD1blNTNzY1qrTwxOb20dPnK8tXjx49ub24uHDwkCMLlpau9rj06OgojyCCQ0TlBJTMIfPYNdPHpgSLrFEMg3AIrW9WMQrFUrZmlasfxjWJFVbRzZy8qktwr9L75+OP/z2//e1GUTd1qtQCmcqLIbbXGRsd2m90whWqQ4SHADOmOC4xEkjgoEBBKQEboEwbC/GR1fb25trHzr//Npz/64Q988qf/RmO3fuatNzzPB39GUYC8EWNFIePyGIQoAMpx19EAp5qIXh2qAaQdBz/78//TJz/1w8VSxRwfa62t2a0OCgFhCN5Y4EPzALsOTIqDwJOTuFgwVTEZKpfGRkadXmd8Yf7wbXck8GuThWJR8P2Xnnnmq1/92tLyVSybPgF3sUehZhyHJPazLxIYmANYrTPUUFoBZTOKmx9p9p692dto8l5/oLLKs/7P9YvK/wRAG3Yy5jhYxG4nkJQFrRwpaTpvc9DXY/AP0VdRnueCGYGciHAh8fxGCwBBMRW7WYyR2ANEFGZgN4RU+xAQURICEN4opoMsBMYi8eoTXwggmhDA5C2RMSQkOTYMWKzgJQqfBRHmwbw1oLuDS532ybNKE9t0kVgP4bdoFA2QDLmjQ7AS6mzgy6TtG2BwsDexKUXaw09Iy58kpVllkaVeUuG49DPTKJRQVzmuBskZ8E4Ugw8WtdhmYS95qq/GkcQcMOPqEQIfCXYcC54XZNEtGywwr5Ao1TFypMFOLOU4VDAi65LB3YDD28FX+E+44L4Pl4H1HBDYG5HAGKhwfQKggESY/j7v7OlAZ7Wcfg2ehTKIbZI6Lcs5lwjP0wyVGW8kdkJ3ivX39wxxZuHQBnn9dEptX/iuZ8gfiPzuuS4ZIoUyaX7/PVdtb2lt4J/pd73+13Kn270dAHJh5VkEABqmNBJUtJyi2YX5rZ1t13XL5XJMBDjGqef3dbDYZppo9SqCAqIwhVw64WIDMvaI45jtXUzTjJKYiXSJKN55992nTp1aXFyUJGn+wMKbb75ZGx4B4zZODi4sjI+OnjtzdnttQ0iiTs/xw2BqZnZnZ+vYLXetrCxrmjYxPXF1adXSjcMHD9Uq1Ynx0edeeH52fn5h7sCvffFLdrdnGvb8gUPLK6uiIFdqpXa3IyvA0JgmvFRTIuMAKC3H/wRB4LqubUNWAlU6nmeI/gMeEaHnt1qtK5cum5Y+OTZ68ND83XffPTY+0mjVOdQGbjEMW61WEsVF3Xz11VfnZmfHhkeazSb2YAeQnqJVQOfADzy4o7mskMOrguf7cYiqXrVUHhsZHSV1o0QUum6PDBZSJBW3COI4Pn36NHctsN0QazSFWlKen4e2+QTjRQqtGCoylUqlYhH+nZ7LXBGkr1BUyO6yI0Bfj5sMJPlDUCQUIdIK+r5RwQE3k3MYJD0yMlIoFHiCXf/7N3yTwdLvvuJ9r9djEJfjOAwAcF23VqslUbg7vc21tLQSRs2NfQtK/iRfT/YdDG1KpVoy3BSupOuZhlGr1SRJarVabC/tOE6j0RhcN7kVQyRpqLNzozPPOgRBWFtbW1lZ4aRaloEyLxaLpqUfmJ0ZrtbM4gz4zS4aCztr15bsXrEIt2xRlkrFCgBy1erigSnrxOGHf+QTjuO0Wq1Go9Gko9OFruHly5fJRAIdCdIpRK4riaLb66LlnKY0MvTFSHlE03Tf9QM5YEMPCVATP3SDF5997rZ7773lxImyBf1lLw5BaymIXgipSuau8aK6L8z4rvsANw4cbkgneFso0Z4PGqhrpngnsprCY7fbrRZgs/3c089Mjk9sbW3t7OyoKjjlY2Nja2trqoHcWxTlUrGyvb1t23atViOjPWSxOQ2aK3dFDGmBm2ncJUDZmF1HqAeFLqgUaYqqSDLR7H0KE4TAiZLAd8hSOomCyLO3NtbERJifmey2mo/80R81m83p6enzb53eXlt3fd+zHS8SLKsQeW5B1+qNulUsqbIC/E8UON2epqgFy9reWi0XC6VS+a233trZ2blv6AHYpRu6qCq+57Vard3dXc/zeA5gOuva6dOn77zzTiol+NvbuyWruLK6XjD0UsFMErHT6UV+YKpKTFB+VdEbjdb4+ITnua+8cvK97333Hbff+tnP/hEUF65cXV2+5jju6Oi4quphCJ0fU9U93yUMA0laSWIYRbwvcOsVsgECWgRYgkplzSrYXljRzPWN7aHaSKVQ/IPf+/0//M//pb65a1kWsCNhlBiKVTAdx9nc2TLNIjYu8hmHIUxK6IL7M/CRImyPaDWGlntEGODdRi8RBNsN/uhzf/r8008VdfNHfuRHP9NoXLt21bMdo2DhIzLT7igIRUg3kn8UrTPUdDX+15//eaFWjXZaYiMaHipL5ZJgtyvVYmVkiPKNLIZljUlJjDwP7MH0n6m0YrnXhRi8posWtNoEWRHMwn3v/+C9977jb/4PP8djKffVoapzkKp8DM6UAZ4AA3LSkIu4nlzb+x46ADdx5r7JjBNC+liQUrHV9DsArKXEKXsfqM2o63QNTMkAbEme6ZVz5bxfkmPdT/ZCQfRJIRnFYQI81jlhSHV+COosk0sSglBgbgDBp6J6ekFgqyBJQB1hhWPyJiNiGBtO9wvSQ6EQSyrmbxIEsoRekCpLsmYpupYEqYpOSASIrELUj6kzwAylBIQ/HITB5L9DVoAD+x0TrFNlTzmRAFBCkoL/gxhJwrqfqcwkDy9WtyNlM34pi3Vjkq1P5auySjeZRHCFnojOFLJLbLG2NzYY8D0k+AxLa4NZAcO7OJHIVF0ge+IMgsXWkJBmxVjlWHcgAUCIi1m0l2TM6reDzd4U688MHFbHz2JXlFb3JQD5Ew449sOPuF67t8XQB/+wy1oG1ue/Bud6UI8/VfOKleweQwKWf5DmqrmuD+uX94cyb4p9hPQNVC8Ym0RqKkwOJiGg7KcQ54IkVXoX93goMP0lZ3P3sVepL0c6t/NPTxOSvbzvbJTygpQZh1DTUxCEmem518+cJ84LfjEgHq3nD0zUvetIzhNl/ImmAQDt9ABFgO8vhf6yqoSI7+Pq0FCxWPzYxz52cPHQyMjI3NxcqVQq16o//Kkfee6559rNlqnrketritqYmjZ19eknnwoCCGwHcSAqsiAr4+NjURQtLCxcvbZcLhcfeOCdL7744i/+4i/ecdddf+0n/7vHH3+cSAUJg/gtE5LP/JUBsqQDHEoiThKgnLVW6GCDLaJypp0+7n5Qw46bwpVKJYYuBKqKVy5fPnP6DQj+xMHo6LBMpALbdnodyICWCoVisTg3OztcrS0tLW2srU9NTQnF4srKSrFYRLXQ9WwXVGmkXjkVOQh0yxobGp4YHRuqlDUZ+7fruqOjo7bjdDsdttfB0YUIBiczLM2ZTQDKmOEDsH+5hwmU64YRJnEiJI7rnD59ulgsnj9/Hus4fcFBcwAu+g7io/Lcnt8+/83BRZCbY6ZpQuCoXB4bG9vc3HR6wNYPFtf5nwhKBt4nW/SB2UjZOXuzhXIZATEzL3OK+dTUlCqL8EiKgdfku8ZhWe71lvrvDvCP80UnZafQjypV7frzQb2bQBeapvV6PQBKieEAFSZdZ+YGT2RuMQHfDJng9IJwOMiVfj43Pm2+tuTtIK5cu8zCEZqmFQvl2sjwoYVbK5XK+sZWt9ulbEeKQ7vd9J1eQ9WMCxdPMw/Bsqz5hanj1qJpFBQNrYNez9ne3d3a2trc3Nze3tnd3e107e3dOtkU4BPJeVLRFZ11KpHMRInX6/o2kqtSCVTn9Y2tt147FXr+7IEFq1LSZU2IgkRVqQ1EPEAgRwd05Qa2wH1Pbh5H9JvsA87Baclr3yo66Agw+PsZJJJvKNu1Y2MMY+R+CL0IDa1IchyEmqo+9Z2n0Strt4vFYs9BxZqqEmK93hQhwigomhZFSc91TNPcN4NyFzDf92VdjyXRJWK8SXc2CEB5hzuH7wEOCX6eALlPolo5PVuSBV+UOqDakchfAhLRFmj3jiKL//U//0GtUtVV+fjRw61G89ZjR6+trZu6Ud/ZdcOkUA6iRLh6ZSmkHFWV5Z7jgBBiO8NDQ6wNSpnw8Ne+9jXLsoaGhlgiTyQgU48OwCDTWyOtrW0cWjxyZWl5YnJMN02rUNqp70yMjtidtqqqu5vbtWrFd5zx4en1VUirDQ2VqkPG8rVrJ249/rEf/IHnn3/2N3/r309PT2LwB6FmmocOH9vZ2bl46YphGPj0GDNCIZFfjgKjKDIMw/aoXQzZ00hRRMM0i6WSbhpeFAmyvtsAxmloaOTkCy89+rlHN9c2qsVKs9PUFLVSKje67SgWFFNN/CDwuhgBBBikqnI6KLCuk9F0quZJkWlEWj3ddtdS5EbbUwRheWX3H//jf/Kffv8zDz744BNP+GtrK0izWYsmK0+yaTNax7Q+QBky8P7dv/m/PvoDP3jmzJl//zv/cWtz550PPKioGjBCPrjdKBdLoqSBrSVqKNawLpypqb7nhZ5XMPQCmi/G7bffWq1WS1YhFgXfAWeM6dRpABQGUKtRgDSNwyDhilW2yqb2djwsmUE7MMnQKh1o+N908g2ghnJa/3d5sO9v6uZBhWEWiEv1SIkHnGrOJ9AtJ4wytSSZVw0+QEJpcRpxIXrPqF9cwo9J2FwikzvG/adBLWP9ya6QJFR5MU87t9TTBGFHITQ9WWLRcsDKE7QakEBw6pdJXwbLGD6NA14BTW/q3cSJBu8VIUo0KjmFCdBdIcH+8bsUEaa4lyycSHsM5AwBfVJabFMsBo1JBt7SSSGrTJuWZI/DZFVRwpSBMjSEW1KFnYgk1RnbQbkBxeh9Z9/s/9AS454I2SVkuvNktZeaXJB2APtT4hjE3NN1IlxQiu1hIio1KHDJcQ/RXcuXbxl5Fxv4IMeg6J/X4QEALQfSqQFr/7Oy/DaHIg+iS3hnz98ElTUNGPx0kucnwFPlBhwAPEJfLC/9cYCUyl1lb5q1jskdGqTLlCWdo/xJlpX9FFKHkBzdsx/TT3Oxn0nTXzAej7plZOa0F7nECUB6QoA6MBCCfX3JHTvDVA2W8G88e3G7eDflyZyeFRatVCGkHwJmrfV0XU5dPiHYD0phIomVWnWHkOVsRxXGkambSUA+DCw5y844dDq26zDaOBYF3TA115U1zY/C0fExRVOxJw0Pe54HhWyAauR3P/S+s2fPtuzuve98x7lz55Ik2d3dffDBB1977bWLly/defsdq6urTz/9lE5xSaVUVoqFkfJUHAUHjix6tjMzOzs8PHzt2jUh9g7MLxw8uFiySr/xa78ZBUA9/N5n/mD5yjKUTGoj15auWeWKWSxube6UKmWksaqiEv2X5iHCtVwqkRm0SGMCIJ1D12Ode1yaEGoHlABCR7LbaXODSJIgO63rGtCeQuS6Xp4BVmpDugr8t0Gg/AsXLsiyPD4+3mq1SLwPqjJeEKEfD6B6wHcHsPgwqlRR+J+cnCwYZuB6zU43SVCKeuutt2zC/HChMaUCU0eFhiPdnEynH5XswB0U5Mpbj7qmhxEsDhB80wkwJipwfS7ops562TxRSY7z+jAO2E5a4III14ffHAk5lVSZRBHH6PnAf7TX29nZGRy9++fOdZEiKR+nM2Uw4zR0w/XcXKosTmKYJ5vm1StXGo3dKIoVRQ5IBSgtTAzMEUbR8vbJOkLXH4O0pzwHoE0nKhYLtUrVD4PGbl2QxFKhKMqSZZi5TCp1BVFUIu2sFInEVY28nsevZDB6JpgAND46NiGQpZHruhvbW9fWViGWLkkz83OdTsfzQJenyMGwTBNkMAoUXBfSLi50ReEojLyrYBmGUalUxidGjywuyqqaRBE8PVbXG83mysrK2urqzg7o9YEbip6oFYuJB2MeGpYwy/FsJ4qFslm8dvlCa3cnCvwTd99hmgasEqIA6AretbiEtreUzyosDDncW5TYf7DpeqpEMfjYlyiM9r5+k9/HTo6/SlXUMuqjruiqqmBRiGPH91VJbrQ7tuNsra1PzcxdunChWLRMq7i1vf3e977XD6JmuytB7gPpXLcLucyhoaFdWgbjGFQf4jhhSJCwalRvrhTLpThMFFA+pdANHNuGkIKqeq4rCjLaKaLk2o4vBaape4GPyiX4+GGC9lGoScA6thq7C3PzpqEpotTrduNAbbd6QiKVakNGoyUrQJhVNaPV7VWqw9ubm14QVWrVoZHhyHNRbRGFkWqlUrB8p+R2ncD1nn36ueHRkerwiCjL7VZLTW0HQGokXcEg9CAmXrBK7Xa3Wq12O7amK912V1MNzwvCOHFsTzMtaFOWKlv1RiRK1XK524XaWK1W293dffTRR5PIm5wcX19bnZubiyM0PGu1dqMBBP/ExNTy8pJV0Hqeq5oGFHmAogd4T9EN7EcgJaMhANEW3VAMU1Q13wu9yDdV7e677nrp2ef/6T/9p1eWrtTK1Xa7bSiGF7pOO8BEgb4ZFkyEHTEYfBQm0nKEUE0wdazWKcMf1uO0mIRCm74giXe4QZRUTPXclfW//T/+vc8/+siZCxfXtjbJmywtWwYwgQFUyY9C6EMSgt913TiOV9fWH/uzr7U7vdXNtqwIz734SqvTBfmKkjofrbcIElxYwTA2IaFhBxosOVD0VyQpCWLTkEuWaei654FKVCqVCoUCrzwHDhwgDEeWgQxKEfTXqMEZR4WqTBWEJT4HiI43Pfa32r7XBIDsVaGUA49CivdJfh8QrDQ4wPeHwF3KMkQGELFJLmUCkaIQOJ9dO/AqlWrS5SOFYKSRD5GACckOWBnh1rH0IxZm4RZWDcKtQrselmRE5iRCpyjF8OKloj2VoymojUQJphup4xXByHDpUNgiojLKotBjigQlFERRVXRJ8imnIXdEAlbDaYpZcOnVS7u+/K0kKZFRv8+kkOg/HpeDm0sWuFN0SXZOiM7JSp6CZlhVh5KgMN2YNB+RHVGyQGfP0kx8v7EJp+KTuGJU6qbwjryj0/B6X/v9elA9R8WEiqLqPbvoEoaJXpGoBZCWW0Bmygnp1M1Ie128zpMjTU5VzYcQCnxAt9HCSl4FLGXBztyEfUr4nXlvVTQBdOg9rE3usMRoRqHHN1gDTSP7tIbEHTmKaSTyn0vfJ3fTE5Mo8BRSjWAzbQzaPilhb87A30vTs48YKCgOWuRw3yCz6Y6j2Luh69oAki93WRPSQTXwoXmnKc3wslg/HUDAouXpV/+UMI6Yv0C/zLVQyoQJyaYoJJoWoYukaGKsBFGom4btuVCf1RQn8IGC0ZQoiTXTaLeb1WpZVqUQKTaiE2zRiuYEoaZpleHh1c2t0bHhro2y9E6zKSny5ORkqVYbNnRV12aqFV3Xe4H/oY9/bGp8wrbtj3z0Y5VSeXlpySxaI2PDR285/PyLL07OTd9y9x0z83NLS8tPf+fJmfn5+vZOybKq45NrS0sHDx8R42hne1s3rJHR0cXFxT/6o8+dfuN013ZPv/FHmmGMTU0LoVjfbeu6GYZRq9nRTaPn+eMzQ5WRqlE0/BgVd1TnRBAYRDHxXFtT1KDnS3G0S6qjMBj3A0nXRDHWNNVQwVT2PFtSVN3Q4iAM/SAIgY1hm1XUcRVIanJozvcVUkKB24l6imZQkdiTVa2k6U7P3m7sAnw8XBPhROUWTN13ndCxq+XysUMHdF0vGPrW1lapVGp2e/V6Q5alVrshiomuq6YJdZFBCzP2hyI5YRAJqF8qSjTc8p4A1i1Uw+Q4jAqGZbtI50zNiOi7wKIhVY/JCCTZMA6iPVAZ4lXSE8ZocriXVqTwJ6qud7qd4Wqt0WzwPNcUleAoqUURnxBnC6yEkL3ezzrISDPP/vsgE9pZ0KKHjgpVxfzAlxIIIY+PjnVa7SjyVLCEE9dzuWsK3YQBlfo07RYEx/FusrfdeCM0NLne7qqqJiryTr0ZCsLOTiPV6aAQNN0Ec3qUjJR48CvnX6d/MbN/kJeNEEaCqmDByT1PFhYWtELt7Gund3Yapqk5ji+rSDw4l2b3PVaahsA8pRlcdIQGlCwlUaLp+vDQUKVSHh8fH64UDs1Nhb7faTXX1tYuXLhw7dqq1911bL9cHTJNY6fRdH2wCJQ4UYKoqiluu/HcE4/v7qzd9+4Hh8ZGG522y0UkWtUVeClIkY+kRZVVUhXjEioz72jhZRxORgdgWzHy5EvHE9Xi0sdsn8i6ntlj9grraJPYIPsek81y3gHg+hHGOZCpsmN7Bd2IkrhQLNe3d2tDw41W+5bb73jzjdcjUei5juN7kqpNTM/sNlq9HoSLdT2END1Y1XibMACeB86jpLMXg20BwxM0miQt6Hpk9YNfKyhmqVpAUhTGdqM7PTsjiuLu7m5teChVSZbF0fHRyxcvTE1NGWioOpHnxmFw4PDixPj46tKK68eum2iKdWhxPgzDoamp7Z5TrzcDP7Ignol8stvu1YaGes22nMTNDtwDI8e5ZfFQfWOztbN94sSJl199/dUnnnzo4YcL5crpS5cOHzvW6/Xau81uo524sRyIZCUPTAUyRhlBLVA6Ljk5SqLnuIqsOo6H1VEUoAGFuonWdT0RhCVPlQUpSHRVDAUh8J2xkeq7H3zHsWPHHn308yvX1oolSxK13d1dq1xyAkcumJ3A43BOSsRisUzVKGTEmCagBheNWk0qluEOIMamqgzXKmtrK3//7/8vu9tbkSC0nY4kCV7sC5JCHFDsowAkYHXl8UPlQ6pbKcRVJHspwGrSg3Z7IjSh69vz4K0kS0ndDmRBeObk+b/3C7/w6X/3f7/8P59qt1vAIxWNTrdN+DxcdPJgQ/FOpuEpSRKK9EZht9HZbr/Z7LobV3asguG3OmoGuU8jw2wJlRWlWNKTONRlOSGoZ61cLhraWK2oCHGpNGEYhuP58Ngpl4Gn1dSt7e1isWgYBtSSSNRG1tTA6/v/xHsrGvniiCmXRRQs+7kPGrdvpRs8bqYZdDMUH+0mae+ZasVMAcrUQlMBB+iNQvMVAp2KIGm255MdkK8oegAdSwZTyOlkJ0gIXzdT0zDZmEquqLDOSECGwDCghYTMAKg5gy1GihyXOj6Q/8HimxlDqPgZnLlIyFMIxYgMBLDashqCn+AM5VgEWUeC34okBnTVxUQFjQSkkESYmpo59/Tzo6Pj4PlwxVqQAj+GY2IOG0FYhbaeAJa7FkqigqQDCxdVDcj3jUct+hzIVsigg2Iy0WCBbAT+dGPRtBSFSE4MRHGaFIZBiKySBJEkEAb596hWnNZkJOgcMfcAv5rfY2I5yGx0MCDjRk8o/EuLZTyOcBNJFTMtw1C7h8JxwnSAoAwsBmxGJbITFWTJ911JjCAlk54LsVe4hZa71w2ifeGXkKA4wG4VIGxEcRLlUTiuC8zURZIaiZUkdHmZp/JzX4lGl5HUwaQPiwOVcilpBjUg9SnIoyAErCQQPWB/wCX6RPBjn2OabDb14TQ3mha4NRmMZo/U+j7xkOxNEhH52w3eMy/i7oM2BRHpbQ/8fp6Q7HuTrAOQv3n6H8lBoaI7QFbO+gCSiBoFBGdRCyeukxjGsQv2uWZYgPUDRKGphDZT/ZBOhtQkVF3zHBcAO+60SahD41aB8Yl8T1TkMI5HxkaDKCpUypGYFGsV07LmDizIslytVjXLLNWqXhi0OigaMWSo0dqRdPX4iVsuX106ePTwNx5/XFbN6sSEXirdMjs9OTIWujbsfhX5wpnTY2Njna5dqVSGhkb+wT/43wI/GqkN2T2vVKzApxCuZuhyQRciDDRyByiWS7phAEREPm3c62JrAk3TIteXRXF9cwt1+CAU4gROUqoqJHHXbjti17Ksgmn4vt9pNsiqSdHBZmPdTG4uwV5KIRu4tP6ZSrml9xQSdTTkPPKBKhaLaLMQ0dmzXTGJF+bmpqcmauUK18lc197e2l3f3CiWa5qozC8skN9hClnJmwDcYs61nrjALKP0aOeynrmbGNOLkYYRkt6iwzTN7d2dUqXL0tcZGCrFvmfGH8k+LHsUpQZeDCrI/WJZRpOBPaqCqIWB+AHEa3jnoJQ+o8TkWCzqa2ZFEeonknbEQBmeHrnPyDBZbpWiVRVARhbFV7Zgo51ExV1SbFJfSXFNlLXyuyGS20soytCD+3c+fuL5+FyjAJsFq2RxORAy5Omul66zmW6X6BN5NNss02826FyeX1Jeqy1DDz1PUNQggj0O38dYUurtbsfxgoTsvqAVJ3Zd3/EiBXjyvdQfPluSoqatKBUk01SJ/KeSycnxQwcOzs/Pjo2Ozk6O33XbCcdxv/HNby+vrDZbbd8PTbNgFWTPDxvt1uhQTQRnVYriYHX5qvqyevjEidHpyaDblRW0sMBezmCZaEcQEpIug0ypHMpEnE2RxDidGwEvOUbgqm2emg2gFr/LxwFX1Owd6JF4cqkgMnXYSQ6bRB6wKly5utRsdRBCYueSPc8zTLPd7bDnL4jvtAvz3aG8muWq+pIU6bwgsUOKpZNIwODgmCMMw7m5ue3tbatYGB0fGxkZWdvYqA0PeVHY6XY/9P0fMQy11+1qstRq1j/w0Pv++A8/C7HVIPSjuFgF4efM2UvV4eobl89XauWh8Yl6vTE6ObW0tCQr2uLi4rVr1xYXD547d8a0jCQICro6Pz31e7/zHybHxu+7595/+PP/cOzAgVKlGobh4cUj8O5wA8DTfJhVCxFWebheZcY9ueo0JeW4aVglkMiy1Sr8iACNFUQNqsQkaum7QuzLUlIuWsWiNT83FQYeGPkK3gf0cvKNDbGbUt0W6x6Va0n93A9gqglEu6ZoVsEolc1KxSpXLM1Iwqhomb/+a7+2u7MFMwzo+8hB5JPhFHXG6WAFGIAmUW1OxW4o1uQplsqLDRysN5C67cAEijsGNHqef/XVR7/0pY989OOf//yjoiLvNhrEapO4Vk2LHUIf1hCEj4rjapp24OChUNQfe/wZs2D03FDXrSBy8g9C5RvBE553bU9jGQkYDyqyIutmqVor6kpS1OWCZWoGLFlwagpcfdA3JgFZPwx89DMVMMS6XUlWbxjQD8Yb3I7Lw4ib0Wn+mxxc42YEDb+QvpwTIVIMM+F4CEaBWCvGf6gek54kmUJwIWmvx5kgNBoNUAl1nZx5UWSA26kkOZGDpV5GlQQQuyjseF4S+FXTQhMI6j4SqxOxNqqIclhqI0AnAygGAlwsD4RZl7BeqfgWsca9ASwFIMLFZIQSR4EQRYqmyjKkbAEvp4nAqy91YvndU78t5kKgyppIoBqni0bOiGB1d16v+ALS8OA2M2HPaazTJIV/mkrrOffB4yTA7pC6PWQlYrp2RNtL7z3XiNN/p6+nH71HTm1f173/U3InQ7OBT5GegVFGeDgCPmVbKpdtYgTu+bfLPg/l+YxvSSTmXKaB7g9/FL+DzDifgUBX4egC2vzo2yh3HD+crr/0O7k0BCRPCIKVM2Y4rOcMqS/uzrUngkVGJKyb/j6125JY9LPAYp/+901GPxWsqEswiBVGNcXfU1kcJPjuC+VTsksqG7ovAcD2tO/T97Gf983niLLONNAfUObG8MmCs7RoQm02fGw6IklJEPE8RpkkSYUCXDPJDRdQZlXTup7D23wQoFrs9GwV1lGgjTLYWqQKNF+KYrHoeV6xWBQk6eDBg67vHT58WJSkAwcOdDqdQqFQqVRYG9EyrV6nOzMz89qp147femxrd8vzwyNHjjz3/Et4tyQZHR09NL9QLhV0SdGkqi7Ku5sbBw4cKJfLL7748sGDi5/5zGe2trYUGchs3/dnZmbqzVYUhgrViPl2A1RdtKrVqmmaqiRj8rC7M8XHWHglGYKRcbyxtl4gwa8kScqlcrvXLVmFmZkZ3wfxVwwCRVEqQzUSF0L5nyxXoQsOTLCCsCOzLaGDiZ70Co/MKPDCELDdwHMBEfE81bRUSe75/uhw7eDBg5Vyud1uBz27UW9tbm026p0wCmdmZoib4DHvluceV3+Z57oP3U4CVdJwrZZnpPsSVFiTkpeWYQA8o6rq8vIyaid7i0I80hwHt34w+ufDcWBVxupD7BEW+oBbSJKEu08+0JZlsSzSxMSEqpu5XMzgLOMFYt+LMZF0EV3TC4M2bczh1hQgi9IquAj0sygAbiSzeBl9EU5jUi1aguDlXng0LxTWcc5/nw+AL/n7pitMDj0VNFUxrSJlYKqsQNkhiQJlbwKfg9eBNch6cYPEg0HfA75Z/E/K0BCABQH+YxYH52xcIxiUHRuUS7u+oMB/JckCmUZgMAdhGEvilavXzp1fFgXB0oTDRw7dfuLW6enpn/3Zn13b2PzOk88889wLHccdGh4zTT2Ow1azaVh6qTakG6bT7Zx+/Y1O11685dj8oUO+GEdeIMWRrsAdg2y2oFiFVZmbHnktlApBueBxVt0nTNpAorUvTLnZsQ8JuY/FOPjKPt5I/jyKotWtzV6vV9DB9OBMdWhoqNu1+b7kCTafvqpprkOrHMcQgNAgsiPEIGQmuVmefkXKR/Wi5UWBVS6ahYJmmW4Y3HHXnZeWrhw5fChMwsXDh8fHhk+ePDk2OqysSkMjY7MLB26/7bZnn37u+97z3v/4//7uZmN3dHpSVMTZ6oFWpxVRzrm1s6NoWhBHly5fLleKK2urpVJpaLi2vb0py+LW1ka1Cqmxr/zZV1dXV0ujw4uLi0D8y37PsYMgcm0nhDF5AOIBBi02wFQLnJl2fLuos0FMQ0A5SF6dQAiU2WC1ISkRiJ5GMamvo3RSb7S2trbAayqkBnnI0hEeMZMN8mGsCEmDgwojAIBLuqKZhWKxXEEaYVmKIBULlTdef/OP/vBzvWab4h4qLREZkdGGDC3JEYFU38vvPQVCeQi0Z9zsSZEH9lkMyTPn1j/72c/9y3/2z6anp5evXiHj1FhRdag/kRR93pvkfiovuVEULS4uLpy/uLa1K4uJ69nEuYIjLacZFJHxh0NRAdUAP1YVSZPlKJEKxaom2KaliZISR4JZQMQfRLGsQLkuFXQAkBFSCqqCShMTEvJuaP4kRxwMHgS9o6u1N+J/W0LOTSfd9/T6vs/qi5rk4VaqHwCRVIJCRjdMAJCGYUCSlQXKijHIuLKsAdcH7Ejo++nmCiigHFLiSiON+kEkPUoFoywuhqcDxbKoBSARYRUcBEMySUnRFipzjQlCp4kYUUQaRUgAFNS7GUyCvYHgj7QiQc2We5k0ytOyBlEUQkJyUPyVMgkz7R2JCuq5lBLiYkBtOFtgyzYuzyvk7KUoSFFQUkceBaxb5mfVVyLlwCMFhaQwHq7GE5WWEFrMFs8gJPRtaFznf4thTk9pBKXNjWx8kNFYSqkb3NQArSeYXJqmpIkHQatkGX7JqVsdgOpUDUu7EH0p/H0rdj6ESEWUfBXEhDZOyHmmkDE+TAtULZKD3UP5JehRP9CnwZcW/vGcEBrpQRrjYYS68KBc4L4EYM/kQVrCGnv7h7plGbz1ZcKo6d8NCiQNPtkX1g9MGKyh18+0gf20v1+iH4GVKwsOskvKkkZce9vzKfh9KDGTxTelMbwhx0xJBIA1vc2JoKuaTaueqqq+77P1L9BaEE1GoGYWClQeSmCvqypDQ0M92y6Wy1axMLcwv9OoD4+MRFFUq9WiKLrvvvsef/zxWrniB4FYkkfGRt86c/qWW265tHR5aKT2yuunJFktFIt33XXX+UuXb7/tjsjzwbv1vcMLB8+98ebm9pap6c997WuLi0e2trYeeeSRmZmZrc2dLiHOQTytNyIQqCNZQCTE0kOVSqVYLKqQnE+xK+luArHMEKK/iQAstetqilLUzV4EaGahUJiZnpmYmGCxl16n2+1CHSiOkdfmjEBmonO8mHXQ+iOHfiHV/k3NdEm7MfB8q1jSIflil6zC/OxchYC2lUplZWVldX2t59iojitypVa+dOHiztY6PCYGqPR8gwa1jAbLPKSxJ2lwflUNTWP/WPYkBMAhjnXTxJctl01dP3fhgm7ijueWbTkv9uDBg/lncZ+B339iYmwwwcjFyBj7LiMT9ovFIr5RqWy7jqRo+xIA/i7stzAY5fMPwB0n+l6aO5HnZxzHnU4HnyIrsDSmLChwEcPJkjA3N8c6lQzzY4g8iUikvlcsh8o1As9BZ2CQPjSoKjboCsdX2NBgJZGQomKv1+MLlRF59++epPwNd5l9LKu8A3D9oamyRs7PSdLnrMuyzB7bHKqSx4aAypeE9JV5Dvn94gyBOyTcD2GJUv4i5VIBCliq5vmO3e1tbmw/tvy1IAjuuee+e99x34c+9MG5g4deeumV1984EwvCLES3dgLP9xxbg7uV0vac5atXOnZPNXSzVCIxSsOjrpIkSIoqBlRXy4tMefBBO1C/WNVnIA0sd99NDnDDH71N9N+fIFntmBMAzjlZFx+XMQxrtZrrgpzNtC4ob6TUVSxo7oDRZBaGod4ElQkmHbLWEzVCFQ3uIuVqtdVpzxyYX11bs4zS+PTUdqsxNDpy8ODC5SsX773v7o2tzSOHDx05csR2enfce7dlmLvNxutvnf4bf+tvfvWrX9UVY3V9zU+Cg0eOrKys2LZTrVbLQ9WL5y/NzEzbdjeJAtMyl5YuK4r08Y9+f6lgek7v6vbW//1vPz0zOysaxuTk5MrmFlZm02w0NmzbJvY57NiBWUaHFLVSxm/kuy6TR0kZkaBcUSo4wXEsahyAQgGTAiRAHHTsXhyHr7xycnd3t9u1y9WRJIYGqhSLngstxTSqY7nYNI4GkYL/v6KphmlqhiHrqqQohqj5rvc7v/M7dqerygps9QpYPSyYVODKhxBnD30WTIOpi3Y9bJ0dc3n1S3mojJHPEGgMc0jDkRRMIrz55pvPPvfcHXfcdf7cuVqtEvhBIvpJorJAOgmYMMGVFIdk2Q/8Zqsxd2D0fe97z2f+4BHDVKIAKpVZn4HC2rQDEGuKHieRLKPxK0lJJIt+LBYqVcUXrYJGV5rcu2VJCEJJVer1uh8Emmll9SkiRKL2c2Nw4g2Nk4hNmDYwvsvy//dCAXi7Y38kk2KtpQhx+741nu9UGprsex/MUCclvJmg84DMAsYaSpNICYDiJxdORVIVSQriCMQ8+ooS2EloQPBBCTyB4VNrKIgfU/ASkno+wn1FJm0hqO9jcUDbUIKAP+x6M+LWIGMV+FLSx/Gp508vMvixbxxL2Jnsj8gGjL4Ywq1YUpBCyKGcqMQUZp1OqBoxq5vbKrFARpkSEkvkw+xYJqIxB6HSProm810bkIPKdWKyaD+9HfsW0n0LZj9uSe9iX/ibsgJ0D4GPIrszaJGmXKw+DnNwdR8g+LHmHOc/pD+ZNibYtoy7p7RkpC299HVWEgIgqqDzxjkQNFO/yfd7VMFIBSUoH6HKADEGmHlBGRtRMIg5kD5Hqx3BBe32WO4A/M+ijUFf2/0xPkNRofKxxxppUK08N07qtwVJS/76wlUeEOzJBMg/g0Q69x/939878zn7YpAPewIzqs8nTucemYD0BrN3nkAMDwGlIdJLS6Sk1+vVavB4h0kKFSlV1LljAV6PEUU+GvUKFJSSIDqPjhphl/U4EgpWSRDF4dGRcrUC2qINwEmxWNQ0bWho6MyZM3fddVdjZ7dYRDGVkR5Xry0HUbiyvvEjH/+Rf/0b/0YQpSeeevIHfuCHVlaXbz9+YnRkxHdsx3O7du/AgQOry9e8MDKLhT/90hcnp2cvL12FirMsz87Orq+v80pP3lSg7kmSaFko/3MZlSOAVOeB6SmQRUeduLFb18HK8spmgUzs3Xvecd/k5OTm5mYURYeOHHa6vZMnT9Z3dk3TLJVKULYmPR52fWLQS1p3ocUme6QiBnh4HhjGng/JiDiJQ79sVWynJ0TxwcXF6ckpBup0Op16vd7r9TDJDFTpNU3r9Dp82oMAkushOoMDSSaSqB+GSUR8XMZmkggzrw2qpomJMDI2CsmXzQ3yDN2zKPDzl156KX9xsJNA1zZtRKQHoRk5bBUoRyqXy51OZ3pyygv8rR0QZwdTCy4DjI3tSSTS10XRtm1eYPo/pcehoSFIbWoYVPxudqdbLBZL5YJZsLhFwNE5qzQODQGEzcX4lDvBUnL+nkr89Rvk4FUll1Cv0+mMj487jrO8vAw7NgPUjhuSmGNR6HZsWm4I/Tmw5yEnGTAfyNcZz7VZO5XBRfyGMzMz1WoVejX0ZXOtLYCdbHRmrj84eM3uUf8rxGGkakC9WJFVLlSiGG0r3/ffPP3WdmP3xG133HPvfcePH//Clx57+tnndnY3TcOCeBFJx2gF0zIMURLtduuZb39n8eiRo7fcYhYLOJsAEmGabnZdjwhinABnHeBcuiRbyPsC/8n3Vv7Pb1D++/vu2vU1pMF/pk0/qmJAQBPq7IFhoCKQ9VhIPh6LhiypCoFMYvYL5zlNphZQMpGo8sM7GfAt5AkP+LAixZIYROGRE8e/8fjjVqk4PDG2sLDQDdzZgwsjY8MjY6Or6yuxKEzOTEPaeHrq3JmzR0/curWx+ZFPfOLQwoHf+q3frlQqL734yuEjR6TQ32o273zHO+o7jcsXLtp+cOjoEU1RbLs7Ozu7trqs6+rM1IQii6WiKQhD5y9fbbZbfhz/2Cc/2Wg0uH6xsb3l9OzA9ciHGEVLGlq4EamyOBPJ0kFLE41rf2kdIycRUY0pDCMx0QQJLiFCROAi33URAFVov2g2OmahKAjAQcmqxIAQgmPRNSR4QxjHwEXIomKYetHSDF0iRNnI0Mif/OEj3/nmE9VKVRZFjDhNj3QsIzxnuYAieCJa/rxFpgrpKRaA+215f2BAqJ4Kt1kJLIuH0nBFVYVmy/nc5/74F/+PfzQ2NmbbMKLxvEDCAgKcN2UUXEPlN4kEWTI1Mwz9Awvzx4/MnLu4IquICLPQP4UbsZYj+PVRpCrwEdd1OMvEkjQ8Oio6kiJSKVcUA9qJsGjJWhAiwtJUA765vuO4qbyYrEK0gKvOg09Y5OO6qZJ2cwcVQd6eFTzoKrB30n1vr+eTeG9gvyf0R4WOek/7av/5c1EQvDCUZKRGKvD/WPqoNeq7UNFQTE1XZJZrAzJFEqUgdIkQBGQeSsxU2GRJVIT4xKnFlE3gAEDUcfYRYOgY7Ylk5hWKIJti245EmJlmNmHY1AgYw2i01MhLAPoUqQI1B9A9ZmV/nATiTAT1qC+HCdZ56rbRp6B8IGMEg14iYxmB/CjD30HS6YM4OHsQU2k+cvaFMFHM6pspuii9ZkTOworEU5lOAUkrV3IznvdglZBC7Ezbhd+BCiWUkvSrmaT/g+YgGYHlBUiC72SGzwNQzKxVi/9gz03N98GqEJlzcPKAK8SpOpfN2ckAX4pex12ha6pEAQIs3k/SLY3eS1NJNouL/WlHBCetkD8arOlIMYAMHJjgz5V1BqTxspGLo2KVz1IZXt4H1otsXeRuCTIyXD2ZkEsQkeJHegeydaD8JstyBPDlb3SkMqD7EwAs0nl372aNiMGKPvWj09r/IBAoI+FdN1FFGbw2WpWp9SXHAA9Ltuetrq6Ojo5WKpVGvQUH6dSsFLcwJKEDzdB912MkCbdEwejSNVlRAMyAcIwOa6FyORKSyclJPwgqlQr/8tWrV2+/9fZWHdB/ByQzjL1Wt9tsN4/fdst//fxnG63m5sbWz/zMz9i2e9/d90yOT2ysr6qK0mg0FhYWhDh56YUXf/iHf/jll1++fPlyqVghtDoaEbfedsebp9+yimWJTPKolCsYhlksl0ql0uDl4qpyHAG3IJKssEeS6qYOhi7JhkZHjhyZnJwMw7Ber7NoTByE1Wp1fnZua2trd3cXY08mdbAwRLTKecVAVSNL+9CudF0b0T9ZdNHCEWuqFrqu33PGxkcW5uY1TdnZaRumcer1N3fqu4SMV0SZVHRCCFB2gLdOIWf5txgcM3lTYk9Jm0oLjFfjtjE2tsywlu9IoVQslUrdrn3DNjGrzdww5GIgvu+nlsP5Yo91kIIn0zQ9z6tVqp1e98LFC2kR+CaQmP42kO61qS9M/iovVTwaLQPvzCAotwc2yIGD8ysrK51Oh0+YyWGpMBn1HPn6IJ4gT6uCCc37fQebPl6f7YiiODo83Go1uCLFeDP262U1oX4bJH0ijE2MD2YR+R3h378eCqiRY7GmaTyW4jj2PG90dJSpwOwOBpwAKYei1ZYFZ4MJBkO2+ByYfZEXEes7DVjTkzQeWzrEYeSF7n2F8oULF55++unV1dUPfujDP/aXHp5fmH36qWc31zZlWY3RKrETMTEVWZJFPwybu3XIjMTx3PxCbWS4MjTkeUHXASk5DfzTolTfOCQP2VM9CP7Wfa+f71bvPx8eN/zn/ns5IIGV18EGyS3cOREEAXh9q8jJZNY/SaFTqWNglqrx9aQaOD4PEzAMMdyB/0NoG0fBwoEDW8365NyME/q33XWn4zjHbjl+4dz5xaNHAtd53/ve57ju0MjwW2+8GUSRVS41Om2rWo42ty6vLN//3nc7juOE0V133eWE/tWr18xS+dLJ147ffuul8xe8wE+EaGxy1I+CUqVsGcr01ATTHR948P6LS6uabhStwuz83JWVdVFTwiDY3tiEK5UL5CFgKBEKD3TZAdPPpQO5OMdKMsTjSBOArFyHApqua15AbQRBElSMBgQ5QtImLpZlFT0/6PS6sm4QsZ/8b4mxnQXeVJcRJfCfAOHTTMsyCwXDQg5gmAXfDT77h38EjLwoFq0C0N6OYxhGRvVh1iXrFGLRIIAlTnnPpjaQD6QV8+wxxTnQ/6fyPOpekiBAwDMQ3njr7JWl5WPHT3zniW+NDY+EkESjunH2l6jSUgKjyKrvdmVFW99YnVCkv/HXf/qXfuVXGs1A1TH+E0RoCSie6RDHmQNLpiqhj5YjbRZI5u995zuXL52r1xtJHDueWyiXJiemi+XS8tqKFwYkDQcMSwockKEKcMPpcPOOWX9ruF5F8EZvJPw3OQYNXPfvuQN1EILxMIE7d2TqpwsJ1klym4mjXq/n9HpJkljAq5oxuKmxTX14McZSpuvg6cLEKIZFOsRThZD8TyLENvyWqag9g0rSEY4FKOSYE5B60kZJZAFtLkGKZYlavqqowE5c0HWkqegdoNcjka0XyvJ0WTEVCO9BYrEcwg7UKdCYzUBQFG8ivkPUQu7GWX8ywbnDMzzT9MMShKqrmG5DrPbP8EnYKXNBuU8KlXL5znzbGqzB33g8cDCQa26m4v20NjPrgO/e4CO7f6bpPYXJ2Sf0U4OBIhS/An5yXkyLuRjEqw5q9bDzoPmGlg4WbOKNsZsyvRuAUBSIANC+Z6imLXtKANhujEegklZuqFDKQH86cqMBInKlr4eCGIhK+ibZQj+IeN63l6O1B30cljeF4gRlEEBwGYbJXDR+Je9FI7PvG0P0bwZXjveVbwUh7rqdPd7AObQp4yrsua+U5OQJQA4EygO4/nnkA4IEBgjBSjhpWQH8R5C6je7y8vJ9D753dGi4udvkmIOVSbADUVwCp9tur2CCCslS+iCDq6phWa1WCyhtTTYtq1StBEGwuLh4dXl5fHy83YbC9Pd/8EPffPwbi4uLjUbDsaHD/Z2nn/rRH/ux9ZdeePnlV0dHR8l53d9cX/vwh75/aGio1Wz2er3hStUcHh6q1R75w8+eOXe+XK6+8vJJTTXOn78wPz+/8/9j7T/gZMnv+lC0cujcMz15Tk6bV9LuSlokIQkUAAXgYQE2WAYMxvjavvjZvGv7mQuWsZ+vbWxjhAFjkgUKyAJkrSQUQNKutFptzufs2RNnzuSezl05vM/39/tXdU3PWSHue8Uy6tPT011d9Q+/8A3tNsrkFPzhgrBraRSlqlIq29Vq2SqZjEHN9jNULpMolPF1XCmJd7Y2nfGwXqlCsM8HeP2WW25JpHRnZ1uWEZZduHA+cL1bbrllZXm51+8Ohv0kSWbqDSQAceh5rg4JRTEm8yIUz09oOzpuAlQpsGak/43XBIHfqNePrKwaquZB0x9y3T78fdJyueoGvm6AJoc310FYzDmyxfuYuYoLfnBuCsY5bA4WPxBw044G4+E08QIfWSpNlmJ0nodWubjvFCIuInfM/E8QTlHpiyNU8LHIP4hpyiNnrFGQJFL3ApDJIFzWVJRMBHSDVQjy5zm/4oCsCNRhz4HW7PzO9p7vdXwpBCkIjFlB/M3uyoH9L+COTXbkX7kI1SsoEyf8+uPHjler1WvXrnFJnkFxh4NOXJ+sNDe1XvELctDOJG0jfJeu664LlptMPZBmswm++3DY7/cBQyL3N6a1iPXw0PuXywieips97o6itGbmwjAkEwmYVOiQHpWiNHYc17KQkzz22GN7++13fvf33H77raapf/VLX3NdfzQeB3GELz9S5CCIZaVeLg/39887o+5u+/S5s6tHjwDAgUoydAGpBEV7rYzojG6b4JvyxOB9mOfIX7X8fxjPcFM+wOFMNX/MrBUCBiIB4F1gZ2fn9a8/pRm6oipU5U/h2ksSZwBbwVIKnClCkVHzmNjqUFCjwBm4ZMvUDAOoUCldOrr68tUrt955RyKlS0dWzp8/f/rsme3dnUajsb8fLq4sr61dbzSbZ86dlWX56NGj27u7tm3v9B49cuRIZ2Pged7b3v1Ox/HuPnfrpesfUSzr2KnTA8dtzLbqlfLWjXVTM4LA1XW1s9udn597x9vfWi7bj3zjkfXNjY3trXe+6937nY5t24qpD123Ui4P+zsxfB6AZCBiOO++8aTCxjqFmbYMFQ+FwRsxeFElg3kStWoZXE0E3EiTocYVhK5P5B+qdmHceh7IOVHEIgHZbkM3Dx137Oa6XrKwLsMBoGxYaKY98IlPPf34U6tHjtCtgbK+pVu6hl02C5FoLEmIyJLE7He6rBjJBY5CUVzUGQ4NIKakFhEEBNWjB74vffrTf/a9731XuVTllAM8hwzYgMFN1wizlNZb13WdIDT2du+4687vfufbPv3Zz3s+Vh0Egly1pJmH/ZdsYk1VC9JYhuZa7EZeHAcPPfTQaNC5957Xfvtb3hxF0fXr1y9duvLwNx5F1xQRr6sC2IL/YgDB4Uh1UKVt8uAmk4Ua24dbmt8MYveKHQD5r/T84V50/jhOQf9lBiZ3hLBNcBqQKzKKk0kcGGKifYKiiV2u1WqzjWa5XMaS67ue52Eih+zb4w/HQxt93wQ4f7KtUrkoT1qSCHNicKLAdESjjgvAbDZPH0e9HpTj8UeRTqF1IqdabGjkJUaFG/S2UXLCbxHMRkmqqQbqCVRBJoYA+kUCIEIiMQDCg6FALlO0IdAiqeI/JAsgpHOkLSJ8JrKQOSuCWiItSBM4JbqU7PATRNy/m2xr2brHZHFeJCeQE/7GPCGZgswVNawMol8w0bgniPgB+e2iQZDA2nE+k0eb7A0v8pai6Sdxo4BEFZ6Y3FAoJqh51ZS32nys5pU1EDXdw0ZgxGpA95Y1uNF+megeEWiYiAngcyMo5KHpur6ImMTuRFU0yBJj3kPoLQH7OyLRWlrosPCRbCGLFxKUAgIrCCwwtshuIv856A4ZukCFUPGTWlGwFDhcEcwrrAcD/cRQNYYATc2oHARyCGaXy1HlyddkZ50wP/K9kFFSaM8IXBnSpCj1XHd/d69WrjDWH2o/JPykaGri4xuAB2xBXE8lOg4SgCTWKUoulUpj1ymVSqkir6yszMzO3Lhxg3C0brlcHg4Gtm0/+8wzp06d8j3PtixVUTqdzpkzZz7wgQ+85r57nn3+OfL2qt1xxx3vfe97xyPnwvnzqqy0mjNl0xwPR/1O99KlS29605ueffqZFy+c1xR1eXl5Z2dHkqQ77rrz4kuXao16rrMO/JKqAAdtw8cbzsSZzDOpzJAwtiT5jqsp6u7OThxgQanVat32fqtWGY9HugVRcAZmSDH0c9I0feSRR0ajEXuDS5I0GAwAOzFMCAYXZgvjaLnVHsPyl1rwVD8gV3LZ91xD1Y6uLM/PtobDIWv1XLpymS2l2Ed5cXHx1KlTszNz1bJdevWdjCPMSyx5ZC+YLJm9FKzowzCIsCszSJ3BHpzWchDJYXev1yuVSuiPVKvuGNCUm8biN13oc4fdHNDCnSwCa8bARJAraqlUmp2dHTlAkhRJsfk7s8HfVOimKkoYBBIZofCzoq5OCQMDb3KnNlmWTbJ3yHHbuiqyVkUTNd3D34H9eg8fB1Q1Jt9dKZfAz5uZmanVatvb28PRMImAT5gCZeXG5HlONXUN+f35WxevsK6hZg+DCD80TQxbzxP2QL1eb39/P4oSwwAHg2+f5wY3FwMoYAIAQciq4KzVl+MAyFdTtDvp01EKPX/+ZV3/wn333Vev1b7zO9968fzF58+/CFO8GPfaUlXLNuUk1hXVGw6v9C+0t7dOnT1z6623Lx1Z2ey2SYUDay5oati8qN7FSv2FyIPB2fmZ/6Wh/zc/vgknePL+mQtKPnc4BAlDVO1Ho9Hi4jw52hywsi+upaRiMQEus1EdCeZIummgjF22U0UOpWTgjO961d1REq+urPhh2Jqff/ny5VtuOZtIcavVunbtqu/7iqKcOnPm6tWre92O63tREr/5rW/56B997PTJUw8/8vX3fN/3LS0tvXD+5fte/7oTJ07cceedv/vff9sfj3a3t86ePPHow187urq0v99+85vf/OpX3XXhxeff+ta3PvTQQ9euby8dWa016tVqvTMYkjP0eDwYQnwwCskEAA0L4J6pA0DA4gOJmdj76fshfET0TyOZClqu76PZrUOSMU3CMIhDKTFgH2EyPkoz1VKlohmm2xtieUkTtoTgNwDUAvwDRdEN1dBNyzZLtmmVVJ0ZLPpHP/wxnvjN5gzxXtK5hbnRsG/o8JEk7AVKo7LOJbxkQIw3VreYSEH9ZWNpUvjk8CJNTVtznCiVpK98+aHvesfbV1aOXL962bBKQumDXsgTmqAkSa/Tm52bkRRVj+OxM3rk4a/9wP/j+wa9/pe/9HDW+FJo4wZ7FAU+x5VSyaLFgJS7Ek2SLVP/t7/ynx95+Kuzs7O33HefJEl3S2+UFGO0tfnLv/zLfYfYXwQZCKLE9wNw+DW0Fv7SAS++Jn4AAPJXRdn9/35M7RrZfAGcfjr6obKVmJIkHJq/iZwmoe/LaVKrNU6fPn3nnXceOXKMTd95Phoq6FK+76+trT333PNXrlwOYh+4/1TSBA8EKGAK+JHTajIsxbgpHwKwjCUBFF2KsLBZIwcgm4w0CWPoBxrYOvA83odaDeDTqQpkVRR0A5IY02E4HBO6CvgRpn1i0kBHPkbLiptqRMSCwBjdF7Y1o11tgs3gcjdnCLk/GmfNMrcXVPRvoaYkG5omeYNx/sdTFajsKhbA55wPTozDJvUU3kDzqF0qJAACGHSw4DjVzCmMQE6lD4DNp/628HeTElU+YPiUhA1RIZfgX2mj8QTzyjgfwa3OhnsWB/MCNtE0JdJWNviEExsO0p/KSvIgW+CmURiMmUs6TgRuCkM2VxL1SCFmp0ae0O8rgn0AxUGUx6UvlGEhDMMpHgbdTUi9IVs3HwzoqdTBlI5XjMOK859hToIllNG/OR0STqjsXVxgajDFnvpZ9JguNytyXrhwQVXV173udQ8//EilZA/7/fn5VuS41XpzNBg4jlctVRfml/q9nmHZFCIDlra70w6i5NSpM5pmWBU7iqKrV6/Gcdzr9c6ePeu5ru+4i4uLnmUfO3r0ysuXer2eqqrPPvvsyZMn3/CGN1y/sb63116Ym19dXf2h9/0grHb227PNpjMaLS7Mr12+urqycvH8hYceemihNf/UU09rpC7vDUaWXa5Wq2GAqnC1UXdcUBNNA6bEiqa25mZarVnPd1UD5FQxBYmwLxMKqNmoP/v0M5os16qVVEr63Y5lmzMzM8PhsCLFpq7GoXLxwosly65Vy9euXpaTFIp4mhoGPrmFyLCQUwAAEGUfEo9m99g0jbc2NgH6l1B4iEhHHK/R9SgI7rjr3MLCgpSm1Wq12+1ube2MRxjkKop8qCuvX18b9gfnzp07e/bstSuX0liIXXLZmE1nOZAtAuhFcFwYZTmzJe/0+T4QXOyRPDMzc+LEifEQECBmdaMZQcAeduqdhPiFzlgQTLDsAoUSEbmW4huZEkV2pNrY2FhcXLRtm3MSjpgZicHE4nyQT5Ywjroy066pvhkvEyBe02FZMHtuzM7UZ5pbuzshfOtg4gbzCgqjBaqP3lAUMzCxDziT5wdf+cP7axQho9jb2yPOKLr5Jbs0obIVmqp5lyP/87y7yl88f+eisA/E5ihr1XXyNyD77fF4zEi5KEo0DXc8CIKpwsHhnK1YHaT2Jy2mbIzIhii0TuIyEFsOQCpVtg003K9cerlkmW984xu7+3vNZv373/uej//xnwxGw4DMIz3PqzcaQeIbmmaUSp4zfv7pp7q77ZPnztx6z6vG5KIdol6ASZFIMImDFaGgtYE1RA1gRNNkIzN92t+kslgUP5j64lMJpJgGLPmakjM0QqgI8mXDgaqqA6dfK9nwLtCxyW9tbUGioDXb6XRAlIdKcFSuljqdzm233QZSpu/ZBhL+0djVDatcqfnE03AcZ2ZhTtW1br+32qxv7u1827e/aWdvtznXAmTLNLr93tzcXHN2pl6rzM80+91umqbLy8te4O/s7Y5dt95sRlHc3t+/dv3q7Xfe+Y2vf/1t73jH/NJCZ9i3a5VV88hue+eZp57WTe3e17zxjz/28TA5+u7vfe9DX/rzd77jbbfdcsb3/fe85z2/+eu/0e/3Q7JmOnHy9MgFMUmG97DnjNzxcMDoCAZdEJEG2HMpZgn5iUNnxtlAuMAkYNYz4wIkfC24355EkEIkYwSUgVTN8QKgp7wwlSFeWW82ut2urqissgXlRNJEjBOEXAmRKyq1RrVaV1XdtsoLC0t/+rGPv/jii7Ozs3IK3o5laKoJ+rWlI6vnfRC8SdousYpG4bEjRwaDQa/Xo8UVNjY0fYQCVSZExSOGnaPIvSLj6YrwQEqHTgQTU7yz9NhjT9x1523XrlwC9UjXQ6JuSXJC1GeSP0qSarU6Hrvc8U7jZNjvXb906Z/+k3907sSpr3/16xdevpTCTBLvlsCNTqoYchKlgeNVVKlsSKdOnrzvvvtuP3em3++/4U1vllR1vNuWZbnUmpV0o7KyWms0By9cgDibiSFqqYam6QoBcTMC5GT4H+prFqZLBr3IXlZ8cJNDmBAdzC4olLpJ1sFz75t98HQOgJhaEACAnmHnJgYVAwTf7fWWlpa6XUhsG5oSkZ9No1573/t+6NSpUxubmw9//ZEvf/nLW1tbERzlvBh20TMnT5689dZb73jN677r3e/5wz/4XT8Y9/bR/pKjSEIPL0n8UDJoQdDYFwzpMDZoEqihQcCa86mOGidWY42kgUuWGUShSS1ZhMia1qjXTEMxdJT1kjjRFTmWFT9wodVGdsy0EpEVG8f8UMUlXaKs+kIZNzo5gLCalmFQzwKwQYxp9r2J0RKJmfkm2AQKo9hJJ4gEvmOoRKAQFsVyto2KzlaxgMV9eHqARR460FR654IvN15kGfNXgDHzUJqPg1ibQqVfxO5FnQyBSiUFtTSVw1AkFQy5fSWU5tQyzgdT3fI352gBVMPBeEQvnqBo+KKLYVfIL9nUjRvNWVYwcTujen72qbkqBfZFk64C1/3FT6D3CAgrswEyqZ5nUG+AArMVhpfS4qJTmCrcNU1DbhEK+/KcIox0FHeYN2V+LEBVwhuH5q5YjA90Ojn1YL6vcBLO4nuhko2mBeoQ8SG9MFnTZTJOYLOEBLuCHMnKbKP5+OOPe5539uxZCFrvbDebzfHYTaFTrFoWLLFGrkMj2BiNRjQQSVJD16zA9zwvImD0hQsX7nndPY8//vidt91+5NSKMxq3ZmYf+JNPvu1tb/vV//if3/SmNz38yNchG+97jz/+eKfbvX5jvd3ZbzQat91y62gwVFX13KnT+/v7tUp168bG7MzMeDD86Z/6O+//0R998MsPbmxsNJtN8A0UBMGtVuv8SxeOHTu2u7tbrtQk5s7rarPZZPqvELTK1V1A82eCkNzrdN3RmNo/qCsoBtTxa+XK6rHVtbW1tWvXAfuWlQTEwTChnqNK5W1Th1IqljP4eiaGauRIGKKMQhs78PwkIjPzKPCCQEqEQazvunfcdutso8lCpWEUtbud0XhMwQetIFiM0jgIx4Ph7ta2beoPfeVBTtZZiofnRg5BYRYu00M5PTAsM4eaMNw5zxA45i6VwPLkN4nj2HVdfhPbtsvlcs7uzYOqKciKZSH+zqV1iOiMBZ1zSMYhMdJ6ptGsNxu33XEXYYhFn4or5aB/9Pu580Au0ZNQiA/r9QDtC1Ya5esM65YgoLAVIjzQM9X0SgUNq+Xl5cFgsL+/j0+BTQm+pmlZBdIt60JhalumJR8qZhQdgqej6lQ2TSBxmUjKqUIUR4U5OlnOiLQnEpsi3umbHAQpPFB1zs2ebds2DC2KIILBWRM7oGXLzIHD0ITAZfFbYGGA+gTuHZHQ8mIPdlPUP30YYxJ9Krl2/UqlVHrV3a+5fn3ND9y/9aM/8uGPfXQXrP1SFAb9/bZm2Vq5JEWhFsdRKu1tbfb6nZevXbrj7ruOHz/peN5gMEi0RDMNWVHLVdsLIi8AtC0T0SOHAnazPwhNziFY/7ePqa1FyGEUqk1oTxW62JZl9fv90Wi0srKyu7sLCC7RPEqlUhTEjuPktOy8YCbeQVUsIp3LqlquVcuN2ooFs5Gh787NzV1bu37u3LmXX355fn7e9/1+H+VvU8dA5XFO2GWTSTjHjh372te+9p3veNvnP//5u+66azAYLCwuXF9/CnpTg/Fdd901W298+A8/9LrX3Xf54kuBM6rVahgJUXzq9Mn/+UefuHzx5RjVaM9uzkRETk5TaTQeuWPHHY4gWs7KfqS8ilisqIYr9sFJlzgjuXHAeSChhX0kmYqSIrgISMGmxJhUWfQzxASHhbxGQGaqyfKmrCLkUyRV12VNm52dNU2zUq+xE/wXv/gXpoaul2EYFhRAobkIojAQwSRUzYu3lKpxGqA7CuE+Q1MsQ5OImAiXg9wYgubkwTh5Wmgy+w3CK02R/BDl/QsXLt55x20rS6v7nY4UQ92LEQwkXcpiRoQKy/Tfoigaj8cvPP9cf3//5//pz22srfcGozAMt3f39vb2JCySqE2UyhbM3RfnWk2kgpWZhlSpSM5Ysi0pScuaErne1vX1l86ff/HChQEp0mbKv7TUk4Ikncm3Xr/ngu4kPc4fvNL8YpeDw6+fwt0V8+1vchyuWk5rAIGRmXlBqtjEQ1reZVkGBlJWGo3G+//m34yi6Ff+83/5xJ/86VZHmq1Jg4HkSZIhSZYtBZc2v/DV5239f50+feTs6VP/4O//5P/8+Ed1u+IFYbNeNTS9vbczMzMTxYnGcAACSQulS5T/oQsq0hs05YkiABcheNIJ0kmmCgwOh5LoSkrwIQRbQm4IrS1yIEYIzYVgVANJFpPo9BkIhwP6REkN0yIRCwOkAkXH4GZ/HicQqtek/8jiuZTZ6qQrlMJJTaz4gMXBhJGRewUcTqZMKvA/4gHafRD/YtNOhqhBXh/uZ5jM9FOZ+km2yyxyg9nN8SbXYXhDocIBCn382zCEYAx4F/wXRIymlRZik1Na+TdZpbNKf86JnVIwFz5HB7B9WY5bzDV5nRO8x3wXzxzBiolroelJjgVQ9WGiOJ4inzsOyPFYOJ6yqoBQ/Cp8gewdpyAExVNFUEMIsYzjTNRpbvvQIofHwseGVBrIVZsaWMLpkD1HyQr4wDNgU2N9xLI4yUmYAQwuRFYpzOQvxaxj5gv2YThREEcDXxReJ6PRl770pb/xoz/24T/4yNbGDeBnwjCChFxq6Gbgh+OxY5pWqVwZjR3H9Uxg59BCD/zQdTzDMJeXVyu18qnjJ3Y2t9I4eehLX7n//vsf+MxnR6PR5z79ma8/9FXbtLbWNy5duby1s72xsdGYnTly9PiJEyf29va+553fbZeso4tHXjj/jKZpjebM/tbWfGPmR//Wj7/h9d/22Dceu/jSJVXRAz9CwJlEy8vL7c4+zLwoiOTQyY+Ao2jNzzUaDeKKcf0LSnKoOUTEoweXJnGHI/gGUDgiANN0jAfDG9fXevsdy7JarVa/2wOIP0nKpRLHqrxgMQxMQz2e7DwwffErx3HGw4HnuJqupBE+S1NUhHAuyKPNVmt1dbls2QnciMP9Tmdzc7s/GBimaSKAYxRTEgE2jxJB6EPRL6+aM7aHI2POKPhXubHU4SOfdbwUMq4pJGeDlZUVWZYvX76ai83ncy8Xl8z/WWgykONYZkbLKkBwbSQlJYlqJ7zQ1yrV2blWu9MLgOmEoLIgptOfNxoNflAqlYDeoQPkKvSH0bo9AJanIjQ4JyRMztfB1PRSqZTISrlcPX3mHHceWGMKdSQOXwpASX7gjZ3D8qOM6brZfha7DrBtiqIsLS3NtOZ6vR6PtwMrT1biojwhKD5T9D24aaM8zDoqU9QjIHCI5JC3v/krNJrNvBpSLJkUOUKT7moamxqpYGE4QfmMvdIkMk/AyFUiUIQtBUKLfrCzs/WRj/7h4sLyq1/96r32zvt/9G/84Uc+huq+61VqNUVKA2fsjR3dMq1SKQj83d5+nEZf/MxnFheX73ntfadOn46StN3pRGHYG46skl2zy2ESO44XeGRAUSkDcpb5f30TMMO3ckxDH4t7TLGvTUc+/vlylUqlnZ2d7e3tEyeOPf74o4plkFq1hHJGyRy7I/CdHMRkMnQG5SiKgyA0dORjVslGoKCpC3Mtq2TXZ2fiNFldXdUMZNTkAQLBHM1QKyUrCoLF1szGlmPb9nA4OrJyRMKCmq6vrVVr5Z3tbXfknDh2rFIqPf30k+vr61bJXl453ag0Lpw/v7S08Ev/8gNPPfp4e2f72aef/mf/r5/7pV/8+bMnf+6ZJ5954IEHjq2u7Fy8NPaSowuLAWYYjkG35zkOad1S+R//J7yIJuTYTFgyvxE5BIgFWwUEiC8Xkf0UUDsYU0UtcRba4161kCQheGVCuyZtb1ikUXNBoATtad0s16uGZdcbM0qq1OvNZ5959qGvPNgslUq6UbKgOmtCD4fMnuBmzTUyoSQURGqgqqGmjX03lcw0KSmS63nEsKMyXvZ9ePsn/Z98nExs5DLsBFXdVEND+0KSnn/h/Dve9p1Hjx7d2NhQLSq7opcJNEnW0JNCmvLcRzBULVXjfqc77Pbe/zd++OSx42/+ju/8tm/7tjfc/zoq5RBar2TGgR/5QRg4w+Hw+tWXO4/tjV3vxYsvb+21N9ZvdPs9Q9OhnpSkru+dPHGKak1gjCmqTqdKHj0qeRLcbG266bMCTSII93nZ/uYvzxz6sjmYTxliQN/0+Vc6GDmedyILSxzvt2CA8hzEGCGVPHIXhR0yvzJKpJmZ+jvf9vb93fZ/+pVfefjJ6w1bslRpMJR0SwIQTJHcGEyvQAKB+/mX19d39i5fu/xPfvYfOKPxgw99eWevWy3ZugGRhgRUQDgNMyWAxhEpxMGMjsY3QffRO8IGnsJxWgWkLYGgC0YyRkAUQuVLBb+YaE4oHsaJrJMzrtD9I9QI6fmTPAyJEPE3QojFPiky9kdUDw3NNFGXAzaJK9SqkyZU/EYpjZZx8railoVEQHMWHON2nIrLxJ4HGdSF/gdLSmFn4RyA/kNHgvU6RfROUQYctSkklad+EpcFORrjlTgdoK/Fo4H2cIEf5Owuex+yOyDMEc5cSmM4BQsm84ReOLUP5g9yS5VspyPGUZpqJZJsy+v6bCSRJwBCBUjshLypTF7JVf+sA5CP1DTJdlBcypBXDKrEY8RQ0RwKLsQYIX6BkPjkninZSuTDfvIo0yAvbvDIqFDbhbEirgu5ImaZlpRnY/iZ0E8qNjBzV+MSI30FjvXVQz0HWmyzycyXWFQvJIgzihfxiODzEbYvZL4KGSAoIFEZZzgcLi0sfvYzn/nBH/7Rt73tbU898Vjg+Sj8O67re+TPorpUkS1VIa+zs7ODOrGGQND3/b3Ofrffi6KoXqs989TTd91x5/kXXlxdXn7y0ceee+bZ1aXli9fWbj13yxc++2eb21vdfv9Vr3k1lgQZgc7Kyso//w//dK7VkmXpiae+ISXpuTNn2zu7K4tLf//v/W8zjcZMs/n5z/5ZHKULc/Ptzn6apvML83AR7naXl5e3dnfqjUaUJpZmRjEC3Fqtpmia63uU2ghBdLBeSHYN1WXfH/b6kY86HIehrJ6uacpL5y+0d/c0RU3jJPKDPgGWTE13hyMeVJqs6AaECZgPsL+/HwQBAPhcrg4g+skX3A9DnfWCAj8g46Fbbj1LXGrTtstBhCBpMBzKimLb9mgEjiZbQaRJUjINTcKqFAUh80o52qa2BqLJqYB1Kr3mxFXAXahHZEIMUosCsjeKQYRHmGIghs5LfQew7EXa3IGu7jRaOlcuCyOY7Fomrb9JMt+aO+K5Tz/7PHcA8h4CJw9MFJ44CzKVmVIR5tJMEo/ss7B/wMxA3FBD1ZCkLSw6yEYRJcM9R9djEmCt1+v4K2gCHdDLL4Osf2DK8MGCUQclfXCMR4NarRZFUavVqlaroH6iikPZzs1bmQcwjvmR5wxTB0OADtuPcJ6G4JssDhh6jt6XBuhXHsjmOUbuLD717TySDSUNviSO0jAWzZbtzS3D1KQkhso7LE/jkm3Ozc1947FHn33u+Te/+c22bY/Hzo+9/0f/4EMfBi1hPLZKqWpA3TxwkbToptGo1UadXrXZ6O3uPvCJTyytHLnnvntXjhwLjHCuMTNwnNEIsra1ckVSoe4C9KA+zcH45kIl3zw9uGn0z7AjlrLJP4JHIMdznADs7+9fvXr1+PHjloXiHI8334fTH/hOVbgicravyOjgc9YdRrFFTBI3CheXl7qjAfT+O53X3HtPt9uFfPDWtqIoo8GgVgGFx9Tkvb29ubm5Bx988O1vf8eLL7549OjxZ599dn5u7hvf+Mbezu4Hf+W/vOs979q8sX73nXepuuZF8fXr17vqnpzE5ZL10ENfiV3/4oXz//03f/2BT/6v3/j1/7Z149on/viPbav8xGNPDv2g1JhbOXLE8UGOdBwHjbUQZl5E+s2cSOOIiowEfMb1EAg7AsQJBGPOAWCsWA6bzBOqzOUNcxNUD4RwUkwUW+izsLQH6aUKAXg8hsAHcgJFVnVtptUCXLNaHbvuTKP5xc//eej5pZmaZehgv2i6oSJxMkgSiAXu6KZgPsYpUJR+EmkjxQ6hIYr0Jopin3FxUhxRtp+Zc4ui+c3HDpt2pWGUaCATyiMvvXz58htf/zoplX0fNFyYv5KXXVZnZeyQsCFnl0MUgzy/ubTUbrf/8H/8/m//9m+HYWiXyuUykl6qWbiB56RxBAYngYQlRY5UXTOtsl06OXdKU/QghEhcVap5nkcUakxPuG2KfF4QEf4qxwFo9dRKfpOX0uV4pdf/VfwEDpQe+EmqOk+CvAOej6RqAJ1xWhjjOC6Xy6dPn1Uk9e//b/9wbyQdmYM0arVuD8bj7jCxyspgnARsFlYiFbgg3O543c76z/6j/+Pnf/7njx8/t71xvT8cHlleuLF2fbZZp3R0UoSGthCK9By/kXw6lfETpPhpKqPqhkYWQSfY/wvecKqkqyk2YxTgcBFQ1ksUgmRSLIkZpjLXlDUdJsYNiNs57E000JMRDSpSpAIqSRuZrDa1epwqkAoMoLQYBkEcCPGxlNzviJDKMR8r6bPphcKOlXkHgBEh4uLnKBiKBRFzMi0106kksfmIJUWLP5kAw+pGNOUheIDBj2WTo3+NeL8gWcTC7FEsuUV2QJrKQRChjafJmn6gEyvasBN4vfhJwBpR1iZVH3SZkzTS4JiHg328WdOJRiTJz1E5ndyZwZ+G7oRwXRAVdr5F9PEZA52fz9eChCvlwj4kM3XjTREgQkqSxU9kUrhuNzuK9D6xmnJSTNLSNJUJfyu+BHzi8FWRjLBTSkbuzszPJwbKRS5vRt4SS3O+3mVyv8yYxBWIIjYHyKYud6MklBiAUaPcgpo2EQRr0YKxFGVra+t3fud3fvzH//bnPvvpxx99rN6EjW5vMIgkYBJ80mgrofxXgksXSQORsKvc6/VeeumlOI7uuvu2kmV/7aGvYvJI8tcefEjXtOeefbZarb588eJgOHzH294+HI/anU57d+/e195nlMplu3Tq5MnOXrvTbtdKlTMnTz3x+KO6ov7mb/6mHEcnT5z+yIc/cmz1yJUr14IAPtUzM/Xl1SPPPffc7OzsYDDSNVNVdT/yJcWyDbPegKQPjL3jUFG0TJWQBZoR4oaRPx4Pd3e3x8NBuVzWiDxasqC8r6tae29PSmNdN/r9XuS57mg4MzND0TiE2OFRTiVVKKsM+9D58VCP9zwPoHlKAhFY60oUwmUsDpESyKk0OzO7srTcqNUTUtHZ73aur69fu7bu+Z4kycPBeGZmNkkj2N/JAEiahlaDp6i1sLDgBUgtcvFNJihPLet5+MgKtzqZf2lCEAHJOTxBKa/lYWBoehl4U9NxhAxosft2uKNVmMOi0pwfDCsEGZfE7/Lirm3bzWbTsiwsrCT6KaBTdFQqlQl4L8s90JKlKI2WuQxFw3kXy5hmZQ+AgqhL8Op773vp4sXt7W3GRGEaksOO606+1002vcIX428KeBhVPacSAFAWLWs0Gs3NzXW7Xcdx2GY4x0cVDdSolzLJxIpZGVvsTT1J2FPxzymBIDQ3EgB1mFzBeC3f98uVRv7RRVlVXOcCoSKHEhmEiYc4qmoqlkYELyWR02PHjpmGhpsXBWkSSHE825w5dvzIzn5bUqUPffhD73vf+xbnFtfX13/kR//6l7/85YcffTxJokqtYZmGG0ajQc8s2bV6XTaM3u6eruu1Rn1/a+tTn/jE0ZOnXvWae+YXl6u2XSmX/SAYe76PTrdSLZWDbP28acTwrR9TreTiV+YrglpjNkcmQAihfYG/8jzv5Zdf/oEf/IGVI8tr19aBQgaeFT0mmK+liW4aOpXWE2hnpa4fWhbBwBTZKpU6ezv1en2r06416nvdTqlU2tzcvOfVr+l0OkoCzh5wOLMzu7s79Xp1Y/36mVOn2ju79Up12Os3a83f+a3fuXjxwtmzpzVN++vv+8H9/b252db23rbv+c54eOr4ice+8bgzGP7g+/7ar/z7X/5X//ID//WDv3by6LGXX3rp0a8/vN/uLC60KpVaP+weO3lyaWV10B864/GwPxyPXSECgdYnV+aZCScUu1klJk8AsnIvAyOpwEU7ct5FEY7dXOQjsSCWPsFiSpom9NsJ2i0UiFRUKpEMUNiAtF0zbLtcrdTlVKlXGp29zsMPfXVhbt7UNYPaiLqKGEeVE01SdBleKKqUgnWFYA8V/VhXwb5K0yBJVEUCZclxfZ/tbrKRkJf5XmHYoCRLe70qaX7kNyw7jJAhP/fcC/ff99rl5eXL69cJxo8rgDiEdcJVYAQUBUsTAR3J5YA+w3G8KAJYQkfTR7dKlUSSR2N0kDTd0HX0dVU5RrONOE6Joseomahj1w+9gR+FtoG+ZZrKpg1XGdglpxAPJP1T0jj8K82LDPH/LaJ3OGYTOV7hweSvDj54paM4hcW4Eg5wBZAky4+z+oiq+z6WaAImIppfXFxcWlr6N//ql9JYOr1SL1VqlWqtMxhe2h4qktQZ40LwtfCIvZ1IkkVyEWGi/oOf+8DHfu/XsHdL40F/JMtqGMSJlkgqX0ZaYBFjAp/DJF1a7YFOi9JUI8krqMBEkaYDfmOXS0jaNIiBanJqQL9HjunN1FhL09BH1CNBHkUY9AoQRo4HFwsSxx4Y2NjZwbBJI0JE4lRSVSqZZVgPoyUPtpkswT0gChNWe0sBCZ5QhgnVQzObBIsK6Rnv2lSh5jpw1goA1xSDl/oRwhGIfpIQK4t+5j9zCgBHjPSA0eVK/phyAN4iqXwgCxEOiDhCVpPPAb8i3AExrZkXSawigEfpq0yRWwjgBBIZmzgJjcNERm5fjHWgZkxxLzBM3NqE4hOF1XRFeLXTyPKWMwRutWBWU4pDC2EeNkUaaQznDoK5cRJbBgrNKPrJPm/Z35JkasH8SzG14qu5k4DoCAbUUAqNCbtD3dQ0waDCY2qzKKLNwk3VlHI95KYEAyTBA7K3JuVcZgDQ5+BUyGS9OEvZ73bSDeAnCaxCy59MXSw2DiNpRUnVYiUE9lwZj8eRon/6059+3/t+6P3vf/+Tjz+BkkbVhrZDAtM8wzTDIBiNsLrNzMx0Op3RaCTJcqVe0zRtf3/fcca1qv2G+1/3hc997s7b7/jcZz7rOk6jVh/0+rEX1Ks1XdcvvPDitfU1zdDf8653Xd+4YVqVf/uv/40zcga9XhgES3Otiy+dNzX9ox/5yLNPPf3ud7/3t37jNzUZb162K529dqVZP3v27ObmpgFrwNRxnGodqqPshVEtVRuNBgeLJN+rhCGgvRBJCQmh7ofu2Bn1B1wL1yCyKUjo4/G43W73eh1Lh9q6bZiWaZYXF4Fu94OKXaISUDx2Ee6TriKMNjXDnDKPQxwfp6EfoF7ow8Fkdmb27NmzzDAu2+b27k6703M899jx46fPnllZPsqUAIKlqqoM9cUkDOq1yszs7NzSsuNB/oyj5DwBYLZurvYjvGljqCjkK3IebUM/zwQ3IGQ5HVk2yTdKShLbhLLTVO3nMKSksL5PJ8ACVE4845z2ym4AbBnBOKU8aOaoAiMngwMJPzHaIIeDAXdUpwTIDst0clEDCydVZ7kKnmfOZtbZ4FPPzx/VizxcKGxOUxX6HFLV6bgqGdM0Gg22bOMmZo4EK2IxizKpUwcTiAt7Qw5WEdd5qoZ9++23j0ajTqcDYD0Bq7CeooQvzBwKWqVSQYZVvH/+At8DlAiKxaouKxp2FNoPQ99DlSuVVCmKw0BKohNHjr3qNa/q9vZfePFys17+r7/+2z/x/h+ZnZ31Xe/b3/gmRdYuX7u6ubOj6HpzpsWg9vbeXpIk4NsYljscmYbVbM319/Y//uEPn7vtzuWjR46fOFmqV9lwBrwd2+r2B+y8/kpuptOj65s2Bw5U/Yt40+zX+XjmakmmfSETFVh/6dLL5XL5Va961csvXXLhNKQjj4rg+uw4Dif8ritaKFAeDPxqdZYzPqwtiSgKzM3NsUwtkf6VMIprlUoSxbZpbbueOtOgMZOur6+vXb9u6EjtXnz+BSmOmpXGG990/7g3KJtWd2/X0o0gCo+uLOua8tr77jl74tQv/ctfKpfLn/3sZ8vl8tvf/vbf+OCvhp67vLysa+rO9p5q26dOnzUta3hjczwed7rd0A/SCLhfEt2maiHr/2RaK5xBA5dKaIA8Vp5EffRnZHrK7pIEV80wNgwK5tCOdME5vaBuPAX94AoQSAAdALwRtjNNRZNT1bWFhYUgCE6sHv385z+/t7N7bGVZjdDgojuHLYl0FgCxqNpQ0IH8CRUeUdDBap3GUiWg5J9Elv0gGAQh8CGkZ0gzt1j7n5CCE+jEsM8qU+vgWohbFkQQULx6dW1nZ+fMmTNXNq7TyokkP5+TBNUDfwPxH1zVSR2VVhZdMwwYu8MtYTByYpCUDMMsexFEew1ofCFlIK2IKJZS0zaxbhPJ0K6U8Y8kdQPf1EzG+/E7s+bvBH3wVzj+qj4AN399MTP/Vt7nYJd48qC4gwioKpdvaMFnf0NGr7VardFo1O32X3XXnYqmV5tN0yrN+cHCytGvPvoNKYCPRKKokSTFQRTHiWpYlm34vUEiqfNN85//8//z//m///2nHv/6xtbm6spi5Lp83gq1k6gcgMid6uSKFKM8imBawWRRZWkQeraqGLqsgMaLXQn2SBg/0L0FlxhVfhRdIvR49chMAmCRpRRu0JgGIiojorFAvZDzHUJ/BVB2NIKwbCQyEPOkHi/LqqUosYpOGtlXJVgcmV/D0Sx1EWgG8vvGUNRAdZPKZALdBi5nJrDPTwoCmBxjVtCWwcKX+b3AFzzomJGtA7gaFI8SAIg8CSg+Jms8eilFo9QHINZ84S4Dqs4sFOoTkMZTceHB/jjxFoAOf3ZkLmbsZgB+CF1QVavZrG8qhDsZ2k+TT2Q5NKAmMUpGVqAEIP/CmUtfkQnAnUoUXanfMVWPypxT+bZmFkVA4MPqkFsYSEOQ0qExAGIHNzXoJxspozeaJRVFOdED0qJZ+kGJA7E2aC0rahDliH/+WWQCkHBQfhGFBqhwRMqezM0BEiShKN4Q35wd4FUYA6RUdqV1Z9Dr/d5v/84P/tBfe8c73vH1bzzieZ5t2zDRJClJmUKZNE2ZZasRvJu1FyWERPGXv/zlq5dfPn3y1PbG5uzMzFDVypbdJ6JMZ689GI9a83OLc/MJ6YeOBsOf+yf/7LHHHqvXaqqSmpq+u7OjSukHf/VXnnnq6R9+3w//m3/zb2caTVnSdm5szM+v1Gq11vxi4EdbW1vLy8udToeRG0yaZJ3EcrkcQ8MpVDQ59MKQ0vbYC5zRGG5wYTTs96FWoeupsAJF8Oe6rj/og7wbRqppQfahUpHixDQQAXiOOxqNhJ0Q6X4CNaRpVsXs9Lp8H/kiU0kcoWFKC79O/L+FuflyuUyzOtI0u9frbW9vh3E06EP3bXtrD4FFCS8ADU5JoV4S+NVKqTHTHAWBS7xPFu60yCFY13XQrwt4fYGWkWSIf0e4IwKSlPFrmXfI+woXy+fn58M4OnLsREjshdz2iMPcw0D5bIoJdDunHHj/EC9mSAyXszkqSpKk2+3mqRGfIc8wRVHyijWPOj5JGHKVSkAnkryQYO4WjnwLAnmFoAhkyaxaJEvF5tVhEDhjB6WDPKUpUPNJAydbSjLnXepgmIdr0gok4ZFM1mvN+bnF/XZ3PHJZcNMmKBGsJSYXCKDBKQhQvh3mEJ1itoBrpQlRo+J1ZgjQcDik1A48xDj2YTwio0qdd3iJ6ZDDlLGQFeSJKOMiShavtri/AJMBucEwcKSviloydFJPxutrtZpz1aWFL1lYqP2PD/3hD/zAe+dnF3q97v3f9rpyvew/Hux1umNnWLdnkF34/urC0nA49MaOXSn7joNEvVY/cfTY+rXr10mq7/iJE6fPnmuQcVh7d8+qVECWp4Mbx1PYp/97x5SCE/9PfiMElJ0+l6B0CsS+KpW1tbULFy685jWv+fKXv7y/v+95XrVaVQwgG0ejUavVYvGDbOtCngncggVrlNnZWbxJrQonQdtmyd1utzvodOeaM71O9+jK6o3ra3t7ewuLc3/xxT8/efLkH/zBR2YbzevXNhqNxvxsS1PlI6ur3/GWt25sbCyvLI6Hg0alJKnSkSMrED2bW/zgr/2XwHd/4Pu+/9d+5b/8/D//Z7/5wf/aae/feu4WZzT4s89++uSRozOrq/BtHPT3u50ogNuDoiiO72hUq6Y7LVQyMi/NXPSDiaKTBCDrl4vKLSv20fASGnZUvuX0mRvZMqQkKGzBhY2w3XEnT6HNO5HgfsIaK9zRqlQqIFNZVc91v/iFL9QqNVGfoio7Yn3C6xmGZuu6CZMJiKOQjZ2E6a7CFkvWjUhRbNPCDYXPQdwfjoNI7JIHhpFQ65iKnhkpgT+UZc2PILppyNI4kM6fP/8973qnYWjAECJrQrGTzFsZ1AR7dZ07fvwk8CHGcOTKmloqGaliKLowT0lVFWrXaGbGATgk6OABWJSmZslWaL11fU9VAOmUmAGZYvmitskEUJGlbTdD77zClOEGzdQrv5kSaHLz1+eSlN/q+xw6txxZGiMYwn8iDxf4KGTgoe/yvmMYxkxr7vzz5++4/a57XvXqS5evjDy3PtsaBUEqya+5576vP/bkyPVCiR37NEnX4iTtDZxZy9ofearkR0F4fe1GpVovW+b1a5fnmjWxEHD0SzCTRE4jCeheWhEwbKF5i98muhSVatVSqUJMFAg5oCcMfCaaTyrI/5RHJAp8u1K5ZBkq6OIBqOiopiPHpmhfrENkMUZ+sSziQ+rguiYRbhpWb1xwjqIgSXVqebPDnYj7Od5MyVkFhmQ0KgAu0DRyD0bBU7jVMtECE44zN4HdYwQRe5YxUVnw8nnm38wCmj1yhaIRV9opeeDYmcJRmGgxWpdzHNb7IvcrkpVTCP+skI/QgdErkLzF4XOzjDJH56BmRRwA28xY/oibxYaRQIQ+1wAluD8xucmPJh+FuV4QzlJThZ1woaKPe0smDsUklWcFncOhbnWqMALkUKiQ0XgJcS0aE/xOKDwc8BOYSlQOzBZWNMs+lHuv+Vwn2jU/yK4ceiWhoKYXBH+KWHBWCRJrPVNgCQ9K1o94Po5VqDUnoZrGzfrscDT+4hc+++q7bv+pH3//U08+ur3fa87Nh6Rqb1iWIsvDaOgGvh2FZslWTWPsueh6a2q1Wq3VqmWrevnlS4kfRyE2S3YNY/sk3/fvueeeze3NREpf+/rXf+OxR9/zrnfde8/dN27c2N/ba9RqM4uzTzz62L/9//zrwPN/+H0//O/+3b+rV2ueF0ixX63VOp32677tDVal/OBXv9ZqzfS7vUoFRp7Q55IA/Q+iUJNxgxIwtlBj8BwHtqZQZfadQS/2IilOnP5w1B8guGROMK2aSRwHnu/ISqvV0gmhnkbx7u4uwmXiQiDuT1NdVhLY3SaxHwSOi0qGKoVJnJCyOFsNcEPc1HTfc2szs6dOnyjZldGw73v6wsLcy1devra+5vmhbZcHo36319V08JiFLoGUMiJNl+XWbHNufv7G3t7YBRmR0ee5r22j0Siq/QgQs6yUbTuv37PAK3EbNNPGhmSmgG9x9doq2anrLi4v8WaTa3flyNfiWMr/GRNm/fCB0iNr+GT1fkgrquqJM2c5D+GORP44N8LjWJBzACQrEGFGlHEgmMv0QzmxAS+C2NicgkCqQZE935V8qVQuWxZMmnMBAIFTQpGGe5wC85zp4wlTJPz5oS/LdMYggAgPsy/SNLUtG6/PuLl5rb2wYoiuIE1Y8TjrCqKikj+WCCOWX+diXZ9VWem+C6M3FjUQBmRCdphM6KGTGBu6laRRHKEJxGUIznoyQBd50OBjVF42YQjt+Yqc6gaMrMJUcjwXwjWA6aOfMOi69XrpE5/4X2950xvvvvvu0Wh45uSpcrn8+BNPXF3bGI9GtXq9blnd9r4QmEKJ1KiWSqHvXb98xbLLmqEHw9HzTz31wjPPtBYWbrnllqMnTkbwwgTvCP/BI5acSWQlBmJ8sl3wNiYgX+KGTe0UVJbO5JDwfcUWwz48ZMzKQSu2SxBz4YcrzLA1zwvm5sprGzcee+yxH/uJHz95/ISUpO12B3I0VknTYP7AyKtiSITLMh6YFcMLg+Ujy8PxqDk3s7Oz01poOaOx547lNB0O+/e+6tV//oXPL7TmvvD5P3OD8dbGxkNf+cpzTz+3v7tnqubKypKqqjs7e/vtrq6DBF+v1w3LbMw0EznpdDqmbbz+3vu+9IXP33Ly5B3HTvyTf/Az/+oXfvGTH/2IHPkzteq161fW1tYWVo9c3dl56197n58m3b1Ov9vTVDWJAgt5LLaQzEGP8mqhT885bbb90U5A6aqo+BKwByKJLJ2GIhOiNfbdobSZhjfPTcCpEiB2hFAPkQYoChGIYoE3gEMWoibNNhv1mXa7vbp6dOP6tUsXzi/NzsYBkBTM2GW4v6EppoHoH7C0NMaNS2Vd5fIBSTsiHNIi01ClOAI1ZUTyADnFj6OxgwNGCKGLcSSqj0lcqZa94UCRJNXUYy+8eOX6W4NY100pDlKUWUU4wvospRI2Mp+gjIkC0DY1mfVqoz4au2PHgS1ejh3P5M6YdyGrukoDKY78nZ3dUqVkGejHprGQP2e3r1wURVLhRgeDsTjVs4LCt3rwFnQIBfRKgTsXrW6KGnql57/Zh0+V/0WbSNQ1aFwSL12C0NZMo5nEUiQBK1u2S7VK9dKlK9/+uvufe+ZZ1uA6//wLZ269pd6cbQ/65ZIRyfHYDxFoaWpEOagk60PPa1q2FEV74+ALX/ryT/3Yj37pi38GmV0CumcDAeNZCKsA0ceVkghpqxQHoG2npUqpUi21WjOqriBJgw9gTKsld8BINhc9IUTOmpJYpibLURhLhqb6KW03ZIdHaVuKkj7yBWbWYi5AgxRLL/dfOQbF5XfHDhIAmHYkkZ8EHmTG4f2iGgg4aMKhQJtioZdkGD7qgCrp8A2lfgaPMnSAAW/j2tAErxvL4USlUtS8EHpS3nJoMNDkjakgzq0vVm1mZSF+hhIZ2KwRVR5O2Vkj2pDVRJWACMIMEJad9JNQPFlvNjPoLBzFEywSRSBaaZWsDFpTjNEJGJDRcWlvpF6JTBnZwTI/PyCMPsl4Haym830QG39GGM/q6OKfXNcUL6PEiFI76iFl8qGqqh8ADE3OmdSDCglAdj4UEhW+MIuWYpZlDgZkg4IeAxqIRL8QKZDwNyC9Wd04WOAUXBBGXWcbaNYNJzJ0TCgjEsXH4q3JiZYmVdt04jD2nUrZvnHtyh9//MN/5yd/4v/9f/zcP/uFX0QpBmRBSVNkgnimpm3tdzpWubS6enS/09nd3Y3idL/Ts2270+4airKztUtUVxvrZBzNzLU0Q1tpVF+6fHE8Ht56x+1/+sk//r7v//5vf9O3XbnwommaRxcXwjD8049/4hP/83/Ozc6/7a3f8cEPftA0yuOxS8rLYOiuHj1qGNrTjz/RKJelMDZ1I6FJoIBghYpCs9k0Dc3p4TR0TfXjOPDDmCJLIAIjqNF4nufA4SiSokjXlMCH/aqqQHKrUapIiry3t5vVcxHFsnIfND1RNYI8JUJV5Bc0feXUc7wwQizLcXYaJ5omdPoXFhZqtVoQeOPRoGxDoHh7e/v6tXX2iQf4njijmKS5i1kSkj4r1O46o1Ftfr5Sqw9G4yCITFMdjwUlVJKk7e3d6VmUDd0DK3K275XsEkS7KTHgHsLs7OzR48ceeeSRSJRFUeq26OBPKWLNc8S5gYVPPM/3Beo94Eul9XqdAZemieq+6/tyJA9HDqBZ1WqlWmVcFouN8oXlg9MYVjLNv0seCvOV4Z1SNB9IBwlA7ThWNe2e+14zGAyq1Wq73a7Vamwcwxoa3LRB2hCFMZYGtmmcGO0dgK4e9DfgpgRV2XHMtJqrR1fqTSgYcutjatvLmxu8zCYsU4gZjHCfkwFeN/Kf1JOjGXmo2RLGgWaopYqtqpXxeCxJUqVS2d1pI0ARH0oqLLihWIVcVDSFRLCi0eKMkgQ7YHK9h1dVcdpxmuoSGspO31dUySJjpna73dnr6LIcuJGpg4Beq1jPPf/MhZdefP/73z8aOiePHWvWag8//PDFy1fCUT8YDQyr5nrISXCLce0ZLSo7/Y6iqoZtGZaZRMnmpYtbl182bev0LbcvLCwsLS+XyxUvDMYO5IMVWfEg5Y4GMCPKKXOBCVIQh9iJ0YxWVKyBUhDh4pu6RYoG1I4muQlIeqsymuGpDKWIWFIRfqZylKBb7wPmZGh6EsVOiPS73ektLCw9+OCD7/yud/zwD/7gz/zMz5RKJdvUYYHSkw1DGw77SwvLQeAPhyPLMvu9Yb/vRnLUXGxKceAnQTBw3vDt93/yfz3w6lff+dRTz9x91x39bqc123zkkYcr1dLGxvoLL7xg6sajD32j3mz6Y69Wqnmuu729fWNj7fbb7jx57tRP/PRPbXfaesl04ySQ5Vp9pglt5eD5J5+EQ7s7/tX/8Ms//r3v8TbXButXIrg5j/eGo64zSjTttje9KbKtzY3t0cjR0tQZDNIwdIJA11SMOjB/SckGfWoO/ZkLR4qgVH2j/ZsJZimoukRpRMGQge+8orAxLsF6RB8+29XIsC8BLkI10GlNEtuwVYAqpCAIYwX8Otfzbd2cbbU0kj6r1+tSFL7w1FOqFximn0LT0yIUnGxqVtnS0N5K4a3sOWNbR/nPhDSDqiukH6KrpTQOkhTgfzWdqVrhXMMPPMcdKmRph5hQo9QEA4aQwazrh0yRdIyyZVFR5NGwXzIhYT0kLaBLN/Zu7PRXlo8/9cTjtUadIMlgg9Qa9dHI8YIQwBBFxXRFjQLfO5Uk1/fI/hMXD1jnGBw7jasMSMSB6oTILHEVJFmulsowgkXPAn9HxUIFwqc6ZJShTaRr/cFI1QyWzA0zR/Zv5aBcF+kO9wPzxuDBKOvAEb8C1r9A+posc0WM+7cCAUohnxXhC+rm2HW5n0areloqV7q9/vzcXHt7u1au3HPXa1569nzNrjz8yOORH6RSH9mgrly7fLFar7fm5t71tm///Y89YBmSBz+REEmYbsiAzqgeGIzQcrl47fqXvvbwvfe/8atf+cJMszZynGpF03S13x8qmlyvNuI4gpwruHaxkoRpGBi6stBqLszOnD1zMggcWUm9wG1YzcF4VK5WEj80zHIiaWESa+imIlCXIekjGZKs4ilEX2Ga+iFgY0EklzTCC1H3VSDdqXRPlqvUKyMJDlICSmVZs2TdDxXsTSE6tIAl6xh5QYAtDFEf0XGRFUK4U7Zsw9KwWfO0zCRtFD+gQjCZDnDhG3EpqPFszi52twJSZrIJFvcdBCQHN6PMsi3rLNPqwPK0yIU0XIECBIj2GqGSyuI6xQK64BBygM2+Bzw02d8G1wyxENUjqGGhOQ6wwjn4p/B2PMomTYDcee5wApAHxPlRbG9RMoDGDmuPcKeCvjbuhypDO1Zs2zBAwSXOlfj5J/XdfQ75p6r6nJawuVh+mVJJMmgmUXgv2gVUaSHDBuq18i1UyZtRSxVkhSTSxPwHwCSQddLXPdz6RLGfnVCLVM6MI0AUZJwR5XUk4kBpShr7rqtLcmu2/vSTj//ubyc//TN/76d/6qc+/LGP73TaC8tLJOMlNRq1wWisY4Mcbm7ekBUgO1Vd29jYWL+6tjA3a8EUloD1lCxxhdeIDNXQhuNxvVF/6qmnfuEXf/H8+fPNZrNZrYyHo0svv/ShD31oY2Prta997cb1jV/8hQ+oZD4QBZE7Glmt1rFjx+I4fuaZZzQNVXAu/OMqUZQo5REqMHlRIvuJqkL6MwgBFwtDyNUiE4hi34OQWIiAHvaBJNjHQVsUQPCfhMHEnaUTB8QF/RoITqEtyCggKKpQMalkmaUyPO2RdVAIy1o98/PznucNeh3Y31CnotfrbW5v9wZC/WYyAmlOxbEwilIoHoZSp2WjRZypuOZQBA7iGUIzyR5zs1LeCQ4ZhI0LZF/XR/u1VCmDVUxSM2KrSBLuJvieBxXkfB3PVccKbbGDwyrbLUgoga/D3NzcqVOnnnziabRTCHSIxIl+y9H/pHBeiPgrlcpN/QfYmuDw99INdXZ2dnt7u9FogCNbLpfsShAE7BCMGJIOU9MVwyJqE4Qv8/fP3409kg9dTwSV3Hw4ceLEwsICS8Gw4tAr7H8HUOkTg7abH7HnDmkAHGgm5DDcfr+fa3hXKpXxyOXO4VSJ7pVkTIkw58skwIcuFeG1GKcBNSoDrZIgxLhKIhRpHMddXToSJoGSqoatG6opa5Im64ouP/Cpz3zH299K4ozJ9733ey9efumLn/vzoeuPR31JNqqlMnqDvT7M+GyrVK3UZmZ7w4HbH4QuDA1sSOzFwWj4zCNfN2y4RB89duzIsePN2Zaqa2Gcqq6HWD2F8QaZFZOGh6RWKhXHG4NqmSa6ZuimwWQG7gCwQJ5okOIBpViZCjeFgeR/wNUsTi24xMId9kTeuHLpjz7y0V/6wC+94x3veP7559fW1u5//Rssy3IcL+fHc6stjqK5xfn+uNdut2db871u13H9rz34kCxJczOzFbvkOe7j33jox3/8b/3WJ//77bee+8oXv1yyyuvXruuaWS1Vn33h+TRNa406+zrvd/b+xvv/em/QI92q9Prli7ffdtdue9u2rZdeeH6x1Qp14z/9q39955nT3/3Wt/zGr//atctXrHLFj+JutzP23JnVI2atOvBCSKy6HnuVoHiXNfmpzn1wW+ChKSAfBPIVKwYLC4rhDoUfVspn6CgJgXN/QIBAaK5zBZGfI3VF+mRaF9l2kzX5JFismDrg2uUohltIkkTPPfl01Ya6XxSnmNZwCUZQQzRglhSSG7WKpsrYJUlfOWD0CIicgM2VdEWtlTVNCeKo2xt07SEbZHMGLIJdCGjGNBYy09kcDkToZo6sQV2gSpgXJje2dldatXK5Sr0nAOiSRILtBwxGaN/P5EJys8KC/KKYlbmozk3nI64JFL1xHSnCyGgZBXw2Nneu4qNUxxKM39JBiiIsJH4IC/CK53MTvf9v9hGvBD06KMueP4gwInhFJVlVRrigXYetG302GYJ7uqrt7+2FASoCTIdTNVbGT3Rddcembtt337b65Is3TENyyN9aM5C8yaoWUiikSEkQRbudbm/QL1VqiJWSBEZGaQqpD3b6i+PBqG+qkm2Zc83GiSOriwstOQ4Gw+5o0E+k2LR0WSeYjSpruq6Q3TXfU/wnITUFzl2W4wRcAF1NdU2GOjAiBPQYkHuzgJUGxA5o8tR+ILF32iBjVPcSKdYAd48j340ihYqK2GfCmAGxBC+XgW1gDj6sx8m1SUk0TYJngaFbMgQeNLQpVC0IkVISolsEdhTAgnXLkXSx4HXA/Xeq6E6fNxVafBMVO2BKqDxAZvDiJz6ZwP5C0ibzqoqlmGeNGG+co4qfdGJUVmDgC4GWUo2kQaYgOoWhlnv9UnpAUjsC43t4LE49oH9QHsJGwsS1IPE4FJKY8iuEdmiz4TKCAC4xMZckYCltkIEnybH7hOIiEACTBElqjdYlcf5541WsJ/T+mLiwURRaxoI6B7l+tOwBbgKTHNq2RGlPFTKeTuFomF0fvjK8DB0I/cXsFSAlZkMwzXlyUClXHw8heCIlyde+9rX5xaXv/6G/YVjWpz/96RfPny+VSrOtWczPLECJUGN3pTQu65XWbFNT1M5e24FLpGOagOMTLqhh2+Z4PB6M+nPzS0ka/dTf+ZkvPfjQ3/7bfzsM4vW1jasvX/rIRz6SpunRldW/+MIXd3dgkWgYBgWO0sLqyvz8fJTE3V4/jCPYyNMBcw4FPtscykHlEmTwJPQD4KKIp0VMX4XhuajaQlo/BEZCiktWmWyoYi8AHgY0AJLSo04Ry9vyYiwcQyhHQhqgqmqlArG3arlsmkYQBxoKrnJeXIdQkKb1BgNd1+vNJmOftnd3t7e3e70eg0kEpzMrNucBJSslc8w3Ho/39/dFWT1TqGTwBuvDFO9dXqRnNap86uaIcy7Vs44QgxkYhC2K7tmsyCd8vkBMyQGBU1hgWuYHq8GmBF5H0T0IBgPYr8KTJYqc8ZivDzcWcvB9Tgbl7yXL8qDfz7eUfGsRqUXx+2axe2tuxnXdp59+ms1EqG+js6QPv7AwCWgpxqSZMJKLQjo3PSwTvmmKopw9CwlX+A+QojOTmA8fLBV3uHOS/XaKUxFbJjqHfA5F77Zjx46VSqWtrS3YgloW81v4VXm+VER/zc/PF9f3/LG1YLMRGPMXdUp3ZSUdj8fVMtiosFQzTWZVplLcbrfDJEI/myBcQRyiWyynu1s7jz/59Ovufe3td9793NPP1puz//Bnf/bytatPPP7M5tbOcNRPx5Jt2qVqRZKSQRdYmlSWLAPyLnEUpDRCbLukqJrjBzsbN7Y3Nl984YWFxeWlleV6c2blyNEokYI48kIkpUAl0kI86Owblt6sVuJUDtDMiRRSVyGydSb2iKIUhfsCBATleb5GZHWCC4WCNPdE8ktEP07dcutnHvj0seUjH/jFf/k93/M9y4tLzzz99MrKSq1S7e3s7nc7s3Mtz8fyMbc4NxgMDEPr7XU1xYzCsNGc3VrbVHTjq196qN8fXr90xR25TzzyuNMfP/rwo529zsrKSr3eXN/csMqVpaWV5eXFF86/OBoNFucX3vue93zb614vhfHIG1cqlcXW7KDTHuy3n7tyeXVlKRw7/+YD/+rE/OK73/3uD/zrXzI1deB5sab3XH8wGtm1+vHjJ2cas4Nebzgchjg/KO2Kog91L8WOSN41BzAhk4meY2LwmON9fiUqc+DvUshM0aToa9Fr+ZXEeJGUGDNKUbNZDLF3vCfQVrKCuhoBF23brlQqkoQOwM7OzhNPPLHYmgUDU4IQp6ZDkwA1fgAMsMCi+lMuqSAwxyEtWRGt0gitdEWHAnPJMPSarAZhMmx5fpxe39jlwJ+Yj/R9AcVQSUD+Jij6aYC7JHsBVKFOrnxbpVIZDoeSCgAYwxopMBBMAFKSpLmc/+2kOJI9Fhv4oQMXlXpxrHMg4SuywRCggch7CY9S6Ezydf4WDxKh5++en5E4cnnA6TPKzpRhX5OE4WYdAzSKXuF8Dqj9TKaYjDIcr3SonnGBiFx0wA1RybtaMiy0xzc2NuIoGTrYKVQ5VcHORICjOKoy0JuWdc899zz14g2ibOIWaIocSOiXh0mIWS4rbpDc2NzY3lueac22tzdKRFn0Xc+H+lcM59B6Q6vXjyzNLy7MVyy9CoU3zRv5rutSRqFatqFhhGlKRD15VYVAQkxpGp26wjXiGK1XoqzLaE/B9Yo8mSBJmSAowbaKhJZK1ITLIkkscOSlJEbEB16BhBMzo0QFdBOBANUcCVBMIvYq6htJrEK1Ow3lGM0FKdUhS6bp4BLommqgT6pqumEy6SBPAITfbRxyAjCp5dGRu9Hnt0z8lkzJpjaRYpY4lUsIz40CqJ4fwx50SlYnf0xiTpTW0MrDp1eA7ucBLeKKYqvicKv94NnjDYEAulkCULRKLrQkcI2FNS/YtyJ1RieUAyOC0nKozF5y/LfQN+Ayriq6IdztIMgph/rZf/BIJl9DThyQw4GrAGFHpMG5FBJZQNNKJCgggBtRxILtDPkkYcIgvkYeL7zASxHbjImMrfDtbmbNnS9OmWMK/xv7ZqlU2u2DyafrerfbX1pasE3r4x//+HPnL/zQj/zoz/z0Tz/wmU8/8sg3NtauVyqVY0ePb2xsVMqmlIIIGHiu7zqIk2S12Zxl8FmSJKOxEyLC9mHTLctHjiCmKZWsSy9fefvb3xF5cW/c/5OP/dGX/vwLR1ZWJUV+6KGHOp2OP3Jbi4uMJq/V6kurK4qiXL9+3XODubm5AM1TErEHz1Fs+VwhBpwRUGKQD5CbkaoXzN4ZOE4NVh5OjFoW3F9CkgjBnDgw0YoF1CfCzEeWpFEu36w3TNOolCq2bWmKBpMAD4C9IPAI+4MgzDRNLjYwloaH0Gg02tnZGQwgJ3/69GnTLjFAiDUQOEZn1ApvNhyVOg6QM7VajQUTWJMEOiSuy5gWqqUlU2a6HCYWW3jFNbooFJPHpojLAS7HBclNGVlG9qYLvegAFCRWOKQIKfHIy/8OEaA5V8l7iJNKv6rmr89/JYTTDhlmcehvUII0VcBgX7NarcbC/OVyeTQclkpQ07OJCzERTKDEmww/JgBA6pUxlT8J/Ij4jRM1YkYrugloajIJ3cZxvLW1xTSGqW2vUFCZYhFMtJWmLqQo0woDlQNbqaJI7XanVqs8//yLg8Egp6LmIK68LJ0DqHLVpoNrveL76HyqqLIapuCDYKxW7JJdAu85TeOyXSmVrHq93mq1HnjggSDyM/6C7AVuFMR0FaVms/bShUu33n7L27/zHYNR/+lnn280Gm984xu77f319Y21jbX9/e5+eyeRFE3Hqleq2KVKDZp5mIlBomhShF63quslQ4+TxBn0r42GmxvrplVaXFqut2YWl1dn5lum0QA6aOw63lhJUOJI5FhRwSoBeAzpK6RRWSuK2oAMW6H/stCFtGxIhQY1Arp0MvbVnBfKpODefv/40aMPfOpTKysrH/q93/8HP/u/c3rcbDb1W25Zu7FRrVYXFha2t7dt227v7xl6OYnjwT5cRMpWzbQNNVG+9Pm/aDRmNjbW3/ymtzzwyQeOHzn+wnPPLs0v7W7vOKFfqVZVcCQCL/DJBtibbc7ccu5c4Dpx4FfKdur7piLvbK7HfvDd3/Edn/jYxz70u79zZHFxdWnp93//9+uzMw8//PCxY8cHY6fd66umdezoqaXFZTmRd/b2vDF0ablJxXc9EatKcdnPUCBZ+a3gLy8KRtysz6VC8+01Bgo/1+ASXGqeuDzCcuMwwYOnBBgQduK7KRRGM7DQMIxGo/HlL3x+OBzOzzQB5ifIGJi1WM8x90iMFfqrSUxCzkhtkBHyLE7kREuUCMWdVILAOCCIrVZL0a2dvW7gZqhXIarH3/bm4BeBGhbhMnV44vDatWtheF+5XN7vdgAIwPaNy8JLOv8hc3cmeqMHJ+9fVkGn5kF2PhnxT8QVrI7Fq/ek7MJyI9/aQUU9YewwdbyS4lZ+wlN96VeqiQhB9G+VA8CkXdagzEM4Dl0Ar0VhPEnm5uYcz+32+zqpYMWQeVVUrM+AR/hhrLqu6ThHTpxYXahe2xmSII8CABaNbOCTKQMIo2R3p721vfPqO27ZXLtaNs2EBDkqJVDGK6XysSMr9YrdatZsQx8OerubN+LIszRV1aSyjR1Z1aAIio2YxpsCrloIiE8Ez2C2FmGjLEZRKKmsUWFJBTCMEm9EdzJWLOB62TscrSRS5pIwgsWCL2IxRTfJTFhWdUMh1FciXsyDmHIF0JfxI5HkIAwtVpoyEmQp5C4hpbJG3FTyEUagzUzfjPUjbn1e6sr1+A8Xv5KCMk/xYIjOTeNwWkunPYWVVC0+A9oXPaYz4zlEojfEiEPDh0R0aBkSrDn+qfkhyIXcUMx3Nf4Cec1bdCsocA6TsIBJmozUKWqL+FUia5JJwzMbtax5gEssLhBK8DkfMc2/MD5NCBGi1KEUFXsKP2EhwR0Aoe6fcRUoFAWlicN9LJusxppFYEJ7SCiuIbNk/TKq64iuDnlE8KkTOYUXY6H7zHdd9ATy4J8GJm4DGlaEKsOlkwCB8P1uIrsz8wvX19aD6+u3nzvteO7m5uZ//OV//33vee/f+5mf/r73fu+nPvWpRx999LFHHzl9+rQRqa7jo8bHMi96WZKUvfauBv1MVMElKXEDFE2HwyHlAOnSwuLC3PzKykrZKj/1xNOf/JNPbF2/ds9rXvXc089s7mxbVkmVtdbi4nA49D1vbmmpXq/v7bfHIxDyqvWaFwUyGUUB/ESedUQHwThCap6iU0WO90Tcob0QQT2BhjOPCpSIFEnu9zqcGAj9GRLg1xR1PBioCjTaSuWSjdKVaZq2pimaonOAmKRRCBYFBN0sSW+1VhkKL1yo4rhPx2Aw6PV6rB2U6/CMRiM0IAhBzjOKK2ToFVClP03RJWcUfpqm1WrVtu29vb04jrmExi9AhO3A0ZbDa7E70ubhuu4Ulp2fB1GbVIB4gEHglcpyXNhmDgBnF6z8zdWvwwI1YQTBzfwj8uCDw0r+amhoUP7T7XZZwl8ngE0YBBF9rySO+RkB6+d4Ol9aChCafIUKWN40UxMqKjyyocx4NIrokvIX5Ap9sV7OqgUe/AGAYyEZXOj6cRwJi/WDS09mgS4Y0uw0zF7QaJdl5z+9QWZM/encu/DNig90DQh+5gkIhAWF3svLq7VaZX19azAYlMtVygkh3Ak+euHghg8PpJueDyjLxFxKpNT1fIfgXmmabsKzQlCWFYjXySdPnnzNa8qD0RiWGmSHqEpqmISUCkEItd0FY7LzyDeuXFm793X33nbHna473tvcbTZqi/MLd911W7vduX7j+sbGVqe3H8XJsBcMeujnVOu1ctlWZCl0nTBKwLVXFN0ybctKJckZDjp7uxs31uxKtTnbml2cn2stzLRma436XLOhqs3uoN/rDxJJKVXKtmV7Uej4nkaythm4h+4WogkK6ki8DYQpAVgVYlms/0phJHG/aLnXFN134dTxO7/92yXb/r3f/p13v/u9+7t7cwtLi4uLe/vtjY31k6fP1pr1/W5naWlp1O2XzZLvBbGmX3358uzc7NLicqVUHQ/HzfqMN3ZjL7pxdW1pfmk8HPcH/dJso1qvxWls2/bVq1eHw2Frpvk3f+RHbjt3y/HVI51O+8T88vr2upykr7/j1b3B/qc+/LEP/bffPHPy1Orq8qc/+acnT5146rlnztx6br872On1ojRdPXHy6LHjSaLs73ZG/SGq7qT7yQAnlhMgl4zJwJs0+w/y7YRjQFE4UoBTxMziLY/EDUHd1IjOyMMGnNyMPRxTzS7rD2BdnkgLEbgOEDAi/yRJAoGjhQXPdTVdNyGNIxtqCp8lSLKopg4VINZvAN2KpMwC8mLns1aCQA/jQI8k/L2lqka1XFE1c6ZR84OOT1ozrGQCQBR/25vX4gWxO6+GRHHU7uz3Bn1eafMVD3GqBmmgKYZV1geYzt7zZe2m85HyU5IeJ4APF+QIKiN0QXD/yDqXEVaZkvm3dLDV1VSJRNQ0//+UAEAj8mYZVVF8JX+QymlI4Aqo2mdobVSpoXaJC2uZeiolS4vL7fY+Nqs08mFah6+vIGCELV0IsnfgOp439m6/9Y61na9z6cZ3UXrjUmyKojzevO+EO+09Tb/btsvo57vObKN+y9kz9SpkeUu2KafhpUuXevttJY1Kllkpm1W7VquXVShwYwmlTsVETc0nF/PIT2TIW1ErDA3mREo1yFaRfQA6ZggfUEJGTRL8AniK0bhKABAASoR4yADHZL5aJIRAT4BlSrI3lC9gUWIusURVc+F4S3DxlFD+aNCmpHlHTQC4bSkkcoOsBCAj4u0z94yp0AcDfX6Sc5l8t+UFgdBKNxkPojuUAS8L952+AUEtUZOlXTaRZV1RyUKMdOiQBPBP9PRIoYH8kVGwAbZQAUJYE35XrGyfge20WOiGHug7sHgI19smv0jYuWN6wohKRoFMMxn0SEki9mvjKc2Fc6wiKCJzLM4XQnxtgySihEKohOwM8Q5JoOXXizhWnLYnHqD7WfFAfC5Ne7KOY7w+IzczhYYJMIcZ9JmeKUwEoBOa6SCxTQkJ+ojrkP+qMP8PdH8wtaD9H2OhJzknGmPoNPmONzc71x35cYTCc7ez397vovIhIXL9vd/53T/6o4++993f+3f/zk/+xI+9/3Of+9xv//ffnV9arM3PKorSIR6wbqIJtTA/x6bfcQyoCcI1RM9qo1ZtNWfe/T3f5fv+o48++hdf/PzVy1eajdq5s2e/8hdfqtfrzVp96LgLCwv7nQ6gC5VKuQpW7mA4jKJkZq5lGAZa8Lqe5IA6OGmIG8f0EVK/xvXXCJ2aRIj90RXI7niuX9nr9SbrVBQHcZRim4ltXTMNgzoVQPYzVidTocFLVUk1TK1Ch2VZg0FvMBhw6Oz7Psf9IjrnLjnZgMO3uNddv7F+kJWBg1EcLFDI4TJXr5lYubKysrGx4QBShT6paZokvoJyBfcxGFDEEbyiKNAbLYSYeaB59913c2TPk7bX63HJ/J577x2Px1yl46yDP4gD6MOdND9ABJk/mWMHu90uON9wRgPNi1FVmqatrhzNYnGIr3NqkSRJLq+ey4nyDBqNhOPy1JF/qaIIaRzHKysr1Wr15MmTFy9elGWZxYVySFU+L5iIIqWpZQsn4IPlAIHgYhnjTKWYMUtCqtLzPL62yPZISnW6mlB42+KVF1yFTAZ06sWeG3C3IdNdZt9Hqd8DV8R1fElSPDcgRKXC/vA5Hiy/ofnCON2OoKWHt0g2lsRWRREhLbiU+ajIBsMEC61hWZphRVS+JcQbadlRlWns+Yqq1ir1kTO8fmNjbXPjztvvOnZk5dyJE4Nef3Nj3fW9Uql01+133Pvq14RJ/Oyzz46ccafTaXc7o/5g1B/oOprOs615un2R1/fG/Z4CY1SjbBqypo/d0fWL7esvvahVa8srK8eOHZudn2s2m4ZhLrdaIay1A88ZS4paNpA5YJsgnQqhuseFGWJqEREMFVUqcbAZzUQOhRvdLAtdrVSGo76cpMP+4EO//z8qlcpv/eZ/+7f/7v/a3W0//8QTJ265xQ+D9etXl1ZXWJSpWq5SXu3Zdgn25/vdNJFmZ2clDVDjG+vr1WptY239ztvv2NnYLpcrs63W/qA36vfOnj4zGPbSOJpvtd5w//3NerW9vaUp8qDfTjxvYW7uka89+PCDX/no7/2P+1796qMrqx/56Iff/Na3fPFLfw79Lttee/FiqupLx06cPndbqVLfafeG/ZGm6J4v/CimSH4Hy3WTIC8bG+weM71L3gQoy2EubLDItDMXz+JPnFTiWA19utwO+o1plkoQVqpWq5cvX7506dK5oyd2tzZTDbh/XZb4PxWmdYoJC0MlimPHcwNw/Tn+J+stTGYoM9pmrFupTjY2upzqimrp0urCkucGe70hVCYJDU9FMtIiPBSv5mgE7FDMm4Sem+b5wd7e3sljRzDBSTkA61iSYMsv5BIT7FShYDd1vGIrAJAAul+0gRWki7C9I/qnDE7EZCKF+VYzgJg6qrEkarAccnEllgEO03VaBC7kFEuvzX/ir4Amn349ViqwRG9SKCkIn+TeBVSRS8ipLUtCxIAEUgyraxylZapDXTh/Hsud7/ngr5MlHGmngNkf4hnL9/f390+ePNl47InuOFDTBE5fhhkmMcgeshqGnq5LSSTttTu94aBar6txKJdLM7WyKkvueOQ6TncvHI96w35PU+XV5YXl+XlTxwJIDAG6/qwRxAushlDcGUeen3o+JMSxjOiaHithBBwv0cGJSUJdEbDGYZNBdm+MGCLBlQTpM0n5iP2II1zGKOp+CJducNU08NWQ9KmAoEceQXkFng2sWCKLKqZpG7pFMrnoXKATouqoigJXxF0kGJOR0hIjUiMWh8hcgIVQRJbJs06dUKtLJbwLxKwlNcl+0qhgufsk48riGZwm6YZmYBJeWzgio/oA4TOyFYEfIyvA+x8MUWgO8CCfkBNIn1/WoPk61Xqgz2SYIxVzRZwL0j45lXMTZ2oe5hvzgeVJUimcFIVGZHJsEy7MEsnQIUPoCo5mVn0ssijEGd9EOTFJSEo2E/+hRVP8iUBVopuBXhNTf2ACxteLI3me1kK4gSqSiBBIXUoVGQW/nkSvWOyVLgmhCrkOXiDyky0jN7JkIq1QKwigYClJLQs4i8FgYNql1uxct9tPUqAdllaX6pDs8L764Je/+MXPnzp16r3vfe//+uSffOELX/joRz8qq8rrX3vv4uLiaDR68ulnx66LLFWG8HOj0ZhtNWcaTd4AluYXvvoXf3Hjxg3P8/b29u67596vPfzVK8NRtVzdWN8sVcrlSnljYwNTQFXnFxbgipJI5Vodgspp6geRVanGcSjAisTSQvMJjh3kXUENNlpfUN6kcnVCNfBsUY7iOAi9sYN3JjlFTgmAU5QkA7PKPra6wneck0zPGTO6ptaow+S9iqCfDci2djYR9wcx67Vz9Nnv9xn/wzkD/hYCi4hKTRPdBLasmrStMulMrlKz2yvbwbAG0e233765udnpdPJaLx9ZgHuTTtdhRinLSlqWBT1QOqIo4u75YDjc29vj8jbHlIw1Z9TWYSx7fqpTPF0kLTH2+5JdgZh6xkZYXoLZcI654lCYidFT7Fj+p2kyLuUAGZdlQ3PN0Nz4DPpC4AJqd9999+rqKl+Wkl1RFCUjxYpUhLOMOI6LHZL8J9+FqVmcrUf4FQsZNRpwdOJ/2pRIFG8l/zMMD0gu5HMPmiET5OHkfqnoWpAWIoFWwALDlplu7+5SEQcARWKvi+HOiVN+s3kB4vcvjAch1iJInMw4gkszaQSRQwh5d2C6kM0A7maSysOxI6OjqbHTK8sRoPUoS63Wgus73f5AVqRKpT4c9Z957vn19fUrFy4cX11ZXl6W1Sbc8cbDODJN23rrm9/E1OQr169dvXp1r93GqI7SXVj46ZVKTTcNEATjBDQ1VY08x9Q0q1GBFHIq7W6u72ysSZJ08uTplaNHTpw8XapWk0jxIk9SUt0AbzjnkKGnl9exCFEtkaFOdpmQA0DJm/qkgOBSEs43YmN9fWlpYabR3Ntv725tf+wjH/3RH3n/r/3qB3/zt/7bfm8/jPxmszEc9r3xaH6hdeXlS3ONFiqXtAhUKhhpu7u7ruvW63UMDBqcKKD0e2hwlEtXr14t1auqql67dk1K4ztvv701M/vCc8/d/7rX+iPnzO23+s7YU7WNa1d/77f+28vPv/izf/dn1q9e+Z3f+PXvfs+7v/7w15eXV2RTf/rFFwNJWj1y5MTpM6ZdGgzHjuNiw0hZbjJr0FENmXYx+E9NotZs7yPkRabjkivt8lASlS96JT9k0ppA5WLsxQT3ZZVNlGuzcI+5B4DloA5M3EVahkFRpJ5VuVzmPsDnHn6Y248W1GeBxlMkaLFrqmQb8AZBXBVGruc4rkfOa2EY4I0JcIGFXSMXDtBFoNeQWKmsaIYmKyvLi/u9bm84itCPYPn3DPx0MH7Oq/hwKqDWJXGHIhOWjtLmxva506cN3fLJwFAoZU9yKG7LFxaIFLTQyY6fVU+zYt/UQeYMXIIlrFRWKSd5TBqzbLHMpEMeztK3fJCtoFB4JdFBwSbOJspN/ps8n4HGyQak8HzxxXCiKoifHPgpIiYqMQgj1ThNgyiJEJPCFAJBKkWlpMENzuFoMFxdPBOG4c7ubhhHI9eJJS0mYn+YxhBQ1wASSSJIY/V7w9m5pdMnTj7+/AUS1seOj5fo8KYNYsmAmF/S7fa3t3ePLs6nvmNqiiGnmzc2ksCHm3MSaYq0sLCwsrw4N9vQJMkd98MwUOTELltiFQeaCLE/4sw4GbmR4ys2tnc8oUWSEcthlKohUGhRggqvD6s9BhZgoyOEgph3YDETFSeJEAdmM1EwsiRJ5RCOSj+k8q9qKtBG0BiSeJlioDkzAGXVLld0AxBiU0cLlHc3cpvD8AEPiFYD3AFCSCRpMKU+xwkAee6iYSHOStSFEpWARxJaBzQwSdyeSCtsPAt7EBKQJOCRjGt+s7j3FeNhAP0Oj9uMFlh8MaNjgL0Te1qWY3J/g4JxNZM0RgMlsysgqSJC8aJgAYQ88hddM4voXoZzKJJkCHdoqqeKwEbkMnzGxaxAzPnsckLtFAQ55F0GiuWsEiA829AiJR5aDqZEHp5V4kkekHp/KOZTOZ9QX2RYAbYv+7MiQEGyDCxadh0INUG+DKqkkEJNJsA06ZBkRCLqu+XZU4xeC4wwZKySAM1DTwMCU1qzXnvx6oZZn5Ukud/vm5QaH1062m63tzc2bRvEq+Gwb5rm+vXrv/SBDyzOL7zju97+f/6Lf24Y2jPPPHf58su33HLb/T/9kz048zEFAETVfr/b2++1N9e2NrZv3FgzDGycQRBUq9XPf/pTzdmZUNXG4/Hi4qIXIMXXdb1cqdaaDVSAwlBSNZOUlQPPi6XYVExKkQgbh3Yz9n5qr7G6I4VWZIGJ/4+gnJSyIjVfXoJMQAkU+h6Yp6JQLSulaml+dr7ZqO1tbXJyzlvXbLMJ5V3TTHALUOBnXmZAsSyKFiM3JbB+rVYbDoeO4zDfgAPKPD7mb831aT5y3f1c3XK6TEI31PdBUeJgmlH1/FavxMp/JWQq77usTs2DeWZmplKp2LYdRREDhPLkAZJZE2bbAchKgV8rDMFzLR3ccfJfrFQq3JGoVqtRFA2HQ8YI5bRjBhpx+4Jh6YyD4mdydHsOcOc3z5/P5UdVVR0MBsQVAVmCWRNsQ9ZqtSjbgRtx1sYRSd3U8sSP81bPweI9fquqSIdmZmYWFxcfeQTWeKYJOP1UIseH56HxldsU5EbIRWfl4gOPksO8rcHyplEUzc7Orq6unj17bm9vL/dxE9GCsCXEd+GPyHxJpxOnWJIBD4HdBW69wGtRXZPHkue5ge+rCuAZ2I+HzogyXm7UgFZPmAKgufo92DmV0VgfjoaGifyw2+s6vf1BZ39ra6tWq1Xr9WYT2T40rzpdLgG8bu6+e++913GcHTquXLyCLllnP5Ek2y5ZpVIiJf54pJsGVMNg0Ek1EQUTUFLUtauX2jvbG9fWVk+cWFxdrVdrQRSNhmOrZKMmRZhRUvTCxBAq76zvg+gANgPcgOVVYsIh4ZeBmHSkvbvT63SbzWZ/3L9+5ep//o//8cd+4id+7h//k7e85S0/+ZM/6TjOHbff/uL58yTsO7e32a5UKvVmY3tvR9eNSq1iGEYsJZ1+r16taKrueW6lUh2Nhoqm+j5cFCPfA0xFkWxTT+O4UrLLlrm5dv3OW2/ptfe2Nze/+Gef/fjHP74wN/fXvu/7Pv0nf1IrV97+nW/72kNfTXX15Kkzf/YXX3STpNaaXT56rNJo7ncHnf2BoqCfMhwMUiRoB3TAOD/PtfuKQw572aEq2DQdli7LFIYkK9xyWQkv4yFf/EuegAAoZMBVKGRQQYHni6Zpzz33XKNW73d7tZKtkHOADHMVSSf3X4Ome+C5joMajR/FEN4nn4hUUlhrXVHUMErDKJDcIAziVFLsMmqnM80G5PVVJUli+GLQPvFNFDTFl6IaXxEEhelG9UoW8FAM0FmUAvdG4M2y1ZFEk8TlmrLRvdmhABDAIiDMp+BiJVid/M5Tfw5J229dBQiym6gncqYhLIQzq1DhKTX9M/Oa4sBDkAPRFrjZ6yUoIhLJFDev+JN8N1hJFpEPgWRZugRZKbPvKC9KdKh8AblmWxV3vF2t10auhyJaGHqBL5kwbEbQQ2etko5+EkueG2h66Ln+ysrKE89fMGnr9BIIOMHqh4BDVPeSRuN0v9O95dSp3d7+OPSrhqbKSaNerZVLvuc0Z5v1GqCEgef1x2M5Dcs2RiYZPwvJMAxCdETjNEi8UPEi1YuAUI9TWZeUSNH8KE0D0thNkQwECMIoHlaVVCO/YKgUQj0ddlVwPoh9L0A3UvBGsWtqlKJpGqnVsdi5DnkJvnLVap0t7em1JJBNftmGWabCG50wRY/gOUSoFXLbQTAsuKDN9Q4iRFJOxrkqQ/i4d8ojNssQIaKLYnBRoIeTGR5LwhhcIDDIaobcB8Sc4sCZ/lXU9ysuMgS6PRDhUE0/pe4Hv0ycEv+JBtk6EbYj1IMyHIkOaIqCohh6ScQjxiWnzJHK3hScsPwD+SPRbsB+DoQKJcwVetsYXJy4kew07r246FwLIQpHEU0BtFPGdyYUPV0lKBhw4C540Lk7LDKtHNsH3XqkLHzOdPMkFKmjGNrFLOJF5sn4TYLSIwPIWaQIRZckDiH2QM9hYEnwSiFy4xSkIVtEsnyLEiaoM6GbC3UElHSIXsAUqDQNG7XaKIxkjEIUeg1d297erlarcopQ3onGtm0bmq6qytzszKDf/exnHvjgf/nV1tzMmdPnSmXrjz76kZlmvVarRX7gOA5Hw0kaQ+LY1EtWaXVhVlGwkmJx953lVj1OEw+mcVJvALnDWrWO8rMKCqwkq5ZVSiQFeptKAtjNJAETYlGiekU1GR0w1QTOMjzykJInyBBRtIZILwVnTr/fD3wP7vSa7o2dJEHs2JqdNW3Dd4O1a1dNVZttNOv1OjqAFE0Mh8PexoZVAiwHNUsU9XFwBdr3/dFwyA7EOzs7URQ1Go0eeRHkdyRT2BU12vxgym8Oduc35O/IgS9jZrjQyJ8oyzLOLUOv3mQPuAkAAAejVtI0LZVKUAUdj6E0qmkmKcyQ+C5mC7cyhNBqdhzA/E0m6oEmGIN5ymT2yWgoVVWXlpbm5+efe+65ne1tnQJx/m0Uhjmptxg983tNf6Xss6Zq5/wrw9S+67u+6w/+4A/W19dZK3M4gB+q0BUmD/acA8AtgmIHoyi7mUf/Ra3RUqkkSWjpRFF0//33P/HEE3t7e6ZpcpeDUxduqnBCwhyAIhCI36j4uXnuR3mmcDrPrwZH867r6rreaDQWFxdLpRIPMMcZc5m7KIeaG4fl/cn8SVKLsNCGxrwHMo81QJFReEgsq+USjK49oHeYWHXHXXdyd8gwDB5vCHCpsH2YdI5Vyx0nyEGE0Nb+/n67sy/LcrlcHg4RBAugkaZVS+XZc7ecO3naJS38dmd/YwtuWLplmFZJk1J4HkuyZui2acoqiXe5XprKXhjfGDu7OzsLyyvHT59eWFmdqVVTWRp6jqLraqKFflC2S+VKqdfrqagXsDIFFlgJc589cdF31lTZC4hxQdwAOZWG/UHFrsiaGkVJpVTm0PM//qf/8LnPf/b/+vf/7uGvPfQvfv7nH3zwwVKl7HtOuVSWFufiOB57jgUKtQzbXd3khbs77CmSapu67Cq6CuHmKMKurxq6LkuVki3FiS4rJ48dveXUqSgInnzs8S/82We/8PnP1Ur2297y1sBzH/jTT85VqlcuX44U5cSp0+PQ/8JffGnsR825uVvveJVimL0B8JCKAgqQFAM96AZ+VkQWpk5kd0bdgGxIC2es7J9A+sUxFzgQk4VoObJoAQpjE3gt4IgISalQnMAKhsCXFPyiRURFOk47OG2gepeCy57hanTLLFXKiSw1Go0LFy5cunSpSUyAOIwsWg1MS1NlydS1Whlayc54NBiNwzhBeB+FbpiQSTgwFFSETJIoVFKUDwx0gSJYZKhKuVLrdruvvfe+rZ09b3+Anr5meGGoa3pEnMADa0a2ZHHDiPTB8Zwfhqokdfq90WhsGKZlsmAavqzvBQKyy7olPHMpMMD3z0SWij+BJcnVkzJ4MAl9ZDTaAjQLhXWRoScomaOOK/INgo3fVGzgJhgHyJST2tUBxPcr0JSLJM4DL6MHeac3fzMSbMlEjjkYpDyQy7JxBpIWXFgBN4H7nm6YfhDKivB+8RwXPl/usN/vl0vVxcXFtbU1xw8itMoDVdGxbadg7Nu6oehGmkoefGl038MKMzszUzN1l4RyuCgG0WoZyp4hkLzSTN24fmP92+69p1KpBeO+77vNSklJk/GgPzfX0jWl1+usXx+ocjLXmqlVLCQtSeI4Dpz4UnjWxYlUrdbDNDHKZT9VQtneH0fESI9aczPjwci0LbLBgzOJqhu6QWkvxWBaCVk2y4BCYVzDnJIUMsoUcSN5bGe6TLZh54UtSPtQzSsX25UBuSmGnyoHH2idArVQ4NpQ0o3PIkYyhS5geekwej+AYSm+XQ5uz5qBicoNoOnXTIRiD/4uIVzn9NsWk+Him+Tu3IfHM1sPsVprPjLxDAneSxEz5Qm3whmtB32XfDQTB5dYYJl+P9foUSCiIACEP3qeMDDMdCK6QQqwf6bDXSj2s4QTyZIAKcSpElZP0qbNPT5zfBW1/g8YgTGMx1AQ6GRSuBT9C+IRgIXcr4FSLrM5UWFlsc5JPY8dMrkhwEULuCPiY9HU1zQIP2Ud7YlAau4oLJYRntoE4aLEOlFBA1ZTSVMhqKVCUwsXVsjAUosSY42gAghf8gq6Tuky1l8/ePWr7lIU5dlnnnrrW9/6Uz/+Y71+98lHvxGFrpaGrXrZXkQVNooQJWOlhlguDDuI7y17VL+0rJKkRlJALn0k20dYBUnVSM2Gu2CkTp3zmKfjQ8IAUG+aaCeZhQRnCFx1TuFNIyR0+P6O+gObzCkrlZIsS97IkWUZtgSk0sMRFYqxIf8M97sdvlkBhT50X1AlMVTEf41G4/Tp0ydOnOj1evV6PQzD0Wh0MG8UUWa/389rvRw2cSwlfN+yN8+DOd/3DcNoNptULYan8mg0+ubl/7wKWIxucwkgjixZ+Z5BRzAxIIxW7jes6zqE8AohbD6Nc/+BqdidK+j8OOcnqKrK5X+TmvtcF2e+QS6jWbxEU4tC8TH/tgi340MnWwjG57CmU5ok5WqVv28xteA/ZQjQwXYZfrL9ezFl4hlDED6Jr0+tVnvppZd2dnZy3HM+Iw/PtbxDkmd3N2FWZWc1AQNk9P0TJ0+yZuJwOORl0TRNom5b+VpUvL+5T0IRlwURFtXgV+OOUHuTr2SjVo/isGKXOOXjHGN+fn59fZ1NcHk8cC7KuWJxMAgSgpTamhZLiUZFPsxTih0TKd3f3zcsgL/ZYCFvf6UxeEH1en2mNXvrLbcPxqMbmxuXr131XVBHVFWJHccdDBQNNiANNBP0keMhrA2Di+dffPH554+dOXP3Pfcur66oJM9omJqlaLEfOFGEmpAUksES8MVyHCkprLV1+MOAq0e6wfDtzGTZsCBHaQJoKn87Xjqi+Omnn37Xd3/PP/7H//iDv/qrDzzwwIc//Ifb2zs7Gzcsu4yiryLbBsp1sZQGUeh4YR09KCr9JFEQOImqkgRVMjvbNEx92O+Pe51vf9Mbvv+932sZ+lf+/ItPPfnk+eefU5Lk2+9/Q6VsP/PMMy9feEmWEkvR7GotkaW9/e7G3k5/PG6tLJ+55VZ2horiyM1EP4Va3GQgHUqPb3Ywo52/LBcguJ8mZIUL0QBXKAiKIAa2qHPTKpvF0AdPQJZ8QB2o0IbqAvQMODeOoujGjRuo/UVxnv0aqirFiWoaOhWGklTkllgVqdQFxSegRQBsQYVZ7H7o8gJfAuRFqAeBEXiGqvi+t7K00N4fJLLshb4mAqG/2uF5QafXNU2z0+vFaaLJGu/XxZku1g1uMxWgxQdmcbFzklcEgH84eNdEYY6Sfxir5X8sHEXiJCVrpgmI68AFP/ggOViRPfzKm9M8bnYcBpcyuVHLzK3y3/EVmJggMRBDeJoSsJ5hYqRSQv153LdSqRQFoWJpllnqdrvD8ahUKi0uL3Ucl0hYyPjGruO6bqVUblRrEABGM3lcRY2xNt7bV1RZlyS4usQCr8LOuUEYOi6ShZnWrG8oalSeb1a1NEqiyDK07Z1t09Rt/GdWS2UDEKMYFhQwFgJGUqdtEWVZvKUKfwndVi0bmvRaIJlVRdIVu1yywGvXNENTyZmEbIDxFxoJ0YvFWUBLuACXt5QnAwYtlQkgHiig7DFaBxIDnblsLRynQJsVPnyCQcqXPJFBQsh2RralBwyINMqnY/c8AZ7qeIP3QGycw68vqgYVRzv2FIqfD88C+WaHhtLAJGzIR3vVhp4pwN5IIgnhwnsW6bDnV43nHWV+GkLS7HmxoAiV7IyYUkQ+EfAdGSw94ryHKPz8T/rJIjsAlEupDyQucrVJ34Cq5cKink08sjQAckWkIkItUsaYsgtN6gFNIZQ6eb9nYg/RVbk3IPD7eFOB+s0wPfR2fJMT8roTCwFdHTZ9iABpzacdq2BQQMNmhOIQj2NZ0lHshZiaAk4L+x3Q6EHGw3bdBKEhjJdCDGBD0y3LpOgfuMyU8AMlE9ZX/U63VqudOnH8yccf293c/Jmf/qmvf+kv/PGIwywXrj1qTN4WsFIPUGqiHYhEMyG5q48iZDIy6CyyStq2EITCYyNXRkuYOSX0O8TyxJAO8H+YATwhoPHwIhQQ9jD8NeOR3LEThSGMgmQpCv3STGO2OaOq8mAwiEMfjIXZ2Vqt4bnBeDQajsaDwWAwHqEOqsKyhK4LEI08ZDljhCZQHK/f2Kw3rmiadv36da6cNRoNMSAzDD3/s9mAXSpXjnMcS67xz9OGwy/uS3JKAGIG5WAcvrsutCk5YZi4HBDUhH/FyBDOMZgsy8h+DosZjUOKhEF7fx9izNRS4OiZN34mrXJeKpIHGleem6GYpud8HMHNxGNRUUWBAGW/P7zttltu3Ljhe57vefwnjBTSMlLs4f0pvwjFhYMr3FPFe/KuGvm+z9o4QkQ1A1bRmlVk7FBVmAKUw8gHyqnIWVZUMjNekGozJSNNoZ2fW5JNcRUK2+pNmgk3QVlMpuZk7SriBwzLml9cHDnO9i4sn+FvQF95v9POLz5/Bv9vctDosHAUPppXPYLQpSFlwoqSJqj367peqVRe9apXPf7EU5yjMjZavHkck727uP6F001MrKoCfJJ/8VRBfVTRQTixbbtUgm9GpVKBAC7agaai6qRsK83Pz7darRMnTjiOs723u7W15UZhxTRUTQt8v90fwDuWcos0TuqWpRjmqNN98ItfXDly9MyttywvL6chsK8y+KR6ybYGoz7YUYkUB0ESBEkYyHEE1xSSW+N2boZ7pYhBrDBo0LGyKBqJcVyvVW/cuPEL/+JffOKP/uid73znL/3iL4xH7pcfevArDz04GKF4OR6NVV0zbMu29FLJdMZImGnPhyScrOiWoWuKsbd5o1wu33XH7a+77z5FUT7+hx+6fu2akiYL8/Ovfc09sixdv3rt+rVrvu/PzS2Uy/aIsBD7/V57MIhVeeXI0cWjR+1yNUjkIAhJDsUPfLSSqfzOowXblkDAFhS1hbPmwXGQRLizEFnExIa+jU4mhoHnk+Y/dQKzeRrFsaagBsmlX0hQUA2PUKsEySNdINrBxMAmcTtcY43KRrmUgud5L7zwArcXTB3BEM9iqh0I/bQQLGvUCBzPhXhcDAdn4MJYnoPTswRCbMD+xrGO1UoUGkqVcuC7x48fv3x9rT/CGgWoIZfPXznQnWoOpKk0dvytra3jx48jMaYGYQgfgEkGIND02EwFjRg8eQLtsw+AcPxkPzMuqzIYl7ihtIoWtmZRrMWcpK6NLP6jK4qSFmAeN9Hpp/uePxbPgB/IkU6GMboZHPTAA05vbrpu0FzI1ozsj5glWrxsxbWbVWInKQGya4zHkLl4ETjXvKd4jhuF4dLSQrM16/qhg7yrFyapbJfiVNJVrWSYsq5EHspvvoHeeBjGnU6nPtNsLbRu7O1rBN0WWkyMeqcCaBCko9Fob29vdeGc020HruuXjP64r0qJM+q5gW8YhDg1YJgdBLhphqFZFqmKqZpplyRVQ02WcrBEURut+Uq1yj3JUrUCLmK5ZJq2sJlEF1IF/xTXJYkBVZtU3PNVPV9LD9S/U8k2tdyrOWfm0uglK+ts56JglVdcrFVThapimSzfccS+g0j1JsX4KRnQ/IGukTLMwSeLnzKVAKiHCrJTLz6wXyA65o7W5Ek6b3TAmOnAUhU8Q2Q5hbtQ4R0nn0b6GJMOQP58BrQQNfg8TCcbh6wxVfiZkIoP+9KJEhrFdtweZVM9Cs5lrJkk1sQgf97pchYMmk80FOnnRFGEjQkpMhf3iP+H7MqFBhiZhcfcuA6zgD43XuHvyBbNeXVATDwZboosOUq0jwI/H8z9XJBUSJSyhi2zi2QFZBt2gZTgsqmomqwESUg28tyiBGpAilMVEQ/nu5BSoas5HoOMyOCBudbsoNff2Nh45JFH1q5ctQygtFNZhgupLOsm6F/94Ziq5uQoKUEWCkJfqewEHoHlScifVK0gmnVwJNHCydbSglLDZp+sx8zoXjLeZq48vg/EvJDET0pZDK3Og9q5ubnWTFPXVc8ZKVLSnG3OzMxYZqm914G4R7fveY7vh2N3hGkFzpGGS0HsDfAOcDXh5WcZqHx3u90bN7DTr62tMb7l5YsXJ1+hMAekFAWwHPvOUT5DJvIKbjE3IAiK1G63WR2IMTxpmtbr4EYbhlGr1XK4PJNxD89VSZIcx+HiPWxWCOqDZo6u9/p9JjValsUYIU4PWCXpsCX4eOwKGA8X6jIZUEZ2ccbC8JsgCJrNpsA1UY2Z0Ud8LyYNLjryfYk0wTLH8MJhZAE3vz439k7RfEN9muFS5XLZU9DqyTC7olQv1ltoHFGijowyFlr34qeYzszuoZ4h+bDQQsmcbDZnyPVPJ+Mzi/UpUZkE4sWFModsTS2gIVdeBfFosiaORiO+rSnZJyNUTRIF2JibyH2iVJXJkk6V7jRKpPNfZertklku85LiB65t2UkSqao8NzdbKdtICFP01nVV45UyiEgTjaYfcQuwC2FjlxM/hegKgUoBxsX3QJE98YIwdkYci8qSbNumbZdNUy/bpA0wO+v7PsMgVVW1Tas1M7u6vDI6dWZtbe3q1av7e/uSIpds2xuPavWmpptDx/XGIz2OFcOMkvSFp5+OwygYOfOLC60WzObCwC1bZuqHrNid+F7oebHvJTD0gB0mBedo7cZQH6GecuaFyHtwnqolSdJut8+cPu04zu7O1uc/8+n/+dGPnDlz5h/+o5/9wb/2fZs72xcvXjz/0oUrV69ubG/1el3XdTNPBi1V1TDyI3BhZC2V3/qmNx49cmQ8Hn72k3/i+/4dd9zx1je90XGcl148f7032N9vb25upknSbDZTWdnd74wdp++M+sNBqqrLy0eOnjxl2KXhyEllzQtCrEm+T4a/AoXPSNM8QJ0QczPZCTFL/jJDKAa5xaSbntcjsuRWzB0xiQqRZR5M8vDKUiDRR2CUEZceer3exZde4kIDoBEwe6JZQyJpqmEC3401mqxVPCj/hDERY7CpyXCWB84cnEn4EpA2YIIdJFJ8lG+tErhMrdbC0tJC5yLo41ESyqqeO/B8i0ckSTs7O2dvuYWl6yV2eMyJ09klZ1YS670w8iqv4ORkjLxpmT/PJYni7WDJUk5F8pdFQJRTOCn2uAkK6JVKCRnPkJawJD5cUHgl7NAr9QFyFMfB9UpGYToLcKdIJvmYmUCehDsEFm0wi1DZxfVMkqRk2yMqSw0Gg263Cx0tqRnEye5gGEfUIU8lqjxawOmRjHiYxJ1e9xjt3Yn0UiamIrh/qZICX07CKL6f9oYDu1xOZcnxXTcwwsCvlmxNlubqoL3JEAiEC5CmQvyDwxsg1gDXQ2UK8b+iwJFA1RYWF+vNhqypfhiYBk4DBCQgk7GYKJPOIaE/NKJtcEqYsUF52B/GvYAAQzzbqf0aKkykiy+DBFFUWyKwwytE/1zsZswL7SdqHt8WXykC94NQXlEyo6r4TV9fvMuHMDyIXFE7ALidIDqkzcXPALSPb8KFdYpvEVTz3gphYcjCprFhQGadVH/gdcaeAKmcaHCGnxwTM6+8cZZVe8WhUVGBYmfKwHm9Is9egdzPnkHdhGS8mOGcO8sIhJ+LDV4glthohoth8IGevpGHZ+ZkhtNszE5fbDhUvkdULb4OPodtieCFmRN3xBSlVwmRWiFTyH9FDiamJuJgYnTkGUkcoluEpYoyY36MdI2SQjWW1AQAeaqhg0mrQ0tKkeWYtWqz8Zkkkh6iiI66EYtP0ZRGG8OPgAx2HKdcPmpZ1ubm5pe/9CBKU7Jml+u6rkMU0veDSPKjYOgAZmqVa6oOaMHYc52x54WQc4YElohhQQAQZSQKsNjbAfUtofnP7oDZlxQcgOyEs22P8Tkxqv+w6ot9SOswqJFyaFymo6tHTFMPPC8Kwma9cezIiiRJO3v7l66udbp9Bxblsq4bAPhKaFylCcqHeF++iFlfyPeR5EiElWKNnYge5Bn/VMDHt5wr9Dng+6Yjh7fhu+66K4qil19+mbmnHF7nrNAij5ZzCd5mih0GBvyAXZ0phJom+jkC8GPCpFnTNOZu8luFYTgzM1NsX+QV93K5OrVP5I8Z3sPdA66Xz87Orq1dW1lZsW17fn6eC/l8whzBT+GI2K+Ao/yctMobRrfbzZmyuesZWiIeqvLM+gVHxTCGA9BYOVmicSReDIhBCg8p9KGJmsXK0winpNi2ysgbAcANCV4Jns7kayqQKMkNetAEo2soaPpUieVX0oARgzE/Dl+x/LqVasLeYWo/Hgz7fuBhESOv6+yNwKUurIGTB/BSyPoeRchZ6GeO0bzuZ8GHH4UMuQrD0I3TMAqlNB4PR9ikoyCKAgU0NkCc8TMOQTujHjWvpjkDKodc8hZFmh+4KujuYUACfklpWDwYOckgKtvO5vbO3NwchpxlkpUeJAHAqUgxMm89e+72c7dsb2+/+OLz1zc2dUPdunEjkaTGTKtilYeOl7pBqVavzs5dufjS+tUr999//wqcy6PeflcKAkkJ0eiM0XtNvSD1Q4BMEEPi/1nmgUszLJFCxEWx5JF8B4tSq4sLC739juuO0Sir+kuL8xtr13/o+7//7lffdeToyq233faed769VqsFUdjv90euw6Sa0PPjEDO0Ua3NNJu1SnXjytW161cTx//2198vSdKlS5c+/ehjQ7CG0H/Tdf348RO1Ws33/Z2dvf5otNXbVwy9ujBXa8w0GjNRqqR+qMpafzj0wzjyIyAPCS4AdncS6zw28tp/XhI7VPvPhx9eTysjVnxFgepO4rCGb+iTk8DBkC5N0C3GXsOrK4vY08ocMx9A1FkmRmMMY8MqZGHLgO/E5ubOzk6F1qIisFi3TVWH3EtAuH9aGCPX91NZCYhDiZa0UG1liwdoDmlU69aorkyLk+x5TkrMyCNHjrx0eU1VFS9IdF0U7MVMeYVMYPI8lfZ73QFs7EoVUnOG6RiZ97ADD74mzQvGbAB5SuKbrKKU2/aINxNePtlmTV+Bt6oDWijkBIxdjvWOmK9IRDeMyuJNPPQNCokZwRuyyFvoCOW/YmqcQO8UH7yCxqiANom6vojmCZpz+M3zQcfWCiRLkrUbRYeNniQlBHBpCWQXVavVY8dOAHNFa36UxGPHMwxLM2QwlBwvVKMKVC91Nl6N4zTwgpHr1Rp1y5BCtsuSWTeAFIsh6SorcO2SNjY2gDrOhrFhG/VmTVMg56Cqqu86UIvCRomdUeA/E0x8rn+hjKFiL0vTpDnTQLlN14IIJqRxmpo2suU8PqQATATBRB/HesghOP8sFhcOFOxTyVS1rMpMVXnGnFCdMxamcweEVnUS65zC8OTjiP5eRCYc42qKddNIlQtkhzsAwKAfPMl8qh4YdoXvknlbccAP0zI0TqTJMywtStMgKREnIfO9oSotQO6JqtPcIpAcEgOaK7KUooRwOOifNtwhGX6xRxL2PTfWyTcn0RMgKU0MEuFGJkWSKpGYK7SqBJMGGDSGHCBryeyB+cZQO0B6pYzq0LUTMkyTJ2nJ4AHBAPfJ86yzK7IQam9lGzk6A8IPgVzE8w1eQUrAVj7cNyHCNKBBqoFO4kFjMtL9ReqFUB9SU7glapxqsqwZBvE52NGFs0DqeGR0AlwcAzVpXYLHRarrwpFgNBr1er1+v++67s7OzomVI1EQOmM/ToEkjskH1I+jRmsBDr6S7Hi+4zgurN0pXKqUmaxNFxDvmYHg0+JCiZnGRVr2r2FoHD3PQkCTKy4ElYkgn6AXn+OPORE3Nd0oA5YQ+jAwNkytCZ0+ZWdn5+LLF9s9KE/gjTQNzAhilRCFctKxyQI26ieommUgg2EQPMdnzng8OdupWZqilsxRNf8JH1x9z91n8oMJGHm+zrpAwHA3GjltYDyGfTpP6RyefnhNF1UrGqt8DpVK5eixY9evX+92uxza5qYEDA0vyn1mMqAIgjmv4ByDmw9M8M0FRplnTMo5gJX7vl+tQgwxTVOGBPBrDpNxFxYW8klUvHS1Wu0wAQDJjIVl2jAMx3Hm5uZc1x0NnUaj0SE3iQPddrp5jjPiBXQqhu73+1PXn3816MPKjXVRWeiJ2Qvj8bgoJ5r/yWjkTNalQnozVQ7Mw/2hg/fJUhRh3AbWgW3zra/Wavm3ZhnT4snn5wmv2ayCyPVh8fxErSiGZIIYxliOEUgRhJMNs3ARBt0oCtikOabSC1IlOhiHgK21+OnUESUxCNH5ZIAv5RWceGT9W7q7SAv9IAy80XWHIwjbMnVVO3ny5KDba9Trcq0Grd44rpcq3/OOd9YajT//ypeurl3fbXcH3U59Rq2VbC+K3SE0Xkua4bres088pSbS2bNn63a53+1ppqJqJA7hexHK/xH4TsBXxApgsoQ+pDiMOWVigGXuV4LBIkuj/mDQR2GyZNk31q47g8aRI0fK5862tzbaW+tPfOPriYx0ZbbVWllZac3P1SrVUqnUbNQNQui1d7ZefOrJQadrqsr+Xrs/HEDh1wsdx7Ht8uLCwubG1vz8vKprOzs7L798WTcMWZLGfmDX6noFklP1WlNRNNcP0zSAYoED3A+CUWLakiN8oUjEI6o4JA5SWSZzgALZvEzALCCGaFIKIYB/E5wASWxk7yLq3JO3LOje8JiOY6qzIH2Uua7DHhqXX74UBIFmWjotZbyGpElimXaayIEfwSMwDF3fc32PJE0Ag45R8UKWBpQ3Q7XwBZAEcd0HNVoUXJTBeFQql1133Gq1Zmfr/bHnBf4runG9wsF7JfOsqtXqmJGWxO4UqkfseUyDhNrtom+YM32n5n6RBHzAjasIepSnnYDFQiRMqwHseYXK6/QiwAnG4Rbh4frCX8oEOEBdKByMSShGh/krb9IBoDkFW+jcSjIjT42Gw8XFxSNHjrBtThhjdAdJ2u32dBN2JMBYstFhmhoqtiSFUtNutzvTatYa9b19mAwivZeA30eKFiOAQfCbpts7u7vtPduy4opFrl0A8KAyEMeGpqKiIaUmCmSY7kA8Qh4R9S8IWEcR1J9U1Q9DU5cr1bpdgfZOlKQB1XN1y+RNgbIOSSNYg0oiWyAPYDkRFe78ulGXezoHUKSkYpUOZqHCI6LgPJ3S5UU0q0iJhsVpArkU4vViVmZNZpqdjD3huvtB3wZqzGSPC/KgdHsxPfPAHT/BFJWT0EeYnj9PCSsSf5LkEWo44ieFt5mIPXvWMqolofNHEYZsw8D0JLgUOU4oGkin9Am0J1FhKUlQyMyRtZPqBq0pNMAmtAn+7pgu3KZjei6exyWC9IVIeAVFFF11WQnRweZRyWU2FDVS2KyVWEk1u9DZcGd1jUPJnOcLjHLxxbIsWTbkRzOcn7gZbODF0S0NF7ERQbVD4xaqgEFD6pIGEAlKiLtLqQyVcCQ58B2q/LONEFfmVNLPhXLCAa1euiaCn8CGAUJwGJda0xk7zeLjGUmC6TskSgTEhAyMNTkVAVLiOM7pE8d7vd7zz7+wuLh4yy23PPilrwzHHlBEUSSpimXblXJJN21JVz0/8AJ/MHLGrhtEsUL2P6apk48khjFoe6KYKnKkAwWPjPxAJBgxojP0P/8eak5ZfwwSSrykSoRUEdxECpcblcri0ryiANafpmmzOWMYxo0bN65evrLT7qSaVW3OVEplWUVtjA0gGRhTJKpmkWLcae+j8gC5idT1A1U37AoYqEWeKL+U1QmhSUancdOU+vByHEUR42h937dtmzdUTdP6/f5UlMxnKCoTB90quJbPlGLuRXKd3jCMhYWFdrvd6/VEOBtFHLKZhBfiU2JFS/6nrpsRVJnxPmKtL5yzbhhhEHBGF4Vho9k4fvw97Xb74ksvMYyHc54oilgw9HCCMRqNcg5xLgMKuVXXzdkRXLPh8AVpapLMzMzs7u4y4igM4loNRAt6/URIVEXPTbJslgSYTjzK5XIe9PBfsKTPwvxSfnk506hUKnypi5jL/FMMg6CDB1vkfMumtlX+Cf+5guFyfiXDMFxeXt7b29va2mIKR6lUch3/IPZ3cuUZAVXMYXCjJeItUM0NMyLbh9M0joiGDoS9lMTIxhPDMI4fOx4Hca1SYefpXKiq2N8v5ioAZwO+KBBuovlAj6HO4SPVR75Kxp60FeHEAl9fWVka9gdBEJRte2dr+9q1NUvX9tvt1szsyuLSwsJCrVqVpGQ8HH73O9+ZyvLajc1HHn3s/MUrqdyvz7bq1drOXntpeblWrmxtbX3ja18zVfX0qVNKkg67XSxlkhyFfuwFkedCYy23CzjIx2CMJXEWIFCIYCJRDKoCJqm0srISBeF42K+USoHnP//sM2kcHkerENu55/vD4XB/Z/vS+ReRBcUxS58lYWrqaq1SrdVqtqlbms6kJJQhFc2u1yRVc0cQPm6328MxDP7KlRrEfOKk0miqM1WYTeoGGjq05vn4IIdhchwrMg6TAuMD9vbFUC/bDqeWUd5+8uidToxurih40azBukdVH1mBrGSuCorxJJENEBPHEGlNcwDYkkLJJimnym7gv/zyyzxhUSmIwSIzDCMJAjQDgdcCsSGMEs+FTHOeAEQxMk9KANCDjVI4PBJDlILjNFZBfgl9XUmcsaKqY8+1q7Ujx47uP38+laUI9NBCH48zl8LVuGlPwPO8/f39uYX5rZ2dXJ1ZTC7Kh8goFJQEMmZVhewSX8w8UL4pCRh0mmzoUfuJTkI85lI6gVeZzsE+khkYksPuPCI/cNPzL0j96YOHQJZnVOZvnQo8VXARJYxXYBjnEJdi6YpCLGGuSmouzFXBcdtttzF84Nlnn/XDYGFh4cyZM8dOnf7YH//pbnsfxaN6w9YtZzR2HV+1IXsih4miwXW0OTczMzOz38UOGEeiIiqq2rQYYZSqqu+HR48sDrVYDn1TU+M0UmRl7Ixku6SpIA1hQMqi22wrwKqxw2YUBqZqqprmu26lbDaadUXTEhVLCMCQGMQaCd4yrJoCfznVMDPkMOYObS4PI7ZgzTAOJwACZUGymALuLZ4lpSCZkU2c26P3QpczmWruUYQIzGP+zmz1JDyhGRaWA8NF4TshoDVPYYpAhTMgy+MwBT37iXfG5zJgLYOtiX0fymqHOAZT4KIDhXKmEDGIGu4HSCISOUFcAa1qYh5Brg77eBQHWuZ/VJS5FHJ+tHWTskUWlrEhWGadezi0mhThxAOY7KCCLEJklgAiDkQYTiTb+Xm+7kEc5qE24674NUA3Zy2CyQ2WozgJUpnMhgWWSxwCZMOigXkhijBSTOcnRD9YTCLeBZGNOxzZOMFH07DkLgdTNzKfbj+7blM9UKolw9xATSQNiADcjViSdKWkKJImxYQkIE458pM0pJ4fo9i8EKpKmqyoimSA3Wfv7e3HcXz7HXc9+uijjz3x9MLczI3NjWYdGF/DtMM4cnwv8dxU1QajYUi3wLCssmkpmJDUbqY9DaqnmVa6ShqYGfL0gLwpfQdE1hMwDSkXMVoydyGMMaXwH1nHhFEM5jEcnUhZ1bBMwFHiaChLRslsNZtxHN/Y2txsd2QZbjvLR48vLi6C/pUpIOXhJgd5uXB7kkSGBrjLaDTiVtVgMODsdDwmzkMByoKgX0p8x8UQZ2AKfApEAzViwWvCV5MILImp0TLKGJ4oikBWpkuUi9ZPoTAPr935PiTUkEiuh2v87Ao0pCOJY4tKzrkM6JQxVjaNFYY8cZORTkw8htNhmmiaPiK2nkb6j7ZtOw4S9TLZfvEazQ/YkTe/ufxxaZoydIdjzZwqwKHJ1KTmAznM4lzJrmzceHLjxhbEJaIo8H39JoUDVqkGuT9H/xe4QEI8oIikxDoQxM1mc35+fmZmxnGcvb29drvNECOhU5aZMQsxaYoB8nz/ahQ3AAEAAElEQVSmeDuKhTQRJShypVLKpYQRocIREhtJvVqDje7u3n63k8ZJuVppzcyOCUd3MC8W14SN26b8E1RFtnRDJDxQ+wJGn0/MJOjX7EyDBy3HB/V6/c67X91utyVJqdergDfEoaYZZIcsqlDUDsseQ5NFy0j3WQzEmIesCphdFoDWABJT5P39/XqtAr2saq1erz/y8MPr1wHaDlxnY3P70pXLhmYuLy+eO31mcWURlhG6dvbc6VNnTl+8dOWxJ55cv7E59L3l+dl+t6PrerNWC4Lg4vkLSio1Zuqj/lA3iIkATnoQE6pk0u8GmJN0hNEpJu1zkB9YOYLQYOC8igSU6IcBjFiI6K9rRnNmduvGlmkopXK1Xq3MtxY0UgBMpHhmpjUeD4f9kec5kHVH8AMrV0MFvZVY1LgpcSr7XuAFobPb1g2jXKlFaTJwxmEAUr4BEoVWqtRM3fAd3/PGUiKFYRx6PurlXBpETVp8HdCNxcafdQBwT6g6/gpxXR7x50Eb57pAGOoYPYhqcbs55kC5kbThIL0DOvDBdOKw8j04kTqgkMByqMglhiNwynd2t0xIjCRArEahruqWpgWhZ2jAYwD3QyuiH4VukESpQjZfRB5lpC6NN9LsI/EAmk/s9qwBTwKpdc2PrTA2k3RpYfnxJ58zNc0Lo1dA5r7iEWOLT/vDwcqxo5QfEl8IdxLNl1RKI9quNeQkIDCkYBMx0IXiCRCCBSWN5UXoPLG0K2hDFXyUCycmFAMJIIyiFkIY+nOocWQoJpS+8BoBF84Ex4Vwv2gksAIWzpg50yTmQWYFWdeEuxwIA7NF8ZtcjeKSKwJ90QZg0BIHlAf2oANNTsSv+CwKZLHPy9AeTJU0vudVd1946cXQHbW3NyqWWSuZ9XJpvtH4m+973wOf+bOnnz3vOiOzYRCON5YNLQoxT3XDGA+GEtkyysCJID3KYJnYX1OI1eJSua7f3uscW56PwsQfjbQKwhtVV23bLpdJwIeWSimJsSTCURdkXtPSEwGj1eA4EcS6rsPjkkkapCZCSTL0cjgcozFClUbSUiEvdwIqi7K9uCwJiS7wUYySRbW7EAFmFtEixYM1HMnK0/WM01SNcRcnG0pm65qRjIW2v3DJJVULDqJYXJ9DUNhl0MhhjUThEiBKIpRJ5j9hqihLhqWzUM5BCzhFM+DFN7WvCc8iXnEPyFWTmEPBJ8f3kihCeOYFfSAoQyFnAvVFJ/AjTzN1VNSyqzPZUwmLIqZREWRP47s46RW6RfzxKI3TCWYMaKxFlGezSIRoZPMKQzrlnKlPBnesR/QmRMGimybAKhEDQiCDS7sLQzLTVDM0bAfU5KCeoXgr2pMmBMTsQxU6HRHKMzSMkwUEbIzZYxy/OFRIpE20XLOwgro/k+uTjzwmtHLnAdUdcgRI0MSP46BiG53+IPVC2ygHsRS6sQkD4FBwJUgaFcJbZOmnqZD4BctKUq5cu9GcXTDtqjvu24aayEG5ZqaSNO6PDdN0Pb/X7+impQIpY5C/XhiEHpwMEDhqHKnTCimcCDHNxGQgaxQyNuQ1RoV8KgTjMM8wi7Fngc4oQJiI/rNkD9JKYC/osh+lw7GjQYFEX1pZheZd5FqG2mzUSrb5yONPdHtDxTDCSNrc3tna2T1cIWbvqpy/mwd85XJZUcFwFSqitcpgMKg3aqXyJCCbYP6ISCqKcFQTlTUVDgaK7I0dfswyWNDSJpq4Qe44yysr7DG8v7+/uLi4tbXFKjS5LnuOifd9VHP5SZ5juV4Qs/ARWAeRBrMs0/MCXTftStUNwNbgOBLl+VxShmoP4sFkAeONBs02IjARxC4ikbI40kwNaq9JaNhWEEc77b2R64VJGrgOhQUQlVc04LJ4lNKaNdljHOqkHVwos59F3GE2YSLH63b6Z07fKqWKadmVSq3X6xlkujwFkMgq7qD/ci0EPTBijSOOVTNsIhUYCXxA/qZBuL/fHQxGur5+5MiRWq2xt7efJNJwOL5pRZ+BYXyWuYIGTji6yfOTGTphJ4mfJct+zX339vY7zz//nJRKmmVGnq8YyDYP6/3nzxSfFPRlIiXTUJQhWkeYV05rUfXPiOZMybjrrru2trauXLmiKnq5YttI1fXxyOWQg/TkSYORiIBQ+iFNDxEWZt+Ux7Yw9Co0wfjMTQN0bWa0r66ujl1P0Yz55RXitEgrkhonoe+Fo/Hgkeee8R9/ZGa2fvz40dXVo1apND9Xf8ub73/ppZeff+EFOXKkYBSE2sqJU+s3Ni88/3xrdk4nQcnAdaE1iS6omHSarocAUdKiTfEuxBPiGCeOzRVCbaBa0BVjSS3btDTTMkzbdeFLJSFlKqH3b1eW5+cM0+502+3dbQOsEyuIfHcUt9u7juufPXe6Wqnv7G45I7fZnIH+N8jWkCin/4eFSyypsmG7STwcjYBP0LTKTB126ZapmHrshMPQyen1WOfImCXDXKUqpE0nALPJloXgnZKPPLwUTeMDUbCwI2KMcAZuKdum44xMvVoiOwVFTsvlkp9Ee+2erGu6VTYMPYli3/dUFQqtYQgoo2CmwWmO8IdS2mw0gyhkgUxdUTVFChxnNBq5w4EBil+sK1K5bOtp4jvDimWoia9LUSLHfhKNPX/k+rGsGpXquN9TgdVIwORGwkC2R0lEDXv+UFmTUl3VvURJAkhZG7EyHodxPF5ZOXLq6MmXr16pmLYT+N+EBHyT6FeV3FgauqNyvRpKiaGanu8pmkaBPutvCDAxtuJEUiJcB3QbeHCRDy5ZCGdYeXwMugS48UlsgEqDFYaRHbzbg6s6dsGX0M1UVsM4gB8TBFhByCEfa248iECOUg+sUay4k2OFCbkHRX4+RaLJChoBSK5CF4FMwdmPF1tDTEqRxBOg3Y3lHDjSzXXZAR2kdJEPeG1wCiGIBGL9YeyolCJuJufdNIEojhTAuDqSoqix0Lj13F0Ls7NPP/Ew6mD1ij/qveutb7711nOQ4NGMWqq89dWv1oLgiQuXDWuY6LJhl5zQtWQj8gOzXJLCwBuOF+eBFA1xIXXUuFHMoiiAQjnAG1O52+3Xa432+tr87KISe4aKq6moqR/7RmqANBUnJdvUNT0Mg8Ggd/TUnV4cdLr9xuzSaDguNeYdryMrVm/ooGRGNwyFS1QEhIFPNscwH1neH7c/U2wv7mK53YKYquJ3SUDdvIPhM6GvaY1NESGRfBkX2sBEQYxOIvXindh1wTCESIZAjkCULwmSwDJMMVqpaC80LhQFfguM7yBX2fygGQ2oJEcjGFuJjLGNOoFuqKTTiCItfA5kVYOCjS4ESxDYUWMZCygJjuVKIaLgKMvj0QCBvguhDrySiP4kDOhzRVRoioC9nMZppDHitpgD8ANaEDNbwmyKs5cb/0vYatEWIHZ0Ya2cg6KQ4sRRxDApipwLYQftalQrOrBI6HoOsSNRIAakS4kKP2oy7RVG6jTZZMkHqVeckDhJbu0RqJuZrXkLVXQJJZCjxepNA4ILB9SF4QyngOxHvgPJT7q3bJMrAoL8yuRjT5xsFnWRZLBK5U6UNExDsTTVJ81S8Ia5vauoMet6UDbJGNRYSiLf5zKjoqJArmiqXaqEtZo37iyvLnX7HVU3q42q4/nI4WKDKMngtZCuKRVTGM1TDAD5X9/U/JwtqxXiS/Bd4C2N74qQxyAIWoKpk5CuRYGPS+0ewJiiqGRqZdtKY1jVDsduKKsydhxOtw74tuYQCAHoLOJeCnvI7Px8tVpl61Y2UcorsnmduApsgziZXLIdJmgk5pND6vHTRPrRqMJVd29v7/jx46qqnjt3rlKp3Hrrrfz++ZvkYZ+by3QePNiXgGvtnBXwn1fqtaMnjjPmZDAAKoMVb3K8B78+J+M6ziiXHy043SI3pouGNCkr9gMNNBqNWPifSc/8VkWiAl/THLNuE/Jkog6UGXAygu+wfpmGTAxJRb0xEwQBGwM3Go3hcHi44k6BeN6ZZVqF6NgetFbgD00yyBO+O58qipSQKgkLEfzB4YqOaAbCzrD4HLNPXlzA6GcnwCwXyu5p/qJVpWpIL9FaSU1NTzU4MYVUWyqOUnEdCG5RtAHmEwAvrogMKUDCeAxEYUhioAmEWWV1e3t7bW2NpT/z76QbBieQk/uV3YMDc/MQMvjwY5Ugmny2KysrMzMzm5ubsAyjTlduqQYwVams29bO3u7axpqUKssri/e95p6TJ09qt541NPnpZ1+olUuprFx48fnGzPzyyurTTz9tmHqlpME1JobYhJRgm8iRaqLSRooOUGYmD3dGB2Uw7LxTlPphkEgQATAsW1bRiHZ933WcVrniB4msxLVGa3HBUg291+sNd5wX1y/MtGb/7t/9ew9/4xFJ1YZuoBrGXq+X+lyxEUhxNAHhUAumA9YxbKnkvGGaioFvHXOeEsUMDRN41qygM4XcyKQQ6HbztaeSnfRXPjAxgWunOYuAkFr1lmEuLs73h2MPYruqxdJkxKRitzCIVNJjSSEIBdnV6VHoh2hoIBz0fEmR27u7sJ1JiYRNkSmsGJXU0BRD0+MwHDvOfq8fJLJhlbrD0Y1ra7Nzcx6cW6C7ZerQiWbB5Qg+twj3mCeIDYmENqVU9oNENxJdT4Igmmk0sc0cUBD5Vg9VlUYOyN+mYTOHFRwSNiRGiYBvBO8IAkPN/4EbQGwYvte5aiGVHDHu6dJhYDIcgEJ0YqKkUgmW2GkYsl5FQm5FEXWYBTWUu2p5Ps1LELPWAWBLkoCW1pIOOUuy0I0Zvc2kTCjLiJKbQHKzwAbrR0gowQYs7oZQTsW9xsoOVj3urKzDxDqABAU4RSgCCowtMjIwuwwovTJXSlUgAcclntD3IQFcsg1FblbLC/MtdzR6+MUXTAMS+qE/Pr66VC4Zuzs7cKNPFTVSdEU9dexou7+/PRhEaVItN2zdiILYVLTIDxRF9j2v3KxbluGPCRfNRWtCB0jgUWOShyFSEXjIEbcQ1Uvc2VTWqHNJQDVV1dFvoVZdpVaJ4tD3XQZRmqYtKQaqafhb8LzFyk3Oz6jOoUMjbm5ev4cifgwFp8Pr7U0JbMhfKHARquXsPUAHClgp47YnyA6kWBHJt5Ohk0o/lRQQmtHI4WdkTdYVXVIlTUPG7VGckJ2DoC3HqRR6vgyknqaapqUhrGeBBLQASZRR1TVdZRokIsJapc7e8jBIhkFHnISICTuDYZTAXgma457HYT3QCj30/eIgywcI81yMQDhs4HyUfbEyQHE2xmM4KWsU9Rap8Bw00KTnjppoOzM5RULtlOlcwjqUQhkBtuOKEF9ybmXRVppB99jM8IBMZxFvRYfvUShAtSNmytJrUPtk0RqyE2NcAZ/V4foDt1/5ee4w8NOEWOGAIfst19LoX9mynsnGZpeEsk6qS9DqlJV+CmH0RJs8j1qzcIiRZoAeaLJhoESr+ozmQ+OXJT4IbU8JAxFI6NIiAqfCBikFRZGCQSMrqm7Zpe/9gb8GUblEunr16ic/9amx48iaXqs3oQAQkWoyGqXALLGrMrt3FZJmbnoeRP7crItd6D5nWNgJG41fqnARjZ3dVGCcUk1OdEXSbaNk6I1qJZFkU4MIeqJCXnA8IGpRdpnyhznMjO098nOrVMsMv4aIWKZ+I8WxYcM5GND5YmSpKEzWLHyCODjsLvbTOdidqddKpdLlS5cYM1Mul33fL5VKxRpwUf23Xm8W1YG4U6Gqaq1Wy+0Ick9ihn9w4GUYRqvVYiw41+nzinJRzVfX1cNYcCbRZskAvjVzmhVFaTZndV1vt9udTofVEnOPyTwByBHwaZpubW0dTPjFVZrCuOeAkyiKRqPR1atXWdsUdR0J0kwH9IUK2HpZLxiKHWQv5GDWyRBKU93SmRSbf2iOwppqL4g/4bg5Y/UwlX/yiYeD5qweO/UzIAA9jwo2wSkoCd7kyFklB74aNowDnnH5F+bnM6AU9UbCkN2gcno6b+FsGZHjm3NSIw85IdMsZt/NjoO3Mo6FjBUnnNVqle/gwb/IL1FSrdkaYsT4wvkrly9eOX361Ote97o3v/nNrdmFr339G4PRuFwuob4OWI27uXnj2JElXgbISz2Nueb+ykBnZgJA6Yb1gDKBZx7GigSMGWrzGkpRvuvuee3OPtXsq1WwlhWAknf2dh3H+YG3/aAXBj/4wz/UarV+7ud+jkVjJVxCylqpiMfQHNGShlKSrpmYpEzAikidMJ9crLnKixsWS9o6DpJ9DyyS3/xrFl8zlarJMiI2wwDLBeaVdPeTJLEs3SZVq1EKQR4UuCjoReIELAc2Oh0Lq25YZqVUZlwc2BQhVONC8l40bevGjRu0GrDQN7MXAKRWddMJk/7Yd8NEs8rAPFFjbWlp6dramlmyqb+quq477GOEqIZOpFxKlAWpAyBnOZU0DU4vrHzmOKPl5cXSedP1guIa/q0c1CKS+n24OtRqtd32Hj9N0RojtQFsyQcqfKapl0KlXww4hn/xhRYwgWJ/LCsQilZCtp/hTwm8qEiJoSkmLbNRBL8a2GOymzOAUMSqhLF0GUEYAUlRNFAVk/wUNFpiVIT54icF/8hO+CRQLINmDT1OFNcZExJegg5YAn0by7B000jjxIijwPPBxAiQxaH/n+EwNfJM5foFhZQ5/TShwj/mTsk0m61WtL6upFHVto4eWS0Zamd/b39nxx2P4bFu2Z3eYLY177j+5Str65sbuqTVrcrq0WOtVuvUqVM7TzyJUBtbEfJhywStyLCt4XDYWl6slsqDIVbmCSmqcARB6LjwlTCyhV1YT6ClQUhjmnFAwWmyaVr1ej0IYDrAZq92pSrJ0mg4jqJAhmsGvjhovNzogOusUGeZmDNQ7sdOtJNwP/uZQWcP4GQmmB8xSJjGyKCHLKalDSwbJgRu5ko1hWBMyU2kWCc/cn6MunoIegycvTSIbeDL5rBQsluFCAfLABAZQugV8aBAAYI0VADViJMwCpN4e2vfD8PABVUnCRMQdvzAD2MvioIIeb7ruhwAUDlC7KSgFFICwGhDfDSVDgTYm/2PKQR03SEDNwoaxKghajEqMUUOc1HZhnSAiURBAD3i0Ss5yo2IyIyPo/dNEHUSrI5N17j5Tg0UQXIqrJ/sxMaeDpM5TJBsJBUkX0qIUi7gJaTSg3nF3J6sM3ZA/qnYxMDHZqyAbLgQapYRTCR3j0lK50TQGBEccxCfD6zMNFogfih5EHt/AfxDb0KhBi4XV45ZVwdcbNCrFDWG7K5uKJJLEukU9tG2k50WzW9xoqmu6VD1oY08jSONRLWkJOr3B3/yyQc2NzejJLbMkuP6rfnlcrXSG46E5wDFpyxnDkOZzLF4Ul8XbevJkxn8RzzDJ37QgSTfJg/EY5QxE3OGBreGulFiqKkpp6sL88DrKUp3MHZGjhckXhzCptQ0WUxtakONBadiEtXxbR32+7Rp4DBNs1arNZvN0WgEyQuKvFG6BlIaETmbqk5tCcX9mONLVNSyAM6Ya83PzzMvjSWAOFrKQfPF6JN2kcv5OQs2Kx0MYcqRS3kdfX5p0fO8ra0t2u9B/GWGANOh8sZF/odUATzQ2cilQrmIy39SKsFQGTQRu8yYJY6H2L6A9VKnVkM+LMsq4pfypILDuGICwOH4sAf1HmYE5byL3PJs6vWSJO339ovwifzIc4Zc2IdfH/ki8uYLEscxO1vd9P3xb64vHJjvk1F6uIOUBxNTh01kBrZocGmWcUk+OVzUzAFFU/FfvgkVhutktHDQn4nVptRDYHQHrj+NUoUGTBgEI7KFnmp6YA/MQCCHoVCHfZ35QZQIjzkWja1Wq0xnz5wyszhJjM90NHQRKVhWuZw4I+/ixcuu6169cu1tb3ubH4XfeOQx05L6Q2fsOkePHt/d3V6Ya+o6XBBJvAs11ClZpwOFgyyEzgDxJKJFL2O9YybNs25VtVotm2YwHuHZKAz7Paj109valfLxUycHo+GZ2llF09rt9rETJ9bW1q5du7Yws5iVNAQEk90qNUNHlQ1eCxySQIn1gAgMwfAPLnET8u5kROVL/8E04BVzgUMDkpOKCCbTpkT5kmYh30PIkiaB75Ysu1oqB2HoOo7reQlZyNMuDbsiw0TQaJLlL2i447Hnez7Ei8hE0ofUaae9jxg9A1nlSaaqaz64mWqqmoHvjEfucEhxQCk6trrchU/CPsIU09KsMvZoVUmQleGg8jnpZqJEhTyaF40gjhx3PDc312jUx9u7DJ+X/ipHFMEvvN/vz83Nra+vm6adRJGAZWc+C+ICEniap3DeIuaDs9xiqeJQQZCTOlHfpKIq+lGarERpRJEXRzCpBpUJDjdTLVsuQh+QCbEqYmESYQYQ8zgtHOC93awRx3rY/LhEamzA5pGoW5kOJgixNP4Y1JYhagG6YujaYDRGKDUBHwKPztQyXUNNx3VRD7Z0fXFx8ejRo+vXrsH3Y6apydJ+e3dzfV1VJBj/jYfN2ZmNG1u2ba9v7a7dWB8Nx9VSWZP1/W7HqNVmZ2crlYpHbR83dE3VkCDt6uslJACGptcq1fWNbtZAPXCAUxeDzO37vmnaacprO88VjBaiR3GsLhlGqdGo6AY4P6jiGZD4RFckBK2/yD6dNAkZKyrATwWtvwzDWVzKinW0qR0BwEpRWpuW71QBAEvZ3ThnBQptG2jfsOuIYJpltblJyS9/zNmIOEN6rSicca8YigKx64VY0AgXEHqo32cuogjfabVLOp0OPUQpiiu2vEFHkFtAvscVJaEQSKk+71a8iwmREkVNEkAM8n4yF6ELhQmwTFElwL/ArNDq1QpfU0FzQZ2Gqt1RzJF71vOmlgDQssDoi8dEACDTQk7eQY9m6j3wv7ycFiqRfI3FY866DlWkmOOX3Vq+rJTqU8DMWj8UcQoPQsS6uZQQSONiwVZJ9zOv4vCqSJh4Cv1Rcyd+L7I6dvg9AB0rDPZCwMGjUzkg+D0p/LObiWBNkHwS44CINBOFoS7Du1KV5RDSWnQSDKoSnaisu0xQBZTy+b1lEGoMDRGYlIb1Ruvp5553Xd+07bk5a+nI0bHnv3T52urqKjs9MOGGAVpYu4IJi0iEv7Si5PPzlSpbxcCR5yVP0byRJJxfExkyQ0IqNFXlWJdTU5PjwNUNOIDHIUZkqVSdn1lMJNlz+2C9HKo0q5VKHh0KPAzvCpTSMHTS92F1zDEriywy0ALfimdIkmiETT8c9+d1cSw9FBNwvr6+vl6r1Vqt1saNGzIVXDm6zQ3yDq58qW4giJ+EETmQg/4q197Jr95r73/9eDze3d0dj4Dt4bwl9H2RoWVIksnoyjtRB6FHtNTC+JO7B9ysqFart99+ZxiGjz322O7ubq/XYxvjNE3ZKbno6ZsTE9mOwCKDUm5NsE1BQaJHzfGpZ8+eZRfbKIp6vR5D/8fjMenbTFR6JhB56gAcHlRMMp468DLE/2J9bzQacRzv7e3Nzs6KSOVQ7OuFoh00qePSEOLdhdFTPIT4n6En5JUm6QE9Ho1Gs7OzYfj/Ze4/gCVL7/sw9OTc4d6+ae7kndmdjViAyCCYySItQSYIiqRk2rJKjyqpZLtk2QolqaxQenqW/Z6CJVESJapsUdTzIylSYhAJUiRBAlwAi7DA7mIDdmdnJ965sXOfHF79/v/vfH26+85ywWD5EOzt6dvxnC/8wy9krVYLJta0rfq+H5Ku/2oxiRMS2ZaRn8tMkiagi/8UBAGv4GEYep7H20a73fZ9//DwEIQToq4KEiUZI/KJktmRvF7z89k4pU0E0dJR0z9EksBJSC32wMNKFBoJk2pGEXSHW36r2+pmWTIcjAb9LxuG8c3f9u1VVf36b34yy2PPc5MkygDSmcHRwp77WC8tGo07K3V0Kt1ywjSf+7mixIoYh46teW6aRNzCRoRBph+ubR2dHG8OhyeDwWH/5CN/4A9ev/HG/fv31zd6pFkgtFlJ+g6Vb5VgPzwTaW9CfZ0/kZXFa5jmMpKqTgDk75n/Sd5564q3bMTzZ8yvF1/Q+rqwZDBZgyu2pznkNWJpaACW0IclbKymWrrmOlbLczXTyJM4ShNVM2CaToLOXNhGShDH5iI7hcOXStWmaZIpZpRNxzM43+1ubU4m4/3DfVU3SkV1dEu1rUo1U2APuIaFqp/cdykkQhVUJFFlVhCQw7D0jc31+wdw0f6aDgbw5Hl+9+7dy5cvazpAMrMZol6S/WkmYgxhhZsmfXoJRirGG0t9QycULW72Da5Tv6w5LQBZESAD0zBI4wi9uTQCT4wBodSDB2Gd0QoymGMJG1wTel8uupd5biLMalZVxCVu+ofIbh5BzkSBloz/0NFIolkawzWStdYCz2n5LlgcUZRFsWuLT+QPBUgzh2ZLniWOaSLuKYqW521vbfTWu0Wejvsnj1+70nKtW2++Hs/CbqfT9tFPa3fW1nubN968Mw4Ht2/fHU8ntuWaXsuwrP5waOV5sLnebXeOhv00zgzT4jWBozJeDFtBQOcZBRUJAqo1rpDMh0kcxalrW2UIFlNZwIi4KODtJd6tyEwDHN9utxsm40zJ0ZRz7CTHBQ2nU7LKcTj7ouYVEJVCGz2HPRxDJcTEEcy0OifnMiW9EjUC3zs1krFth1JK5LCCpk3386wEAh/KAajjM7MKu6rrLUnh1Xp3C9uc+MK6NouTLAWpAwF9jlWL45MpgesQSMB3D0dCKWVCtvdim6DIhbE6/MI0RZQiEP/gKuIHUZWlqlNR0AG5C8DZhtRgsLn+UcHeWlTXCbNdamlTOraknEjuZUZvY02y5OeLXSVE6LntJg0LARxiOyzUB4SYLv2L3MtFV4LN9oAwQj/B0inN5jcRfgI0IbGFCIOV+ZVTcxDZ6RIzlpQo340elNBREjhjpSxJ715MSGoX8mtBWadkYXFb4hWaGCD8xUto3BD3vzl0GmTlZmWr8RThkc1/EneBl+TxChMAMAZI0Um8v2aZoOgBK1cWKnx/UOCvUYyNX0jpiGZwq4cQ+SSujfGUIgRO03yt24vS5M6de2letLvrly5dKspKt9Ap1ghEyNKHuCg6G3mI6B+jDYDGOeVoQb+Mt64acrcUQxOBeKHaJ2SykLARdwFXujCUwtL0aDqyW4HltG1CWdquf/nyQxs7ZwLHID3hhe1KVdXxGNLj81Naf+50Bviyoiij0YgD1s3NzdkMXlRsrRWGMAkS1SnODWoRIQnHJ9qCEDKbl//rK5xl2fb2tkGYE/Z7YtOx5Q4AZ82NwKsJF+G6Pl6+iCQ5PDwUAjKs1lIUFhXvWW9+HgfX78+mVLJZ0USYQMabGJNxGCpVdaQotuft7x9evXr1M5/+NKPeLSIZm6Y5gNTM/GzOv2cNShEzcVFmlNsvTdlQSzeYFHHv3r1bt24x36Ap/LIEYSpEdWx5xWy320tsWj4CV4h+pmna7UIz5/Dw0Pf9jY2N5pvLpkrQCVYHCQvsND9XFrldC6pHCz9ZBL56EAQsRcV/Emxd9tFprEsL9eCVI42EEVgzLeRNlL8P/O2p2zCbzc6fP3/79u3d3V2ueXNSypJHg8GgOW7l6eXAfbXQuFKQFv/MUvF94jje2trqdDqwBK416RuBhfgUQ4dnHJWnyECaOHO6rr744ou2bb/n/R8YjcefefZzmq5OxgPXCyaTCcYA9IUbXIj5iVroOM19c7kDTGsOr0aMiW9SG7Fg6dAHVwxUb1Dx9r0oimaz2clo6NrOM5/59GvXX/+Df+gjn/ytT7308ksXL11Ks0IxagASYI+abho6iMq6kPTBirWAGObNZSlQkBdZbkOLucAyBGhhCVw6GuYkzTyXSxVQiarhZGwIaJt2kaTjBHUBGDlS7yuOQQXm52DRo5w/iePpZNLb2kb/0MOo1ihKODk8UsvKMA0wC7n5zOV/aCJhgz466UezsWNacTTd29vPs2y95dw/ig1D0Wwlj8tCLUrdKgHszh1DtFLYxaGkOlJZaVleGDr6nPgmWTydDnd2Nl67rqfJ74QGkOf5/v7+Qw89tLney/N8QqIUhAFhyDmx7Yj0TKNF55+Gyyk2fzUOo6a6F6P4Kdlj6QRxoaiqOcfPaKpq64ZiQaE+CIJWq+W5Nl8xKh2Q9C69F2GtoxCuOjNalVXHJBpJCWr7UluVtfH4PouWisagogWOkxA63PPcVqttgAWHenMaRkk1M03L9731dsc1zYM0G/YHTssntX3IOBIUpdAAPNdRkKKqc7vlb25u9nq9MAxvXH8NpP/Z9CSKsjje3trcWOtyOWNzc1Ml7ezheDKNE0W3Dc83Pa/U9CSJFQpVO63W4fERwD8tR6sgwQkVptrEt+0Hq50dvj7AhmhlHKez2SxY88E71DWIPhC7xrAtnEHwycFYAJ7WUNNJqjsAJiCexinUp+h1GDk2ZxDrl1qItRHTciFGSNXU113VoS6gIFUzl2QeuLBr6BbJgQC7b8AHVzFUgyAmCPttw9Yt3TZs/mtFRmYc/S7UmKpqGmJAsDg7VyEFc6+qogRVHjxC/T1ZfuKSA08ZbCt4ruiFIpNli2sCjYGdgn5AVmQIHy2zAvVOh+sa/2xUs8ETJUIm6RY5FnX4QX4n33WBjwdnVKKdOY1hIW8y3SMhAa5M13uNEU0nfKoWN5I5wn6+18HmqsyKkv6rsq0GfSPyiSMJQOAYaQawygq8DYiCICpkdRpAiSRhnefBFa+UmmmjlCzs/dBOoCiFsiH6XqTTIFo5FM9Tb0KgdUidiQN7OlkUjFMtQwwgegWJyxIyv4bxsNR2cxVv3CXShnAspm/eSCpqzA5/NSxAkFNgh2B6JXOCSO2sMi0TtnvIAEirkQ22CXTGpCdxwkn/WIcqAgYRScIURY5QI5xNbEvf6G4Mh8O8LCzd6h8PpmGiGboftP12y7QcsIga9uZlJhIAHouoSahUIq3LhA/qAMwhdPXuKeObedpCUnkk10CDW6Q9QHn6FmQKeMyladq/fz+srPbd/XjW13QhgCAB9KyaIt27ms67BbULOYIJgmBtDRB81uzvdrscWnF9hQEkrAIki8FS60PCoGWqwO3d6Wi4trbW6/Wefvrp4XDIGYVoLDTaFLV7mjKbob6+FP2wxf28KCu9aarq4OBge3sb2X+W5YRenTVTHTnqJDdGGNKtDEUAsfMozVX0vGDxQ7Bm/eTkZHd3F6sCVAKKNEmUskzr4dRYuevvKTsbPB1WOqeymM3/jBRlNJ08/tSTo+kkxF6oTEJcNVnmXAqskV/VmUFz7b795q2Fz5U7KGmWc4vm/PnznufduHEDv2LpLMzVomoBJWkoUHdIpGwoDy2u3ISTBfi7PFzX3dnZ8TyPs0fHAccS1zeeJ2bNJbFNfmFL6kAMe5OJkARr8T9JEc8vioJrtKMRaFucoLquG5ByK4f4lmWdP39+lQOA6QVnx4VUZ5W/0fxdEAAjC+oMmBO3KIrNrS12cpCF4YassxrH6KplRP5zHass88EJlFhfffXlZ555Zvf8uXe9613Xb7xx++4eekQK5hFADJ5TX3csUG9hCCVA+YIwTas5N0pZUI5/gg4aHFp4QJpamm5YVJIEYsrzLcedTKdooFXqvb39/+0f/MMgaD325DvefPPNK1euZHGdSNQYXC7804TlEhJdTbY3mZuqziEH9ZV+AAdgZZF8+0yA5hy0iOetU3s2iiJuwUWzELJ2vM5kmYF8G5oPkMKQHuGqWlC0UeW5UcvI8LvZpoEVZn8fjwN9LapSPP45t6SSR17kaZhk0Xigl9lDl888+eSTFy9evnHr9rNfevGrN+4VRtbZ7FaaMRyP5V5K540tk4C+jtPEsawkS7MiVQujPzjZ2Ox5njNJhB3s2z0Ab1KSBI5+s8n08sVLr7/+OvZElBZF1sGRP1FpMbYYVUK32GYYJ2QZ1O6u4cpIHbjiSDKd9UfNBdaSOFRLOF6tUaXAMDXbtBzHQuGJasNFmUn1Ld1QbdMk8+48zxJV0U3DcizTtc0smi1DzGuwX+3rDGlNGuGaouuTCKEhiJjkEyLr0JbpoHuIZk+egwyd+667vbkxS+KsLLIszWEsCAwYx8y99S6mHTxrACWKw+loMJiOR55lxNOxYlqba90z28CyhmHYbrdtzx8Nx5MoHYxD3XI0VU8LFW9qMogD6hGdTse1nSxBxKaoGJaOY9FJhGhe4Pm2oaTkvQvn3oYWCE/gKMFnKWs+rMQMo8zBppCLGICjrtXptExLn80migLyW4aQRoF4lWVH8cCyXb3UTMdh5h7HrOwJLdaohiurqB8ZcDRCugh6BIlJQyQKgtP8OOkw1uZbeAlYGxriKUXeKlrV8tuIQVVDIvs5KD8+GbJzH5ftZeX+5s2bbGDHPXzLwgJVKlqaFVECvwUJMeBKRyPcpeCJOAA0o00oepE0EL4H0hhiSeFbKaqGAZHlRUkNMV1HTt4EzTLLBZw9rNjQlmA0EcsYAIqMyC5N05hLxrTeQqmlKDKOo9llr3bSqIy01uNvVCLlBWjAsyjmQ6qHIAZJIAsxM8dbqcpU6LCS07CmWlAyMiBJmZPgTY054iif1lt6Q6GqIZdhcnTjUjpvH+CDU2WUVU4p9J+XHjUscrRe8V/5T7hPiCjE35zxsGU0aYjNC/xECZkbC5D/Cu8CzSZArQM4xwVAbUB8vRWlMzSW6tWHjLRAjagUPc4UIqSh3wW1HyRd+G2k91gvVEQd4pkALDs6Q2AsWRp2RUWtkqI8vLP/0EOXDmZjTbO6G517h4dKURqOcxLCVMWyXcN2MHCw+hiWbpRayq0ECSrgL4xOzmKls1m1WqV2PThJYJMHvqzopVKCpuV5Nk5Tu0DZotfrVZNsNJqcHBwpekbR8tKbLBRUmgeBYfGnNIrWNze3traY7VqW5draGqtqskUu1+B932+Kx8sAUeL2pBAQxw0OPEcQHn3gAx84Ojra2Ng4OTlhxMup34cFbXidnc1mXA/gR+bCgnV6XRSFbpmwHe10GGg0Ho/ZdIxzDMYaERwQTp1Su2Y1MYBVCgHHsbtAWxYHy4nyV/U8D+pyNXVhTpNtXMJTfo0McxsXoxlWok5JP418RqHYI5OiFUA5TRPis67Wyy3iWC83PSiB53Ol6/r6+nqv1+v3+4cHB9DMaQwPed+g95c5GJIuscICUFvUKVBzcC1VlQS3ZDz2PK8oitu3b0/GY4vyTyC4GMjXgP6LefGg8bB6UnmNoH2UhF+I00yA0UcffdS27ZdeemlKeDAMP5Jv4sEgwVeyB404vmEd3ww7JKZ/oWCmKLaB0N/3fX6HOI5h7bm+Lp3mmkJGVaUmSWpbro4Jm2qqEgROOwhMU2cn7C9+8YtPP/30ud2zd+7c0dVqMhn5LaRqzUvACYDE0y91AFYK5/V4oKq2JKtx1lRV5XgWOg5q+NM4QmHbtlzPcz3vZhhqVbW20VMG2taZnfF4/I53vKPf7/tBSyQ2lJSKzB81a94SWJ2brBYppW84G4oEQHjQNoQH3mK5+20hQA86DPgeRBbpuqZJYlmwYk0iFGt913MczKxoFhZZzsbkKVkTAG6eCU0PSMEgVRYm4nmSMqcI9swaL5OETVVV1plhiPDdO7d6vTUls+7cuPnIQxf+5J/4Y//Zt32r67qvv3F9bXN7/2T8b3/uF3/65z7+xp07uhf4QTuJQ6wdLFBOBazCAFOPs0olxWoDY+Dx+MKFczYhwb62o1Ic15lNoYM5mUwefvjKa199xdTgSgb2nCAgF6i51Y6VfMm4jEWhCcqKva3eKvQuK6okxa5JomAEDaCOD+4Xha4irO+0A0y3LJlOJ+Nh4rsez2HamBGamkg/jTwrfGf9zMaWYcJ3jQQNoZrimluk2yEq9E33VtYCyooUwnhKAVlgaiNDUK4ENlKrNCAYcwR7RVqoBtoGs3gWjaeGbfS6vYuXzudKFcUpZPPCSQZ+FNjeSAC6vaDlBfAQzE6O+sfHh1VVra91771x/clrV1mWbTTss8hEu921THv/4Hg8mY1mM8/vFBWsVL20WAsMhKBlGU2nG5s7a51OEmYo5PvtJEtt12ICbpqm7ZbvGDoIqgCWSEY1iRyhoKmlSZ4kohwDzD/mMHlgYfxASRwefL6n6+poPLVdrGcJOAe5brkK7DtQ+vG9toW92yLSE5xUgJ9gOy2SRSZcMyA65GuraKbBXg1c+5cdAO4C6WxNWd8C3KM7OcRS8zTPiwx4LAAv8+re/fvU78njFEo6sE+N4xSc2gweR0WBKZehmsJjqyyK4Wg0Gg7TLPNcN0DvyFU1Jc6rKMlhxUdFK+lixCJdeGFtNySa2MSXYKKowOmRV3xKXCpYkED+p0LzzlJMU7FNRDWyCikDUVH1mIP7BW+Q3npuHEYKZmjN5EXG6vkIX+v1gdel1T6P1ECdJ7gctTM8q4HbIV4+PQ2/RODOxatwHsnyR5rAk7GN6BTDoklkEOT5R+9KZXGwVjnMZw86irYrjZyPcGBxqgg9pahFaZNEJ6OQauQg6Y5TxMxrPOm+kmh9fXAQjAWHRHhYtFeQS2A1Md9o5+o0+NZ1M5EcpeqTJWrtjQQAarKcANQvNQy3Negf9tbOaOo9ltJFLSfJCC5Uo9wAeKTPp2tg6qZSZY6uZ5MZijtp3LXMc1ev6Kr2zsuPrG1uPXT1ymAyffZLX7x1b69UVdtyX7jxmXd9w4fPX35o//CgSIuN3fXpaAhQaRMVzeSSehdnpoLYERv+F1yllQEbU36JkiUy9QJ6zEWGAMLJEeibRQqNroOT/u6Tj8TDQVll672N+8cjID2CYLQ/cjqdOB5yU2VxU0CTdX51ZNRLDDq+bzqOYUC30bKs69evMxhmXoNfREjzuzRv5dWUdWKOObotxPrXrl3b29u7f//+mTNnmD0ZIAwC3IXrLlwhJgoOWm+apnme12q1ZOzSVCJrIuPjDOHdE088wS0O7l3I+nozqhONuQLoCGY7cDOX6f+z2YzL5NyFZASFYRjvePopLn4zVoQFH+cIIsoxGLHDARDL281DNKkQKoNsKaxJRwbbduurr73GKngMGVItS4ZBcjXg85+ltWHK/JZ9ZMQYm+MqeA4S6zeKIk3ThkN0YwjA2mFZ1SaHgd8wjLlgUQ/P+ntIsizBEknjgCFVDTNXWVlnozRN0zqdDiZ+U/mn2Z3gH8grbI3xXcpU4TLRiIZlRMmezVIiA6brhPHY3d195ZVXyqLgAd8EU8np2Xx/iId8TQeqdYSE0PWLFy+eOXPmxhtv3HjjDYMqx8I+rMZTUb8RvwttSAZQVMwBRURv29jUz50767jWzs7WycmJ5wM0NR6Pe+tgmHAcn0QI5lhuP6e0EBc0T+MoBI6x5v4K9FGFSj9iIF7bDeBwpVGdoqD3TXAKLPgVxDYEWmZto4e6Vhxvbm4GQeD7/nQ67Xa7lg01MPLWECQHuSOiDdwQ/lvVNhARM3YQ0WBuzuLGuy28RARCc53Z0xsyi+1TEHYZ7MRiBtyH3NjYuH/nNlBbFbr2roMsMcuS6SSGbBroUwKfZug6xB5b7btHh+vr61EUtTptuGVleTRFTVrR1d2tzWg8RS2cU0HHmUyOAseY9A+Hx0dPP3HtZ37mJxSt+o1//zO/8Ru/ce/ePd320kr/yPf+wM7On/hf//4/GoWxniWeZR4cH547cz5N08FgsLa2Bp4L0PfEsTD04XjUqvyNzd7t27cffuTq3cMvFChU63JFIseJB9KC84LyPVXZ29t733ve/cb169/49R/+9KefGY1GhgoOAqR38rJSM81AuzxLEstQLfj3oTOu6RpcatfX5ZRnxTBAoU5O9g9PTJhMs6Y7Os9JDCi2oWlXrlzpnxxF4TRP4xSII6Ud+LreTtHxQ+jJVWOqxpZ5EiPuIL9XmCOgdEnsuaqYglNEoA1YduqqoVm6CdsJ3QQnATxq1bQMCpoBasLyZerkZ1XqmtYOPND5yC0dzqxp0SrcIitTMDxmo9sjBYQ/03Wcte4ZBz7Xggo8Hk7Uqrxz66aqITDwXNqYbAedAdcZ9k8ANCVLC+LMGXGa6KY9mkxs15tGsQ6CjTtL4iizjapwbEdLkHBurPf27h1alpWmqev7WVlEaRK4zmQ8Pr97puX508EY0BgD8F6So4bOt6pRgdJG/8S2L8+wNUAlKc1mloUBYDooe62vrRm6Do0jpep0WqPZtNR1Cww0J5xMbdffPdfSTA8QHQ2SmPCxYBM2AiaLK6JV8urgmdQiQHGXI7y6C6ST+K9SlGmRpxm0dIo0yytlOolIZymL0ySNkzhN8jQrqjIOI7rSBQL8NCP4DQF6yJWJOa7QgIIpE3LT0QCYizzNSqWKk0w1Ypiu2i6uOSFIICxcSz5gppdclecKMjZBnfA55MnKXRakNsAmUcBsotaDDwQrneMTVUXeQkYClIOAxS6h/K7tcEpapCn+p5C2TJGrYGKQrkaVh1Gup4S6MlB3sG0UHUgWAaQP13Udx8GZ5W/ZmKSNFW0hB6CknBxzFQLwcAKAFhxpkFGhRbhEyQSAJotoCRkNQJFFYQFJfzECj2A+eKM5prBZx8vKuYGR+AuVKbKioBBcII8ZjF4XQSnPohuK9utIvWJTD+FLSvlIZWjomZL6lvB6EEihxurfwP2XULxc6CSIP5W0oZJUEhqY7DcAvqpplJ7huk675YdZSGgxRFQmJTZoYjaYDpqiWIZZpknHceLxcM13Z8NBB2jRZHq373lOp7N28Prr915/7bv+8//8o//TX7t7ePiP/uk/u7V379yVqy9/5SVVN7fP7GzvnHn2c589f+Ysi5UtAZqbm+Wp5a6lGGgRIzs/Wi3/6AjW4p1Oa21zs0hnYV4Ow7goAFOzW62LrZ727AueEyjKoMmEE7F7DUOHCpC0cKJiDG3hii3oRJgDYRiylH44mehUAV09VtVRZJW6WS6CICNHZhm2q9lsNhgMhoPBaDSqytJx3WYcNo8hiAQsUbZNqIn0H2jyaDVNu/jQ5SRJvvrVrwJV2W4zARerLQWgS3KikPXsir3NNLGGSpszbnHIZIOjSVAn4S8KKjOnFoyG4siy6ZQsSavyQe48AP5Bkf1gMDiVRKuoKiPyh8Ph0dERu9jwT1gixYoKa80+Fy9f5Rg00EFSjacsirQmeQ8GgygMmZLRBCPVvdQFmVd5ZKSwufBBdNskyzIQkDNYbpu2Wq1ut4uWaZIAUqVpzJFYuu61gcsp8yVZ+VwR2VM+RizPkmFJjMuHCZSm+eTGEM5m+HpktxyG4WoQyfJa8tvMb1lNvfFF5V2dvLpAiS6K4+PjjY0NmzpOc1xy3bFhEi6Fv2hJkjYeu9bjcCzDss3JLLp9+/ajjz9uUTOhLJWgjco9O38351cTF9/E7LITJ59DkX7XDegaksNqQfwqkbsy6xRuiHUG2OshAWCvbqboMCceSpR0oqji3wCsLqzc9K0a/3w7MJ7f5bHaR22uSPwrUj1dW1szdTQhuanIq4Hv+9KHhN24mSTNjTiIbmsGN14GJxDdgoKkpiVRrFInkNkFhF6IdCUfHh9cuXj+p3/2p9P+4Sf+48dffuGFMgedOw/jOK/+6l/4K9/3X/zRv/zn//u/9bf/V6VMDcvrddePjg5c1+dMQ9cRKxC0uSp1IA85YTM0qBtTGUuAm5sD+NQzzIYQ01mYw0oK4QsitiQ+u7ujUuiWIJQpoFyIxj1y93bQAj2a2rmObYMuTxZ7PGG5bM/dNse2tzc34qQYTibRFNplpmkEnmeYiC53tjfTZDabjAxDy1MgD4jxAsQ7feF5dMHD53SZZoSDmRxYQqiXboeL+4W8zxEGufygQq3D0cfkWwpf8Yjl2oHhknlBdXDSB1M4S8I8DZUp4Fs03bBoeAjxQYODIkjlWjZUQVVgYNDUhj4sGYCwMntZTcNZlCSa5VYaWR8rqmloSZlLFLhS4OW2aWVFTpKIJA1Cv73MC7WsPNtRqjGiNJ0FlXWExVS+VBU1LcowgSQDCs/IAksTpkVmTgEoaBa6BuF/JbNtmwVDE2ZbmUTcqVTTcBy/VUI/nLDE8vxDhqcuq8lpQJQAgKhIekx2xnirOjk54U2NS2YsjoluhkqUSBSMM9pnIHjA6VxF7tf8SP04foccA02dkiTlbZGKNUppZmVmloqBR7iuQisOd8J5wJCUa70iAckiiSbUIcJgAgZf1LaIVACBIDzZMADhhlIMZDeLKifV0pIc5QQfZjab8gkCoIhiXLYxQ56B3AEdEECVSHxK1+FMT7KBZL9hY/H0fR8JABB5NFAb05R+higR0XwWYxrF7ToBIB4xV62pLyBtAajKT753FMsXuYC41zhy0JIJAkQ9SgFPJ3k4UtNFDaCmv9aNA/yXVTKaiwpBSMsKznyNujWF7zWmZb7scgtJ1iMpuAcFA9OS4kCq2/H7VkAkkuYsF1JrIoD4fDLpU3QDCQN9AGkNCHYy0D4sCUoCBSJD0JWKKg2WWha+YxsasrWmpCFnIbUvArUs0sQ3zcnJ0Xa3Pdzb2+y0pieHvmXtdFrHB4dHJ0etTjcpyp//Nz9+89VX/sDHvvdX/8PP//d/6S99/Nc/UVTVc7/5G9/wB/5glheXL1/OyLhKxtDSNK55rO6IS2VOejnWILlVy9vxYNhqtVqddpLFR6OJUmW97S2vt9P1nRee+8L45dceffRJRTeCdsvxgxSiy0TWq0NA+QVkgC4kKetZBUQ2fxlJHzdNy3Wlqsk8+qlhZktaonxwQL8Qo9SEPHz/VmtjY+Pw8JCjZ+a5LqVMnLpwYMfg+GYge+/u3dUNT1GU4QRQk+vXryPDIZsCfrxgr6vmV6T3ybmpSsJHjFaSAJsmqIkDIHgLbPbW1tbu3r07HA4dB8kJo4QZSMBNDBb8ke/GUmL8iARE8Q9fHQk5FJy8ra2twWBwfHxMFUpUJeXzl141Ho6XtDuFnOhksqzyxAXvBLa17HFjWRbX9pDjkaqpfLn8oFl0ugoQQ2KW5EdJfQ/RFT+tmQVxN4atAMR6QlX55URCnocHQIA4UWkOFQ61TYK4oCBKcC9GvIxGo/Pnz1uWNZvNeADbhOJgGsAqPgprMfFZV48mB4NL/mJcsbYDBN0LN/C3zuyc6Z/cu3cPIXudoAqPCMwySrxRwSDHEpZZptkDtboirwplf//gG77pm7a3tw8PjlWdmO6MbYPaufi2ktEk/1k3bfCOlOPTOWH2Fw1g+KPVcUhOPXzG+mk64hjaEVSo3dE6WhbKNIFwiudBW8nSLU3V8iQfFmP4S5DziWx8icyTKUmCTDbfOeYNq9+fNKC5XEhcZb1a1lQ0+pKI0RVVKwvPsV03yDL0wWiYcaFKyPdpmm7bpudBPHE8nmBZpL45a+TfvX2HQ0DHstMotnXDYnUNolkjZeofXzq3+zf/2l/Ze+P6J37l47pabGxsZFn2nne/97kXXlzbXI9z5d//9E9998e+/7/6I3/4H//Lf63Opjtnz46H/SI17HabIPI6kAyVmuaFboALS8ixxII3JawJ4gR4tiaO9EF4Thb/yPJMpQoFkJBqOeqfbPbW9EqJKAVKi7LSTOT5VBbzHVNVod3JVkpc8UWDqDQJRQ2mIUiZBfn6oVOrBL7LlJvB4GQSJ2D6rnU0JU/jMI0jFV0mwdLJk2qt22vKUssFBG4z9dHs6JJ0YH0dG7lus2DU/PlUx2KPVOAhSIcRVdcoShjoQkwB4ZJeKJVjm7JAJvJYpLbgyNmmrpSmjfRBxa2uxqSehPK5Tow+tGYtVQGesCirfr8fp4lt2jAbLQsNAaWeoNLviKivqhzD9D2vPxqCOIHZhlIxZ6dVlneClqocMsNChogcS5jEMJlOpwLOV4aKqlgmzGyVrIR5JOmfovGlFb5rz8KJ32mzg7PTak2n0InUDAs0UZYWaUr0qqKAhWlCKZAgaJfleDwtiKYs0bPcROXSVfMRDkfRN+DCtFI0b9Mkl4pA/AhjLanQM0cwyt0kTUVBjcp/CIfYrK9ZXKstVpEe5WnGzl+yWwjxKxW9rFLTQdsF2wS5hDDdqHJKwJiqBAwjAcTBFSB+wlx8BSQnVQ0822iwucCiJNRznqdIKclcJcAB2ohlWa7rmiZ6jyg1mhhODGrA7igY07UNGHOoSRZU3laN54jQnPyN50E/x8/iEa4CgiqspDk5hzEqmlsBwnaLdeVZF0htkIxT6iI0YMT0kZFGgWxjYaGkmlI2VtQUODCW/mL9IALhMGccnn3zJEd4i5DwGD9qm5Z8e04JKLDnQhfCeVInZcAMi1jBCbXeOBvIV+oA6GQqoddvWChGXlmq04qj0DJ1Kn+Uqo6ZQ1AorGtyzFFzojA1dTbsb7eDkzu3Lq6vn+zd67Vb+WSizMKL7SCB6ryh+c716fi5Z58ZD4b39+7+3E/91I/8Hz/2Z//SX8yy/FOf+tS3fsd3TKdT/G6K+3k/YEHZJY32U9HhsqPCTXAxiGulZrnVrfe6UZJNwwh+xq5XVvk4Le4cj3YvXLhw7ckPve+9F85f/pXffPb2vb13PPXE+7/+Q4qa0c+nAphQwwUfl5cSmaXIRCWcTBi/y7Uo7p4zwG6pNs9hkMpGYBR0zIN3eNyIym4zplcUJZzNkiQ5PDxkkyaezFyhn4eYjSqyDrTivBIsyb5c913Npm7cuPH000/v7u7eu3eP0f8sfK7WWHYZkvKdFoFS+Lfz+ZEaXjJ0w28XkCy1u9a5cuXK/fv3792+3QwElw8qpXLgxdj0ZvNBApmkAKh8xKXlY3d3dzKZHB8fk3UuWBCCorp4QO0naC+dAb7f6/WaJF1JwyjzDHUIOtI07fV6h4eHzLKSJ6eJBYoSdB5WM9ilIS3ThoTk2JbaFFzCrKpqbW3twoULtfE5virUCxbD63oDaHYg59t8DtDxomQEfTTj06hUM+P2zmwGAc3j42PGO7E2VLvd5myHdc2Xyk5sG7OUJYoWM21FUnRSnm7Ic2TA/MkWAbPBmsGxVIGoSkWnDISUEGlDE95YimVqtmMlcerZzmwyVRUYzKVx4rdQXaYBMLdGXshG6oEqBX+acfASZbxsnO0lKzT5Ej6rNo2HOI7B5g9aa3RYrtMfDADfrnsaMgNZqMKSbzxDBRai/xr6yNfz1HmzBAGihx787LfxDrSqUmcaAyZLk9ixYOsBi1/T5MWQAxGe7PBsJvBhGIZHR0feei+Bgr3AjAGX5ThqpTi2XeUA4dAI1HTbApM0Doss/e6PfNeT73//v/h7f3f/7t3ZdDwYDExNVw1z59yl4Wjyzne+M8ue/w8//3N/+Pt/4A//oe/6iZ//eBrHnVaQ5eVkMuJ5lyQZCufYRbTKxjCJo8RzbMu0gyDoD+aKvQuacqcd6E7kmaUraQpdrPVOMOj3dW09CDzbNl3HShFI6BXiNpLfgE4w3lOuMGBbFkC6s3IUz5EizQpL9TQtmk5Q3ewEPhReMA09z+t02nEczcJxWQFwyPm/bZt5guIoYYY5EMRIUQtodK+vr3OiwbcyWMyoVDHf7uuEv9l5XgBAEr6I4XZcxcpzrCS+Dx2nxqqlAjFelZZt8biUWkM0uHmWkUpdquQKJc8mmhhciNHgLm1UFXgamkp+c4oOrWEGoOsakje6JnGWVSqmPMKkApF62w8GwyGrtJu6QYuHlidplqTddoclUlD2J1+6CtYQGH6mrpdVOZ7MyhJ8pGI6AW/Dslj5hxa3inHnpHuIWYzhnRWlZiiON7x77/79YakPT4azou77sXC+XApYj0iELsLaFtJDBBggYV8C8DBQx9DQnWC4Dkd9xAGo8izFEGGKL92qZDNcpNCbJIARuAbs5jyfoI0qJy8mcmFfuO5UxUIfCZQHSP8DjQKkC2A4UB5CZ45E3mH9hHGVpxmgO+LHYiRw/RoaXhoGeolngiZKAqjo0MJfq3YHojkgclFU92j75n3cNtEp832Xy3mua/t+y0eG7rO7aLNKomqVju+mGnGS1bZfzFiV99l3jbQa6qkgF1B0M2SgT4lBLtRL4AxQA4FoQ+UVgR7JBetKJADU86LlnpIJvCesbPF96pV2HrLL6yM649ypUDFl6RIRaURMRLC6DUCSWMuANiKQ1VA94AtKrFW1Tgro+8ABQdjOkYsFxfaoSOGi4JKAQU4vZ4yQY9ezlLccHhmariFANAgFpJM0GH2ekeS65rYTzei2W7YxqCooOYqPbOwTKBIQf0DLlY12MD08emhne3j71pXNjfHJ4ZZtO1lhJtH53kZYFEfD4TsvX8oM6wuvvfRref65z3/xn/3Yv75y7ZHv+uj3VLPZpz75yW/+5m+KZiFZIIo0GkvDAgtwMQFo1KsWmXyNUKsZ5qKFpaVxmGSJ21mrTHM0GU8LrfLa08p44fqN4TTcXH8ZrWNdHwyP/91P/6TpmKYDbTsYmAcBK3u6hnH2/Ln5eielVBTVMU0h40CYDVYBYiX1U6G3R0dHTeiLTCSYdimzDlk2UEugb3ln6nQ6vOnOKCuQi7sETqDSQxj31aNpCND8Vsx/YCkYKSevk6FPs8UsK/1IhMhcRFZreeI3J7CmiWBRVbEHeJ4HT02K5BDfo70GdqkMSeGZUKcRBjXQAbmB72A0e5DpVf0rSNWn2j5/PoqiMUuLGga8fJoDRr6KGTSL4m38ZgmpM3EPpJEAKGudtkTjOI5z+fLl/f19vlhyxElUlaZpQbvDqrgykeDTwsZnzWeybIBFEDt5quXzu91ukiSdToeVFue1cxuFq+b454MhQKuBOGKp0w7OKEzT5OCeofMw5blz56mnnjp79qzv+2wGJPOEpQ4Ar5Q0RucjS34fuZQ3b2mrzu/cucMhjq7rjz766O7uLkPPeVLIOJvXq+ksxOoLiGkGdyTEF9i2Dw4O6FeUm5ubd+/uqZXmOJ6SoHnN08ogWyLWfJP4KNpa5qNaOMHXFVN0d0m3QuK2ScGNusmNCHIJSsTyDgHImkqkzpSizJI0nM6SKFY01Q18np50vlDIY51A6kgwxohOF0VV2MIaK1iz9fp7dSxkIA1VZTZ950vZDBZN20rzZDgesI4ZPYKpIZU9cG61ChjxNIrSaMPz0umMvzPTe1TXBTKlKKAgRLObY4VBvz8ajS5duPDRj370//zRH715+87rr71xeHg4mUzOnz8/mcw6nTXdNKPi5Oq1R6vrNz7xa7/+PT/wA5//0hdv7x95ga8r6iycel4b66emonhXlMC5I4QtyQIb55KgjzAXf5sJQE5VUsty0iieTSZndzZno/7R4T7nw9jxiyrN8hSpIR7QyhyjZrGXwrATzsmhpwSHXqp6urZnmUkaZUXie2a7dY4xIWky870N2zRaLb/bbY+nE8KH6FmZJUhuCQlQl0B5JBro8LOECMWVwigK8YacQc2pt9T9mN+izC8Ut2nAC2BDkgvxlbnJY2WWpZJQrZe49XOemNQoL7OcRDcUx3ZsU0+TiIjguDqmblQZ2ZBCaRQl5vFkxghSEtnEcoSQmrZDXhBYq7DlgxWdsc8TwELg0JNpctJptQgNIaS0ahaNDhQHtfJZQi2wrLABEm75Qcv3KDovHPiMa3mRWpZp4CuqlWEqZfn666+/cWM/TJS4UIuGBmgT9c3VxvpxcSeFiYCISKGixGqTShWFoYxdYVxLThrISZCo4NFa5we3lVoaGiBYiNhBT9P4FShHE1dndf1vxkuySSL2xzKv/8fBLEWMSCzIUxgoFxVIMyBmQGuSP1T8Ooongf4nUALBHgFH5VERZ7EFIxTAHZmO6OOcCqU710Zvnw/HRg/ADQgpI+I6RLxgTFDBSHZvqLHCXOHKYOOb+mgCgXh8N6NAuZAhXG5g/fkJRMKoa//znUk0QZguPE8AFCSsqG7x3OEvjDxTtRr+ug0Ydw0Rqy13xcF7D9k4MB2EpqhGTpOi8UauW8IQpDQtdkvHs2GyzprDWlWCMYJc2dB0Szc06MWaqlbCmIKCexRNaDNi3I7vOgT+4fKkIFyroPC4GnUANLUwOPlQYMuVZJrmdk7CIjcD1z3UJjHV4cGGE9pzpDWKdiSRqTVVCQeDrW6rv3fv4uZGeLR/phUo0/BCZ306HKXHR47vb9rm8KQfG/rlzTP3799Lq+ov/g9/7u/+83/+5/7sn/2Rf/WvZicnL7300u6ZbXaHXoJGNMulc0JnY51t8tjqPkBjdNR7//Hh/fXNLasM9ocj1W1defSJp9759GPXruy9ecNq9e4dD5959gv9gxNQHCrt3r27igMHPn6LhZ2Bhoq6KA+qq1rL82Q/0bbt7e1tz/Om0ynDXWS2IIuODz300KkLMYOwl/AkNHKAvmXMT7/f52bZbDbjVgMDcyWskEKoecFe4liqqhqPAX3hQ1aCy7JsdWGYNaGD5yGXh1n7UpA+G0B5VbeFLBh9Ufa44JI12JTzUFtMR/4rAgE2F+OORFHEjRY2/U5aVCAe0lDYJAStkNfkxxvZIP/HcJw8SwHy6nRmsxnDWgq6TKs7PaCfGhLj1WN9c7MJAeKTWVVFhC0ElcuTkxP2ejumQwa4TVcd9JSTxQRMnpNaflQ27Jn5wwmMfIembGgQBOfPnz84OBC2rHWQ2vw4OR08DwHoUpRfgwnnTgXyo4MAfgWsUsWxXRzHGxsbrVbrzTff3NvbgwgMmbtxWsI+Cc0cuI6Yudc6bw4s4a0XT4a6tbF+4cIFm/pL3DQzDGN7exue2bUthvwIRVNNm0wqIN0FpWkd3VMkEq1WazabHR/3wzD86utvWNAWRg1YNcxmI4XaY0ih5aoCmeb6ICm8BSimbPWzgo3sJcoLLb9eM+BDOEs+CVMyD0o15M+ImWwLYFfaDk8/IfVIFukpEcfmBaa3kQb8zjoAsitS9yJEMlAL882PisDoTSFaZtc0E05uC3D5gwF+BuWNoGCaZpHllmFmceK2fNd2VAXwPygv9/u6rv/QD/3Q4XH/J3/m3x0f9Qej8ZWHH1GcSaI4Qa97Z28PGNFCO+6Pt7bPHB0e/vqv/to3f/M3/Zuf+LeT0czzPdswVR2euG7QogCCJIyyArRMTcmzIo7TdrvNbYe57KB0PTvtIE1McebH4zHbjJwcH2oU06tQclOzPIOoOsT2Kp0mQXMp4FnMBRFJx6qdpArPszUt11PKPfO8zJMyT5SysE2ohClKqetIztktMY1jG54TvIQIzDO3UUHQoEvARAMOJapK8x13ddI98BFsvUIdUqoD8xNY1IHPmESS4CrDoA0/RL4VxxjoAumK5sL9navpSglIYacF7xTOiMQGR3hkFsnAOiAVNci9uzJgiZzmmadbCKKrisAhZlpCLJaSVGJj0lLsOh50qyiAKwTAnSczVGo0XYtjNPCNFjQxIbtISxkX9eIkIm1q/O4Ugj96DHY49lcly27funN8PJ5lquG2c5qXQgwGATn+C/86UZzFv6mqj7kg8rCC/LCykmUCEEcRMI5Vg+ZQH2KizjcpUpMh41gNfYwCHDE6CUIQBX6zdba2ioKWSxxH/9JDqcjyMs+oCcAFXyrEVLmSaTmFo3JeaFjPU50YDqAw0/YLKAcGmGlQEmsRlMeyiF5oGo7naKBKOIELSA/rkZi6sb6+LkpaNeWQl1zQHIhcwMXPPC9IFVyA9utBpRMODYfBjbb6VzZ+Mz/OTVLCKYnXi8YWGbuQRguX5oFVRDRFzRRS3uD1XayAGHyVTihTgW0UGqMCCFSnAUw0qPd+Nselb5XMqCJLe27zwmgaEpAapkSNAroHZhWLbQo3LlGIAcQOpFhSOSXKrw5AXGViflJKoGkZWaprWqZqhUEJAKP/aITjCzIEiPE/rO0keguKblIABCaOWunCqhAdAMV0Tc2czXLT6RDqAm+Wkjy1QPHW44x8EKo8jlumNT4+3mm3pydH261ACWcd0xgdHl3c2uxPp4P+yfruWUfT7s8i13dL07h3fLx/986LX3ruT/3JH/rxn/zJmaruvfpqu4VaDoOY+WCk2lIysFRNX5oAS8DWeYWyytudQNOUJIo8v/XU+z/44W/9tp3dM3meFjlQMV9+9jPHg2GR54Hj6oa6ubM1jmY8QCl1rgNfitt4j+SlsN4eleN79zgEYB1Gr9XiAF0EuHUIK2MmmGQREVOiTZp/5UcY+85h2c7mBgdqiqIcHx8DVNOFlwpz6VgFaGtrS2LomwSKZk7FAf0Siglmn3nW6XTOnj177do1/jIsztgsJEihnrIsxyNhasYvb8I25um7ZEpUxc7OTqfTOTo6MsG4bjEykuNO+RHyJVDHamDNuZpXLJFKlzgAaapUaLivr6/3+/3BYMBbb8YJQ0Mzh2+XOLty5LAxVlNKn/bXMo1jg3xbgU8jsSM0SajgNh9+dMvvazr+/OQ3SMas0sPtrDLL6heDsyh+7opWveM4rJ7EDR9eRpMMZPTmFBAxzQM4AKTjvDBH5Nfg3hF6j7Tr67p++fLld7/73c8991yfuJsK5Ql8laVx2FICwB2AeZtO3pEJz1ITJk8NYOXhZ+k4zvr6+ssvvuiQNq6E0jZnt2YgtbZ0wzQ029RNXTOJl+bZDkm7wFhjY2vHdX00ASwX6dTCsUzSkByA+YpBUCD5udRfFU+YAwupFUAmLTQ2iO7HGji8Xt28cQOxL6liRwYI0/h1G71pdOxSbQypFC0jwnSMP70WGuAv2KwcrUCAfn8PChcw4RAr097HG6iO6HmOPhdLdJ06Ni1NXNc9u7XVn4Lb2/KBgRycnEBbPUnJvlQ0FjgIG4yGeZ4/+Y53vPPr3vU3/vr/NBhOh2F05uKVcZQfDkPf1ys127308Ml4bBrGeqddFtnaem+WREHgXbly8dXXb6VZ7LhBSksxuRpVBvZJLcsKvSpNy87zkoUNWH+ZS/JSbuEtzoOC8DozDXU8HsZxuNbphuMRk2XBw1F1x7QM0yogNFLoSqYK+ULSmayHLi3kyF1pwSl1iHGBDDA43kfxjhLCPMMpb7d81wtUVUmiWZSwA0yGsUAesHImLI5qrOdiC2rQWngdk/vmqZWChd+OaAgQ5VXDxKDlNRdnbHlk52SS1bqmoZ+pC8UEUi0jtLamqJZlxHGhq0paFJPJ5NzuxZLiLtOwVS0uisqsINYEIdHZzPZ9MLSpy01ZE4w20iI3Sk23XNLJgmClZVlRmqAaScUn4SCepIGPi4s8nrc9yu0RPsM9M1FNk3vpum5bluEiC8C4lS0ajn0LKCJhWCZJ4viOYVnRZHbz9i1F8QwrCCNUdCj2q6U/SYvJMKwazoPbAjE6zrCHBIysUrlYiVexia9QXibzJ7AZQJdVIS8r5GzEJRNXpu6wVfKqMRKSTARqL7zGBQWipL7uwJgUYCGTBVaZpWmRA9gDt67auwtUXpGUKipYuSTTqasZ/NzQr+YIxLSw9xkGOtIQanIcm3weiPdv6pa5s3tGQHYbVU4WABDxQ4KCgfinUummIYOSWsefGLmCb8o5s2g2EodNF6xE+q3NFnOzwtfwCW6cL3bcIISehvYGYv+6dlknHPOSFb+O9B2AJANbk+hQDJEiVA5os5XOSRshVMXLie4DV4GlXJviZyYTczwKJw/+ppADrn9KIwUE0o5RQRTSY0ZpSoHwnVqNzMEV3WscpQPhAZ6HjNOiWiqBhqg5Ro8QEIh3N0iDAf2FSUIeuQIaNIkO3O5sGBXtLa0qU1MjYdNKT1IMHF4sKE3h8VeaBrLgjuspcbgReGaatF3Pho+sdXB4ZFrWxlp3Mhrltt2xrbuHh2Glbq51b7722mc/9ak/9Z73fuB97/25n/5pxW9FU8AMuEjDYWVNVRFXk9wH+AvQD0b7gvZmaf0NF3bMS6pMUFsf11wtKvKW0M3BcNTd2f2u7/iux55+1zTJ9g8Pzp/dba91jw7u3bx5W9eMje01U9VOjo4dz/VsJyVGfqYBvSc1fWGJwswNpmQTA6NSFNv3GQTDiYHnebzEINBv9LQkSN+sdegl4GEhom0ksbx+v1CUQeBtbGzoun779u00SfwgYKEbiTNpKlG67txnQKr3NKtQEqgjMeUc7rMTE0IrzwvDkFWAmph4fqHrQBWn6UnJBgvgueECAgQqNQ3KMp/OJteuXeP2yO7uLte2fd/njkSztiQ3tiWnZH4CY9YXswscAF8mcSdobW5u7t/bg5sVSaEZuiERsrAsx0wmpJaSy4LpCmSFF4TaqYDTXSiWYFsGh8y2L115qH90PByPoMvI6zMTo/g+QGcZlwAoF5/XAubKqguPU5IguPsLwCQ0K2iosK0jfx/Iy9D5Wd3ObUoRl7I+tjIUgWbDgZKcKa00BUIXqTCkJdDicwMfsks0WjXLrPJiGoVQRqR2F9Y3amGTv3nB7WwE+ggU4fIo8mTuhWLRmYtOiFgEGy9qC+OToaKWZ85dxKgz7Hg6VXRLqXJkUTWamW6hQI2rJrZ+ruWIxcDz0GSbzaJrjz3FXaY4SUyyAOPdBUs4euqE56R/0vpOcTgvZIxwrakAogNT16u4oruUcIJcbIAAihGepAWkWkpDqf7ox77nEh2+7+/t7f3mb3zq81/8wt07t23Py1FftOCxYhggM5A1wVIEKgWsmznAA2v/SB84qphLP3/tB/PpmAAqRhSU8cqSLKP4bfWNjbXpdBzNwG1gu3Ai73nQIy+xiVVVliTw8QmC9vraxv3j63C68DGFR6MRjAuzzLBMh6ADeZ6pBlAHaRzByPk97/uX/+rffOpzX47TLIwS5WR0eHTy6ONPAb1cFIfDsaFUpm2MZ6FaFraF2u3Nmzcffvjh/cOT4/7UcZUyz2zbTciqQmSkRZHTCCyVKkmy9lrH0DGGaG8U47A2ixQ9+OZJgUxkUuRF6bnWLEqmUbzRW3N8L56FZQk1Q92wLNt1LZv4gTquAqnKSPcluaYxeYn7JyI9qGAOk0QoIuhUimYW6Xg0Oru7i6wgjqGQoumqZXuOVWWp59i1SvkC/UYWUJo9N273idIJB1MUmZGky7wQKVc3CmSJV1CDUliwkuY1rCpg32ZbDsJA07Od0saOI0ucbK/JbqkwiiEeKkrpcRoEHj/N8WwKeTLdqHQUQzMAEzR9FsVxmjltu8xTCpKAiVehNmuWhZYD/aNjkoEGUJmGZiAnomIpxE8R7KZFDpV9VsnNmVNP3wp1To3ViXNyFDZUfG0LJezSdWxSrcwt8ohIitQoVMt2DMfMcshgKEpxcnR0+8b17tpZr6Nptq8paM7Q9gGIPkQTEaBHlAmwNRyY03RKtJhUvxp4MywkQGLW9GVq0dMCqwmW1Gp2V8/Pal705Jo0CxWTlYEUGOVr5xjY71CPoStIkqXYmNMMLSb0eaqMJAw4x6tIqUkxgSaByKlp6Y7lGobW6fq2bQWeYzmO5/At1i4sXrYBeA+E/QzNMBwLnhRxlvLnis45NQMl9aVJDiRfNK6lQqhHxHQ1kMcCOFA6NuKUcexnGE1eVHNZpFnHi6DUvOdYnAs2YrUXOH6GeqJbxA9SV4XOPsJbNgDAWgh1IxL/EfE9pQ1UVWLpHxV9qMXCDFmTqQkFi6cdLNy0fBB+cqUOgZ/j8mJMaQadDJLkpT4jtLAIiMO7KsZHDLob+PEGlNfwJ2LyVwYJApAysSJiN51GRk1cEL507Aaglm3Tth0b4lFKfvns9v5hPwoLzQnQCFBx3lDzxJeo67VZroLikmlFWiSFXuZllOUo4eqqY6GNmqeGYSFpSNM11zEqdRLHrqb+5i//8g/9mT/z5KPXfs5xlXh259bdnZ0d9A2zEj0MXUsrIC5qVRP8oqaZO8o8qL5BZ6Lkhhyd37zItUpN8qxSlaDlD8ajze2tvZu3TN/3zp376B/5o44XzKJxu9Xa7G04lpGPtY//7M/NxhNTM0ejSddvQeuAipmObZ/0h5bvFXGoOuCUlXBzoz2RCegE0eKrk+Q5agbTmW5DBXVQja5cffguJHdUjWJuyJhUikabARF2ZeGZ2lOCuy5Lp2JeiHAQjibVdBra9uzq1av7+4ekce/MpmGGs4KwexVpvcQQWsVkzycR4rf82uOPM8m40+lgZSQ6o4yHpGcZdySE7bGOkMaEpIduwOVT9b2AheQIlYq6Mxw8VPNs92y/33/kkUe2trbW19e5F88uTqvNHA7jmhJMcodjcgKvMkyTYJQO/3lrc1PT9e3extHxcRSGlm1zkZ4NU6BPXG97TQflJkSK4Q1cy+Q2BQMbfD8ATRa/kgRMVO3M2XOFqhYZKHFIFInmxZQvVhOqF/Q5l7RZ2lkGbDSx8qw7xk8oy9FkavcHluPCW0BT8yyHutSKCbFYZZj70XAHY1PCksC1vDRxJs330zxDD1Fkpggc3MA/6fcvX3qo3elORhOUinS1wtN03TCLJCUArlLfku8IKeh4gY+6Y5FrrmNaTgI9MU3JC6sND6x4MtUMowijzTNnju7ft303iRPL8x3HHo3Ga93e1tb20dEh4hOVZHgIZDiv9chkSYWtbB23o6g4CxH27Wzv6ro+nU6j6STotHO0XOFqj2WXurWlkoNQp2pZkam0T6OBZttr3fbe3h6kPCk2xdCCcLVi2pbjuoOTfqvVMnUzJCwEqT1aSV4Y7c79/f1zW1vFDNLof+z7/3A0GN6+/toXfvVXXu+2+ifDoip3L1z4hm/51u/97o985gtf+Ml/97N7t+6OJrNLVy46Qctt+dEszFI0cWlHQTQKZjOF/pSenT5PaXdqWtwwgUB6uTQG1BIEiGtXctRRcYiewW4/xPNSlZxYGVTU0FD3Z9ZEWcyiRDVMvwUPZiEOqKizKC7QxMIrptOJpugPPXQlCNo3rl9P48SzgRaKZrPBaBIEgW6QpZqhTabTjfPndaUYj4dBELQCpz8c/Isf/4lSMSvN1HxvGOZue/3u4bGlA3IGGLmqwBpJVVh8Jq+KW2/c/ODXf/js2fNH/VeIZQvVOxYLQYBe6AjsVDXJCjPNLasq0/TC9tYbb96ushRiNIj83DxPauG8hvAGZQKmbqRKYhpqlKZJlsZJOpzO1je3jqsDahMhqYTcei5k1F3XrWrKk6y+i9oEGQ5w2YVJL2pVTsYz13VaHQguc+HDshxolBfVZDSGekSWetDI0oyydFBWJeQIX7SGsu6DzK1ZCpyD+OZtM7iXkGNi0TAAAzQCXjO5hIB1huZaHufTKOP1kzsb4nQt6illWeZYUG5JojTwW0kUBQHAV+C5llGn6xVZ6Nko6Gp6EWbF4dGR31kfzpKg3YlC5Eieo6RppRhmaViabYRx4kMSXotm481et39jaBA2wtKd2TSyWsEgDNtK0V7vHdy5axiWYZhRnMLxF20Zws5ToDQeD9uPXtKSsaUrrQBOpyh4a+TxCtUOTzGVQlOiojJdz3YdxXPfeO3lyclR/+7RmYcuTy3P8FuQKiLvZ3yQisFmmQ72lbxCQg9kNpKELMs8Z06elpuLlA3gXVjuQRSPFZyXivy/fq0wkajmuR9hE1nkB4QKnuOcyCKZSFODTMc0AxVevEWaZlWeprNSRXPMtpC5eiBnuIapt1sdw9Rty/F813Ph4eFark7q+5qpocdVJ36sbRW4XqEUVV6k5EsQx8lwMsvBF6YpsbhYUUeCLHdZRZRyIN6TkKmRbtTCKEJBnGmySOOZtyo6AJmUQ1qMuevZK6gDvL8hPCVLblnjp8I/ufUxzUJE/3O1H/GGiPJRmkGSyRhnVA/RNyDdCRIPJcJxLoMV+Vr+f2EBvHywWufS2an/fYodCYJoLE6YslymYicGBypAjFxEE1q6qXFLzmD6C5Wr8hIQf3x5anjAg6CkEjmsu0sb+mWsMonxjPenXN7EELHcHHGbqVW2qcYom5J3OV6NbYXI/sQ6JdtzdJSq0qxADjIrxaoqbNGI18nBABlUjliQfw4iP0NN03u3b/3KL/7SbDpxHSuCr0pRZnluClyNzBpFRerURU6cWGzv5NjMlWPI7cH7QFVAXNDNWZR0Nza9jY3v/t6PeV6gK9XZs2dNQ8/jxHSswIEMcJakgOOw7g+1ifM8v3Du7Lvf+S7P88bjMSNcSb6KjfnYyBqHxAKZpjmdTn3fH42gSsEvcYOA18qU3pN7wfDKbfQ3mmKgS9409ZDGHptTFZxrSLCSJUeCZvFAqAquvLz5UDOJan4B2/NQlEqSwclJNJ3O/9TUcW/kEmz3+1ZHbZLAz7csa21tbX19/bXXXmOgF8uGMAikaUrAL1lfX+d+BYuLcy9S1+H8ys9nEKfnebLVniTJxsYGU+52dnbabfAC+Z81qGP+ETmRnJrNbj7k8+Up5YV40B8zZklgmul4ZHxtleTKrw2niBeXlEYZxH9q4sFw4aXyHtMw0jTllIm/ALcCuDIt1SckNEte92WogG2e6p/Ag1MyNHDGsgy+0Sk+y2+3ULkkF3Z4W1aV6ZIaTxObJ9Y1vBs6YCquNYkUqYbraD7GfxYnimkEfju3rHAWr29sRknoul6SJOPRuLex8cgj105O+vv7+3Q+WeWAVi9OAIhlSrdMpUBTgGXmHJpWhq76LbhuMWofVQNi44jriNWe5BOwU7CUyhwsi+RAIyMw9MZF7icJA6Zt4Vpoqu04EINP0zLLS8OIZ7MrV65MT05mw8Ff/G//zC/+259688UXe61WUFXRwf7Fze04L1558YVbr1//2Pd93x/5I//Ff/Vf/vH/7Z/+01/4lY/funlnY3cnKIKdnZ2vvvLKBgmY8BJH+CICnYoH3ubxO679L+1L4j6kTXk3Q/Kqwc0SCe0MyF7fB7RJiMPmhuHAmJmaZo7jBZ5v2xifWVrA/Iu60IwZ49SatPr0gMwlKgWPHO7fe/KJxz777OczSPcbiFsZEkDGlamKMWmQZDhnJQQGwdJpWc6dO3d2dnaMl15BK9tQ8zRjF07KdIq80vUKuzYXFDUUO1EkBpuBBxXRsHmpqm/nZ5JJkMAQpkWaFwkW3zLLkvX1Dfi8RWysTjwQWlI44W8ecl2aIxEWg/Usy6tKAA5r4BDoqlVZuo5TQsIoYll67DIPkP1l2fHVI6/95ppfRnYgV0FBnPaIJbFeJAFloY6iXA/lrBFupCviFowdZYcHbl3y4m+aJmT6dfiWqVpJmjHI2eIs1y27yhLNcFSjtC0zz0sbErEGQq8SmjkFtIBKQBtQWIKPAEsjAnMPWUoE39JtrXlQoFwXiqkarUveKhDV9B106lVS9bTSFbflZVkynIzXTGd/f18ple/7/o98x0c+9uY4+uwLL7760qtFmoNXWShpDPJAOI2wE3m+5wRJls7CWNG1wPPDMESYhEgyXxL3BDZbQazBnVPmA1ARkHScWNGyzClqK+IwYQFWdBx1WEUQcKhUsgwVGNSesmYfHmmkUuBnqqVhArSDpoRWddbPGwYgPV59sKid64Kqy9sZUPt07RBBNaDCotdEAkw3795pnN6aHIIGnbXUu24CU3nd5uifw3qu1XMlp3lnvhrV6BYBbQISjpfvJvxXxO7SElgAgVgFlJ+KIYAomt9RqHAC2wOAFK229Oqc4LjUK2YHPeS6hOnjlrEo/NNfcaHQHGh8v1Uw8cpYPP3xB5kRghVCYBu2vaCtCURg7Ey1bzgsG1jdn1c1VUV4CP4CMTwA/WH/EPSmJRWYCsqlYqPSSYODnanpAmnVcDK2k3SWVaZi5QlRdmr/lOaBM0g7FVREq9JQ4L1hqYpZVhZQZWA1QrwIdW0AL0pW1oVpXKk7kIIajUY//7P/fvvKlZYfFNUsnWKx0zJs51IsT+rur5a02RJ9FQLBiSNR/+GdYTtmnsaPPfb4e77hGx959FqRl44NdfON7lZimEk0Ozk8yjMofpqmZQPY5uRkJm/D+lM7d+5cGELY2/d9VVVZjOVUZsJ4PNZ1PY7jdhtyMbqu7+7u3rlzhy1vAbKnWjLzShHAAV02L2PLRIIr3KsYfbMhbc5iPlwjl7qQcto0x9XCmFy6iHLpp9sE9kml7/s6nJJTlZYGfCuW62k03+SJbr6VvG16ynKQy3zfKM/PnTsn5PMjuCaUgG8modw4F3nDbyxVtmrRT6HSswQrJ+R6URS7u7ssRMjthYODg3Ybcp/NPU8Iv9SAV0lLkuyL5jMlUGqjt51lGUsApWnq+36eQx+Q8cTN5/M/z50TalFNWG2zcta8DvANqNWWlnKSdrvd7/d7vV4cx0dHR+12G0BYOoHNBEa+RI6HJRTQZDY5ddxOJtBGFMQsGpwcx49G48uXL1+5cgUqBZQnqCoYe3KjXXyfqipxNvr9/iyNi1KZzKa5Za+trUUJzGLBLlK1TqubZ8ngeLC21onjWJoeJEny2muvHR0dMXtsdTFEjQElfJLPA3kMMwXgBFr0sJNR2jimg7Jx2gMa7aPmKrEkIcBjoCmhyzsbA67aQYtmILkIlWSUqxuOY6tZcfjmDbOq/ts/8Sf++d/9+x3TfOLi5cHB/sMXL3zlK1+p7BlYzu95r2Kan/nVX/3NX//En/kf//Jf+yt/+bEnHv0bf/Ovr22t52l6/bXXLl+8OBkMlf/7HXKcMLMDsoZpxvrczDiSekrsHYFSqGX11kD4G41GQLZYMHqTCyPWFg/pGUe6ZImgT8ajVquVpulzz3+50D2q1aExAZdRBXqTgiAOiAI+EYhmtnZTFc92bt++/Z73fYBI/6FuWnnG+BVa00pWL0X1Cwspbe6gLxt6kqMO9ttyKjLSDuI+Exd6SFR0FhYTLsDp1AbMKFuG/CupPy2Vw4UYaGNeS4hmq92Si3wzgW+3257nbW9v8zojKUBMLTvlez6gEANtoMWryfdlwr/UHM4a61hzPZFs4KWBQbC80xMAufXwzoUrqMLjLC8KoBIYik2dwyKvojih1jKaSrbjmIY2HY3tWnuUy4CkjEjCUxSeqoyYrQ/eE4GzYs9VMliW15d4q0I1G+hGELlYr7bGRQMdUSEFIIHLJAoN126f2VEK/dIjj/zxP737nnd/cOPspc6V4Mn3fvjmGzd+/dd+7cXnXyiz0nNcFY0Iev8kmUQx6tOqrhZVGs5olSepAeq2kXEvEs6c6tBCT5jFyinSJ+KKSp0XoAPwMxAxVYHn8n3EUGlCsqKo7lYgf1fU8dBsKOv4juNZlsGpgkned67rU5zvGYa2dWYLJd1F0x5FUTY3N+dMp7qilOf5aDzOalVqqSvKPhIL+6aOfQEoI1qCJXduOQFYnRrE2W7GEXynEbcsxNWQj5UNLGJiI3JnfVQ6UXy6WBgUqVBeYQZLvX+2/WLkPfA81Pis81gyA6Yn1NoP6AMQCkjFLkOfR7UHomJThgZjCPLQbfoP8BbVRNkKrO3KiZD3JSZ46aB+LJ1QRtzTQ1pVkjENKfrj19etWzgQiytEwFU6X1ScB79YKQtGAZH0CA/IUUz+AJpB/C7CBSEVRb5dVkmO3DwpS8O1bD2MsrqQLHjK4huisKbDWQ//M0hX1lQ1Qy1Nis8zwspQ8wTnzEAdDVF5lYEN5qvqKy++sHXpMhB/WcIBIwfBsiQ534caE16OM5FQMh+I+5sVSssEkCt1kgq2PbfU9Hc+9eQ3fvjrv/rG69tbZ9qdIBxPPNf2HXtUFL/+679+cnJSKz5ibwOaNcvG48nLL78cx/Hrr7yimma73eZMgMXRJSRGIu95mWa7LgbQDwYD1r7kokgQBJLRS2QpdGxWM2a5YUgEvFjg4FYIJtPm5ubFixf7/T7TlfivUjaUkaYFuas2508z9JlXcGvjD1R62iDmsoxDlIL+IELz2vN4aWIvGFE1rg4H92IqUw2ff6/Up0foQGeMa95NY69mxV2nqEJogzJEiWgxtuc1y+TCobmubMVxfPny5Zdffplr+ZPhMKSEoTZAaXRIuMy6MOXqdEKS3RsbYZGDUMY/wPW83d3dsizffP11JoU3nyl+Zp0RSHoGF9WazqnNxIAHhhxaMi1hzsYTTzwxnU6fffbZoii4s8HcDymuLJf1TgdqTs3dne/brr0qMcSJCkf8/EEciHB5kgc8syc54GPfiaU358N17NFkGEdpVhaHx0cvvfLyvfso53/re9596dLFzd6mpqme7cZRWOblm2+++epLLwdB0Ov1DMM4Pj6+cuXKY489xmn20kznBAAOl2x3D/hcJhOAw4N92zCTOCTD1JI1rNCpo9hU+lE0xZqWJgWfRlT5qWcFryPdgPhGwz2ABh84EoYKKyvXsPLJ5Pz62je+//3/5O/8nS3XK6bjJI7fcenS5OTk2pld23UO7u31VXXrzO4Z34sq7R/8v/52GIb/3Z/601EU/i9///+zdf7c5cuXuWy8yhn7T3s0Ozz1A8h/2P/L9/025Wm84DCtmT2PTdOcTCbw6kZJXrdU5OQyAcDT8gQF0QqtJE0z+v3+e979dV/83LNpkqkOwTlruDMzBRE+KkCTO5aNvZ72+Yy0HeHKF0ZVXpw7e+bFr7xqY/gbaV5QoZBXBbyDlpMtAEWikCB0nHg6YxzUWycAVIcCkJZlKXj5StO8KjLLQCLEgm+SnjSLsB6ujq5mwN2Mgaoc6wCfNFaKkys52yOy93mz9H7q93yQilFT57T5cglxbF5rgtTOE3vZfm/KCsu/rnYAlr6DhLlL2QAoTyDtwgQmqjS8xipFQ3MlzyvLbnXWojRb767FSQjEBgOdxV4wN9xgp2VVViQ1aPBzEkXcehC31GpB9q1eAaQ3lk6btlEpKVc8EV+hWloYiEp10zGiPFHy4rXXrlut9je/95tns2IQZ+sXdpVJ+PC1px5/4umbr7/xiV/7ta+88GIaYaP0PGiJRhHmst8KVFWdhNMlvx153mwaNlzypkifrLVUtagEtHVBX1hRo3gqzXAM0tXEP1Wl1XYNCCGQrj5g25Zju6YFIKMBUq7teo7vBa7nODYgPYB4UK4uHXX4I46OjpqQV3HACmtBaE4K+LCM9VJmiEWSKBjym8vx0+QZrk66U8dPM/ybz6Mozeb/IhYvRhKp4MsQXODYKaZJ8VcxehR4/TKdiaJ8cUnAXQG0hcN3RcdzuBVLSAnSDULoyd6UxLVhUBD7INB3kKo+4r1ZeIh+cOOWr+XSD5Yr3akTmPJoAmdyj50pHUgCKGWlRgrX/puZFgHJyRcBgTxpB7HqFXEAKCihd1YV2/UIAgi/W16aWF/PNoG/LzUzrnSnNNtB62SUkij3nKDGTRaYCUM2SBX4HzhoVpaiOEQpNlQUIQCmVcsMM14zwJBGbjAOZ2ge29bxaDTun4SjSTELFaOhC9uEmjCKbhEpXpdSiFzNJDbaO6hfQlJZOHVKCcpL2VvrPnbtkSIMW7adhbPMUB++fMm2zcDz79248cxvfTKeTVuuV2T5LE4cndqXeb65vdMfDnXTVnRTN+1S0bIoyaJEg269kpdFDLA1WLPigqUx0DJlqZlmWRSWbR8fHwdB8Morr/Cs5hiLYylEWgmAy1LqR+YGW1tbEvoinwyMqQ3dT44UL1y48Oijj3Y6naaM3VInqtfrSXnQ2WwGUAd61pjkq6sSd/F86u9funQpSWCEzMXgmDoDslPB+BOwnLe3pZCohJQ0BbblRsJqOe1OB36fRPllIM0c4Lg48+V4lkyD5giPGh0A7lbXspuJpuvD4XB9fZ23HAiSBDBkXZJr5AO+5fXRXJVEJbhOFeTkNJ2A28llUTiOc+bMmaIobt++TQ61C0sev1CqFi2VOOAIu3jUyi/1y1daK1vb2xcvXsyybEAux6yTp7zNQ8qPknfNKU+o302j8cZfSVXVr/u6r3v55ZcngwGVyOhL0lhtXqZmzkMbbdlqtYEaIoWicxfPP3T1yrd8y7dcvnxxZ2c3zxLPDaoi63bX//E//EeffOa3zu6cCYIgDCGVw1zzl19+eThERXxZ2w4t6UYCwwoH9C1MA1FmQq2JUqnSPNNMg9W4hUJRHc00R3tzg+FpmCRzFg2htMmlkWQQPc8zLQsDr6wsF3l+MpupcfShpz78E//iR851Oups5pXFBx679vznP2ereqflx5Px+XZHsazJaNDyfL1SNjz3n/y9v7e1tfHn/pv/5pnPPvPsl774yNWH9o8P17u9lUv2u4H0/G6PU3Zo6s6bgFrBnzGOY7tOVpvTM8uy0Wg0HA5R9Wi1UXo1jMlkFsex0Kk01KJEaBgEQZqmelX6rc50Mrt9b8/x3JD4+UTKZkwsia1g9UCDKLVsy7D12t0TpTdNabfb+/v7Z8+e/cpLr6I7F3hpPiNpawH5QP2uAEENeGWSJ7JtW4E7wds6Gs50+HUcyrC6JYtXckRlu55vGN31xRHbWI2bi6EcjVkcydRUar7x8s4NN24t8qnD9vEApMCDDpOMlleT3tUeBd+pLXeXExipdLf004Sq+sobykxbmEVQTgit4bLUUKPE3yB8A3yWSpwsFB02Ns4M794HiSgJddPIigIleqIh8AXF3kLEMpwlLWHXJp7F2JuyzHUsHWANitW4IlwbApQlVEA4pdd100CNXCclIaoCkfx6HVMVhmH5XnDSP6lMc2v7bKRZhW9uXn1iNgj9The+R7PppSuP/NcXLr/05Rc+++lnXvjy82kSGarW9si4JokUrQosA5mJ+CJ1aEafmCYoIDZjPz67ZZECqQFyJ+nw1HobHAbYNmRVHToYCusHHhJjIuhalkNynLZhaEHQJnkCAf5hwS2oStp2Rl7UYRTN+icyHmAImVz2scAauq0aoM/VyoX8uBwPfKGXRCZMQpQsDf7VuP9BdXB559QaDQoQKV8x8S7N9+IXC6znPEcATgpGtxwaUuDOc4kZVKy9CmkIwH04cMc1q2MXKvuj70z6IaIzgMSAFiD8hd6NI38mKHPRkPR6F74WTzBg7cWPbM6oB0GAgPhnIWb6O9FZSMKfxzG9F38Sv5VuUUImEmNOkki+Dr+EeL6lUungEdGAqEyTDcIMuuwsLYrGRkalNd2yiqzQdDtwPdMY6QXN6kb5X1ww6qTwcCY0HWhQulpaBOBFEkLEpQqG6UjMDaXybGuYF0kGOqNr2Qf7+2kMp3l8BZlNLvaPmllBLdDB5w2nn/sSfBKBNCCtNwxdSu3yJL5wdvf8mZ3jUX89CPI8X2+3TENNwpnX7f6f/98fD6ezVhC4lh1NoLEYJnHbD0zT7NNOBjQ/CVqjAkSA9aUAWnzJqtJoWvJ6zTUhNlTyPI/l+QsOMeRBFHgxmh9Ui6ph9PTTSv70zc3N4+NjrsmVZSkTBsbwsYc2l9x4U+FVgxcOdg84NYADIpKqdNvb24qCzZVdYKXT7ZIaTxRFEsje9BNg20vp6CxMnclfDMuW70+nU5N02bhvyxAU+f5zTaTGTOFTzZQpvQ5ShVShZDWQu1AEzlnQarWiKMri2PY82VCSC5CIuYVkzfLBQfDy2Ku0LIo0OpkyoXJdt9PpDIfDZkVELohaYwNu3oGOUGMJm1/quhOydJRk+3Djxg02tKeHaAVoJBKLnQ3WhFlpzYM7tDxoqRU7h9g1/YwvXrx4cHDAF4v2LeSEuq7PE7DFw3H9LMsm0wPl7m1wMC5det/73vfN3/pNLMLb7x+nadpqpe1W6/7h/es3Xk+S+Pbt2xgbxGa+f/8+fuBwCPu21YPgmI06OV072t51HbRdU1Mff/zxzY0Ndg6K08RwkFHIDsDSeiKvCP9Y2zCndTTG25p8QhjOPNuxXLu0bSXDm6dpGk8m3/iupz/1i7/kV4oRR+c31rf94P7rr13othHrr/fu379fTsdxUQxn4VZvw/VbZ1prhmX/8N/9fz/9zif+9l//63/gY9/9/HNfeuzxx/MUVOpaYHQOsZOt4//rDx7xjQmIyjyKl7bNXTswrSNYO/GMky7gs2IaxzG5e7oRSTqyyatQ5inheqlpWqvVOTk+nGX52bPnn3vuC4Zp5agOi3lOX0HElJUKr6g4y6MkNqH8apL+oqiqra11jo8OHn7s8U6nPYY2UaO+LlYISv+gRYbKuucghOJinNT4f4tDVXVIY9H9iBqeJDgLiZuCblmlUYtiThWaxSm5tHJTa6kDgAJQDP8WXiEZMsoxX6cDdBz3FngZ5yVUf8D68GAIEDDcS5d1MehcOBiUvVqgbFryNd/KqCtTS8GcAFjWM4upWa6N5A0FdqJl0o+18kJNoZwAyjY11cy8Kk3HNlKzApzLIGcq8VVxFRWITxnUqMRvYRPUqsKGxB0AXUXOpxSMHhfDmJ4LHBGK2iiByq9H37fUFagcqirhlqkF6l15aHzj1vmHrnq7j0yGSW/zQlWafm9nPBhWedEK/DJNx7PRlWuPPvWhD/3Hf/sTn/mtT732yqueaweBF0dhUeZ+0GKtJXLXpW/KyoGqUmW5puqmbkCVSTUhowH9HQWWToDuiH2cJxdz3vS6ICjV/HifIjlO+FJz6G8YsIsusJwgrSoBFsnCMIIsU5Hfvw8XPD6ZPNg4qWhCLWQuqul6nEHARV5umbs2h3Hz0jP0dHVcPchxb66Gt5KRnjpuDcjDyaPW3+GXNOeseAXJ1gvNJP4308jwb/bzJaV/CgRgf0YJIicG1HsSXs+srUBYdyQXeLixPQjdPv6WcgKc1pJDxF3jwebftcYun/p8TSE4JMHFKAgS6HauSfJ/6jfEyBL6U0LKiCJGOrHQ7NGg/YqEG2FPRSJBZTQdkEGxSSsWMkXqABQmyLuV5+txpiguhiH4+kRQoTSJLLs5k2mAKaDeJUHlxMcFq52VrYmrQzwMIe/qeV5MmPi13nb/6FgpS9OySHuiYajcCPqbA5cnAwHPaBoLKAt3fujfOiqREAqADTjUS65evrTVWydqWry9sRFYUPtpt9tf+Oxnf/XjH28HbVPT8yzRDYCJxSg3sM/pun58fIxFvzbcRezzAMhWpYm1UpwTEm5nPHocx7CkpS6eLJfGMwqkaJlsbg9CdrAuGonEk8bpNAK0vbO+Vmnq4eHhdDY1bfvmrZun5w+revncgqQEQG5RErLJfeeNjY379++P+n03QCuT1whOG3w6+J+0i7dOTSTYAllKBknZULYs6Ha7N2/eZI41o7clNGiJ/8qapKskWikD2uS/lmV5//79IIBQz9bW1nvf+967d+/y4804XqYrjAc9tdJAV22ef8o6h1lv5Eqep3n+4osvBkEwoP6pnM/NC1HU6g3LsX5tBbUUFojEoI7d54G7bWmGvn94EIZhVuSGC7SAZVkzcphmAJJq4j2FKjZjhWWNpM4NYEMpMU78EYt6UBVc4WmrpMcPDvCJVQF/IEYmoZs/nbI/w+qKFU8xnjXHUUxjbb3z4Q9/+Mknn/Rc17QhMFAphevZZZVbjvmbn/qNsxfO93q9aIoaqt3pcK4IRni7jcnSvCj119NreVNaeeasJIOmqmWZvV6PrawhQUVZnMwem1311faXxERxHYfGBn0KcWLVCkEehzsaifyWeWFp6pn1ta/ORjvtINDVlq6H/cNiOum22mUcKeHULrLRNFnvre/2epMo3D860CutEwR3+ye/9h9+4aP/5R994uGHX7t5czad2hYbNnHkz1Zcyn/Co1miE1Ob/gXvISZL1OEvD1EmL3GInwLPbbRaLWTRKYxLh8MhL2ioy2SI0izLYHtBdAbzcjCaGIZTsIiZyjVi9lSi7I7oxdzJdCzTJk9usWqi2oRaT5nlZ3Z2wps3uW8pfgYQJqjWUUcYcyBN006rzdksC+rwBvrgJIBsBwu0sqtSiaIkz5kXLqI0WX7m0ds8Y9I2W1XVe/fuyZ2rCQUsUuHox+dHhmXD4bDfH3PfEuK8qw3GxUM25ZaONF1QCVut0C9dcdsSUKWll8y9bpaaco0NurlTS6ELrk+x3LPT8qEJx2bZOPX4yWlWQmsgL9JKi7O0vdYdjkYbm+vRbEJYIaqp4rwgNEFcWwIcxOEvR1NydqMEYDvwP0WYIvc7seLlZWUyckNDfRtqKAh2dQ3Qf4GJ0Ck1VXXNaXXCu/fSUoWp9UnfXTtfKc7xdKYWuecGuqYlWeq6frfdUeLZ6GD/Oz72USgUxZPB8XGWx5peAQyPcBJsX145oeHEfvKquru9pZEfAXIgRDKQ1tQMzXURxPOGywxdKSarNxIAflDV8UxKb5UMAvv5LI6KAkWM8Ri3pJ8LcjBtVtg62+2uCJcX01QueMntlfVFoXbImBBWJKPZaBDDfjUH4Kv/oATg1L4Th7VLI7PxnIXBxveNgrSvxMAlIel6odROfTwD8Yd2Pir2MY64gkkkxwI0UmrHX7zK0LBeFFzvZ5YQsgXmHnAeMA/369B7NV950ERlq5fmXOI7vOEtHZpSQvagWoj+EdJSJZg6AKxezE+miVqr/wrPLz6NiqaZpIjDtm9U+8jJgNhxSSUDBm0gjrCEKLA/ZNrgeEEeoeZdwvjN0JuSNStfFg7VKtYJ0Do1OFoTZYXFg0BCYI9uTujHs6nW6qiFEs/CHd+/c9KniLtUa58H2Y3iO0IWplH+5yWUJF/nIRdRjImGAdA4VmpNrUzI9ufndrbXWt7dPDVVpePa+3t3zp49f+nSpb/9N//GGkQ7qtl0EsdJp9X2fT+NgXLRTKzUBsH1Hn74YU6OGU3OWBeOOyV5l5hKYFCCMlub3LDi23xPImoBMgExIBaynaX785ZcDcHUkNwD+b2zs+M4zuHhIfgmSy5LTQDJUlZQPwck2kYgKIdimWXBuXObm5vj8XjU7yP+JtF9YE5qkaLlYnPzzRtpjMSyN0lvpmmeOXNmd3f3xo0bXGbglY4vMe+pjKwVMMcGGVemE9yUkAQMKRnE2i+WZR0fH+/u7n7jN37j7du3EWJGETsRztHkMpGgDsaqik5zw2smDFmWD4dDvi5xDGJrEASTyURCViQgisdDGIanGqhxxW4pq2GNlCakSloipGGo0FhiOiAqgkQ6bK+vn+qHINmZS7fzlap2nKrXzLqNyK0A+h9n6d1udzwex9OpYO3RVgHIU2040sj9dGctmE3DMs+9wLt8+fI7nn6qt9a5e/f25mbPtK0gMFot/7g/jJLkk7/1W9/woW847p94JgSFRqOR53lnzpxxXffNN99cItnLOKNgbokYxtwBwD8hDkmZpGVZ4/F4b28PIJNWKwUCUlzEU1o6C4MXv4IN8kjqjURk6sUeop9JAh8i09LJWMc2zW6n+4XPfsZUq8lw4PiOHfgbWxsztfQMVXUsJYt2N3vm8YkJDHoyPjrZ2tqMlHI8Hnct86d+7F9/7w98/zd//Ye+8vJLh/f3zl+6zDjRJr3qP+Ehi6PNBKAC7B7FUQguEQmYS9TT6dQ2LbJYEnEtKIeeBy1sOsmMk5HeyYaOru/+/v75c7uZYdzd29vc2rl9+7btumVGUk01gBaQV+p/wm8nK9IMSB4gcknUtkK9Vi2L3LGMMJr2emu37t6JktC0HOZX0luAVSm0/krwTWtTP7HsvXUDABlvvZTmlRKnSVrk4ApWakFzmddefk+2NJYnsMnj8n2/eW6lgVrLQyXFsiwJKGJ45NbWluMYm5ub7CRDrgukTPCAuOJBHEKLErclpq/8Gs2Oqyi4RAIZtYTBkGusfBN+nCtiq00AKVLHE5l7I3VbtWByNqRA0PkrwihJs6I0rChOWq3OmzffuPzQxftEnCDLnAWUOUnYCWQRXzpCYrPDX24uPLxYSRSbIcl/1Q9yd5BE6UkpHcw0gKUV2/vFf/8zf/D7f9DdvTIaZ47dvnVyuNk7r5ZanmbwljC0pMyqaahXVWd7U1GrD37jh1od5zPP/NaNN163Kj3wfdIFAgqOg3zTtCnUtzRN8byAyLjiEb6PmruFXy3L/3IfZCfyot5HkhQ8nKIqR9Q5Z2yC9E3nCSivOGGEAk5sSgJxrOZy8oXNSnShkOZBPU7kItkkEDbvNxPRJfBb02lxAXJG5e3VxKDJOWneGkwBqH8D/xix1Qn8d71ZUOgEqzHazNiiiOY79Y2KChswwWJEjMx7SdEQ3KFSMl5IDpdsEMNIyBqlhIAHv2C1tdGUmGgwAiE91IQANUf2fKmVt7AMROFeVIW5JUoJgLRYq/1rRCDJLF/5NJ2LWDD4MOqCSilfxQx8+oeeVVoOD59Kg95oYelKllfFNKwMezaeTfOq02qFwwnkOwnWNt9AUejXClXLFTWtlFhV4kpz4U8M/rGu6EWaRUk+SyrFLFTfBTmlUjt+65XDk9y23vl1X5dY7uT27TRLbdvxWuzijgimGdBAiC3L4LJdo9J7vd75C2dffvkrgHcWeIKlQ2oe1cosNR03ixMn8LVKCcejnTNbz33+2ddeeenbvuPb3/fud9+7t3dxa/vqpYf+7j/4ey+/+EIFf5BSV6HbxRRSquWrpm11rN6bb1zfOXfuoasPs3gWa79I0LCcNmjM6dpsMmJhE74ohmFMp9P9/f2yBHSHN0jeJzg0TMGxRjjIzF2exk214HmtmmJuSJ9Ru/Pe3h5WAnbfbA6/BqAFf1qsKMvtzqAFZRUS6vv+wcHBE088AZgs/dW07SyOmxVfmkBiPjfVmWTDgnvMsrcnX0YYemc6nW5ubg6Hw6P9fX4LdVXdgsok2DZka7tmDMt4TlbLZF2EW/O9Xo9Xz34fgpK+78tGqnRD47QBAZ9lN0m6slnBH9Ss2FmWwGJevHgRfvLUvmAuuG3b58+fl3kpv7koJ7PW/oohl5zvzYogy8/LhIFzEp4CPFqiKJpMJp4HJzhmostulUxgeDvnMGJ1gy9S3JEFS2nh3CzdkX2PyfUnZjmDNEmABDkZJamaQ5lavarybGdzffOxx66FSZgXycb62vHRwcZWz3Oc7d3tW7dvw3TGsVzP/twXPv/pT30aeLYQMQRgYIPB2trahQsXjo+P+/3+0ukSdfpa1lNg/2pXRcMEJsfxvUpT4ySBuAyNzLIsO50On895Z68++Nxy/YWRaf3RiGaOqCmiXEdYz7zmW/P3wADQtHY7GN3Y803d7wauVo1HJ0porBmGa+plkRmaVqZJ4DtxliZRuru1rthWGsdlnK5vb+7Pxv/in/zw+9//vh81/9V0PBkPhq3OmqJrRYIwWlWVOIW8oAHOVD25mmEZT6kHg2sbs3XhcYnmbz6nGQ2IwUkoSpN0UaMIEoeddhAEfjydJQngKIhuKV/l+eI6SON5BHY6HaC9aSzZtnt3/6BUYL4OEwCgrMXC0O22+X2iNBmMRrbraoZlapBXzdBw0nWNXEKLQif6HbYwXU3zLExi37E1qFuUFBQjPDo+PLr80NUiQ2ZC4xk+kEQfQC8LYmv0QzouoJjwm3vjRl7mhmUnaaHrRj73Zlw4sKSksaEBg6RUShjG0MgQBTas/ghzGUhMRlgyflqKaZY6KvLxwWDA/GnXdXu9Xrvd5p1iRJ09cCRIWtR13ePjY+w+5C1wKozt1M816+vMAQMva7yOyW/CqyK/ZGd7U246kjYNWBc52TfJXfy2LNYniW188MbneZ50w0yS5Pj4+MI5iLOlSe67HmahbmRFuX1m99PPv3LpypXnX7lx/+Do8c0t27ZbQSeNQ6/dyYqUK1x5npuiUI/vDEkxo88lUfwJqlSQHIUyFSWrBkl7sgJ+jSVDZDSajOM08Q0jikPHdkbD0ZndzaKoRqNJq7Pmai5UWVXl7/3N//kH/+QPucG6Eud+qzsMJ1Q7r3Kl1CwI0iIqLAtFhx5LWqRqkTprwdd98L2TcLS5s65W1f29uw9dfGg8RcECXgOGapmOZRu25eoGjJANU7Mt13Etx/Ysm2SJdMX1HQIoCdoS0DtxmOf58PZwCWrLa5dh2XxCNF1zTAF3lB2eZs4mAmgDhWwxZhZWiaawX11TFwG2yAoWAvEGRHN1zVkKbpthRvPL0IZSnPq4JD0uZZXGmHaL+t/MWBHfkj5jDpwQXwscAAS9XNEXADgSHyALLPEqdgktVUS97DPAxgCiwCzn28rE4yRzaT1lktDqt9fIWITj+NWFpplgieAA/YJSY619mcQTlyFP4QcsZG84heA/Feiw0VelHa5WSJ2C80TPhNJ//ZUUsDvpQRhyk+0CIhZDKSAEVGLPU80sKrVCs2D9lcOlgjMHXi9R9YfEKtyJC13LVDNXjLQqQ0owsqooZhHAQ77t6kama2FVnoThcZifKIpuG72z5yrTHIxHgJpRp6x5TppVujiOSZ5H1Izb7Xar1QrDkDDK98djwZEnpb7KtJ0E8lhcjyod28yi6N6tm5Zt/Md4VsSzxx970vfd//hLv/Cbv/ofo8kQWMOsKFHMFLornFWDDBCnl65eVRTlF37hF3i9c103DENQ/msil2VZrVZrbW0tCLxep8sFXH6ck/jNzc3Lly9zcYjDCJEwmCa0f+tYvxkjgi1AUQszbqURVZIJYi5T6FhxiPG1Uk50wZeAKpqy3CsTgLmeNGv71HV6rkXxexrU4Obdo+BAfDG7wOLbNKLiqL3mq82fv9gW4GC91WqNRiN5iX3a+ea7Dsn+lEVhN+Qgl4oKHH0yRmhex1PVu3fu2I7zyCOPsPo49A2a/YqaDit+AnF4+O34redPW1yZ5L+YXsIJkm3bQRAcHh5yJtD0MeCJ7PgwKOAVrZnA8DBYRUkxHLPpuMwvlNvq+vo6wQP6ssAm2yy6Dt8Wfv+dnZ3mh8o+TJVXpzZnxuOxVN1lqAZzJR3HGg6HHAJyfiUdDJbqF6zUcevmnTzPX3zhy7fu3Pzuj37k4asPHR0d2DBN09MobhEbu398EkcpwHhRCk5IiXoVJ/ytVoslXJdI5PMOABnn1X8iwgmVmaMYuLjRaKAoymg04gB0MB55PtzHZODyoMasfE8OVrIEo92AI4gozeD8Kwoo+6alm5i5LDCVprGjlpVpaYpmmJoF9Q1c5DTNFC2rIIBD9qMFWddleTpNW35QRtMinH31y18aRbMsjgxqL7gEoRG2lWCuIcQlJMP/FWCgJVHUJoaerSGm02mWpRvdNcuCEBDrCiRJwnQjBt5wqdLQQV1N0xRqCl2kqVigTJP23ULXWSAYBVqx7hVKrqg5m79CdYSEGuWnk7Eq7cTY6XOY+2CXg3C1JqT9aVJVSRp1u93BdLLoqckVCnKKZEwGK8kYGu0Vb6PbUkEjhrxsKOMtgS6DWVTDTGU1AHibZ5vTFWYT8ZLCC8JsNssysbixEC060uhnz/fE5VDkAR/UBP3LpgQLTzWXZf4+xzDfFYsSW6/wxO/1evKZTdWywPNPDUxZBFY2i9jHAL5mVGnGCq9UpgEjtslsaljmcJZ0e+umFxweHl+6+NALL7ywubk56g9MzQToWsasEj+tC4AmzxehESyiTK6wsp3FArIa8i28awsXaF23zMksAqfMDmy3PZzOnnn2s5/+wueuvfOpzZ2LSnujmCaKoXS9TqG4syJNkxI8SrI4h8SirhpgVRmKaitJrFX5t3znt/3IP/rhTst7xzufHg9HV68+pOmmbcEUzXNd5ufphhFsbhKjCdsc+kG08xVleTw4gplYXsRZmsVJnKV5AkU1oApVymp0zdItxCkkWgQx20bcuGDpsAgx5ZpmAQvTZXVKFLJFrZvuE26cHeJPjcKXxlgzoX3QM1e/TA11XobCribJCwkAAvTG6Kd7zSfNQyjRTiUjBQBRCBvOL4LLpLD0rSdJrRqEShm18ZuDZrEDxZVUMRwf1HqbMDZ3JSO3DHNJD3T1PMrZyAnA0kmkRAUqatK6fOFEw5O2cUJEeoCSHhfMmo9DuFMlLB0utVGhtoH1NifTRziQ60ZZqUDBuF5llE6UarME/gPEyQfciHKAHGm5kuiGreuxWto4hWValXZRdnsbZVnMkmQSh0lR5bqeGqbWNobj+ML2mbXdnf1JeOPu7eF0opr23OZz5RAwNVo7OE4i18npQ1cvjibDfh8UzEwvMgi0lSa1mwHQLItSyS1DL9PkcO+Opqp7b7zxzCd+Pcnzi5cuOa2WoZRrrdbg+KRSTUjLgn1faQbiD7iHxtmFCxe+8vJLP/iDP3jjxo0vfelLTP5jnUQZnSRxPBmPyb1Iyacz1dSlUqRSVa1O5+rVq1EU3blzh9dBXspbrRb07CMkNpwqMMGfi2o+NRC557C2tuZ5Hq/FkxkKwFx/9X2fN2Bm3DbnhRxd4/F4tcNQEKpHyoY2K8GsGMwnudWCRjWKo4S3WYWaKFVl0KY1D9FYdhvmT9Tt5Zw7R9TJYXdO3+Hk5IQbHTJ2HPX781EOq1kB7OEW8+pMWYIoyCmPsJgSLY+IvzhRRWE6ThAEslwtd6mm7N3SlGx2nJtLCvivhELhIHV9fX17e3s2m8k3lN1S/ufg+GhBhEfCrpZIe/KvzfWk+RL6yPVe7+LFi88//zxOHWDupMyziOMSv0J2fmq5VV5VAhekjtVEhSFV8h2kVNzmZq/f70+nSLC5vcslQ/ZVmG8t4vxoVaEEQRDD3TZRyuKLz3621fJ3tnpxFGZ52tvYrFTdtv1S0dbXtgZVv9Vql1C1JRn1BHjo3d3dixcvrmJeGfoVTmGZVH/uvBhZlHm/3//EJ37NsqyD4yPQJChwkalFM6OQbavVGlW31T4pBhg2pH1BcCBKACjdAspFUR1o0RjMCoBZKkpJMFE0dKh3MMBDyqADAqxqUFSAtndiFrmjqZM08TTl4O7dSZnbup6qKmoKrdjWOd2twVaqlqen7y+/f9G/bOtTpCxiCw5Dsyy1NN1xLK6/JFHEiyE3cGpap1EVQL5hUVLUvCzG0wnLhiqQO6RqIgr8VJ8qIbSfQ98cCFKS0cX8Z+kWcNRoWIF9LPqXohiMKWboimaURYIuPB1hGO7s7IyvT+tmIjrcBPlGlYrdPHl68tIa56Ka/tZnRt4n4g8qLJYpao6Ao9eEbfKgLN/+qeY7zCKQxi9zQRvYTWIJlYoIYpVbEe5stnBPPZbwb80KbrPyKqILKqqyX43kX0kI01LhQFGUu7fvLEEW+bN43glLwTSFGAPtNbpWGZqWFUBgm66WxtnwZGBYzv4bN85ffXQwi2zbvnPnzuZ6J4vGTYnmsiHyQcgLdkWqYY0iM0IFlIiILISIYq74aZQlQMeJHL6RHNBwg1V5WvhBy3Zbb94++OILL3zmi59/+frRn/7zf8htbVSDaYGeo5bMRnkVlZW20YJaF6BkRVrCUjwnRf88TWaB5+VZZqy1udP4rd/5nVkYGrqNxJapj6zkD15DeevVV+FjkmZpnvEtmoww3KNYrIKgvqHpjutZrY5m6HmawTwPVVrkyWxjhc6CKWQ6TwX2LEfbBBmRsW7zlhEyAidTv2Bpbjwosl/6iFOfudRDmDcZakjM0vusfq4Yt6VisNwnqe+zwCcxrIUMKPksCDFQJoeyAA3DJOaVfmzYDU9eelwjlX/wjZqmvM3v0/xhgntaa//L/Invmzq+51JGhZfT91i9Tk2CmqyulegYAGHTPB2UDWs6cDTN/xMAITb5Wvm2FdVl0XVrpgFqBfcuklkw4V9NzU1NLXQlJ+FQaJJgwVHRmzVViLWraorUk5Y9fG3G9ysaq6OFMLI2VL3IFd1Wy7wwojCyDV21rFzX0qKIoRFRTIry3Nmd9s52VJZ3Dw8Oh4NSMTzPt1wPs4WzkMVojGlbUkkmCALbttvtNjHPWMC7zDN8WU1wjyzLULM4LPPYBVu4KvJUUSvPtB++ei1OkkLVkijK0+zo/l5vfW04mqK2U2ZAqOJc0RaoKsMxoMn/x4/8yP/yD/7BaDR6/vnnd3Z2FEU5PDyUECBhXADZ3EJznG4btXlG6nOhhTXUsQJS7MjV95MkUcg4Zh5Y125ZSBRricyljlZ3vev7EFpxHOfChQvT6ZSXG04nmnKiHACxRa6M9qRgX9PCvVk5CGdwrt3Y2JhMsG3jESpNTafTpQSARywcKxehShwKsxOTDLjlLgV32Dzf2tqScBeGoyyVkWC4maL5K3JCCVvn6UorB3v9iMfr81Ysjnzo6NGFGPT7ogFCHQ8prxYnCwZe8oUSFbMEncfjxOTGnk0BKw9F+ZylBMxfW2teQTnNDbq+UjRJ9ijsVkueCq4PictEbpqe550/f/769evI5eLYIGUq8XEMEpPjh0rgS1+mLEtWEGp+H3EC+YPk2aZBo2naY49du3fv3pzlTDw2VHwJEiDWR5nVVIqpmVmWdTutb/ymr/+B7/3Duqls72zFWfzwtUeI6VeOJtOgtfb6jTcHg+HJcR+QQprdgABl2a1bt371V381iqK7d+8urWN86zmChC30f+W2QboiWSYAdYzqYRSTBBNyzvagmI8f9zyf0VMoICJ/xymSBE0pJ0qxvYIFDrOMSD60YuRFkZCHj0XyC5ho2AsgQ4dud6l0LGs2HVu+27LsEMuRaRnmNI5VE34XYi+g0AUFFmpP/b4e9fBe+CdzKzkB4EWD/gbh9sFg0G5DHg1MHRp+AgBpoAkgTAwTBHxC7CtJptNpWZItNEleWpBnEJsUtTQhAl9B/4168rqGtKDW6uZvVVSVQUjYXK20Is8KnTKAyhIDoyK0EPoSvV5Pf/PNBGbA5kICT1U92WM0DBRcRij9vlURnYuGYl9VCk1TE9Y/tQIsPjRLmjBo0Rk4Tb+1GaY3c4CyxK4q8TPSBAAqNAQZlYkrh92CXfa2Dx66UlJCTiWOMeSolvMoL8T7L0Vj4/F4NTgjkMIcaiJhRTKG4T2IuxytVst13SSeGaaJ1AKSIlpRlieDkWaYsyja399/1/s/+JnPfEYt8gs7Wx2vd6o7Hlc9ebkuSgw/AYeT8mXC0xUziFUFxfknXRAwYrOiMgxCeRAwLElaXScttS88/8ov/sonR1G0caZ3e2/gbwzWtjedjbZiOXaawgJct6p4wpGPRS7VKK/gDGiWqSqmoYXTo6++du3atZdefOFkf7/T6QxGwxwMXeHPw64OeZ4z10ucf001HYFE1U0DTEhYnlWmZqqGaumWoit5kvPj/H8oKKAMXJq6DYwLklyOWoUZknyEol1AoVS4NEHygS/h0u0co78AATrFn0oWqU9NIKVM7dL4eQA0jlfjeSq7SqZdOoyUEFrsAEC7sbD4EsV5CvelIRdnfdI4jJy+xF8JtDf/rrQ+c5pY3zYq7rTaL8gV8T3sEaQaIWSeGre6IRKPZmPlQfJby+/cOCy0gU85UL6vhwOboInnEZZxOZdSgRpnCy8BjuQopFLjCDJPyHxQ/2MIUKkruaUpaV5aVJ7JlDRT9Vwl5QSMLBImIomlUtELaliXukHyITBdzzUt11RHN6AlVJUZbWmxosUqBCYLGJSpG5cuDJP09r39+8cnhap77Y7XbummlSaifNNcrWRhtWQdCYI4t9vtjY3tu3u32HcDRbuS7BJLZNbzeklRGrZuG0auZEqeDY6P7hq6FwS263WC1saG+9IrX50Mhpblktg0Ki7EMDLYCT3PS9cLkm7+H37x4//D//gX/tbf+lumaV6/fn1za4frNKjcQNzaMkxbU6toPOL+OMcoJW0YrEqJUn2SQJme4B+2bc8mk7mjLdvc2mIhiDnAInx8s1I7PD4ensDby+10ur31l15+qYhjxG1FQ92luaXTO8jEQFoQcJGSW71MuiV2re6SMTgbzbJAZ5ZlElgiUSXSB2Rra0tWhpoQFzYT4AC3OeAZS8A5zOHhITuQc8GpKTAq0wYJOJHvxqs8JyRNE2V+Id/n37ixsfHEE08Mh8PJZGJSsCJouGR1K8BLIJ1z1JsvyOo/UL0HahGc+CmEKua450ELYpKjclNPQ66Q4N9xmiy8M+tvq2oymy5cRHD3KcbJM6UsJ7PpNJyFcVTkuQJsSV3718HylwlMs3Oy2B4kuUCikTS+E92yjpDcLKkJWlQFMyhwNgrUwnAt0jRptBc4HxA0BlWbjcZr3fZGb921AZUt82xjrVuU5e033jx/8XJmVEDnGs6bN26maX75wuWbr7/GeSLIjr6fpumtW7f6JyfSgn6eHdF3HinNmGB+vUzHOn/+/Lve/XV7e3tsRjObjMtWa7M2V2p6ZTRTNbna8C1PCoZXidyMvkRGvAhcdxaDJ0FnyKyD0ZRLsWXUAYAnRAYCSCHtDkC0EJVJKRXftk6mk5bvhnmqZYZrWuFslpelS2dffhkRrTZAJr/fh2iDzytzVCyvJy+uLXHiDHIiHw6HFPSLFiVWthizgKntnBVAzcnz7t27D3RQ/eua+x3yJQIXFTDy0TUdew9gnJj4tM1QfZ0KteK1HONJjKJABRhGqaDtOo3T9hrwSEUUgzqBPBazmFWAyA8IDWQMNnxrTzkZ0Ju8lbI+vcn8nGRZEcdpt0PThLIC6gPU4na/HX17qfzfNEZsdtLyPJ9MJsy/5OKILDOtdq5++8u6CL/m+5L9ciqLQK7zsizSdBZvljnYB0DoxjSmGH953g5YAxQbCqJz5HgMU8hR8NZH42mu27brDUbj8XCysb55+8brWZKu+y3LMB/UUoHjLPgA82omObRizLL2CUm3nNIbQYEAlTYokRZlBSKtYozG0f3j+y+8evPO4bQ01Gya/6sf/+n/x5/qfv3Zi0qYZP2JabuK5SqDvuqjgwrxbpZMLUqlSAkdnWq2dffmrVtvXN/e3FprdT7/6c85nqfaVlFzeOSJpSaXUGtEy4s1ggjgQLwSjm/LolRBfE/iUilM3VI0+j/ukAMeCPtbngTE+CzpvdA8oAoxRF8oOVHrjsicG7B6nArXaQb6S09r0OjfKgE4terf+CvLg86H0G87vI0cDHKGwbByvy7u41bwwrg3rFERh4a2AoFKkQ8gY6DPRGzOWT7PcCGNLzCXzW+z+r3F/Ro+zNA00QAQmnG1/NbbREQtbUhyQqZz8Rj+K+EmGyVJSjPQ4uREuMxhJDFfZCkPRPZH5N/5d+A2U6UYQkCmKtGpRp3FwNNzeF2WeWHjpVlZVEmiuXCx1ccziCgpAj7FqRQl3Vy2z+C6AlaAmmparlTbWztlmsym03GSFqpuu57baju2vTcY3j46vHc0jBXFaXWdoFWBEjQX6l6U6RU/n4slWZYNh0PibGr37t1zHFucFtYcANCtUoFjKkDsRwqlmgRnmk3HHd/rHxycPbMT58Wbr7/W3dwKHDtBKZcFqKmMnWWaWlnA8+rAKBtGEARf+MIXOp3OX/2rf/Wf/bN/trW1xWzgmA4ZsOZlHnQ6UD6tRdYgmqXr0+mUS/IKgfsZso/ZYppea+52LvVhgF8iYRyJrhGII1UJut0ohVz0zs7OQw89dPPmzXEcq4ahNCA3S3D/qiiyNM2YxiUPgied4iRFL7IJd3R0dMTfDbsyB5R1QiI3Bqnv2XS6lZFo80/8TIYtWRZQBMfHx8wX5MelkkYQoMQo3211oeEEY2lO8emStvPdbtc0zel0Ohftpma0xDvxFjidoRvTKMiJBIN9CZple37/yQQkUb4u/X6fsRAbGxuM0126lIg86nbWUsW9aQS2EBlQM0FG4XwPl4v6PKqqHh0doSoDwWpDarxW3DwRSte0J0iSd4PbQHAISxiVLK6wSxXKup9e+n4LqG6y1BWhAL9nY5PgKhH9XuxlvfW1k5OjV156ybXMCxcvtTx3FkePPnwtLYqf/7mf29g5e+Hyw5PhxNStk5OB77Vm2RCOWrUfaquFT9y7d4+vOoYTAe55TmVUIOAxINwM6VtNx8PNzU3btl999dVwPG6trbmtVqfT4VStGe6sFn2b0CkG6UHAPoryhhl5WZZIkjVKDIBgBuSfhRkQlubkbUXBIMkUakVeaECIkC0KuZHQhlzaquooCmiAaRTmENpKs8JyEbbOlRl5nxKj5W3Feb/j40ErrdiYCNMnWEb07XR0KohcpKoF4SFndO042GoahaLnWRYnx4NS0Uxdq3AyqWvTMP4D+j8HPBfeTvCiURAH0Xiiel1dXycMT50JqFlRURJfFkamVpWhKUmGJgxfPjC5x5i8UghoPouhI0l0UrLdlb2OBxYdAQoAGkPEuboBOncSS4zt22EQNM/z0h2priMje6bfsK8CJO1rrJrMAVZHw1tnAkIOuBGBScfx1UIhQd3EuiSvO/9TOrUvfbROopCrzUbeE3nNz7KMkahkHkeFUURtWpplmqGHCTwmu531aVI888wz3/Vd33Vw73b/5KTn257tTJOEbT6XDolXRDRIP23BwEQnC1f6MhQy4yW0UMwl10g6M7Mdx295ewfD3/jkZ7/w3IvTRDE1e+9ocvP+Vwzv//fqa9cff/TqzubWxtp6dyOrwqQYjytk9YDxQMkjjqMkzLLs3t6dMi/icJqn2cneQbfdMRQ18FuJgShIZtGMaZRA4oUOPMn0jCcT9Ex0y7QYCEscVyhdETeVQNoqqpOYKzAvoziCT0njUjKdcv44w/nfYrSeBhvBneZ1b46WpdvTgvvlO6sFF4pUH8hxOjVyNtiml3QxOYAnVjiFsAi9KV0n6VLai+QLG5AeRpJhyvHrxejg9xAFf5HNNGjRTDTi7t68IEFQItLiXM6wrQbEYuHHPECer4kbbt5ygCbaG4KBIMCRfOLY4QsbBbnZicdrnQdS4sTfIanbOLPU/sAKBuFP6qCT9ieiu7LKDcWotDLNcr2A7Tbgq2nqemq73VLvH+rcHqdQgIVHRWSIfmCVlhjwVVXGeR4rVXR05BimYdr2ulsZWlaVB5Pp6OBwHMfDBB4DluOZrluBfg0ED0jSNUdCJDn19KYKo+C8lmUJbmI8y4EgTjUNEKCSULk68HF4SZqkJsTTjSxLVFv3XTscKdPhcDQIiyzN0vTM9o7TbnPvvqxhKkgC8lxD77swqgqURF3f29sLR6Nf+qVf2tjY+N7v/d5bt279yq/8iqw/8dymuA8IwzxFTMmM5IoMXO7evcuYe3SNqOST5XlGcKBJvIJxpxGcnCYLq6gKIDfogQOJzssrF6Sz2awe+lrTOKzk9+HH5S2t0OLx+hP5f7aBymur1dra2jo8PIQIDzN9a3AIK9idOmPn379ZMic+gGwO8HW0bXttbe3N69fnr6q/mCw7Sbkx2Vto6mczMKMpAcQhVLsNkW+21BmPx4PBYH19PQgCJt1KZptshvR6veaby6XqQbrapNMMjiM7PLBQ5sHBAWOglxKGgsWs6gpH85ZD0iXmt1ir6t23SapjsgdUn8tybW2NBxgvOLITsqQCdKrMaDbLT1Ulav7eRiRaTiYTFt1SyFGGLLd0k2gn/FOrAoDaum2HpcfSjUcfuWrq2i9//JcGg5M0i23X2ts/fOLJd7itzse+548cDkZvvvmm5waJEp2Q2o/hOL7vF0XB3EEyFHPnkLAmD0RFDb5GXGBxEPImlnX16tU79257nifZzCyiIvOupY6rXAyb14Wz007QQtc+hiAP8+ybMCrSiBOLhq1bGir13IymBV7RAQfQIUHCwE/U4cgHEc/I83XDiKIQ3dayGhyfgKiIbE6ACak6QHw+NGoIh/T7fNBKO78vf2ZzJHDoqaq0wJJHKfcEZMvOsZDDiAmuYqKxcsNgMKDCAKJArnUCG2kLcRo5MnXdQJyNgAb+pXB/lSu/SEXov5QXNEDn7AWBlVYzIcIWhVNUqRrEHur81zKg9Qt5CeKaHaLCuZj4KQcnQnwnL1Czl/NuCQJEY6l6+zlAk+8nP4vDQQZ5sgPAWwdYq9HVgz5dZrPMX199Q0rJ5o7pchFeLc3Kl+TZPCFv3mFrF16TOZMJggC8rBIimkwJC+NIc1ppVgxmo6C9cXL3wLKsrzz/wnve9XVf+Mwzj10+3+RUCI+8+kKterrLYhlybnpmjbUWOaA8i3LhxbAp9GQWvfzK65/9/JdvD0ooS5l6odhBx/6N33j2uc9/7gPvfffOemfU73vwn9AN00EXzDJN20Isp6EeXVXVzs4WBjb1x8q0aHut3d2zmmOFepnVkmK8xKdZoWSkuckhar3Z8cldW9+gM88ceMRRDO00URiq5B4i7pRIF08NxE9NC+mh05LI2g2GC4DilPEbKqe/55Ks54NGWvPOqaOSMvrT/so9HH55fYc6AITu4BK4aGZRciO/Pb2OtNu4MSC7ADVlVqPCPWSciMk/HxcUBhvUP6gTAF62ESJC+Ikfa5xorPimDm/qSiu1Sq+0Slf4PvgE9a18BPV4Q0ddECReoFMgLVYgUHB0Q0KVVKgcoP2JvzY0a4XGEX1ZoSPOq49Qwsd3asozcYpSu9AtdHjF2VOUIiU5VCox8NJErYRSzcs4heCxqWRhlOZKUpp2oNu1xzBKXTqkG0Q3hh+FWrOmATdEomhxUUR5oQHjiW4y5Rh6mGaTOEwrxfD8jV6rMuwMzbgS3UHIEAkDM/GTa0M1YP1NsyIOgG3bnU4H8tLR1PcdoEeq1IL2M20zmuLYjqEUeYSWY1UWWRxpLTvw/NBxhtNZd92Po+TW3bvvfM9746y8ffdee703jWPa2KH7QamECLzGk4miaxcuX9JM4/Dw8H//0R999/ve95GPfOQv/IW/cHx8fO/u3f39/clkwkV9yAJQ57zVageBTzj2pKqUPM/G44llmVAqzjOozuUoyhsEh1XQchAYQYaycLFELlJzghUldomB2lgUw5Usy0EkyJJQwY5Lmk9lxg1ErITzicZkduaY0i4F0DTXF3l+UbtQVRIaD7nvw5St9pqFBJCcw80Jz5W/pUf4v43KENWnc4w0eg83CNp+a2tz+2j/cDqbQbVN1zkixvws6NyrEFvgpgy31phARZ1ezFBNNxceqclRRZorhmbq5u65XbVS7+7dff216xWArZgHCM9oPkjmDKkyzykBSxvtKrSpqgrHcVjrsNVqMTtlOByyCDpDraSPAVWvRfIjNUb5g2orImrn1k2VpnfmaiLU7XY1Tdvf328HIGe7xCIA5m3xmWKhfEABIk8olqXVZQ6OZN0z1tfWFR22gKgwVUrhOFYYQoeOI+mIeJ+sQ9XMH0Tgoip6UT33hc/maZIX5S/9/M/t7++1Ak8HeT18/rnnVdP61m/99v54Nh0Otja6L7+8h4VQQ88wLXKlKC3XuXjhIqiclMA0siaRIIVTJNJ5kkcpwFccfVZVdfXhq+vr6z/10z/JmcxkMPDa7fPnz7O640JVu7nLsKAHrWBceucSsuN4uj5CbQOuQoaqFritIEGDxUG3ACBQtKysAssmr3g6rfwp5BVpsE8Z1Sd5urGzwDhNDN+7P55VbdfwvGEcqooyi5MOsgadZY2MijxBC65oMdZy4X98nLqRrwBaxK536lMXXyUx4ni+cPUyDPxQPldQVkWuorJyD1W+dF0PAs8ygOq2LOTAaZqRjoxeVUqaQd/G78DENM9y2xJJDjZMgp0hICd5Y9Qs2J+ebGh45+LYvw4TeHHRiXXHnJcyL4HjKCo1K3L4M+h6HMWe4xqaXuAng/AmxiaxK7EwYrkVsv0sCM/mNA+M3FfkvKlUR5aWFGnIIhVderrgb19qqSqTLLd4KaCDE6o4jtMkh+HEcuEAjfnml2mAo07/+rwOk67SYiW1ETjOn6yqum2SAgrpTwnAtFYC1UsdLMiqgoghUOoqfCG4hwI0xrxnCe3WLEs4lIJAUxJ5nkM4amI3IRxRk6xyXSOHxnGkWClSsjTfv3/v4u72tWsP792/bzveJBmditGSyTyuBCHl6roAzThNlTIuC1kZTVv+X1aVaamHk/TGrTuf+Mznbh8krqNUpjeK00JV0rLwXPfMzub2xrZvG1q76HUAi42SHDAd6PYbugkfX6q4qRXER6owiSeTybd/67dhue5t3Lh3x15vU+kYGgHNDuTpxDNA1FiPf8FmS6e8Qpmjs+brfENt+4Hl9oUR+IDRudoLEs+n2XZq4nrqpzxwHJ7WcF5Z0hZwaKd+N2MtAKZz8Xc+GDlUaawaR/xp0TRhHV9GZ9Y8gfqTlNIxkBrMZx0NbdLWYbpLA3vD0B8N1AqtOuX/CjK8yAkolmN7gxlWGoPbRcmbmF78GzIqDzfnNA+TWTyjVWbhoGVIZN4URiBfFAVUKtXKZwJVRgsoiGi1+sf8Vq0MdHZLjE+srlRLQ1UNgTOCGw0RDEIZWl4LzdLfvOv6rb2DQ8t2PcseTme256IsZGKDZMIW1msShMw1TbV9k7Q1DVVNizyMwklcTCs9aHdLVYmpRI5PR9CB04lVg7thoumP8YEFySTDYk01UMpV4xRiIIZpZnEGPJwOBBJ+MAPKo1mpVYahFXmKYEZXNntrk+EABVRF3b1waRpn27sXhpP4safe4QefBq9Es6JJ5LfahmWeHJ0o5GQZhlPDc7I8Pe4fbW5vdNc7h/sHzz3/3Je+/MVr165dOHf+2sOPvPMdT+mKCpUD1FTK/uAoz9MsK8LZBJwKziaqwvdcEvHXTEOlTqBnWQ4su5O0WcmWcpDzRaEp8V4UiqlnCpToijKrSvV7vvejDPPKUgqcc2jhRWESJ2GaoFVCPNICzZUKzm9lhdgsh7iyBsZzXkHNAEkBzQutKjJEMttnzoRJYrpuFobAmXC5SDYQZI0f+7CotCz5y1Z5gRdCqI/2YupcATahG9E0bV/otf11S/eVMnFsPwXAHTEV1UslohbjsCpznqUkYEuVVIxQbDc0E+m5ZBWK5F1XCl3x28FsONnc2dlc37x9/x4Yma0WDIYM1dRMOnNlXuUIdLnDDtJIARnYxurRbMo3FyaA78vSct1bb94OgmA6Gn3wwx9+4/Ub48Hg1GVvvrrJ88P/aqgiNNY+tDVq6dSFmJ7j2iAIvvM7v/Pll1/+4he/6DhOEseO7XIcJqmE/J5SbbYpJ0pGo9Cus0wHapaGTZUmzCweAzIx4LEBQGGaXn3oyt27dyXZo9VqTSZjVlVqVtY5oBmNj1stf3QSOZY1Oh6dXd8s8vSRq49cv/HGLEl1Q/lj3/993/ad36nmoV7FWpXC2iuJTduM02S9uza5f1Cp+jd9y7ehnIwpbGgkRQ/jmyQuisp1/L29vc3eZpRE9+/fNwzjzp07zz333Ld/x3c8/8IL0NjW9eHxse23PDdwbKGnLj0WCJWnQ7iDAiOBc+KxRnhZzIZK1U078NtZWqVprOqVpdsKPHRIEEg3QVKlOG+cJJquBqYemL6WZwWEQXIFygpFkSk+FLq1CJOyhPGzpqeVklT6KJ5Vbbtst4ZxeutkmKpKq7vWanWUAlRYy7AwIEsySyLoSUkDgtP02th+YZNr3NZlvsa4ZbNUsXvx8xAPiudT0E14CPaoATES/yG/TyrPS+sfiPaUKuxHCcSsQM6FMuI8LXIswGUeQ54Yer6qrvhBcPPV19HYwTmpHLKppl6NrRpmAj/dCrILwpkV8STqo3kKOpVpTGGRju8Wx3HLDyh0qvFswD6rRV6meamaRqbqaVa4nq7D+r1c73Q9yxyGoUr9X+xKnGRoBFRT9Ukchlnit1sFOBx6kmemYaKruZJQUQUabr2MgErCyDRgakZsb+Rl9JXB/BWtP4bCs3EVL2Eoq8yzLyxx9UXClNFUE3LkFTnQGlCLLSrHsXXDGo4n73znO8aTWUli3HmB+gKpw566nJAE0cofCBjOo5srqeIWUK6GuLmswFZqQXgVltKohSEp/0K9lEpzYAkSOItvGVnAUYjEHahwXchsB51YIDwV7Mjdi+dzaG9kGjknlJWuO8Folh4cjbJCnU1m3U673x8GrvOVl1/88Nd/4Ob111utVj4Y9XrdaHSiKGCdtYLWYDR2LJwr0zTDKAWjkMavYcOKbpbETuAfDsO8qizbyAH4RztOMHQyJehAT3MYTrfW2rMoDTP1pdvHr98fHAAOrXgt82gSrrU9TTOiJC5yzTL90XgwHg39dmvv/n3TArQwy/PZeAyy3Fq3qMrBaOT63mw229zeev83fIPT7Uwmk1vHh72zu9M4Qp+y7rBzlXkeZ7PFa11lpz8Ry3IFZjPXL67ovPM9dMxEIC6hYm9doWfc+upBqMb58+WrRN9eLvL149Ljb74MgbJTYiqLonqtLMIGtfmC3j/valDlKbOFDkZ9KhZC+sYKZ+xsrJ22cYruTxPAyiVzg2wmVx5/IBmiTGMEmipwLpTjojBdqVU0myHMJ+IF577Ig6FqZqEzRREUTmHN25IZmziPwOwqoplA2g7NDG8pI5+H74p2sdNZSgD4CQxhPOWaMViRxpXeSAAKctGSj5OBGVOIwSZvPh+PC2gR/PEQrlLT19C0QjPa3dZ4lhLMBO1C+F0XJVaTGpNUImei7hZdskTV0grrAZKcskxULTcstVLCjFVH0HhAG41yD6qImvVaNR/N7Pwns6+leh7ND/qdpA7G46/Ic9SgCvAkLdJHz+IQApFIHpKg3U2L8tLlK+94+l0XLj306vU31jc2Pb+4u3dfKau1zc0oSU4ODlq9dVCX0mQ4GR/1T2zD1E3wAcLp9Pprr3/1lVd/+Rf+g0Ij2/a8Xq/X6bR2zmwahuZ5XrvdXlvrdDod3/e5SNwUgZEwet92sDCREFgaJ0mWpnGUl1DS4O4NuSmTNWlR5koZ5xlX/pZatI5tqSqbufjVuvwIYzaNGrX7Wt1vUcS9ObRarQB2OdRguXbtkYRYy8PhkKkXskchhX2qEnGV/JP8q+P7q8gWtUKHKMtyWAuf9HmOzMh70rEwT5niB6U0yrsJzi7BgtysYLybYqNSBS8WVu3NUhKjgqGFAR45SUK5vn9m5+z+/n4aZ8BEIQdHJsPQalhTlxj5i9HSPNxvVtfkRDYch/VkuDtr2Ha327106dJ1dk2v4T0yMl5KJObEjIwM+GQvscZEoil42iFUL/L86PDw+OgomkywIpVlkXLpuYE+4r5N3QFYSGMYFNjcEWS40PBtaGqPvuOpdwz7gy88++z8m5jm3J1tMQwhEYZ0rRWcP3MmcHu+Y/ueNz6JD+7ulVGqlbnjatFs8tLzX9o+f/7alUvvfve7fviH/2lnrZ3G2azfN7a2bM+7efvWx3/ll/vHJxRRoYeGbDZNtQpNtpPD4ysPP7q/v7+7u3v16lXHcZ544okLFy6oqvraa6+xGr3f6YRhuLGxwW3SBx2im8rMLS45U1OeK466jmwqz1mKkZXoRRuWddjQLlCUzNAzRc3KipzOBe9DU1TXQrkzrQqY+1hmbugJdPFLrduqnKo0zVlVjTKABTXLNCyn7qMhJaWSlkahGz5rIcD/7VQyGuVS2fTmHO+tAMDz/GHhmbyEN7Ar9MML1KFl4YyDXv7qjPABDUxVlZCMAmgbA2WSRwcb7AhdGvGBuE/oU3ycDsNUfTaLTGjFpCZFdZBGqeVQAasj/RbeaPj8gCSAhQDUTk1RHNtSpjOqZNOeRtwDisPEdceXZqooFYpxqQhTvJpdiRygPj/Q0EBBg6ctP1ynUvhLpSgm711veY34nZmnytBf6voTq7hCGZi7HHW0hCRYLN5fEySM2xT05WhHrb6Gl9ZUSiG2y+BnJDMUbdHF48fpnLFPNJ2SWoUci5OuawUkX3Fl0StQoHAPxGCBFDyBB5wKSL2ij6cTr92pqmISTi6cO3dvb+/S1Ydv3niju742ngxRKlOr2Sxs+Z4wJOGAlccS3oK/EPJZOD7RBWieKQIjlYZVGJZJwYYJEX1N2zsa/PzHPzErlMuXt+72B9M0bnW9aRgaju+Z9u7uBcxP2+ltbkVpqkPO3xtMprZhBp1uURQHh8e6ZW5sbd+8feuRRx99/PHHu+trhao5nU6WZUeDvut7nOz9tiidGrO93IvicdBEtc0PwUJZKFEtHUvIe26arx6rFkz8fdgUdSlIOBWQJkqCQKFjsLKKQPNVp34rUXxcOSfzFsTi7zIAuGyCcGRAL04HlRDFQom/F1lSUcVCgtpWf0PzsNstrFj0f7oCpR2+bXmtGuAjHqcaf6VZ1iJKRxxNp735WdBU3XZQ51kcDSy2eApJotKSmquwdPZZonH1GohAmQoTTVUiNKiWrB/weIlFENa/yypGtmnxO1DBR+jOFrqxu7tz9NJrnBdmWcYSLlj3RZwhlI/kGM5QmCYKJj1UYFHQLdWKGXrEsxgrg0gATJsk80QYL34yenpkqiofErZDXCMmuWoqEFFYzJ195iyWap5n7QD6+iGB8g0NlFwvaKuqeu7sGce2d7d37t3fv3Hjxu7Z8+12ezwcJElkm2ZmAmc/GY3XeuvrnS4uUAEiYGTMotksCyPECATTNDWI6hwcHu7du/3KS2AfIZ+rDZ4YDbK5uSkvVgOxAXk7wzAc23ZcFxr8rstGIX4LbvbcrDFRPtTI+gNgCSYKM2SIWa1FXrDkQVN4R+QYdexYd7SYiSfKn7K9wG+V5/mRpkRR1G63wbLN07WWFwRB27OJQmxrWntJaTSKcB2XXEjYWIq7Fk1xa2jb2cLWHuj51uNs18CMjqbMqJzXSCeqU46mPJmMfQERiSPdMrMkRJ2/ytd73bJCvsHUET45TeIaxEabk04KzjTXh8bE1G2btZyVKiev1jJKQt3Uwin5fqwQA6EiLbiGDV5vY0EV/6odCats/n2aR0lQ+9S2p7NZSnGtTpBrcEUYnU3yGqpp8jUoiGFyymEskr8X05Imd5zTACR+VBy1iXVdI6/p+9NOLJHcGKpQXK8c3/NaQZTEg9GQXTwHAzTfDMMO2u3S0I4Pj85ffujJx5947/s+8A//4T8eHBwG3XWNeLdJPFPS4tlPflK1gLhVICOUKjlxAEyQ4jrr62989auW573+yiuvv/JKp4fjYx/72EsvvXRwcCAFfIIg6Ha7PKiWF1W+32AWisCFwjy5EbITgrRkbo7t+e6jagkUKitLU1PYoWg5ITwLqpOXSark5N2jmFCOrUzHVjIgic28KkZhPIngWOx6getBWqRaLM6J4pmAfL5NTO1vJ0Pzto8lsEr90YIw0LzlE8hKgnzyoZFSabNZNJpO0EUW9b75ji7WBPonvUrUPvmk6qqRpbXs/VxeRichH4H0EPDIooBEYq1ZJBcirF0nA/HyxqYv3J11IG1ofdZzKt+81flcPg9zo4/5E+r7Dwoq3s7Z5gVPLpXNCmijGf47OR4Ucf5eHXNYiIi9xMFC2NRaESjKsswNtEQ0FCE0jUSmKrcVaKV+PD0YzCZ+p12pZZymJzdubG5sYDueTtbX14tw1u12j/am9/fvXXno4ShJo6wJQRRfg4eKWLr4K1FeANaxaihlYTuKaYKUJfejz3/+2Z2zm7O8PJ6OJxPUkRxXP3/+/HD/qNNb29ragqBfWbXa7cHgxPXs0XTS6a4buj4i58Rubz0r8lt3bl+9evWxxx47c3Z3GoWzcOYHgeO6KamBrZ6o1WNeJmvIcvz210sVFNEHveFSYWsuN/fgL7A0YGScuRTKLwXSfEvzWBZnF6L/5vMbL5lPpaVR+qDfblx56PIKBAi3zECaZ8z1x9iOT60s8KaB0EYtgiAEtVrqwi0Qz/YpZQAKdpc+V1gFkxXu6hlfvq51hppk6J0A/EgFUYIX4ZZjaLWqAJ8HuhGFzaJSLU4YFq0aAGYiz8glmVHCNC90EpY6DCvXuzRNY0m3eGk1nF91qnmcOXPmy195BSg06DpkhomoWjeseeWyTod4Sy1qzq48SxLiz4mK+BXCVEHJoTgKqoCORB39B4MU37HEc/GBMbvUx8YV0Lmqzf0ESgmwhbCcn2YoRhYnzAtMkmQ46rueA1HULOn2toIgeP75L7U7wYUL58ZhdHx87Ldba72NwaDvBcHm5ubxoD8anLS7nXbQSuNkNJmy99POzk5VlOPxuH98MplM4iJmyyE1cMsKuCcUmMmvJo2jELQ5bX9vj8ImEoNFRkodv6qCjKwoAi2Un3u9njz5cz9XRWWSq+e6ruf5ngenVsoybMuClBjJMuqaphvgKWm6vr7W0U3NBMdO+GMAL2Xo0SxkCFoBkkQOVY00Y2uSOI2QMLmuSlxM3/PiJNno9bI8j6NoNB73T06Ojo+P9g9nYdwOOs1EkcA4mG82OV4bVC9USvT6UbzTqyiaFkU6HA5ns5llWUT9BJH67NmdpgW90NJRKtO0pX1j02hmqT0qnkBFYttzx+Ox7/tswtDr9TY3Nxm4z45pcqsoy9LUAG2XwYFMP3i+LGUdsiJC5cmYbzkHW9/akgTlZn6ypL0k1zW2cptf8VMTj+b9sjRIoXU6nfJ7ghoL1+6a1Q2DAgAeq7dc6IVbkXQQa36WjP4lm5xkXmGlrChz4X9mbJdlRZGxfB8URw29DU5OnCSRgnDd1AygJ8PJFIxAx7bs2DLMKEkP7t21P/CBIk//+B/7r3/0X/7vMFeyrP7JiZJlmgsBWVQKSc0DDVjdgkhrhmE6CgF9TMPQa7fD8dg0zaeeeurll19+5plnuCnquu7x4eHlJ57I8zyKIqdWQ1o6lhbq+dUhoRgpSNVUnm1GYwKHWVVRXip6CQE1yo9d3cgVDR08EpjV0SFVk1LNytJxWm6nfTNE42YUpyezWVRUZuC77Q5MPyj6p7IlMJmi8K+pALOvhP4PzAEehPD9PUwD6n9xuCrJA6y8AXkT8kZQNHUaztI0N213DpFf5JIKyiYt1OA7UJmJV3LbhjJbu92eTqcu0cFFglBq6IRCPxTRP05OQYw+0mBg/EBZluwD3QwpJJGGD5adtSwryyLOZN7iDHCeQ/khMbbYSYBJdfJU/E6P5jomk0/p18t9hrcOid7O+zehFOKR36NMUSZyy+9PyzIrsMUZ2MC4RmkGmqKipmVlaHpapFlltLprRqVebrdfv37jzM6Ov7bW39/Xteqll1564rFHDw8PlTwxlfLw8MBz7bVuOwzD0WSqWl5NDxRShPJDCUIDAlMzMQM7JSs7PpDMEP3TqzBSwnA2GJysrXXOdDut0URxD/NKS5Pixht31n1ra2db07TxeGQZlW2bBMW3tna6wzEUqIMggOHxZOz63sPXrn3wgx9UdW0SojqjalqaZ0ZZOh6GrjxXD1K6XNzLgNRdPc/SDkJpvBvFQG+VMKzuXw/aF1jYYzVXXDKMWy3/Nw8setxMrTSJl9EUoGkedEsUfcEnad6Kv9J95jTyfeOpJx5rJiLyR/Lqv5QAVKo+C2H2wUE1EY4QYEuay9ItpKlQw5qvFPL9TRg+05UQf0AzpayqJMtOTQCakKTmfQjKIubgwJ8NtRAsO44rDc6aRmbAgBKsn4V35He1IH5Mq6+w4xV/XSL/LV2q5QRrcQA9qFrWHBa9jXXPcyY4qwQKpDBcEKYJ98iVeFx/fH/EZISyFW9H2ynCI7T0OClinkWt+ZAXSAAUpswZlCkRewPOsvwdCCMt5FroNzUF/ug9UQrHWa8FwHiuRlE0nU57axvtTldR1fW1juvaN25c39jY2Ds8+rZv+eZnPvvs8WAIvxLPJWHFvO37/eE4iWKrZ/TW1tI4Pj46Gpyc+CRY7jhOb3Pj7PlzLKoQzcIkS7Ms0Yk4yPRK4JhhkqPlaIyzJQcw1kQCp9uiIC2T+dXhO1HE41bEu2LjV5TBCXTQwXsisEdeFFzWBuSpDvqlw5+iVbal6aZmGaZMFA3qKXRabc3QUVS1LSh42BY8qnW12+6USkX3tSLLwc3QDZoxpWlbged7gb+1sXH27C73hfIUHSrpIChvp5MJpyI87mHgQCJOSZYyaSRNU3a6IQ1W2DZJmx7mPROaRY3jlJxAF1RrlvJwaQ7Kq6RpmmzNSw0HiJNA14V6styR4IRK5vByhW3K8kijlqWP5rHEMh0AoYYhrNYM7eFHH2kqFDXx8afOKUanND+CPyVeVYWiQ9OAK7Nt++LFi+cvXRoMBkVRuL4XpthvhGp7A3p07969Vf8EXIgsF4L/NR6M/zoXrm0whTRN29rZdbxgMou4HM7aR5Dp3NtrZjucAHuOee5M77WvvgyXA6O0XfTHrE7HMPXhSV+3jbxILdtvB62bN95EMaYoL1+46Ln2dDzVdKvb6U6n03wW6a6rItnBU2ipQ7G2Uoo0yX03gJ1nltm2feWRR9797nfruv5jP/Zj2WzWJve6KorWtrbcIBiOxwriwnkI22TNis7HXL19vnxhyQJdHKY86L6VmDsck4nQvyGolyhIugyltDTFrfTEUDO9yiolznMT1iok/KcKAlOqmIM4O1Gq4zAc50VlO357zWl1NN1E1Zy+CeGsmdLFQCzha7RUSzr1n7897uRrOUQ7vZFyiNCRiXfz++QaRvR9oopiMFSVGs4ieZZWowc5TZjUSOUilA/AcjLNTqczHA63tram02m3u45MvixIxwfoGyYm8qtrESEkAOBZUijDNuosT7cMgahVldn/ZDqNiJH3Nk+IMk8ALCGPKNt6nBR+rblADW1ljXaeUMLtno9mBCmD7P+7NQFk7Z+WFdwRuIwKHbCTyQROMhxuYAXWi6RQzCpK4li3nU5LqfRHrz6ydzI4Ho09y7R814WgU3Tz5s0Pf8OHvvyFz6+1O+d3Nr77P/vO7c3ez/z7n9spyhu39hYaO3VYy74dNYwROCRVKRGHIluHnzFyy6zQijxSiiRLFaN6+p1PjpO0su3N3XNfee36G9dvnzu7nkxmm5sQd6ZOpzkNI9f1sgLOYcx2SOF6VDmB/8i1a089/Q5F1ybTaZ7ntouVK87SOAUc8S3ALadeIDAGG8dqblktTn/ygjnlrR5UwMpWnn/q15P/bFbom7O4WRBp/qmk8UybK3pzbONdqhXI+/Ut3AtwH7ckwLAkmkMUc3JBWP0/I0qWK/F8m9YkhkXMKyD8srJeQamdK+vsmbacBCDW1D1WkG3uynirhkGVXEfYsZCYOXPWPN/XgWUX91XIwwjbgTjJmtV8GYmPpxP2QReURroPioFp89jmW6nsKno/fNJ5PaVUGLSqWteieQvWEsjCavOWNGNSnPKV5zumVbsHiFvyqNY8z9ncWA9v381LWPBW4HKxS5pQLIbdJTm8ECYFpd/mXkUBB2AnBN4RB3HrqA0AcqQB7iGCW1Sjmf4g9GiFVC44CWz/ztYw84Fbb0qc0SZlDi0K8k+V+vpssa6SUJ1hiurR/v6ednL8yLWr/t37t+7e833fsqwwnJoWsspwOs2SdPfc2U6nc+PGjb29veNjWHFNJpOTo2MB0TMN13ZM23JhFMLXej4SVLXqrhO0TDPo2iL94b92Oy1SUBAofw61Of2Tdt8SgoVLk2bsKNec3mwow0Ebo3qEK2eZpWnIHR4ZW2dVVsUVl3UXagO0qU+nkWUhapGTXBKUm6mspB+0Wm2QxxtKmvx4t9tlPRzZvmBtHMu3ndjlX4qTYxpVURqWub7eFWZ51KcT/QTN8P2OZO03c3tWIl+SvkFAVssoLcl62uSky7F706wAHLHG2ipj/eEQidZSFUBRlOFwKFMUbnDzoArDUEKtmm0KYeCwshA3ZTebn2vbzqkynVwjL8vS9/1ut+u6Lvyw261MUaEZTdrSfEKY8vvhWuZ8ASdJbByc2Pq0yN/S5Kg07XJN0zx79myv11tbW2PJo9FoxCbcQkqBfiZgbI7jWPrBwe3pZBhPJxVIxEqcpoHjsLeDbpoAFlaloanT4chQ1EeuXP1//s9/B8B9wyizJAhE0+aJJ554+l3vhM90OOn3+2E4I4c3+MsOToZhGO3u7jL63/f9n/3Zny3Lsr2xAZBeAqbw008/PRqNkiRBVYhYpnKXEyd8cQte2MQoEG9ubzywm6iMebkRgBW90LQMRodVpJaxakSaZmF9QS3bUMg+3fXVSh0Nx/f2759U6kmRj/Ii1y2n1bWDtm7ZpMlMSzu3QXltEOVf2ZVpak0+sOq8JGvxe1j759gOBRneflHnKThy5SMr4LBbAf5kJFk2msLKqnnGlmOFGkvD3V2WREwS1OaLEhU9XoWY2l4Bpa/BlJJE9UooQ6hFJfYXqAwRMo1nnE1avYRYX+yssiYDDXuGMuJMQ3sHROu3efBCqtpWzQlpnHwBPP4ajjoVF/cJQ4WvxyXzxcLW76oDsNIN+L1pATBOban2L+WbeZEcDoe9Xo91BvVSM1iuUNPR5zWU9sa6oeiVbTz+rqfffOONycnJdrtzvHf/8rmzt2+++eUvPvf93/99x3t3e13/XV/39O7DD7/rXe/67/7cn5/vNZoBoQhJ0mBnN+LsoPgkiMvYcQu1YEoeggFEjAgZv/7rP3g0GnfXN5y19ue+9JUL5888+eSTH//FX17zW6ZhpHne8j3b0qfTsaNpSZruH99pdTqO45SKsnv27KOPP7a5uRmlSRTHhmVajp2VRRJnWIfBylNZZbF5/Hb9ooXm3ql5ftUY0oARL8FMKGOUeePC+Cc+/KmfusQxaHp1n5oALKkAzZcLWidI3JICY1LrwOPw9FNyilsFlIPYspB+Z57+A37p0k8wDo6Gp3YAmuI887oadGYEcFBWQJuAmeYjZCWmZmVUNGad/OzVGoaofJvgA8iQnjcFyKhB4x7IxSa9tsZCEUSegn1SDaMg2wArBUOWwn/cp8fpt52iuARE+CmirQrZqhBEefGWtxSCCJDyKl0ErKhcY6K9p3kb1SRUCfCg31eqqrm5uXHz9q0SGrR2FCe66VI3hDZalGQgtMZkRDBCQLVc2DsXegsSsiASNrpTkNYA6UsKeT5FKbKcEwDN0HNCxIuuLnHIEDQiNxAJQFkRLaHIwAeiaq703zYMbTQabW/vmCbgqqqq3r13u9/v39s/ev+HPnjx4sVJOCOvLpxzEl93RoPha8lXwfHf3Lxw7vyFc+dN07x/sA/NATrCMAR8Pp8qkZbHMXNhyK/coK9ESSCufskJgK7DfQG/ASb2FD9RddxEyVOX6R/j/jmsFo+gKSK23DmXgPYJKphiS5MiQqwno6g5db1qkEx9SEy8tChnDsDmFk4RswL4r+D7KupkOpNvIqMiXTcHw/unVpoX1zRRVIYalY3qCFFgKYmzTNeyDdvKk7SCJoYOjRoyQuH7huGcKsfJHJumyxj/8PVOdzaboRpNLX4Z97uu28wW5BsatsVze2nNZRr0QkeRdDYeffyapPny2WbFbulX0ERJSh+fpdBHYiubD/KLoggQo9X1ZzKZwO5qOtU0bTCAg+nJyYkfBGGSckLDsvc8pAUiQqotNFAr6MI3qjhmhaSiqqpLD12W+0cTCjWbTA3DGAwGoKen6drammGZfitAjX/xGE8nmlreeP2rd+/e7bQD34H6d5lgIB0fH5/Z2j48ObYdt0jKKMvLvHj1xZe++6Pf844nnvzss59vr62jFxQDiRasr3/oQx/61DO/xY5gKKrZ9vp61/U9XdU2e1s7O2fCMLx27Vq/3//xH/9xFu5EjJ6mpu+vr4O4z0bIaNQ0MabCVUp8YZItoNJJTXvWKd2VpkuS28AxaHOQ15cVgJ1KrdKiDItCx7KD1TLX1A2/ZVMONprBKzAty344vROPE6M9rdTS8p1WYHc7qu0WsAgjFQNRxRdrYk3WXpCZ/92gTb7Wg0beKhOASFbYzev+AN1qBpy22RWQ2q3xeDw1TFuIn9fBq5x6ctEQZR2KSwiomVqWfXI8aAXtyWRmmnZeQvc5S1SlzAEcl7RovogM2APyii5lhUKPF3imaVJBpTmLRLGe5y+vGG+nKC4hQEIvuc5b5pnYYrL0tZ7kJVgIhM8oP6G1rlkLUH43xypE5/fqUBdr/+L9i9Ikv3nP8ybj8cULF9AnJAgs8GGU1yEGMvRgvWsoxmA82rlwrlSqI8dW4ljRtThJfN+/ffv2Jz/xG1k4+qf/+O/vXrjwr3/4h7/t2779zPbOaHpLKJsJrDE73UIeakGtktszwr5J4SUFNTKISAFZ0FnrVra1d3QSbGz94A/+0d727ssvf/Uzn3pmLWgBHdQK0lQpS70oleH4/8/bf4DLlp7loeDKqXLtHE4OHU5HSSghoTYGGxFsYwzGAWS4novtAWfP3LkzvtgEX5vLc8fX3HE2yfYQbAHGGBNaAkkoIrU6SN19uk8+Z58dK68c53m/b61Vq8JpujGe1d3VtWvXrlrhX///hTe4si6vbGyEYdBoNa888fipU6eSNB05NomBYhXPRDHyEWkoYParaJ6TT8LSbekVLbFq1ah6LiXIKsFx2cqei5Uf5NXDq9jiViYMczX+0ohz+gmzcLX5w4HsVvGrIjRd7GxMv3aWhLOYBswdrzJ0wzdorM8cKs31sm4RXIfuopw7iq1iElbZHUGS0GvGSBK5Gl7RxOUKLj+WIR3yGIwyElGr0Gg1qrPnAJ3iUcpQUSM5FAl/SNgmiHCKqSprKWRCi9dRuQIOBmW/kidQ6VfAnacCCiqBQAi+FhKbN3jM0pjxVaxuVNU4YvwWFKmxRMVwakwQsDZbQFhSACSmSPEhgoEKNkGrcvwuJQA4IgWIWMJtlqxeDkc4NsrTt8o1yBXN+L3wxaYrgTk3FVIpFaGwl6N1SZOEas+wpYcOKU1DqSSkhq4lASpEOWDDhzSNLMvdbvfe3v6Z8+cbDYip+75/69YtHVouzVdeeeXMuQuXLl167bXXTk5OGo2GpmpA+KaB53mH+weMWuFq6+rqaqm9CJElipWp3CuW0TMvFZx78EAt4+9iHCY6uhD5mAyjKCN/pbk7swqMMVQtl88oWHccE7PlymIAqijATsiSqumKoVuaroiCnGZZu7upqJKuoW9RykGCi01VbMfxfN+VJNhuRFGiaQqVS3IdaFxXWJ7hCkuiMs23K+stoz9LvSAOT4M4khVxMhkxyJ59lJMk8Tx0S9M4DclkdDaLyDHuc+Fy+Y3TAiltpqY7tm0S6wP8LSpOM5g7XzAKEy4cpww3ynLarc4qrCdTnuGyYwDaABXnSl/qMAxbrRYco4seCMcWHDWyTv+cHGf5dVVNXn7BNK0qGKz6nDsAGJaatra2Vq/XV1ZXQyKm89XnSZy/mo+xPEtlzMo64tUsiMcPW6eVu827RM67Yb1e59SCj/T4+JhPY/nhPMiRQEb+/bvXLcuwdITgYRQpglBrd6xabffM6f5oSDq8WZR4Wxtr16+95tiTb/7mP/6P/88fu3Llynvf/1Wf+fTnDg4OfN//tV/7tb/1d/72xsZGu91Gd8WzRVlkO6F2s3375q00TT/1qU/9/M///GAwqNfruq4fHxzImraysnL58uXDQzgK8V0zv0rNRv/z878I2I9ICndlDlDeaKU3amW9oMdEQP+ZzE5Y3TXIZMsy2+trkC26def24YEXQl53IiixLIWCLFqG0WortTp4w8yf5pmc4ZMQZmCYDdXQqFg017WuKvyXj4vNjT/wVkBRSp8WpPEjDd44SzEXoOUueH7ouG6zrZM4xHIwajEm50d7vV6/vweVp9t371mWBV5HzaKpVQY0VEQLAg4htC6UrbZy2iwpHBLgs9O7oPRX5q/m9/w+Tkg5Kv5Atmp2QiXrfMIvbsAc+f377gDMbX+w0T+H1zNC6pXyKMMFSSgiBxDKghRFoE5BdhmumXGcZLKigUJj6GEcqbq2c+r03mvXLl9+6KXPf+HhC2ej0H3t6ivf+We/7cy580Lonz1zynOdlZWOdPN2DpEi36L8Sx8QDZJSEaC2hgodPxDSsjjOS2qJaeqdbuviow9dePiyE8RPPvnYj/xv//Cf/r//j+PjQ1NVIt+TFXiZ2Z69ttGtNRrvfPzd58+fT5JkYtuKphqWmcD9UOblBvwTCZoujuMwirFcr3/v22o2/q5m/miCZfMF7qoPwMyauMwoLa/ovyGGbBGnNEferb7+gNg7X1/mPrM6Fc/8VYXbUH1cWtDH+hXI+tw4qzY+5jBMKMUHcSmbSKXIqQDI3IGx7GYqQtefg3vScZdzIEcR9M9W9FOJnKMWIUD823xyJuwGvGAkxMqMvWeJLiIEE4AyiktRzuIfBP2pgEp8lRXAjwwUQfukqNPjgyWRJI9zmiyRnZdxHajjwu9RZbVQNEpEUDYT2h/oE1NnA6mtAHsfQFQIq+2w6B66rnRR2auUYBeMaeddYCcAuvCoecsl715MGTmQ35k8aIrUgITkyEkYDQRynyFeL1h09H4SCMpVZHMnZoQmGdVTQYJlNy4hiyNLU8bD8emdzTiOfd9n3HacZKurq1ikwxhhoiJ/9vMvbu1uglKmytevX9/a3t3a3s1Qi/Ugkh9HioKAL47jXq/HyBBEgTrSAA4uWRaHgzDsg6RYNbhRltazjJ+Zqz3jFiIV7bxjMlt5ZehIGf3zkyzL7NGYQ1jOK0rsu88CmpUaf4mOZQ4MoEU5vRxHUKsBksQSr4qikdAroEq0KGL08usgUsMqC12LUh+6HEeFEXIOPpEkOgNUd8bJscRaEfsWgWbGKgFzCQNDmKoQlGIiyN+8eFzLyrHYUoreyl9Vcq3ph0Bmj89zQiRjcUl/T6vopscgMefzFxKbZKb4nWVZf4iUZjqNVDYuRS9OTbM8v2mdLwEaYRqX8JUTskwmyFBVd58Dd7pqM4YyZWVobrzxj8BHLeswVIOh6kRs6pDfLokBZcIJ0yUf3HdOtLgmGvlO5PTWSak58gNNljRNq9frvZOjc+fO7O/vjcZjVdcxaLN0cNKbDEendneffPLJe/fu/cef+3m4UviBZtbv37//1//63/zGb/zGP/SHn+n3+81mPc2Sk5OTwWBwuH9488bta9eueZ63urp6/sKlyWRyuL8vJNn2zqnTp087rk8gxEzTQTUBnCx3hs/h/lxw0HWQwhGzcoeNzhg8nn0yDxaEIAoDmGsgUowSFDLZeW0wGDBOiU5mrIhqXn6RlUQU7DQJvKiXxf0kfOH+XdzIcRJJWWxC3TiTm34oqLop16xMMyIqJhHZQgmjWJP4boKUNOZQqtgqmozbFuKJAE9yR5fotiqXs3ieJX8uGi8PqPzNLtWVgmIxMqv48mm5eTa2y7WqivW0qIvjD6MoMk0zDCKJfN9v3bnbaLWh6ZxyTQHZaSbmuS4nz3wz6oY+GtnQi7XM0WQMJ3hBNE3z9OnTL7z0pXPnztkTN4mzzc3N+/f2OLj3fU9FTAaZeVNFQZdbfHImY9q3kEJvbGxcvXldkFCjkRJ8aRRFmmVIUm6qPRgMqMt3l0oVy7V3p4EIHJxTjSrYnufxaGd7bLYx4Mo9Zth8TatCI2YqtXNhFi9wcQxOi2ma/X5/c3P71VdfrdVqruuaZn73kVQaiAEpgHVLLmu1hzBTKwFkaxrflJNhLszKM0k5RcCZISJM7nxNx6BWai5lVpnKomJiZGIM6fLhJwb/+J43GY8VUaoZJpZORbUsy/UDq96y/bDX6620uqPRKDWsJBW90AvjNCTCwGg02traGgwGUhrVTfXihQvOsP/hn/uZLMtarQ4DehuN2v7BIdtyxSEMvKMoUBQNHWsqMiZxImaCitAZ949lCqur8NmFSljNCjzH851Gu+V7brfbMU19Yo+9IA6jrNG0/vbf/pv945P9e3v9k54kYzjtnj21ur5Sq+uZSJoWolBr1HGTUnzCIQEmdpKJRXNY07hXxiekvPr8vISn/p7Y/eLHGUToXNxbrgjl55Rr6CKKZnGQVNSTZqT8qsvi3CsleG9uXatCKKvfW12bqun60ii/+mI1SKAEICOnm0JYgFNQ/KZw6ZrLPyQqsS4mvsB0FsDxEkjD3lJSBSBUAoco4MYywnLBJMuL9iW1MHKR8kKCko3oq7cop6b00pJWCJ/6HApDh5TzikEGDfySHEwS6HjMREFToDfMlVJ+nRMD1cCNirp3msH9qdiqgyMfInQaHZJBLC48VjtqiMu256K2rUDs2o2wwLMuXgd2pMrG2vr1G7ckJYdp+o6TCqSmwh2A/OAxJ4YwepiyIctwMOLWWO5QWAwjMgubuSUKeuJMZ4omMi53QdUL5z4n5xXjRgiCUCfLek6dOVdRVXU8Hjfa7U53tdlp37u3d3RyLArCaDQxrJqkaKHtTlwHwCFJ1C1TkuS6og/HE0w3LcjveJ7HUCIOAqZlp6I+h3CZ8hC+kcouQaPRWCKXKQmNmlXq4JZ3F1upc7A1V5SFZt7C7C8Igm3bi9CRLBPHYxuW05XcIId2OE4JZZm+jhqoilfiJEbPBDKX/C3sXFstJ+dfUCD/irFJJklipsOYuZDtL/pNopBZBjnvEhFZlYlkSYj/VqOJfh0RAeHspsgUumWKyhrSM9b05dTDr5RyqxyVLp3gwmKcz8XEITzSKlZrlFAtnWT5R1bvWUzYeEKs5mx8SrnjtzQhKT+zzG2yVNB1s7qfJRnXcZzqKyUK03P8uemS91aHdfzClgm1RiOHOxYzSa4qJgKHnSPIaSYp9RbFSpm/3HMmQPOxIM5WFNM0hSRpNhqykEVhaOpaHAFUpigSswjWNzeA/UHJCsJTvu8fHx2s7G498vDlWzdvtjsr4/HQME0/9DTy83r22Wd/9wufu3/3LgQA/EKDSDMFPzBarYceekgUxTt37rijkWwYZy7CCThJEscBhI+j+bIrwlNvHgWR3j86qGnKmhh8dIVJ7YyxTrmVOXyj0eDLkaapZRhRkkB6HncO5ApCCXUUOVP8MCLJezEW0ggoo0xAaUIwmw1Z0TJNS2TST8hQfFGp0wutXwIxkmwzIC0AVo0mdL+QHppMxSlaSHA/EpuKxAAgEcvB6H8nlufvuUGemCwQRFkZTWxoI2H2LiRC56JeUXQch5DuAPJdunTplddfGwyGFy9f2rt7bzKZaJp269atJrQXB7pmkniXZdYsz0mjwMO3SEoyhRpQnL0USrGwn9Wb5cFVzAdu/N43/hPOjCqHXCk1VjKq6lrMY7WE/sdx3Gq1QJwVsXJhWMoiJwDUjS8OeVkAN7eOVAsNTB4rk4EyumLXAdqnVNW50EnvZ3MehizmogUzh0n/m59sSQcGQTabSTMVhxuwLBBD/idgjJAfMMVYsMpMYdFcdH95Wk3TVFcVRZXs0fCjH/3ob/3WbynETlQkQaU7d5GmEtFqxgJEHJVheaWkdW1ttdNtUb6XemGQpYlhmjAM2VzfPnXa7HRjxCeiASMKWTONixcvPP3Ek6aBHCyIfNv3goiCsUJOoKAc0oWQZyAl+SLFlMhyVFSuSwmhmRtL5TqyNNzPFp5UA+vFbLD6Y75Lsx3gcpeqaj/V16sJRjUfWDQayxMD5mAs7EbVTmc6TSGPyk9UMvuI0mgV21IgXJRMBXGnGu2VGdXirYXrRDoki/erYdaW3Lq4AORMVtTO4eGes2yBGMOgLOr3AExQeYNIMLQ/uW8GOqToGCBHQDJB1f5c0Llw+J3vqsx61lQGikIimHQiqkZdMPZiIclSkpmq6iha5fcktCDLz2etlWIWmn6vBn2raVRUXtruyhrHQ0zf5HhUSLPRYNBp19/1rvf0+uOT/jCCBgzgAeXA5SvPsX0mZroip4DtQKwm53tRaz0fQHnfejrgNHboLM5CAfTPJ7i5aZ71v3B982WeLMCweKawntNVoNQpcmUsiqroRq2mG9b6xpamm1GS3b67t7W91R9PHC9otiyA0dM0jGMQFqn2qalGmKau7dguIjA+J6LncjmQp1FafnJNpyiLQH0qkha0QSmOH4+GS687kermo1L2hViEjoiypFvmXBthKn29uABk0vrmVtlgqf6WA+LFgJ4YtPE8A54C32pGXv5J8Tm4YbnPwF2qIEDiBx2oQneLOw+2i4o42d5k5SO4Oo5bEtBLkjpKt4h5Zpp7i/NOFaXzoMo3Q3HmTillD7hHytc5l2BB1epkV5697up8k3TR96M68/L5mZlkZiOhajOT7lMMVE5IqpMv0wzK5g9DbrI4cSYuGcdOtwchKfl+CZIYESvcR6kvWVD8FZFcTeiVcn5DkFSQ0uZmc4S/9bpByqQl4D7xncnR3SiNxCipt5tjz3N8wOe6nU6z3dre3u73hhMHLhCCkPqBe+fOnSfe+c53vetdP/uzP99qdhzHsSzLd13JkHTTHA0G6LNpmqQqiQIElKqqhmrULSD+B4PB8fFxFkVGA9vZs2fDMByNRq7rlgVamjryiZ1mm1xigWcJzI+0QUSrglGtrrjVhZDxDJxqTiYTBmozBIHB8Aml8nFeAKKWr0wqFKICa0lFUyQ1hfMHIYbxr8QDTpOVJIyo50Y+BqKgyWQKLUlrq+thEPD8ExAvCzVyRfbDCHoPqGySP3beKC1yncWlrXrvVAv7byH6Lf8gF7SYeTVF85mMkpXjvQMqQE0jzrkBz9GADoUuff/4yPOis2fPDoeje/fuKZIahdCOPjg4UhWIgUIJVRSiOG42m1kSew4yImb9kr19cb3KBI/GbX4mi6ObmzpKqV8MxLeI56lS5Be3fHmtHHi53JZnfnYqpn4ylXjCIGTVBNje5R0DjGEciyLFMRt5y9U26eKcX6p78VkxqSzNWyn/hR+KwDTX8Mn3PE1Iv6NyB+Qb3zUc3FeDzjCJpjEYHSuiN7rLkjjWZGU0GjWbTc5teLhmEmQj4jCQRBmv+GGSSGGMckHkB1GAqkFZKAlCv2HU4ih44bnnDu/vxXH8yiuvNLurKPdwmZ9uXE71gVmNkpRMcWjw0a8oUoxjYX11BX6gFGgBresFpqUaNWuLNi9D0xI2zLKWhmlrtSNDmleKIqgtp2JqWLoqKPixoBFVBxULluWzB73MP5encHEJLkPh6rnm+LO61C4G99lMLb/yvZXPWQTz5BXYSgWtuktzcp/l61wZmRtgi6X26SoG0F0ut1bajeenpOBzlq+znHQePbOJLJM5SLKcyioZ9zanMveiqpUEWV66cjhNoVSDYLJ4RDu1woYurxay3iAPgObubpUEWngQUyKCxzlWdX6pij/hMI5X5/LaFKqV87MDKogL6i5ILSpk5ZJJwHKQVbTuTIhDJ53jd6W4BipxzxcDIA5QFq8cV7aqh1ZCMhh0y38OxNtk4rv+DgWU21u7qqqnUeJ5fpyImm4Whn/lQGG6cSpL5EwEhSVsrBBHa2fhRQXAEjwa+C91mGJOyxul+Rfqo6VmUpn4ikKcxZjymVXG9uZE9iANpRzbwIE7d/wTUkuP0qx/cLB96uxr125u7Z6JMkFX9UySXN+Xosgwa+3VFVMzbc9tNzvr2zuubd++fXtC3UlJkmzbzoOeIlWj1RwpIvlCTG94PsbSN3fxnoHu77KbCvXUfEbIocz5DT9R5lSk+HlKjc95FSlBCn04zsqiQoTk/LHke/AriqTmTA8JrV5+XZQFRVJRq6fnKytrVQXfUt9XU/D+Re3eGa3f4hUcLlRzkzhK4yTESg+MFaBjYUBQqCT3DGCxVPhAhR5zJMqEpAyL58rwXJiBnCidKKxLEWpbXNE+6vVLidLpWSp0+svxViYSi9latSKyOKGX3Og5zkCtVlt6/y5tR5Tpd0mz5oSkmt5UwZ1ozatGQSHJA1Z+Q1VlaOZ+Ya/JhXlpEaOZP1IbfS7nZM4JHx13XXIN08nw3/+LH2u2281GbWt9o6fr40FfJ8ZCkiTtTkeUpShFLTBKsMbfvn0zioMnHrsSRcHEHiVRKOjAfPNRb+3sPPn0UwF0tVHfUVR1PBrUjNqXXnzp5s2b+cSVJJZlPfXUU+wswf2ZUvu/bFLlJ7aQFEOwQioCnAQyV5SvUBqjcF/NfnkLgtx4iLkQ+dQfY7zmoDYycWBKYopeqgJfNliaQLVYBjBGhTFJLKPMqMiZLAkKzfyA8SZbW1uInzBmYz+J/DgKo0QQIyewZQFRdbPVytI0hBlCBMUbLjjAZAsgIt4F2ueF2Pz/Lxud2ByTfdIfCqKcUTO5QuiauZUsy9rZ3f3EJz4pkrf6cDjs9fqnz57pHw80TTvpDxAQh1G9Xh/ZdqPRiOO40eigb9PrKbIgKnKaxGAclnFPOXlS/JoLz1fC3Jm1uyDxy5CifROuvfmKlnOI3yBnyF3sqznPG2L3eed5kWKOWUyKVzzSJAmRGe5ltAIwVHyYR+dnsqxlSJLUbDan6ueVlqNrj6czZN5vp0CwmqKU0C8hkdFxnT9dHA8QJW/e001SpuXe6pnRSSFN0+Ag2Wg0gL8iClOUpakC3JsfhbIohV4QxWIg+kGShlHie17kBrEfJFFeNwK2mO644+PjWq0W+O5oNKi3uyappSHHI5oHJpYkNUibdQ7ths5cJqgS8D8s52UaGibCUBJl9fy5i+12N0xSLwgEUYKZjygFUNHzoJmGEUzqRVKWIsRPVZW4nQsFoBllTKJi8lmlpGjmWs8BYBZq/DMdgGoNTli4KCUHYDEjnYsopleNujqLgf7ck/JH7tssfuaDNuphEnWJ9FkSmEZTCwbrOQS8EiGFjBexX1ntGNEu4j9U/JFqEQ9WltXSAaCMNwQpUxLSc+V5tsTbQUaI9FmpIku5Ak/Gs9W46o6W8kZzrysE6udf0GySX9QIAe6SE4S5uDw7xfcV9tlLMqpGq1Wt5ZcVfYuEpcpKPxN8KRCECkq5hpXPywV+5urSLVEOnWpxl+eUxW6R5wFCMJdxMjuWS+Ce57Hyd6PRWF1drdUaL774pdt39/bvHyRJZuiW7XpZgnIV16CKXSEGgSAHfoASl6KySRmJM2Cmi3hqZoEFvk1oA5240OVGsYA1sLGG5gfPq3jOyBQETcJ54KAGSvskO4R7npozCDc53ytKqse9k4cff0o1zdh2e4MRJo44NcyaH0Xr7Y5aq3meFyWZH0TNRnelVrfHsCdsa93heOz6fggLGNoDHnmVU4aOkJCJJC1a8jupMkGdjWlANi014nUVE9niFkFFauZm5gA3jUH+Li3kGHqUZJlOXOSqI0T+CFqLkKQhOB6pyI+pmKoSuB+ls3XufS1l8Gap3nBEC8c5jRJ+BYkCpQv8W01W+T3lK/SNmaWbi++nhJfT3tw2rHxFN7HIMSSlfB3LHmTUcmvx6q0053dRvm4Tgot9FoQkZbcFmLMinpr2HLjazRNcCcKpxnxzN0V5nTkQrOKm8jfQf3ESZ1lewuHPube3v3Siz7+r7JiVsxCMM9nWF8JQ5XFV5diqWHzqtEwTmKpQ0tJxJRdQrrmiEfuozE2JCE2WSaKVzQ1uGSUw+TLA83PHVuLV9M26aSkSiPKBC0MGVZWH40GtboLjEMeqpouJHMfprTu3bdve2dmxdGNMzpqI4Kk0q2naeDy+ffv2iGrtBE3ORsNhOnHlWs2wYMSxtbN76dIlURRv3bnL8q88MTKIgtuM8D0AYAR6UrzbYK9ngprBUz4i3QRq6yUQESBvRlzCOI5IM5rrOkKW+STDmmSZbcPUTCJiUBLHIt7OtzSmHlbxIW5Sihp4konw4Mtkdk2RBUmR4bpRs/SapVqGqsHIT5eUKAjh3yfKqqapmWCiA4BzPxn0keDFSZiQ4iU6CUomg/JFHu6cJoOhRfz5BPpi/z03hjUvxrQlxNR1XZA+dZPa4TIRzfKtupD1er2Lly598zd/82/+1kePj4/r7dbu7u54PGYvYdZtK3HSPP65F43MM8vV7HJkLd9KlXWwVOiKAUCdDwMYbFMmCVFEStZvrhPCTsC/bxLwIkarlJziuFBRFPYw4eobgxOpnZ6EIWhsEBUvuGfkBglvkKryW1lyypMcBaXxQqNvGrkaai7rjHJ7ziaLyVMGIojlZZqqh9EnVzsA+UQxLWzl8tT8O5ZH4/ih1WhCxI90ojL4+kmiovo0cfme59i+n4hxJkcsOhcEGfeACHyIfmyWeq5tT0Zh4DFyr1arET6K6okwooEoIo0QbvNOY9Zi5AmdjrWzvV2vW6ELOTVZklfX1zY3Nze2thOaynhNAXYIMAQ1w3mQNA0cuVQWkywOSdcQFJXK1axex4LFXTQBKmDvhSh/SQJQDI/p8+rrcw2fcitwJcsD+sXXy4rqg95QfTKn9vPGob9QtV5GMZTlbVDETYUEwQnJaFG8h74XDZj8POTgH4T/QNpAjIG6qXCWR3SIyIQfqQVTVNCrUp7VCnrZMshLYpW9n1a+KxeyengPqtRyAFedwsq0j19ZWqJbPMVKpTI300KqOPVWX0/jnAw61xIqK3ZzC3NZqZobWzxBV8OaYmAtn/lMgsfx0bVI+NZ13cP9o1/78m+8/uq1MI5DP5JVDQuaBEw8sxZobYABF7FBqCNBrrUo51DND4dGi2pZkuSrwv9i/aTxMSWL5P48dCoIAcQ5BoOtCg4VBUwss4RpDmJKsqDIhQ50kiQcH0CRIAgfevRR3bCCOPvyq693V9b8KBQVpV1vaoaVSnK90ep2V+Mstkf27eu3oSrjuY1Go9aoN53myf4+dGMMA4rmJIlXve3Bk0XTP5cN4Xm5nJGXglhYOmCxolwdP+VzctZAhZI7jLBKo3OlCCJmWMoEuDeFQIdvrUKJcm6cCNDNy99ZnZV0Xc21exMqos8OmMU5YlwEpuVorB7d4vxSwpGqFeVFrGF5HyF9WHixmg9UK+s484pSla8tZgmx1mhVO2ycduTBdOVDyvJ/9RCqNXtOGKq5AW/8ejXlrp6TxVu4bArNqRGYJjg8zHJjOSlGrwGpUqEW5H+LlRRY/zm8Csdhi/uZy+kuazGXjsVzSxR8uBeYWJwwMLyYX+eiu93LvP0BmjuuN86yhx9++PD+nm2PWTB3Z2cnk8QoCVXZBFQgS+7e34NC6O5Oo9EYDseCKPuBK2SCYYI6fP/WzVeGA0GSOlubdNyRYZr1lXVdVdfW1k6dOmVZVr/fPzg44HwsHwOck9BUw+xJXFPgQchqF7qTCInyDlIBXJwukEukunINK/5zWJXFMVUKqZNZhP95Z7vQQiRwP7THCcUBbAXSbTW+8o6nU0EIs8QLg8lkMnH2A9tNotR3PQ2ke01RdVHXBV2VNcBCzp85jbUtimEyGBAvOYqVLB0PR+wcUo52DOwHOwHPlUWns9AfhLYMIGSwC0RK0usNMOuoalI485R3f/XONU3z2rVrb3/7V1y8eHF9ffvD/+mXzp07j/MpqrBrXFm5e/duowlJX1VVkQwUVifEBMDYJlkCxPH5+KxGOUVwD2miyr1c3iZlB4AGTFIVU1/cio99Ux0ATkWm6xfFyOVtwoL/nITw96UZdqOqNnt0dFKOZI7LqTeFM1ar1VQ5F59gRFyp++y67rROVKn9Mfcsr/rn4tL0OMX5ZJwA0IiPJs6Y4JqskYBZiD8HnWEC2c4tBJyfzM3J5QzDkxh3C7mHn8qioCqpKDgeGES+6/lh5sWQC0Rji4xqhBjkFqrhpjFeksIwaLUad296k9GYMURcsCiB30iW8irkNM7hVRI9bCnd3trqdrsQbZNx+1ODcffi+XNcxTA0Hf40aeqEfiYqNaOGYJN2A6REGK7LsqZospZEYdXprHySr+8UTVWX1HJ1W/SyLP98tjK7nI8+13kWymtaJN7VxXEumq/+iHO3LI5d9CxbbHFUf1zkz3AgRNKVTJWlxj9FcwQAoMiO1BYILUYEKZwfignQywTCHB1NNkAiIXZRyB9zhH0mKKoszVlZ5bhVQvyXr+Sa+vTHSwPxMoCeO6GqZi3FNi2SaAvsRx6gzF2ARWMFfuIF3lJyYTWgnzvv5Rz3BuEFv1JwkKd3Ixday4RhGnNQ4CgKIjLcZRvft4qKsMYeT66+8uoXvvCFF164ptBEWK+ZrVbH8XxRgkKWATIcif1TSZr8GjNUcQWh3WyR4Iw4nkwmrhNHeCMmdKpA8FUj/GYOlswHFtcSyrFLEzRH/BzT53IEwIrlbdbpdaTpHPLc0NjAp7GFEBhFuv70Q1ew7mep64f7R8dj2xFkPRKiseM/8vhTG1ubg9Ho6tXX7ty70213t7Z3PdcO4khwnXq93u52/BB4XF1VPRsBEzoTRBcpv52Ah5DwQGqAQ8sLMMVvK7dW0TSfqrUvjE8uOM1MN7NN7eoNWVVpKMQxga2ZVnQqc0EU5AtG+Tp/TuDmkLPpEXGdoVq0qAxUw8gD0GIUFjNviYmkOZFhOZkgqpaRwNAzAxu0EmMx5GkRX2uoFqOa5ybK8pTOlKMoAStdFKZuCKLouW7VaI8jfYBYSHaznM6qofkcpKd02pq730vzr2qEUf52Dls5p9VTfTPLfgcTcHXyTZEtrc5POVEspXjymp8k+WHEs9/chFBdhstNyhAEzEX5ReKnL00AQnImru4/HwKTzku3JlmWR6PR0e3r99yxoULXr2Zaz3zVB46PDg4P9w3DCIKg0WhwfbcU1rRt+86dO6trazDLMs2x7aJqG0WdTscPYkHXJVk2LOvRRx81DCNMQlhGSGq72cyyrEcblzDZm4yn3NLsmX/UaHxWJ9vCbolY1yJBBBUZyjsC5iUmVMzpTfH1ZdIz/8iUqlxOjT5+eqfQ/KVIwArgLaRJIicCBkKafuwjH8k0WVQVgFgQMLOzh9xptRhZECdp4LqBmyakmnV0uN9q1jdW19or3U6nE8SRZzuODyGaII5Czw/iiAyPJFWWoRCwYDy0bFmpPH8TVb0lG4TicgpXiSjjZerw+BhCGlS9Rq9x+j0zS2eWZTdu3Pj+7//7f+Y7/vx73/tVP/ADP/C3//bfefSxKwEsVVLTNNvttueHooiAguN7qOIYmmUhAYhSdAnIAWo6MxRTFiXkal4UX673WnAAKmC/N9cCmC3HLv0t/3/6SiFlVp6jvORfhGIkiIzchol24/GYu1iGYZimLkm4NwHEVAjnQ66I1Vifi+KlSAMHnaVJXxVCzAXZvKKPztg0Yik09WXNULmXhCwacDPk0rmJOAl8l5Us/lgujObnv9gl/vwsTgLqKTDWLidqamqmKrEAUllMemxZIokJKrhigps5VxWkm5A7IJNJMDjpra+skkuOXAKKkO9W/Mtj+qI8UgJ6B0sBK5dIcnbu3BlVRXcFGsqdTqNhbm5uojuXwbRLhDMPPksFng7RZeC5qqwYpiYqwCQHaexFoeNFKkWo1XmS48x8SFTQmPljCXyf3Rar6cXbZhRBqkUoYVlBTVG0pa8v0ecpIEBLE7alQe+bvyOqtwZ7evDP5RPuJFfvCIqUOEoHTBL4F6rY8nOkAPQW9nUDxRX3soDOFwNn2FG1FLdkbf45CU4Ir1WC8mqAzjfM3Fmj+QJz2yKUIiUh9JwQXKjyM4+5PPgq1Hvuek8jG4qLqlKG1YC+OlZmL8aMI0HBes2Pkc5GLs6Yc6DIsbwcnRWSB+qhhcVMfr9SeIfQqKgfocRcrzdlWT4+Pv7iF7/44osvDgZjVZU6HaNmtYIAvqfQrEiSZq0RKKCNyoy8AYcoV9wgQQ0ZwtoEI+PJGP19LMwwNyAZovw7WVwun7w5NSkDOyrclgkViZaKcEvIJJx9WaXpDYS6AnwEtG8ceDCGJ6YBV1KzTNAN88/9+e987catlllLUugGfup3nz9zYWvs+O/7qmdcz//YJ35nbE/q9frOzo4sy4PBoNaw4iyd2Da0KWSlbtXkJJtMJoZuIPMsryNE4ODBbGqmRFcKxr1UD8z1FiDrUaYpNNhyxgJ8J0psehWnPoP1Lx4VDaoyczdeERDzVMj3WP4WVYMjNYNemOtYBOhEcZ/ej/nZhloh7Tl6drmdH4GyygFZfCM/SfyQHN5nAkpAlUI8zs99ghSEPqds07uS9tibjMvLPbWfE2U3mJSMwzeoSZTDhnr+8xNTmcDzzVq14Br3+7w+VX032Uh47kaufuniY7XDhouez0/UAiWwIrWpGNaH57KsFJeD1itSO6BTT59A0I7SFk1U5MgPBFlSsOgh5yxhTqphothRNFLmgoC5AocErgstGG9ghlhRdKpyUarLhkRi7TAG8/2QMhNNUwLPozKkEPgu9sswHn/iyrMfad29exuEooKGxHVh0F91OUvFw8ND14V3nmVZvcGk0WxMvGG3s/r8iy+xmYPT6x3uH6ysrIRxYGdZEiZfHo2iIOQbgRsdlmUFQVAWGssLmnveZfgH1GTGpcJpWggD+GQDXa/KUPAkX4tYADM1zUIQUTKQUvKLhxqhBoGpLKuZZppCwkjAfKKFHqEMC9mCwlWRjC7huEE1YyTtmRiHEF2WwWnNQN+lkUaXShGzo+E+5UQq6EyKlKmw7qDrnQ5OTo7390VJsixrZWVldXV1tdPZ3thwHKff74/H44KDQVVwniMJHFPuFy8blRujcuOgh5jfzVRBQ18Jd3Q+GKTpspAf1nzKQMeLqIgGZDIajVqdLrnwIlRUSgswAh9IWADxJe1O57jf+9Krr3zf933fD/7wPzh95sy//+mf/tCHPnT69BnL0JLY39nZ+sIXvri9u3N8fKzV60mSuoFrmLD2Y8UjcmaQEgAGiEpBWEcBKt6xhLov8R2ZEYHDoUmwSAcW75GZQ1rcSg8G0jqi2QBmQSlaPOB9UaTCMyoXgfMkhwfFdBpkRSDOAXI5HKyQmRdk1H0Fvdt3FU2u161Wp10zLVVXVEX2gyBNYDjougACoVBKn5+A1YZBDlEdKg/N1QctIzdMnJZ46S0qidvkGxSkEXNnqWBZVrUInWM0xCwKQaBDdl24ZLCPShzndAV8AmSpCmWhSq8SabaqomEoyZKippIcZ6hoJBIkXEnRRyYuL8Yt9/DpD/FomfXRyfG1W3dqVx4J4ky3aiur68gwFUBDaeHEfSaKhHwWFTohmL7QDaPwD9R7RTx9agd90YnT2d04d+niaret6+rR0VGjVo+S2A/8NIpkXcN0lwKizJiisTPBUaBJhC+j6Ws+xssLzQwGqfRV8s4AhUNzVa2yMzA3tdLECBgBw8PZdaoqOi/Og8dnpD+rn/YglR4UO96wIF4tYxXHlUee1UfWWeC4tJS/pz5nTryfKySVB1gtThFaIofqcHjHip2861W8Q57tiKJi1upMkS0b/LkKM1R3psZbU0MueQqtqe5Qgd3P5luZxN7NY6Vq56YI8ljrpKhZT1tOczPGrKrP9DIkUa4LPjf1lO+vvp6ick9mvTwpE96Tn0uiUj4nW3Q8R69ESsFXoToB8Znz8y5LKNpR5iN7gQ+/dEs3NR0hBhQAUYySJCxOuma2Ou27d/c+9rGPXb16NfDgEWtqOvBzcRyJ2X5vsLu5qqiipoiJN8r8oGHVhsNxa6UbCBDWDhHgKKplTEa27QHUW6vV0IvMpMFoGMchPG8xU1P2h+CSZmkKOlVwIZi3WV545MSEyIW2l2nijo7TKCZBwTAJsxSsQVPTdFUTswSo8TQzTK1hamKkOr5zcng/RFWp5nrRb/zGb/6l7/1rr7z6epoKG5vbaRQ/9OjjvdH4Cy+8AF+SNDEtS5AEfH7iS0rmhD58hRXYeUgJEMSaILV1C+3ROILkryhidsgy8F1lYj5BBxTK+twNJv6iFASESZABdKN1iCaIVFRUhEHAeKKhT00D7qERCp5GOPIqUFBAdZYiUJpmVF/K4TmNzyqlHfwZLfhzAzQuMCQzWBesl7iv2KGTSTRiRqQUqkxUy+0Ery8678KMbFy1pFaG1LxwFn05Sv8p2eByQa7XzolOJRiFkdm0pjJtg5KxfDXwzTPfKMGCNFcUxCwWT2VAq7eYRkcrhFDznZ4Hwt4VLb4ZRxKYPhbTRv5+ek568NNZBqUsTpyI/VIm6mXS/iDPEPYVDvzA9T1d1WRVgRICPS418lOJK7JYvHkQdlOlBIC7ptVHhdCWc68LguBOCv3N6cdhnQtDfyqwizEYe14QjHtKFlp1QxKzCxfP3L1z4/KlC7/ziY9pmhKGmEYYvDsajdY3tgajcaPRun/3vud4EnQ5Q0zKSbJ79uzh4SGHDdCVN2qH+/u+64pZSgkGz2wSLPdEEWjdLIuCkKN/JhCngsAIfozzwGVrRYT3qZjArguUNE01kEhBZ+169wABAABJREFUDSWC7H7BkEFakECIBCAiEHyh6wkXlAz+eWCrQzQ+AeJGkuLIR+CRK8ZRyJ1z26RcfogUekQZSyiqH/A/inFmJUXF6k6K03CSFDWZEi0QNbM0CZNIyAQ3FgUBsoyCRlFj7LpHnne8t8cdm52dnVM728LW5sHBweHhYRgGMnzGKVenUkuZpRO8spIfVpc8WgY58+RxTYszpimSz0M/FagpWiNkWo1RWMmkOEoURTaIi+n7oWXph8fH9w72TV0Nk1ATJL2hQrQ+JnU6UvNQRUkTVYD6BPmkP3j86bf97z/2f3z7t3/7O97xtn/zr//lO5568t1f8fTR0YEiCvduXbv00OV22/C9oaoJSewqmi5KQhR58HAw4eGQwH3YjBI3CGNF1kRB9GNwBxVNDIMwE8TtlZUv3rtf77QoBE8yOQPxWsyiKDYFKQiwghiGNXZ8RJD5Lb0EGEwTbJlL4//oHEkiaBlxrMiSYeiKBDCn7/lqfg3y/Ct3hin6UXnxsXAMJD94UdG1tdUNdISiuLu2Nhj1m51Wu9uqNeuGqvlREHmhosNMxo/jVCKRCcbh5AbBmHnzaLsw3MxNCRUQ2rHcIDUo5ObIDpZeLOZhwo9RI0zByCPkbD6N5IMmlaC7KWqGyrJgjBdKqFDiR2GM+yam4UJSiRQoGYYxGAxXVlazTJg4qA5sbG2aZs0Lo7v37mep7AdxLKkuPHlF5NwZODnIE4QE1AWceSnNJMUw94/td7c31OZKq1lPNT1ToU8BMSExiiO/btWSKDbNhiCqUZalMvj1iiLrshj6fqZJV65c6TQazni0vr7+2ONPrqyvDMfDcDxutbtO4NEirWSZGHph4gV8Vv0ims9DFOoQYnqp6NzzisAraXlzzT2Zm4GXRurVQLxYtkpDnbxvrSiF30hRKuIPYyfdXN6xsrotdp55bY1SDN58JwvVea44Lhpu5pKtVNIrYmDMn2ivxMj42Ty0iEK5MAsb1vIAeUcpNS0aR+W6idiDNDQLa6Byr6YN2xxzl7sg4LiK7hvma9brwcclQpBM5faqZ9l9wKl/kFVySIHCg7ZZlyJ8pu/6jGt+0PurmyQA8JcHDZVAJxMFQ9OX1uRUYuWX+V/5SN4lS2y+4iRAzChkZGBWisPhFzopHsL1ttOUZDmKA7B7FV0WZFU3UQFIxFqjvn/Y+61f+uUXnn/x8KhHGB5LI3OWyI/90I189+mnHz3cu3d02G+ZpiJIVt18+NLFlZWVg5PBzb09xaylujZyg0yRrbacON7AmfRGQ6KpIakHctE0RqNxkcMChcR68AIqvmEu6AYIbXF7CIiBDJwL0Q9cJ7LzKVWCjruEqRNNiSSKVVk2NM3U1XajaZmaFKuRD8wuURWjNHU+//nnfuqnfurwqOfGWau7dvbyw7fv7t25f9+06gi+MV0DNVVEyNPrKGEt5Nw3jcOINWQQF0uCJOM/2VAs3QptX0wFaIn6hKQUU5A5cYpR8YVIWRoQ8CDvukKzHNcqnwsA2FLYGibOC5ZUyVBlFDU1JDl5J2RuyFXluqq/9X2PJ4i5BAATePEB1Y9KgwIqhlW7yC4QiE8T6WmEnQkRIRDKu7c0GmQ3pWneWwYeMfazGmjmgbgGed/888u0QRTCNFisJZTiTlVEAf/WIB+MmZ5b8Wfl3pdJDCXelc5MkcugI+FDiW9G+oZYSiGpcFQ3TgAce8wqGdViWyaJno/LvXhdyub1HDxUkWTPARKm3WyxbUUQBLVarSQBz21hOIUyVj+/ilKoXt/AXz6/LVq7l9d6/niZvE4aqrnxKhk1AL7r+7utRq9//NXPfODKlUeuX7/25JNP6Lo2Hg3ZGi+3noCSQ6rImAknY3tw0rNtlx2tFEUN4zSynQSZdfHVVA0ke1zY+pQ7Vh4j+hXT59N9plINiXMC+oTbjlSb0TEBQ5FVu6ZlFCkRE8+2kzRCWJwISqbkqyOqPkSCFJVMSqkDg34nOwnwEAbxjQpYXOGOIjCRcG8w2TsXRYADPdU0gBMsei1KLOYQDir7IebOtVikDPM8EhHMNxnPTKSmZej69Wuvvfzyy6tr3dOnzl68cO7+3sG9u7e7zRYmpeIO5SSeqD6LK9RsY4CZd0XBqIIYnB8nrFTIEwK1ghUFCSoE6/I+jKZA4ytOFUklmhQpgxSOSPwxzXZ772B/dX3tZ37uZ9/33q9s1ht//a9938/8f//dj/zoP7p3727d0nonB1/3tV/9C//plzorq6OxTfotUaLppmFYljUZjXGG5VTFionkJIUSRB5vsE6gRPhMzE4iqgXUhSFZBGoEVsucywkAuYJs9VdMVqRfpqKqA38PAavJhABF0K5lN7dyK2H6zWazWgQtC+ScZjFOFbA6WYqzpNls+FFgJKZoGrqkpypinSiGNo1MVNpc04LBOYwjKmCPsoQVrJy0Qj/glXSqqc0tiNwYmc5A8Yj7GokKX/JqDkCsCZq3Y/TJkE5QzT/OiOOOQhI8kUjCg/oJlmWlaXrv3r3Tp09nInj7Zs0SMmk4HMcoH5AZYIaaGZfVQ5TWAeI3TTNG9cOW0kSTZdvzLaOWSsrd/aNad+Wpp59++InHDg7ua2GE/hhNQpIgRPDJw03XXu/2nv8iEmbsR1o3lW6r+Y63PT04Ob58+eLFhy/W63U/DBTDSETxaDjQi87tXLN30awqXy8qENy5DvxcwJ03V5YZ1FZ/nIPiUJd4yVb+lTjT183kXGRxvra12HPgS1p0r+Z9rnh+LB2lUCTJezIzrjgz/SXucOBHhgjEuAkxPBa+t9Ihn1ublsoWV7m1VeskTDuLutq8PchqmJlqi137By2olMjOn+spyWMWdYCAo0IOrn5+sZ/zKtosTopoggACZU4HC1AeSRWIUUo3Ht2suEDgG9AyJpB+C4NL5h7rjSbDMsm1kIYUlTWSJKnVWiDaR2jZE47YaNTqk5Fds2q268mq0mmvvvzqK7/6a8/eunULnCRZsCyzbhlJFItZqqqKrluaadx+7eVWo9la6aytdr/2q/+wPZk8dPmRzsrKrXt7Ky+/NgnCoR9GR8dhkoRpojQs3/fjMILBExrDSRjHfhTIjTp5x6QxwwvDgGuchmHliQGvhFSR5oAYprlxEkWJqupkEZ+6gd9sNlVdyxJUB0MhwFwQRaHreKNJ2Ko3a2bgeaqq1ldWNBm6BJksfvrTn+71R/WVldpgfOHChVdv3OL5F0kInANQ+i7bP/C1Z09OHh4ShBRjiLJBiD1OIxFhvGZoumHibB05QYYqARoAEgFyUOkhODAWTjHGRxATlXrUskpk9Om4oqgnE7Jao+77KJpyZA8Vplaz3W5zoDlHWl2qLMbPO0q3rPjO32OVV/JZLxNqhlX9kBwALcw42pa/QqhRGLfl31g8h49yJYLIg2CKpaYJSeVGBUmDl6Ti09kE1zTN3BVvliybOwfn/IDpgQwGg+phlgfCpLG5WYxasVPoThWPVzXSqv6VSBjKmTPJHQDCuaFOVD1FQqaoJIeyUIaIKh0bGfy/nErE+iSe59m2zdEDH1RVpWdmvqponVWfPGh+U0CdfAvb8tiIIr9ST12mxim/3ul0vFFvb28PUN0wGI1G3W53b2/vwsVLJSGHjUE45B2PxwcHB6wbY5omlHaSxHO9Uoy8NOrisKRsqeeqA/noymEV+UgrxgkxRyl1IEkomlanfu0UC/G/JYg/FRSFREcRV8jwHxETXCp8LYxVMAtTUiHEwC6jFVDIttLKDWlzCsUEqUoWRwWMvTLYwIj2QeJ1kBXMIlRqOdehlhRvbOFHSHqa/ymeJa2Ee3v7mqaYZi0M4hs3bokiPK03N7fBTSKD2px6VFy+/ALlvdbi0yk7wSok5Yw7IiThLUQdA6oQ54FLxizRLYhxhPdpmi4kYpAEgiLUDGM4sQcT2w0js2Fqih4FnpBkqMGiszZfnsyybH//sLux5vl+zWrcuHFDV9SLly/9j9/zPR/+hf/wHd/xHWkq3L27t7Z+48qVKy+89KVGvaXKShAHABPLsq5qAWPK6YPJaWS6eHJNoUroR/MSVRUul88M7DdKAN5wQ7wBkzd8JgPN63XIXVjQjckL/NXdcBynJPBMY3FE0hEK+HiP7LreYDAMw0iSZMLZemTvTnB80rHwPM8hmwvOHyTC7utkVL+9vc0Gi+UnY7GLUsQnC0aTc4ld9XlC83keXBbZoCBKOngdRcW6gFGlQjLxfeoepKkcgzsAY6BUknIdpyzLtre3HXgnR4IkHp8cJpkoqQa6JWGYiJqkocGUxIksSgA7CGmmFMZ8ApjcaRgJouh47q07t9fWVnZOn2p3u0cnJ7Kqs+C8KCt4QoTAJIsD393d3rh//74pK1mcmFb9yaceH42HTz3+2EMPXeqsdU6GPdt19BqoXwDyPUB8ZXECXFIKqby/2uFZjN3fIJqfe33p51SHK2/lt1MFfdqcr8S3fEew7E4hTZsJMkXc3HEmcDvQ+YT9oxmKy33cu2Z3QQQ708OfK8PNQX9LebBFjlmVNFxdf8vQqnoIpTDuIqIBMq4Puh6Lr7PbyNIT+qAOQCZgWSorlKU5DtOO5zC4rIVHMf20WcMhfY77zGER098GnkdQF4UI8dBfZ7lF1JYKxXRWP2US9YO4Cvz6kv3nwnmhgopvocudZaKuq2IQpCjmgmkXp2iva6oxcZzNze3BcPTjP/kTzz33gkpIuFqtFod+HMeeY8dhpGJfLUOXnWFvrWmtdVt/7I/9sfF4PJ70TbP26vWrf+j8H/ng27/pT3/XmtFoeakwHDsT17u7f9/33bGN99k2/ndyctLr9RwXnxylOHsBbWEcxWTi59oUWJCzJkYpqzhkCexzRM2oWxZwmCx5lwiSGIeFhhlJc9RMMw5DZzRkkYRGo+FOBoCOKUqWIoqNsjDKvEajub2zY7vQLwIYMUkUNddxErEwxwAFMNkioRMIfgoLCKaipuiyVa/XHWcCAHQhTgfBMkl6z3vfi1ZmFLkuFIsnwxFkQ6JAgB4g1gldM0SJpvU4DvwQBqAVXE15bzDJUtfR+mXp8eFw6Ps+5xJVxfpqArCYqdONt+ROYc2cOcw3CN82HIKrFlHViWmxGNBuNMrxzSID/Fe4vwoGQx6WETgWiezC7MAw7tLxGvUlUjhJhSwkUuMclLBU46lK8vHrJmnXlmem/Fvfn5G7LfsDMpq/81P8rEwWq8XkyhiEO5t5M5+3qqpPxZsAArlLm4PsEMy1wCqUq+TUcqwsEfLbMAzPQydnySaRA3el6sNPqhX9uSlx+bzxFmOgKukQ9B8eJIpiWZYYeffu3fvoRz/6zq/4Cs/zNjc3v/j8Czunz2I2lBS0XERogBrI4XFdesMRfHtkVdYw3UfQ3oC/YLWbEYahKsOrGNgqluEtkLB0DTA+qd6fL10ldwXXhQDorEyd61OLmUl+F4BK0gxczr2KJeeTaCZJiRgFsZCFCSZNtSDTZxjFgpzKMdB7BRiMf4cmBkvXqVQ2ol2igg7tZyqphFniQByxN1GvUMOmAQe57Lzdnf+f4nGZjoYcToguAui+ogKxmeDMxIABZIZh6roGaKUYzzWXKkOhsELINxAlaQSTdgImKaZfEYaJYn6kBXn8T0iDJFWAaUJmosm6Va9lkhQL2Z39vbHrgFVJ1wsGI7KsSVoszEPveDborq6MJ5PRZLyysuKHwF10u93D/YP/5e/+vX/+z/7ld//F/2FrfePmjRsPP3JlfXUjCEPIc8MVHBO+kMa6CgEfIQ5RJqPbs0qspPlRkhRCtfAroL+TnDud9PIG/32YAZf3SxSF6KvrarvVrtfrKiyERAMlpDzxKE3BmS5f/lgN5qjmCL5UJsAdZWKPhQzM2iQG02w4GLue7XtESkkE6qtguuBP4G4Y18FZLGjq1MUSmXn9caZwm0MpKoFvueUcIYYTozHNox0njPrznI0zOB8IOxQ4ZE2WVEFOU4V4LSqOEDes55+cnHS7XXZ9DkLfMC0fxUcjEyM/RAcD+E62UUpiRTOSRPD9IAXRNq1Zlkpygo1W03Ncx/eGtrO9uzVx3f54bNStieeEMJVBRYaIFFyCyTRdunf//kpTF7JEV9XHH39kdbXzgQ+8/9L5c2EanvSPJ44Tp0lc5GMP6pw/KO6f41aVF7Eq+lL9Ey4MLRWBWPo5D3rxQQmAQEai5QeWjw+CgFKIg/iS3MmJakvQcUAjCSoJyU4gm6nHSR9O82fJUMw7BiUkNe8YlL4HqFLkJ6Fal6xW/aurecnRrRKXl8a3MxCgN87Gqi/GpPC6eE4fVCGLIpqwFrC2zDjAOQManNiqFNDomPJmyBl8qupUoi7JyjlVV8iyeg0I/lx7HeZLbJekShrsEWAMD/oYPy/plYvbUrkoGP3EpJFcUCsklJ9wgTXVsMkTpNaomzVUlx3XjeKYJDj0T33y088+++xgNDYMNcuEtZXO3t4e1XsyTZHqpiYBBRapgnD51HbgOqc3Vl/78gvd9Y2HHnrksNf7hj/1wXMXH26trdte1J9M+iM3jJNmq3Pm3Nlh4DZ8Z8VDJZvld0ioF8yklOpbJAZD+EVu2AdhHCa+603s0Xg8tkcj13HiIBz2B/fu3Tk8OICOONU5VFUFIY/U/ECqSzOUShSUenRdr1k1vKFWw81ANyeSmTCI4kzSTE4Lfd/t2RNdVxNR1A0D8G4Wr6DsQiIhozRJAaUU1UiIoySEeJypU71fi0HQgH4BtFq9yB1HQZIeD4YK1BuQQbW7nZ2dHa5rHh/3fMcdDofj4ch3ACNRVd20ZM8fc/AwvWOJNIbaOpo/Kay7oAZjNpvNlZUVgyr01VmgTGiXdf0eKFlN5cE8xS3VxDH+uXNFt3fOsqFblDsAc9mFmAn90Yj1ofN6P/VP8qC/qPQXhIG8WlYWCao5wOHxMb+fY5bcVZiEm6pvK48XHYZKKF/e2mbF8bc6m3MpfY7UIwhC3aotNfCqyv5WTylXoBcrIqwLOaenBshNuLxlXE5Q8y1gRfE8D3p/qnr//v27d++Ox2PPcerN5tLrONeZXOQAzCVaZQIzP3W86RiIazYqXcZ83FKdkspROf74/Pnzn3/uC/V6/eu//uvPnb/wW7/9seFwyFqHkOtW5CiKmuTkxQ6DvEzm3gLU/6vuDifAKaNaIXeAcjtwdwVKjeD+YOhwhgbtwDThNBLMY7wX04Uqw9gOblySwI+lL0Um5v/EKFlTfyCThAj1LyKayrKicXROpDeC8sg6VNlhj8GCDBKzd1IxZnmfvDVFsJQctIsqAKZSRo1CK4hMCvjO4fmPcgZQMtlQk5itQslhwPJMnQRRlIMQjmHIKhQwjlwvsG27QTNe4d3AAmtSmgkhNZjlStuEqbuSQFBAcmcltBMDojipp2Qg57BjhlCETE4yTdaA4vAiuaZZVs0PosNe//7RsWGZhgV/9MALZQA7ZeD9aO8JYEQBQV4+RmBk23at2QjiSIxTL/PHw8l7vvK9/+U//8ru7s/84i/+p2eeeUYjbdknH3v8P//qf9lYXQMKXpZFnKHUMjQhzRw/1FC6TBP40U4jhikIHjN/HvSjoJGS6EQRoMwhE97SxlOEaiqmqdfrNbKlw/oT+17lq/N3coBe7lX1czzPG48no9EkCDxBkHzfNQyrUW85jgfGexj7vguwU84gghxndQZGZyAFlPfo4JAbEfAHMAyuHIFTDkTDDNe5ihFfnAGoo4UwJyMWTVYEgqQ1BE3OMN8CMs9IvCCXsc5pJ2DgYvitr69dv3793Llz+/v3I9APMk1Tu0bXCzIngOFvFCWyzGkqTU1YSemHJLYaVrtRj0J/0OsrtRpZZ5hRnLhh5IZRLGTr2zvDsV10AECyIqUtgNPi0Lt0fvPe3YO6IbY77Z3dzT/5LX9CUQQncMbjoR8GuolR6sfIpGhozNwR5Zy8KLvJW9WbYlFooXomq+9fTACWymovxZIsBbDwxl9W3fM3gHQWSwBuH1r88nCfy82wMylKz+UjzbfcZ0Dixzo8BBzEkGKVnqKplmPIGHaYF09zSTT6+sKDAltlveOOqDi7Uac6t22ZKYxmGSBAS2P9B2GtmHyweCqXVtBFGCpp0nJs1vR5ZQdSyzDFeedTPCoirGZI/jQpHwHdkWVeKPiUYzmhhkEMbHHemM5pgnSqfVT+5iumD8LsYmnUVOR1OFe8LOVhWCIEWZo2UKjQxsORpMhbm5u6YXmO/+EPf/izn/ncxLENwzp79mwUJa+8eqNuKij7AKorGaqSpXHNtM7sbp3cu3Hu7Jlzp7dXNzZSVd3YWfvO7/mLkmGObH/o2m6YNFe7Rmtl//AoiMHHbHU7agIRh5ggjJ4XxGTRNeiPSggKFnUZqyAU2VXNFKXuOpQBNYLjIyLLsjAINBLruH3z1ic/+cnPffazg5NeliWO72laLooM1V4/YECC4zihm651257nNdptRcOM3EQPXY2oQg/gQZCMg9Cqt0Q1lhVwMEjDAE0y7As3cIDyzVHISJIlUdJUpaaNbcePvCSLEftCvywSwkQWUm8yTm14GskyhFDq9Xqj3oR2Ur2xvrL6xBNP1GqNNE3H43G/359MBo4zwBJOgThxBBNyk0pNTXcDHz6sipyEwHviDmASTxEosxtokY0XjVte4IrnBDObT2jpnDOjjwDLKILmQ6tpYgnPK7v0OTzuV1dX50L2mZYlVwKKiSabTTDyuLng8XCpqbTiqo7nsphRblgoKtZdJXNAlaCiOPc65Cknk7lZr/ycaduU1OL4sdfrLUbPiyT+suqmFGaTi32MuTWAN1lZYrBVoI9yswjeOPeICRrENkCrq6vf9E3fNBqNPvKRj1QhWHOT1lII0GKzNd//B0CA3nxngCf6IEASy3o7IkXhzAKPqBKZpuljjz3R7/evXr360EMPJUlydHSEJZ8CfTbqQvMtgIuP4zik6EL10SBSNITljKXiKTdJctMxsH2SGII6ZOJF+UzenAkVJbcIVGRFUzXFYDM5cEKXOTGzS9HMmkNRO4HiiSdJUkWKCr8wUZQR9acS6AFQb2HlF8TnCm4oUrcmOhqlubmiAu5LMr8pHc25IMO3IAydEPwTZhvMTlTgRTJWpU5C3lTRmFyOuwhJcblqjMd2o9FSFC2KAsfxojCQZFU3rInjlGLzZehRepaXfln5aCGGKKmEKQDKyHIK/WT8h2PA/QlCpUTzA5VZBVWQDEUNSCGe25iDyfju3r0giU0V8zCZJaboWYCRH9NB0jdWdiYThL2D/UarCfykoty/s6dI4oVT5579zY9+9Vd/zX/8j/+x0139V//qX/2F7/7uL7/0pa//xm+6cPbc8fExMP0NSVdUiFFGcSZCwYhiNYKjV0uqSM9QZoLmTHmT5Go807ZSbv9MPcmlQcUbb41Go91saZpCtRqYCcANI0LXrspQ4iE3Go2YEsCtSxami+OU+7qTiZMkUa3W8Lwgy0TX9QeDUVFSRKmIn8NHDw20aQ2CMl48Bh4CcZ5JEP7nCYBkqLlc5tz4n2t9lE8CD4pS6KHlQCP05QvXP0qqc4lc8GTQsdQ1UpQDkITYMPD5lSTJo21tbW08Hq92V1MBrU7HC02z1bd7tm1HCfjTtDZARCOi+cTQVL1mdBo101AmsZ8JiW27Zs1SDHPsegcnvfd3V1Y2NgAWbDQysOsUSZGhT4RTEceJ32qtf+ELB5YpWJb6nve881v/9J8MEz+M4KQBGqFlJVnqBT6WdkVOofRQdq9ntpJEuzi1Lq3Ql52EKl7lDSA90wh+NmR9kHxndYkRp5+TC3fNzM+zI7m6BIjAXEec9TBsqnwkny66O/KuIxHj6QNyjS9GABaPCiIjFGAQr5IpIUu6pCTnVN2Zufh5hvcM9Iv4Zo53mrjqBSRm7iRWWznVzMyiytzi3VvF+FY3A2zrdPGCVZtoVQCW407IAhKnFl1TTHxSmqV+FEAsAtbHUwfWQjQ5vwCFhShekZHxFFKAxaMsCCY1Fhcv8NIEhkLYQv6Jy095RQd8LDmRGo16EEa2ba9trNdrzcPDwx//yZ8a9IdeEDYarUajdePWHXsSbKy3U+j9CJHvJGEUZLGhq5cvnvu6P/xMSxNf+fKXvv4bvu4zz33x2U98TK4ZESRz/FiVJq533J8YXiSIqu06imxEQnrj+v1EKj2AMx/VCiiKSSp65Bxmcruf1ydJxX5HWRoEXuYkSRxCUThJ6zUrDkJVUR658tjXfM3XnJyc/OIv/MIv/uKH4YHi2U4QQJKcCEmSKGiqIkhy6IKbhe+LojQOGCwkyaqkGYapSYamGVpNVvZPBl4QttoWK3xRHMOoV9IgkGXGorAGEcJxKfXjyGrUrbopJ5kUJ5kfxoGvkkbt0HfClPCaoe/0x/bJ8ZGiyqpi1hoIgiEUpLdaLWj5ra2dWTvXbj6KBZgCaABCk7isX4qyVLdqqq4N+4Nbd26PhyPbdZoNdUqfJb8LKmuJqgx3lSp0jcN9ao0UWXvxmFcmKmqwdPZpCNE8wP+iAyADVwoBNaq4LzbvoK9aJiTFlhB8s0w5uGrKuj+5SjS3ESsDWylA8AxgKzdJVfJeAD2WnwlDq1krQN5/kEMKnM9cK3bp/a4SBKiUfi+l63h+WIQAVb3ZGXPCP0I8qnj/rElw4Ycwu9aC21BAAsiJFsqSCKNpwej1euPDQ7XZZPksTdMeBAESKXN+UAJQfmO5zw/iUL3VBEChKL8szLCqumEoMaifyuHh4dve9jZVln75l3/5W7/1W3VdPzk5YSMnXiDZ2izzA/Yw4s8hqXIaifQ/Qr4TozWBtB+hHfDFuZYtB22Q8EZWgTwEOviyrKkwItBUYuKgJzEtiNNsSysUYXIK6WGuouUpL0PCKDhEiUtGyidJUkhYZ/QLaIJFoE9cnZJaQwRaaPoS1zU3Q2TzQuo405eKcCuqNMepXFqt5BD0go6LmUKiqqIKLkLOJa/9s/Reo7UShn4cxBB1aK1mQuK5gec7Vq3GSwt6MpxycyWIC2S5GSffZTi3KHqRqg0JWCINQSZCRipY9Rk/iBMF6LecCSpl3aoI+xdJkmzPHYyGI8dWTB1tAbjqSrqiYRGMOYMohk0J6MK6Jq2urI88xyGTuK2dXVkU7t7bu/jQw6+8+trq6vo//+f/8n3ve9+P/dj/50Mf+tCnP/3pD37wg7/0C7+IJidNvFkc2R5809rra4PBfoqCiYQaF0oaeZJTxrtcjkQkTTgbzgGmPUzauAMqvJUN1pA1xNmSJASgg4WCAEkcEVxZqPfNNSdJXjMLgmg8tl3XtW080tIE098sFWRZ1VSdgjRhPLajMCZtQxFlMECuyJWaA0RSoCKKC7eVcFBsABqFYRSGHvFzOHIBjKcip1GNwxaripQ0KoVGXQ714acKuVLwJyiwM1UkEOLFKEHCDyQD3RMyvOEVRRZ7vZO1lVXD0AShzg3qKAr8IJT0bGw7w/E4SsWGrCWClCSBKMpQFAR12GjWa4oE+FMUBSsrK1EsaLqeCNDBG0wmnbV1q9mJokDW9FRU0GCSJBSXCE+H5TPyIWYkCf/j/+W7vu5r/4g9GcRx2O12nfFEVdVEyFzPQ5ECAYkGHwiEsEsC9MVAfG5erYbyc/CVavy5aCtZfX2u85Dr6U4Xxunz0jVCnAl90dSampAUk8icx1Q52qnwTKTGXCGS22FU76jI6Fcec45u9VVmqCqILLELUKkksxOCE9GB0ziZ29sHJULsA1CcgYWjrlwa/nOIYywGylz3LF9hvW2i91FPtUL8quiYpktVdFzbJ1HH+crZHES73C3mdBVgh9KIKSf34hxxe4pXG7Dsgf6nT8hX7rnGzbwyFMrDSxKSpdAOiIAKCARJZJjxqfw2qV6v9XqD0HcVVd/d2jxz/sLhwfGHP/yLr119XVEUDkcOjo5UVd3csIDPSxK43co1XZEtU19d6TzzgQ9814e+UwjsnxqcfPTZj1y7d+/tb3/7uQuXgjB+7pWXzHa32VmXDc0HzCZAxp+Ex/1Bo90YB67jAFkOmziqh0EMGw36SozC1bvCD0xWENegapUaGak9p0ncXl0Ng+DevXtR4D/66KP/8//8//iev/g/fPzjH//MZz/1u5/9XK8HzSIAKuMoDnxNhM0QC1OQBiWCe5AfkjQKvFQQA3uSifrpS5ePBuPd3VPjCfaQ52sGJKDWmEaKJCdwL4sSCa7HIuJR+AV2Vzs6tNyFcEJipxM7k1VDFk51W4KUxRCWjFw/9IIQmKY0HQ2PEOSquphCTGnvYI92KhZ8B9UTohCUju4coENjTlEYxZQkSbvdXl9d9Un1JYfmy1QgkvEBFCGTsy+piZauwDJOJH6Vy4rMDpiZKYyhcXTH5xZlRX0acFJnvgHFCYBHMvAkQ0GhG11HVcCiWAxWYrrPTp15mbNIPKahP5tnMY2SDrO4nXJ11DxjzgRVzyu7M4tZmsVByAHQnHNKlUtTfcKuomXxbO7kLC6WVcswTgDKpsdslJNDqqCEvowU9YCKDr5gMoETxWQyee65537913/9Xe9619d+7df+/M///LI4JPc2+D2bAOXEBSr+f9tWQoCY5IeJqNDGLmm+585cePXVVz/4R7/Otn/j5s2bummNJk4YJeDGE6YtJk4tujeSFFGKmklQywXCUpZF7oPkQFIJyhIp+oYyOZJybEVwKWAeoLKC/p9aHTBEs06I+Ls8sKu28qcZHUHtgUaEhxWAmOjukUR6ProlshqgkxqnIO6yEDBzkFF1QNcBuXcSRWyIAxkNyhLoIVN0i0q4xAzHCAJPBNxyBej7qa9W4fMSSoBwkLUIT5O8jqITriiapYPLyBfX0K2u1KaVAdEW6iwhBBGgzp6mru3g+wrKOJ4CzJrQWcbyTXExxCjIUgRzNQXMMUldU8xOrWokKHEiaUpds2JJmNjArhCoU8NMGwK9rWlGHIRiksqaEhVGnLz35d1BzQFZkOTOSiuMo9FgaJn6xHaiKH7kkYfTTPzWb/8zGEIf/OCnP/uZRqOxtrZ2cniUxLGCEo4cR0HDtE6f2hn296p6UNzkwEQBbgfPLsW4xe/mF83pffcWt42NjTgBl5W8YiPf913XRpuOVM6qPUMGFnKqTxF/blTH82oUpoqspiL8vHDJItBnDd3UVD2XCYLmYk5yoCuEE8m8AlZc5yNkyCKnslXHWYxIiuj5E6qTMD+ZyQFSUWGjMaSBaL8rCnEthJRV7zicwLrMZy4TSI+TTjT2NMEVpcbZZGJ3Op3hcOwGLro3iryxvdHpdOwgsR1v4niybkmqgmiUPNFqtZrrupoi1y3TsYf93rFlqDs7O7rZ6o3Go/FAs2qCohqNegy91ywW5DAm2SFq3JGqnpTGAIR971/+8+9/3/s0WbInA9M0wgAJl6iItmdnEC2sNVSNBDwg3EQ+FfNw/LlT9KBBUn1DCVWtntVFpEb5J3NGsdPLUYjQVD+KA2hxGSgoqahfzv3V4iYJqZKLFuR+mMW6XR0MTCrLqXoSCuLziWLRT8DPbBWPSZOSfZn8Defi1aVnlYcTjasl9Ik5f4PyiaKr1UyFReLLgJvMUPKGYG5PQAUfTME5NazynOXhykeuphJ3az7zyy8k94krPQsJGXM1/agYkKHVPm/cQNYV09H2xj0mRvAT06C85HykeJumz0Ae89MnSLJuUU6LUle+oBTz0e7utiBIg+H41LlzcRz/0A/90MRx0bXMxCAi1zC6lkEUsU4BrHNV9fho+K53Pt5uNT74wQ9OJk7DVF9++eWx70tWXTPMX/nV/5qatc72jmaYw7EtAa1Xl6Us9EPX8xuW6fiBFKcaBYYymLZAQ4ZJLKW5MzmrpNPQJ91pyqhypTma61VNA/8uSTstaOAcH+z/0//w85qqnjt95qGHLj3x+ONve/pJ+S/9Fdd1+/3+8fHxeDQMAy+w3U9+7KPXrr789qeebjXq927fcG1HUZSV1a6kaXf3Ds5dfmj/qH///l673b51545uWK1ON07TiT1a3VgfDoeaqniTWNeMwcQZ2CNRU+rthmEaip57DDXa7bpmDNM0tty2aYpRYveOpcCOfM+o1Xd3d5qnu5D80VSj3tDrjUkQjBzXIyWiTJSDKETR1/WwGM9uLPyytrYG3oLnNRqNw8NDMMiDgAh4heh4CbDLxz+PhiJ7xn+5EctUfLdYEqHBJsvj4ejq1atxFF24cGFtDSjbMPQkaNuFHFcdHBycHB3XarXNtfV6va4QVAPxBImumtBSIB23LA183zRNXcHcqhtGTGaOMQZV7knJ4tDIJTA6KaAnghoYHRgJOKUEpc1MA5ro/X5ft0yVOgAshcHaF3MJEv9JEAQQlpGVMMSLtgMYva7rk8mE2uE6cknKkbgGzdhTMcPCyYcTx3Gn0zk+Pm6327Is81LNyN05mzDG6Jf3neO6tVrNcZyq0XruU0KWqQ+aoJfW1wNy4OYW5ZUrV65evXp4eBjHMVOBLctqtVpMW280Gv1+X6SK9WJtgtf7UjCkxB+HQQ5tqv7JXNBQFlDLz6laFnICMB6Ptra2mJveqGHfGBrsuqIhC6OJ4x8fv3L1VVU3vvDF51eRuELqh82AUZql5UfXTUlUTk5OoBlCRAJRBnhAIpySpmmObQtRpDcacFYIQlFWDasmFzzL8gDQifJDUZE5j0aDiGgDcRxZRg0T/uzBUnqPsIqRS8UuIVclrSDC9hD1R8yUSAjjLEiSyLIgPx/HAM2XxuqSBHnfmmUGjq2pcgrAWuQMBqHvqYLQbrRMXU9oTJqmGQrCOEQWxLKJxJUhIB5TVIkdxbhkyuUJWsCIomnPPH+SIbLOfGKsMfgNKxR9FqW7UDMTKCihzn6adTvoL4a5vWuK/7EskoBSRwKwB9mSoLSvaaoAqgYXJHDuoyBVFE2WxDSTDN1QLSNIs4k9OjnpjcdjdBsA/ZJNw5Qkyfc8VSaFojhIs1CSJT8EyrFmWRk58BiqKvgoIzdUaDCkpNaiiGimGlb92o2btUZzW5Ief+LJX/u1//rud7zDsb0/9MxX/eav/fr+/l6zXpNFYWdz48XnXzo+uLu61hKz+Oad25ubm5IkDYfDyw9duXbzhlVvwTcXgwRYqzhMFFmVFVXIcllhvsfr9XoMLEopL778VuVKYxTj3mGafr/fDyPXdz1g9MMgR8ukqVb4mZRVA474yzoxy3lNAxraHMexLEvX9cPDwzNnzrBiwdxuUITBxg3cG8tLJzm9vIKAgFQJg7jyZi6Eb3lJKJ3aMdapIqaSRRc3GDVN1WUt8P0swd2HxlcYZAlrl1NPCf0NsuGACQY0rS2rzsERyv5I1RPPc0ej0euv3/zKr3znzZs3663mU0895fpelCS94Ug2Or3BGFBlXYdwB4LSbG2t6zjOow8/NBoNjo/uDwc9TZaeeuLJ7Z3d3/n884kIFk4Sp7ppGWYtTgRNN+IsgwGQJIdRjI6fBKqxLMWnTu184zd8MIoCqObCVzu06jWkvmlq1gyOaxn+BwayQF39IuSrhqrlQjMXm1Ur+tVYfA4eMlc2WgyFuRO7+Dq7JVa5wmUfSajM29XvWqrfzPHowsspuaXkMeGDuGT5b3mdZZEJGkulyxnez/4DPP7yk8mZGEfmM+ctF/Qvns79qsqBLL+j4AqVJbb8TCruZLjYT3kDGVADCUNOSpgqAggiFeY4yeCXGahIBk7FCVps0FRN9XhDAgDqLtdGptopTIvk18vnbKvGNMk5Xf+yC8EcgPJ1VYaqydw+LMoX5C0eQQxCcqbELlHqQFovgiTqqjIZDzudlXq9Loniv/3pfz84GUxcr1ZvkGx0ruiXDxNRbDUaQgqhu2anpmmGJCr39u73NSX1Jhu7Z57Y2X38ne/cOHt+4Hmd7V0vzQa2RwzSOEmcOExc1HIiWdXCKDDNWtuqAwLoOLGf6obebtTHE6jcUFgIdZ0caJGl6PCS9CzKFujaIoJJ4UIQ1A3d0o3N9Y1Tu7v946Nr167dvXPrS89/sV6vr6ysdODv3dje2rp84YJlaHEY9Y/2Tw7vu667ub72rve8p390fOvOTSrMppub60mC3uvevf0LD69vbGwkqYBg0TQN3er3h57nNOr1zc3NV57/kqao586dO33hXL3bTGWx1qytra1Yhv7Ki19y+n3Q71w7dt21Vmel21FCL1alLAomh/t2/yTIslSSRUtPZOWrv+6P/LFv+baHHns0leSJ5yYZZn8phN8QExZJfChXv7EMczAahn4gKfJoMPyBH/rBu7fvKKtrUW609+Y29ungyljFxLecWXzfhyxVhAoWF5ywvAH1RFVD1+31evt7e7Kq3nj92sWLF3d3dliR5vbNW3t7eyi0g1iJUm6WZU2CrEB8qdlcW1tTFDSjIto4oFRVNaRFNI8iy3qkKLque3R0xDeXpYNFzQunA5emVJFkzQD3OkqABwPfK4p108iSdDAYIICoWYaGmhkvsTySPc+DTJ6u27bNYf1ips0ucoaB2I6gs8wO92u1WnlHVKdjVnzSqN6ZwHMGn+lTGySHEbAufCGZwHHFfJ+RSxfLXs8reRRngEDSaPAKTTIj6uHh4cnJiWmanO4CV0BWbKVW2twB8qfxyWc9cpuMvfJostI/KefPMvrn8I9lVavvJ1kzMYnQWPN9v9Pp6KoyHA5lWV5fW/WGB0bdgNxWlFy/ft0wjGazee/+fWhhEe4ftW5VzwQxZDxxBjQ5lRtJk19SSI8HOSJZh0KTkwkAQpJ4nufevSsZeq1Ws1BpxhGhY0Adnpg+CgElEJU4XtOs+a6Hu2Ch8AnH31KrqdIxt+qYqbD/YZAQIl4SM1NTazo42cwxWF9fZ/9ds1YPovDshQux71946vHf+ehHhShYbdTqK92Lu6dj35MS0fe8Ya8fQvckDZMUxl5o9WloCqN1niWIHdOaZuTVXZTgC0Q7DFK0XB2L7lgGZEhwageyIse0FPA0ypM9QEeotoJabO7/wx4+KLjJlok7MdfHjAN7pCuyYRiarkoCAj7MCYGnSip6pX4Il3cSOtM0xdLUllkbDQeTvi0ZRhT4vmuLQra22h2PbdI6SiW4PIJEEASB6ztqnRrddHeU0QNWOFkmIjkmvxj2hkIUo3WRhjH2OYrXNje6a6sf+u7v/qf/5l9/71/+K6KQvv0dTz/3+fTo4L6uapok/plv/7av++DX/r3/5X8aDgdndk8Nh4NTp8/EacPxnc5Kl9fzwp23WMRZarWyvaXyP93feTw3Ho+j2ItgGRdygyiv0b7h9LzwdcylzDdW8nnz+/Om9nn2G6sBLtdN+EsN4g3ruu6NHTb/5hGF+S3NsDqkEeogAvSXuefTqNdrtZqHHkjsTOz+yUm/fxIFqWFCy/8d73jq9OkzmmHoFiqMMCHFoJOOjgeeH2YIK7E/ZNgsxGG0tbEZ+O7J8eF4NNAV+eKF86d3t8cu2EGSrKp6LMqiVWuIqpYJUpolAesAchmJg1BuWcBDQ85I+w6gNXiPoHfIiw5n0ilIkkxpSTn4myuul2ne3DksycFz0f+bqefO/QkH+kt+xbJIs3Hdoq4/b4iPlmr8LdsTni44YF98fxVSXv0uYoDkL07v3wrfZvZsUE902bZIk8s/n4SGqu16fr3k7M2jA3Idg/x3079RiZw337gRMoLQz2/VFszM+2E0s9xCubo35cKJhhNnTsX7SrkkPuKS0lt8ChnEFy7FzDIllChwbAQXKp2MSYIZKkbszLcQuMwCkwoMqySIeg7JRhgPaDljajPUR6Ey3m41X3vl1V/+5V8xdENRsLhSHQp1CEnB0kRKxRIAu6IYZWK91e0NJzdu3v4n//RfjEe9Ry+cz9J4nCrW5v5r+z2t0Tr83ZeGXnDr7t2h7Y2BhvEnwxFzm2RZWV3ffOyJx9/3vvdduXKldeoUewBhb9c54eJ0iqZOiCwJveGA9e8YuSkJGcIQuE9K49Hg9Vdfe/mlLz33u5+LQt80a82atX/vrqHrdZqMGDDdajRqpq7KCsoPzaY96r300kvnzp7qNltPPPHEa69d6w0GimrcOTheWd/Wdf2ZZ57Z3D09njh7+wdBFI1GI0lIt7Y2XnzhhVe+/LJVrz3zzDPvfM+7aq1mIiaqocdpBNTPcPgdf/bPvfziCz/3kz8VhuFqt5sQ9khLUxM1SJkgBEqzbhq1mmjqaq1x7dWXn/2NX9Vr6s6Zs6PBcRAnO5tbpH7AbrQpeQdzNz7zXTuJw7plpKJgrq+iDgcXUUgoCm9xI927mZHMkGX4uQaB4PtQOPUDNs0JyX4ljyYpMxH8IAkjQZIMXW/WG4qiBJ4fB2HsuBjQWoZZ1AeFazixhxI4a1azCYXQdrsGDQfBY4bo1LV3ZuO9sm372rVrWQhqp0Daz3gCZicYIu1O99TZM2vdFVQkBDgPyYrm+v7gpLd/dDgZjhIBnt+yLJ86dYbDuyzLXNe1LEtV1ePj409/+tNz0hz8Y4sGDv/YbDZ1XVcUhbORUrS7On+xgIVq6EEQGJbZ7XY1DfbPOMk8U/O8xt+S/5dzHqqPuQtnTrvKH8Wis8GZmEKqmsAJRNHR0dHly5ebzWYQBPV6PYrA5IEfQlGJmaMrlKs4J2AlS9Iy0btY7Dgxc7dKcuAprt1uz83jHOPULYMhds1mU2u3uJ56dHS0ZgHnxtf6+s3b58+fX1nbEK++TtY/AKwDu6IZkgxBZ+6k5RLppLOfQBZNllR1NJwIaQhVfs1IowBYhHodqy/PUaKSRKmfhLKMlI+TElVVdd3krgW2KE3jAJzR2fI/H4dLfhpVfT0W5BkPhgx+UBVVTCMCw+NW8V271aDQWVWP9+9FafLe97zvtWuvd1e37t69+w1/9Gs/84nfFsSsUTM9e2I1Gvt37yhC1jQbpiQnhhXLKhEVIy8iOR5AMwCc1pBMqpmsSKAtYaqjsYGCK7g3smT7QUqa/LzqsBOYJIong74iSiph9LgZwtzfFm49aBmQTVMSBGGKwi26WwnwPYIMxwBJg4oofM3aW6tpjOEhy2Kj1ux0Wu1227T0zbVN08T9Ti7O4cnJyf7+/qDf/+RHP3L61ClNN2/cuX3v3p0wihVFdcdjKRGByAhAAMuzREVWsgJgUNxEhYGDaNYbgqZQyzoIPR9N4SxI47TeaqsKKLM3b91ZWVnRDP1HfvR/+8Vf/k//6Id/6Kd/+qe/60N/4fVXXnZGw63NzX/4D/+BpEr/5T+947Xrr965cycVpHVCex4fH5u1uqLrFclTYmUThKlAluWdrnJUv/nplMe253lx4ieUtRQpP2fGMzMtM4/LGnN1xiufcxuKiPVBVbvsDTZEcuXz6r5VX2fyxqzschn/WCbU0spMAI1N1x8NxzUdmQCwnZ4npKlO6qVRHHRbbaQKYtZpNzVNc113f3//9ddf398fhqGgSsLmZv3tT7/toUuX1zdWdV1/6aWX0lRQFV1T9cnYtiduo92WFO3e/RtuEAJfQLGTZmiY8aIgS+Pjo6PRsB+4jlqvndrZWl3tXvvccxxvoc0rZla9KclqjFJAGvgQMqfmHqZU+BgTH1aRsAykCYn5wo4HTt3FbUUVMfIW4vYJiygvPeElHHRp+bUayj8o6H+DP6le/bkPKcL6wpm67PW/EUcrXTJCpt9VATihoLG808VzSBncl8/ZT30RD1/xGKeEokDGJDConT/2RchrpSdGuqJQbpvBQeTnnyHhjE6mBVJpoo8jLHEIq1gfz5xTGFvk8Uc1B6iWA6tnn26haYukfDIXu5SgX4UitjKgLx+hHZGDgzhBBTmTIIp0SciCmdpwpBnEzTrSqEbgy7omZGGowvl1yaSwOGcVyC2FCKC5zzfR0fBdURCurK4PhpPuytqzzz6bxsLK9opqGIqq43Yg1TZFQ/QD2qck1et1HEOStlsNezySFPWoNzzpnZwMhvV6fTB64dnPfnFk2/WVtePeUFS1Jvg66Fqoum4ZRnv3FFxRLOvWzdtf/uIXX37+RdM0O53O2tpat9u1SAlHktB/zNv2iMYUURYb3TZrcgNGhVUPqxT1VtAs3FpbXX3/Vz504bznu3GIQh3j9fPapCxrigrRTV358vMvXr16tdlAX9UPAbY58oNGq/7444/fOziEqcD+oVmz3Dt7N27cCJLM9YJ6s7XT6YxGIxceTNr1azd7vd5f+97ve+yxx1rt5u27d8fueGN7Y6XTrRv6w1/5vutXX/3kxz92cnK0s7YhxtHIGZ9eX/NOjiwFqBcvAhjdMlS4BwRBo9t99/u/6ql3vlNK06P7e912W5CV8aAvJZCVXbygQRBI1CIYjUamaUoEVhHe+gbtiIUEEt8IgRRqfDP4M05gIpNjIArQoSToiiqoKgfvpo5bL/T8NIIDjiCImmWGni9pKiQaeZkPQyFOXMd59ZVXTp3GhmEgQryIsMmoYE5vuiKBlxhq4nqCokAuOp4wqg7fQmAwPhscHPtxrCaJaZp3b93mLgT8XPCfoDWbr7/++nA43N3dXV1d5TA6TdEliCaTSFVF2EGkArTk4dgpSdLJvTuyYcJ5t91eW1vjBdj3/c998pOo0lAfvAqM0QgtoBp6FEXrmxvwocsV/am6yAlALqBIzxkUtCArvPRxGiSxi1MB3ssyqKQ/9thjGMwEtWI8MSIGFQio3GG3iP6zLBuPc8O4OYW08QgqSXP2w+WkX35IOeOXakjl7M+fdnJy0mg0+IkzGROnfS2whxYJQerU359MJmEYWpYF0V5N86NI09G7AJLHBGfaMBGv246HiiBWcQi9axqg/du7TduG4Tc+p++lUZQqSuh5gpKEEvpFLASsEyxKpwkEhe4Y5oPczaBpQOXuAXfYSr1qdr4k767cDSMjXQtOJIi3AXpbRutZFAVJHFqGYYd+liVe4PmeferUqWHvUMgS0zTe8Y63v/rqq+Px2BmP1rY2NKUBQfIEf45pX4EyowIorZSE/kbDmkTBBMIvk8i2JcPSajVZN2q6JaiQIUbxBpdAiMMgFUFBpto5VONEKIyGzC+hxIwsSuhykURjmmbhJPaYicPKLBosxGVRUIeDvqbKpoYGFkAPWQRdOjG9devm5vrqxYsXH3nkkYcvP3Tu/JmtrS2z0aAknJh9vPBFgWu7vuce/Plv/8UPf/hXfvVXB6Nxq9kYT+yJ4wmSbOhWANFP8CeQwEqyrqtG3fIjr0wAeLSRK4PYarUETUE9I/B9RYMrvYRsJgij/sjxff/JJx/v9/tCGhum9Ve+9y//xL/61w9duvi3/tpf/fznP/e+d7/7b/2tv3XSO/7U7/z2d3znn79168Zf+xt/fXt3Fz7EoJ2iewVlM1JZZVW3ok7K7nBTxeS31AHgeKUqpEOVZvgnLJt4Z+p0D4oOCWKVq7Z75Fn5Vnfpjbdl2S++mrV3GUrHLU0gKkU4ZBc3fggV7CzWDV3TW+S8E/WHw3v37u3vO0kmrHbl1dXun/gTf3QLHfQNWZSOD4/u379//cbrEPltNr0AzYGM7lZoHWaSbTvHvUEUJ5qhR0kWxolBzcY4Du/fv+dMRibkO6B7YlmGmKW93nEm1xkJEAmJAWioFJP9sRuEUMmmclheLiSiLKQACErH+rV0ekkWg+euher3g+Qyqz/OFM5m48b52P0BVePqi+Wsvhh8kgDrzJfOtQIWN+4YLG6LV5w7JQVQcP5tJaZxrjJUcqiWYlYX6/r8OQ/KjqqrP+1PmsbzSUIO9SGxLH69Cs9TTKr0Lwb0VS3wyoVJFVywKQF5euOVRXmKNMonLBu6mF7jtFUuRp5Pgh1ftvSpv1I8Ipri8nteBqRggIlQrMAwfeRxmb+SIGRHZkvJWoHeW7hgVc/26flFJ4FgpKTdm2ZRjrbATkFjJs3iMPAO7u+vraE621ldlRWFrNQJFS2ICUgSYpJmIyjroDYzcd3JcBiFMJ9f2dyFN5ll1tR6Ikp6Q08S1TRatWYr8AHkiePQmzgjREMkDiDL7VYX+iZ+MErTw7t3v5Qmrut6bgC1llnXa1CERVB44XxJ8CdWMKCFDEjxOIksQodT11Jo1ltUuFWrEAhyRiQGcYxSULtxpmHVLFWF3YztuK57eLiPGqQKZEIQIUA8Pj5e3dw+f/780Ulvf/9wdbV74dy527cR/W9sbj/65ONxmtq+f/rsmTSNHXfijMa6qhzu3f+n/+THrr785bO7O85wbA8HrWbzZDJSyRBekKU0wPSTKDIgjImwubXztre9411vf6cbh73ByFJNSZEjwV1ZWaveIeWmadrR0ZFhGHDAoQgGlmQoMGHJWXbLL102iLOFZarQPCk1dtJMlVRKS1UBLstItDhihiZjDBkijJgoEqIog+UQCoppBJEiQ4GAgpBloeOq9cbuqTNlNbc/HCRJ4tt27AZHB8etRltXDbDcUiGKUS5jz1HmBKO8yoGKIKUwcxclSdVVI1BCZtDCMY0mgFzXmpSjIAYsy6PhsHdy4vb7AK5qWkSlNki1hPYdLxBltdnuKpoBd4gkFiRFUHXZMFCohp4myanTQQqKkoRh4nk+YXPBSY0ix3FwpxGAviyN8zBLRayEMJQIw1qjnsNUmD/Ddb4it8lvWD7ZrLLyez3yHZ7HFuQRFoYh5K1Utd/vf/zjH+f8hCkB3W53MplIRYW7nBV5a7VaVVuDEsi0urJWtjGraMZSXrka31Qfp2+mY4pDf3NzczKZfPKTn3z96qvMi+DTZduj1dVVoF10fTgccuFf07TRaLS6tsGa6MWYlxVFY/pEkoBvSpoSkLwpVyMcg4E0vtWsg3JQJDAo75OAUhgEiqpyJoYxoqupOgX2qPgwNJFQJCwTLUlMY9gIogMNfQHoboXkJmoYBiBAUcjdY1VKYdWniq49TkJkHaIgPPO+9+zu7v7Uv/133/tX//q73/+HTgb9j/z6r11/+aWveMfbBkf74cTRTaPZbrnOpG+Po6DveoGqatABkyVnMsxU1TBNraH4qeBESX8ySoZ9yXYAcrNquOVVsPtBOBbSAEqFYBqADgXVTA3aRmLmAnKZpgQ4lQRZ1YB5EkU1jnx4A5EIBOV5zNrMVtuNJA4j3+0NHRGGze3Tu6c2Ntc+8IEPbG6unzt9Zn19HTIpxBoJnIleq6VhEHoOcO3wHNatbtsSmpYh/T+////1J7/tW37y3/67X/3PvxpHYatuESoDDjZAYysqKFhRCLlWOuUEb8tdhxMhU2iM1er1VJHQ3UZ4J8kStNLIHDGUFPns+XOvX7+GInQGp600S7/l27710vlzGyvoBIqK/PAjlz/76c/Isri5uX7mzM473/nOe/fvHx0dbZ46Va/XSJOEjORpvOI6ox0OJFS5jJYBwxt3AObCO2ZqVBmcZYyT062KsPBNpgGSDCljUkXIHNdWNYV0jCqV/IX5vOQ151XXB9T+8y2BVMGUA1YUlduNJldkcM5T8vyiqKtRr8G8EOo48WAwePXVW4OTXhgKaCMlgmkIp0+vv/vd77xw4UK31ZZkIfCjg/39T3/qd9BuNcx6vb7a6YKBQ35lmmqQ209mmrUgiG7dvhNA3UiRJTWGEj/mARnohDTw3SxL6rVmoqqmpdetWggYYUSxG5Y8WAfCA0fEFAGlVDcmmD6vaCwmk5EDnSxoOKlZwjJ5GdkqsQV9ftoZYF7pis+h6ueezxSIF4zAlo6W3/PJYochD4upoztnFPAGm1QYM89tM754vPpPj7Rqyis8KAEoOE65E8k8NKgIymfenCdZhTNxkfnzVZp2JAoSOXU7yCQk9+6cLljE0ygPZPrtiolWKWrk7ONYPqaYbzAVClL+SHUQQZWh/zWLvKVHBOczaPtCfT83Q8l/S5YrTCYu30OQFYb28NnnNDTXWeEiB8OBK5c4f04IIxrU4KjAiSYjz212paH/I+ArngvhgvPxG8wmRNBnUiDCNxCGxLzaoenm0f6BZtRGo9HFixcHw+dDkh1wR9DjTzKyoUklSOrSjAG4dhhKAq6E67qqIsFQR9WPhv3UCTL4uqAt7zijFN8je55HYjsk+YgSSw45OLx3n3miNLpJtk+WDV0NPIBGmLdQVj2zLAEeA5cAnxBXEtEIcjpeq97g9r5t21wHlSBABl2OqewaGbBKmdCoG51OJ/Lsk5OTes1o1xtwXJZlo97IBDlVg96dfcedvPLKK6pZu3X7bqPVTgXp1q1bvmtfvXo1ODk589RTG5ubR72T/mAwHA8NTVfkDFQyWdq/e+9P/PFvWv3O75Ql4eRgv25ZzXp97+6dLIp1HWDHKImhboagU4VsuSR/6lOf/synf1c3ATcfO3aaCJqhT1yvtGqcu50YlT4YDCzLunv3rmVZuCIqaZ+92a1A/8xCgEBbITcGiGnSbxHBC8CTkBxYcePl6DW6ZrJiGaaMZAaunFBcpU/cXNu8dOkS06oAVT+ue553ywU6yCcKQa1WA16ZVkdNVuClUGzl/sii6ExsDEDXG8UIX1RNS5NEUkRV1jMptwNjSi4Lv7z6KoJO/HEYqrXayunTjuNMTk4EzRLC8PDwcH19vd1u8zzVarUObt3i+o2m6xlhx6nvARtv3wPRgMPH0h/UbCG95PPA1IK8c4gzwIoclWUeyERqHTLcgE8g5wPTWfhNPTKSiDrXOYWXZ+HTp0/v7+/bto3SmudFvt/sdFAIJ5WGOdsakGJHI9Ru+dtJQzWfjnn65WpH+aT4sdxKUCanHKXbNBXbCCOUIqzne5CB/oqi+KTvyWKjgFe1WnEcu67LhqD7+/tb27sWwOsUykqI02VF8X1fVdUoTkTkBiHSfwQmHt/pDM2qA+SH5L9LCTNDm0hsl/iXcXx0eMiiVWzIjTWeVKEa9alxXp7D0H9JFmfQEGHKrKoKlDSkaeRh6JLQNZoASYwEWEhjVc4ee9uTTz3x5Nb2zq/8yq+8dvWVP/KHn7FM/d//1E/+yI/+77/2S7/wpRef/52P/OZP/PN/FrgTdzwK0hDk1iwNxdSTUl9IwwTcW9VQ7cCxR1EsSvXuyqkL53fPn2NxwxQUWzS77Ak81t2J7YVBr3+InSTGBXfnWCBIlRUyaqRrJEoy1pBUlgTLNOENhdyRyN+seipm9/cOW/Xa+tra9ubDZ8+effLxK08//fT582dZsZdBiCF84mND0wXFCBy0X4xaTYBdE4wYfNcLI7+11s2C4JHHH/3+7/+73/jBr/8PP/cfn332o3f3+oYmR2kGyAfoBEocwkKNrEZnCmel/YVhGDCCglJQoqK0IQmykqqJ3Ggojv769Rs7O9tRHFi6dnB4XxCT9Y2Na9deO7pvqpL0trc99a9//F+16833vvudvV7v4sXz3/0Xvuvv/v2/N7G9hjMxrTrAVBApyxMAdi6dwhsW1tA37wNQjiI402URXZEE7qfLgsXqXz2oTlya+HIHoEHG6m+UkLwVClhZaZ4xmqTNtm32HbcsC2Qt6vtJkrR3997xyWGvNwwCRPyqKmytN7a3tx966KGt7Y3Tu6cMwxgMBnt7e19++SXP8+wxJMtarYZlWZPR+PDwUEXzR7fqTYEoUmGSAdKn6r1e7/DwWBAgCEJi01W39dgwNFFIIyIbnF7Zsixj0O8JKVRrMOmDtQ/pZCFDJiBmiT1xwzDW8qmJokbqwgICJCqkEEpuVnkNOxNkCFdyGJqbdlf4IItx/AMRIrNo9WoOuSweWzIeqn3UuY08e6bvWUTbz22UNi4fEHMqQ+VWlbGuVtwZyj73Ym6sXtkWq/LVP0nAWV1iq7DYMyk3hTi6ZdbBLegqCXtOuBYdAAr+Mbtw+M/PSWUZYmXV1+HRQuJZ5G6QC3Uy8iABXoWifZqnSAWIADNcxSduciG5gycJ1RDy9Z2Ol9+YxjNx+VIpqJkLQFS3xT9Z2gcBRBLawEu+Yi5kLH6UgsAuqJ/w12AzGhTYUswvqSD7cXblypWXX3k9yaTJcAL+MjgAmC2JTgeVFrKCgDNBow7PYM2QhDR2w2Qymki1Glw1olCRRNt2UaFNBNcOkgg5AclIxkkW0TFirOkKKspo84FxBmE6BMaRFFHoSUmBXD0uezhik2NmAuQoBQGQj8hx7VQIQx/hYBLrKgJxdlqlg5DY+J1Qpkmn2dpY67AYCLu0Jkky6Pcx5TVb7e7KeqNl1tqTML52a/8zn/kMDJThbSEFo5Goo6tgrq+/fv3aX/0bf7PebCiSGAW+LEqGLnsT++Ro/9K5C6qcHR8eCWl89swpmWhhNXTz1ThF7M4bMAkhqiy9Xq/T6YiZdHx8jIm+VlMV3Qn9VEGGPXdl+Qbgqfng4AC8bUna3dmxPV9Tl68BS5evKuVtZnrK8jpWDgHKINqqyHKUIvSCIXImQPhZAjcIs7ckRwFUC+IwdG0Qs0I/oGhVun///pnz57h1YBoG6NRJMhwOR5Nx4vujwSBcX5eaTXxpmoGTSMaj1b3ijYruKIh1W+0L589vbW0lYSQqoh8GcYb2ArOmWNMmjZO9u/eSKBIywWy1Lp6/cOrUqTAM9w8PXnv9ZhgE/mh0dHTEHsyCIEC0p9D65PzBJL+zKPCODg4BWyLaAKP/RVFsNBoQ4ohjrIHFjnI8nSpqFARIYSlhKGdbTKCc9XO5ougBPECF8gGlHRrGzAEtX2MFpPF4fOrUKWQmFHMPBgPeT7MGMmiZqABoz7I/RQeAayql7KAPp6FcJ74KGSpJYOX6NLdQVTSFEChbhj7o9Saatr6+3l1daTabYRiORTGIona7zTglVjwbDAaNRkPX9YODAy4nBwEuKC4B+UIEQYA7WhAVzRB8XxQUWVPrjVaUgMWRJEnNBCh5NBqJothsECeBakW6rjdZ0FORJ5MJKMKksM7Mb8C3FOnk5IT9icswiJ80m6iAEnlMM030WLggGocRSu2g8ftJgMis1m7WLP3bvu1P7ezs/OAP/MBzX3z5Pe95R5pmB/eGHzkZnL348I/8gx/+3U99+td+5T9/1Ve++9wP/r1R//jG66/3er0wjERZTTJhaLt+ELkhyhY102i1GyubO+u7u+31Na3ZFjWEwseDsQQxU01WEdnn5TQxu3f3JuwNXc9xHGc8cR0n9Hw0qSZ2EscROPyeh9amG3o+9Ci9iSLBzhKCUY1Gp9VsNeuWrj3+2KM7W5sPXbp8/tyZ1U5XorormnWgamHip7QIrCy4m8OllWWvYnLeBe3GbLdMsSnEvqhKcRCIkvCud77jzM7u5XOXfumXf/n2rb2h7SSBnxg6jJY1OSOwXJykGsN+ylWMKAKapiXwHcs0Ui0GqhCipBjYu6d3tre3X3zxhSSJxmMkkPZkaKn6+tamKUl3b936+Mc//uf+zJ8OHG9nZ3sy7icECATSTNbyKytIPne0uAAyG5Dl1rMlZKCA4C2/URdu27wTWHjXV2HTXPtD4a5ScGW9nXKGLlpoU3w2+Tqz267XbjeZzvNmdmbJ7i3rHJQ6V/wj39qnTp2aTCakXupyQD+ZeLIsuK6w2lUeeeTyuXNnNjc3G41Gw6rphto7Pun3+6+9etVxJoCWFdjIWs2KojAKA03V17odaED5ANyy6QFWe+o6uI5/fNTz3CDVNUKs4RYu1NjQLCDxUJigi0K6trIqS9LBHjj3pQYO6kcqamewDUkiwAv9AEuTgAQYUgBk1adKqiwrUqxw3svxUT4NS3DpYIQmITVYJnYeq1PGndPrVXmyNJydO9uL4dziVk0AplE1AmiUiMsctfz0B+V9Gce3i58/m3VPd4MYH4vF/qUJCXXJyStwYcGaSaHzej6JX5IqzuJWPclV6D5U/grQaSnJwB2SpR9CWlNU/0fLnXHyFMFC15+L7zBbzICNJKukNE1I5ykXcqb9xHPUl2HdyPciL/Mo8gODU4Hy5tdlKhMxFdPlLyOxv2pLZQluqXpd6Oty59fysdQOWnw9cyFqwVNUFcOKK0PWSKwbU6jHQAqvuCoZRBagrA0/p8j1ms32cGwbdbndaa2vdVwv6o/GVquVosYjZaiKsYQydl6RlShKgjDu9YcaBOwlXVWTVLBtD9IuftRuWpPQ6zQ7gedT1sZasHQtaeplF8wEEG14QxZdnpx4NC1IoAGYz0pilhDhjR0q6A3E4oe8LDj7IPiLqmpqZhQEMRxPAtSN6GuYh0EV1PwCxUCkjGrg36p+EJs1ubWyjqK7454MxnFqdze3Op2Oevf+5HC/ub4x3r8nNBrNDlVY+31lc6N/707/CEEeCG2SjGwvjU1Nr9fMl156SVO40CT0v/iC53lZGuu1epQJQQwmK4qRZNKE4ZbBufbe3qGQikRZbiOMCiJN1VNFSgrNqPIR2F9RGtkTOZN3tk+lUWx7buiGdI89INh/c1u5/MzI3tMHIkLMtDQNJUmJpfzuiaIw9b2AEHCCIJlGTYAfq2xYKMdCybFea7YhTMnS+4amx4D7x5IgJnHiTGwWk80TOfZzoo2RSHkVM4MDJU97iqKsra1tbW0NBvBwMSwzxSoAbBiCbGR5SM8Mw3DCUFTU1dXVbrcLoHMiNVutJIkkWU6DYDweYxgrCg+2h59+ul6vM78NuQqB1G17fHBvj/ZGhf4PabMCgW7ojzz6WBQHYQDRdk2F8qEia5KYvfT8C9hJEX/A3nYpIFK4b2j2yG1B3lgM5A22sjBWBCfAMIW+22k1PvQdf257e3viOoYBAh9fwdEYldrcq4G6RiR/yX6xuXwq65nyOsokrUrPLd+CIJgLkfP9KTTa8hAHSPNUSOPRaHRydDwajY5PDo8O9u3JqNVqteqNyB+2Ntb6vRNd08LAr9fr/eOTzuqKZZrOeBJFAJ4HYVhLZaQuomh7rh/FrVrDROu/Lnt6KkiKpo4mY+CS00hShGYHeo6OA7pQivYCgkIHGAD0GSA+q+sXL11s1uub6+srKyuSIJ4cHl2/fn3v3h09zcnQs0jorLe/x2RrTdNqtRocQmKYDzZqdRQyYFMStOrGIw9f+sp3v+vxxx79r//lV26/9vLv/Pazn/zkpw4Oj3u9wac+87lEkO4f7B+ffPnspYsvvfaaUa9defTy5XNnTz36KALrMJahqaUGYEepAmIjnxnKXgQ2sJ+mnu+nYZxKsmKqgijHYhrBd5EFOtE5PX/hQm7KQUJJMijSIEwjniPkP66uT9I9vp+Ewf2926oi102r2+5sra1uba5vrK416oYuKUkaR6GfJFEQeAwETLKs3m6hgRKH0PIjAHoaJ2EcauRPDP0I2mEs1ZIMsicmDVGxNEVPM9dvNutf87XPvO3tT/3gD/zw7b29oe1FoRcLUkLuWmjgcIOXQrBEyMi5BMMJvC80MSAcKWIplpIsyjJ59/Sp+4cHYppcuXKl1zse9E/s8dDQQSNx3TBVRGi+dTruZLze7f6z//Mf/1//0vcc3d/7tz/1E4HniZo2cWxZU5MIcyoPY4LT0NoNz+PpXfamb8hp4Zwm37ygTvYqcibApSGXNEPvmaptix/Cs3YebOSyrVR3KcDQ9LioAjS1RCSZcjqQN5r9CeszyymicruoyDRichGbNEs+8+lPHR4ej12gEdgOamOjfubsqQ+87/21Gpg5Q9qOD/ediW3bNiluSZqiWEQLLn2U0ZSmLYrD4QhdfRLjlXVDdX0vjLIE+bc0sp39k6EfC4IqAnlJ1kbsMMBwPt9PTdPIYoyy1spKIognw7GsG24SCzKFOtBzlYIYEOIoijykwUnGPt8g+0qQi0YtAKqvBAoBuIC4mYQGAdKsQHnkHvfk96cofDnmytVLMfRz+cCb6hoxGI+vXfGYCQk5EJSvTGXoIQSSu/PC8o/GG/gMD9KNS5n/sPAPaa3M/1OONCCi2FaQHssAt/zcXFYfMTFkZ8tDnjsnzN+reksTlgyYGiqXTUXwedwtvh5Alpqvi6iquoxxCtX3COsUXi+sD/ORq6AnwZpoRBUtH2VRyV1QOUhOCP1IevylSn/5L2IZwuIUhfbi/sHP0DRkvdxqu6Qkw81meDMSrdMPKd6/mPHQqpzCzJwuOzAzMey2dQVkLyz3mKmIB45rmwMS2PGUEassFlm+MpsYsFcIQxXlpLAMhFGFZjpeoOqaJsOc+D3vefuLL77Y6x8KQouK6KmqaAI4nCE0ejXN9XxZFh3f0y14hEWZkMSxUW/Gngu2niZ5jquq8sSd8CSVStCAI9FhhdTqhKwA+kLGizrBSPViSvUKAsZ0VeZ+C60WeC/1VaoZqh/5hmbins8Ex/EkUfG9UBRlNrplj1u4RZGppUjtVLO2bRlAKUzGQ1WvHQyclZWVIBRS2YygbayHQXxmd2cyHL384pfGx/clTRJD2z6ekNiI4A6OoHuGw5AkcplEQiWrYiZ4ti9AgAUwgvwqK5aE+jTuHO7Ow3KiUKaVMmQjgqwKsuAzmpK3IEm9qbtt9ZGvbBrE0WicJenq+lqWZKjkViQ18nhxbgGo/lg4CvFcxdE209IFmrt108BeKjLMbAj8JUhaChIIKIvI4NRM0MiqIxJkxXDDBAidFL6MUKdJI0XM/DjxY3hHRAkIl6ZurK+tXOtfE7JUQx8B9EoM+ijVLCOOgNshoV+UCmQRBBRCmNJxpGmjXpdkeTAcIp+V2MAr9cjGOUhjkOQyAW2dMFRVLXK9TrO1trbm+J5iwFET650kB6rCoknIHMK41enqpgVOWxqDzWmPTVWpmcZvf/QjQhSDyS8rne5qQDQFWGaLUq3TsSwjDhPdUJMwqdetlZW1a69dVSRAHfieOn3qrKKo/fGo1e2g6EV1hnLpLabJ5bp+XIac25Bxgf4BQFGSxLAAxT2dGobWbDauPPrwCy88r2hq3dpKMpjYe4GjG1zgB5ciQwoGzGOaqiR/nuMpy/BXEuTAXSIxzjTrMv0o3QOSJHZDWwTsDbr4VEUEU0LI0k6z/vYnHr169eq/++nPnd7Z7Q9OnEGoK3Kr1pgMUK/NwtjSDU1WdMNIgrBVb+wfngReaJpWJuurq5sH+8cPXXl0aN8RVXXiu5tbW6j/KWLNNJD6KmkqhoouaJqyd3JvcHgoQqFVkhVtZWX11MPnz58/f+bM6e3dnfXVlWa93m00dKSG0vik//IXnw+O9r/i0tk/9lXvGdsjor1ljuMMh+PhcMhdBXsCQD+DXwHngOKhKmvyo489BLijItZr5u7metPS7+/d/fkf/xcrq52N9a1/8o9+2AnCGzfvvnrthqoZdpyNE/GRJ55+5pmveuqpp4yatedObu4dSqoymoxFQQ6iSRzHjUZrOD5BLtTvMwcnh0CwdiFUt+DtlAgQkucJgxfILMuGE6AZcwdWuB0pLHSoyJIGhSSt3jRNMKGNumnpKrJYFI8Eka+TPRwI6MjGgqacHBzWmjVVVaIk1E2w2JMssyNXVXXMdzBaVhIhzsTMMGqCkNr2hPgnhqTEPinqiqKWCeJxr7e6Avz3xO+3T+/WG+azv/Gb/7f/6ft++2O/86P/5Kc63QwyrYZ13BvVGvUoCKmiiR5tqiipLMbUe1BJNkAWZa1eq+kwkYAkZZQ4YdjqtCPPOTk5ijw3jUNN0W0/spq1NIx9P/YcfzwcjY9P+ndudGrWL/3Mz3zmc5+VZfnMmVPX7+9FMZSbEP4bWhxAq4Bgh7GgCFESWfC79KcmwTTaqSFBvdBlW5zElll3PRsNElX2g0g3dUWRyKmGKonU1C+EE6h7k2t6TcP9CpSAOULTnoQmKwHuVHVvb48ly+B3gY8FKFGl+gW5/CbQuNL00A+qOw/3Jcr/K7bc5CnBoZYkaTqKUEkY9fv9/ft7J4cDx0dUYYoQpL2423jb009/xdue3tjYcBzn+Pj41s2bDK7D8ABCDzPwarcNtCEBIcgNmzIhmihkFR1RlIRwwv1up3Pnzp31jS0YcqZRmIqyZo2c8LW7BwdDL9FqmagIihCmmFK4WmEYxnAIP6IgClNJaDQ7slnr2/7B2DbrbbPe8OIkDpFIrG5uHJ+caLpy0u/du78HfK/jQEWXtLYD37dqqmoqXuoIShaDbJApqhZEkWVZuL6FWAt7281Da/K+AMX6CHwL6BRhvspALgEnZxpJlnEdaPvlmlv8H/Bu1MJQ4AVmGh/G6o7wTuTpllA2wDiAtwndWnw/u4LkfSms8BQJikRlRsCOY0EcTAEe4tVUxCAHp42o/Q/4p5ATzovIZeeLhJQIOFHEk9w6o3IAI7D4LEzFpqt6etUzybL4fLzlIxXR1DL5IScu9LkFEbbxs35ZCFhyY0UsnaygmUPukQDQK2S7TuI5OMnUsZl9zMrHMJoaZFQfyxtmThBDUKlPVGRhxQnJNJUSiWnInRN70bKnS8mfApt6+izTMPh5FEPvGhXf2TYH1/C4bpdl4siGPnd5Tss4AVBUUWSFCmA9JZSiuQNQhonVy4lMeJm1dZYJRKIX0iSSJWmt0zx/eicM4jsntm424zgejgaKrDY7Xeg5jjD1k8cz2RASpsWDAKKtaAZ49fn0RpEMl9zzQg+lRDnrnmdAdm7NifpVetLyDeN7PvqfJcXPe9pSr3z+VbbGjJJIjhNZ0wVZldQsiFPHy6XWUiFWwlCVle3NjTSOXn/99SSk0JzjKVFMgkBIM0WvZaIMtzmaT7nxBLf3WY7OFF7/FoWcafQs36jmAV1wSgVIs4yo0jmo9ffalr6nmuvmpCgCsLIlKVntYhKiIQTAy7RsJsHhL0thKw+lcq6oCannOEkGjD4YvRIgOq5nU6DD3hLYuCPMFEPeh1yKj6dd6o/DCdJxkjAcjce3bt0SyBAqigJdVTc319trK61upzcahmkixImh61EQCFGMmiU1rJrNph14Y3uC1xNPyES0rWj5BD8BIAdcU10GZdbUAfmwJyOcXAls5lano5sWGVGpyLEzyEAKsiJI9BwKM0AHDQaDMIRsge+6u2dOI89P4SaB+jr1/Ytz/gcl5s3usYmYCc5kIgnC+9733k6nIwB9Zyu6ZlqW5+WV+6IcQ9NjISlIgu95pYNtpFRJLVezarGf4UylEihDg1IhibOQFc5od+j1OMrS1NTQ1Tl3ajdw7CyJP//5zwdBYGlq4tkh3MuJNZ4CJ6DruiypNP8YV69ePTo8WdmA/G4ICr7uhbBTEOJ0Y2PjAx/4QL3VrDcbmmHcv3//Z37uZ597/ot/9Os/+I53vMOk2EiQldOnzkLigyQW4hSdjTSJhpOe6wwP7tw5unvX6Q1HJ8cn9/bt0VAWRaNudVbbdas2GA1vXb993DtRZaXebAz7Q/gHy1AdpZajpGuamMovPPe7kiSoYlqvGfurq2sr7TT2hdQ3NfXGtVdfeOmVieepeqPdbJ46dzFRtfNPfoXeaq+srg5cN/VdP4xTWVQz0QX4NNOtuqmqfpSOgzASXbPdsf0g4aqkkFC6iNlViMMYHgH5K8xwQzET81Tu8YdUGSV46gCIgqlrcF/CgoAXAbLWNIjjytq5U7s1WT0eDUPb7jYbDUuPPHfiuM16TVHksT3OxKxm1URNikIPUHlqcPIdj7sV3BoQOlmIIwpQcDV0XVTUOIkGI3dlZUMS4si3m82W4DlKp/F13/LHv/iJT1y+dPYvffe3/MKv/Fc3cOzhqNFai+MEnoekdZ+KCKrCNJHRsQhu37iJtUrVJZX8HlnGTVN1tqHIEllIROTAuQFfGKAVpvK9CfRGpouCoYr2oA+soI45W1aUCDhDwEnERIx8+EtAy47VVZAHJtQhfkv3IE9QU3sjrqQX02k1bXjQpMzvYX5QqUNDvQlRcF03r4EjUQSSngtqSYyMKEh8wzA67aYsy67rTsbDtdUN13XR7pBlyzBEoDH9oW23m010LgF7U7IksV3XcRw3cG/cuOF5kQ1iC47h3Hbtqx69cub07oWz53Rdl8RsMhzdvXPrud/9HOmoCTUS6MPZygUaEWmAJQx9kSxKIwTblIyiziWD+0fdM5Ra4I82GLTa7SAOAteLYE6m+GHYG9sTD5VFQVITIqcTU5CgP0i8eZgjTgvjZGVzXVH1W3duC7IODRNcP5SLNF2H4UyWOgTz4z5nqc2goHguq4pUq+uqgYVGITJktTta1sHmiv35xZt9UsI7q28WxCVQSX7O/LS5TxbFTFNlYNLz91MZnkSoKmouuToRzUNMRi2oHguPGWebeYWa7ZtIz6LSy+VFHtIXlf0sv45g4XmPeuaRgDzES2XVybx9pmhaCempVvqrojvVBKnKkaieCsKI0K84R4BRN91NBSe22FsODaoQLMYp8EfJihvlTn4z9ePKoc41+DRiKy42ayDel6dp5JDOfbxMiIOwCsIpH2Mfomz8nOv0DNGJfK+EbXBFn98z6p1kEgQsMc0Vj6IEDju+iurcIklD81HAy27hhEqC6AceStpU8oeSFqpFCNpUw5jms/QKX7tStmluQEdRVDeAewblTla6q2uWotas1tVf+nU/hKvo1sa65wWD3pEgyY1m2/dD6GOQhi7cbxQ5zsjf5S1uxYic+ZdGD1/gMiPIn7Ck12IC8KDrS0dYzsIzyGnTNIcjQGR1XSWWquS6AONqmgG9OfSeoBPf7a5aVn00QqdzMpkgB0C8qODuYrMRllMuL8oDzL3nsIP/jQnAlFhTtgvehCbAW93yYkaBkeClevmXEFoyAR8QnRA2bRAyodFqGRo6d2kc0wqbhoEPoL8iZ3FEyj1qEIVJlim6FkQhTYYzh8kX72B/nxsjJ/AePiq8A1MBktvOVhKdv3yJXYQ91zN1o9FqTU7AMPZ9HzpOG+v9fv/u3bugbEqy0WjAoErXIY3IGTaFEYoKUXOL5ID29/cJuI+j3draYo41FrMENAWFXAVSqrRp0FiRB4PBwf39JApVpB/+9vY2DzM4o4VwaP6DuijcoiawVj6zE7LW+/Vf//V2F/6m7JadililLLNe3ibEgM1FdTUNx5h7uU5ndLFm6mi8FMSAskswHJ6UlmHlpsiSpTehs09vU3hyJ/eZyEfH4NK585cvX94HWle+ceNaFoVD32NGTpxC/VaE1m8oyappmrJuHB7u1+rm6konTWNFkXe2Nm7duQn2sA9iz5NPPhmlsAVQFWVra2s0GiWO+773vPf973+/rEGToF6v793bp4oR+IUSSWkhqEqT4/0DWckaTbNjGWd3NpQnH2/VrE6rrdf0l6+++uUXXwri4Mz502cunp2MRse93tnzZwEmk+REAAEmzkA3FGQxSGJVk2s6BMq9ILx286bnjAPPjRNRM/Qz588rhlmrdVY2Nx994snOxk4ga5MIPYQo8GIqocURGLMgnZGh3gSIhbjdakA+1HUDhPm0jlOrHsFQEiVZYmgGhlAen0ADIq9sKCrXc6i1RSwrSp8nXoDeGrkfARokR4YGdr6hqJ/73Oea9calc+dO7+wGrnNyciImcb1mmWD0CiuGlgnJ0fFhJqaaaSmiEsbQbwANBkNHNeotOiURKUKrQiolIMPE5NgUd5o1MQ2ENB33j1fWVgVTPXj1lXaz+fSTj2uatrt79jOf/+LdgxOz29Ks2vUbtzrdVnVgs8ma53knJ9dgAiOrQKeQ8DRLs6cUq0lpLCRhGiJXSKNYTLMYhgYRidrnSAzmBd29c9MP0NmmDEjzICKkQAk0k52RLSlyHEYssketl6VA599jUcvlECg7QnJYCQHnKJu/jw20D8VgN4x2o+47ALbFcdxtY/pK4jCOguEQoTnPA7dvXrcsq27VEA1HoZTJ7WZja2vj6ODQde398WQ0GdvjieOFoQ8h22ZDePjSube/7W1XHn6k3W57jn10dDQc9D772c8CxYRuahRGvpiBBGUYhuvm4hwcb8GmDcqApLcjgRfIE2mEwoofA2OpqbppR+M4E6I481x7e3u71x96QZAqeiqmfXt8eNIbTWysCaV7N11GsopPyZ8BFXGar7SN9a04Tu/fP4DHNkpNjMJIrVpO1AFDfjgK/SAMfTGNWTuGzECAPUIGhdswkUHhh6Qiwjvqps5h9+dgPHNPyNG2vLiFkS2hDPJRNKsJqRP/cJ4wkDvozsctczjPaiqCps6y0VQSV8otL9tRAlBuVe7B8ti46otXWemLHCl/vYw/yQ19CeehTADm1OQW4f7VHVj8nKXGZ1W1pbldVcACKN9XCRapxVMUiQvAlpQJTuBPZTgLMg5UZsYwG+Ln5SMb/SyetbmTldM06bpoJEM5d7TYUStfmKsXLMuyTqtdYtD4kT8uQobMjuM5ToqreTULJOASlQVkDzVLDFhj5I0T3FfcPimKhouzEqo4GlxOVRH4S0wihlmrt/7UN2uf+Nxz169fb3Xaa2sbqtpxPJ+MOZDpCMD80npOyGnMsO70/FSHQvVx+iJszx5kYbF845Mzd9KWDpE3nnZLTDNpxaC+omkamt5orAdUPgCCSNfHmmaIYra1tdPvn6Sp4NjjNMkSkfRwVJC9+FDRyKAP5FfmWPYlRrAar/+eGyOXlm4lK58h7FPROoTofwAF5ul8QYZfOXO0mPWW7WveKMC9lndbiA+fpPdu3/EDN40TVQasKA79EUlLCYLQWenWmw1E4aKgKnLgRiqp1lB/jfcjr4EQA9KSBdELg4zN6ZC6Z0IUHR4eTny30WmLqmKapk8m0+12e3LSs237zp07948PN7a3jof90f6+IIrdtbXtnVMs6h8TOxl90kJeAL6zlhkEwd7eXgL6ryrp2traGnQqYQVtxAkKh+U5Z1MSSRD6J73ByYkApFPcWl+z6jXSSmUCXy5V9t96UaiPx4UGZJKFNwrE8m37p3/6p8PIzwSU0tvdDhroSdysNacJgIw7lJMuhgDlCQAlJzRZs8mJMMcPFkVAq/NaGqUR/CEg2poGIioNYvamrmuKquIjpe2NzTRNz58G9/qQtl6vl8Rhu1EHXggnPIrDyIvDdDL2Aj8VBMuyHC84ffqUashhFOyePntqd2vj5lqWpJ7j9nu9G9evj4nLmwiZHwa945PWyurDlx8yNB0S9I6jycr2+iqScqjG4rwkGeQEE/C+bU0Ru522FMdClJiKvLuxtbOzJahymEWOM5F0OYlSRVVX17qnzp0WINAPzVkZxrUQy+dH1TQ9z419UHpENEvTTqPe6bQ7nU6t3mi1Omhf1Bp+EA0m9slo4sDbK4xCVA1UXdNVRYOoGioycDCPEzFJxSQxFCXOBFnTZFmFPwi5fXP5hhlcgeeXr8CwK193qTuBFUGIMc+Ta6aA5xqo+gKg6CgugfcoQG4B9fT6SjdwvU998hN2v1/Ttd3NjY2VlZvXrkqSMJmMzl44d+mRRzbW1kigMw3CWFdVTSqCWgEcAde165Ra60oiKZAj5YauAgkCyen1a91mTdU+/l//8ysvvfg9f+NvCKTHdeXRK1Ek/oXv/ND/+qP/eDSZGIm4uroaEyyQww6uKRIQFFg+VBNIpSFGEEMd9ExwCTqrCKkippCihOETHMGp1RMrxBooJ39ZUg8Pj5Mkw26piqIbGSFkBFGpadZhfAB1KSBqcqHeYs2aBjHlZPgGd2UZq2VZqsqCrmrzOi0zH/LWJoI0jTUZtuLspM5mpGmass8323WFYUhObbKuqNtrG4HnBn4ooOAiTQaDV1780uGRY5mC4wkMU15vKe/5iqeffuptZ86eVlW11+vdu3P3Y7/1Udu2YWtNnJlGwyI9bnj6GpalynIQBL1BXyEidSEely8TFAoQmY2FxFAwBvIEAuKSDDZLGCmaPnEcUzcmrj92XfQMxMyJgpPeoNcfBlEsaaYkKciPaYOoFQ0GNgOFwEOWrqysKIpydHJsu27ujMo7kKUtksTIssy2bde1iV8cq6BjCQoHi0RBtUwdFoAQ+QXEH2LiuPqJDBIOUm4WiCmVJPkVhpFDgJElYfAX6RzInB+RDM+qUMr0V6qsUjqPGQkVCXqk+5yQKAsCOA9Si3nQ89KvbWYThZiW5LkwrJrbzFEXSBB3WWBdEgLzlYKK/VR0riJaq+9fLFi/wf7PGe9O96E4OXP3xZyrfbkpE2dc/fSl3YCZTIt0VXMRUCo35s08uq1lKnnyI0uqqUquq7qczDO70aKbB97lReH5Ao4Wy06E58L2Et0Aqj+hli8rgiyttFolFbh8pK8klFiF/lssEkKl9o+95/1Hl2HhJAiCYBKUH+I2NRCqoNwpihsr3Q/+0cvbp8987Lc/8cKXXrpz62ZnpWsZNYChhVRRVEVSYdgBN5wIMyjSD7r9kXdw+pVP7gy0LV/JfyRgUClMXP23MLyY+ty9mTzhwVN29UeK80KouauqOpkAhuu6QBliFcF0gVGdoPrAqBpMFQY8RGVdMyI9CoMoIb/OkumRozepi1hQSopvzJuDv58AkHF9y3+VS8EwYIypMBiqv49vecDnF/QVmL2TtA7KOWy0zeYRpCFVHhbjPgkpxEAkXvfsyeSVl19OPUcQJc0yoMSfkJuvJIqm0eq0dcuMHIR0oDgRHJIIABRrFEDJNEPjPggDIUCjWFBVzTIx5FxH0Y3Ic0ehf3h4uLa1yfTBLMtOnz5998ZN8CkdR3AhmBgnEVTr4nRtbe38+fOqqo6Igqxpen79iqknSZLRaDQYDFhInVUmS0BwOUFXlciwOvZ6QpLIup6E/oULF+I4VjUjjSmjoNLsHOYq53K89W3arS6QipIkWbpxfHxsmFrEBlsxdFfR0JuQFmpREyViMAJ3jhhkKfcVYhgDZKZjl7UQFvX+q2lh6YwrKUCd8CeDtgkXXrw/9IEx6DYbjuPs7+8fHh6eO3N2Z3tTzhJdhR8fAknP93zHDUOHLFo7uirKLOOQXb50/j3vea9lqudOn8Gh+cGtGzd/7md+NhUyOLhR797SdK0ORsHtMLLoAo36fQXxG0AIiq7ARFcWwB+FPLQ8PB4e3t3zxuMkCAPHDR0vTqL946Pu2urW+ma725UEIYgiWrglU9MRgIaJG/gjx7U9Fx7PSWZ78BbstJubq11D18LIPxlMbC/68qvX1zbWL116KFGtrqiajdZWo7NzVg8lxYtDx3YnnuMGfhTD0zZOMJ7tyNUVtdPoJhE403KWNUxjGICZRVBRgoOiG4CFXJHUubmdX2c8JNilEkQaeNXlBZVNqDKRjX8xpWVJXFPN45PDVq3x1FNP3Lz6+i/+h59/5YUXTF37mmc+8MhDl5Mk+vznPne4v3/p4UurlCEDIh9FiQRZVUi5m7pRq9cNU0wFXZayGDIusqoBGes4r7322t07d07v7IyfG3Qa1kd+5b/sbG98//d939//wR8UDEuw6mosfcef/XO/9fFP//pvfcx3baPeiAjvwGKFpQzr4pgnVBRGvEm2J0IcwomK+BllSYVX+PLeJNh1NhiPdKuGUwWaigLnHIjDKfV6PYxjBsdTPQ1/SXTL+XttecW1umNlApCksg7tqdLwu7oeTX1A3uLNLqaJOxkruNa5VIIoiivddhiG6EgLgqlplq7jiovirRvXDaDvhOPjw/39cZgIK23l4cubKytrOztbDz30yKlTO7KsHh7uX79+89nf+HWXbLYpq5c77SbYaHEceM5kNKCbGo68XpCgriAA74HdIWhCqf9IE5GUAP5HvCAs7vhATdMlWT3u9X3fB14pFgI/XN8+tbe3h3VKUoMw7o+9k+HY8UJBUiUZKd9MbMaCwhztyZKQYuoeDof94UhRtNALNJ21B3Cj1Go13O1Z4jkurTJTKHUZT0uS0GjUWHwEoPMENiCygGmHGZKoWZHDEg236Suki0dgr+IVloNna0esVsTKoRCbQXqs246fqDhLtn0E4eNHTgO4q1ZivgptGR5YBQeyPCdsB1s0qebiW0RkwnwHgLAyM34Cc2XoJU0JcXkgXva1qvEt3TfLuTFqBSKV73DxmK84+a/z98u5QmPRx8j9R9kmZIYru/QoyvOgTCaTGe9MBqotmzq5uMr5OlvpVhnUUCahlKDkQfMkJRPEcPGE8jRUXTI5UY6DgPEhVEybZkIsilIsyUygyzVwyqW3tBetmuPMHLCY+q7HJ5OQU8VFJRGtmQuQ85bJ6Hr2wuQXgDw1OUpgIBAk1WXVHpxcunh2Z2vz0Rcf/sQnP3n95q1MGNQarThORDVVwMuWVZJuAEONDmou6SrBcKUUWmVDaLdYX3kDqeP8Vq10jioKa/OjoejoLN+Ojo52T21zzcDzvCAIYG1cqDqUdBZGPE8km7sc9VrDl33AL3O595nPnI7gSr/svwkC9ID9n8sn5/P4/+at/ED4WNH4LrwJl10XQklz7M6aBWykh19FUQrPH8oaigRQrdfSNG13O7VaDStHjubJRAV2EwJKpLgMhbYBikWNRmPQ78Pru1G/fPny5uam7/snR4fXr75Gp0maTCZrW5tBEECtP07q9Xp3dXXcH6AMHIex48BPTIXWSlkswRXH1KZzKM8jn2Qog6OjI4CFoBqhbGxtSors+r4o55XCMsgAgBAJeDIej09OAJIRYBHQXN/ccD1P0nTigkeSAg26pdvvIw3Iw5yCace3wHg8jh0X0vIEDIo9T9L1NAwVDZIduIQEMgzwCKuolXaHXpGRrhErH4mWxPKO0FXgu4rYa3gk/wfMm6X6BCszxCAg5HMdKzzziF1f7SqSPByM7+/foyUfgUUUx7IipxL+lRVZhzy9GEh+FAVpDPiikolB4D320MVv+IZveOTKlY99/JOSiKZozzoJXO+TH/+EpCrdbjdKkOQEnqfo+k/9xE+6rttut82aFQK+SLom6Pij7RkjcIUucf/keHhy7Nh2TTNWWk1kIAHkCBud9uvXrn/us19wPFeGdpMmEbBhPBoRfEaBptXUFVjUrSZYwlGgyKKOg8jqplWvW+12+7g/tL30uZeuRlm2vrF1+uz5hx57bH1rs9lu6etyLAhBmvikyhNG0ch2mBxiT9y1lRWH4rAvX32taTVSKVe+QxWTfSfJfLo6APhGy9JMgogFRcBZwpY8ZM4rRaGPS0lRL0m8APquSaLnuztbmyBDj4ePPvrwV/7oj7z2pS9/4rc++r/+8A+e3t159NFHa3Vrc3N9f3/v/PmzV5540rAaWRrLuobukSRKhoHMPAAsxGo0BUXKXBe6GLHw2U9+6id+4sdvXnt9Y23lr/6Vv2y2G2dP7Xz4P/zcX/jOD334Z372Wz70XeH+gWI0jHb3D33gA5//4otuGE/GE1WHUzVQ3FQTID0LbD5KvBnX/hMmkFFpWdNNSo1IETxCxJnXKXh5y6tFaAjAXyrLPM8zGi3ANFHNISozjCBVo1YH1ZiKBVzRoJmZV5b5G/INOgDMi8gLB2RGzuhwRoYs1tre0hQtZih/M0tqbQ0OfSyBzU25VqtlGIYsiLY9OTw83N/fHw0nIils67qwubn+wa99/NKlS7u7u41GYzKZ9Hq9uzdvfPaTv8Mu4CbI4cZqC1rYESlwp2FEkQpOET4ZRVlyjAALPiFmuZpERGLEQgklscLwWAiCENGMqqm46ZAn+4NxEEfj0cR2PUUSvShZX13JJHVke41W2wvCse0e9cdjN4A+u6qhXVDpd/PFLEMgAUkF+ovHvX5/OK7Vm5kUggxCSsFZlrEodpak1AFwMSASAn1wJE1YA1QNDBOkhTg0BI0qp4RbpAiFlhtAqSv67/lj/goqVKzkgMpgETbygOUmwxQqky/N+Du0r1B+4mtKFUUFVif427zjXQ2JZgVAq0EUbflyPxdpVNNgobKVhZvptxdFrqUMB670L0Khqs671RxAmYUblJ9TVvTnarLVTsIbbOVxlaXUpTiaxUNWLKNWhv4lAr7kG5ehf6nFQSSqJSzgJI554JB0LlEWKQOEelBeA+N9otkDt1Ot/IAyTZHErG6a7D1dhvj8Wyael4y6nFSXJCHVCznuZNwFX8UyA5vZcgVWukkqsjmgl6n5BZuyP3Jg0vK5DMQ9rCkCZHxolwCPscdOJqaua5rW2972xM7pnRde/NLLr7x23B+Yqu7HCdQtga3TFFVC+JDApIkvHHaO7VrzC8a7l/9b/AqzGzVgp6/nCJ/8NpjnABTcgDcaOrNP5mv/+UBR1f39/TNnzoiCHAbwCyOv4kSUUeSgEZyb3NMmBUFUXEFUN6BAI2GBiROIxPP3zexGCTmrlP9/XwH67/Enc5WAP6itWuvNE7g3SACKY0zYy7OsZNBeabW6KgFqBQkpqm2QKMeZVrdj1Cwf3i4pbI9TOD2Vn89VAFoDEOAommrUrNQ01tfXV1dXm+12HdTe+tH9/WHgCYoyHA4ZwGOqmu35r78Go9A4ilTDqK2uwpo3iQTfl3Tz/v37mm5ubW2VGCqecxVFiUJIzg/74/v373NJxjTNU6dOsXeVqoE9Vp1DFR1LThzHo8HQ7Q8EqqyfPnuBZ0z0KP47EDOK8z11LFJEqdvpABMPjRMwOG3PbdTro+GQZeOoXJVmhNgEhRtCnQnFOzFrExHoCv0bSS3Z8txZYmFBEQKdpMNAGMNSdYFbTkU1KOfb4XhvXr9lWYhOhEyqWQ12UAYj2TLAXowA8Ycit2GKsqokOip2MBqPzZr5gQ+8/9KlC/2To9/9/Od6Q09XVV1VDQ3khGatbo/GmSSGftDqdAzD2L97r9frxQlSviSOpDRRFMyWsqYidgeAHLVwWZQso6EKWhKHx0cD1sTMssy9dVc3jZpZ73TrSRR7ge/5AT6t0SaVtSmHipX3e4MhhUd1U1dlUUjiYOwGY9vtD+3nXvyyqv9unGTNdmdzG57o9Vbz/IULaxvru7u7qxvr3ZW11kq3VquZqhoo8kq7NR6P+64Tmead69cffughIQxd/0TWYWwto9YacWEPgYsFfCZv01UDpC8lSTAUCVRA+teiqKSSBqKHbMDRDpAtLvEqstg0WjpACUgIPc+T0uTMmTPnvvM7n3js0Z/88X/jua4kCkcHhzeuXX/++edX19f+zt/5v5s167HHHu2sb0i64Z70X3jxix/9zWfPnj7TbDYbNZhOQBg0DL/w3Odfev6Lf/ZPffP9u3dCzzk5vP+Br3zv+9/1zm63OxyMP/3ss7Egnb985fDLr7z22mv2eCLrJkDngQ9F4KrMBj0ijYf3uwCTxAQ3Kb9jMpkg/MrA7c4i9DbIK7hc5vKpo0yMIdulyLDLhNkiXGUUANjIoi5NoAhM8xWrihSj/S3cs8RPBeZRFkXSgyNbFEaXFGIGTNv9/U3RPDvFUXTh/PnQ9wQBdTpNU44PDh3HOTk57vcAijIVYX29fuHs6Wfe+95Ou9npQHF/OBweHh6yC6/vQ91IkjAwtjbXuewoSdKoP2BpMERmJPUWBeDOWvUa6HEEPeJMMo6i2PFMrcaLMzo3jDogie0EHlu5mJHnB6PRqD8cTBxP0wzA3DJhMHEffuzx2/uHbiyIftQfjAcTpz+eRCk0ljNZ4ek+N+7N7Y65bK/AKzNDjX80mriOn2aiRyJvdIeiACNmac00NEX1Is8eD8fDETmdxmTbVARO5Ddm1UzwziEaBL8wgUR7iGpMMMhCvicH6M8+Vp8o7HSZb0wD4CI9SEPTkVwIRcqz8XRZ0S7rd2X0/wYLevmpRShVzQ3Kwu7M6OV+2mJFsoqhr0a+EBGb38n5WvtMiDXrh1A+Lu7/g0A75Thf+vpUHjMPKvNRMQO5L3dGEJTIZ/ktLFEZFqMsJade8oOa6oaWqYCm6JmYyJmcyamER2C9MjmzNCuTMyl/Lf+HNb/ZXH3OaViVtSoaLMeBCakC/BAPVLR1wygi7Z+k1x9U+QXF1JOpyOmhVEhjDX6YTGKB7VaO85955IZgWZUsBTrQri6GVClkxMa6ixesmmMEnseSLKSV6caiYjZ03/f6g4HVaH7d133d27/ina++9vrzL7x01B8cH/fdMNI1UzetVBTimGqixejhbsDS4nSJo6Di5P+PvT8PliVL78Owk5kn11ru9val92169sGA2IYECIAgwEWyJJAhwrZI2eHwP3YEvchh/eMlwhG2TJsOKUIyzQgqFA4qQiQUFClCBCjQAFcQIKY5G2bvvV+/fsvdasv1ZKbj930nT53Kqrrv3e7XMz2DdzCorle3Kisrl3O+5bc49usbrwP91y4X7NFZ1i+4B862QRDMqBDC2wEVFUX91iObCEOu5YovT5fsScRWSqa9yNW3leifn5vsYfU22yYnd8aP3viq3Un4kHIA/fUWgs2W5992nlZ2wxHDvf1rV65Hvnzrrbems9MwiloXMNOnn31mOBoVqj6dz4SDsm1FPS4tc0hBKWS8GD7fwpzOuPzWLRyg/DAY7+1evnz59Oi+UGp6dMTfKaVcLBa3Xn89iGHyevny5aeef7as1bzI3nrrrXKepqenb7zxBiQ1hqO2qyCyED6YMCC6pYvjY3bvCONo7+BgNptVtYpkXMJbAJqAuCdbEjAFHqGaz+f4uVK2VXnt+vU0y6JBMpunDoiS7ALmPZryv3EFNlwaijUODw9Rq6cEGuXPogRbqQI+Q0PKSf1RYh3EZFEUhQtHBBZRMVXMVpBBKzOYCPmozwlVbrAqa3uRblaheWl5qaCRQk/GYyiTzE5P2IGLTZSjJEaKWKq8raR04ygCSAeKy36VFyfTSdM0ly5dYon33/zN3/wX/+yfDnavSCnn8zk0T4oikP7x/Gi0M478oCrKdDKbT2dwJVfw5wKB25O1Em1Z1IscPGPXkRL372KxALyY7BolEiHX8xNAKcZBWpSnk3nV1IEXgCcYJC7yPVQ4aV0iFC8proJX7UeOhPD46XQuGoWuEi2ZKi9bRw6G4zQv5mn+zq3bk/lsMBi88sorcZJEURRE4c7ewdXr1y5cvpQMBk899TSfQaXU7x1P/spf+Sv/07/077/08Zdf/MQn4tGQjZPRMyELbSnBTTf3l10zQrJCboaqhlYpK8IRhLMGIZVEcvjMum3tqjabFQK5FFgrfkgmCY5bV8W9e4ff/Oa382yRzdHqHI0Hb7xx2/O8/+3/+n8TROFnP/vpz3zmM6PBUCn19a995R/82n83GgzAuk5iyruApbl06eJP/OgfyWaL555++r/+r/6WJ9qizJ68+USWZclgFA3Hp/PsK1//zrdee+v3/vVXd3Z2jiazMoMfHJcVlhA7cBwaKi2BLMHQf7aXgwg3bJ1I/8iF5mRZASgOsKYOnrQGmp6FmGvugOpDwudwgPaCQAagdvDcvoxmzrjptlfu9WLU3Y9oIsGRZsMW3p8/C3sOQoS3qV977bXT09PDo8xFqwH4xPFIfP7zL3zuc5974YUXxuOxW9ev/O6//O633rt//z73QsGthyNEO4jiZZzQtGWWZ3RIKdRGA5ClhsAvAvUallst5tuISKQAruCOCWVZdQ6AqJ2S5wf6ASiUFFWZziYLZA1Q3xIyHO9GqhYRWrLgdl+4fO2VL38tiuLj2eJwOjudztNCySD0pA96N+BZdCTRaSO8hVHv8Ny2qqN4cHwycf1AhuEiS/d2D4A/6zI95MxkHZ0t0mwxR0aC3iWVMEi6AqJYEtAvIvtV0BkjP3ImgJ19urddAOuVeEUZ+3okY1fi7SWyqjaL6NsVehOlcBllI9RnvWbvdMXp1YtQbKz0m0fWXFpPABiBsv6NFana9D5y1v5siVLWf69eTdBpWe682YFeh2EJAYrDxAT3Ri+Z0gDWaUTHR6cHCD71e8gfQjDJg6XWRoMxWuVoAYNGxQF9Q1yLWnT/h3eiltKI5nQy614Db711scyQn1hpWTaw9i5eb7FwasARTyCcnBRQZS7pviI9f2hh6RXc/C7+FfzI+rUbD6gdfOvOgwua2MaYIwiCFruqE4YmT7kErFrveJ6iCua58yw/PDpxPHn9+vUXXvzY0WR6+/ad199++/btO4dHJ2TAUYswMmE64Tm1ighbQVGOT5EP0y7bhgy8yM2UAEiBBMOpqiogmjS7nk4wE+zbFmqd1qVgTjxnL5tC4c0BN2RA4/iVV165fPny/v6Fw8PDqqqDIECtaLWrRVLxpf2NJrfhSsCy/MRdDD68pC7HB4IfNWhry0Ky7cYAJXPTqBUJ7ZM1DOgKohmOBrP5wg8C9Ki6JdDcUbrS0JUHNkPouGZBPwCyth3chW1uOeBg0R6naUOJAgxWO8cRZRXt7ed5nsQ+qBQlZEPCOC5ozrrxxM2nnrh55fq13/7t/58rZZbOyqK4c+fOjSh0XOj2Sh8eF1iNfMAVDKcN9u2sBEfE9KqqYNEVx2CAdX7gSYIon5jKIMZdvHwpCALohNIcV0vJ2nl7SXw9Dk9OTo7TnNFdX/3qV//oT/+Mahra4CIGuTPb29kpy/LOnTuohEi3KfJPfepT9+7d8zxvNBph3qEmABfdG6LfjQaD946O3/zWt4c7u/PJ8ZMvvlAUxWh3B8RWR0Qh8ABZnsPqwjrcnEGRgPPmyGPLdYIZBEK9lFQEQRBFEaP14jg+Pj6Gok/b5mnmx3E6nzvIWhUmG6rUY+WHkwFqBj66506jVsQZauFWZcU6oVaTkxeA3p5yB1xHA/pnUdrAtU/loZ9WQUqrg9K1znyWVk1NuCoJAkla5kUFk07pKNVGg5359PTC5Ssn09mv/uqv/ve//g9GOwdBENy99V4YhoDrDAbHx8cQBUpxgTmwkIMInagxjRQpKhc5UF3d/iCo4CdUSRIeAQ4x75BaFcUxKdk2oEwoy0o0VdX1h9kpHusHwlDWbneags6+B6FJ4iA6rSprs1odnZwKTO+eqlPPk/Aw9v22UlmDEuxstrh16xYpBYPGQgeoklLujvc+96lPf/F3f+8f/eY/3L+wf+X6tRdeeOHZZ5+9cuUKm9MpWpa1ChOjTD0UbFoiLeBkuiBudSrcCI5HoxGCflSSsISWqlwsFnmezxdT1LFapYrq8O6dw/fuHt29u5icvvbt7/yRP/JHKAxnwk/9I59DNw/C8wCFl//yX/yu78Ffb5gM/u1/+5dhowEgDlFQiF4ZeKAI+b43nUyefuJJ30cyJYSI4jwtyrfeeTeIh+XhUSvcJEnefPeNUjXj/QPucjONhKdx10O2A5oKda5YEU66rmJbI8rSVV15aBeRCFuLO70scQ3gRFIpZzKd7g+DDOYb7jzNRhcv1qG/EyVv3L5z/fr1LC12dnZmaQZ3P+oulmlK4rF6zuEpMY7jNE0DH/HixklYQ3npCf8AHJ/hcL44pXWNHB0MgIHWXZ1pdyhWuwpLCYwWkNBE27adnp6EYfjqG3ffe+dupsQTV4c/9eOf+JHPfu6FF5+Pogh2kJPJW2+98c//yT8+Ojqq8uLC7o7veru7u1rMuisIGliBWciMkgHnXmS/g3+iulVB6Ay9FZL6pTAAhQHaU4QRbKOJg+8y+SeooKdSTuYLlEhc6QVh1YC/nRVl4no7O7uXBoPf/9JXouH4ZDJJ0/z4ZIIIJgiF9NmkkxAbFOuQlTvJtjppmvLcm6XoKrQulrway1NUVMoLvLKugiiYnk6ffPLJbDFLs3m+SAPpV2VZo80YJWFUZOlgd5wiIQfqiVOjPM8Z1sIHZ32+NW3hjVAZUx+0FTa5WrUszVifsgv8psyPoykh4sKQATueYSiRJgJ11RbuxqysEV10wZV+1xgydvKR22Q3lxDf1eF3/lcGuc1PuBKxnGSWKPeVw2KXZVfgDx0rZjk5rwb0kGuzNrI8zqSisZIb9DoMq/eRDKEtJWwhTn7E+ushO3fhWssVHc4wtASeuQj48eTkZGMHRBEVZwna6Q5QkiTL6LnT8m8FRAApta5KBe45Gpq0wNQV+Nn8Cj+y2gMybzqoPeEkRhbaKCPrrNFEbw2uaNqVeOD0kKmJeZkvSSvUG+HHZlHQdpBUkDo4HAVwfMhrCEkGoTu4jyHcenrvbjIYffyTn/iRH/sjdY385+joaDZbfOVLX1ZKZVmxWMwWiyxN51QPKAeDESc8tPwHtI+a9rGUFe8OZgdA3JRhF/1MlJ+QmM86/odbchuGQ0VQIcR0Og1DGCDQQdNokI3vX88usHHL8sB+t+4DfDjwj/Vhzx1njI1hZf/upYSe12DuPguuzVP0n+ZV29S8gEkHYs/AmkOQD+oNZsnhOwt4BA9dzsls6vv+008//Z1vftOPw6pWxycnexcvxMlQT7UEjuOJBpeGlFzYxupCEWRESzXsU8lakuIbZ3pygkq27zu+rIt8RRkpitLpVLTi2rVru7u77955b7i38/zzz3/5ZFIsoFzO32XuZTNXzmYz4K3pskxYKpTLk1QMtg8Ur/2qrNL5Qngeo7THuzte4MMzhUUYSKOpLwn1wVo1mw0ceLpnOiUAP5QydywBPqddeQZnh9MGDd03VwU24LdO3el88BKDTiMXsCxFNP2ILoF2XEeCsdwhoDOgiWHWPKVUXqHEUKOSAnsUgB2hItN4tddA5nwQRIPX33r37//aP6iq6vmXPnbr3btc/uQzxZcI21Nw6wPuNbXVp4Cwhv4xdIy1fAN1OLSjJeJVilr1QSO2uumtk4QpNk7mW+zRxEULyuxbt1bQmiRrHSx+zXIW5RkViSgKH2RrQtIltPYh+4AlDBI4F9Z2JGDrAlbdeqqArFVbN1I4s6Oj6cndb3/lS0WVq7JunQa65aEM/ahd6zy3QuxfvOAC6hNGSZhEA1JwiT3PuXv3LiyA6X7BoaeBjINM3FSZ14Sf8YUbwDrG3R/vEMSZegWUnHaYUrIPosunEaCiLVKcEfZl59IHcjsy9JFOcz9bxKHPANSipG/HteGFceJI//7J9BvffvXt9+4Oh0PowxQFJSx0U9i+tqyqSaZGvSmXlg3NlySYKUlf0OrBpGmsWARoIWWqOIjiqhU7u3tvHd6blsoLgv2Di4soUyQrWbc9+85lnf7sgqW1n52MP7dfKKbUW1v9RWePZUu5+yd/M9pok8n/7N/7dz7zmc/cvHl9d3f31tvvvPfee7/+67+OQ69TIJAZLh5ciMJwenxERqWsekhOK+iggFC7HnXZkasVNZL9KNmW4xt0E4a93slmiT+LDAe3GyqWrYI8V1GkObWhII8sKsQ1MAWtWpEVVdUumqbJ0mI2z9Mc7QWU56lIyMAahGrmyOOSW22kIOGGKzGTcAXVLwDFJ9RlSANu0PNFhQsex8QErExmcFxkekSV1loOq6d+Ncq0kBHrR8mWfloPr410u63MYwf9dtwGX5q1QJxXOvuatza+ErivQzna1cKfvRFbjWebWLlmNq41GdZ1PO1hvvThuYimUdDbn3Vkyrav2zgkGGv0Wz040lHLjyYnZOQdIZjmClJgAkloakft5jzZAegymnTELAM5af2MHn77sJdd8eNiAQMvw0ng/TF7wnJvHPqzko/ra/kk40fI/0wrzJXdiyTYR7PgPEXHFvQbAnoynxhrTGeBgX/R/Ew+a020e0Bl4KXZMi9gvh+ajoSVGIimQGBHUwjbcxDpHr01Z54uZosUFRhUJj3puwcHe3/mz/6pugTYdwGL8HSxmMHyXpXzeUpVfkQCpu/Rtu39+/eh64dmOo4clF4YnzM52dDqahwYLXUXgT2R9cguKwnA0geAX9I5cQtyVTmZzAYDzvUhJU4f25gzrDOYNSTG3PDL65IUDGgi6+4Hc6lsJ/Vufn1r65k7Qhzy1kTjrM++74w2RW9eWE6FGu+o0dwMudEkYM5CpV+51JPAaazrKi+yrFmkohF1lokaAQQVEDH5shAYNSiQAAyTwXMvPP+db3wdmOy2uXfv3oXLl4IwRg+6hsEh0d1a1ERDoL0RqzSNRP9aqLI8mYMlORgM/DBAKEOl00D6cLyS0pGyLtCmZKQW8sk8d3x/bzQOAryf9wfCeUkyn85YmYcVVDU0jtIbWNUcH3MyKZrm+vXrfhg6DTE3kfrqe2qZAJD+z/HxMXyj0zQYDQ8ODpwAcZLhZmGakx7XxR8+IHgfg5SGusISk5dQB+GLmcjV+mTjVxSFPa13mtZYhBHLrhcI+HHdap6MmgVwc9rTVDfuu2oIBygoxaMcSK5krudBbndllqsDaFhKGSaT6eKf/Yvf/eynP/XiSy/fO5osCL9cEB2WOqcdL6VbVunbu5urAX+Zi/f6F3UCY7qa1ukG9rpeVlRk1jALFWLJStCPaWGnSZGo8XC13D9xx5BkDekZ8Y6RjAkMA7v5vC4bllJtmjabZVVWodPsqCCiGh6iaYm0WDqcAJB5Ou1cB9tAcOw49999t9s7gp7SLC8cON+xe67JzPlcS59loz1JhTC4GqNy707mcwKyYx4l2URYO5GzaWFMx+qmzVHTVfhZ2CZAsVrfouNO1o3TwFgKoT9LLQdh7Cd+Xos3X3/znffuHZ3OKGQssSsh/IaRrHbBXi9IWkIPO8alloNjF86u1IbESx90HCDOfKoYNdRkOC6F8+zzz92enqq8GAwG473dUjVFVvpBUC4y6s1CQg0FjbX474E5AFmJoZPXqFo6buQHJFpAUoHdNh6mCNT1PHWdnsE56KtIebxIP/OpT7795hu/+Q9/YzabsWL9zs4OdUKUCz4bqB6qKmZlLhxMNVinl6ob3HLg39JfN01pmRV4tA9sJ+dgHtndiDFOdCWSeTN5VpVVqZrmZDoFhwcRDi4KtBlbF8r+PnK0NCuaLEf2mGMUJdrXiP7hvoasU89RfLgohDMH32DDcPN2uHPSGSQ/Ss+t8mI0Gg5HIGEeHR0VRe7WbVMpj6SDPFeA7URnKkmA+oPSt6lOL/Wa6KQzCUETmgjiootKmqBoHTdO8wwdlD8B9vlG6PXKmsv6CZw/UVyGJE07xC7PjpUQWE9xkeuaunl5Y77qcHGeKuhmsu2lGeugCUUGYevxNy+OPVQPLRk6WOqJvD/EJb8S3NvPV4/VJqjC9iFnWdnT/+HHqig51LYr7iaU5yqgyX64EGgIgna7QRG+Yn1X7OaIHYw2BFnByVXQyTK3HFNwtJ9OAMoW3//T+YxZkrCakBKPXC1nq52O0WWikAtPPMWgIFO/56V6NNrBBI1aPlptmv8gRE4Owb0Q0PR6zHGoYXpbYi5zXZji0jHQ3sd09j1YwABfyRMNtaWhSl2kC8bkx3EcBMHuLmTIWXeflwTtIk6FqKZpyDwV7WnuF4MSSvIX61g3sxCsQ4DsZWM1GWX834ZB5GPITnAplOsHGg64YoStHxEb0SYJ8GOst3WpdyX6X72I1588qrHMtrtiwxkSQ9v2x7QQaYu6xcY3PEIuutKYh75YLE5PT5N45Dseer/Q6CBVBA/sMbi8wAIMUzPkgSkk4MlaOVDrH7rOcDzau3x5OjvF1DibzU4ne3sHvusVNSS9PeHWDVxQEYXANQa6DaJuiqKcTaa3bt0SQly7cvXGEzfZGQqXUFnM53Muz/OvQERVayXjIAiGw2FVVbKq4jh2SSmIf5EqlRtF5PyFeY37rSFaGc3p6SlXZYQQFy9e1LP5WqMTyYNAgnQyOz46OuIjf/nixWiQZBWWOg6hiTqNagJp6TyysfQLZb0K8tbW+9Ytp6utKpsnoytYXCDkZax7n0v5uZnf0fYFznPr1Uum9KQHu3yN7riuC6oXb+63oO3uwzsDkEyqy7hkUkLoxGCelnVZ7e4MSoIwRckwSpLj0xMu//faXLZcxvL2h8B2e0bDhHs4dC8jQ6cCsrURAIRMfYH56I71OVI2p7YDvqkLF4TgJjUvtMQnIfciLPN1U7WQ5cENUUNeCGUgXN0uwmlQsal83rSFgNCnJ9v7946D0B1EsQwD3/WAwCiBqIb6GRoLYDXwL2BOAmQEN43pMeSw0TqTkIrvIF5tUze0iMCbzyEH9zSdN1U5HAwI7ETnkoUxcM3gxgSKCEsLHZaaIKkQpwcnDb+5gakqyNau2zitH0QltPlbx/PjMWKyqlbTRfnevXdv3713Ml3IKHL8AAZeRRXHK5Igmi9LkCxDMtLyG90NuFyKqfNAKBWmCWGXgSAkBCn1KJIwiZPhYH4yuXL9xu5rr0/KqgbqBB7Gk/Q0CIIplSp6CO8ep+6MqVvfg/RfpVQSAnOv7zW6+FcWBZ0LbtyS/l5ds2d2DTUxmrJ68803f+M3fuPo6GhnZ+fatWtO24DwQ7dVGMKcjavgWTrP83wwGFGU7FBktiznGfETNojtHsnHsivGEZFCe+tS34xCf63R2vnYtAT9QrKJC7xSdVagxAedJYoAcDmjHEU3lOOEzJ2ryhzaVwr/DxQEU+uJ7rt6s5r12oSSCM9QvnAJOIlvoX1DF5EakDjdcOGI4rqqj+8f1pWCGzmVeIwqY0NxMPrGrsc9rU7Xn4n+AG6j9gH2JkQ6jfY/VI8sVicxOz3hNq6Q4EW0LkHCtbhn6zRlXhjHgM43AJ8NfWJT1KiVicZRNT4Lu8yu/NSD+nCuYh8KPhroiK+V8Hp1Z8eO+LXq+0pa2wtX7Oe2DbyN9rGREduaAOu30hljYzqxvn2+ueww7+wcQL57/z6nXYAxKlxwjC/pt667x+livo6V51CbFn6ttG3XJJYLrBX5QROLEKYIiM3rrVOAFMIHEXG9ketB2aXrVPJAIdN19288wYmBNu2k25sxD6YnsGRGOwLdY1qUSG1q+XgyXdAKq1CF6l5HmTMK+W7vBdbmeS9zZWOONeyaO5nPjK4Ry65hAPenM2A7KOelyLShrVXcIWo/yH8cbvJchqCNsHdml5b72QGH1qN/83XWKxwOmWtX9xjpliO8KUX8WZY3DVIySrY5bXB7jyh/0KRJ6ApbDHHzld3rhT3y6L+3QT5rD/yWFVTime9kBT2jQyXq+vbt25PJRDqBH0ghlPQR109PJzDoRTsYYiscvqMAZsomLiQ+Qt8vm7pIi2eff+6LX/xX7OnL9NDhaAS3Y1r1Rd2gv98gTHHIpRvYbqXm8/nk5LTOwa9smgbw6EuXT05OXr91K01TKro4IoJ2iu/7eQFAfxpFxWJx6kGKZ+xDRIJzBn4UBKA3mCUGO4EqOjlFy46dOqKImW1cG2Mtf7OC8/ulhO5wPpsFEVBkV69eNeJdJEEDaSOUbM+p/XrWeTG17bXzRceQLn7UAPUbqXLG84Pe+a5exVhk5liZ+5EkNZivrCFsD7iAscovC+XL26FBeti12sGXFlVTA6/FaCg0q8g62sUZd0U7m+eO8NIU5OmdvQtxMi5KVTdupVd/qv6RayeXfEmaWxflVhaMpTPFyjCoDCpxulCF5LsbDEaukXINsjsUWpFw5cTR+2BWodWpYBrIsnych+No0g8j2AWVRqjBpTeDb/bIV160sE4v66YkywIqGKu2Kqt6PN5tBLx/80XBYRuLkCZRzD1kx6MuBw4p8qfFIuODbJYGKgZBn8/AQbmyoyA/QZc9graMBK51Z8ALQgVQFhdfrUKsED4xBlzXUVw2YlaEgK0YsQUwc1dAj4Nwi0fEdCBYe76rajGdz+7du3c8Ob115+5ovBMMx/NFqkSdDGH/N5nOB0nEadW2dV0nWppoxckmcQ+64h1BUrG4MLfEo0uCm35RFD37zPPTb37LD6LWpahLgvd8cPHSm999i/V/jfS2uY9sGPd6ZWfDHuJ/bi3AUEqShPuf9grEY/NqsXp9miiQA4AgCL70lS9//OMf29/ZHcZJXmRH9+8F0h8NhkjbqIAJYSBCPYE8MRxTRqvnAIatUaeIrmfW+kJRmI4evYLV3ephM9aXr3Vql+keNn2O22eYHYmtgLeXqspLlRdwU6YyGajzMEBkNwDHRbpQVRCAKwGCBtIBEuUI4vUBJzvc3p1m39Fs9+u6HhyHyWeGWMG6xlqDnFSzq+NsMj05PpKOm+aFqtBSk6ww2NU7hjtjuA0AwMBISZ3kk0gLnXqqJRFYEAG6CetJdIXiuu45OnKdsReH9ZxU0JJHTgIEp0MdHuzSVhG+A9uF8TDez+kVY+tN5Glqu7Zmjj0JGzlOu4ezbjwqrLjLXNjr8ZLdGdDbp7evtwsMvNZsTV/VVoLB4JsPXuha5ZXxOsSXHnduzkIZyTdu3TK1f1qFNLY+kDBSMYZZ/B4UoCKyAeq+kmtZ6CURBMU+TPyVDEHWlXsKWPlPHE3yKTSRsSO8eDT2PPQ6o27wOzemWdirNf1UHtPpFAIcxMFfRuRUBLJ7eSZWJjQqHTWygeGwG9fKAvBNm67A/2RF5PUEoCzh0bOkPeCIwi40jmNmlbEwjunmB14ANNPqxrkDYKTZzMoEE5M4ThKYDhoMJX+XaaX1eDas6rWeAGxhhZ+lVmPej8SFECCoBGvIRP8RUgcb2QWbCv+9JvJK2P1w3bEHjhW8XdeqOkMjVS9pG/ZHd4o52+aDaoIGnZIRxfb0+Hg+nalF4Qa+I5QL021Yu6OH27Z7F/ZCH0ovLOatgUCIMAnw5ktUgPLs0tUrOzs7E3LMnc3g2j4YDGidINw5fzUJzQQeyT6jCe4P4qTOQN7NsuyNV1+ry+rFlz9WFsXJCcrDKLZJiSLQYMDZ4/7+/v1bt7nq/PbbbyunvXD5kqqK+/fvT6fTtqqE63GJhS82ICFoUAcZxh3CcQ4ODjzPyyusbSuiaV21w6Ow4/T4REBxTiXJYH9/Py9LkhuhCLWLJNis7ZGc9/XQX++VbvF3WTdX4Fooq+oW9epYL21qSBuCWluIeuX62TDq5cJjJwDkj7RETPHlRFKqAV5B9YvcBmjldSG303gycmU1naU7wzGoCJ6AdKuluLXOw+nmOutXWFGWDbgyLZPlnSso9Mc+L+saZrrQC88a38JUo5dTjfXXDk5ggYwZWMKTGIN7EMWjLou1vxWh9B1qQNEt3GZ5hTojLQ4eicBpNieF9UQ1QMeE0BM4IBFBenjUmMpoxieyoCKmJl/hvE5g0atgm2qmYpB0aKlSNeud64wN6rH4jrZsADJxSC2RoUGMFMrBmKbWIIIc5q3SCUL44+ZKzQ5Pj46ODglQh6DHlUWLY+HHSavqRZY5ngyTeOkIxJVoraNAOF10YYhXoYWiqU1Niwtf3MhMOkUyNj4zvabJZHJHAgf1Mz/zM7UfeB60nmdpGo3GSZKEYTyZTLgmZRdQdYnJIsY8MAEwCOka6vshq3vzPEr4r+WHOX6xr5+V64obDhRW87dzrK2Uunbt2q1bt0ajkR+gnMEnlDmHrS43kIA1BWC1gBopLvFOVBsZp+WAxGBjAznmFiVtio+A7gYsy1h0h3K1jsN1gqyQP0MNsUFFF5fmYgBjAfdZUIWh7SbSdNFUVUF6VrWWeKMmGN2QfW9E/qoOWmPWeazOQcAK7Egr4DwkgWtw4VTth8GVK/Adn9BI/DCbL5pGwfiawl+WfPE8cKO5s1XjALTAKBE1iOMdzi/5oJrz3nEAVnx2jSrO+iBauZ6CkFdwyb8WuVrYcxf9OswSzO20A0LTCLJjCTN6vdAziuKtNTut1/t1uXMV3G8SAJM12e9f2ax1XW+sEz0wzuk5OK2rGi4viU0b3LZ9OSsKJvuiLem6LXqCWIvTvEBjq0b7iWnB7Kfr1IpJt2a7vOk98t2w9fsZ9BkGgXRh9sHDVOijKDKVGM4N2ClTEInRpHTmKxDgUt8AOBr0VbvIHpoW2gXGlMzZ6M5AkuyAWAZQUFlno5s7x/4IUt2cC5r9wJpnFhsNxZ+RIfSYSYwIf6P7BN24+XyOcN8nIzPc/6j4ta0zqZAI27eKwWaYV1YCegfI7MFgsFgs+KbiUJ5RGeuJjecujdbXb8i1DJWoDxqvvDJcajXQogyMFeoUZd36LTHrNlRqbDKx/S1kC37Wtf4hNQH0XKCrNZ3utXapfsAH7Ser2TZvjP5KkUFMS1ratDV06DBkEPq+bOtWAd2ASFc0bjwYXr1yJQmjWtUoH9dNU6lWgZpG6A7SKa9rX8qmbW8+9eTk5FhImc9mp6enKN7AVwESFHSX0dqJ+0h3lnxPXtjbD5OkyPOmLLOy/Pa3vnXv6FBKeXJyhDd7XhjHly9fZiWfoiguX778evAdLwjdVrzxxhuTdP6iIxZl/vrrr6s0FYhCoEGOaxLM74oTgLZt7927B+c+mpAuX77MCRJEMa3pmJuHiHhaMZ/P2f8LRrYkSz9bTD2fhK0o7+afT7Ul8T0bXTpn/ZNdvQg/Slcyie516Z897zE+dtM2N75M1MDOO08P7i0QNhplMy2rTUpf0LWH+CgBE0hewwXQCzATz58t8jBKaqUms+z2e/cu7O+VpSrLqqzhbsYFfAo12JmFE1qaB0zvCzRkyEDrfaa7nneumw8IY20wkIh6qmVIZsUjXQdlVRCMyLxU/tcN2OVdY9XqyEmUSuXCrclVTQOEcVm73KhxIdMAFFnjokSD4k7TCt9Jc+VASwc4zwac4zbL4TnI/rK9KMGIWKyIQLgSPjaQ1uGslSZAz4G1vCeK2QRkBBdioVQErXMC72Eho1IsZx/0C9yGa0hdIxUAf+oZNQLCaAjBEEYg5VeYECBrURQVQu3Z7Pj4+GRyWlUVlsk4GoSDWZq5qk3GO0HQzE4njmr3d8d1lrmbYhRNXScwIbBUHZ+SZN/RBiJay3KJodYxEUVor6qqunfvnuu6f/xP/pvXb97IyiIvAT29NB4PBoPZbDGdwzC0qpEAaJQI2w9aYL8HRv8U5GH5xU5SSzmKorpC133lJnmIe9+G53FghBWZJacrnQOHfgB8S10Dn9xA/40lbiFqwjz7uqxdiWaOAGrX2JjWbSs19RwG8sgrOlK8Poi0FHdhAScAvRuBLFnxF1wtdY3af1nA1hrlGqCBYItDlwFv0SVBzKZMU0HQ56WEAvan6QxJqdzaCfCbg2rHkZylUGWQqhrkPu4AukmajaS/cunSpaqqTk/Rvx1fjOcgtEBRsOvqk8C67+/s7OSYgSqQ/djfoKsB9WoK61WGXgJgo0KW5Fp0+zRVx0QvK7Mr/Vat1AWFrjaKdDxjRzsm4O5iJKsfgiblenOACRpC7wmr5VOKzIVLu4Rtx/29kJ0TnbVrcuWO6CGO7L+ul5POHhsFV/qgbsMMebjwSYYkf2Zwb5gU6HfJJPG1kQ1UbujOCYQn4kGCmZHabTa8niN77vKbSr8nnDhMdNNWemgwkeADU2RQaq9wSzSVUgDcIASYTabo+1olYYP6Mqd8RTioo6n1LojDw2O7PK836DrtXCena5V78PFNKK/TLCHqFGWn9QDatHhW/uQIleVsI8RBDH4xbt42jhMufFZlASirvjLgBUK/0niFaqpxATIx1kLDSeA6ThjKOI5Ho1FZwpjTHPk8zzcmAG1T8pTUyzHMVWLutO4JxAq6XeouKqL8otbb1gHQ/5Dc5tyG4r2tyqHbrtT1m6E3HjkEaOO+PbABx9Er9750b62rUjGHT4dR3VXkE6gGUQtEUZBtlrNMuAK+hqpU8IqQcH+M4929PRkGRZWCMdI2WBhaR8INnlyiiYk4Go1np5Nr12/+wde+6rh+W1az+VzVtSe7Ng5NjCyziEpeiSUQHYDR8Kf+2B/9/d///dnh0ejCQRiGk8kEFx6JxaKtHw12d3cjP5qls6qsL108uH7jiVtvvpHnpXDak+PJV77ylays2mwhFKo0fMnBUoBVHaH5gs7DZDKB5BGV/Hd290l+sCQy7Uo2SxOE16p6tlgsZlNAXBwRDQcNya57MkBuXxS4lgIAolB20HEA+dDTKTAKlecZJDyj94P1bfR5JUgMJM+1DKd9YaD1z6ebfoVGamqtz9Xtoyx2JlRhdW/YC6jXk9Dm7doCE+V+VuGhqFQpopDCYgXWrKza47at78n37rz75I2bYRhO57PvvPq6/7EX8wLqUpDmrBuoOjSEsSQ1EBQ8Cdhk2DidiIgetCLRD6FfxAkPd/M6YAPheeybeuUGZ6ezlUNB2gX8X63hsDx99FHqptGjsRelv3EUQqB6La5QEpYJKH/lCkICULE/cKWrWqWyonUy6fouPAvgaOa6kgAGQCFTP4lQywIsL9R9qZ5bqYbcqEC9RYDhw9cA/NYa92OT48cOAl+g5Ylusr7yYclG6Yg+JGAa0BmE8CZchPGtUM0j+peeieHajDouNF6qvEArOMvyUt29ey/PwPXCxn0pw7hom3Seeq4fRJFwnel07vnyYHevVODbDMKAiyg6v8OlQdpqrKdMYqtErKDMD+AVmFBBJYY0gFhLzm2dqirrqmg8EY7i8c7eYBzX+Tytxde+++rhPM3uH83z0vX8g70LSTI8PjxhlRUw+nBHAu1t8tj1wGjb9c/VF74T+GAyGZdaE0s42cMME+pBrISOQQGx03J//0LjiNHuTqnU6WSq6mqQDGVT+x4s2IBxVoAkcJcJyHsBFoueXiin6biOGqdewzAOJXAIlgtWytcrq50J6JVEM2G4yIUbWyGxQGepKOqsLFF3QzpJenF1W4LoCFoB237Xqgw9rDS4azqpn606GDQwUZEoKEvxYgco9PC9oHEUma6ROLznYRqgiTQJop3hoFZlPp/BANtx82whAVLDdIyJnRhpqGdFA8NF5ASAMcAmAVhfpomLqCMZm1OB6LHzm7IfywIFhfWEQctVW7E4n7WiJAgQ/YFlYjyq4nkeimWs7wEMC51DpmjbH192DHQppwXCvEOFwOhRGTUkx3bahoxS1+Ex1x9+b0caZsUZs/2s6AxPV++IMAIiA4UM7jJRPIyzTJkxPedXTFK8UqJdTY02xFScAPQkg84Y8uDyFXhZe0EQSl+GfuBJKBQ7STwkHSDky/yK5/rYqQ2uHcvz1GvBEEvMUaA/tjWpTRGiCycnnS/WScZtK+Ayi0/1Kd4mKO+9jmrQlqSzlynyP41EfS9Q7llDmy3U5WZJ420trUavC92pc2CuQxFRaRU2LAb3spKh9Qh5M0ia8Dao3dW1qcrD0dMRIonierwzaaHmyXB8Xm3QQ5FdeQNzDy3jlCN1mF593VjZpP69/AaqW+hV2H6DUiV5TFCK2B2ruq6MAlA/qaWy48oVwlwCW/pwU9Gon9FuuYK3wcS3LT9NpXwJzasqA7FyPBgWaRYOCFhlqQ+RWOeydUjXG+aITsSAQeGmiMl3KREZm8rz3UU2f+rZp5i6DXl+1YrLGqAFE70g4O6NH4VeEM6KhRtKVVdZXQ329kohFmk6Go0U2etWVXV8MhkkyXSRPv3CS29889vCceeL9P7xybVrsQTnGLE+BYiIl7EzkrjmjrNQ2c6FnU/8yKfeefOtW+/dnp3e50OJhH8A4M2lK1cDL4BvdQvZxHSWvvyJTw4Gg+9+97VyNoHxTanakhRxHHe8u/f000/v7O2XJeJL33MahVn45AioABw6Pzi4eMnzkR5w+ZzjEOv0tVm22N/ff/XV74jYF2kqwujKMzdO07lwA7aCkW7I9XFRCzhJ6SZAv9aMlvrGK2LTdUKhokJsQQ1upSopvTuH95/yn6zB1qQoE9Eg/ue4KElWNeYfG9zSXVj82Gk4mG/VAe7DD5INXBt1rQgeSg2Hmk3VRFXVeSGxSCDYlZiBgaMi/FWjhlGQpTNVwVc8Af13evny1VvvvC3amvkl1OoCCZVKXIi/ESiwl4suy2t9z5XfQGXdDmm8+id7CewffipnbPhhmvGsmRL9/p6WF6W3mdsaJRRaFHlOpL4EWW42lCrzfVq3jiqRWbPEJwJu6vChvuQCbW0LgHauNZjHTCtgVaLbQ9gvSgossK8g6oomL0t4oJL1Hr5UK7p3P4EJ3NyvQB7uZWnmA1uPaIs08mnKIwbVfIFuG1de4TyV5x7Klvg2B+ITMMoAF96VPvlR1w20+OIgqEVbZFi24jAi63jlU2sKZvJNLYke53hu2cLbjJqHWJ7aSjW1qurScdthEqeTmSry0A9E2wyHg6ooj9L5heGl4WgwmaWj3V2RyN//zltfvf83f/THf+LHP/npSnhprvb2DmTrSUcuZrCWq1RDAayXFwUWnbaJQLLEWkMCTU2apjAZqMquYr12OYg2juI0XyRhsHthVxEyqktZWCOuBkOCrl2+UjqD825FpkdVk8VKWY7joYIXrxgMx9/4xh9cu3zpZDKNosiVMEKpmqZaLDzPKSsKyKiNxnRjCphd+AgJ1wb58CN5Juug36QBQLRDFJPKLuTEAvoVeTuwc59iuwwKYBTSL6EoEWtbt0aZw23g34hgn6STXY0pWuKQHRi1cVWJ7yY+KuaOI24SkTjYbQZyjaDd1tBzRO6AnKNty2acDN67fy9IklmWwyyodnYORvfv3gk97/Of/LQo1WAQv/PG60Pfm50ceq0C/gNTdxOG4WKWOihGRTIITyeLtkU1CrFTZ5a6vmqbAZAY0l+tIkkUJhDeKf1gvucSEkUEoY5Xw+JYnSTMSj5JBQi2dvKkpCgQFwcagXSsG0csFjOWqrceaSLXywiECHC7MneOKfCCMF+rAaT0sYCyBxbqD11YW1VLtR+TkmBe8ml/dKUEkS7vNiyeOqkbD/grjYgpSayFzfBs2RTWuqS00XokzlVvZeN9SNN0BQy/vEFs6KYd3W3hAHzqs5+xMpgV7E1vcL0dE6tRhCCyLMuo8XNS7WftftT00Zhj10HiFdjynazrb7MOKAFAi9uE7Pa9sd4BsCP79VaUTcKw/7Rx9CLRM4BiZw+U/HufIiAgV/22YAXMf1YY193v6j8yvRLZeYySBrMF2JCVsyOGQnEFEUZddNMuv23Lj1ppUfUgChvGed15v//DXNgIxis40WZZFg3ZbEFTn9n2iCsTpicD5Ap6xASCQ0jCCE/NJdDyh911yO2vKAbD1eCkTc+UORvcH+vOI+wiPV/C93R3H7hP6o9Tixi0WEHMvL39C82LIs2yMAhG4zFiBaZXY5HSU04PqrRIU0/KC1cuBwlwPsgTqEAxHqCnz+V8uk30LZ9l2Whn98mnn7p3797k+FjNU2xLBpeuXdvf3x+PIQ/K0nsMEpVSpilMgrnvsbu7GwRBVhQovliqWeYJW1OdTCciz4QjRgf7g51x2zp5UW2scFHuuuE8brsnN8M6qZHd1hUDVwmxgxaLnuKwiBJKpQvIefEWH+44371DnE0+ELjZoQNIKi5Viy4/xOnrpvWb6XTKPEhUVaEqWFLuTxxx0ZBACev9mJmEsS4OdBg3Da5J94cucG76S7fYrI0lUIEqv4YZsnlB0gvKivkDs+p1toUQrBtcZKACPwOI9COUCPhmBaNbv874B8RXdMHzHWECDr6wezUs2muu7vM9b2MtKDbQMLyOuSFIHo1Vf1HchbyVUW9jvlZGoxGOH0Foq4KQMiV+xAdmLmSnVqWpn4w9ojCSMF3E69IdZgoJmdxZOyj4qxoBaydb04ShnMym2WwWef7Nm9cjP7jz1jvZ5HQ4HD5z4/qtW29fu/75n/7jP/N7r3zxnXduL6AA0ubCnWZ5TXnQeEwocHRMugWX22NQsIO0vF37OyMuXF4NoE+UXA2BkB1b43XpZifT/OCVlxdBmoVy13X9IJwuYKHjSr/pxCgJCYSiAul5bFjcAWrC9LmMBGwNQxMd8LGkZNZRFfuBLK9AV+LKgY+h3jHiqDuwZaY7BoJmZYV2va4KLY3GVmTvu/ZjJ0u2fOhuDQto1N1ZrPVJTQMHqlKkp0TO0IsUIFLPO9jbCUeje3ATm4eR3+Tqwv7Bwc743XduzU9PQj9ogRlUSRBIBKH6DDqOkyQJS0LrRuiyE4gYxyUY1breCUN0rBowFyAdloruLhWummOTqFjpDHp5FbEvk7NpcMyzrgIEyJ+OdskMlNpeNOF30MfO3YVnKaSvzlIDztRfwe2hBgFoRJukNu3CFkVNWsC6B4LSRquENSKtX5Y7w65vRB1AHo4voE7+jusLyB8bTODLZJSsdyH8TcmNahu0h/X01tJ5IYo1UadJhQnTXyADngR7/0fGQR2IkGU3DabKxsR3mELN/DBuu8zupvkHYEP4/hIPTSl2522oNYNf0UsAbJIN9wQ0pQktWB3lGzSOuWntE7+iN7p6nzwQQ7KOWtuA8D5zGtr2V5L5O8f7t0U0Pbdtezs88RkSBbt6meesC7Q0M7ZE+jcmNusooPc3VpUTP3LDmG3B+pd1o0kmf46Wor4Wcb+iBoX1k7MwbsOa17n6vB7ddogF7WakZzpO+knWdiWDBQmNBfip2kUjDqM4jOCbMZuhKUmqPgDIOYV03OFgsD/eyasS0A5fkqAJwX5qMmXctEtNXcdRlMTx/t4eBCU4AfC8poJiBmPejGI0jx0aBwcH9+7dWywWYRgOBgOm44MUSEuXluzoZgYvjuuq2t3dhVERO1JDR3ft4AjAHuZFMZ9MUb8aDHaGI1Ab88JDa3jjNbPlQuohV8y7N154bSM9WWGSIdXX9Y1ZNNkOVfjhYs/OOzpbAJxoWnchiMkLYZIkeY48LYoScuauLh7sBUFQERyWszUdpqwWR+y7dZuRHy9gG/anOd98xcOu5z14Zt50KvnCM24Serom7jhRKFf6+9ucOykL2RhXkJD0Wh8bX2xjgrXDB0MiSV6Z1jwGa1FTAn5gWAIJNs33HS+dRVFwyWY2mxWk7kp2vCWLNDzkpGrqxL1lTtNFRFNxnkc+4bpDrurRYOgnTui5uzujusiHg/Dm9ae/+93vRqETRv7xfdzsaZrOZgsvDouiEi70Bjj6OTg40F7CHbmOMxU2NLBP5EPmAJ5LJqmE8QhDTcg2opkdplJj77qW9OYjw+I/8/kcughSsgE5YcEdrr8yjLdHAlwZRMYljZsNBUH6Hs1Y03tHSlIMNeEGBeoHjBH3fG3yShiJuqnLqi7reppmlcLEyFreBphhEAQPWW3cduNoAxN+wjgmIJugABRFASRJVOUP4hCgIxVIb+/y5UuXLkVRdOvWrSzLxsPRZDrpZBXplHZqB6PhwIcoXLGxZsGQsKVdhsWR3YgHs+8viwMAePRGCJnB9PcCfWPY2ru71wu4+qABArWGTLEOu7P6T76Rl7e/Oc6rxltm2LR4+4foBGC1Qg3A3pbJryOO98rHYIlT3weUG/PYOk0gQ9G2FdE8SFIWaQHqWXCdQA+5FjV3QKkf0rokx4z/rj7K4+Pj9dK4ceTpBdzdksk2gjo14AywKEqefGowdLUDLloqHqkHktMwU4r5OVUqSM6ie4URMlXnXNvLLG2HORu7vy7/tO2Rn6wvePbJXr/HtkJKtjvgbnx9a+l9y42/bfv8J5ZjC4KAuc4uqc6bA8UC7dqeYDWy70Fr1ggAHzQHMBv/sDOB97F9vleN8fNisVjM58KXNIESFNCai3jzHWXI1GUI3N8N+7JxPJ0w6xPHvptC1NzyMyBnqiW2IKihY85XM79OV7ITBWR13rYSaKu6XGSNlGEYSt8bhjErw1SkJw5CflMx+t/SFtAzGlYjqNdpqVBSSCFcCHGFDTHGiBXw8WH9XL6o7PuFTyinEDyDt2178eLFz3/+8wAF+T77BiRRQLCnDQlJEEBa5Mknn1SwsB2Nx2OUGNRcQEhqCfS39TfWvCVYAg8x3ybniQ2Plt5rx/cge6tt+D2ORc57XW3f1CMY3AHoDqOpHSJG4uoyXdJ+nudZloW+B/AYHWrjdGHCU3vHzD8ZErk+uEG0Prb2h7fNVw89o3Z/1B22TVvSN6fJWkngVMvQ9dQ5zHVrL+f0NkCq1hdsc4h6y39DADWdYMCq28wRHKTqVVLHkzDmK1FI6wr/5rN7e3ucIZvDBdZZDd7/9qOxPFzrB42/kW//zooGjFUq/NNUQj9WqHp/dzeWfpWlVZbm8+n+3vCP/8xPvvziM3/n7/43e7t7h0f3/sk/+W1XRmGQeHG8qIogCIqi4Dt9Z2cHjtQllOuovLei8Q1MVQfheMgOAKcNnnCGySCUujiybB8RnIMlZU0/euN2GrhS5tz3dl23LMvpdLq3t+c6siGQqontjNX6elzRChf17W62MRAg6N6SeAevAxR4cckSdyPCMTLn1nEbVVoj38XhqVRVF1Wl8qqocNSqaZrbJCOjj2KuBPvafuBYSV7oCiQaOkf/RLUhfnyrcAWOx+O0yOdFJtpmZzzIirxt689+9tOXL10qy+LWrVseuhdOlqbjwUB6jmSTEWrC1DXqCwCvgiKxYuJr77NJns3dV9dAh/Zw6qhwUVd8bTCAvw/iMEhvuxBsF3zthJ+/yMxj/fomQ/cshEu3n0tDLvtTSy3m1fJQL7Gxr0N78jHf0kOgLJEptIIx7t9+9GrU/DgeNlExo6ydJZSRVMNJrr4idg8LrXJKwKDJqgKgjkGPcLkifUvE5/CSNO9fPsrJ8ckZCcA6Vl7/k0A+NThBZFMhamjCrCrrs5JaVc34tHDerLNnIVRV8WLLt57Jsil+2HQi1yr09tvW2dZ2ZmZP92ah6l3Kj3DBfiQJwLbBVqycAHDBYzAY8GrN0HOui/DbusJhv4y0/PZHFPr3xsNI7H+PB6Pq+bZEGF0U77777nQxv3z9BumssV00HrtYndc2QhEuX9mQUvITI5PvEiPWaGFBFt/6lDVRwg2gX7do29CDLSPPqnWNhc1zhe85ZZ5CIwizPLJ+yZowLSgiWkama27q/YReF3MPdPxYq7qCVfCyAUK+8jqvRo0/z7hsjGCd1lTIUFpqVDy78YTNsNdLFw46jYhmMZs6Hswmucyqj7uJO502jsKnnrxpbsYarBJIqzA9s+eaC/WX1SmSHzlA5Lau/Qi8NYdl1iNb7qJgSQhT1m3k/dGcel3m07o2XdnxIzSYjUiZnZb8g0ohXaSqzEuyCG3CEqzSRRr6CNrY/dD2qOc5Yb1Itl7oegAESAg/8M6VGHASeq7fu8VZnAF3rNKuhTtwHXapHSnSUCOOf1er99NezgGekSFvfnMfby0xMAXRLnnXz1MuABMAYIWW1mgMK9/CfC744J+enkJUl3DGxrvqjOPQm5A1VIZo4ow1ReRHaEC9WOuggQIFmmtE08Zhoop6Ml+ofBHtjcJA7O6EFw6G/5O/+Je/862vffu1N4aDoWigOeG5oSN8x4EJIN8Oruty12KxWKxTP3XhgSJku7B69jrC3Bp0F4cx8PTEoeTIovuddKXznb59fXTBQ8jDQERh3DZiMp3kWXHz2nVkWQAg2NkvYPp2AVGLI+EkwcdVB14UFGmCPNOcqeWjUeaa0e7m6JC0MOylSpBGorft8ckE2p15kVfQ768w1/asQTDsqpx50X5+xtHrQYAYRk4scDbW0J/l6T3LFsPxYDwa7OzvOIGs6ioOxOXL1z7/I5+9du3KN7/6B2+/+aYn2jgIPeGosoyi0AP4FY4fhChSURQURebIjt/cBQm8t1pWtRusWkGVex0o93LvdRdCc0HYr5u/GlBDF1UTJccqBFMU1PTS7PWcH9JB+gizuAJ/xYaZUNCw5UTtN3AzdSnC2/3V98NeZ4MhUus1JvoTBctsPOOsPJLA4koiShMZ3fQNmkqtEDCvhQEohfpIGMipilCODdCe+EtVQYTc94DnAucEB4kYbpQkrD/KoyMoA663WvhA97FW9I262EH0MiOcxVI9/HonpUWEtrUcaL2kYT83AVMvfLcztl7lZmO938xEG1sBvRNvd2p668G21vbWSv8jSgDOCKBNScMYoLA/2mw2m0wmDPjmjyM46NTKtu3Ser4u3u94eADVBx9bj+eZiYfJ17n2CRn7ErK2RqVKeHBmbxwhyTidn/NjJ4aL192Ov29Y/HEQ8juZhCQ8MlVxnVCGRloO8DAXSgvQgIP5p+N7KCqy5JwOfztEcstoe7IbrQuAc1VNNXiuuNFpRRmKQj5bqJf3Cm9zITvr+lB3qEWrCrhLYgFeJQ/xYHLCshxH3ttAmXeFgJ4yL7sL89TPHc88z93G9UPZoFTaP25lhpZx5AeqbVRRFrXy2aZPK71T49x6JImHDvBjPTLHYD0x2PgIxDhMBigfI3EhvgCYsIjgtKMqLssH39frc8P7N1Sn9HaKoqhhLY4nSG5Ve//+/XES8bSwrS3+MDt5xjxWVZtft1tJK/u/NqucOTPUqA5vH/1aBv0/8K9WW2B9TrMfC0u0oLde9HIA3cpfkVfuzGG41IqrtP8tER0HvlmY7cNCebPZbD6fq6qC2hClZ/o2P5MSsg7cWhovdDuM6jQEUrsljy8PtrRyEHGUqoR2EjKTahD5u8MolHXgi1/5lV/+P/9f/qPQhyXIG2/fleGwKKpgBO8dHKiqDKOIdfqn06kdG6zsHqO8rTX37Jmf/tokCb6FgASKVOc7gWYdmrEsI/cENm9HFyMIbJ1l2cnJCQ6m48KIkKQ/TdXWwtz3C53cPqoB1+fYmQoBhKduBYR62CaMHzVZUwat29QKNXIG9kCqlzz7iHStIXI8nyNNWz0+6xGnGWevv7YMfDchdyeaPsFNgC4yRhleqXKQhLv747tHh3VdPfnM0z/7sz/7/FNPuY7z3rvv3L397s1rVyXmZP/49EQOIp+cV0skS0h7h8MhyYizkk//PupVuPk3ciGpV+riwcvE+nY4Vdt4tffuAv4Ib8e80+4J2Heu5uSQqbx5v+khmPhWrN34NgTIzgFsCJA9ddjyo3bNZX0+6Ww01cbVyuLVdq+TuyJvnytuJdDyumHSO1bYc8T0wkEUAwazIspARaB81TSBlHRNNr1HOZ3MN1b6GeO1/nqXsrnLEJ9z46V1Nl43r0A/ee1EUu+HMJTmnu+eLzH0fAS75yualKt/Wj7yLcTbsUhd9qXUq1QtLyDrJrSfcGazYZwT6rN1Wtz28pnTaC+r5ghsOByCDkUTIiegEFlbIe6vItIeafl//YoUH6XBDoLcGGEGBbeJpseHBNah0J+aa+y1xM/JWEfLgBIvgNzirFeMiZ5EZK4/a6tJMLJ/HaAiXQh3gI+K0ob+3tZBbczMLxq0Q/sJwWyac9krwEw32hilt5/snuS5vid5+1jGSGtLhsF63ddxnDxbsJG22TIXL00ltXdOfd9XZSWRWqAIDX2SSoVxlOULqvdzI6CrmgoRhSFJCBJsgF3t2jbwgwwqW/XDV5RJWcxgXpePJpe2H7uPUKm2rkDCy6E5GHiS1bpsrbRumhYfqYHplPaO1JXYDVDXpDv/72axWHC9OU3nbVXQ+q3t6uzlqrfg8V+3FTi0A/HaaAAJOBdkUS/M21b33niYeWNr8cX6aesTkZ4ziWPXW+PXE4bln6wV3Sg/LhXEyQXATqclBXz2KxyyzOdzAhFh1TMEx7PLvRv/qT0ru/iYU1Yiu1I9QvNVqUNEHmM1dCedQTwAekdVvvR2d+MwdL7x9S99/OXnRoMwV+geQdm5qlvfHQxGri+rpk7TdDAYJAlUvLlxYe8M8U+XbI3eNXbGYNjSIE7YfMARtU9SZt06zgRoCjH1jbylHURuJKWqfAf2yaWqdvf3wDS14ME2ioE7Ob27oGlFBVamDv0p8KfaKCUgbKBNMtfL+dyToqxqVVQpDltONA8kcdJzAbLQ3UsodpHqFIBedrdtpQP80KDfMy8SEnztGtSYvYGiQDE48L3RIBqPkrKKn3rqxc/+yOd+5HOf8f34G3/wjS+/8vtClRd3x5Pj+05d7gyjSFJhCld0g+KXFHt7O1ESsmrw+k0H+kp3nRujUjM79SroZ4T4xAi3f44e0tcOvnw6zV9NgK6/mrSD+mkV+LSsfY6lc4NqXKf7z4NeMIuubiRqR0j9dqxoutXFwqDdeayII2TH/aszTxepdtks++TwCbMf9bnUO6+RjZAW1uHtctgJSRf2Mn4Z/xcQFLkifq7h3BJkaDOkFtSZjVWibZdjJ39s6u5ataarxJu5keLvVjSKSvprw87Gznao5SeGVNF73Bgo9LbZ+9PGa9EGEW3MBLZt5wO+fh7t4xUyq77buzmOhdh2dnZY9B3VJl5mVs9jr7H1UabtPvLBKhwVrJJKDRwsCseXK+u9nu1b1eLoLQV2uouYbNGXTrHmeJZ1bc8L5nad5YU9m+grc637v5yJuNDeNOwAJYMAnMIS1TjyYWgB0JGSM3uubW+8XA0GyTB9OaAvqhLAy24PjROfcebuBcQQKFt9xRh4s4UwZ5tBEKRpurs3xoK3SQXI9/3SOvIM4ZVZ5nr+xooIYvQNFf0NFu7mAPI32Y+0fgCtWBPkOsuyPIcwy/plv54UfRQGIxC6UuvShkw3+pVyKf3LsywgrrYqi3kxD0OdIppTbMpdH1xO97wcgG1ykNvHVhrGetYKf4M1cuQ2NYLlVL8JfdGb/M0TW43E6Hx3+7nsAOhBnlHmplvKMTfNdDLxSfemyHMIhtLNSO/ZfiAeYmaGAB8vpuT+qycXdpujsmEcRnm6UGUDc2KvGUbhKA6bMrt2+cLrb91SqgpjEH5GO+M33r576YnrYQxtCaVUWuS7u7thFDnSy1OScFmtNOuv4vCj2+EH1K3YuMBzghCk0aauPFJcNDcvXa94o+WvtNlnI8/zOI5ZmSDLMs/z9vf3j4+PGebHn4FES2fgZdzF+ZE8zFD7hwghBS0dB4E1RzUbuet7aFRX29YTOLFAF78oSlh60cUKzAzmUbwJ0xOKm6IiM1A+y2aZNr2LD144000A3ibthxUy1bP55Jlnn7x+9cr+wfj65YM/+Ys/9+STT2ZZFsj2O1//yte/9MWdxL92Yf/3X/tuU1U3r10vS7RzKfdpiOsiB6NhkiQZyQysDy5U9WZOG6Rk2+LaJUvbf4lQcJvzRi7YWbfeUq2rd4hsLmgvPmwg+6s2yv5uK3xIYjP3lsLe/tjqYYYM3Uv77e0vw1E+XdpuRfQeNb2tgzWSNJZXFPheawf1+sZ+FOafpEuLzARIf/TVSC4ZfSxogzsk8doD2fKjVKtkFHunNz6BlrR5j/V+kCiXv0eLRXdwzI3fYAr2umtpEr4HVrvt0UPU2Qvklu98wOrSuyHPm5ef9/3vD3NgA5bMYHyhlGjpslVwURROiX4oL0Im4OM3w5ySBt5GuAimFvQyzm0z1KMNmM6baJ0bStEJL3DkzQeQnmuxcfM1WhwMXDXzWveEMDib91M3ujq5sQ6Jr22zjXioQeiv9v518kHWk8DFtgJGTm2ryoKf11XlEWOqbeqqwKLFz9kza31svKu1vdWW47PxdY/IBuuDOw9vvLZyPQD2gwB9pZjKj4ZUulJ2xfvhw8rHmojY+jlLoDIzg3oYej62y2n2prhA0DN8waQIanJclsXxZHp6enphbz+5dvXo/iHED7Cr+qbAteE6qJecUwb0gfPJBxxdqMCi4EwgJ/BxrTzpqbKqHRWAyN6k8xkfEHbt4XuHDPs2nPP1+shDVui3WRz35ofedHrOw3LWV1jb5xC8i8V5+91bzdeYFZLfBwu75W7oQpvWBzTipMbDBKodjEpj4wSqsPMG6YRwbdK+FF0iZ5tXqqpi/UeP0HSYYLsM1rytd7h6SI/VAALm5ShPlFWSDNCOUWow3J3l6SLPapQBITkOeT+CuTutyBdpFIZOW/qelwRwNohCH2T9LB0m8Xy+uHbh+ul0VrXRzu5+qRrkJWFwcnIyn8+vfuYqR7WTCRw/ZrMZdGMGQ+yhqpPBaDGfeqHmPvH+53leN8a2dr0MTMBEx4sDOKbn2aLMs5ISAO0D11VJKQyA5onx6evFIXlRJcNxGPt3795N83I0Gk3nqZSQrdTVT6p9mj6t74cNlsF6Wct3XMcHRgvwSu55girkKYViQRCESC1SkKHjeFDkOf/8oioC3w3COAjdlGCNdPF5YRAs0oXr+SbfZis9W7XG7P969Ll+X/Tux22FD1aXh656J/2nLeGLYphE+Xzyb/2lv3D92qVAekdHdyESo5r/8m/89TqdferTn3zn9e9cHA9UUTpVEaMIJAtVLdIyCMPxwd54PMzKYv3u3hgpWYWnZZ2rVxHvVXX5I2UnnN8LLWSHrdcf7KJIJr+t/H56T2GRgO1LBT1S8lHhyn1LJoAIY6nB5BIM1SYx23NFd1Uu94cHiOBgvJLSP4wFl693Ya+tH8WPvD/ULrBQYct5w4Ik8TRD/wQxwBi52iciQBQnervkiDYtIVOLa9sDyAAXBv7UECUAoFcGs3Vkd4Ga6MYLa/200Xx3vlUNTcntf92cYzjnDqw32dlu3c/30Wj7CA5bvqqX8/AsEAQBU7gWac4icaxJZzIBo9tlLizDTzLDvtvtC9RWYTK9iI9gAfXDGZw8v4+PPNQjNRrZqqn3iMW7/3pXqXrIoXm07OK5+kgcyrXXtxvemdd7CSGmrlWPQ2YCtCXkBVfsLnSUxUWPzpzKfg85PWqKALs+dp1A2/CFOQ9QFOmeG8dxx3EGgwFYjPPZfLHwSCBrcno8n8/FD/jo5szV+ZVCR/OGH+Lm3rYJ5+zXtcC+s3n+3Davbny9++tKgKvdwbvB5X/Wz3lUP9wuGHENHrAN1NZXJAbN26jiAJ0AehuoTRIUHeAE7t69K8EVdIFikfBaDhwhw8CVcp6C9bu/v8/LCuOXULynOjMH5fYhMtYKvY76xj6MH0IEtYVrluaqoUXJCQC3vEh1Ry/lWwqR6KUUWpuIada8zBGjoGUhcbyTD3wD4yQGToRh6IeoyhdFkc/nVQtUpC+hm9dJaAAJmWWp47hXrl6az+ffffW7N69fP52exmE4GsazeVZUADr6kt14mkWWLVK8wifaFPjhw1MiSXgkY80HgEcHbeJUBx1/sv5w5e1b71zcH127uD8MZDafNIvpzZtP/LW//p+f3n3XFeInf+Qz//DX/oFQ9aWDg9CPiqoswBCD2XbbtnEcJ0niSbepkIutn8peHGVlCEvMffcKdtpg93s5rUMuCuvNBJuMa0fn64quvY/3uQe1WjasrDEYDMzu9ZLw3i86OwGzj8M6gmYtimaC4MqRWQfCrCROFgT3jOPfG6aTQEoJ2I4itr3+vdgL4VDvRW5RXKAapdn75WyyNd7YSBqjJuQZ+2lmT36klX9LRXPrJro519reVtOthypxfbBxZsqz+QPvY2yE79uJNZPPMOV5qOvDA70bnANoCGbXt9pGft+wv5te/5DUhL4XY2vF94zIeuO9t+1XE42fw3r7kVblDa/TLLfp0dn0+vsZuvmw+kj373pCwnax27/JUojoWmZkFMgOTTTjodQC8pxck/jEo26EsJAFehqcfGiDIHaB5C2wnkzFsXuH9Vw+4WWq6yTofoIQYRDh4s8zIVop/Tqq8jxleBV9UHzEh7t+yenZku9WvmwIt6qrp13Z6gd1PKBA051n/WRpr24kniytp97rLRPPtB9QFzrwfKWvo/7rHJjqfxLbmF+HLN+GGhmkeTQaiPjxbJ5tHPQ++OBVshf96Iizq0BaIQYEcJkKD10kT0rXkzKQMnAc/7VX3/SCoHXcUpUylGVbuiJMhtDUPz4+bprm+vXr7GDAWuHcH+beAjLzzpCBj67rugyHsHd1dTXkFmc9jMcR1de5iMDWKPyOhsA/XEQgT3o4xa4eYf1ESsmWanVdc7WrqkDy8f0QGQph/jvFQfpuzw+BnUQfZk5FMS7tD0NQ5vJFLn03IWJYlmXT2WR3d/fdW+8d3r2L8rAQ8+mJK0RZFBnVxKMAF1JZ1dMZpiOeduIo1nhLDw4PQiCjeFRlsTNKbFBm0c7emA7QgW3bgwt7x0f3I6f6z//a//vf//f+3d3RYHDz2u/99m/+Z3/1/xUK8R/+B//Ld966FTbF3t5e6Ds7O8lsLg6LhQfdCJnV1Xg8GoxH5BvTB0zalN/1+FURaL0Xy55RMFpeHKtNXftF+9s5yez1FgwoutcEpvtUQ1htmaBeiNJaP4SjpvU/PTCq6aOPrHjYjqxM3d7cHN1H+pD4XuhsSzCdjXDZGML1ojvzT3muH0YfpXt1QwXR2VhBPHv7602AszOGM7bzMOX/H44E4Ixo2xZuMpg5Rmyzq5/xc+HeNNP2Gae41J/hHtR2Aw77OtuGIjhvQ+C85+WjlmZs3R8G/K09duju9cd2iwP0kntjP5J16Hn2U29zbWtcjO87UhOy8Mwuw8rMAm1CbV+6XlBhL1ozu+nOqAvjHvqVGuWwVM+za9yMBGhbhxBcPRUmGEKR/gbPQ5xg8PekxcwzF39VLRDEbGW4vo/xoc8n69u3esrWu/im06y5DfP2D8g4e4d7Zfge7uiBrztNzVJcG+fPzVUVqi6Zw2te76Cn+v29TbHMP4N/HqEmMrfUzIEyFR9EP9TDM3/izJjer4TjtU1NYri+lIHn6v+9/vrb0ouquq2U8j3oEDSiHu/tNqK9c++e47mXrl5pmobF5Yz2NNsdaDUFeN6yfQooRryg2KF/70Twrg4GSRCi/ITivec0UNQhMVCo8VD9nrFuRMUlxEJfQZI72Gysy1JL3GwxmLf1uI2XPK3a07GAqlqJHJwl0MPq5uR4UpQZb/zNN9/Z34cjyic/+clnnnnmP/1P/z9J7KRZG/tuWTdFWbuQlIXOAr6aZNEJmIQUSDZ62aWL5FHegHbsq50oiLpLf9NIuBqaj+2tt9+5uDeKw+C3/9FvPHV599mbV4dx9Nf/4786kuJ/8Mu/9Ce+8GP/4X/7967sDi8e7M3n8/1h5Db18QlobKgLNy3oH2FIommafNU7BVpmZ22SsQP0nqqkie9tyE1BPhu9we/ZWBE3kO91pH6ve0AHB52iXgLAw6gSuasdg/Uv5Vd6vg1mGATE+iXXA8Gar+uW8pUEyf6gdVRdmBJ3S/wDi7PbArPeftr+Wlt1iLcNyjyoOtiuPHbVvNXXwbZ5wNxn/2zyPG/eB/ns4SvQ552Lz80BOOcNv13neGtgt/4De/JVjOfhPWfRcJ6gWeKd8Y6LhW5Z2nQC0zdYV3/idoF55xktsPeXAHy/RrOFpLh9/7dA5s75vRu3fl5oEY9z4fLOmy7Y/1n5UqOq0cXqHYraKsna79+IgiCntM3fbB9/+znr7BEtm2cLwEONISfp+FEjgIGT+LmucEijCcKfaHQQQM42wGo+8Cn4fqDOOC3k102ExIbUP2BB/8OPDw7dsXLg5V2IP5EwSP91OuzrxSmLHLxBVo5r20CY5Dkue5p7H9VJoVWSsR5azd5ES7rgTfFC91vI1JyajSDUOJJC/9B1oiKvb92+68kQ+rECGoJu4LUuDMsWi8XR0dFwONzZ2anb5vToJE1T5oyZH8sxN1SMO8gTl+RZF1QjCFZnAArW2jDykiRhdgTvM+yEoN1D4b7WboE0D/ey0EdcrxIKkZeValoAnaVPTQwSUkfpfQl1MJwOVrUqSR7U87yd3f0wDNM0nUwmw+FoPp+T6jx9BFJJVVXkF/bHf+7P/TvPPvvsjRs3hqPB3/qv/su7d+dJItIUF49P9YVatZUoHUB9vJ/60R+PB8kXv/jFo+MTdEEFmEu1wtl/JOe9u4Y3/BPHjBjgpOzOB7UJAjkaJnWZ3bx8+a/9J/+xp4rQa1TV/OX/+f/ws5/99N/8G39tN3Z3x2NR509cvRyGfhlIX4iiJfqZ6+7u7grXKYvKyMuaCHVj7d+MutaGAHZQaztt9wjQgAxpC2W299BWHqqDmfWiZODXeNFhNZ4ul1jHAvFt7Hk+4ui18r/0tVyv3XwgVSKt6rP2q7ecFCvR7X64Y0Os7UfyqgFuVf94topYFsSWCBZ9B2lcSz/kWM1lVgbuuk0hNLXRNyQqDzUx2We0wcW9oULZjbUK5RYMk73lZVmFUUab9uhsRIp9aT7a0PPclelH1AF44Pf2ch6loMbY0//GQgVnuOX1bY4PCz4au5+lmaUF+rdJ970M0gw73fwgx3/b7922tUcX5Wy5rs75/q2dq20Tx6b3Q1K3s7B9mPezXN25rrht796ccDotZAQfLipeR/3az33LWbZXdiV7rw1rvHnDsnzSwkBwedeLZefATi+szgFEBtu2RWhCyA/6me02+9vvwXV7vsFAKLNKdF+5cR96hZ8f0DTg7OLWByn/9xrr22pGK69bdfXe+7kcbhRXl2uqg0o5g3846bUDlEdyfHqn2BWmXMqoOgo1NMxJN4W4TEBiZIEjgqZ133n33vHR1PfDCimMCz3NMJChTAaDw8PD+Xx+82Mfi6Kobdv33nsPtHJKALDA0IzjSynqBkaySC30AoEOAN/RMJMirdLu0HVVWHBywoiq5mXhAUbkNMQEMOUqKiR6TQcFdmsc0vWrGoqf3fJkWWIjLTFVMPuwu67LzgNsGsCoId/35/P5bDZbip6jTyLC0Pvzf/6Xf+oLP0l5wvz+/fkv/tLP/xf/xd+tChzcKISxwyLDHHJxb/yFL/zRz/3o5595+jlO/P7pP/2nqDTUWI4fyRk/2wdA2zJalSCCb7a+7925feti/OSnP/7jn3rm5v1bbx6MBj/6+c/UbfWlf/nP7996/drBpZ3huCqb6zevHB5NvFaFnleCG1uHob+7v6egM0cXsFUwXsYVHd/DjinZQtiu9G8rrmtHTtGGoXads8vbxtnXnvw3AnhMHcp8ly0CQZfiZhdUoyrJY5sopfnnNsfujQViG5K0uhZgQd2Y2PR2r3t3B+Xvb2fr+sKvmi2bd5oCrnUzYmbbSgLe5h3bdQAecrgkReBu375Gc+qBBJR4kA891iPObfQj870fagfgXKRM+sCWlx/Ux+itXvb9Y7oi64Awc2VEUUQ2NLpzam4Au8Vmb2GzkYp1nW1qYP2AjM3nzHlkmk1aTfQhd2bz7mwJ3N9PwbonQKS3rx1s+tvX+ifrG1lrBxkscC9A538aAVB7CxTYdqH7tgx/9Z+wa2sffJ92X4TgpqoUS7fis45TN5D9eIQooO/JaCwtILq7tWFW/1r5Qbrvvi/l/7Vpc2v0v1Za4mr3+ny74pjZLmGWnHCa6PaRHw0edgdA77AVMaAk7MCaR38KaqFO23rf+tZ3ZvMs3rtYNY4j63mW7lwY+kkofffevXtlWd64cQMWZo773p07Va0acBkqYH6o+AoKmSpoUdABt+d5XE7qEg/dBzB1X9JiEaNkEEifvbr8AIj8qqqiKCorzA8QMWSrVNHhJJrNCUCe5zAsJ+6v4Vh3pAL9820Ua5ZlcQypm7IE9EiRSzo4BAW+d388dhxnMp1IV7z04guf+vTLL77wfDqfTSdHDTxxo5//uZ/52le/dHwylW48Gu1dvXr12Wefffrppy9cuhgGMb7CdRM/8lxytqJvD31P1aw582ENLiDrpieVfqkAjDYQztaiCgM5PTn+5T/9C2+/+o3D27de+b1/OdobvPHGaz/zhZ9I59koHofhIC/rkPbbl25bQUBsMBjs7e2RtixStB7vlr/amF71hqn098KPbYEyfYv+57bikY3S6a045k89JE8Pq2x/kLds+CftisnV9sD6QYXI9e/txUKscMvO9Drq5VcsybLefM4ZnXa2sW6rMyIRCGMwDJSuBLNDRN/vNmJt7awEYGNq0lWk1tRLQCzeRCLULYw1zRPoI2rELoEy2VBs63hgovKQKKAfVhUg44xoVIf5Vuxs2LoDojtjECiATSzrRwBIAYEoZN5bnD7DcEWW6wyLbzuR+OgPoqVql0f7ka7pNX36Doa7wclvbQv02DCl9aGda8+//6x1t/nb+49AApyvgUGuQ6Tp02P4NORnYsB+VC3F67bkvL1g9JqhXUuUSaz6zfZVZLsO2ycLULfVXe2wrxvwaSQPh6AEfjEe1NDqZmlIacbKbPUDNkxiYGbXH+bx/sR/znj9wTmDZuzwNaMD7i4o0RciT7k8VF1iSiQwljHiMPLKm8b5Lj1SxcGJbgw4xkVUz8ACuF60kpJq5rgDAkTrL6b42nFrx6mFp1r3jXfeSct6GARe3TpllS8We9INAikc73Q6aYS4cOECfqNwppMJFhSKmIMgRNRC8VbN4B993+GLqgaLh0veWVrOiyApHHBwQTaKQmo45DWYvrARBHgHxqUczpILEty+u9WcCzSd/SKp++N5VdbSR7WQHFFaV3oCGpeKdOWXZV0+KZQU1Yt0GgTBjRs3nn/+eSndL3/5q9/45qsHu8PT0/l0On3huaf/9J/6+Y997GPXrl3Z3d05nRy3bS3hEuNXUNtV//v/4H/n+YEjwqbRinl0opWqFo7jVZUaJgfDOE7ioEK6pMipRbdgHtnQKhFcZGFliM5rj49zV08py/LipfHpdPLW26995auvPH3loJkPE+9iWc1+8ad/fD5PP/f5T09OUxkk3/zWa1EkVV2SIQOCgTCOBoNBK4jyUdd8OE2JkEevwGyGlB472gKhiSAAjJHGEb6L11mfTbLtJmm4ldABXZYmzWY53tgYSZuInyEPXPu34xBbaDWKYztc2RifONZfzesbQ/nN58TC928sua48UqSrHX+pB7I50nhQPLB1f9auN56y7I6H/WRrArD+Td0nt72t2YILajaThukyWX99W6nzvBX981b6HxlwqD3v9jcf/wf6GPSOh+1twa7YhLtuGHa2Psqi2hknR4eHqmmSJMiy2nVqwolufn+1Rc7s7FbUOS7cbRHouY/n+UaHXxf9xy2Os1BYY/OX3iOJ5WgXj+Ujtu5SgI73POjxrP3c8jqjDvivD37UJYQNxe/th5PrD51MT/dI2hjaMqFjDPNg4RGzzfXt8ju7ycQsJPqxe3+n/937/HogZZqeq1vn/3a+FsR2sdMKXWE0eTH9AirFnFuFbOPrj6YO32VDm754VRdoqS51zm9ePc4PvKu2bX29DctPvHM2zeot86F13pfXz/qOmeliCRjoXqA/g7pKN0Ff7Qex7vJ9XEUitd2m0heYeZ1/F9qnCAE5yrTtjfT7uLpp1aQ2Tn0d5ln7rVq0BG3z2IUUXXjUuo1qXVdWNdz3ardZlGkyjD2nLivl+oHjOo1qvUhKLyjyMvA0iRZsSF82UmaiPa2Kf/UHX7v2zJNp087SrGrrZDhoGzWg8d3XXm9a54knnpzPF4kfHt8/aut2NpkmYVSVeRyE0vOKKvd8V7VKuk0cD4TTFqp0PALwSET/iqHCDia/plYN4uNgf3fXC/xFNic9RJmiK+iIIEoLWNpRYZ7cs2qCJVE4pbibDcIukhC2CHR96Uqp2haND9dtm7ZQCvKmvlTVoqkheceszeFwePHy3s7OznPPP3P9+vWnnnqKtU2Pjw+feebaj7377vxkduPGjWefffbixYseTAAU1HvyuUfzOY5303gOkEWzyYwoSOh4wMugc1rELxROmefzSfP8c0/8/V8rm1b40s+KSnoB+MEfNC1noyv2V9FNH+KmuzohaHCkQKOgKY6xko4jsrJYlE5el/fv37k4lBf2kioqrhxcHsRBGFwXrjNKdifzcv9gdPLuHTd0MpUppy5VeeXKpatXL7/13nthGFZ5xg7TvQvYkGv13deFlYUC61M705M+LRnUMv6SIC2kC9fUTVnj7rBNM9BHcjXkmH5Gv2CENxB23673844ZDJg5LzYwr1OgsGL9LYGFaz7VYck0pmh1a+b3msJor9VggBW2ODuCNFbXJHBhV7vDkSrJiKYrPupJoV0zxrVtssw2bb51XsGhWR8BXJiaE8YaessZho3GHOcsEvA2dEe3IPUetUPN6qMJazjNe5jHx+MRD6Ok1hvSdSQwrMCEkHQLu8U9mmLoDw4U4aGjZ8uF70N6fH/jw94+jeahHz9qw96r7V4i3VE6N4TvozBsjanH431V+ntPlo94+1LS28xqLWA1FvLHQhG8753c+M/ecIXHTj6sIowl022lpOaPA3QB2WoRVc8LHI/47tl8mAyCKCxV7ceRkP7Xvvmt1vcrx1UC4W2L/yDcicNoMp+VJUzlk8GobdvpdDqbzVCspWGqkqbNTnlT4zhuA9fdTpuYwct4Gy8lcPQLgiAMQzpG2rS4O2jY1GR2IqUMgwg6Fb6j2qYmrI4WXfW8KIpY+ef09HQymVy/fh0glzxjKL/XOnlRVPM0XyySgbu3t3fx4sVr16499dQTTz311MWLFxWRU4uiuPXuW21bx3H8wotPf+zFZ9oaiq7AFKVT0DbgAwBZPNvwwe0C08ZpfSIqU1OlFi3J/xBO3vdEUS4uX7o4GMi8hEKolBGSkA9lPunudJwFOgPICZCykGSb67RuqQpPNIvMmS0WaZFLKS9d3BvKfVnPPLdpWpL9b/2irKo6BxC4aQD0Em1Zq0uXLp2cnDBuyifjOXPSzRMbKmyu2wY6TlTZ5fASPo564FDUQvUw7h0SvQfjsSP+ja/3KtlsXLD+ZluPf1vLol3dpW2m6YaT0OMYGGi0LfxvXzxGVtGAppZ7rt240LaRgb+x87AF2rpkItkALZYxXT9KvV2ysU8P7gCsd+fPeM+mP5zz/efd/vdpPLKOwYc/NirG44KAhIJbV3C149njER7kR8XBeDwej8fj8Tjv2IwL5UWXfWNWOwAIVZdTFq+RuhOoF+vVdXDdkEjPeOec3vr5xoOmx+5tOubgwD0Igt7qjmhDAgXaiKZUteN6jXCzvGyEczqZ/esvf0kGIYo9NZNJEEe40huOR4d376Vpujsa7+/tOY5zeHh4enpqB3y8pC9VvxzXbV3XkXVZq1IhH6k1LoUUXjxGQ0V+MAwHCSnls79HA+uRZYl0b2dXx0mqQi2b4OyuI6TvV3mRZdliOuXibuT7wf5+OpshoyDpocnxsZTywoULBzevfP6znzzY27l06cLu7i573WRZdv/una4wLAK0Ll1RN9l8oZQaJqOqKgxoNgh8DumqSq1VdrlKwBhoSlyWCkWuH0SzRX79+vVLly698+69toXTDhMbHslYR6gbwre5MLQdCv3Jdby6bYtSTaeLw6PTw+PJ1Z3d3ShxncIlrVQFPGTTAIPVFJUqCuijlhVyv6eeemo6nco4zvNcevBvoUzDSpItH+uVHKBp3c5pu9ccMJQMnTcyg77r7Nmb6pXSe7FECWsFXeG25UQNCdh8aQ+J2qtibwTqbAxdbNyR0R4132v8DXqdATsPMS6rtuKi+eHrne3eWbZ3xk4MTO/RODOw4HtvT+xjaOZDcy4eoAK03gR44DvX/nDO9593+z/w48P9XQz6XkeEi7aVgQ999AbizWxPTYwl55Gclw/7fP3wXg/nG3/YjsNH7fd+1Pbn3An59+l7vwfb2cQKq3mtXGeLbYkAGg+17WUR0aysHBA/TGns4X/gesx0xpsphkYEwADfntAh0J9N47ieqpT0w6ppvUrFUbTIypPJO7fu3Ln+xJPgwgOI77YOipTSCwaD0d2794s027vxxGg0cpv66OgoTdOexy3vKgc4sBRthe9KVSpVlCzgD25P03pQAkJE6jluGARxEEZ+lKkUFAWwJFY6JwTjACG4UuChdkGeqLI8iqLRcKcsy9lstpjPuOTvOk66mHied/Xq1Y9//KdfeumlK1euRFFQlxmBchDkFnleKSVaEJPIa6wBfpM8xfG9dSOadj6ZcochIJswlgkqy5KdYm2GKFe4cXTpkfAqJtJFGlbX9WAQP/PMM999/baHMjvQRB/G+s47Y9AvjmvwY13uSueUL4eiaA+P5+/dObo43AmccSSKwGsaIYUbSNeH3I5qiryaz9OmFllaXH3mmcuXrx7P554nfT8AHcPAzx4Cd20CUDtJNn5E69xcG+rTSyc23l8AFNGQNEzcz5Cb9QTAVuPZeI+3q19hq+XYQXlMXIL1s7Auj877Y3MSeihBTl0MkInf9jBcXHNUjd8Cv0dD0VZTjo3nyz4j75MD8MC39X/AI0oAHleO3+eANjD9V6w8tm3jIQOIRFGSUhP6tE1T/qCSIR+Px+PxeDyssa14tvH1LetgQ24TfRWUM+Khc8tAr5Yk1wu9G9/Pf2fdSUatBEFQqMreQ3g7AqrijHd2y7Is6uZgvHM6XxweHsajcQP8j6hapQArdl3UggDROTw8bOv6+vXrofSd2jk+PGoUjKXWjSCZL+ICRQw/rLJQVaF814OUJuRRuX0CcKnvh5EEgIex2o2D/zPsfca2z6en5FIsB3FE8qskplTVTVNXZVuVWVEUWbpomiZMkiQOXn755Weeeeall17a399nXNDJ8X0X9a6mFXVHPHX9KEzCSIZBns5V3YBi4DRMP5WOG8AXQQesChwKrWIURn7dVOt+ODXpuyOFIP8HIhVpoIdSyvWcvEife+6Zf/iP/rmUblEVnuvVra4Qf8Cx3eqU9oLJxtobDPlI3QrltVXlFqWYL8rTWZUWohZBXhJL3GkVweLzsi7LuqiqNCtaF1TmZ55+DtG155d54XgudPEtFSaqE+JbSAF2Q7zOps7rNwsH+oykWlJiWmE6BnbfwP6lvcQgHiT2G4zvWK9pYG4l7u08MIFx1jOT1Uq/QfLYV4X9RfZBMKG2DdGxOxVmy8vjtiUONwmMfR2a68HugWx8m/27DCfepDfIox4mrH+YYP3D7gD88I4PuVJuZtrVx0a0gZR+GLgLl4lNrBZx3vD/UXVyzpvgPb5+fjiOw6M679+vAsFH7fhvJSVv7QA4H63j4zzi49yr95NCjo451vsAve9yW2C8e+vgtrzCfPhcu9crWz7wMtahDAVi7G7LK3oYhos8Q73WSgCAoK+V4/mlyisQat3JZHJ0Mrt27ZpqEL/WVAd3XRn6XhAAoH9ydCyl//xzzyEiqes7d+5wbRtCRlaWosMXV7SuhyjO88osVU0jpV+pykdUr/nljuuGvhfFgee6ZUlC84yuajuNecLSAB0ErnCZZWUNjy/GSzRlidTDdcXe3uCzn3z5xRdfZCLvaDRC0H949/57t0IaPlX9BwnkrX1POh4cGfKiOD05KVXBVoCB9P0wcISoihLeYaRDbyqyJqiSUs7n897FwLxGBIKaA8BqT1BxaZ26KZUr5HQ6vfnEDcCwkcTUDqjE57ocHupSWUa0mp5bI5wj7iirJwHe68q6abJCnc7T+8fBnfvTe8fzi7vjvdCvGrgpFmWZlvnprJgvsqyALmrTiChKnnzy6XQBj4X5PI0SiD5tNJYycp/2UWrbttyiN490lG2kN9FderG7ef86r9dwantpxra+AWP3lwnManXfsdIGftIL0M1mWeJ2Pei3OQC2DIDB6NvRv0tMGHs/zfuDINgGQ+rV7PkJk7CN9qPZAVwEW+Yr04iwj9X5fADOmKH+sCUA36+AwznP63SIN4f0ZFYXSBk41P/lMgaDXh/Nfp73Onk8Ho/H4/F4RKMX3C+f4JHMYmkesp8spyYTQ+M/K6pQvYW/9+IH3OF1+6qNb+Ppmp+zBxarkbiuq6oGOv+kGoT1vqkd1wH0Hz0D5/DkFJa3XlA7HrwxXLduPRgBSyeMYi/wlVLT6TRJko+98GJVlE1ZvPfuu55wCuozoPBtzer8LY4HPVDhwUqM2RVaRwLgf1Ty0Z2IAQASbpvnGROAuagMsUiIMoFI6wqhykKVRdOowPdHg3g8HEVx8BM/9ROcbyRJMhwOpZRKqaN7791+583RaLS/MxRCpGmazSdsv1oW1BgpqxoKRZ4fBnEYDoeR57p5UcDlt8xJZUXEURDG0WKekbKZPpiAIJGNQxRFdu1Zy604HRQKyQ3rw6I90kLFpfGDpCzKvZ3xjasHb717JKVTAQX0KOOE9WAXdGtr1V7aLzueaDzliLxyTqbZ2+/d30l2hCo/+dxBHLSOI1PVzNLyZLY4mS1m87xu3CzP9g4uXrhwCSbNUqKHAviALTyzPPX6VavGTwkJ/W+1or8OzTcB8Tof10T27KTbi8Udxyny3NBw7Tq6qXnbJXBbD9TeH36bs4ln3OMSmO0YrP96YNNrC9gRde/6sSE6hjTc4/X24m2bY2A2yHcEv2hyjN4J6jVAzO81e8Kf3aoCtL4r2975eHyUxxnCJj2U2+PxeDwej8cfWhUg8yf7sbV4e9u+YuWJ8+GqANm1TFuEiAOmjhEIZRiS02yTMCqUCqJItO5knnmeN9wdVzXkNR3Pbx1XNbUPqq3Pplp5ng8H8fWr14CJyYujo6NYBsB11I0j+xhuKIw6Te06jQfdHkDRWSfIaZgGAKyNK3zf831PAK9U+gGshNGp0BRgJRrltM1kOo3j6OL+3pUrl564ceP69auXL14ajYf3Du/yGoV4pUhVjtAn9NwwCVWRHs0nHNkwItx1hMozYHhgcYMSadOoxQw+BmEY1nXleV4YhixKk5cpdSQQI3GYyLX/iFIpjZTo/qfjWuGwoSFpx6Ha3rXY8eOAp6idKPQvX7785jtHfuBVuSL27IdYK7T5KjYToKpqFyAoX/qydv151tw5mka+uHwh3hvJKI4az1NOm6n5LFWTeVa3SBSv7uxFUcT03jDyfd8vK/zLfJ2JYnu6+zr+btsoWPELMveRTU61I/teAdpc/LaajU2fNf4APIy0Tq8QbjD3toPvSi7X7YlYfd32nzGYGXs7vXq8CdB7+w9IGI2eJqmN3TduBraGux3N9/obdgrRi/vNd9mGnr1DwZc3f505UFshQOd9fdt4VNv5sKEC533/A3X6H3L75Aux/GDvzum9uM4Ss4kgG5Yx3Eiod6xfSWHo379/d3d3fOvW2/yRosg86a4WvH7wOid/2LgiP+i/91FVFh7ZdsQP9nhU8/PW959zf877gUd+/HtTooE8bYP9fMD5v7fB3vy8vj8gum7COps6pYlLdJhFEkbkLCZC32+aOk3Tuq5Ho1Hx9ltJMmwckWWlH0eqasIoJGMdp6xq13U8P8B2YMMEHf2mFbNF6hIs2/f98Xh06+13RNNev3JVSnnz+o2/86t/23NcCffcsquMLn9dLVofCkBA8KimOjy8lyRBmpaAxKhagIPaysCLYt9xm7wAfL9pVZ4WcB2vlKrBGI7jcH93ZzRMXn7p53Z3x5f29+IkalVdFFk2m2TzE1eyr5hOxhDQEOqbAzUPnF4mPVclCX3WMEnQg6Ej6AOQTKoHx4AmXcyWFetcSAlIhq8PMpIqUldFTmALvHZnxhMuVHEckAggvel6SHla1/EdrymLSommKn/yx37si1/8Rl0p2x7lA44eUaQrITuOdBrsMvjJnuvhXSjaKxLidCvVLITyhDMv1d3jaZ7N2nZ27fL4woVLrZDHp7O7947vn87Tsi7qVrXiRz7/eSHEYrEY7e+WSBcd35PaC88KfI3uvrl0WfBTB7XI8OzfzaFIbb+tbSD3BCcHkr/kE2pOmZ1g9G4KJt3apXQTyjMlhiNsQxRmRdd1yH4URb0jzJmkLRtqb7yn+mU2yInKOgQoScBVsIv9pmBvAvGec+tK3aE72qycaz5uXmf2v52x8HbKHP7cPVvYBl5PCe9hLwM5ywfg8fgejPXg3v7neo9smy7sxgXMYZYMykGkXQCrBipbuE7oB1EUxWEUxzG6vSwuzU4ij8fj8Xg8Ho/H93ZsbAVspBx0+As96rr2fZ+Loyb6YcsyDjgo9EJEBKw4/HdR0V7kGcr/HiIk0IUrlS1mgXQvXbgYSr8qy8N798qyHMUJypl98A/hQBCCo5bkuW2Wz4us9CgobxsBMzJHhJ7wnUaoQonSc6TvtXmaxaE/2BvtjEb7+/tXr1y6fvXy3t7e0f17kR+0VTU/ycqiUKr0OLolY771irLBUpvyPJs2xH5I8qGkPgqlS4VY1HWKLG8RJ+NNKIlB/B+QHupYuFz1sg/+isylKUU7dRhxwCfaFpqnNVA+oDW4rqyhgRnMZ9P93fHO0E2zxndE8eFcJOuXCukTrYBPiNTnVm1b1k1a1bOy8jz31XfvnSxm48OFaN00Kyez7GQynS6ytCgPLlyK4wHnTHVZeo5QVVmVtR0/dH7MLdSx2PDLdTyye9MiqTBrWymo836yL1vPZ9eBCBFyS/QaSMnKxvDYKbEp23M1cx14A9hSFx2Z6N91Xf5ezdS2xEN7QB2xKVi3w6qC5EftE8E7lqapwQ7ZqCTjG9B7NB2MuobmlfnGjb9X+yes7iQPTpPs3EOPDuVvBt8p8/nc7OfSw851HycA3+exEVJmP++ju+Dj2qfMc0ptv43nayghSFIBMhMfiaAJ18nSOd3OTRwFVZ55nut7sijZePHxeDwej8fjh3AQffMj1PvZEMmtRiR2pdO8zbYW5kgiCII4jvMM5b2OyMikZyaCcQqA4A4lWsRuTppCABolUgdWYrUqF7Np6AfPPvV0GIZpmr799ttVXsgD2G9ZVVcsK2QzCp5tkae+GzSeqLLCbUUUiFg6ed6qRiSBGCWw9eJCZCCdKJAvf/Jj+7vjixcv7u1Ap7+pyrLI7r4z81yRFhmQNHXZUgxJhVIXhgDEeF5xgxJC5fmmTrijVgNWLmy1rDoEyJJ2WiXjbEe4Xl6B8Lo+uPdi4rllLbgmlytA4EkmiNjAGinmep6M8ul0vHPh2Sef+MrX32QGnvZF+GCjx8nsfC2EADXDxhgBdkUKTPi1Ci5roqibtKzCtGwaZ5EvThaL8HAmhNvUjlJNWaFrMs+rj3362cFoiLTL9bJ8gT0vIcmK093ipHvk8IUCP/n7ahuCbs84TcK1R9TkRi3ld2zMOgfoXAVHz6LDxhuwDQ+bLGufaFCVrReNj0QPDGOjbmzEkQl8GbrTrmXX6xGXOf7rnQF2RLY/y7+iZ5TWw1qv+wZyC66Pp+qSeXOM7daHzU/g48ZthDiM+LmR7eJDYTgVBkHEe3huCNB5x6MCKPzwkhBWwn3zfJ0awkNqb8V+5mC3zMyLrnCqvGgccHlaeEi6wnMgvYDnDrS+XG80GEyPJnXTRJAs4I08bgI8Ho/HR3r88M6HfxiP28Y0YP2vJpZiVyZ6G5b/oiiSJBkMBunipG5qKTUOG7VAT4c+tCWqU8qgAWgFRUrpwvpKiCbyEYtXeREH4ZNPPhmF4b07d+/ductE3iLNwgCQeo7FtRgkEgB3EPph24aO2E/cwmmcWoiilY144ebezs7OwcHBaDyEvGjkD5JRHAVt2biIEN1yMUnJj4pEbBxE/0J4JK8pXUBFhGpKRfJ0JNmp6BHhLgWjtK7pwJQfWfqzUjWIyRQJevhsy2FrEsL4DO8hF7KaMEqOA+JxZ2mwDNTY5UA0deuQz6+BU7fImnhhdT3OTEhz3wHIKkoGWTqvG9cZ1R97/rk/+PqbrRC6fvsoxubukL4OYKdsEEdsaseIN5j7Nk2u6rkq6sKtQi/Pa6+qKGuAihMhiFxX+k8+/bQMg7LKlSqzbB4PolKRaCh48jjp6DLAGBhyoyQBxb0Xono02m9UlVo+1UbFGEiMQb3zQF7qOFVTswezoWEwI2VjeAPO+uptYpKKXu2cP8KBtR002zI47RqUer3XZLjFve/ld7J6z0oNvlP12YjdzylxtYkHqxlmfzDEyN43/nbuDPSyEXsPu4RVE39NQtXjNjzuAHyfx8NwCXryWBvfv84ZoMfGDyTVAly4MjqSH4XbBjJ0PBH60dXLF+++e7tUolZVW9Pc8SH8zMfj8Xg8Ho/H44ES7z2C8uYYBfFNbScAjuOQV9EJl64rlAM9cMA8QhsjEoQ3FAq0yB8a5r9K6TutkD7ovXm2EG29u3tw5fJlz3HffffdNE1938+yrKqqKAR/AH7xXRpAUXIj8qwR6sLF/T/2+c9f3Nv3BGjHgzhRgHYgvqnrKi3yPJ2fTk6PVTVKRq2oyV4BoXUgYUCAVgDV0dlHrAGUv1aqqevKlfgVYEp0q5od93HIaz26QPy4CssYIVDIrAvwlDzLULVv0R/o+gCE3GkBAjIhmv553YmwK7UEeXJgikCpiOs1nut4Hm0OWGonkkE6myaDUbFYPP/0M4mH6L94pJw6+5LQu0WRP6J9KzsgRjD3/AVw9o4oWzg1C9dDebqBLzRRQZsa5gi1aJpLly7vXbzQNM18Pq+aIstnQehAmLWGTqzHcC/rEaZBVCnkx5rkUJsOKmOifENy7dXmmwZXIMmotgonfCnAip6R79vyneYU4M06I1th7ppfvl5ut0m9tvaOwe6L1Uc7FrfPPkPC7N/FI8uQuJprxnCX7e9dbyz0aMEGYmQTIcyBspMQs2/GiLAHVZpOp2Y/DdPAdV2GKtliR7yH34MOgPNDXLn54GMb2ZczvN7rBOzZkBjY8lX2aXadNop8B1UQ/J908H++67cu5gPhicgPBsMrr3/nu0enqQvbS5qVH4/H4/H4iI/zzoc/4GTxRzXOS/b9sMfZEkAbcwC80lXyHLa8LQpbuRKq/BVJnTLzUlII3AIURDL2jqpUmqYuLHKdShVBCA3++SINA/+JJ27s7e0ppb7zzW81lRokyXQ6XYoY6hir6wAIZ384bNNJTJsKVDU7PVmoOo2TyckRgA0SYYgnEVgLhC/NvMh9H0G/DwZzU6bz2UlRluXu7q6tU76MnwhqwrBVrWhH8B7fIzJuB+lZOtw7EvL8xFutefWkLVHApAXau1USkat0fdGiYE5bFb3HFqxrKpVTxOS4nueDPIpX8GvgpQykFXrnTu7OijyNomQyOdo7uHD96t47d04+vAtmGfp1yHhd9MceMzCpadDsbxqwIZpcVY0jShcdEdm60mnbuqmLUjStdJ2bTz/j+XKRpmWVtm6tqjIvUmCDnFB0UQEfT67Ap6SLv35DISWyRs+e1oSwugjdNnEcm4YAv60oijzP14vi+rd3xmGGGc9PGHizjpYxpOFeBX1ddaddpRb0vtpWHzJQn42tA0Pft4+PeZupxBtK7rrKkM2CWDGitkjGxpjM5jcvOdldCmG+qPdLzTF53AH4/g/7hrHvlg1/EiKUPpvqmWTa+GX0mkr0j1Y0lePUrvBc6UjX50eIGQxgjJJEg4OL+9/5+jdPTt/2HCGlsGRzH4/H4/F4PB6PD3f0cP8PrHb1dEu5mMpKl1LKWpDkYllw3b+t4Q1EhUm4/Uopi6quijLPUd0PpGyU8j3AXfJFOt7bfeGFF4bDYVEUX//611ld9N5kwqkFWLk69DcdAOHkhVOUbZaVeV5Wlchyh5RY9kllBdE7qlYA3jROWzvC892qyqfzCZdUfd+XYTQcxKcnR/avpvjF52iP0efUw9b4eyjUOxC6YQUe80janDZEZNkthxqeJsuuUCQVcPLoAtSknlML/RxwIwv7Xtco/7euJ2G0wOAaeOlia8D/147jTSYTL4ynpyezeS49/9mnn7l195VHfbGsXh5WlEwYfP69y5CUEUIV/KHQ/VBt47tx4zg+OgCwihCNE/l+FIc3n3qyKKqyWtR14cIqrcnTRd2KwIeYU4+XaCAodmzNtOOQDKpMBGwIqT0hfB7ago2K1MbZmmNiG1tvDymX0KD1iNYA4s13cWLQc/Va19VpV8N0+0fxKxuhPsDcx7GdOZhwvCewbrZjC/MbgSlWp7VTo16gvy0zsXeYvzEgGVYetiWCvX37s+dOAJjrfZ4P2P8wLaPlZWq38DYN02jatvm1PwHxvvG9vJ2Nm3pkqHenhUuI9UvPemyws8ASQjOt0yHDxQp9tLibZDmmF6BxtdAyQ/8Rd84SS0dTMib6LgHQ7TZHNEO0d/VF5nlYCTg1DOMEt1kYX7tx/YuXL7z+xttNI3BTP8b/P9Q465o0w1ZOeH+Pve2tNb1/GAaR8x7q/77fe/p4PB4f1ngYG2BruNCuaVuy24IIpmjrSHq+1wL2TzFSK7GcNHWJqpEnHM/xJci7TltXqmjqOopj3/fzvPJl6DiooQ7j5MnrN5LAn09nt99+qyV/rnyxGI9GXEF3LAYa15ccFzIjrnDmaRoIiIpAH6aA6E4H22nqtgFQhYjI5Qz+uwZ1Q95bsxq2VY4jAVowgoaqaviONwEc6/LwDpg61YpqKsipy84ASfV34G/H6MTD1B/O5JgAAQAASURBVEwfcBTCGYzRqeM5bc3P/dATreOie0FmBwpeCG2VF50hFKL/1iW8EgKvODo9nVy9NkgXc6cWeTp76sa135WvuATV5k/witAb1iS/fNs5rpkuoCLdT70wcOoFeD49bRpVicZpHdXWjY8kRzmN7ziiVlK0gR+OhvHFg710MS3L3HFrz5We61U50PxlmQEXTEkRP9rkVIOEcekUCcfJFjMKNnwp0S6BEg/sJuDoTOkbWOjSC/zAk17geV5WaEy82VoofccP8jzHBbNWGDWVb/MpxrwZuc9eRdyWR9+I5reHUddZT1oWi4WB7hiJIeMDYJf/7cTDvnr5eZqm/F0G8oQcWIJn36sF8J6vqxX1uAQ2p2LpX2HI7hB3gXc1UiMQNfDIVzoYoa4jt0fWGy5EmIGvqs08cPQFYTtvbDOVWFQe+nnUfbMHIuoO+MeXtHkHVHup/6bvLjMR4Hv5Fdu7BHWEFqJdiu8ZLhDQlg1Nik1HuigYSMu6QwYur4ltWHy3FX5NQENsGoE9TYLYelnCE4SasLgxCB8pG9dporj28D6IYRFtCX8RIomQyXnE1qUMmU4YpiQ0LOlk4xKhm87xUIVQYQD8HCJ8plJJN3KlLCuf82O6BojJlDetU6d57TjTyeG3Tu597jOf+Cf//F97nogHcpGtGFuYsU6OsU7qucajCePO27I/7/u3QgXo2uBrcuX9ovaDAKKrTQNZBiy9hMz0PFyEa8F9IH1gH1UNzWlD3XKdFuaR+gonSOzyC8II3e2qVI5og9ArC3yQJ0Qjf+b7PtdRvl+QhvNeD9S1R3nqoR71BPBhnt8fmLTqnPv5iBCU5y4AfcS2/2FDobbtvzHoMdMonZNWR+trwxgb6U91KGqseXUNOLvj1Y3jSoS52Xyu0tlgdxS6ygud45P7Ihy0EMlvr169VKYz0ZTJcCcMovkiW8wXTQVteGjpVHUYxpcvX33llVde+vhLFy8efOrll2PP/c1/9k/aumzqqq2r08nxlcsXZ7MZZj4qn3sUX3qEu6mEGCSjvFJ+MspVE7iOR9NaEARwIm7r2sHeKth+tQ3iUAPhoOWbC7e0MLdVXVa26Cfd9w4KZDXCiBXPVHN8VgM4qMfQHNsYYUr2JqtKbIFtyuwzpZj1i7Sl5UdXeK1oMhTDEFu7rVWwc0TtSE4UkPyQyZeWVcnVKIinh4deEEZSVrOTebr4qR/99H/zT78yHERFVdaqjQfD+XyONdz3QUPGYOosxWQsW6SpDf2xLvLBkB/sNvkpK4Q8FLBCFgi2BxoKhCMArR0AeFq3rgAbg7x/2xbpdByHRVr+/L/xJ+ZHdxBvtLADKHIkaRRBNUUL2wResyhmQczKIT8WmqKES7QVOu9dOIAKq+7I1BWQ/kXrNOS3ANfnRjWlW7oFziz8iCSTywlcBJiYrn/Dr01wnM2qNegLqBYkYM/1DVHYFNohV6ojE/6fHm6I80W6SMb2y7VJtA4NSJ/2jMlage/rkFYuK+bTxrurkYP1jgu9cmrwWU4fBF29nJtQwrZkEHDLoiprYqLzQdAtHXbJA1fBX7IFWO+rqqq6ruM4tl3G+K9KKXROmMJOH9NHRIiyKnH2pIcf0raVUkVVqjOcgM8YD18jBllE3z86I6erm6B4LfISDprNI73er3zqT1Etge4NkvZC641DMRL00qWCLhXm6QU5kA7r0TTkZ+gfdj/EtGkIBchxP8f5uoPmeALXz4ago2dUwRMKfS1Uv7hgb1fo9/Z2bXFczfDwXC9JWuJpwa/EgwIXF+wFZZYSsj2uB8gjKbuJ1kfMz19Nh1HAUlE4TRhF8FzEQa2QftTohbbCyeZZUWOOILaYaqDOBQoWjD8c6SfDqlKDgwu+FLkSsOY4z5Xwh3JY14xuueqh7TzovkP074jR7nh2MoV2Gb3ZfixUjY+3WKQdx4NaBZY6YupRSxtrLWXPeokUosgVcgQCdRZFHUWyqlStsJBEUcTzAhcSkiRhctJHfCxzfefhHh/d1flhJ0jbtv/DymV6PD7UJsAyE0AIUrPoIkc4FAjWTqviUA4H0eHJxA+8WgIzo2jC96PQd3zXRdCj0BAAezUMw6oowyROkuTu3fs3b97MF/kf/+WficMgXcxuvfmG2zZx4B8e3jvY20VhmELUFZEJWu9gqQt9fd9taheFfhSamrZxsX6hCtbwikvsAVrRsKCSLh2p0wmgUFqH6/0Ngm96ZKU6mh/gBKAPiwmwaPFeHhaK+Ej7HyV6vV5TvZkgOroG12XBywgPtAjpUwVR0beQlk27FIik/VvG43D8FVVLflsc+puao1AImmnzrQtJeyfyvaHr7cRiVhYwFmvEfDbDfkgPFXntb7zs5L7P1BekWHRXSK+TiuYmv8LmNYCEliOkBL7j5fncbXzXa/b3dm+/c/jn/+wf80Rdpin9ajrieHQRNTjCA0yBEk7iALSN29aIVvPTHCKeJOHvhWB0cDA6n0wZ0mMb67JgaFf5dbBSUkfHbUUxx/dq3qqPsD6kTSFga1tezkzIFHhuECT8D456lUI/h8Nfu1dgGAU9FV3zxJbXFJ3ZMH9wnfy9zsY0EaAhE/eIBLanQa8jsc6I4Pfbb+YmA0LEVmOizB4yT7oHplruFdNX+FxafHFJHRJFG9G9DsqiCBl3voEr4uEvT9o+ocFQNV1pCGjnCOtXEJt99Qu0C50ufnCW36UBeF7RQWF/RFy5BDjEjQ2FAtMq1GfAgzwt7oPOtWJZxqZWILdOu3RCuI3bFLXCVGVh3fhbJBko2gYQ5HLXhmHgCvSkuL9jIDd8Ou0XdcumUh4Rkkj7DMaC0NEVYhCOaWdqPmQkPFw7rajnC9zHvKN8fBoKJYuybdEJ7s4+zNsXrYiiRFGLo2OBBR7NhtL1CiWGe/snizyKB1eu7b/5zvFjAaD3NTgTQ+QOECkqLuhntY2AfF5EcmBmwSPTRvOcFzzROCi8oOBQEwCMpiRlSx6LOPYr0fjSGcTJ6SnakQX1asbj4XyeckOQpdZSGt83UuP5vpdvww9tbx6Px+OjPc72AehljCz7qJ/TMgEICGaaNq9K13V3dnbu3D9KBjsZphbUTx3hx0kYyLCs6rwoVEWrA20A/WNHDJN4kc4ODvYuXrz4Yz/6+VESf/MPvvbtb38bskJhdOvtd65fv56mqQFGaJhr99z3PR9WUCiIYmXBtvE8TedU3ka5AztJhsGkPZ9Tt99tnMYTKHnw88ALiLnbMhKAXb3aNeso82QbVa1ChZvX78brVkPHaX0K1OrVxipUPpk6rBFBy6PNZjv6G83xBwW2Q4fTexh2q4NjvQdOWWl4biCjp5964svffBuTc+hmRSOaJk6SRTXX1Ube/geYAJGwYLfJFZgCd8zA1KbBL1piHPSjqgpfulk6Hx/sHB4evvDcpRs3brRtm2UZnTtIglKk5jbocjdUL+5g6xQ5MBACdhOkKkvWEi6EneqmotgeFUmCOjguQjmTJvFp1cD0SlfEJSAqwAoZBEuJrLUjxVLIZFjjjvRAZ1gV6jHKnj2MBp+mooCVgX0QbFKvY9FpbKasjSMyajw9bR+D5LH/aTbScyC2WZomMbD3x1zn+rR2P6pSRY9aYCyEbWTUOsu5l5YY6JTdVEQce+6KVDcF9CANPa+4ro6Pe78DJNHRtC9deqERegpAzq+/YvUK508hIzTKR2RwTggez6MLRYtQaQ1Lp4VYFeAx+vZm+ABq62E04KbE8kBQhF1VNQdegGs0fA0hTQUNCWJiPmPXPOmgTO+KMIwx5Xm+7zpSBoDXu77wmratWq9huU2m3ErUd7VQFn868Hx+3Yd2G4xYGGUEJgD1TJDRFnMu9iyvxxYlFl/VXtNBMCGk67q+5zgySWJi1bNYFd6AenDdFA51AkirF7UYdDUwR7SOW6s2q1RVNyeT2Y3rN9+9cwxLwx/S8egqr5vNkvkeq5SmRsVxvJinZV7xxbwd5V/1XuGo3/NqElxmsBB6Q9micoSoiva0WEBAWdM8vOl0zjvAUl/8HBWUHwxHt67Xvy7ot/nxkaULH3aF/nEH4PH4IGmAvVT3xR9plTB/IrQAMMFFUQwGg0B6URxls8z3nOHOnu+7YZBAtLJYoMpOZV3GEuzsjjzPCaRow0C6zp/+pV+IAj+Ow+985zuHh4cc90AANIoWi4VrYaN1oY0ucmBJRAmtSCrDNq2QDToShGAmuVJUjSEYyglArRSjJ4lSDD1NSOuAZQuOgaLkAXV4PF/hWW1TWVktzZJmEPX40Vbt3gBT4CUhuDFwA/INUJRqULBrogh0NHzzHK9TtxbtdZTbdPTPTYCu4q5Ho9q6KCAVKmUdNE9cu/raW+/M0jb2ZSCdyaLI5nNf+pCzxGbXr4X3A2XswlNECkZBnwuj1tuQDjmqcb12Z5Ski5knxE9/4QtVmeNXNVQnxLfXqP1zDoC4bkmb5Ko8/UikMVz3JJ5AaUrUg/GOORz4DMFloD7UFpw1EldAw/1R2ApRtMJJ6+D7NV3jjIz3Ke7n4ikK2BXkYe3it43dN6/wnvA/TQ/BzhAYAuR0jQV7Uz0Dr9632BG/7UC8Do02r9tpSU/VZ6PxHL/HQH2ASaPyMfIfCwtkjL3sW8Dsnp0J8HeZ38uxARIt8l44NwSoi5q1zcTZj/oD5MO3bXMuZQj8qIsE+ivsCAZYf3Mdd2E+/hkJzhTpRrWnDLpPaa5atiyF42VFQd55mM54DuJwOfRBlKJCviDiBMHL3DYYhALyyajaB+hReQjdHTGIEuwJ3s6WIwQ38hrHLVtXmVamqfUm0WC9BiybxpnPNUa/Q3pw51GKmqYHwvUx/IcYXK4PiNH6tTWfQVeBbTI0ok6pvG1zx63QdANKkFxNONsQeVG6QZiXTTTaU+nRzaee/u4bb9++c9JRMx6PzUN3pdeG6woF2xR67rSLeeq6Ynd3nFNQbpSSjV4y+7YTqwMJpStlIMHRQ6MzlFGY4NGPZCjjIPYC74nrN8Iw/OIXv/jlL3+T5kjUuvxQxHHYtlinTQmBXT8MSegHYQAzqgFRD3x8PB6PPxw+AL2Ao3uFGLPWZ1HnpRU9z/Nhkuzs7LRSepDgdA9294C28GQFeH2L+g4ApG2NmQrKMIMkbpuqVsUnP/H5H/+xH6mrKpsvvvEHX/dY4CfPh8NhXVUBNHQQqi/DC2JBOYTJFlVVtLUnHJ9q0bIBPUBpyC5BVGvkHd2tS3V5ggGBhIf7Gso8KC/jkZoGiAUQHzttHQSSI+x1NRU79NGvAwLja/ADxyDMABBMrVoCCnjfaldUGmBM9XMGD7dYU5UygS8B9DX5EIRmzl6IR8iwAb1suz4m8g6NzZKmIh4PX3jmqW9+643FvBwOQJeuGxG4DuU6GjTEYGZzSs959SBeoqhC1OgHIH7sqePzAJnBaVynrrL8YHTh8GT6Cz/7E4HvVUWaF3kY+IBOgKyNRQpcQ86jKO9DAZcwGKjS0rWB2tYqSRd9IM+rSg3FcckfzeA7yrqEEiE0YYn22kGjFWFcqgodASllkiTD4RCSNfyN9EPAWjbqQAHUpex7ZFvm3IP69LSAjBNwbQnq8z8ZpmHSm/VKv43tYS7BChS8S1BtkcYlQni1BmSOniErcyrFOQw6JJ2XgslV+HWboNzjxthXEmO39F9xG+Bq119Ax/PcHQC7Cmc/8jf1Xid5XMb39zVwmKJDVwjD9bll4IIU0/0cnX8zroBvFevXMrisAbkKGzPAfX4HoSO5MaTZGK5wFGrwYUsHE4po1CMlKq0zjCOC53m+LwON00GORSQMrTWrTRW5dMFdGGoaAp+DoURT+wBwa6txeFzw60JMT2/30lBO9cZg9+I3Y3pl3gFeaJJkwJxdviYMwZ0bZB0sDKEgHw2sAfw6NRDog6JqxWlZgWTsuNJzAr4DCWskB+FovJuo9uLVG2UtDi5fmy+Kv/vf/rr4IR3nvs4fFsqi1zXf94sCc8FoNEgzQHT2dsZ/8hd+YZhE5MYIBQWzsKE97foNLFDwigv9C/SXoNEsPOm7gR8FoQz8yAN2l7CwTXtw8UIYhr7vR1E0Go2IWHIQxsPZPH3zzTdfffXV09NT7vxkWfb9IwGfc5jFj588+PHR6NR+2JX4x5X+x+MD+gD0wgUrsiFEt34F8voNda+rqgrDcHdnfDzL9nbG4XAUh1Gp6qqsi7wC+Kd1AdTA0lBHsd/UZRLvel67M4j+zC/+/CD03Tj811/88muvvcaih8fHx3s7O0VRAOhMVX+NPaD9oXXWcTy/RtuTkgIXOnVoLruiLEvecYqjSRMDdy6J7yPK5LyFsSWa9MkRJ+l6wMEMK7jwBBoBSzGfpaqPBhPz4VoWPgmE4XKGpP9k5P8566BPcZWtxqbdhjX4hEvzLC3vrUOlNGoNaCwSPYJvi3Slg7RomrGGfUNHmxgOTEEk0Y0qnT9980Y6m3/3rfvZokwib5FDZZ/g0Bof//4vni54omBD4094e0Y+kgcWFjLzbatif5wc3j389MefeeGZp6bHR56oJXyBYFnG55aBAMgB2tZzSbfeTrSsAJpzAFuFpiorCLbStyPEJwMHA7mBTmtdV21bGWWnBm+LoigMQ0iYBJAGYgYDxzncE+Ag2Pd9aAqtymLacfx6p8i+iWyYjdGbEqtw/JUAehWl04Pu2N9rB3VG4ccEe0bc0/Rn1jsMnudxVZ4PLNSQSNXXJSiX/XEchI6sbP9YoxOwcd7g7XNjwXyW4FuWVu5DjI1Nq+0XKAn1UgjP5ezlI1jifbov5pgu7qdrDu9kjZ/l8WLnbbMr1BGiyBzaOh0in3RyCJhIuHdNG2lrz4n29xEQeyDeSgnhHaD5kUGj28Lv5EeJRoEjyrLjC9QQMgZkA6Mi8iWXF/Q0gLtH1VVG8mF93dknd3Zsp7eOJtMqeF7YKM+6prnj6Oh+w7xdVVYkj0sBv1M7yJGovlADv8gLhkvFfQrsNTQEvw6KQDeHO64vIz+I4jAOg5giSM/z4mgQDQaeDMJ45AXRcLwbD4b/3a//hvohhgE9+sF0dvx/rRT6wp6oVdkQUPTJGzdfeuGF2ckhw+NoncMjwc8gvkGCdILmQ/4rdOYApyyrvFKqdAsvU62q8iqvSk84d+7eThezwPfeeuNN13VHo9GtW7d/7k/84sc/8anPfe5z//gf/+Pf+q3fYu6v7/t6gv7Ij/Muf4+vzsfjh2xsxP33oP8rWQGXGBHNYYWqoTgCGIZSynPQ/aur02deet6LRoVyFBXoqwoAj7ZpqjKvq1ISjHVnFAeeGI6SL/zkTz391I08m+3t7f2rf/k7x4f3RqORJ710Ph1dvISZhED/Orxh71kU1KC0UzWOUhAWlUwYVQoSmrTCdnvvkplX00Bz3EVnfgnBX/rXLkpT0V9WUl3RKCQ3KyFddyg6oAtvokMmAB3c4Y05MdBr9Iq8V1eSbCCWw1I+JqLgjywRwv3TBUxBQ/a6HJhgcqfj4lZNA8Zgl3NADVAVTZ6E8Y2rV/I8PzyetU0dek6hMziNOF4d5ytw8BHTEAuW3te/hS6qjh7Nh9WlEvDOIA6c+pOfePn05KhRZanyYRxDJcYcXk8yUICgDTq2NfEMh4+McWd4hY1rR0hJQkQUPdGf6PCy75vTNJDJI8ASt12SJAmCIEqSCCom4AAURVGqSgfoWh2d4jGqyivNR+jr2Zug1g67WWfWvnjse0pYr5tug7luewsox9y2zKgdxK+D7zfWEO12hJ0bGNiSKe0bmiir15pJwMiu9qD8Zk96pgRmhzmA5EaKSVHQYTg/54Ti8vPlAHxn6Uc+LA2y9IbFa/XRaZGJg7euXyIXEM5djUa++b3cYBKoZPPFQTApL0B060gXIGyXOoJsSO67HnIpxynrBhk/NQRQXAVQB5djEGF/AMxoilYBEIeCbdMGLXpsug2kSy7kGFIDotNS04B5MC6cS5xhsgsQ0aq5HYMp9SmpqrooSvZ6EE2hKmrhNlC5MieJsjI+Dg2pGRAqT9auSFk+xoG5CzS5PHQyhCfHuzuBH/GN5IfQdhgMBlEUsdNeKP0glCF0eSUrH7s+rN3jaDSbL/YOLhHjR4ZhqFJYcD8eDzG6zJmm8LpuoyhoGlVklSvElcsXrl69WuZFXUENw0xVZsLK64W5a7GUU+e7bVrCcQKz6grP91y3lcopIdgcxod37wVxlCTJ7dv32lY8/3ykivJLX/pSWdVJklRVFccxO6gz4O/7fHg+2mOrDOgjOm6POwCPxweXANquC8RqH0tiQJZlvLS7JL741I0brYzeuX0/a1oIv9WNCxxorcqiraswcNsqv3TxZlXku8PBv/vn/q3T0+Mkiass/cY3v14URRRFQRBAzL+FrVhZlh4FZLweG3l+IcTh6TSdz6qiIHfipi5VW0O8zsj2MF6eCuu0yCt8EOKOpLwoUGgjHTQ0zQHM5VcIVostSKhiGCwA1mha1cG+2+Sug9obgw6WxVECnbPbl47nLR4jdxJcfRi7gg4FuD16Lu0BC5CA/8qiJqTxTIAo16sagKsAzyQZTO7wizC8f//exYtXfuRzn/vaH3zjzVv3eaNEpH4IK5kzBxIoUnxkJajOELiFnoQjXbpIuMLLqq+OEFEs57PJL/3iLxRpWmVzX7phILMsA2iM3BhQRnQIMKBFRZdQE27WmCuTuJErqoZIvTqcGNlTdNG6I8qOHeeS1E8cx1EUSR+hCoL+qppOp1yodqV2xcI2pRb6ZIQbcDXUAVjH0Ju96qGDerALg5yZTCb8hAE/5pGTEOhlkb6Q+aCxp2Akj63o2NuBdQ4Ah4JcuTdYfGN1zBssy5KB/oz15++qqsr1dDDJgBT+iqqqlgm2fT3wJbdKSuYEYLFY9LBG/BXSWCVvNEvr5TQMqtuYpHoSSYnxNtNXDO5riO5wzq15OiTCg9YJp3ddxo9NQz6FtARYCIlCaNa8j6g3FIIOjpf5M5XTtqErUMzXCSIlGYjpCZMEOEwFIFBTO9BXka3jtWVAIS7lxLjIGHlTznKK+RuDHcKhJ9AfnxcJRy1U1iP4J8rBYABcDX0rLg6FwB0+G66nKqjfGof2sixN9M+XNSdwEFBT1aIuifmEW4dd8ZwAwmSc89IZrYsSQWQQxlEUCtUGYRwPEN9jjMbj8TgeDPcvXAJTPohwodDlwjCSBtcK1HZBX4YIQaMIL76YZ74fzqbzw+OTw9NZXbdffOVf/8RP/MR//5u/zf1fBrex4FRRFB92QPlhky8fWWBHKNI19xYR+W6ZlzzJhoE7m06+8FM/eXjvDhpHLHbf/X9ve93uCaKTCNSQ2nY4GuV5Ps3Sf/47/+LWO+9mGRpPbSsUOgb4jC/F7Tt3ozB+5ZVXvvHNb0PUj+YsPpIBORJs3H9dfVlTN+upEDz4OKyhkztHEmyKJjVLfW/15FrngrG2K38yf+XIg5/YQm/iUQyD77RrJ4+j9j+04/uVELLMuQmweu83gYKJRTwpsUoR4pb9aygQRflQlVWZ5c889fSde0eqzH3Xy+aTunJVVXquo4pqPj2V0kkG0WR6dO3ypbYuL1/a/1/95f+FqvL57PSFZ576+//g11/9zneHyWB3vHP79u3hYCA9ryzLKAw9QTUsIVywfkk2sRVtECjHP14URVb60iUqsIDDVEPymV2NxEK5kCog9rhuRGUH75IUY/rhvGgimONQKV/jBvAooOoTbJIiIcdW8gzGdKSB3Hq6ZjQ7HdIuVEBF2pondUCCwbYNti4Q8geCE5N0M4FfeIojcJQqocJE5XP2XQKiHjwBCWn2xWIho/iZ554fX7h069279w4PzbSnKcgbLU3XxvpkxYj9Ja2hrQGxcpEOgGsovBbFTOw6yqBO+9QT1y/ujdIZOslBEMAeWCm3bT2KO8H9gM44F/51AZ5SFUoPYFVE3r100epIhpEwVBkWnms07xmGhKA2BOKAY88gCBjF6vmaw7qYZ63emsRX02ga2Czjh1Q1voHXTUJy8Iqw8chshMTYMp0c0xsHX7+LtjtIvFbbNFvgz/JggY0e54TDJFOVtyNvWwXIxOIoNMMfgwq+lK6bq2s0GvF7zA/kYD1OtLOv/dOkRK12KanU/ShA6fyg83ta2iqDX0HAb171cBzoZyLGZGxWr2vAP2BjoABsH25Bj4yptF4vW3k1ovbgLFY7KJqjc+c4zSIDJgzfpNNJupebZjAYdJAbBPDdnYoZTqAE4AYeicIG7PhA/U4i3LD+CVvkItL3hdJdUHb1JmoRMf3JdQLyVKquigZlfFk3e2Hk1eS3QZpCPCu1QuyNhwDJw77O84EP0hnReDhcut2RGikb8R4fH0NvH00/VZYl+lYlzD7w3bThlcy4y7eYrGkOtXJaJaUT+B5lL7DgkzKIUX1pIe6exMNBHMdhjEJ+nIAcc+XKVRjp6RECPe4FrvRms7mDJDNEHwTee8hJqrzypJsX5enpaTqbTyaT6WSSzRdFUd2/f79txHyenpycZACvuwCON+1wEM8XGd+lDBczIePjsTaWC3ZZNdJDdB5HfpZXP/fTP3nvvTvScyosMBvW/o0ZPK7FSo1GI6XU3bt3v/jFL7799v2mFeOxP1tUjieCAG07pRrViNksm8wyx3VmJKVsOEZGs2zj9u2KRS/bP/eP54JNV6HhSwVpIy3HTI4DD65ryrNAMS3WnWJYB8/V9TViv9ASzMUjJO0N0feCQNY1/lqRjuGjHb1M5vF4PL73Y1uxf+V11J01c1SD2XkpESLNsADBtOvqpdj3yXnV8x1RtNViclzX9XiYqNA7OT0SsX/z6uX9vZ3xIPmzv/SLlw8O5rPJ0zefcETz9/7rv1NX6uDypaIosjQdDAa+76P8r3vwWAFNosKrW67avHHJoMQHJa1pG88jWIxeXskEgP1/yPd+RWBzOTSVcnWAiFzAjbirEHIWhBmgUlr9bNOnuvezCye9OIhJjtmqOXIQN0piNt4xBV3+sbrKi3hDw9s5R1tkC0ib0od9iow5WPYTIqcS+Y9h66RE4ywm86JRFYzQvNrxskrN0wz+QsDoUA6iSckPGCYY7RW5wW5G1R1FUo5RiFIIOjVEmVSJvooQfiRHSRSF3oX9vWHiIzooUJT0JTBjnsfdEczaBCvT+BwhAN0hTgclX5zh0P9M4MvhO8djdKYo0/B9F77UkvU9BelSdEVhdAPaqmQxxyBKtIFSV5zSqj4B4s+lgVY3uC65zglBMrMJllOW5crJtSSShMUBsEFEvUjYcAPs6N885+KUTSbm1+fzOVf0yZtV2wbz/tgn0ZTd7bjfAMV7v2X9d9kf4c1q1oRFI7bFf0wxWkrJvAvJ9Hg+fwyBg4U3IFDLHbK/2JdIcB1txQUNYj5cjG2G+LCHyYB4ubiSomSsNXGRB0I0k7zrwPh23Fa6VKte2su5MkBCwiqzBAPqFIdJx0aVlSqQ1XAtAfZddenyvUZuGNw3gOxNie4JImsMqKkg0xBOIpzA5KZc2afWDFoN3aEnI2Eki3XTzLKirMFS58FHEGx0ahEyA9jcpbXjZo6j4B7ewnWrWp4ALfMU4kgEQRATOMcPo6qFizjno55Ea2w4HiVJsru/7/thlKBT5of4GH6ZcNoMJo5dxumotoHJYFZeGl3My2Ixy6aL48UiPZ1OJiens8Xs1be/XdaoDGVZluc5shSajWjnkY+GYcgCrKPB4MaNG6+9+darr73BM45pXPzgyEp+jwZLSffgm44AyrUuq91h/LnPfPbO3dt7ezt0mjZM8GccT2bx1mX13nv3+aZM0woFdSqTsAsl1hTVtI2QHvI0sySby3JbOLsuRPBBYl+eZaxEt45CH9tTTVmTmp8QgSe8QKpCkRE8ql1cNsA04Dq6A6BVzQGwI40kVCziKCgLVZQKtAoSPqKj/GHlor0S7OPxeHzPxkbln03P6daGg65WwiPoICigDNpRZTWIkwt7u7PJiZBpns2qXO0No8Vilk7ue067P4qlFL6r9sfJX/yL/+MXX3o+Cn0phkkSf/VLX/3SK6+4cjAeDd5+++26LHYuXpCOgMw/RRcSRT9u5uP7YVLpeYuiLGuWxnThU+MiVmpAqJM2vVUnAI6oBUN7HnY+RMSIqY8/TdMhq2/6G9HLQBZzb8RAeggJ02YEbe1pkXuOOJ6knVOYDnoRvxBplVVKtY2PVgUUMpQOQYDI6hbzHssNHp8iIWkEhB1Q2mvqimoYeVmVVZWVooTVGDMcPRD5NMWRsTSbp+X1i8TWp+fAjNr1JAbS1m0FBh/IgB2TMvCE77uDONrZ2dnf3R0myf7uIKDfrxrCRKD4GGhTWwQUKHwuY1wHIArmWRjCJgfuXuDrBMDpha2kiy4loD6u5wBKRNKsy9Ont0wsAWqVaC4xgbzpKscDQaSp2aUDcc6sWA2yF4WfUaC0D5dZp8zBbLrGmk203XQR6gh7/UtNwmBCf/6KhGRSTYHMNB/sbdrQG7N9E/1zAgDxxlV9T36ilFqH7ZAfnUL6jdyPLNI6XvhiMePNhlKzqFVR1mW1ogJkb0gbMaz9qaH6totcHJx/QfrArePJEBkoXNx8QGQY4dcAVx7BbY9q2z4wLRTZk2kI3YE0m3Q4IxDQywWfZtQOa/hFsIY9BGWBkweckfwjSH2zbQcOrCqQWyCuhkda6AMsxIF/0A0Kr3E/Q8KTipW6OdJCkLdxmuPjY12VV6rsAv6yaStPlHxldC4YnF35LL7WXZ06ypdyqmpko9L3whARfRgkUeyHwYX9Awbl+CH+GsYRvx5FMUfhYRh6Pv0njsIgBjcAp0ZXK1RTl3lZF+VOmLR5OU/ni8VitsgmNNI0/+53v5tn5WKxSNOUwCAYZatEiCPIuwdBed+PhyPP83Z391Ha8bzhcOi7fp7nfPU/+eSTr772BvhklCszJG7FIvvxWBvMM1O1GIQyK9RnPvVpZloDq7eFL7P1eLbtbDZDKyeJ9/d3ZvO0aZp5Sh1pJSpVwMrBhPd0NdpYQ5YQNhWRs8cHBL30yv80LYgiq5LIvXrj6ng8ruv6hEaaUpWBsYMQq9O/3TLZ5v9y1ZBrnPVsBjElNhuinF8Mh8l88Wgcjnvr6Jl468fj8fiwRo8vaCRBt71uX6DwW+JQpm2m0+k93znYGWfp/OqVSyen83AgY9+bnZ4O4qRsq3k6SZIoiYIg9PbHwz/zS3/ip37881LK6XQKwthw51f/1t9uGzFIEvgIzuZYF6BsViTELNIoZCr32aFPnqc1oWi0Hh0hRmqhyBOsQaKwOig+F+suH1wGWHvdkdJnpAsmFzik4wtAgK5J4LsPAgLZz2glAX7MtzkAlswQplBiefAB2FmeiJY1yPH/8yoznQTuCfDbKM6hAqcrfOYs0PMiL1vR1A2gN3UtVIvlQMuuMiQKwTRVMQDcBzmRjxjhd5AKdFzkzVNQD69oJi7YRgLjoKezwBWMVg6kF4f+IE7Gw8EgTpIB4o0Ipg+Ki4dSRnxOUVZXZRRFZA6EOikhpdAIgERSTZArj0qkSIEIy8MqQ0wM532j1i00oeCPxCIqwH4zMIt+NX4eJVFwpXY756+i1BB066fhp2RZRpSDJemWv9rvwpIept9WxbG31usMGK0kQ+oVXVecUUDrHfL1bsNKwN1ByNzVEYYhb9AodPMO2J1/s0tk9Bn3vre3QPfWJlsGdMUQre7UIDu6gj2BcF7BjQLeMWrQrF5kPLjlZOcotAeo3HEoKQM/9AMZ+FDR8dwoCB0Pr4OZyg5VxBbSp0qzgJGb4G5oGwLttA38TqsWpqcaf18VaDjqCr1E4Z7aJwjzCRdEsTyQLnhD6DgXwyjsKvoAw3TXqPkhOA1ZVk2nGSqlzdFsVjVaDqmogNRX8MAAJImZuHg/tNUwv7RClI7HlFzINBL9oPVk4zRF3QBTF6DmGkQh91PcIHx6Z+yFUUJle0y2cTxMEj8MnbYNooif4yKGfxdGFIScenK4X1VqvjipqkOaW/M0zeZpmmXZPF3Mp4syT2+//pbKCi7no1Gb4R9FXt28eZP9AtjTYDwcJEniR74IkN7glIODr3WjeVKTjlvmxeEihf0wXxZNe+PGjUuXLt27d4/j/sch0dqwIublfAVQfgXBDTUI/eefe+b05CgKwrpSaot0/cYDix6C66VpNt7bS4tiZ7z37p1JFKACFwRksIPKiLMshzC5zUDUOvDP2ZH9erXp/aUB3AA1cEbok4b+s09ev3Lpwo0bN/b29hzHmc1m0+k0y5Cp8nWuc1Pmu7fNZJrSsmaLJqMZORgMy7JoWzEYJFWlXnvt1SxT83mqS4GPYqzrMT8GAj0e36+xTTlkPRPoiKxYn2oEWEBLD2D9UXp74v79+xcOLr399q00L+bpQlTZ6fwkSxc7iR8EoipmN24+9yd+4ef/wv/oL3zza1/72Kc/6y/S0A+O7tz93d/5vSiIx8PR/Tt3lVI3btwAeraqdnd28jwPJUEyQJqlwjUB/VWZw0ZKm3UCdELo8Aam9YSwN5Zby6F/SF8WnKOL9cSAjKToF5O6DVwQ9Eb0keg95qTFrEM3OmD8Xx8lQz6CS7JTLVoZwIiKjyweTT+/kzXnqVTPmU6TFnWDIibCYxcoBBiYwmnYD0E6hCiTAhDIrWvE5m3VoO0ppS8ctwL0GFZB3LpxbYsuAkUC7r6FCWDiMTtOA4eZCB5J7Mch5KEHcRQFiDDiKIx8Cdagr2mKUKqrVACIPyA5iL9JEwThadu4MoDIv0OxGycBzGeLI9AyDW+1i4lBC4RGBWeDAAhB+Z982EhuqhZVA/gGrU6t6wyThKWKWLSUVNIRZJmAm5cDMwATMlc+a7XzGmcFpXYCsI3D1pP1NKge/uF1B4U35rt2C90u7TOmf92vw6y/phzGLy4WKGTbgps8jD5Hr6VgG5nZO+BJb1tis0SSW1h/UVHrpMttTLq+v7/Pb+P6oOu63KMgtd2u42BwOHYzwvyVlTFHgwQNer5YYKgFzJw28SD2PfJahPVkC0gMSIDiuVJOQT88/kSrqgK6M2gjwrLEx7fjuksGQ3KG1sV7BPokhoSqugO2QEAvcGFVCuFVyqP7s66LRZqWoN+iAJ6mqQJQArE+MPpoxNVV26ggVB1qDThlz3V8T7jybpYRd4f4Mo7nhEBuOa6sshL9DSLV4s4KAu5q7e7veb4PlP54tLOzM9wZD+NEgrIAuM5S6LO7MrgkzKcZuUdRpIuirlEhLtJssVgglC+q+Xx+MpnN5/Pbt9/j+D7LMih1FUVBAJ7L+/uoJpCuVjhOdi7sIR9yvaYh8zyqf1BqV9eiassqXeTtUhsAaRZzEKqqSpKEeZZOKxKUhgLQG6LBs88+e3JyUlWQ4uKA8nH5/4xhFjni4olPfepTUsqiKLoa/IqfpRmbRQyE8OOwns/qug7C8LkXnr9/crKYZyDe5B1tDLOJ36kGabcamyMbBEiDt5GlHhX+h7sNrDoK04O9vZs3b165fHDj0j7QCU19dP8ez7N7O+PLFy/4/jNmUltiKx3hhQmqTeSEYB4dt90Z76XZvCprP/AO7x/HSfC1r34dLJoPQd3Urmg++q0/Ho/H9rEs7a/Jb2x6Xef85I5EUw8LwGMCH7p1Ab7pdHr16tXRIDmZLpy6dutqHHt743243bjthQtP/PzP/+yf+Tf/rMgX1y5fEmUxHiRuNPgrf+X/pFS9t7fnuu5sNkuSZDwenxwfszSKcQCw6chKqazIhao8FqRvKoiY4Y3kSiAq7uPRvtt9ADL9aeveI7ntbHh95VDxf+hRboQAtYhIjQoQHTo4DnUa8Iwm0LaDNG9787wgr00uUC4DLNm5rVE5okvAnEb6JpGArFAnEQ6TrZq8C4TjI7qlMjlOkwJWuyFsPRdhOWqyl1TWIGJBUHZEfUjOmOu0SbQTBf4wSYYJeII+bErRK4l8CTVCFO3ZaBVIfs8BtAna790ZIecjxDYkQEL8DI9k0V1SOoJYYNToLhPOPVdXka54QIYxd1FXtmmoTs6V+cF4P8GnQBXgQ8h8Z6IpkOajrsQjNiWVHS0nSixhHUJxxEdDwV9i2SWzJSg2cgBswzh7sbNr5I7VV2EDTTty6yUYvT4Ac2VtZBH/hKIoDA7FAPSZVMlHy05gjHBfrxlCJbaVjkFv6jDS/iYBaIqV7ZjtZ1m2seMh93d3WKKI+Qocp3ILw67LdYlBE1DPqa2BckPBHOh/OEhkaQaCH+d2pFHGGv5VPsWFT71BFDJdT/q4Kge7OwjrpecHXuQj3CfHZzcJQ+j38w0MioHOGUJsrG6rts7qStWqJvfptjnNUwpq8WMKCvcrxuXgtmJnMZpPXeFELjD6Ldkr6+IA9aVarxGOG4NK60ofgX4QSToUges/PdgPfWgvDkbDZDhMhoN4kOAuCvAz0MlC1I1EgtJ3cZCMiBqhJ26DNcpnWVEU8/l8Op2CjDudzmazoszffuu1sswZna8U8BtFjh+xt3dARx6nZjAYyN1d6fqt12YtZEPNRYBkhuSVT05O3QJMbz5ulG5RmFUz/kerlfrg8ZO4kGghwSu1PQSOWF2XUIhLnn322W9+85unp6dSyjRNfd8/r0TMD/nQolYrg+fzvZ3khRef00l2Kwql/HAzFGdbTtU0TRAEk9NZGEc3bjzxk558842337l9ezpbgIuicJMBN4/5tHPJIJCrmd16U15vbGspnnewsQgwhWG4v79/k8bFC7sqnUottYG8EXbUWZou5j0ZYz2fOG6hZgwrYNAfuyUI0UwmM6YCu66oqnoxnbS4UB9V9V9snM0f5wCPx0eYAKBjUGaeAYjOopjUErx3717oNjto+vqqKD/2sY997Q++Nd4ZNnUh3dYPQ+m7w/HgE594+Qtf+MLe5YP3Xn/r6osvlcezIIz+xW/91t//u3/v+edfcGVweDINA/9gf6+ple/LOI5UUYRwAsYsQ9ZdDdJ0xylUlS0WDth6GBDDaYUnGuk4a7cphR0cK7MwPNfA7cctr/dkFs0oNzmdQ18EFD8Dp6GV3yq4ssEQhaWEXYHkfWhorDpypc8WuRa+owK0zgHa1quVhh5pewH6DsCh4c9DBXzdK3BY08ZFuE1WZ+Qa7HCdGGRoLkHS6kwb4bCHH7ddJ1yuZREYOGf5QHP5HrRfCAFBqvFo9deI/mF7CiiGdFzfQwmSy9iA/ZDNloATEloB5CmBn0R04mUHwHMcBCVUq+/Ca+ipo36MzoAJC3FEWbWeZuxlyRhdAnpDXhacHXaoFf2TihxSsxy8ahQZNRM4sOaP2+H1RhzOGejNnmGWyRkMZ7fpIEamQm8zhk0CbLw1ewG6Ce5t/U3mkFhhs5YQ5Q5DfxG0xkZYf8/Sy/wuI1fKEaYdA9joIP6TSWwY9IVCOdFZ5dNPPrGC8+nqmZDgaEFpQfStDYygmpWXC7czM2Iwif7KsoSGJ/WWmF+LornrJBcueaKhFMOL43gQh3EcByRLTxvUuaVuzDVtPsugEdq0ZF9SlTkeIaZZECasrptKqbqEvE/TFELkgaO0PSFdLL7vRUi5KsW4FxCU8B0saOXKGn6rEMQPQ+B2AgLiO9Ibjnb8MBgko8F4NBqN4gEkd0LXHzqxj5KrDpqhWEyNM5i4Um5KNKC2gtSQElX96quvVxkq+sDoz2aTyeT09HSxWEwmkzzPF4tFURRLnIao4xitN8wInheF0e5OFEWwxoCkWnfWa8WOYDjNlVO3kjotXeDOoX2cxMReAEUYzQE/ohAMUwO5sVMHhoFYRCQNPG+xWJxWcHmMAlysjdP6rl/lxaVLF5IkOj1Fc4ZvjHVNSZoEN9e2f4gHXe/alJr+TdG39rrGuHnz5mg0ytNFWVYyiSqS7tk4ti1sk8lkOBxOpnO4yqn5tWvXhoPxpz77mdPTyXQ2u398MplMipLc78gluCwytwUNl0FcRVFQNynn1nlvsIq1vfPvOwuoynIwiC9fvnz9+vXLly/HMS6/e+/d2RmGIL+ToxlBAh3pQ7CvKhWr/yBdx6xSoVzgiHleKciHV1lZVHmRV2AmVU2titKPQpDXy2IQxcKTBwd7k9li8ah9Kuyp9jHg7fH4iAsBdSuZ/hM9wa0OOpl0i6otICB2/2Mfu3D3zm23PfhTv/CzX/naF4VQn/jkJ5544sbFy5eSWLbz06svPn3/1W9fvP6kSvP/x//9P3rm6SdHw8HxyXQ+m+yNhvvj0Ww2i6QcjYZ3794NfA8OORTmaFoh1USBA+Hd6PZaQ+5Xf8QqEKhjjbKPVveoo5c1UA/cLtflPgG5kZQLuSuPKNgTd5GCMS7VWIGRA/5R5x3sgRJAqBWto0/vpGqEcNqoK9zY1qdasZN4CJiArY4BJzAUh9C86mkosqhgDcbNTYjrC49x7eSSC90zph1DERG1SICKupOr3b14oCtKMRIkyKk/A/nvOBCqapsK0QKUElpIbQI1HQiBwADRPcElDJu5amo3RJWTuhaaxYucQSt1dtE/wD5Yusq6JG9mik2lJKYlkg0WA+WCLzEzwUQgPyXyZYICEOLB2oGip4LbPdk5ILtBZRK0BSrUVkWp40BKDxA3cjuCo1hKoozLGICmlsOuHYtv4wD0Qn+zHSOU13bNcz4+e3t7NgjHdAm2dRiMEKe+Wrp0hZdjG2XEob+NX7KhPnYnwQajkk/ocn/M68Cz16gXM714CdfnxMmqPnPcOBqNGFGSpqn5IlyEf+lX/g2TSVC1GMo8ruvOF1Oyu6oA7KPbCZGlqHbcKvFaClJRvWcCKz/KMIhCNKI6s2J08cZJCO0eKsuzghddLU2WQc0nR/UbGpoMx28bcXoMw4K2EYoA+dyl0lBjxuJTEqMnoLaZw0ua9fLR1gGll44FJ1uUJVOuHEeDwQBK+vEoiCO+f4bDYRgBBgPcfAIShsn8XAYaOW5AWH1ujBBdRhmN/+lifkwDUf50Mj2dLBaLk3vHjPBhEwCTWXJGyJviBIm+hVt77OqykuGt6M52rofosypldI7t1YJIPHQFWOkjcge+wVZlpBpnheRtJujGcetGRMnw9u33fu3Xfq1U7XCQzOcphN00otJY0CFpIWCmEV14yPGAyvT3eJwr5uNWqheEwMKiHN1Goa+qgpvVVy4f/PzP/kwY+vPpZDweQ36bNaFpye59na0atjzvTQuljd430ogilplbipHp7VSlQQGxVR2//ju/8ztZls1mi/k8Q8MAqEEHcytp6/LVAicKYpKgm5+ZKQz/Q27adX0osUeLw3FEAmry/ng8/sQnPmFwk8tJ0GkhEkaLBz/SaoIr3PcxD5SlyrIFSCt5WhQQrZjMUtKZpsoZBRn8PPBB/jNCx9wd4F4Be2uw8C7TD2x07LnOb29C52MifhjHeXXuH9X7zzt+UHKwR+UbYERUeiofyxio9zrVixuobFLNFpz61hUw4o09Z3eUPHX12iiJP/HyS4M4+Zv/379x8SD5P/wf/8MgCF5789WLFw9+9Mc+7/py56lnRVmJIHn9S1/7v/1f/5937xy99NLH7987uvXuXQ91MW3LygsZ32JpnkkvUKrJysIjyfaTk5P37txblPlKoMo/qndMVg/QRg7AAx9poVmKBfde7/5KPr20fev1lX2w589WgK3LJgMaq635vpht9GEnkEBv1mUkZoeHQaxPDslkscRJBW2R4hAu1miAOLm/gyOBGAnBDIkdUxanxUZxNjHLkzE8iu8I+l0xTAYQ89kdjZJB4GtflLqufFbZQfy+jD4BHaE/GByLQbN4FO3o8rBR9rREI3g+B9aSdGsk9Ra4e2A8pHRdGXRe6PwYoAtfM/rg8JkiZUjYKZGsM83e2DLVKhHTDYdDMoYDj9TsZG8+twE5PcSOWX16oB0TmnNF3xx/g4838qCeVbCmtraW0dQY1VWVHrNSm500cpy9hCQMwe00GzEAe+JNbEgYVqgd3QXjuG7N2vYdE4WkXXTQzzqZDOuH+Q/bVQU+q1Zy3G/owpPJxEiLslIIv0dO33ur+z1E2sDSjT27sQMsPoJ8xAyhT6fHF/XF0IX1lgT0RQ8PFXTIEoFfwocJYp3IS+vq9XcnZVnkeQ6maqmKSuUlZHYQEDQCYB5iwBKLHcm15wYstd+2HhSFqeIO378o9Oq6VBC9RFmfOyCtmykniIJBMoCSWTd839/Z2QErsRudzI4/Go25pWXTovnCsi8yMsxSZdMcze5XVZWm6WQyOTk5OT4+nk6neZ7fvn2beygmleQjfvnSdd8N/DAYOWNuuPA2DWnDHnUjSgRwGxYVP4jWJyzoGSc6w+utNMCQab/zrr9GfVQPsqoGPd71rToZKX0XmU1hKpF5kV66dPHixQt379+fL9IkidI015eFfhtFiD8YK/UjHn4QVmUpPE+GocpBxfY9KTxovL3wwnOUVjU7OzstJnRM4pDD6643G7bYm0c0CNUjFpV9JXSUtdn0dB2vwmk5ql/8ukkUhfjFn/+5qqqYLF4RMYj48e5ob4e5X3zFQhaWTalpTgTdfD5n5u5sNstS+GdIKZMkGY1G+/v7BwcHu7u7SZJMJhPdrfVQ3dL4ma7uADISpnhVazW8+vj4lOdVnvr5ddUI6UemsUIiH0RrdkRZLVu0vSqLER0yC1KvT2o/eWDAenb+8Hg8Hh+xtoDmjmrrHW2mgRiydhxVO1lVRSrMsmwUJc8/8/Qbr37nH/+j3/yVX/mVyz/6o/fu32mqcu/5Z8Xh/bYVd9579T/5q391MTn51Msfu3Xr1myatiq/ev0qpGBYTgBtbp6DGl/3/Gmxc/HFqm6xFvfq+xt/gvVcI8GXP+ShHjtKKkeWG96z1jvhZieqCibW3zg6dA+em+i/m5CxMOpqOArlQMWzZDYFoVrgEmZbDrQZCHuP97lA/Ou8IggSs9pzpAs4jhs0lYIsIfiEHkobBHV2GK5AVGvhoHs/TCLoecTheDDEREumCqKpHNEgwgecA3qM9uCquTaO7UJJ7TGKdoOWOwW82BJeQC7UVYuZSDYahNLzCwUtECpWEqGAijKwVCJSOB9DDuj5OUjD+mi7YKmB2EtyLx3QvwPByyRBQOxTomIjMHluh0ANIZ04M+GiD6v02ImNkfa3IzE7nmZxF4PENhV9I9MpuwjN/qyte24KQ3Z53gi38Jf2oPKmkMQRoP26QeGvo5LsBUh/O2Rkc2bGAc9CUTvJuDdlBqS4aOBotjMae55XZNlsPkeDneINe5iN88nlb9S03mtBFQRBkiTD4XA0GMQxHKAQsEo0W3B0IJzpCcpcceprzR4o6jpF8FAqNa+aOk1TRORlnVO4T2GHqhoV+QEbdBFKzIe/rpCNJ6vWVShfuAquYVRNbpE6N1XjugqXKafh9LuRYWcLZCBhGAygb5OMhqjoR8nFS9ehl08hPqdxfEbNidHtqi4wwYlEVkOMg85ymcMgxugfHx/fpwHzrDQ9Ojoy6iUmFhFCXLhwgSkT3GfgDg7AVdBp1BeoHaZzRb+XANiZdy+mt1n/9uu2EYaBLDOwzw4Qba56fzrusure9/J0VpX1aLSTpukf/WM/9at/++8SsZW+kRGc4g/78H1ZgTaNyJtxUWDcVuLqxf2XX35ZoaOVjYejRTr3PczO3DFnsTeOZ1cWda5nLPWE2saCfp2B7DcI14p0k7VGmq5U4dkshQoB2hVR4od83oBSvXP/nkZodgsD0//T2cxxnMFwuLu3R9YwtLyBOSZZK4unRUYZHR4dc4WD6TZL2xFg9yeqBZ+rUkUFz4lCVXDwgLQWtekZ8GZa9jSNrtQ/eoYpJvo3di2mQmNz4+xpzn7y8Pz1x9H/4/FRG9soAatDq+hwPRKCzlE8m812B6OXXnp5cnz3N3/jty5fuPLn/twvP/1jz7/52mv/f/b+rNmSLEsPw3w+4x1jysyq6ix2dTWaGNQEUGiAJGRNEgMpEYSM1LtMZjK+6T/xRU960DuMhIEEDJABYDcFmAwGEWiiq6urcorhDmf2Sfatb/vydba737gn8tyKiMy7s/r0Cb9+fNi+fe9vrfWtb538u19llxf/6O/993//f/gHz84vP3nyaRKPRr/x4z/8w3/x5PT0h5+8QGBwi9hgHUdlEmNKyuGfpkgLT0nfwa4oGjGbh2rd2KlH+eiUJA/vz/STuZfpAGTks/oVILIwf1yvShZBG3loZmzMkBK8lGlXCI0kwzcHx/5QRHCsIBoNPEkNZXRURHFi9yHkNnHiyQhCIij7OUacdoyMxAyBWwjgQBhd6gvDmyNYB/rILfRsxOOFruMiAFjoLZO+666Wi1utViK+kk0nOLAi1PF4ryCsxRUe3VzdoLx9q6zPWjHW66oVsuidtIOcX2azGZ/yarWykEknfB7Znr1XtHC32+kKZRE5GRlJQ/E3ZQH2wsIeKLeIS3GUJ0jauvOM/7fNWpau8JIHPG9gG9lwt1rtKqk2C1Dt7JwoDOETD8KygoS99gZK5zb4lrfGs2gSv4t0qa7P3/1P/2PKd2rGAJFuvpHyonWxlnd9tdlIODC42YZ5UcOZL7sBN+ewTODhrkDwbfolDqJRkI5XIgYsNcFixJzEzV+FAer7gLEQI5/RJYtIra5JOMoyqXw7GU0nYBYJJ+zHP/lNFJlIU4aKQDfC2zHa7apMKuPaG9YetI+cxspyvS7FQiHWf/ny5evXr1er1c9//nMGU4yRimsiWQLy+RJYoDYRk0Vs2QhnHpTCsJce11LPBCsa0rV2pC0A4UcnO8ma/EKg3ztGu6Q35CThCv051FYW9FoewPLe7Xaff/75j3/8o1/84hfbbZmkkDjeF3PgOY6clPmBt1Cy6cM0RohrA5WkLEtEzyr43d/9300mk4WY6IvFoihzZHTFMbgrTfOSfjzBLwf0xfPdbV5dDo0AOHUL57tqj3wrgB6ybu1EA4v6/Pzcle6TeYdeH4YseQ3c0iRm4bUtZWhr/hBZQ0wC5ivDUBhfAVTDxiSAgiFCGEZsr0Z50MSVgqHOlrjbqLrQNQBsYUUveKLBWTYvhGJ7oGs8ezvobsdKjH5sj+1Y7Y46AOJ17tBsGNkXNxZe/+X6zc31s4vL3/rxn/nVL/74n/7jP7h9c/ujz3/45VdfLFcrMc+Lz370w806v7x8slnn/9N//w+COvqb/8l/kpflarOOqiIowrqK66qocuTrxBGKncuaIn6u3W613RzRYh569YaA+91v65DZ0P0CGm4fd1wtARKAmi0u/4JIumGjsE6W+Hf3TiEhgApOa6FVJ5JrAI3EGu5tMTuE9B8liWh4jiH4MZmMIR4+ybIEQuqAYAibbso8jsMM2ujiw3d1f6PRyKnlNCWLWbDMwAyD/qmrYl0kCmAAtKQ6LEXkNOcwghur9bxoDw9x4mU+b6dx/QkLoCog5kbx6Pd0vhoPymNRGrYCWXtwOlKtV1Qbk1/VF6xcJvrCA5NdwJVFYjI+DKODVSMY9nq8sIOaplZERw0MHMeA8q67yuMplVUVJ+FOVlg4qWVddraeGB11gfd9t0Em59nZ2ek55ChdrVlxT3v8In12RtgT+L7c7mDxM0Vgs0PerUYPkHMrz6Eqy22Q5On5tiJhRmroplE2DmOk6ghdTXYrRRFUSGbBcrsKqeRJLAI1MjAIT87n0MIHH3k0RlmsCbR3kuiHP3yeJIDdMAAmGI5ItgmC1WYdi1CQIxFK1nkSpefRGOpeZASJW4JYZDabrVarN2/eXF1dUXWHeuRffvWNEoj5XDkuz88uNU7EB8zBaqk77JH1CjOsgCFR75WHz9whBS5qkmoogIDbiwB4g/g+sxgYF/sWp75LXQxUB0gusam69nQ6BPXdlseaXr16PR2Nv/7iy9///d//7/67/4e8JW5sO2kG1vXo2gPfg1ZX1Ww6Xeao+zjORqvVIgzqP/PbP/nt3/7tb775ZioT6G67QVKs5ABAA1da42txT9Om7du5ALSYfbeKe4E7QkxSewUvM/imDftfvAbiuZnAg8KsAJlK8GaC/LbJDe0Yvq0G97eERRaZFs3lajyelAXYQZvN5vb2diVVKUgO1pdir0SlxO7UWwZHgHgod7uCuS6q88N3B7UrO7kQXdNI/6TzdXdS6wZSD3isj+7/x/ZBtruZbNpE96KIgnCbw1Wz2+1evXo1zdL/9Pf/5r/4g3/2J3/yx//ff/Gv/sk/+ie//du/9cMffQr9+3lwOp5Ok/Lf/qt/9Yd/+C+fPnn2n/1nfzMKk1W1rYIij+oywrtcx9EmBDWFRbVoAEDUTrwAv54e6K6DXRvA/CnsXzdNxNt+gcqYD/19l5z+WUC9eKDh+5dIpmgGKXSDPPPe8SGXKeQiCO0wGhClyPiNocORZKMEXszRaCouT6CdZpYrtpuilIrLQrDHrgmzH2XJBquiKmusQXuUGMGvToWzcUk3eb1yCw3w9e7x7OzMibY1cjGEQNBoaNYI21HZGA4jx66hi8jk1+rOBFGKptQdbsgUPkmB/3zz5g0pQNPpVBkchHnqX7fi9TYCbCmjNAys7CYXX64XpXEn8ecK6PVoXehscd3QOLQOViu+qaJAtj9pcdmotTN+qmpLVXtx0inNpCzL5WrJu5jP559//vnTp09ZuS9KXQVuz49sHcd71/n3/+E/0STFvSEucE+KCSOBEOS1NErj0aZOUcxCiF27EkxAqW9XC83Y9VUNZUpZksvg7PkP4nEyHUE9czqdIw13NImz9OzsIsYDhpt/Mp7R05/EYV2isIg+LfKZiqo8e3LCItWleD0LkRIpivLl6y/KTb5cLhfSbm8hor/dbunRV3emPs7p7ISGEfOcNP9ju92SqW8tVBIeLBRTE02TqRWL809IlDCztg4UTS70UI6l+tgxNDRh5VuXvGInte4K0UzWcOgqfrdvmg44r8UwdLF+lGX59PnF559/9otf/EqjCMjhD77PDR1Rgu+I7Ge8BEF9Op/89b/+16Moev369eRT6OFEQT0ajfId5J6GgKwabN476XlW9K9W17+drUKkyItZ4rYTwwdBwOV5v3KokO2lwp21ITlXUuuJyJ7+Bsn/q66vbjRziP4P/rBbZ0CSyyMm6sraJAJcqCUvWQogLZf2k/xi0vy6U21veEQzwGwdFkv1eQcb4DEH4LF9RPUB4GzuTMKieQ1h/nGaSZ79ejIa3dwuXyavv0gmTy6e3l7fnM7H1fNnSRT9L//8f55NxucXp9fffJPvyn/5h/+fv/y7/8Hf+S//7hdffAXlsW1ZRlUe12UCt0EUlBEnl+ZdDMIgL4vlZr0rcok8/joiAF2A1bs+Ntp0/fv3GgaVkVVoGDJuysX85PaUqresYCC5v/Ic1P+vOQNtRpYwiOCiAbVZ8hyhShKFQLTicJwJZ1n8/VIgiIcs4eslTIbnLkWYQcAmCkEy6iOPoBIJfsrjZw7dG08/a/RS/9Qx/s0qY72TiomVculGlCPEQHaC6kbeM6Knv8+B2PanU/UxNBviWqWgpGlaoSqUc9vbYO/FxYWeyzrLvMq+mrHZXWr5T4I9jTzYpDLbDJpyW7zlYLuFl13d6spusuu1x+2xY7jleuwLB+l2S1XVcpmo6VvuKCzLyhuUn9ntdlmSnp6eIlPz6dPz83NYj8hFjKgxZfOP7aO3ZCRef/L1LqWlSFluzibU3kHKNkau9AoKxyZVHa1zyPm5xymdJdkw0eWLp+TJzGaz6fwUBH0k3SbpFNWCR6mo7OMYWhMtjWC9ZdDRD6FEK0qw1Ww6r4V07gYuIATKCq7W2+VmfXNz8+b6Csm4V1c3Nzf5evPyl1+hkrUAVrURy7L89NNPqU2k3cqbL8rW608pIZJ5SPVRu5BZ0sxE6cXWmkTi/ZW11XQM6aMl0Lf1TtksZ+6t05+qwXirApkb3YsECJNaUZ5jdWjCZYdQ/v/y8vKbr774a7/3s9XqH37zzZUUYpd92uXn+6UBypam6XaziSG3Fe82m9l49Bf+/J8/mc+/+eZrCIBuNpxukAMjsmgQeeizATRzjcBT3VaS/u67t7vQ1qHeMCh3ojy3B/TFkADlJkApGPVsyf5hHG1Ra8KhfLr2lcDDT56ar1KWjSiMLTnrkssjRcgghWSaWwOgEZ4B00eh0ClhmTQOJF4Y4uZMiOBk6EVCugPV29h9GXtx/6Gsnkfo/9g+kgQARzPxdmZyYzRNN7vtm+vb89OzsA4Wi9W//tf/+q//3s8W11f/7J/+4xfPn/z43/vBD549mYyzf/fv/uibl6+mo+z//t/+X198+oNf/OKPX1w+++UvfzkfoXBtWUTFNthWeVgWoKmEjRaJYF8kCayx4L4D+ldZs3tup0CPY92YL0TDvjMb8yewRGuX6A6NR9b7CepkYWmzvFxQlEGebJAz9oqQFYBZFhRfJ97PnCto58skxDgsM4SBmlGDDLqi0PqDVM5oLIBkIpj4bDaNkyiLhedTQfWcVVCCACyUyRjJr1iOazrXJUVY6mfBxJHqQNkoSZMRai43Fy/R4OaKQRJiiEOurmH/J2nme5fkc7FYOFqLeJTUeZqNR72TLQ2GbkVe9XNbqGO5Rp57yx7ZztWz2YwidSTxK4NIEZ1dd2xuQFdK3zuXxV2hAe7NUtzaBnZ/a8No+i8AdOPAtferkQRL+m2WyD3qqXJG+KkI1qUsg4MLuXm+dLl0RQJx3pPPPvvs6dOnL168GI1G4ONt1nmc6MPqJiVrnVD7OIBVbqIx2WMSPIql6pvk+OfMJgaJGWs25LJgMMPaGI/mc+TgTuezOb6dwK8/nroBBEc+aGTicaxQKkvCNJLM4O4c0BnbRVszpDnFHO3i5otXm81qebu6Xd7c3i5vFte3N8vNdvXN1682+UYSwXeiscWM5OKTy6dANY3SjopV0WJz2p0UOW1YVjazxLKvvEdOFpcdWNZvyoiBJw7F56Qaq9ZD7+Vi63ZrL3rDzuMoO+pIQynxBFI84poaAHL8HlxlX8K9FyBAJchPPvnk5uYmCIJnz5799Kc//eabf87p1dkAykCFt+NILqCPpEGhNqhG4rqog/rP/tnf+Qt/4S/86le/XK0WP/3pT//0T/4YRdzOTq+urqBsFsdVUUUmz0n73Eqq7T/6PbeKdVHwAuxDxHKxrw2qX0RUN6wRoaM1KxICENxHai6Fw+x00M1GIhEIdWCCveADXyU7oVv0vGzkIHqNllqAhHWB6CvSNQDs9l7z1aZkDdVVeET2j+1jb21Cy/5Ylmiaa4XIfyA0ty5uF6uygqtCZBzjX/7yF//xf/TXfvjZs//3P/4H/8Pf+8effZKURfHk4uTv/O3f/1t/429EUfTm9fWPPjlfLK4/fX52u1hHQZpv4w3N97JgUU5UG+bFhEFelTn4yEGSQDb619B6nfe921n36+79950CFKxsMaI7gkjkuJ2bPAFOixQXRcUucBIEFyHnqQxFIglmAASZsDGqwYicjkcnM4isTMZj8FWELS2fKG9UlqjUm2bxdDxJM/FSS+ZesRMXewzXYZaNYYNE8KC6i4ePH+FT1PIS8TfYBy5f2dXSojyrd8sE0J7jpq7rk5MTdTATT4vmSmYdi/oTFS/xvJx0UFo5Ts0p1dxfZezwTxRH8uyHIAj+9E//lAEEL3PAyndq9RsCaLu2qnNW14u23JjJS07Mkb111gs4TyYTrqS2opYiW23aD1Z9VTPr4F3dr2NgdbS9zAeusxSb1SzT2Wz26aefPnv27MWLF64ieAlJWXa7XR91ZWxyGxJvPXWaqn/zf/+XJU0kkSeJKx6NJkmWRUkCSZDzy9npyWQM+s7Jycl8mp3P01CmnVZEKQHcL5DTqxAZLH/eIQpCgPlPs1LIxDtIC1NkEKWybsHbubq5Wd7ertfL26trKJ1u8m2xlehCgGJ1iBxksKQj5MOL5QB9kggBP5EVMQO66z21I5VJut3pwIPFGtnpBegWcHgv2BAQGWpDAGVIvaTYvUWnfJ+8yNBYdc/S4oxUZFm23eaLxSKVZOw3b67/5E/+5J//wb+U1ztbb3ZpmqKGXJIVUuf8KHUAjtUOBXxDHmIvhOdmk7LKkkQkLKs4DMfj8d/9P/2dy8vL/+1/+6OT2YRw2q0BbhjtPS9vchkAuO0OdhhrDsneaAyCOM2KylWFa+oCOp3josBGBsdkWYOYnYgF+I5zzi+9/BnxS3U8/R2Mrl/AGtjfbik63ab6cV67v3rPu+1/rPbQBsZ9xueHfPxDz/uhtWPNJ4PHb13VPeuI56AR3EnPWkTIACcdQmwlKsOEdRoGoziaT0ZPzk6fXz55Op+cp+E0qj7/jR/91k8+r/P1V1/+fDZOfvqTH19enOw2q91mKy7ntKpR63Sx2t2uyuvF6vXN8ma1ebPYvrpZvIHUf10n46/evAlR1C/+k1/+8s3VVZikmGv2SYbdfvMguO7/ViivnlTPe9KlTVr4XsJKCu+zf0syUAzQCPxQ9kNKZcks6xIvAf23OcqfZ0CxkNgI6OgNKqnhBZdkHIZZApEZuCOT6JMnT5zOTkXvbxVKFyQRnP9NfnCUCLkIK4yuHSJ2wgiu1H2XYZDISiRsH+5EaVYZMW3OYRA7TjyPYz3BZOCoY14F3Ego99Aw/c2utrFpFmJqwiS5MdS5t2hKr8rzavG3abq33XsFVNTR4jErxqi3ZkUyLBS8uLhglJuBbnXMn56e9nqUbm6uba6wHoqOXWvbWE9/byTERtTVKz/KMmuEqI3BiIoq9BOyp2m6WN2yotTp6emnn3326aefnpycqLKl5ZLos7AvoLXQ1GGtGqbAFbPLS/DS5rOT+Rnc+fP5ZDaHeRfF4+lkNj2BFE8yEqGddJSGt6+/RPJKw4VCFc+yzqtqdnriQhiQMhTSidzeL37+x1JmCPriNzeLm5ub5XK52W2/+uJL6PkXiAoEdUShwLIsP3v+os5G9QT9TgWrVIB/laMAln2T5c0Mixy5vF0gdQdA7516bDU163r3Cj14jK77GwBDBYaGFphjLcAyIHrm6G5xX7ZGGN5B3iiKzs7OfuM3fuNf/ev/n2QI7c7PTq6ub8fj8WazOzk5WSxug+9uUz+9ixjiOULWJomisqr+1t/+G3m+u7m5vrw8B1JGc2E+NxpRbT3F/6uCskYWrpRMRESN/8lfRJ2HNRUbsWsIxEkJFYhpSSGVJM5QE6SoUV8jhzaHFMarX159oZ4DBic5rcSSzEFfAoNGXEgkiO/KbbGeN5N0xdPfbmm2B97U7zXdgV8qxMD7ufjvC6A/tsf23eMCeaGAOohKYFBsrkpxtOXlLi83u2IblONxulhdf/nlL59ezD7/jR+kYbm+vVqEudQYqcBBkekjqPIkLkdpksKrrJBCHNJCBo7CpAYHGBxkmeWEXzpU6lxan8e9H+vbfex2awgN7dmu2hFlNu8D/VsbAIQfEGv8Hzacfqo0436DMpiKSA6cjlWN4qNhBV3zCA76JI7H2RTMfkgUCmCKk3K3FgMAZ4CrPsQ1hnUwGkEAn1ouogfKmxJNUqEbCXB3tbrqMEjSVGpAUwdKJnlh5SZh2qQli0cZzh2oMdJO8EgpqnDP+m4W8yiZmRsVkW8GUr1JFVagbNMmu/R3zUmzp+OFrddLu11htE3btZgN9Y6aFAJnFMvpVB5d4wPkUL169apVNJLMT4q22yqW2oIgoGHAFZ9AnOdVA0MJF2xKSfK8yao+5OmTLpdLy49SY4BVDsqyVOGZ9Xp9dXWVZPF8Pifb50KwOq9Nn5c+d9bj8HCjjfxoP9hLTf7b/9v/haeU4r5IgWXubzOA4goZfWAOFMUqX+UX5yf06Evmci14BJf+xb/9YrPbLhbLq6srVMe9ulosFpgrVpvAWDwOu4fh08vLspZ5hpkA8i2qMXmRuOz6Grw4sC3iUGIUUnZWsuAbD4gUR+e9OvjEect0kO0Ixsu83rkDuGvoxLO0rA6x3b+bHGn3v//2oeZifJ02pBLdyER2jjNwv/AkibwBqv+W+Xq1iJPs5GT2V//Kz/7wD/6XqtpeX98+e/L05auXURT92oQg3kuzVn6zBU4c0bWpfvazv/ji6dOyLL/++utnz59I5NQlwjeDUzzfyJSTUjowAfAp9XvKJEpBkAPQRz4X4T4q7IhJXJdBUaLWd1Hl/NVmtYUgXC6v267My10prFE4gKjNxDM2ckDIlm/VBph+BI9VDlUHV0dTwLr7FB0vIQDKO6V5Iz6prBNqY8+YL1IauhMlGBrnTWrJY3tsj61tXTaCe4XhSZZAIaideztAhC8IiqDOi3K3Q55uGleTKBqV1c3yJkuDybg+m1+MkqjY7rabVZYEEA1PEjjswhqu2CBdb5DZV0m1H+GeS3WPMILnO0vzql4uV5IAKqC4DiLgjsGgdxfrR2DYN/urL6/5rv9s+Kh+rF6/OFF2/qkhuEumbr88ZTdWoF5/uNel+C4vgYm8VVFAvdykyQqtH4J/rvyXLJFpnGZiMM1R1yocoWqqMBbolA9KiKhIIi8EOaX6FstvjUYAlAlP21h0lSQA1CglIAZJI/qHLpaIg5vjZYEOQLmopByZqwbclCzAuIgTlyyLCnECvpxqOaSZWyQmacStUL066NVvXdZ7YhXae5bqYyvyZg1QtvtrREWbUvC9WIEie8L3LqFfm5f1yyhEK/guIhbW5U9qg7LEl0tneNAoso5ze0m9I9lSwT0qr/Yba5b5RQAat7J7uZpGTjitqTzPb29vi6JIU6T5/uBHn52cnJyfn89ms0giEuwcmH8y7MUsxBN3uUEdx7GLjO1rqio/Krm8OGuGAvzsdVXmO6frz+BQa15LAc9ffPmr1XbDsrhv3ry5vllQFvDVq9cuCCV5vmEiFKggnE7nUuLOUf/dQ4qD9Wqb4HQhisjlKI4tlOUadLegZKGgoGpTLmwSrbk5UHqAWAciiT12/37hcs9z32UbeyNDcUwX0GhHH8XTPxhKHg4x90hGiIbSQRQgeghKWWVYHC2KMRh+8zd/c7PZ/LP/+Q/CMHj56uV0Ml2uVxIeCb6TLU1TvjO6BTNIGu/W2zoIfvjDH/zu7/7u69evZ/PJeJJdXV3tSy214BgueSG6o6aW45YGYQiyJ/InuGzXdVnIagF1hZ3GATmFcRazyFsbJr7UqUPwbZA3gjlD/jjkrJ+XuCNB+Xtjrxm3lXf9vQaAN/736EwcD/uaP0AtWDSl+Jf/2d//j9z9x/bYeswAcfXJ1OFezqa2rpaBr8uy3uzy9WaXRdVuPF1td1mWbKvi1ZvrYrt4cXH+4vKkKneRK71JFrtQZ8STKrrjxW5bbOD2k5i+5BjESbbeblarVZ6XjojkKDSDa4C3KItKT6zEm97IeTdo0Ivdh2D9QQYAwJNx/Ddlh4G3U1keJX2L5H7HP4DTHR4bAP1Rko4g4plmSTIZZU59h1O0iDdWVTGfjsFSNg0LgN6vLAbS/XLtQRBC6hEkJnc6WgdhUEgSBpw9IJhiJYkE90tcF8DLCcxHrUcSwWBRZXfNJWGVcv2OWmOBjUfFcYbEPmddu46Anksk74vg26vNYp9vN7FNcxK8Yrpd+8EeSpc/buQV0kNPjKtadkVRkDBD3E+7cb1ea9ms2MQZeLTtdtM1bAjWvcrBqihqGSh6X7YIl12vswZXqPAGO4fH4cUzJePFixfPnj178uxSO5ZRDpox2wKREKWHMUTFd5KUeI98q+JLetm8pOR0dsqrKfNys91IFggA/W67XS6XgPjX11TYXCwWm83mzc0KEpxNYkeSCdctTZ89eU65Dxb4VN9EIoUkMBSR51sJsx9CnwD6mA/kYUulDSY7b7fbSqoE1SC8YZDTpnRJHqDNNcMB7k4UdGg8EHsvfDNj0sp0gQGQN5qQpUe51oKt/DQpFI4brY/WMwz2p2tXM6TbBj2gByLou4GR73kNnUxVtw1FKgoYegXUipt0aoypGs/lk08++c3Pf/zzn/98W0DZYDqerDfr4DvaWOtNv7uXU2TdnpzP/srP/tLtzVWWxq9fvnrx4sUXX/zScfT3SKVIYUmyBNW0SPABmxITeVXX+TYv66rYibm93e0KlPgu62q7QXhdnQQt0DfJ6O7/i3do3ROEESWrwlqDoufLAcxIYWeo7M37A1+8V0Db3kacFHRXVzXCxSfQB00dCfv52B7bY+tvngKEGNd0JfZAbsTPQ83DAV7Z7XbruNzmWRpFuzK4uV3lq02xTU+ySXF2Ok0ndZUXeVAWVRQlVRUVBapz1gHmq6KsdkW5K8otcEFdhFUZwLGX5/l6g/pfMUgvbQZ/t3UlqglkxexvN+qXIQOgF1B6X/Z+EkaQMWyiCi4+oI6z/e1EmjJp49JoCUSgUlXjLJH4B3oTRCkkAuMaZ7NpRl9ygnzWFHqcYRrF+W7DhGBM+kDD0SjOgiAZZSMKhlJlsfVgEroJdndwBn5/lnSUrqBhQEcvueYQO0nAYUBdYHyy1GMLBBXNB/VuB7cR1iyUYnQXIEIpqIDr0G2TA0B6zP5wErQFYA1Vpa4pJQUfG651HCUCAtMo3hrqi32IHiXGYG5Hgrco3CuUa8cDcaDN3+WvSPGnM5rMnAspaa8ke/WCU91xMpmoQ9mWlp9MwD5X+r6um0ThZD1pXQIF5Xqb3vj3ylYGUkhUD8s6Cbw2psXWdX16evrjH//4k08+OT09heRgvtE9U0m8VkK/nMbdmtJR+JZJIU6swm19nigEKUYqk9L2cFkW/+if/PM8z1HfZ4W2Xi83m01V5C9fvixFOUQAkJgOGNzRxcUlmL5SpayJwmDYFk66k1XoXApwDc7TyvHZIrwrFKWhjqzUM9PJDHWA66hOxyN2uSMpI/OGoZb2zcGVNL7GKG1lOu2YGwLWUtG254FZSkP3sxsC6x6ksbcOiwAcagDcYUj05GW60oQH0685Xt0gLpAIkZeb0Wj0s5/9DKS6xXKxWE0n0+C729T3z1wXkp2Koj4dJT/72c9ms9mrV68ghDWdvnnz6uTkxM0UzcPkKl2FEVxopfOUNEm6mDqpQ6U0/cZJw1qRSBXDWyWfYR1VAeQi+N1+CllvT0aWhB+5ECePwJfJRAz8SFfn52+xAbyO8vdsVMNNnIFvBHezA9LNHr39/xgBeGzf59YrSKITi4QC9nzkWC7DMBE/IGoCVPU2L9Kwul6us2S+2hWb9fJiPLo4fZqX4ZdffPOT3/iheCNKUFsqKd9RRVVJhnlYlvWuqEQvrNgV9Q45x1FelWtXBdyJ6TGmKZEDv3UXYvkSVUalp5eCe7cB0B/V10VZ0L8IdPabB952kfXU64FzBzW6oAkabDcrWDhxMEqjUTaZZHD2x3E8m8xAmQbJR1yQTOqt86whIoECgSKpziNeSsTVXUYj10Y0xhq9NADk9ulyFmTGAykaBv6Rqq6NinpLjBF/KxIvNQ1MPM4uMUxm3ZZ5AU8yIAS1NdUwENmPbS8Qx0V2notN7VUMDdZNXWdIcdhDSt2czC63zbr/W3PRkGosDFM3PPE3Pf273Y7XQ4q/hjjYLU1mIyCNauaE+5V6NRKichpc/SlDpN2oxH01nHrxJ1d5e+XcYbVa2bi6+vhYyvf8/Pz58+dPnz6dzVDHk/L09kVgEANRdUlJd4EsJqnIHq7GZmc1t0ZLFCFJnV2U/D//X39PLq1CjiJZYqJf+8mz5/W4nsqZRHLHPUCwHUC7EUX/MGnr4EpFT+ELyj+aW09HY2EWs54AyF+8pmyEZwBBLZWzFEXdOIuZRu4ePIKPABBtDWC5YUdwqetU9M67847Kevpuy6Zk0lvBjaVAdCcdNRm9nysg85onF/XWNgiA3kYl2nfH4pn2GgA2a942FrGqOItsN0EAoTfYgVE8nU5vrm9///d//+//j/+TGIurNI3zot/g+dibreis5vLJfPrnfusnP/zsB9fXb07ns8VicXl5+ae/enV5eckXHlp8DdkOL2odLlfbom5Le+ifOOHuGZYRikbWQYRYAd6pAkT+WlibQT3Kxpo/gHeM0Fm4dUKwkYcuMtEc8gqvxRkgY1Xo9pLs2w/xBzbeVUa6+ytJquOp397Jchvf4iE9tsf23W12AdItIkhp9wJWlIJ7FQRYJCkoqGtIleX5NkpuFptRFAX1ZBLXm111c73KqnCcBBenZ1kUZSI1s8N0F+Q7TCa3yzX/t1yt19tdXlSYMLAmB/m2WC7X26IaZ9STCeJM2PB3GgD7a6jDwfqHdgcFx75h0AP3vcPaNRqyCX3795oNYgDEFRJ5BQ3WtRgAIi0YJmkSzUbZdJRNJ2PwfNI4Eb2fBAhfZBJkokXBgLAeQR+pkYAUVz8Mo6oiy9/pC/GTdwqHKnz6KEUchoUAQjFheHlwq4MJIUaCMCkyD3CDp4uCiwK+GiUfVS4StIhdHVIMsY7Da2tEnOWAzqTIc2BZewr6bhR3eojZVpa1gHg03qs4qwCsX8UOhbqYB2pP6jj0Hu63nHtSZehTo0efxJjpdMqCTixpvNvtJpOJ9ozzo4t5QEpMaNRceK7FYqE2CcsOkOFCDGAFfLzIvD2Ihx8sa5f/1OQENWaeP3/+5MmT58+fU2+U8AAF4yZTGDDCKCspMS/seg1t0T6m8zFEDi10e+3sofUENQs8EyUiFvNOJrPTBJkrYl+CZob03yQOl8tlLK+FQPCi3DnGUjYSgR7o3qIDmjlI7tOluUi6iyuUHUZJLKoncRmUSMCNA3l/qJePO0FHQGEAmS9SYbSQ6neM7yRMgBFcLeaNo1BDu5fb8wEqix18to3T8RDXv9cZ31thznve9jMlefDe7WBP59v23+NywB8CDQHPc1wj86Lq8ShDDQblJIMgynMpXoiBAUMxG09++ctfnsxPJ5PJX/8P/9r/+I/+YZlDB2DYAPi4GR6k5XEq4Rg4Ozv7wWef/Oyv/t6f/skfn52cApRPpr/6+uvzyyffvHrlPA3iimATQc66wDvVk16i/Evr5ICaR1laZT19lKsCbCt/NMMYKB2ffr9BIU5mBR0PZnp1KkAaZtPPrjrQ3fGuHoNB2D8RUoHl/7iuhf2ffVyGx/bYHttgKAAzunttHFVarIKQcIllt8OgyusqqepdVa+225fXeZolZ88ui2L3R7/88upk/ps//PSPv3p9MpmczCZZAmcW5quyLsP45e3q1e32zWp9u82XuZQhhVZNUtfAIGs4eRF2h34f8pDht+5dX5CqICIHUlUoAvOwqdGLb8zfFU8H77LhTPr1fa1L2EJ5oFhSUyzJpxaGfWMzkGwk+6DaF5V2DHCSH6GSVhiESDuMMW1Jzm5Qv/jkE6h5pskoA0aV3NkCdlJVl2GhKjBJAmHyJKXsZmvDiCkATw4dbUJ/gIvHab+EcGuGSNoWKSFTED1LkAOA+xC6s0021e+qK19UJZZpIZfys8FiDtq6Iu5C68XuRYnyrE2KLZcekK6rKhN1Iw0vNAKXUYWu2/P3ax0k678nzz6O43KXt8wrqapFGZdyu2ViA20OfoZRlCYYPyyyFkomKPYO6t1my+0hpN8T9HEMcfmqQA2KfLtDnc06iNPkZHwSp8kozfjb5XrFdSwSnW7Kd3pSRUVRJIkr2KoBhKYgLMrXwtwbZUkUo6YDuHA5j1/m6HP2Mxld9j21a6K1gjQKURTFbDrV7OTRaHR2dnZ5eTmbz58/f44eTpKyqiiqyt++vnpDraVsNJLCXLIiN8Qwyzgn7gdoQcoKq1tAcAo9GFRJnObFtipRvyIoq9ubN3/6i1999fUX4X/9f/5vNOcPr6a9jcaitaJj3u1pxgZeAL7WUKcSnawGlPDRetQFGyfqBIx6wIJEGHoYOofOp0Oc+KHkXZWX6kYne/uhm4Vt+637ZYhGOWQYVAOAe4gahPTwsIrqyPtMo7REmfeoDMqwCvnZjahIwyUycT4Mw5OTk7quf/6LP/lf//X/+vrqFtMeGGJICaLVznofIpfZDhWjPPBxuHwZKZMCFzD95/P5T3/6088//9FmvSzA18/X222BohZ4qzmNdg1FzH5cI/3tjl7V3b5nv5kvQ+OzifBE9xw/Zv/7fB5soNLouOd/wcffDu2fIcrfoRTBY1EKD23HomY99HUeq72vfh6SvxTHQev/E+V7N3WEIvAiXnAE7dMYuHSWBafj5BQy37PZKJvEYRYHSVD/5Dd+42QyPj2Zz8ejKARFG4U3t+UXt9vXi+3NcrnJi9UuX252eVkHyaiOol9+9fXXr16WkDaGQAiS9BJoDUvWkftPvOnwqTNaye9xEDd/h63CHD/N9Gtu0EEW17nGhYy724sDNE5N8ZEro10WO6N/L6qoUPIR/BCHdSJ4GJgIwmos4lsHxS6NAYjHqNI7GmXJKIEzFPx8zN3IqcSnO3VFNyUdt+JcB3RFOQCqEjVi/MZTLvUEJEbDQgN0yasuu6sVxQQOwm7o8gCwOtJOYwA4Tn9b7wXrTpSkdRhpzqRKpVuNf/qSBaBLeljlnLkK3JMkIYXGowAJc2FvnbJOKysDqgUlq0qyQyV2gHTvCHfCzxpVoYRNLiQO0TGqU8hO4nsBhaIqh4mFQwRVFafpdDxOsiwOQwfSi2K7XodShyFOkXvN90TlNHTdKhHGQUuMML+9NU0XLgS0aFLB7GQOee0S+R9wgCeoOxUm8e3VNXtYYkyt7CbAdeGgjpKCSKkiSYlVCAj3WVWJPCVU1jo9vbi4QGndGRQ4hfkrw3hvoukBdlGTg+pRiZBrsVqOJ9l0NA1DqPbk+VYwJlzq2LIrbxfXL798+fU3X75+dbXZrpKqbC059xY1HvFeea+6KTrrRIjEdpd0XBPC49zlUln0NY7tZ5udYOhN9wG4HddjdRDlZghIDQFoKwPanfc9t4RUTBwk3PcCO6Rq3LnzPa/zzhZ1P4VzRca55IzgaTFO1HNO3ho1aGlSn5+e/eAHn4XxF4vVer3JyxJxGJraZVluNhqWYcoHI8V8PT+ONplMNhvkxIdheHZ2xnoi/+7f/fz165ek3HgPwtbea6dLzELQYeudQIcMAB7Q+zJo4AknuGsJDwO16sDPg4EOkf19Ph/bY3tsh0UAmn/ppkb/24lmcgaRygBYocuq3BR5nOfBdlPVQTEeTaJkFAd/8vJqPEpmV4tpFsd1ACGC7XaVV9dVdp3ny7LalfWurPO6KrG0V+K1hAdRgBVAsegGNVInfKcl+C95rHEdw+0v1a2kYpGC97qKnT++Fe4mZHXhAfJgjNkDsOX0LVvDIEokgoosKZkbXUyByZE4PimVcShSIlGNAgGowVKKsHKZiLc1jYPnT56konUDv5V4wJ38ToWFUYwteKrdeeM6GSUuqhoAp7rZLAwjqLHhwh3EZOCiDneixia/doeh5UYPtEJGes3CJE5IqzJZsEQs19fXCvVagnSI40BggdZJQxDgDiR7aEUqUb9BTJokeDrs6bZbr9fTKTL6rN3FFYS5mns2j+w2Ho+V+aOJsHyOjovfyAfxTykLYFWVCL0LqSBNR3GMbISy3DaSOIrU56enGqBQqk9VVWdnZ1YsCIiuSWZwCtYNmnS9YsA94R/zAZSik8ifnBJohMhGlELvD6+FoJ3lZl0UBcEPGgm19N7WkjhSORFSiniqahDlhkDjmc2Ypvz69evJZHZycnJxcXFycjLiU5CRY6G/FarkOmld5BiZ+8iBpe/EWA0uLy9rxCmQ4yH2jyiHBmGRb9eL5evXr7/66quXX39zdXWVb1BfrH2i9/RteJyngVyftx9HB5lPqhmoLT7EPx7y6B+quz90tV01g7sNCdCb7nf975Y0fC9u9V4TwngTxtFPHoXgEdi8CaegwEjvUWpUnK6qerddx3F8djKLf/jZeDz+p3/wL7IxJpp8B9xPcSGi5+Y+GhqIlHyAlM7H0DTHYz6fP3v2bD6f73a7q6srlngXAv7egNltewvSOYmqLsS3+L4nsDVgBjycR/axPbbH9uGXALOvfO+apfuw5WUV7sI63MGpmkGVOJyMwzR+tb5N43oUJQkCAiF0iKtiW8e3QbIqgh3Ef5xeCnjxYXCzXOyk/hcFKiHnz6Wkw8jnPy2usG4y8TuhpA8hmitrQ9ZAb+YuELlAcVKMG8lvR+GQ2CppwqiRDEMhEWIkjCD4nEX2O67rcreLYuChMWBnDG4P3P3R2WQM2R8idE7p0r10/JHB39QCEAMgBUmDKXJ0c4r2JyCm6wVeOVVZWZZrvxMsIZO+c9WwR9lTePTd47PccS6seigHw8Te6I4akdeEAE5ZFrudW8gimDIZUhaMMj1PbanwOthsGFwhsj7f9XrdAtCGbtRYXy4EYZc8RgysHCdFexqc4J6pJivTuqCfnqdg5i4pVXp87R9u175Vfz9OZjgIGjmhgZQ26cKuT8RqKIUxxTxpHo3X3BvhT9OsFK1cHpZUIvWhgxNVlsvlklkQs9ns6dPn5+fnT589o1XgAj6wwQcbbcc2i1rGvNMXIlrm6EX/B1mSbJG8D9oCnmwQQNV3Ddvj5ur6yy+//PrrrxfXNxxOMI1sRTH7OQSUvZyJtyKVIaBsXwb7W5Y6H9q/6xEZanef9477uhu491Ki7eewMNre0fTLnZ7dvus/GO+1TCn76ep7t14XPX7/iekq4GvJy55MJs+fP/2Lf/HP/+rLL7/88qVY+eFkPIP83HrNma3JEHoLiv0A2263S9N0MpnM5/Oqqlibg/4OrbxrBQqGQXzP+/J2Jn3nT0Pt8C49lNJz4OEf22N7bN+6WZioS48EFdvtdj3ybINGBKbKJc4bRgVAKagZ+MwzwOddEGyjMglqEfirUIUzqhd5mUt8vizBx4AiUFDVRb1cLrcFRIJA6xd3O73iWpiylx/bBfRh6AogNmUQoVdmkl/3fiKefLjkJYTQ8lLUDBCvJ7G74Q2BiSQUF4luC76vsygcjbL5dDaZjMZwfocJePZ1AW46C3VZL2uQgouP89hKrmFU56yYLkEDol6ykLQwmfcELRNBmQ48GhVmrKxkUVfbHMhM0a2uMirasceMCoU508dE4GKtVB9Vs4kTx9VRoMwLUBUgb9SNx4gM8BqsqCXyRyVHlqo7hl7vZKxtkqu1IuhW32636/V6t9tRjoYpvFapZr12OW+8Ql5/HMer1cq7U7Vnujwf1MwSSoKK7quST5MDjaZMfZwuiUtkVsD0JYhn/6zXax7QAuCoxvOlWqYqCDmafrMPAw7T6fTFixdPnjyZz0/H4/F4MqEFKwUU0EU7UYtiEzJc8xKJLbmXUW1Qh96p6+EgXNzcVhVSyon+N8vVq1evrq6uvvjlr9brNYrzbrZS9hfWFMan2nC9zoY7pqchj6bX7jYkuseB3Oidx/EuzJZq6h7//tvv2fQ2+fy6PfBWio6H9gYB/YHAa7CfERjs+ZP3dNteHeBmQCxiCyqbvO3hdr2KomgyGv3O7/zOZDat6+rly9dFUa83S5CaQpRAjEJXRBCKCBKXfif+0vtpZOmNx+O6rl+/fk2Kv0yUbmKyC5Xl/+gRPANgf6PferfbYx7KBR9qHwn1+rE9tsfWbwnYjd7rb7cIVEAVqxJKbklZRRsU3MzLslqvo0mWJkGdxGEq/kXM+3WNKsJ1VMh0LdIHIf5XVXmxJY8ZaEmVE2X+o0rP/fX7RXIfBPsADJ0I4WmVvffY/0IiBumeYpcCxsEdlGJoAantmn0nmZZCkMIOCSqwQJ4fSboAfOHpbJ5mcPwDGCFdtoC+dVCn0PDBnmwEj+3tkF7VespkrYcGf4trmYtMIoq7d/SJ+z4SyKvPyxJOWse/Fmaqq81mZ1dg+aXorDb97E33Q5771WqVJMl4PCbC1ppWYdgq6HMj4bhCSZvpK2WnEpWws2bD5eWlKtjwjGqrKF9ItTh55K2UllqvwahhV0yn07Ozs7YugXjQmSxL8pJF8xoDsU1vnIW69NbUCFGVbbUQNGkhkKZePN7ddo1+S5NkkqFCGe59l28LhDv4wCSbW+IJQOKV1MWDtSBjG+Yq+4/bySB4Ie38/Hw0Go1HU6VO0fevepVEZQ40yP8D+c3gZOQ5qPqQYH4OQRcPqaABUBUlyG9BWGyKxWLxzddff/nll2/evLl5c+XqDccpzTb+sIcC1DuzaLOVz3rDkT7AHQYuvce5g6Pfy1MaAvRDlW6H2hA2tcexfaKGh2Ux8SHdP+LB3xwF2PXvD7b6XZSnru9ZtIB6Gp0c6tJw5MUkfvPq62fPnr148eKrr776N//m33z99RtmNkvRccdXE14gY3YfDfyk9j8VEpQy6Kk82WnIjof9I901Htqd7gzrHzF4cuhhDjcwPppH/Nge2wfber1y/P/edm+xtlwFUHuCsIA8fhiBHw3GaZFXKRw0kK8cxXERB7HTEayLuszDtARtoc5BGAeizotqLRpBYQD8IwieENlUtH2bAeCuk4I49AqJMcDvnk/X2ADw7CO/0FkbLq8XUQygHGZDQ4m/DkpwkuoyhmJmnKFA72jq0nqhHwOZTkRAAOiqEj2TQjEojDN4+pOmRJeNadAA2Pe4I/VAinA5KUZKgWpVWu5G9619QOoCJ+eEXwhPV6uV5kNWoeAfl0TQJlX2upxclzq1t9YXye+np6dW/l8PpREABXIE/Yr77XcpzLrWGyR05gFVXlMZL7yq8Xhsq2WVZUkq/HK51NuECxxO8ImlA1m2D0WKLNdf6UAs1NWNfXk1fbUrNpsNb5Dn4s7E67XpLm08tVb4UpPGXozeOMC4MAJ4ZKmiC8DAQMfZ2dmTJ0+ePn16cXExnU55AVQU5U/ilJUicCjmkFgbgKGAUIR9HfpXzlUN81luFR9akrkqyzSMUNdrvX7z5s3X0q5fv1mv1y7owbwWaa60mVoYthdUs6V3Yur9brfsAeK3GQD6FO/JefDmi6GIwbEAje0He4UEfN2jDeUADNGlkEx1jOscZu6AUtj9QyO4thfEkA39z73IESmWL6JQG+O9Fc9BsNnAaH769PL09C++fPnyV7/68uXLl+PxWIRmJTGJQVukTd2LvvUhtM0GFfj4nXOiOtXUYdBdd7vfhwyAQYrXgGF2LCD+EbGwHttj+z63OxIAhmwAbxlF1i9ZBEVZBWEclmkUlDFSZcO8TqK6LOsMFBtAVvEhBnmIujtFXuWVVIcN4zwv1isX/wxj0PdRr1CRvQG+ds4ZUjEqJVG4y1ohEd9uFyJEHYYZtYFka4XkAykmDPpOXYYApjVoOHGaxHESBhMYKUCQbEkCiANtjgJUHwQHghqVa5NoRH33JhlU+5mkGqeyIvx+C7tZSJGViIRGK4T9oNG5Fz+9tWriKLWomj1W1gHKLBvPuuJdHKc5oTcSuo0VeZVARcOB209PTxv/N4RC1RlP6EIwTTxKGhL/yabcevWs26iFyoDayIbmAEwmLlmWabvq0d9sUEh0Op3OZjNIkTaBEdo/ao3oWVgoU8E3AauqTul4014ajUZKVLbLnFoF1jCwdJJof6BGSawlO3lS2myuxoI0lVdSjyapPmT7sBzBE2nPnz+fTiHkzwOmabqTirlR0vKOCujq7PEE9MFjjBFwINjQcH4g6MMUc2SYMMDBa66K8ur2ZrlcXr16/fLlyzdv3iyXyzKHvTGaOJlXtQndd83g9lzyQx70u5NudWJ6B+DSZM/0t15PgxTk6qcAHdqG7teOp66J0oVZd9/v/YHdoduHWltq2dveUa1pIhj9TyDPcxbW3mw2cRyPx2Mx7lfheFzVxW4Hdl1Tz+JZURR/9Ed/dHt7W5bXStHibPmxNI0YanzTSTg3uN9b2zhOPPh+BxZ/6/O9Iz3grQd/bI/tsX1nWm/umWcDdEMBnNMFotSQsK/LFGmwEAQsw2id53GIpNhtVDbyNFIoMKwKJEFCsCVJwigJ8rLe5ju44UVetKihOd91Res13KHfLzR5rDBGWJO8IPBorIcbNbkcJkZ2r2h/1sgZCCro+QRhQuANxmo9imNIH44n4zSbZHEqxAl11ha7PKhK+ICTKIGZQAgLVVDJPZayCn38BYJ1hCmE+MQKRFFMPKZJwCJU3+BL0oHsrSUxmOtWhYaMEXLKeZ2aJ1AFNTVhrH+aTT1Q3kKwK3KbRqwcGC7TpOlz/dpuofpSlhDzIBZXzj0T3rqUGBbqsqjRFsOiypDemhbGyvOcRaZoPGRZNplMfvCDH2i3qLaPY8LshzsIZ1msioDeahCpLLu1OkgoYiRBlU/J85lOW8qNzVd2Pvi4LazGdn0Nmc40TafTqVKJ8jynDKvaTu1YFY6chi9ms9mLFy+ePXv22WefqQXFDsduZRk0xYOVzCPmaL9kpby6rdORJ8ykdhtPpzaky9cvqz/+4z9e3twi5ffmZreBr1bzvEn9ZyqFPtPwv/5v/qujeBAPBabkgem52hDVfimQ7pvptSEVnUO5/mSY3b8fhihPh2YYIPuq7zhD9QdEZK0nbNovkxpWcSeCwaaA1ZvKLUunN8JjGyqMxFJyQzKhmjcZL97l5eVqtXr9+s0333zD4SjvvLij+tqhAPcREL9rOzQC8Nif79K+b+Pz+3a/v7bmrYNR7FRQbFlW/kkhhSXfJlHawFSBAiEYMnGApNKIIDiiVnpD18ySHBQF+NhRl7OoFqvlYrWBsidgeCzVxi3Y3btIzyTobAd5oXYy4fDlU4yfJBweqnGswqMURgnKDYB2jdpBSCyryggVwKooCLNRMhuPZtPJdDR22v11lUXgxPhnDyoUiK3lmErIES7Terur+8bqZDLhnqxpxFrLqNslV+tqbLmUAbTVFoDb5YyKmeEUfiI411uI1iA5D9C3XyRtucv20abCoPzTbDYb4l/xAlTQhqm0TWGyNv+Vp86yrJHa3/N8s1Jvd1jyt4qy1CqYThn5B/Qkz4ekGm5pouhO4YfQ2d6mjmESZqzn3jEmGpNJw/Ka82BjERqs2EnSsO0ZHkpzDIJGG5T1uYj79byqMkRdfzWB1A+43oLrX9e1cv3Pzs4YBNAz2ukxSTLW87JRCG3UobI1HJRvphfPQhiUHC12oCHleX59ff3FF1+8eflqcXW9Xq5Wq5VaeuxJFkh2Nyad5wynO7j+vdsPld0cOr7Nw7DDd0gG9FD5zqHtGvE4Srs/bWlwH+no7nFU7or/1C+7hkBmf+J5oNsvdYTakHslMtxnkmR2ixTuaMJZWtlRqjlq+TZklCF5C8XEgggFxYKoSqK4kvGqND4p4lH94he/EE8Akv2ZQCazIXIDHttje2yP7bF9y9aNA3ST9/SvkGao4AmnEiec4kgRQwoA1gihx6Ch8Bcri9cBSpuXO3Bi6kQIoDVxM0GLS0ttjQ2L/rsyoDQA4iSDhg4aQLwW6lotlpKkm40yeCuRvCBqOxlc7pK1W4ODmqTZKE3SLL48O4+jIIWcP/R8JD4g3tjdDqQgIUfbfFah2jrM7aL6rMwlhS8tUYRXDs1TFfV3rl78N506DrplgYZhOJ/PW8AqtQS4z3q1sAmyxtHm4wHKUMaSVdwFMFo4jN5uhbna2zyyXlWSJOv1Os/zJEkgOT8acY2micIMt9UKSh7z+fz09PTnP/85PfqEjJo5gPrHzeV1DRKb6cHeJlA+OTlhcIB6PrvdjoBYob9yn7Qi793ECnsWay3ob8fjsWcCEZeP0tSL2PA6yXraSiBCkxt54zygspLUwarn1bK+UoACXP/n0i4uLkaj0R0SmsCfjcPaUlqEycLt7iHqY2XOofa80M1kXK3XVYHLWK/XV1dXL79Csu/V6zcoqbaDqanlxki4goNbXABkH0Hga4c3e9AAGALQhwq5DBkMQ6HDLpfx3XxIQx79Qw2Jgyk9b9vTa7GEmbqTglr53uV197ybsoUgbl+dVwkr9VwbWC6SeIUwb4W0JBSYxL8hshBWdRm4/0JUCa82RSkFycH22263ooMLM+Dm5kZel9ZGp9KzFAE8oH14HsRDYzyPFs9je2yP7UFAv3UGdUlBzdwOsrrQFzH/FqLBWcOfDfgd1ZWjFLO5erVgGAMhoaA7WMdxJPr0jM/LDowAVFXZ6/7vpQBRZVpz0hgRIKCbTlA5KgV0Fj2cssmwAnMHmBXlqzLI2kzAYkhn44nT+5e6TOKyEs8uZH1a9XoFzUrlpaRP40utR41+vzqnUQg2COLMUWKUkc+23jpc0TL7CceRkyxFH6ugEiddKUmbZd6mikm3NJkA5hE150ePQFVJOtZ77gr6tTAwveBFsbNSmMrf2W7XaRqPx0xpLXe7jYgCZXEMz3Ge56PR6PT0tCxLaER+8cX5+Tn5QiqS43mpTYRfnn6Dp73H3eBzB5S5GzNflYrTOArbAl7ddGQ9rBfm6hoA1gzrAgaVN7VDghGJsrkSRf+kBnksfx5nNpvZMsxk1CRJ8qPPf3h6enp5eTmbzexl87D20bu0HGhrhd108xrqPWHpLADpCkS9xDhmLoSUqANJT8pAr1arYru7vb199erVN9988+qblzc3N5vN5mx+FsdpliEVW64wi6TA3WicwNoVsl2FRJe6Kuu7DIBDKTSHeuK1Eqq38xCrfvg45VEiGO+WHNn13A8dpdfwwPOU8dxN8xpUJRKL1osAMDTmcfqdYSDTrpTilUgAmZ4haihCf41+E+FkinxygJGBdF1UTeR/QYX/qqLiv/Myr4oqL3P+dbXZlLUtUc7QHnhrmMpCLg+YnFE7kYllH7cBcNj1PObcPrbH9tiO1TwHGduQH002sXBoBOHLGhz6GvN8nSCSKyScui6djxxkTuhuAiQlKIeECi6Yx8EjCoXqCf6+8Yg3y3XXBvAcnLoDFhSxMIT5A71OMH3CejQdo7Qu8BhYDVEUjumHDkS/fzKbCPAXeCjH2UGOWc5RAUjVUoY4qCeTkVXWhpsLtczAunC5B9D+aa+HOW82DYANKj3OXkCznBBbsgosaoGkTrdeMhNcqqgYAFmC5FTL2nLyQQ0+2cvigO0ijNqOx90r12UreanpYpF0FEXj8Zh+d2JW0vE3m914PI7jeLFYfPXVV3VdX1xc/PSnP20q9gD1WvoxUqpNM0A/7r2vGJJSgaXFE3YvFi4SYtWHoihS5oJqFlllTM/q6FLLLGrqhXC15CrQXlLZ06qqWOE4bool8yBkatmbUihF9VKK/IxGo/Pz82fPnp2enr749Dlts7IsKRzC7PPeCI/k2rfdqODeg5EmkQQxOpteC4WfBSg+i+ubm5ubb7755uXLl7fXN9ARiqKZCCuhkHGTm8EU9ioMxo1qk1T4KIH+4ihO4B4OjuIpH2oH6fRjuEihs/tfzxDQH/KIH0sFZUgdaKj1/7UOiqKkvLC3W9qXF0LnSTfTmhZt/3mlEruIgTrfAL+nacbq8cD7YvRKIe1gu9vBBVIGeZXXRZ1XOf39UIUISm7hfxCNC1Awci8eCsHPBMlmo0Skq7gdGlYSQB7E/8fKLXlsj+2xPbbvars7Yu/RM9w3+MiERAO1fFTNDaO6DGLoy1eCRaoamQAo7huFVYwVAUAWdE2QgwKk/xKzidNeYDOMAdYDa0VU9qi8ejFNKi03jkA9lYWeGZlA61UU1Pl6Q889GD5pOh5ns8l0nCVhWSdpNE7HgiwraNqIT32UArdJZSuSVVCViQrU6kGTSqlu7RFKE1xRSKNAToHDlOUuR9Za4x/G+iRkJ6q1kLAPIAj7B5Sgy5MTxaNYMksUTCbcbzqI6RMhAi11nWaZzxGgfEvHcGr+iv1sroJWrdpDuhrKqArPg048qpwfotUwDDebzWq1Go8nt7e3y+UyTdPnz5/PZjPVylRq+369gj2frH7XvFXPNmCogb/Ugl8Egcqn94IGXe1RUpi6B7eGE5viCVXD9Kg7J/O5NUiUqEzcHzd3yB/yaWqOQdgUJK6q6ssvv0zTdDabXZyfX15ePn/+/NmzZ/OTk9vlza4Ejy6KozRGvnVV1+sdeFC97ymSieGPFXEW+EmlnIAzX0Wms7lrGqpplLlwRIGLv729vXr1+vb29quvvrq5uXn98tVisaAI0oTRmyjG+6MF5oSNBs5PnnPg4exIlsFbXlV1clyP/qEFubpUliHxk+H6AIcZAMeqRTWk5/NucLUbBOj6ctROLDssT1snYT/8Got+FCYKxFRNzGy73WFDWRYwCN0nYkMyt9gomLa99N8mOlYUUi5GnEyY1qREoiB+on9sUzEvyyn8aNtjBOCxPbbH9t6a5/v3IuR7maAiMoGqQiDJULUSSz9xf4MmGZWNCpLoucCAI1CjuFXjjQQOFne5Q/84ERJzBUkHXRvAY2XsfxGwDlF/LBFMRE2TaJyh8vpkBAfqKBWVkiiMSmT9okBZjgMmUZRkDl8KgEtFm6dFxnm+Vaqru4BG8Rpxb6kcXEFbvULCZR2MRyOd0BuyviAK3rip2AUalGHvUNSlldQUpOWATVO/qWuSafMoUtrJ4DUZn7oFvm6fJo2Yx/Q86ORKtVWK5aTQgmxo69988+rp06e//du/nSTJUhozblkLzPrgNQLQO/Y6RCaHrFjfYLPZKNQmirCVjK2yviZb2yRgetk9cKgZDtbxr0NLKd+2lhlV++jXZ0oAmfHMAaibSmHWMuF1qqmgbKUzaZ988smLFy9OT095EKoVQcezkY7lGW2UY+9VbYJm7iEaAyBhLkpjAGh/JomrZLxarW5ubt68eUMD4JtvvuEDZZo15H0kRjSdzLVANYYTgVyNuEeYSPqHGDYBqvsVeVngN+8lB2AQ6Peq2Rx+3qHIw6H3ex/P9J7pckg/SIE/cYLsH4cWW8/Bmdm7f6k25Kr5K80fq+0uL6Uwbw7OVyl+fKgZbFdrKhtA1q0oxesvKgdB3Cjd7wH9TsRDmEWcZuHNkbWl3vsrFh3GM9XbIUJwwUO2X0fEYKBWWk87MOHhsT22x/bY3i0HwEf/on4PKrEI5ktKrXPN07uvTXJ+qziMUVYKKkNSU0vAMt2QdVOxy7H/GxqQFAXbq+HbJWl420u4S5mhm6BSbxqlUBcNJqPxKE1GaZJJdVOhq8K/HQVFjBA51knitmwMT2fD6ZfQNdcpInjULhNnP0kW7QUgt01sGIQtUHdAitNg3dz3PPI4kxnUYIJ9tZ8gCJa36xaikawfxUkMDUr57qqkNT76oDY5EoyGMCiCCIGhmjjvWFijPnI3LNDhuGvHWk+2AncyAij/stlsFotFWZZMCf3Rjz5frVavXr1iAi5xcFmWVAXVwr2auKyDZOj5KgGpkQHFqVer1Q7Z2C5fmZm1qn1kKUNqGLCpYaA37lGjLdXHXgM5MLbIMW/h9uZGXwfeL4lkJAIVDb7XA0I4qFEEoj0wn8/TNP3JT34ym83Ozs7m83mSJM6oKIqzi9NtgQRIGhLd6/dCcwwROEvGlUk15jGHBw0h2ef29nq73S4Wi+vr6+vXb25ubhaLBQoO5EUaJ9NTvAtaXQ6Rn2yCOEYN1rYEqapdvtuVIIAF4uGFEgvjYxDTFbPjKAB6yOM+5Lnv+vsd66vxsNonTZNx4Ept6bS3XyebnxL7rp8aXixR0kvbAccoS1RD7xpCvR0Frwx0lPfNXwe79zz3znlf1usdIqaQiC1zKRWH/O9G86d7PeF2t21VgEBIRO24Gro/CRKDK4ixibhQIWlXUJXuWGvczloV0f4EIYpDOLJkJZjPoLPluNt7Pw9vrFovK+Z9Ph/bR9lowX7Lz6Mc/0O734c+/gf6GT7Yf/c4u52fHacfc/KgPAbYLoLhiHhlnWq8M80OxDzuyPQgiWe/TmJQQ51VIIoNzVkAmul+EgFNhJflCOAXWaDPQEKzQkk1U6JlyW6sUYgsytJoPMomkxGSekcAZFAlclo9VSCgOQanIkxrkP6dZiAiB1jXdrtdloEaUYgye1k4IFWFQZyyaIBvfmhlMjFpYgHg+NNyvUpCV6M3ztKG1u+46SQ4UTgIXVbVUSoqMVB0Rx8AdEo91z0PXVNqyikOxajcVEeQOtVETEiayjWApCGf0m91kuLJutfGuN5UFVB91QRIc8k9VZF+TWwNw/D29naz2VDSdDabjcfjKIpevXqlGjhs1OlXVUaLhil+7wVwVArTon+FHC9fvuGfSIUXUhDwtBbiVTND/eVe6oJyctQF2Y0pdc0Ale9kn2+k5Xk+lnOx2Bn/ihJmkgkQNi0x2HW5XLKkVx0Epycnz54/f/Hixfn5+dnZGe96sVyyktcozabj0fXilucdj8faFU7dSDGJ4Q2A00/0T0dpY6RKAdaGKYeogOvPX/3qV9vtlr7/mzdXLKtMuXzYM2LMUFllLKqfm+VmV2Ksop8zqdw8yoIC6R+55DAUGwxsGA2jbJqm4X/5d/7z3jl7CHBb7VXvS28bpu4M5BhoqeL91n+WQyVlhI8iFQZ9OBhB+aYXJqLyOHTIqEYmnw4+CgdSf8vPothxYhWWF6dXKV8Sp4TdEllFUi0m8NpVDvZyQTxlN30DqyAqw7iCJE/7yvFVYZKNpes4Ph/om/Cg1IEogsqnCMI5HbS97Xw0kP+MyqCMkC7m/oPiQvNd/yomyV0Rkl6ilBw/8D5Fa6hn+9AnFoJvvf87RLoYx+jCffZqjxnwwJGKQ82YQ3MtDo3YHBpJO3T/h26NGuKH0x7YDBjq54HTDhUKvOMEHwCAf/dPDof7zzOHfpJaf3+jsnG3t1oo/O4SrIBuW58LbICw6HU8pemIa1CSRKp/Upb1aDwXrozzT1OTHutd4PjEkIiQLQS0eY5i8FIiDK5FKSVZ4vhx0ij3g6QeRWEmmvIXJ6dJBL/vKEWeopDl3QiMA5I39spCZZBBdBgUpIlKREml8KobkEbgha563W5HISsxtaHtpgfVRd0S3gVOEfvqCqu/zbIMcoohtD69hds7r0ROpOiBwwLtpzjfaj0OZExZ6yAKttt1kuJ6VGmHQFkLhynPh0/NCtdoCVteMF3+9PFTpq8oCtWDtxJJGlPqVd3pnY1bTCJgWgH3dOwqASteZ+N57a+4Dw2DboTB0qXscbRugPW18/i73U4vQwfG3MqDKv+qxn0VBZLOhWfvCiTvyuIXX/7qVGQ9L58+uTg7n53M5/M5wD1fhOb2FT/IT5uZzkA4QPw4Bi2nKQDnWr51eqPyS/SDPKxMKllAmwvFwsChevXq1cuXL1erzXabLxYLmnPsMRYB0JGQRFKjQ2j9kGVneQ15xHw6znyNWxGkFh/+nf/qv3gHqkwX2B1K0RkEBA9uACDp9v6tLHviTTpYPeEdUelBxJXK+kZfv8rzUk0CYx4EZY4BHQd7/1VhVe4wEMIqLOoiKIOiLvA9CFa7sg7a3BRbk8ITxmoG+57FPPTFsI98D4Qe2dvo3syBHIwhihTsjrftf592rFwOhuHu32A1HeP6PzQD4Fjt0QA4dvtOGAAfbZPKVQ91cEkHPPB6+GmgvziYsG4alUnM4bIQFAGkBfsE6PbJJ40XGbV/ReFfjArBuOQuw8EhiFGFbkhoHqWJk+MMwGmGdxu8HbiU4iQcAejHgP6ZaMxLvNhZCw3W5PXQW2wXVge4xy1FxC5tXs6D3ohlIugBNXlUTYUW7htZyS6gtwDUfbrqBz35u952mkk1Cqj1NI8x0RwEgfo42SsTxmvWAq7qqudfkyRRCT4tdssKuJaIovdOOaDWZGquXw9rkxPU02/tBO0TAm7qaaoRlW8Rc+jKbvrZDg0kUC6+59EvikJjBfTc2xxlHTx6PfDrt8adg78JIHUrx0m2PXJh6rrY5ePxeJyi/NlisVivVrjTKPrkxz86OT29fPrk/PycCvoc9pJAI57EJs7DySGRpHN78WpDtoNWK3/V5ShBAb529Dbwo8xhm9VVdXV19fqbl7e3t/DW59Uvf/lFVQVWfpSEHz4yq5rKy6BBqI+b8RA7MLznmBy6AA8BwUOTgIeaRCz7r2h42xFm6GGP79774DG6zG5hmxSrQsNOe0do46LHz2iA+QwkMgAzoazLoizK3Mlu5tscEUdotbr/KCxcBIgANPO7g/teUrV9SxXfdqe2t263/7SU015y21Dz69UHx2nHyiU4/DDvB84cy0M/1D40IP7YvjvtIx9BTWT0w+iccOgNtdFjsnpEj3xwHQe3BtYNlPSrOA6TFPohVQF4EyXUvHEnE/gAOowkEAqDSJZFrHqFo2qg6jxIOwmrC2dpPM7ScTbKsiSDaSFiL2Hg/L091+OApk1+xXpaIXfTW6S6NoxuJHTullklTlLtTgWm3M+ewjuRHsGtsGr/NIhKkZb9iRpOlVCnPHPLMzn08TX+fofeuIXfCUYt1YeI//r6WnfjDrw7BdaqxenYTeaarbO/K+vJL2owqAFGd/JyuVRjTLE4LQEr52/rMNgb109PX0RPrRED6z6vqopJw3o6bd0kZl70Zru1442wCQbneFTW1c1ywXJpozQ9Pz+fn53++Kc/GY3H0/lsNIJ+KzrQJYb0N/wJxsGelShJLOir3BQTYLciMiZ5l26jvKT4SxIsF4vbq+vXr18vbm4Xi4XQ/Ve3i1UUSVpMQ/Tip2cwe1QRz6bqhsV0PA/WATiU2nGovv63Sbq1m4NDGmOUvT8ajni099UFyj7XMAqLHYo5SNBWS3rIUwb3DxZBVQdlgfolVeOTQBZ5Xm2Lbbkrt8W2yiv6+/mfxgHkX3CrwPfS6Xmv8ET7xfyz+znUsd4+auF46P8+ANSXrA6O0x4NgOP2w1D72I9/cPueRQD6Z8PH9gE3yXQCgUQmYoottN+FpCrfA+wjfPOeIWQJ31Y4BSlaIegoAhCcUnlc1zFydZlZsJP5H7KhqPwKChDK8aao0Ys6vuM0i+NwMkZhrxFYP0KgrZlSWKeSD+q5kCwFpb1N2VJIUS2LDhVuejwW/Uk3MVor9VqHNPdX0RE2q03ZEw1okne9ZFZy2XvWRO4vdpSd6OiXtVC7Adx1SBHtVoXT3aC6/LSMLoE46fUjaaTTcM/dbqf9wy0E0AocFdb3ejP1kihpT0OCfmgaHqz4S1Edy+rJ5J/WtOB2LxyhX2w/WAMJ6joNo0mfNQ0Yhf5WZUipTTYXQoRsJZnd8l4araH1er3ZQLT08umTzz777MWLFycnJ8lYbkeyqJ2NJ4+CkQTXVe3jRRo6DGYzbnlwW3gOsZU4TpnzkIMijgz0BhpRRna1Wt1eXb969erm5ma73iyXy9evX19f306mGLdam1kbDTzvdbahFQ+genU5tLeRvf4OgKNbcvx4rT938s6F6iA2CIKY929FUd4FVlwvN0i7RMIPArvk+kN21cWOZDxhtpFCJ+7TZRfBiGxY9u4TCbhNohg1A1gyJcgRYbjLVd/bPOWsXodK7/697EZz94NH6Mq8ujn6SBSgQ9uhEapD939oCtCjJ/6xPbbHJqwSZiXAw4SyXgSmQSl2AGdsUa8X/+LQ4qj5l0yRZOUg/hNpBMSsgpCpWQ9ma11gCRPIJVI6cZ3Ep/MpKsgm6WiUwtufxFmM3ABQgGJQkZBHIJxXIlmPitACETm7B+wkh629YEteJ2XFQ/8qE6lefwXQ4O6bOHar/CikJm1yTfJvpE9DRVFE+5u1Ukq0NlUDzHlF+98exV2zSwPYE4GxPdAR8BFOPOozt9L4SomhlKcKzvCAl5eXlgeitoHWt7KWDJ+vxffeqOgGKBT666n5XGazmf6Jj49DqCra5FrLU7CkJlsEVsG9zUImINZ0ZztEFzc3mgDJIyRwrsZjMVRwcNmu/u9JlokKLhrSxRsuzSZHHvnTF8+fN2m+MHWkvoGUy5ArlDeB14asb+2l/aXYGqUakVB7FZUqJMeDSefylqKkBWlpm812s1xtNpsvv/yyLIr1en11dXX16vVyuQzDcDabZaNxkmTWANDkaR1R9oFS7dQbaRqh8kbdXQbAUHuXpMmDjj/k6h8EQIfmHgSHUpXsW2FjWJaE41roZlUR20SNLBbQqoNyu8mZKgodA9mC7w2lzKUaw2MALYQojKQiObaBV8kqLiIg5fWG9XN0HfbeXXQDF3oQ85h8RqP9SZcFdHeuSPdi3lcEYPA6B65oeP+7Unsfrg2Nz2M5rL+rEYaDm9M2+XDa+4o4vZfTPra7mqwR8kWeEL33Ul5UCnaBIIowcS5+I/FIY+a944B0JYILLc7jqizThPNMGOGQmO3wX1AF5ZZimFESZwm0+ulyHmWTII6gLi6VkzA3SgGuFBVkZc0qRZkTax30bgLqne9XeCUYcgV0G9aEiAaxhliLWqwflLdgJXE0qdSSYQh0VFbbwlAk+7KAsPGI2diIbmmTJaQyrsJoSwfqLqxIFd03APQLHece6ykIqvHEAVkF3/zcbDZGajPmI+M9agawwmWmh+oVWr54F+XrDl0DKQiCzWajovhKNrYVkfVQVGeSQsAtNuhGdSw1RftBrREF0IS5THTmnxh8UK6/V0GMgQLLt5EOZYUvlwir6dFlUH/22WdPnz795NNPz8/P4zgua8jJMscd8pgyzMST66IfzZPdf31YV8L0pF4Dj9AS9EX6p6wqlNuTEhKUKrq9vX3z5s1SCD/L5fLm5gaWT47owWg0yibjOBrFUhrPZcw3A8aS3LxR7W3RkIi1BJR0N0gBGpyDDnE8f4ALvHRbzyVJaKinJSOoO7mx2/yfTbe1BbOQjLLJxbPv9AqotMCE4EaBgem/IPrJfIii66T6oLJuVYYVxIwlEoARBkaR05iRRKx9Faa9x9G8e+5P7g/eDem9t39QrufdFkVvDkBt0+D3ztNOLnptNPAGnkz9MRgAfLt6b/lQxHQge81Q0faPcpzzHus1HaTwDV5n+AFRU5xp973Sbx262WP1/4c1/x/aPjw7yOk+u4bXjYWrGHEl5aGl1iQD8waTLJU6wmVFPJ6oElRLbeAwrMDtAac/iSM4R8dZOhqnY2ipi556lhaoz8VTIP1Xqg3gCtIElFcoHcF3BfgDPnwtJYoUMDXuXlJWLGpMRLQROQxVzlq8HtsHi6v2SIM0wyAYTSZ2Z5fA4KoF7C1nUQJbJ+yj+njM3j12SuPp935lOfTmU8hZssJ6x7HQ2RhCTvxHxemJ7EmGIbKnL1yrfa3Xa+1DtZEocWOdlcwKSJLEM4TsF7V8bFYx1ZYsqlaDyqnZyI1oTgJEJ/ePqQaDNbG0kcpC37lNaNQcAP6JIQgcX7pKwlQqSIrabSpb3zAXeDthvoVkPs2DOE1OT0+nJ/PRaPRbv/Vbk+mU1R7Eax6iMIXUl5BHJvXyxB1NbMe8264egFYgbk3QKEZpiOb5ughSk4xRiC23Xrl2e3t7fX29Wa7yPH/9GhW+kiSZz3GFNCBh4TW1C6xt5qF8bVqLwNoklj6ndR5c/OTA2WfQADg02fd47SDtfrlyo3Ovn5i+9rc0xcVlnirqvNwVuzIvd+KbL3cA+gDpZV0QsCNYSvIPzkTtfAwFeFDAIQuas0jZcvcZLNYbKc3SXIF81mEdI2cgZsiRwcGwDpPI1WfwmF6eg9/70/0BrsdTvCPX+Z4cMC9zIHh/bXB8Dhh+A/tT3Ok9tIdO0n1MAka7U7n1sT22D7xxdoL0m5Dk8Rmloszjr3dlUaVZPB6NsnEKqo6sViFWLGB20e+HQE4mqCiJw/Pz01EapylU78WPgxJDxWYX1Kmo3MHJBTwHiR/gjN1uG8dIHE4QGHBMaujrN2LnVrSeHl+Px0/JuEQ4613uvvLXiWlUE1OBF8GQymLOZjML2R1Iign+9pZRpSR5FGpScbtFsqyf2/f0k6PVAC/L6lHA6tkAlv5kSf+gpzc0G9pvq9WqLEvK26unWRF8URQE6LbruprsFkgoEKdyP/U0lWplk3qDIDg9PVVcTl358XgMSaIchpzFnXpVHl/FPnGGF2xehxpCe3ywDoqlaVSW5WQy0TvSUBLqNlSOFJRkSPN9/uknn3766dn5udiQ5RqjFINnTMXMohhJ7gGfr7LIGGbpfeN0pKnM1N5Y1SEnuDAMwtVyyapet7e3q9UKeQjL1Xa7ffXqVRiGZ2dnzHKGqZMkk/E0iHB5NACsYcbd9PHtxc32qRm8AI1I+JGr/8P/8W89KFXgbgDRdWNHTVqSjRLeUU+gibBg3uKn6vVTyR8eEPkeBhLTkRwAOxUqWIdqsQD9Mq8KScUt62qzWnP/Kih7TYW97Rjo9NyHZVBxD/cXofzodvdXuTSru6/q+/pptys5oSfZd6ifBwDusKf2sJyQIRXNwXFS3++y33acQ/cf2j7o/xxMOu/vn2PJ4B56v8ei3h16/GNRBI/VjmWoDMm8fuyG07Hm7UMpZ4eOw6Nd55HOe+j+h45/le3zlkJvu1vRIS7CGrnuIuwJnMNZ1hvJ5U1QSAuFveCcKqo8qJBKliWjJItP52dhHKRxBuVPWfvAHqqLLIyzBP7XKVQSxyMR60/E/S+1iipAf1EO4rUl6Qxx6ab6mEocEpiK2HkrVRdEYRmleeVTSrRYrKJzBVKTyUira9kOIdBXVN1K+BseUUsF2c9JtX9arVaIrhrfOQ+1Xq+tqow+1vV6jQJe+w0FxYS03SNkZEpfWVbPkydP9sjD6iAP4cFVaEs9HLBBssxy363ZYMeYtvl8rlaHUmuqquJz8bBgEAQ0JxRP63ClR5n9YNMeSCmx3ev88ZIDYDU6eT1DKkMepUeNFvr7mXWgKkYUkgJiEojMfcbj8Ww2457cmQbSZrMBJamKzs/PP/3002efgOiPwIJkfaAuRCjjirepvVjifu2dKtcDZzfcM55os1kp7kf2C9PxhaYlGv/O7AF5abXebrdfffFlLmWGKT9Krz/VjVxlPpa7FoodemM0tuUdvLxzj/LEyIzdRy/1/Pxc7Qf73h1sABwKON4KdDyjmcoDFkBbGB0DxNvPoNzlMgFBO99C51Ey0sJVJNgIjK538kjsq8JOVLUBb3scpXcDbvsFOQBN3QBvTu+NnDiZsIED9m6PBmyAj8UAQLm0+1svhy+oBwOCA48zZAM8tKHy0Mc5VjvWeY9lUB3auAbff/9HA+Du9mgA3L2/J9+sO9sIpGWV1KGrOi/ag/I/aXGSyNonhVaaNQhqhAV2HmVg+7iyQU1tVMsNcITyOH5yep7E1HQX5CqgDmUA4BCtIfAv9XqZK4tE5Hgk1KFQ0T+vs8GXsp4WZSn6d3UULzZbLQVjmfp5nntClgQom93aw/HsGXIkPA40kZ9q0lvxnN1uZyklOr1M57NuRlwQBKSgcMseHsic+opHvbDqOpatNJlOFVVTzZP0fZXv9JIHlqtbknwUMfNQBHZdBr+9NgYuvAJhehA+EUshthkXu93OS65Vio61NGxSb9jXtuuVgnXCKs0b1sJVSptRNSGlEikAa1V0rLUTBUFe0kYiwt5ut0p64SVtt1uWy2VX/+gHvzGZTM7OzuYnJ4xRBJGkzbATAnm+5pVFAvsdyZNN12mLmjoAeInEQOC/ix2el5hfAOUo5fvq9c3NTbHbLaRRg2i73VLyaDQa1SbgEDWpw5uNo2BZ29hWSrZA2tN34XutdQM0mqQGMAZMcKR2qGHgFcKwP4B/AWyrugrgX5ckWLkjGFdCqRKKsIgdBGGSwvkAvpar2SK/DdbbPYpOyfwoCRWUTSVd+wIMRBgaDTVlvGjYRf7sLku/uAGrf5IvroSjO6LSiu7JrvG2D3HxB9vBjuDDfiA5VIcBiKEE5fcCIA49TpPC8e093Hcc/5CjDIcwgvfSjnXeQ6k4xzlvFcGiPQqb8T31w6FtYAANvS2mxM0924F1YA6cr46XYjbkEBk68SFHuWtadWRxams2Uzqo8x7U44xUlaT/VoABUv4LiCMMil0RRKI+3fDOE9HsH4+TDBI9cCETFlsyALFalmXOzZxEWZRIaqPknLFGQAUWhQDuihDfCZo4Hr/zjhOk6UyLwutKZy/LoixlJxwH2QCNw1ux+OnpabfQlSfpYz3rXmppb1KpQklehgJTK4pCg6FbmExRl1dbsxTGS1e2UqlHKlLEv67WizRNZ/MJQVie58vVbZ7npCQZNCm9XQeTyUQjBnoLRP+9QNxWRiOSJuAjnrEUJr1gr3KwzWDkjdud0xQOUGsL8Qg2adh2lwYcrH6rpvPaIgb0atPUUTPYGgwa4WlNnbJKwjCXB0pDkZdHA4m3w2SSi4uLTz755OnTp0+fPGe3hJI2IPXqHAKpmyu3zP4wjWmC6AhpuPytyYT61g3IjieIzECqhcWfwADBn9IIQYzV7WK73qzX68VisRTOz3aTL5dLlvUtagRGppPpdDpFkCRpC59VYQB1SFEt8tLl3TywjzesJaAP0VLOELkyxdR053dPAvansXuowXjbu5a0TIdxUy5bFHTxHcRcIfFIcBNvBWAk3henyYLXR0pplcrIV44+2fmOoy/STtbj4gUidF7TT60E7Dv7+wqiiWXiFgHPqXN3/3jQ3/NG2O3NUnE/9P/wBsCh+4cH5gYcOq4OPc6xEMShOTBH89wPBjY+bi77exIPiENUTv2Q2gP3w9BwOzRp/tDjD7VjefoPfY+ONd7e2QHRndIt9LdYSlAAlj+JpsoAqVG0Vyg98B2mcRKnwP1ZEp/PZ2IXuAMqj9wRDIRsQKesHDbI15s6lOwBKVQp6zDcdVkmvkIx/2R1RkYvlesoVlHUVeTIR4xCVFZEpYGV4XK9IiDTZFb1FvfA+iicZKBGeIsyPf2eO5zQk1RpkkOs/TAejy16dr+VHADL/9ELWK8RefDQEu6Ov2s8tYrUmXTrceXDMDw5OeH1EIFpxoIaIXp8fhILEkDrxTN0oGPAQnYNdyhFh+58y4+yiQGKXjz9El3CPBaTB0DV167PyAvjZ01lYp5L0zNIYfII/WmaTiYTzzOtFppnseCvVRlmCshbXhMd/7TxTk5OqOx5cXEBayrJCPnkQUqPyRnumB3C5vj2vqzeI1kDFo67niE5Su4lqgOo+lxd39zcrJdL0v13u93N9YKXHSbxOMb4h8kqKJ2Ft2Eei1nH1AVaOLa3hxgf1g7kO65BGPKjvF+xt48WAbijN3u322z0ttXIl4U4lxTQRkZATa48JiTEAioX4pTyWJBzKrY72RIUdaGflknffBcDIoT/n33AJHEn+itlogndnaPfSeogymmGeHtbhvqiOzgNZk58jAe06jdtBIA2QhMGbXSJmgjD/qPtbK+QnbV3qMb26BnS0b7Czz0WqiFGzx2UoVBZTN4Peq9HcwCsu+uOdnfo/IDrHDrOQeo6krVx0PEf2gBA4ktfO1ZS/qGGxKF1FQ49zlA7FuVmX2Pl3dvRKEBHwv+HUvgGZWcPPO+hduix6nIcK3flWHG0QcPgPtfQ5PaBapKIyxOVY0AHFTcZoPbFxXmYxGkUh0mEkkNJIuI+UVju4iYBlbif0QClrDhuACsuFeUkzZABLOAY2btOsweuaLkUB/dLibbTHQcdIjjg4PvUXDxkIyuQEoADH3kST5MU9AaxQ5SP5LjgAk01LsHtZZmz+K52BWfmVhRFzilYDL9dbYCz1ZyIxcixZGgBznIW+d/l5SUZIMR2O8QqhFzB5QlJF+1TigXQG/yAS6FCvPOIS3CE/+NuNjvTctyvrq6Ui29DH7q/p47PZGXL9nE67k11WKU8cR+NdVguvh7cUp2t6WVNDu/N8uJRnpa/pWBZtVBlCi2XS0tN0aQC9dwToWp4ikajeuKVWoFbgxYtiEmU0dxsNnVdz+fz+Wz27Nkz0P2fPZtMJrC78jxMoUpEdA5TgQ9O3KhBZzbDSC5LmLXwPOP1Ekl3CruL0SLTpXtw4qAuJffd5QaI6bXdbgH031zl2912vd6sVuvl6uYabblcllUQpSLlxNTeFA+uDOrxZEwyCaXe4doWEleUJLCl94MS1lOgn+wiGrpOxrSJgGk4yPMsg5d1LE/JO3hi7JBy5lQQ5YD5UVGSl5PrtJJvd5gIUEpLqpFwew2OoVXRaRKAJT5AzclItHQYN9yL/OwNXOsbsGYWw5qemXvHnXI26S2kNdQJ93f/8wf617fGAWRIHbRkhyKEct8hIcen8u9993cq0+bK3y9b+kBAEw/ZAMeiGB3aG0OujKMB4iNFWt6TR//gJn7PDyl48sD9NuQgOFYEYOj4Q23ovIMGyYH7H3reQ9+iQx0TGhH1LoMcbi+ALMqcQqigOGAao0ZQHIVxNB6lGLvg6Mj8HaHaUBqjqNQ4S6bjWTZOmfIbh4mMcZBjqxz/B2J/HIyTBCnDIQpRWXcvQC3XRHmUsVyJJAZDPGOz2VjfJPMT8InUYkA5lkBiXCJK4vl8rmsryS1MAwWwbpqNwxeVT2Xhl/F4rFXD1IetLBQbWFDnt0Jqok+STwrKszfucIXISqJQuX2HsDuo11FBjMS+feK73ZZ2F3fI83y1WhVFMZ1OLdnGqgBZNK+XxH7WMI5SfWyeg3rc7Y17FoiqbXp6/F6CgV7/eDx+q4/cLuKbzVrlSnkQVQi1Jo0Kv65WKzWNrMVCzOoR3OmtY0ky50cPw4uLi9ls9oMf/ODs7Ozy8pIdy7Tj2SjblFWQxnD7C/sYo7gZY0Ffk9pwew9Rark2+qTNe+GqXqDStnP4AmdLJa/VYplvtoub2/V6vby9XSwWmxXo/vkW5LHpdCp+f5jBeIIj1GsDqhWbBIKmjUePNwy7iBaICWdpxKxLWpnNZpbcpYPTMlbUCIQBEBypvQPlwOMtyT+idV7BBIMeD1V5wK+ip1+18LmF30dJJr6QVtsnjpAQXEmlXXnq7adUSNwLquog607cHjz1vnSpO81jcEIiltbJ3+1/qe0S2Rxnb53Qf+oXejruif7dQQ41AA4ExTSQDvC4u3wOe4S29+5/nKF2cATgUAAdHgtwD8ZaDjoKxnbvJR3NI34kA+Ch9eCPcb9SZfWwHIDh536U/peF4SGbwLv73y9m38OOD476EYJRD50bMDj/iErb/fcnXL5nrlQkNJ5eA4CUcc9jCkQtvOEsThIIeCZxlmZxFCZxsdvUEfjKAr1R4DZFCm84H2dpEozTMf5WhXmVByVcghonj6MAOp9ZPEpGcRIWG5T7lVNjSWcaLy4oTkIzrMF5Fm3/opEkF3MB1gG4SJKbAAVQGBwwAMQgAbxbr9eedqcl31uihXNbtuTnlohiPevsNK/ArRU7V5aI0p8s5r6+um7pxw0SZcRDqUqaVhuG4c3trUep14vvPsRQIgzk/9DOIemFxA8F7rbwlvK2te4v+8HKcaoAv8JlPZ32D8VevKReD/nY/VuQbTrZJql7bB8LnyyO0p63hZKqqlJDQu0xWm42DOJp6tvZ1eFvKNyCnbXdwqw6OTl5+vQp2T6Xl5caUmBmLUJds8nqZslceUr7S8hIjCgzj0XNVC0RLWo5ypgXnMz9XAp102fNWMU8I08KJ92s18vlkgbAZgXe//WbN8vbRV2KNTKZzON5kGVJhmfn6FvC8KlEJkjqR5Go7h5HHITFdmdPqu+IJxKgWT1qFbN7La3OGn5t6sh//l/8jeCQBo5+XxuS6UR8rq8xR8Sa3TJUwfaBAdAZZHwt9Yb1ciCuaQaiZ5H3XVDRFFLcu7BhH38L9IeoV3sjtXGfD/1kz+qoXXCqe5ze/cEoit2C6h1/CIjQYSOszb1PqS3c3S4pLAIpGZDST56gsx3rTe8CPwi4D1QCvctSP8jTdudxXEjdfNK87GyvDqo6cccnamT2Vak4yJBgF/QaAEPv40O3j1oFCK8AxMeOcN7jxbUqyXKKvuUnHSf+dhfxOOj6q15d+f5PVxGlZ/4Z+hyYl5yh+y33d03zmJuJy9tf9xN9acaV3X96lEFxC6Ho2I6kA8dzMOkYI6ecV9U682rIaDbu8JrAFTI+cXw+m5HMIKu45llCRhDQMKWej1MSTJMoLHMo9FfhrtxJVXqRk46DJMR/aZTK/0+EUgsZ0FE6Fj++YDgT04Y7reHJ8KxyDZVQiRq6dtw6cR3OFmFE9evDoyyFoqz/kj1DLr621kOZ2STjFgYtFgvXgcZPH8fxarVSfGOR5Xg8Vm2cPM830qAVM52wKyVtGuAa3YfUzAmrvHLtKySVuRQZTQuULTm+dzys1gvNzbWUJ+YY2HdNKTQ0PzSflZQtm9xsx54lEWn2LSMGtjNVUN/WgrWWjEpMemexajx25Hv1iPRGpuORyndaKf0sy3orCk8mExsRUoQ6arjvWgwB8BAZmTjMOJs8ff7ks09+cPHkfD49SUdJHCYUeonTKI2zIKrLvNoWeZWmiESxxwT0AnZLOd5w/010Qz2JoRPD3HRJxCflGqPCMc34OrgWpxF0h1YrpPkivXexXix3u93Lr7+BD16I7qnEnBCNC4MyjEYTyEDRfobFIoqlUOUyFaNdwkkdbJarJGxzyrWXKBvaUt2aJBCVo7W9x93Urt4jFP3tv/03ewcuPRDes0ekA7Z/T80LT85MfwJSXd0TYhta4IVQfpf3xhtzEYSM7mLp7G+vxADoOc7dpzsEgB5KBSkPOq8aiPfcn+3eAHfwc2j/4fs6isddnCt9BkY/wKVyRR+F4+7Q/P2BhXze30Aa/HTUtf3td7RjUfUONZwONageOmJzaPvQjnNok+fVY0I2VCV/uzzeAwojHjpO+EevVsnwp3DmDplPhvYfPk57P7FIFPFzwMCWyaExAOjMwtIoqaxUz6/aPkFcOQjaO4qxf5P/Z+bhWPC9lHaMN2DHNxIxeKtRJyYKKiz/Iqrj5Bob2LZaLwg06TsShgrKbwUBsOZ0MplMxlk2ggQirNOybjy7yvdAOq9ou1uZRfcEZcGFbCKkNWr7ifoAQpvVOjb6KVHathJTK5Qnt0x40XI5BLUocFTuOCGOh/VJ3fGgPPchZVnTQ5UrX5ZOAIewkgiSsJjFp4jIienzPB9NwIFWno8GGQhJtyLBrmA3iCEzyGhJlCRZkqAeLHTiRajIjJymnpDLf7WdwONvNhuPbU+ke3F2prEOFcAhEPdUfdiWy1v2iT5QUpU8yo0aWlk29pJr3ZgUZVX2mGr5a3EJPY5+t4XP9KGo7I/lBalsqKcs5O69aP33+hSiKLq5udE+iaKo0bmPbpeLWJJUyLOnECcqFm93+Dnrc4lTH4z+qjy/uLh8evHZJz84uzgdpWOO5DiNkijtc0NAuEohU1sVmzSzili+rS9WxeHN6rZGHo3EW+Q5pxznJRxDUiQZHK1M6oVJEsJyu90yxxecn5vbm5ub5XJJAyyRksC2TkWcJr2oCT1m0X/TIMdrSD72+dpxpXkUqQh7to9jP1XD+v7dGPhbf+tv9GbZW93ZNn4EKj0AdzcAZGvXaSuDersDdacLyoeJK29H//sGgPMoDO2wj/URL+Ak/lAGQDUQeehtw4D1uAbAh7P/kAEwCCgH+nPIAJDjVA8JQB+2/8MPDMh+3857rOO8r/MeqzDc+zJ4Ds4VaRwuHg2j//oBb4vGfOKvw8Z/JD+nmYDyVa5VnYOzEkts1OSihrZbhlEVJSUgdpNJAu97FNZlBIFBAWFMKhN1yrLMJSNWtDjFT5im8TjNkjSeT2dcrZpMvh2gVVVMJHlX3d5s/K43bv18WiHVaxpRt+gNDj5JkLWoVHXftZ8teI1TBxxts5IyHmHGFvzy1mil2tNJ3xSBapNBVTE9y7LJZJLnOZVVmPPKrigqFMedTCaj0SiKIgVGjBhY9gt84VE4nkJ/3Qp36vVbCOUZOQS1PCCRd5qmXYCbpulODINeHX03wORhaaWnSGquEffrWbTnVWNUxzlhl8eeUoa9MotsDV09mn1eXg6Dx6rowkdPVUYRXVWgK3jvDERA+3K7ZeVaz5YIgipBXYWWXq8kYeR5inxNuUNoaDwen5ycTCaTT374g+l8dnJywhwDWxurO8hh2BvHtKVasOBXQuX+RlBoV5dB4uo90wAQGRVY8lVeAItLAAIU9LJcLBa3t7fbLZI6bm5uwPVv2m63YzJuV2GWiTQ9l9on66nMl27kRylhykdiQ4Ws4abjQWezpBADyOVEMxQpn1ETytwzPdlTTW0/qyraLaTltpcl79lKmb5b6ucd4L77ZWD7gf7599eGudQfdwuPlITX79EPh49zNE92/bBALThOO9Sze2g/vBvV6tuf99D2oQHxQ9uxxvOhyakPrSJ1rOMTsvexQ3v3dold+9EPePpah1ITcnQrq+SFUGGGexDBN0Bmf5Wpa1DdeUTi4zCJJctL/PFFWewqoX1mSTSdTcMkRFJgAlgM4EHEIGgBmX/i7QmDKo2jcTYDWImxAHvVsmw/Wwchfbp3J09bojxdeEiu208u5BFsoas9z7E44Ludb40EawBorVavnC394gp9bIEqBZTW3/z1118TKM9mM815LYri2YvnjBVcXV0RihGUMw3XxgQY+RlNMi24YMGDJcGrs99m6yp256WyoBWvU4+vPezdtb1Nm8yQJMlsNvH0f/hX3r5NouX2PHdyqJZez8JnvFrlLFlc5FF9upkMvDxVf1L2iDUJFOlZA4OUnt1uR4aVlgDzHneDD6sIlG+eK4pjMJFA8N9uq8Ilf49G2enp6dOnT58/f352dpZNxqG41PnQYVDLMWmQ9I7zklmgxH9i6Iu6Dqj1kP2x/JS6yqTAnDOK+HaU4AI5n2OFZNR8i6SO62tIfG520PWnwo9K0zI21QvcSavrNvv+WnacfUD21bP5EnqniJgZylYX+tu0Gba9qJA19WhgWXe+5PiH221OAoOmEogKv0+K0JtIkj0Pbq/1f1DrIPt+Y2DAHtiLs3ybNrjSHHR8t/MBP/m+GQDBQfu7l+0j6KRDZRaPBWQPVVM5lgEw1L6rBsBDt0P7/6H7eagN5WIdej2DBgM99/c2APgL6uRIhRlvBt4zAEAKolNM0Iu7I5MGIMWFWnQFUnxTDRJ7AuvXcViDxZukKF9TAr5lWTYdj6bTaTqiBr/cXd267cO6nEwnLMLl2CBSlzeKopmh0HgIUoGChaqUhLeA3gJTy8t1vPnUCQOqY1g99x4KwfrfWAtdjj5xpz2vQknrzNYDTqdTMj0okqMg9cmTJ0TtmhdLgHt5eUnvPpE3PcTpKPvmm28ofE5zIkmS6XRKW8jWyVIDAGyGfd6LMhqs11z97vT0KxOJQQkCUHXb087hPmOpuGyxMo/PErZ6kWB6CZ1JEjDc/qrprpZe1/Bg5EqLmSrmJgC1JqI6ar2cCg+ker5/HRu2fLJnSHgmhNKxaDeOx+Msy5ibwcszlkmC68FLg5R0dhrNtigI5/P5E2mXl5cnJyez2SzLsl0NTRyMEIpv0hzieO6j2jKixQIOrv+bErllWeY79xwb4yrVXpAXjMqg7lnku3y7WoPts1yB7r9crtfrV2+umORdFAUfFp+XLaC2F0gZcCDuC8m0Sb2W5W9VsKycq777as/bEha9/9RHBtKbXqAzyqSb1re39gTN70PEIUPwEWFXGTZnFid+Gha51PtMIf3ybh6gewYBvD99aIv3h9AeWmf9YI/pENA8UKZQMvP79j90vB06Zo6xP9KMBg4zNHEc2oaOM/i8BjYP1k8YAnCHJpse65V9T8cZut+jedAPql9x13M5jif+0DYc8TvwOpvD3NMGqCUVT1ThpJwWp5cmy0ipQQ3bx4WMud3GARL5RfNPt3ILYcCROuu6JEdejliOR9MxmCmT6QQVuLCAAlGVQbGr4YyEXRHh/yKEDepqMspAYG4AaNogAKt3af15VFlREEDmdCVJq+29N1CA/9QquaoWgh/HkrS9j30duorEHopERl2irREHlVImjIPcQkOLgdJRW3+guQZc55vrKzUMIFrqOOLoKgL63RqYHhhrDC97URSjyfjy6RNmly6XyzfXV6vVCudN4tEUSjvE4jxvS5mIY6j7y11IqpeAaGMdqTlnc4g9n71CLoZixHPv5BfJvWFXgIZkMJxV4ldVIkvliqIIDlZzcK2WQLV7z1pzydn7xG5aOxwPFv/wmBoQ6K0va137PCzFiywVSn9ru0v3ub2+SaM4S5IJElckMlOUm3yVGVWr5pQioYOqDC5wQaNrMpmcnp6en5/P5/OnT5+en59Pp1P23irfzk9OoBNZlFLZCSi0KpHcnsVJb44QjimWJlKpyG3BbUN5sxSOOksDgNIngQWXKSx2FV7/SvK/ofBZ7Nab5XK5uLld3NzcSlnfPM9fv3rD98XmeXte/723Vap99c9kZqjYYJdnpPFTIx6WWiZv1J795gUGrf3vKEDr9ZZZ/1VVSI2zQhQAyt0OXEkvjUo00aB+KhkLKKiACUE+JeTJ09cYooictI6ELkfz24TIPVbPHTbA/fX4v28RgIO5th+HoWJIbB/2/Q56agdsgKPlGDywp/9Y1/mhee4/NCfCoeP5fVGwjuVoGIok2Ai4/dJ7X1DhCGonjMZVkD6GxsvgGQD6K3dMEwdIk1apRo153GslNO40Bm8F6A2SnXBRg4ISZaKTg8dR5gH49kC0UV3EFM7HgooimCBDwBYQPXVTpDYMw6srAGVdwklrUVhmfe0KfL1Ivi2u5KqBNqVkwyQW/16L5hV52Jwre65QAI3ubPe3JoHFlzZNVmVhmNc7k0a6Efe5urricZQIpJWMN5vN9fU1IwZE2+fn54moDFmvJc+o9Qf2Hm4YosxTcy/Wy257VZ3uTE5gDgAd/zw4YwKW16S/0oKnHiVjNpupmifxHIMb06lLYlaqDERm1muP4q9PQanXarEwvmHpOhZE2pwQO8iVf6X+fh5ht4N6vYWM3jDgrwjfQbVKwIDiiOJ98U9MydDR6HI8yh2wZiNbyTq+T549PTs7e/r0KYk0cZaShhenySiKdqWQqSjrI16BKqiQty5bpDS1/8kR6QqwEhZHwW6NJF367C0RbpTEUvsL1X6qIChzeS7b3XK53KKo12ojjP83b96sFsuC72+Cg5D6ZRPB7RzVWmh3rnfei6xc/y5sVntMf87nFbs6B3vN29+abcn1zYKScFAYgA4BPfslkn3RgyJCCt6jE/+hULaSrdsrQAVjIQe5IrgOjFn9YztHv7MBcD+uv+NIebGVj4Ic8uvJAfjQAPFQO9Rzj4d+mAn2sED20P0dNun5wUGHH9TdHz7vQK8deF/v67yD7T0d51gAeqjOxkMf56EjA8cq1KVbvfVocH6DW69Pxc7IWzv2i+gOWUUBqIc3FCBXqAtlqhxFPINKf5DGUNYfJWk2chLyKaQwYXUACeXFbotStVEAh2MmdUAtryaKQpQIiiMCVtH03m3WWwewgjpNRqLQIykGQh5i3dmdAM22E6BEBH70rmw5wdBBDwCeKIyOPeQC1M+N41ZS2dSw2D0gYllGPJFtNivRui0VA6n8t7KbKHD56aef8kRgga9ROIk0kslkNB6PyZChXUGs/NVXXymTBBKK0pAQLE5fpdaMpWVZZkVNrAGA52gMnjbC0yQre5V3yfTwuPjk3HtqPwT00BTaB+gqS2pxmAqnql4+jQ0C5bIsta6WZ0vQ+LK0fv2tPhT7fLW+hAcQ+VxUUMjq9O89YM/fvJ81EUXRfDrhQbZNJGQ0TqNoBKKI1HHl09/lkCcq84KRmFGWnZ6czObz8/Pz88uL6XQ6PZk73gtHOBLo0zCJb29v6dGnAxonRXJuMiR7besqlLiAMuYFSxQoEgUi9xwluxeE9qIsJCMFN7LdIYlZfP+A/zAAIPa/Xq7AZYqj6fyEla3b0tR3qlzeQXH00us1IKY/tLm1utGO0jualV61JZbDP/u7f6l33tT72TPcYYrdVSfWYxniTQDHa2+gBN+u+ceRWmZdM8BS38wX6LgfRQVocP8jqQANLWDHUgE61AB4aEA8CMQH+nPg+BKjV53vX6MH9Gge0/oD6/8jRQYek4CP2x76vo6VpHuoR//Q8dBdce44DtYviWN75bdoANhFEFI/rJbglIIwV7faPvgbKAb0+o9Eox//lwRPzk4RZsDmljldCwoHTonSJKVH3GXPBVIkSJ2m5BCnafrmzRvxFzpY4+ApZCsd2vMwwWg0Uset5fiygmyXmcNCV6SvtEBWuEx7zJ+Oao26mQHO4tbL1osi9AianKr0ZUrlgBM1nWZZdn19zczRPM/J6Z/NZoKGgUFVQLORBkJSrOJOvZEgRh0ovTxNDraUelWMIec5ljoDFj3rbVq6jqotaSVdG0+gZ50yo5p+4JJi5bno2VGdSuIY6/Wa+L4sS+YATKfT8Xh8dfW6lb1vzAbV6df+VIA+n58qNLfjgVR7r2awjRh4Yi0UU+KRGZZpjj/3KCjcP89BVXIvi9YiCEV+35RS1mx15gRrQKB56ZBFM06z+dkpuP5Pnszn8wg++BrGcRPtQaSs4T4lWZvTrCOTBKHe+UHZ8xpjwUnlRQsEf+lDFPs9LHdb2C6N4Oxms4G0/3pd7HY3Nze31zcsQ8aYxnQ+C6TUnfaMHo2RE71U/Svq2/Y1Rkg8iSd97/SR6ZikyJJnEuCHRT/pn7kfnhoVhuWf+8u/d/8JV9z/UHfutm4SiUMzVd1rMQwukH3o7S4gchDgRryIutoPtvCXhyyc7mYPuJ4h6f1DAdl7AxyHXs5AseohA+COIXSUJpzBhwTQR3NYPyxl5X1FSA5tx3ouh7aHpkI9NAXo0O3Hooq9Va3IQ5ksu97driDMpy6EMZ3WfNcEnQuMMNr2UgNIimGF4NBr0auwDiOpZxuG9Ww8SxJ4r7NRkiUj5xar8wyigahCH1LckGA6hKhGWRZVLsRjiOdEqVTenYxA+bCMERWqb6EVeEAOuW7ynU6htg+VguL9ydN7UdhEv3uXdQDPt6thv/dXm9Rre5vsau8gSlNmLVveES/p9PSU1A7l+RCW0bNOd74S36Eff4skS0IuMn/IlbeMJoWhzrPeGDCW+6QGkq1OhceduOq/1szgblbGXgETIwM281IRm9onKleapmm+3SptifuwFgHTM9gPxPdNYnEP1coWDrOAW37YJjDY5OCTkxMbyVEgyHGi74jKj7KHtUqXLTbcRZOaJO31c11KnrsI+fO3HNKk9+jjZnSCttBv/eQ3aewBAUuHM8ejbEKu9HhKlASfNvdAkbHXY16cR40ZXpiLZTVVfiNpbhxud4iAFY6htGJ5r9tbCPwvl6vVanm7yPOcmeXj8RgapiEKhynpTo03jjcdn+3TFPPGuuTZzwy22FiNcqu6kR+d3/SN1uNXO1+On/8ckgk+sgHg83AeDYC726MB8LEZAEOVsA8FcN83A+BjOf774vq/r/s9dH44lgFw6PG9HVp/074BYIFp/xWGLslV4LBskHJdqImLpGAHZSTfF0WznLhHDIV+LtUg6ETOY0dpzhZglcUoktqOTf5bBBFQtKIAbgA1KMsYBHCXhBxIH8haqgbWT131hcDT2y2eDKL2A8GWddt36T17XHCxW9T86IYOrHqPdOdejoGRp2y9yPTo09Pv7WzNBlWMoSoogfJo7DydFrYSqmoOrnVyb7bbfcaKO7h6QBX6EwiWIvLisXQIVe3P7SiyCi0KmrfbrV6/FSx68ewZ78WLDBCg85jq0Zd6Aq3H156XYkc2s9l5xJPMRn40ejOdTu2w1wPqM7I5GLQENBFCQ1JUN+pWj+pG25wHug6yJKqkKJlmlrMtFgvlqY9Go4uLi+fPn19cXMQxrOjJeEw92TAGII7SRFj4ErJrTiqlqN3p9GXXu7OFaO0X5mSHor3LO3KVfdO0MgKsZPvk21212xY71JcQvg/UftZLlPp68+aNxprwAicxq6nTALDqrnwWXQaNA/Q1bEit3Ky3o0pTail56TqeAcDxbPk87hGU/bwg48jYi18lNUufdFsvyheVhl6WAtVV+SP98j1shy14h2cmHIrnPziuf/igP2Cw/gFveZCzfuhxhjys31ED4H0B648lAjDUjkWROlYy7qHzyRDV59DzehWRTATAv7beK9QVOiawhtmARQpLL97oSBz2AAphXcWQ5A+TWNj741GcRqPU1Z9KpHRQw82t6EcUrXCCVKEFIZ6A62KJU6LoCfVeMpezq7InQVWyBoEoDrV0fOJ+KW2Iq3TwNAjy0iWV9jbP/UlXtOe77T4XDzb1IhJPjUSPT4BlySfq2huNRvP53CtopTkAVgmHOJ6/ZcKrgn4e37Ip2G8stGTrIfCvo9EI0i6i8QInMtVKnOB569F3rtN9R6l6l9Wpz0uyJhCpL4oa2cqyvLi44HdF6qenp0mS3Fxfq1feUoAI8gjBbSkAD+rpo1FVHyJ1BeiLxUpfEFUNcgkqfaxxpfhrrKmXsaO97ZHL7fjxttNYhOysGyrMYN6pgTGdTi8uzk9NY0ZynAJSk04G+IoclQbOSkKfK0HdDFGoS9KCbXAmLHpemiS32GuuCkQqUJE3ThIU2MbggKGVJDD9mgR0dMgWoYndarlZrW+kUeiThtx6u0UuiqSUpHGMnxVFiawa53G3tqLmuFpDhXfk5fzo26TD0jMsNZdVj6ARABsG0aGYiIOy+8iUuuaXAvj3/9JfvWMq6TZ6CO7Y384meCoNy+q+C9gDRwC0EvBDAZ0DcwB4Vff/xWME4LsRARg8/nfUAPhYjv+hRQAeOkfioT36hxYgu+P4XYo5oXzvdu+H7XIbI9xPzC6ZvuJ0J/slDAT7uCpaozQN4xgc6EicvkbzXqQuZBGt6iaPSw5eIwk4EsRunM3Ooy+odA9yyftepVTgATLAPtgNIIVTfbPGSxXjOqx2+bbrf7WfXtbmaDSykEh3Y4TBO0gdOvUbT9XHZh3soZC63kilWy9KQA4JGTtKfXEM7KYpcLe2gerra0Ltag3Pscf1Z8EpO5Yc2hPueO9zJ+VJ3asKylmEwcsA9ganDYZ4KpxWL9VqhqpHXylAWiKAl6p1ADzPfd48X28wK2VIK+xCl2a7nc9hZlgBSkv16ZoB6/VaufgK3BWAWtUmj0PSa0B626OgLvOcd2gzGeq6fvoU2j7Pnj178uTJZIJiZzzydD4Lkz0eEe+dEYD29hu5eRGjgdHOT5X75F9Rozeo9ZOeb/L7lepTSWjK5XgU7mki/0TI/avbm/VydX19fXt7u9lstJfY82q5KYGnkAieNQD4VwXu3mi0KlV8TWizWZRvuf7dQW5387ZQBagb9lEDwGsSARjUVx6YTIeYO2Khie9/78uwfMkwgHtsH147WlKgFs+895kHDvS+gFr/JamSYO8Pfv0GwIP3z3f1+O9pXN0tD3fAeDv4tIcd/2BKz2ABr29hYLSI38lAd7YD0Nj1T5fnEpVT4SekymMs+C8JoyxNswSgc5Q6qkwCSrIUfmrcvEXR5GW6dQqsYkiJNDIgcRhR71wvTwHoartRKckwRG1UZpVCCAXHQKvrsKwCSvMnSSpJwiGF+uF3q8IqKJNEqpp2KU8CyLpCIgVkSaM4bUUtlULQazAgYrAP5W2FFnHo+dSCbh0A7rwr8tUG7nxNoh1NXHlUBcpClQEhnsm78JFP4OoGJivyagdvuh7ZIl3S6C2XWp5juN5sPGV9XpuWIVPw1Dj7+8tgeShcn53loHukbY1OWLX+F8+eabfTCnLUJjHM7Ji39b+sAcZ9xuMxc1Jvb2/p/SV2PD+/0G63VCIrgmK5/us1RKg0nqOlka2+pMWXXj63/tOmqbTpB1U5ipN8B91SliKez+eXl5fz+fzTTz+lkCsMIaVgRVEJyhxO1qJS+wh0nEsoIIKMPggoYrHDbperEdnKsmRvsg4oeHkyg40kAgZDHQo/8P+CDhSEuw0MMFpgeZ6D7n99s1qtrt+83mw2zPR1FbUzjKLZbKYPMS8QBZI+b4VNPdhtyTl2zNt+Uw2rNE2tQWgNM1tD2k5ojMBoYn37wgoFyJvYNXBkB7Mr0vwQofy9kOKhC2qjvfBATXrhIVkx31EK0FGOo0bhQWc+fOcHZT0dpl5yaPvACFtHa4f2z4dGxXlf93ssT/yhxznW9kPbEGXIC6nr5qAWP2CH/GNzBC2eE7AdS2neUKB+kkILMEjjJEskIS8WphAPUtfb1aqoC2Eh0FMbIG9UPOUi1Y8fZ3EaQe8fQKEoWvwkpXUaL52wKghJRdhQ3Jx1jTzCshF1EdoPC5fmu608MFTdgRUVRmHM/GXnsrPube23LqD3cLmCZqV5WL8v9mm+eY5Gr2P17NkYQFabwhfeKd3/6u9X3ogtY6RIyKMu8ELiGJ2m7nNFM+qfJgDSS5pMJpbirz5sKxNpiyXTY6uypEp/152tND4NHludV/21cRxTxYhJI5PJhCpGheS8bqXRMUzgbse29gkAmbjDPaIICrMKJKVKUpqmJycnZ2dns9lsuYSJ5VUDIHdfswtoeDAJweJRRf9xHDPJ2DKRrLnoTSAEptY+cf1clov1OpZU7Pl8PplMzs/Pnzx5wsxvq7PEJx7F8WK3KR2bvn6LDl4z9hivI+dcr9aKXwn4d0OiFPNSsnrMnFBVhVhEeZ4XW9Txvbm5ubq6Wi6X129eq6XHpI4kc+pP+r5QmAiS+XjubQ94ebCW4aNv2XK1HI2gbDtCYRD3zirhR8ehBetdj76bJQx1Ta3cbkygGw3Q+RDj7R0Wzl4npU69XibAe/Knvbf2Xc0BOM5x3uUYH5oBcCTP6PcsB+B9tfeVA3Csdqz391AqzqHXcyxq0NBxbM6c2U0Ayj4HhrtZ8Q3rqR2laRIFiauxlcRJGAMtwFEVBzXcwUTuIBFEUDUsyzCqEQ+A3rjIxkQp9P7TlHVwUVkYLsiqLBBcyPFho/ChZATXkwzOb/geSUGpqrLYVUU5StMA1UbpA5XFHhU1wyKvRMsfwD+OUng+RX2oLrfWAFAgbj3Tdrv2m0fnIOD2cnzJ6tF+swaA1RG3zuk7cjY0adWKeNrnaP3cxKxkpfOyiZDKEsnTtBysf1QhuGf2jGdTvWzrjOdlKKg1rfXRqjqQAl9L9WGPKVXGpiOXZblYLIh6p9NpkkCWfrvdvn79ems87lqXIE3Tm5sbG3agbcDr1GfHm+Xnr371q9lsdnl5eXZ2xuLHm83m66+/1nC0l7Rt5fxVeZPg1ZNDVfNGn53euxcSUeipn1b9RlRk8WU+m1xeXp6enjLtW7Kig6LYNUK3SYp4VLDbbYq62pLib4MhQhpnqi4jAFGD3TkR2Ou0lqfHqud3yG7RAGjeAvRngd7bicG2XcPfv1gsbkXtp6jKEPk/MNJIYKOZx3oabpzItEH6UN0Ady9kxCBMW16jMb+ZJs5IiAZntGCcF2Pxivp5OQANh801bqEpZd9cHX7WmNeRcLABMGSf3fFzV3r9Xp9IxsL3Kqqjyn4GnS0hNf0PayxprF+O/hm8a7jjXsdHELju6Yeh/sHnwP4Hfx7jOMKZfcj+fPjneywg9X1r7ysZ/WOJALyvJOBDDSEq6Le7Nf/qT71VEQ9OdCa6K1T5/iZrgb7Ie8fv0v2RA2AK9Jrtbj1OIycuyZJcY3pYJXYfyS/rugTCcAerWMteSDUBuDMg9TumROI0QMXzLZDU0fqLMi93MBoA4EZBVAM1CHZANrFAmCKvsNyLO9Kt5WEQxslqiYqkEZRPHL0YuK2sJzOouNDbX0llTQEEFdIlxUnQawB4ACgIgs1mYx3DngKJxcQk4No8AffE90XW944fAWhahoPCHXJOVHRS7QGcOgbnioztHHbQDp/bXZQm4zQbTSdpFKPYmTC5Z7OZRF+qbZHDmxsGqKacggIUSGXlOEtHUiKKv1oulxYXaraDLaikucikaSmzyKsboE/KUmX4jLoZtM+fP+ft5zk0ZFjLbLfbTQTq0ePLntxut8vl0ioC2ZQMfS2I55S68zu/8zu8ts0GBansDbaJ4+LvVylS/pxZy6oBpTke7WBrpD/tK6ze6FhG4B5bSfaKQyHx23QI4ftdPns2n03Ozi6m03GSAPoDM6Ly8QnXULFnQqGSQbGmCuoigH5oO7qk15GcsY/+OfOUYat21dW06c4Dzt5rokB0+WtMZrVaga202W522816vdltT05mGqWh2ckHHSex1Z5iVoGScCwPTY03rWCt9LCqqi6eXFq+lia9qKyq/lyjAb0GAB+rvlncjuiT5AB4daNp8CstjdfJKTH87b/YnwQ81KD6e9BCEvbDfRkAQ2aAwM39T6Tvdra/q8e0B95xUB4BINaHLeRNsUn/aKQs9pwliu/fP3dsT6K0d/vQZxQcdt6hz0P7850oaj1Hg9rHIduHrudj9yg/dBsc5wfq0B+6/6Ht0EJdxwLiB+3f6lR+6+sZAugWxL/1OEhy1QlcmnYiGbh7h4LRD48pf0pM3oaEueQ3KghSewsrYIkZxRXg2r8gt6CK37LxbwUlkCQ0+x0mJrgPw3AujlhgrwxuvIYtXEZVGTdLdRsZrySkXlOWp803FS4Hiph2gQUpE3JezGtCDAIARaVeuLGgllHTOMC6WyRJJquM70+lI1Cdfw5DxInKL+p5HVIXTOT5zp2sYZN2aX8F2aL9CrWqouP5jNXvqz5E2/2TCSq8Ki7RDp9Op1oHwDINqObZE5QIRTFJjsKOAFsjDLM01e8QWhVIG0bRbru1eyIvQ7jjSQxl1pH4k6MwzItit93mRbHZrrp66l6fWyx1fnrWS7HguO32f56jKrMV+6eTOMsy51EWQX0iP4yfJgnb9p4WGSD5Xo+WZdlmg1wRzYTWU4B20kj3qE1C3pFCQLVMFJVady+vp9iB2t6llVsYbZ9+sfXlZXW0aEDGXufJfJokMWs3Z9lIUiwgcCUxtJCfeO0rZNTgpCHmkNiQZxSwsp9Zt4tYXMamg/KWXs9LsqQsXhWpO9r5xP00zG5ublSeNSgrVOVInB6/alLZyImX5pvD8Ecn73Yb+hdogHnyVkoMi6LoDO0CqlbQoneml+ZJMw+4V03LRjXVMNNBbq+TVl+3GrFu1woPjBFh4D2oAXDoAnNHG/RIHSlf4FhA7Z0MgPsCFCpYH6U/D03qPRYAOrQdi6JwLC71ofs/dEXYD60da5w8tAFwaHtfBl7octu+LRXn0Pm59zhhHcRCftVf6UOir9oeijVrA09kQrT2myQ21ExhAJ8Hr+swSUei7MFauUotKAUoUxlHkIpEFYOgjOIqjnA0LsMjceYmERxp9EgnjQsTa2RdTpKUDn4P46rHbl8vXwpjiVS8rZ5DuUntWIt0i3KPIm/BveXhqGdus3P68WAbN2wZFYfRZ9G2hjfscfHpa+cWhb+sQlCJMLsloCs2Ugdzc/CW1a3UIAKs5XLpFQlmI/rvraRrIwlth8jjV++1/pag2Rpm2ueWTaTaQTR4bLUBZ3iMnLHnQX/1sNo6wVEU7TaoG9CNqOR5rjdLlRh61sX6QDdS0JMIvqoq9corTdzp6Dcypt44ieOY3A8ywtnDy+VSIZqtw8U6AB7PR5+CrZFsU0jtQ2yfV5H3GkL6Q4/2Q1357vtiqeRajYEMH+1nfWRUbbI2iV4VZENNwMoSkHgEy7bCVGDSrG3VAs2FtQkMURSttqhArMqnmoStydDBfnFrxJE6t0mDUG0ea8glSav2Y+VZSWlT7SaKUGE8F663Ncqkv7W8HU+8tdv5+oqpSc+71uwaGwfTQJay5vSkgxSgx/aOAPFBzzt89IdO2ntfwOvQ9tD3dRTg9R1ux+qfh042PVY71vUMc6nDD8oAiEDkk+9ukzsCs+5YVYZODVIuSspAk7XSavZUSRTD8SdrPZQ51BNZ5lLrCvycQA5bRxFowVUpybEwAFB9K04TlOGqJ9M0aYQ7HTxEXh4Wwtglz/JewjSJwiqhgo7CHQ27u+VfIIuhi5Sr1YrxCIUU/Ksno2kxk12tFXitViv9rpWkwjB8+vyZeu5V854efQ+9uTOh8m77KCHRQxCTxD1Zv2GdF0UYIdVYzwgqUpHX+a6JotStSiJJ4bwFuRPJnuTxHYFEdeJ5ASoD6hsGHQPeAXEphOypFZFhrwDIxhkoGanPRe0oiuFowSlFzLsclKcu5qaOvnbOXV62BhQS9yu0asSFxLZsnK90J+92O3Xqe8CdONVS5xXqEVNut9ubmxs90fPnzxVEOs0ZUlCa5hUCs3kIep28eAv4dH+rsdMllnRnABS2NvvYiIEOb14kRwKsepNhrL3hObZ1iNqCa3bOKYqCHBXWglDGC9wGTVNbi6fzslzcEIqcgaQed37XJPVU7BabnawySqqPpG51PZTOHsqtV4qdxhvZD9PpdD6fJ0lCw2O7bQur2flBx4nXrC6TTZvRP2lvcAfrOOj+VsOAHH5owUfShhe893Pewf0P2ZkL2kFHt7P/fa7zWPKdHxrw+tAMgGPt/7G3hwb6H3t/Hkp5AvW1frD+IT/z3scBg0emE2pvu01Nrp4QOIm32p8kMbfrBln+xToAthfoSPY9Do2cOlCC0R/NgJETVpFguTiNkiQbs5yucPrTBKcD8YdnltI/kM9kVV9RohDZH4j/RHGwyzcsC2qTg9UMsGU4xYEnJISmmq8iM4Ie7aU2do9ldWxjBdqZFvq3KZiCThRVIEdZWpIk6/XaQ6vANAiLtKmZup0ykX1ACugKBZAaq0azQvM8t3WjNDqxNZEEPVQYhicnJ15kQxVILI+oF8zZC+7uqQoq2m/kw2glAT2CtQ00MkD2haIiV/m1SYBWW4vCOwpk+XxBbRqNrefVyqVbigv99IIaXUIzBX8UHU6nU601az3WapZ5hpyrQyxWX1VVWZbN53NqTVqgqUQX1KNoLAeb2utxzbWvLNffksJpznmY3nvf974b8RwV7+f3rrUmfdUGQMCuaU7B+miaf6LPWg1db8xoYTii/5a5Lue1w4n3SI67hgWU7RZnbru+jNx/Op1ag0r98TawYIl/jBjoS60XvNttOUqtdcojTKWBdiX6rRxIeY732r4XXsq1V3nNM9Ks8aD1wuzdeXaaHXtqNuxx/z4WCtCh13NoOxZF5F1OfUj/DBXSOlRV46GpNcdqh/b/Q3uUv28e/Q+NKvOh5QAcq3meG21Mwrv/9Rw6/ofmk6HjxBI0tmkAZOu3RNVmO3G/bPflGqTsrlS5bU4iAjjwTquzsFmJHS1lPgHAgkcxQ4XeBojX+W4NlR5R5onCRBT6owDi90lYlxTrqyth5Yuqj6UNdJ3BnRB8KcDXr9Jq+Q8Wm8oaPzI6HC1HeTqd9gIvcLgbBoVNS7C/tTgAN7NPqlGwu0f+cXBTWAElIBTxrlIdKOOonuYWcWoqhQZVGoTUrSRKoNYF9MQ6vQMpHaWe4cSmlBtH5XJ1lxMiJ5uY6wpITactIbuRuSyKYjprPf2W7aO4zauTIFUVWrqRwi+qbapco9oDYdiWuLLVc/VZeFc7kdxffSI6tNbrNTt8PB6fn5/P53M6m1+9eqXlh73SvJrUa6k+ivtbK9RQ1LogMmgSZvY2GhVL/31npqUxLWyzTnfuk2V7VBndQWl1mkittLReyhxLPTAwsjeuGpvTWo9qvmppLTUziuZpWANeI3iheX9dvyVtQEDZZcz56SYCybydM3lDefYa/ZhOp6zewJpitELXK1Ce7GBgR3nvvvfUvEesxpgH/ZtLaiNj1seh/aCdgKf2sRgAgx7uj9wAOHQBlvj4e7jORwPg7uO/RwPyg2pD/XAsTv/HbgB8S9WdD8QAaHfbP77NaBIDoIISjmuA5hb6N+tuCW0wHkRYNyji0zAu4HmFRxxJllGIxdUhLQhpooXIA0YSbgThQNQEgI7mfnK/KPfXUicq7FIjHLBuQvDqVpRz4Yzied/DOl2WsP6plKiGjRhYANrt3mwMD7SHQrSCqV377fzfBbKesI/2Oc4rS7/1/BEEeAACloDo6NvT6TXQs64kFr0vi8+sYaPkAm/gRQ1n2mOeMO7BiIQFN/QiK6dCwZ9ej7VJoDYzn3ghl16qiV7zZrXuHfDj8VjHiQVqRQEl03YcNqfgdeot66OZjEYaUNJGAJem6UQa7bHVarXdwp3siQ4RKWoFX4/q4wFBy4n3MkHdgBc5y64h6gk96fcsaj30Fvfr/epQb8YDTBQl7SgnSn/ojUOP5q6XvVwuFdBr0irCVvKit3y2Zn8tpusZolXobk1xuY6Hev9FdgaMmL0M8fGJ2BHuGSqSHA9yP2E35xYajSN57ppmo2nZSewqUmuVBj5TW1nZPh17UqvapLegMQ19PW34UacgdiCJajZl+aOhAL2v9tAL/6HnHayseeB5PxYqy7HO+9CUku8b0D+0fWhUtIfO/TjY0z9QAGtI5ex9GQCi6WEYArIvqIzyfGO/lHuMxN4G9Adg9ct31ubEZxWHNYR7VEdSKtcS+osbGNocBDSRpAW7a8MZwzgKswTJwZJFUIp/vBTZwQpKolLlVw6LFVDMgHCzA8XFK27lAVYDNGvkAAiRxmILrdBpMUQD+1jqy6EiBejbLZJNPfF7Alm7WrvaQ0lydXVlr6flkMQioNlhlSSSFOv8rk3FYmZXJ4lzJDt/eVFUeZ6Zi9fSuYQL6ERtcij6NXk+T2PH1uHqjh/PaWqTFNV9zq4gxcjVAG5aURSWImIREj2yeuVqORRlm1Rq/btUW+omWZY5FHg8poRW3t1uofmjqjsCZIHVtDMJyOwNahzGk+bkg1Zi0vn5uXqIr6+vF4uFagEpstfUVaX62OxqRZCaY2Cd3ExK1j+1HWIK+tpnpEWpvOmCBnyDtrVaRUUErsOYg41Xy+5i5ISPhoXG9Nl52eT6XGwishWW5bXRkEgTB5QdKyl25L/JZGK1iZyZFEVUYbImk03GCLqvvEibaqTFSyZRM1KvbTwec0/mmTBsRYNQ8zd0dGkFX5sErFW99MXxZhVP1pMblavWDWK4mddYj3oNNszoxtJjBODu6zkWcLmjfw5qkbwA9zz+r8EA+NAiAMcCRkPtYID1PaMMHXq/x5oHHroda/wMGQBD6ViqkH3P8x46DoemoMH7qr35B+i/uX5zqY0nvswLS/Vh8SwowFdhIJ71KAqyOEvH+C9Jo5Mpkj6pwBPVcChKidwyRvofF786YSUeLHHBZrMHdCz49ri2oBlhmXTC5NZ56elFGk8/Q/P9qaKeBrl40IP5/NyjgnCxp2fd61im22pRHjJPSHtg+qOn3x/GUd1EgD2Ya+kWxlkOYESnrCpLqgSQTaDUHlisIETTTWL26n8pKKHgkoVTHu60fxVOUstC1jxRSuIQKCtmsgx+ghgqKpJ8z2RZmxzsYJNottrr5PZeioVy3LsVkZfLpd1i3gtXeFVZaqp4oz1m8xwWNzfKF2KlsNPT08lk8vr1a8r+MNt1MploIQIdhFrMi45bVcVhGgDHCXG2VYS0BCEbI3JIsYkAeFiT12/3dPaGqOLqE1fGOXMS7KOhscTrUYPT5rdYb7SCYA2w2MplVVXRINTtKpOKWcNAfH2FtYs0zmC7xcY3PBobW/ugy0rHmJUVomFjJT6b6tRIO+GNn5ycZFnG/BCOHx0nvH4kKhSuT5RcpGI+XmRMjXOvBB4vmIWlVduHhCVlE9l+VhtDi1242CnHxk//g997OMDNQjAHwdxDF9RjGQBDzTPF3nqFb03S9eI7cCqER1jghygND01NGTKQDqV8PDRw/9jb+zLkjmVYPjTQP5ahdax+vuN97LqT7zAMjiXXa/GQvU0vBK9bPI9gixUiAgVx0cHvT7UZ1jF1KxApD6TfZHEC4F42ot2s2oXqS1kaU0k9HaVjVOWF7zzYrNcRae6o80JdeMkiQLVdUrRLSR62RwusT26PXytBg3bhBPQPg2ivPCd3GBm9duOBI1DoeZT06Ks73FgRiS2mq5ekfmI9b+u6C/xiRpq02m3JKLN+QZs4a/m+ja4/XYZN8TVzqfSI2yO4a5CO6Y5P6qMrAG2rAVS1AnEtkmVRiEIT59ZNnVdYeQj863a79XIz9L1YrVbX19eUyJzNZmdnZ9PptFfsHJSbqaNYeBGDLsDirxgBsAkhui770FBanm8tDtMfbjYbTQZlmV4SSDKp/jubzZglXBQFKk9J8xIt+OAoi1mW5XK5pHLUfD4/OTmhljypKZo3TMvB5gZ4uFZHQgsETQ6JzcnWZGLtB+6Qhihtttls8jznsKSf20Y21BDScaVvkJpwBLI9Bpjk165WKyYEq9nAHAY7vDk21munpmXtfNXp9waP+Cdc9rD2Ek9qSzEEMkQ5bpc3tzoIbZYtqy8zmWc2Q7Gw5XK5WCwmkxFzRWjC8dGTOKQmijJwYFQETq3Ie4u7E7Ibn/spEHo9msTPHtMCcJzKOHvw0fD1tAEQO8U9GgBvab2hzDvaPVV6Wr/RgEd/qH0sBsBQewT079YeDYC72/uKRL1b/3iM0iNGTg41AHw3edM02G2hKr7HztNJLSCm1RJignDSOpzcwcOiQuEqiUjLchtmAq3Ozs4imSrdwYNSfl0imVfW7dZ3Kwd3gXuyiYitxZc8HjuVGK/BY9fcmSIGKTAQUe7eAsTenqG7l/fVBS5KWfG7MdoDQN4O3XWE64Xnr9Xm8YXqyKkPdQ/uzcPNs+NDbCXA9fjKod9rIqjaawAQ86nQCoVxwNRKMy2oRIeukteJt4i0VN0oTlsgqHo+dV2Tc89mgc5XX31FYD2ZTDQzmLKq9snqrXH46IDRvtIk76EIgPfiEFfZx8Htu93G2lF6/NlspvVlicN4YU8uLixJw3K+FcBZm4pc/y73fT6fs7owEZ5WjWDlY2sFeZaM1YKUiE1LFrf3pRx6N4p1nKxAtep2kVLg9t6v1vL0Q0B0qHcdCuQ+aYY6B1Ucx4vFoivRw/ddT2cPpfaYDf0x7sdmM3rDMNQk6cow9THpNV3lsQTJ7Gcv8RE3Qx0CWbPZjMm+dPynaUqDzbrhncxU4fMPLbfHe7WVvaPBEA0aaN65jZ/QSu9GQpjwYye9NrRoB/1j67bulH03NBn6m/erdr4+KrC4fzsW4H7o4zxSa74bz/F9HedY7ViRLq8Oy1v3H2rvkFR99yvjLfCeiWL/2eInp7kJ3gXPIAqbIOaSQJ+EUZjiH6NklEp6HaQ7hTQCcOPMBi63SC5AfCFNND8YMj74DngUU2pUePyE/myovyupfhbWCTm4WdoElihARE6sCI/aO7X6j/s9AH82AbTnX/eS9loZxIZKYePvVhXHexYNp79NHWZTQOawsphWgdQQ5REV7Smy38O1BB8inhqJ+bWnQlNVG6kIu2eZyEVQnHRvPMjnNpfk1xSRG15CLnyNq9dv1NGrNWujCG5j9hJ9xpPJhJBlm1MNHRCKHmW6TtUvy+TLm5sbaqd8+umno9FoOp1qsiz1c6i7YmlCbFXd5mbYp+lF2PaIW/s7a+SB3eVRaDgGNOVA6Rm3t7cKMdViYdUA5hKooI2m/+qJ6EfXyIlKXircVCkkrbnLCgzajXbkWCBukSVvQfODVfpW4bUGIsh4oW59JkdLEmftWN1JO/YM1WovcqhtLMnuagLp/fJRzudzDQcxe8EWEbNJO6jyt3+DqmpvwxdtgKipk9Cy3pvnWDXQ3worZXFiobZW0Va6mlYkYGBnPEZkYLFY8Di0e7fbrf5Ky9U1XP82eZfNC2R1I7TWgKFlyGGgKSJ6QM1O0cLA1lK1/g6dzZoa6d+69R+H2x4yAvDrxAn3sQHuvhxvWX2HHIDvmwHw0Of92NuH1g8f2rh66PMearh6zrm3QvNDj3/X1NQ45/Y80PvyfzpBcSHx9tckTuF+OOgPRVCR74yFXANPf4SFhfBiNp5EEZ1S2N5gyqrMnbpLJLMgMvmAHGLkDDR9whABd4NhoF5GYeawkYqjebEUJOX1uww0LqjO8dmUHehjg3RjAvidIApLl+d9rddOPcZ2Zh05T6diFGU+dHuYlRPiLO0tjKXAVPGZC60YMW/Ppar4Rs2Vxh0ObKE8H6v8Y3237p9xS5+wwNfWb1LKBICXcYdThp90jrOzMyJg5oAS2IGlULn+GY/HVqCQhIqrq6vVahXH8fn5+eeff356eqrXvNlsLHWBBoBlaTtKdNyTEElYZh3S7RLcDCUv6GEj/3Z/Be7qdmV/bjYbKj/SClKr8ub2Vi/GVgpjkEpxsE32UFL49fU1h+xoNKJgKDNJaBLwV+yHLqXNMzhb2VN5EWzNWt4CS9WqiKQC1slkoiqxNsPEnteO0ixzHnqP36InUs1WHpBFspQkY/tZJygF4kmSrFaIePhhSXnf7UnbehENslcor3Zm1eym4RqtI6E4W3NUOAL5lE9PT0lgY3eRrMW8HSUUkYSjGL21QMK0lwLkTT5e8Ir7a80yjmc1xmw+vdb50rR1N5caq8n+8zEC8PZ2f/6PpoJ1m5uMGp+KW6gcB7Rv/6GLOeDC3fV8UABr6HoePfofV78dej3Hooodej3Haofe1/098bqm9u6shHL/+EP3ezdFcJ+I0pTZ6qEk2VC+XXFb4A6/uLjlcenVZDKiTCdIPnESiz8OfrIUeu2C1Fiai472apQ6ZcDaENAFSRi8Re+jIBnNScB26RL3a7CN8D9Mjc2yFkShhPPN7Rf8V4UKw/v35T2UPRZOVMtC3tbeyqsyl1q2rGHmocM4DFFgl+XVVK+5rX8spYk9prXcnke1osqNF4FxuFDcwB4FQiubWh+wPHTnUbai7O65W9BvbmEoQkVZQ3qFtTYWPPcib0hgR1ipAprEH2VZrqXRBT6eopwWGSx5ni+Xy9vb2/V6/dVXX52cnDx9+vTHP/4xNf53u53yW1QRUpkYWoHYmkkwSEKXVNpNq7CQsf2TPhprOAlZ3wuwqEWn3HcVZAyC4NmzZzYdU28ZkG2/gjJRJu0ZNQxUyGi7RY6BOqEJbQlDyeqm459k9Ol0qv1gM2u18LByY1oWWQnuitULYptMJtvtlnkLcIQ3XP+iuU4LlLt1sjQGZQen0q7oI2+rEQuWZem6NE35oBmC0Od7fX1tpy/FrKDM8abo4W7sJTfgjQoQLrjEW6/WDilVvJ3NZtOlhDH04dUw9khNNPMYCthsNtfXbxRnM49lOp2enZ2tViuaOmpKOTPVZCXZiahLxbS+fyZI0La0YrL6IlvlKB2oVlFXMzG8xJjwz/ylv3bYgjdUsLJvQfoO5AAcZANg3he/Ts+f+ki3zjlz0JUcGAF4B0/hg7ZDKT2POQPvlwp1LK7/oc/roXMGDj3vsQyAIb3toePkByYH33HeXsYRRfS6vzWIfK/yZV0WKLwlcBTLqnjHowD663EgBkBENOCOVhRwczuOkOj9ixhPndCT7eyBtm+zzFW0VWiCUsJhuNsYj3sTAZBKwy4p1irOVSFAmIMFxqqRRW/PzaYg2EKlluQdM5jeUwhsULY1ynotKKWpeDyNwkkbtdDf63bvM24qvFrPd1VVBM2KhBzcrwuhOgBAWOIvHcxdww9HNgaJbZrErP5jIqSr12+SqM3r1apYi8WCYItgJY5jkvjjFII/dKZSa4VX8uMf/1hv3A6J3W63L7riOspWYraPRvB/69RX27U3CRVUEyFBeOhfgZR9UjzXer30gLuTp0xTZbawr/jDkXhtVRJUvf6eCJV9r+mcJk2IgI+i+4T+NMYYP7EKj9oP6nHXcWjvosyRZGyVr9hFBMTaFfq5vr3tCkB5ESFb4asoHHVKEzn4iGkAeIMnjmPGizTnQRHq7e2tLemlLQapqud5UWbUFiBzkSJ5vjanXIX5a+Nfb59p4ER+VDGTR9M6Faq2xO15vvWGGS9puVxSGYn0JPXEl4V7Rvo2KbmrOzj53nFnmmQUGNUiDF1cakO4fF9UQ1ZzKuz79RgBeEsb6uKBvUmmvOuAvv/vbef9NW9/6PZI9Xm39tAA96Gfy0M/x2Mdf4hbf6xImp1GPL/vUc57N/XIQ5NkyN/tp1A0QGlO1NwF876hxMShSOzXcJbJ7EdlHkmcFSRXBlCKIfpssn7DICCgZyekOIgkroXxaDRBWqaZF5kqUDKA6gSCIvkPLRFVokqQvyxrjA7gOsn+p25ms6LWVV0wx8CywJXypM6zBjFgpW9Safd85F7qsH5Jkaywl5hoKVUe4PbsK4uAVVbSGxj2OhXeWTrBnpaREDrs9VsmgBdbcNubeIc3fnYiyY8cjqbGKtXpT09PWZiZpOrdbnd7e0titx58PIbXX5M71dNMhsl8PifPRLVBFclVVXV6emoBtLrex2NU/O1Sd0qRufQwsfazFxNQuXQbPNF+1iNYm4TqPcrk0YJoL1++1AzpJEkmk4nzoAulRMWRFM9pfQNl3fB+KRZkM4CJ+wn9GWCh75wbmQ/QOz69J25tV5WOURwPwSKBmDxgnueMYCAHIKrxjjfcMDe2hR0H4p7MADD4QX1wjn+tkGATwe3Eon1FAU3aM3y+TGxgjEhNgtZcN3w8ZR8pHOcdWUUgVhVU2o/V36yNHr921DgFt8fOlhwJNMYYGqImEntyNpu5UI9EBmj6LhYLDleNW1r/izdjqB1i7TfbNK9Xq4l5a4c9mrWXbNUCO5NbC+qjjwAwhMfS9A/xiVLhzSfOhdy2u/YfqtTbSzzF54ELfHxo/7wnA+BQisixPM3f1XZ3P9x/PD+0R/9jjwAcWqjr3ZqFLPynrSSqrTqE2kS9+rf2A9YDRNKxP+ayCjAxEJFN+5nEGb9DwydMkjSKozSJwzTGZOhUySnsA0Be5/kubESBZBkrRLSzStNJLamrkjBAM4BrUmsIxfLPOJYAvZQKsNR3SQV2nGbRbKlxZtmf8os8jq4y1f4/YYCUVSHZgPDkJSnjB67TGucolSWt7409mWbOJWl5SlyV9fpbKw57IiEhqtFzaRSHSQxdIylfikQFqX9gPxV8uLswEQAFMYoyA0/CrzHMtDBZmyrQtLzYSg4DCjqxOjKLpkmv1yKIFEhPyl+jusiRptiMpvZzPj+VmgxweZYlqjeAkpDG42wkSZ15Dn2TOoLMTxIlcVWUURJnSZqOsrAOVpv1zdX1YgWq/2g0mksjlUIBq7KlSbQgFUTRpKWgqA3TFXTXQmCe8L9GhLwITDMafWEoGjCeUmpd19MpoKr6VsnJyfNcGfwWm/KtVIlG9XPTr2+vX42csiwZKsnz/Pb2lhmxJFwxDKK2hKva1sxXnm2pqi9eP4Q19EPZsSR08fbn87my/3WMSSVjKbRXBmVdBFVYh1UUYJxkyQh1OuR7UIVlXTC2FksSraJ/S5Sy4Q41eE5OTiQtIRDkvwuCejKZTibjEvVPQJQWijTMjzTNkiTebDZxmmRJGiVxWAe7Is+3u12Rh9ARQ9WRsq4wQck+cRzvhJZDS4P3a42QoikyoBkC4zSzD0WTWMj5sRJPbrbBFBen6SgIqt2u2GxWcsc7spPiOEWtOeTLgxoo/pG4NwnYRgvtPMOSalk2rip3/cwOH3ruSBwPKkgLi1cENRbD2H6GcOIkSep6aNAAGFxmDpQBtXPxwwGIIeB+f2AkiglH2N+7ka6j6J73dSz97/e1/1A7FkB86DoDx+KgP7Rhc6gB/A5550dpxzLYDlXjcYKUnXao7v6x3kd1h3iOgGFPv+9A4RPvOgIaBwQquTaa35R/wcXvRJaOfARdLEERgcA+QJ44f1vAl6YjQkMub1JNNouCOkWAc8+ZyrvB/TauOFkgHWcXEMFEOfCYpCYAw9kKbau6qEq3Ftpy9wqYWmTMPeuirhqMRRCcOFKyTUkEyKA2UeIYz5sVdPqsrAcv4NWrV7aGqyLC9XbTGwEmFd4GDRzLNh113Ubt6gD4HTQLNL7z1ixE4/f5fN47HtI0tsqh+hSUsqL4j50puuyuUjJHMaF/FCUV8nEpz5qB21XWrNrE5y5uXRZ3i6TIK/jVAWSaEKUReZtYCunCM929x/PTs81uu1osb5eLzWq9K3KWtPv8889V/lI5QlVVrVYr9UDvsyxaoGMfgVI4et+77rJL3Uabxs09k7i1qWxqrM181dpPquui2FHFozTi4VG/NisnZ2kJ5Zq8rtEb8y44oj8HGLny5Bf1ypJaq5XXyaHI8UCUv9tBwYlqlbfXN7x44kjGGbx0VRoqfEbQtURWTxomERS3IrD5yqCKg6gK6wjmLj5LVOrAcZa3LdffWqqz2Yz2klWGFXum3O7W200excEom6RZXFew4rJ07IoJxkEE+QD5dHx3QOuyrvLtbrPbYh4L6s1qXYdBGiejyXicjaqg3kI0dTObT6u8zdnQXAKScwJzpzbbhJc3mUw02febb77RTAwtxdAm5oZxWRW7bZ4XO1QhRwXEGjXTJe8JHpC6RFGSjtanflF1Jq/fTmanMg5pQrSRje1uzVlKjT3adfLQCxmVeFv5dssdsHaKlBOEmJfM51HwHTEAHm7/dwv9e7PzowHwa/MQH+s47ysJ9eDzHul9/NgNgKHjD3XPQz/fYUPUV6GxZPSe63QKm3cZAJrISAOAIKy5hipSL1EjN0BySF0EdVAkQYnF1WAjwiOlKFgiQVRXUe2YPN7N2kJXFpekAZyaBHnEHMoUV3eX7qACiJZVzMNqJU49I1s6hkCKMg0sCLO5iepxfPr00p5Xl1uqjvTp4u9RcVrurIkAtBmWTFLs44tazr1tBII2T1STUO0R2h+6wgs+hrASTx6DyxoqluuitWytps3Z2ZnFr3pAS+nRfNOyhD+yFDYQoyJUqsmy7I/+6I9UKShN09lsdnJyMplMqBtrMbcDOicn9qHoDmnaUqfslyHd9CGiBVVuunyYMGjlLDVD1EYMVGmUo9EyW1TYh4NZlWRU2bMoirOTmb08S/lQ+9PSsm9urpTAreYxx79N3bbHbIefyR5WJzGBbBiGTLqAB9jU59IcUyqQ2uxe+zbZl1GpULbT1Nmfr/dyCZSjf3Nzo8aVjkypuLyIE2fn21N3h6vcbVTmLsdAsym4M4ttU2x0vV4XRUEx1tXCqTCpqebdXWxuTauDqTotM7YpDeTxhRx1MEZkgPvY4Jtyq5Rr5KlveaOiW6K4yYBydUVYA9HMua7ciifGytIllt2nFEfbma0BHHxg7ViUlWMZGId6HA+9noe+32Ptf6x2rPM+NMXo0Pa+DJjDdufO7ykIcJR2rAjP+3q/7sP7tw1lYj3sRyvOPEU9lUjhVDUi5opygrqE8gR5+eriisSrFoaJSF0AznoecXphLRB00iIVdD+7axh9Y9b77qgXuy1xodY84m7ETxYI0iVslygrXqmymN7y9vXXXyO4TRyWtbxqqouwJGeSJNPp9OTkZDweX1+/CSTDAB5r0JpdUMa51aVfeQ52sermuJM2Ltt430BqcWfjsdaesc+9y/FVYGrv2iIVb/CUzfE94EuDxEIQ6+f2qjLRi6mDwSJdLRCmMJFPrc1ibNIoNT16Mh2dnZ1RqvL29vbrr79eLBYcS+T3k8zD52sNOXt8y7TxDDmL7O0AGOJSW1KEfrcykWofionX403XC7AAnQhPLVVrYdIwsIXSmPkgf1P01gI7esQVPWumLC0KzS1WpEuFHDvMvK7ojjcG2Ti6yF3hFRIrqlqRR/ixtgQvm8aDpRLp47DGkuqZjk0lYLWj1FOu1Cn+hPMGQwG8zkICF4pWFZ17XCwdhFpql2CdhEAOV+aaF6behY4Q9nPU0TLiTKU5EjTzNpvNbrebTqd8UhqW5A0yAYDxBP2hnbK687wdmbpDL7UPjoAd1aiQaxGwinAtBl7CchzOq6L2vIZeLauNBrw1pbQ/w9/5y/9h8CFFAIbaQ+8/xPF9Zw9x96l/1BGAD629L+rOocd5cI/4YwTgzuMfSyTseO/XARHFOgyK2nmCjfOXRwmHjmgr7CpdBwuSRV1pBK52FI0z0DzIEYVJIEzRIAphNhj6Cok04LFLBKDrJFZqhAIgx/etUFtHKR+2ZL272qZZP5wlV3Cx9KgyLttVQLy33clBihtPKSVEDGVZbreobOqdlP5R70Hwy1Y8jhaOKELy+OiuN2zOsWld5x+/nJ2ddfe/Yz0C/6KvqcHmef484T+PeKZ3offFXJSuB5fJr8rebmAQclLzArL0KvTJg3/yySd0wRISkday2+0mo5b6ZeEX8yYt4NOe631T7NjzbqorEaNZmJ4VJGUPWh0Yrytchxu4Sea9cv1tHgI99NapTBS7Xt521aW4j4riq3c/SZLZDPnQHhVEIzAWyPKvyl1RfoheP69ws9ksl8uyLCkbul1DNtQrLKV0LA+D2oqzFqfSU25xv1JrJmnWG8k5PT211qM+ptlsqkks7AdWOlNkr9DWFQ7bOseBDnuOJT2yMqAWi8VyuZxPXT0Bb8pST0fQzEI0ukhVUqUgzyuvYRmZScCt2sn16PPVju1S+7rRS1vIzBNb0yFa5hUTdVRZlaXuaIFIEvZevWSEfK2OWTNBMWm+a+t+cBGAh24PrReuzZvoj+Xpf2x3tyEgeOhz/7WNk+95+9D6+ehqP/fOXek7L3jkrqAVmhnaDatnb/cIpWLLQLJmWWkkaRZRIao6QTpZw4RRCwelXA/35xlEXV9iB+1JJbaA7zBCaEbuL2zUIycVVVdl6IuPxgR/N8sF/Wfcno3g82u7BQsnln+bIRfFroQYVUoc4IaXHVGIoiirsjqdnxE60PBQipGqZ5Bms5K23W6fP3+qJ7UeSptmYJvw41tcqGuq/tBz4IEntW+KsCloVtKILtsWcNvn63kHHd8jsZGfPX+wxf26sYtCuEWTnhU78oCzmaOs6GVrySSVvHRPB70RXl1drYEwIXqYpunZ2dnl5eXJyQnBEzMvCeacPZa6Al48vuq3WDUbG0ciy7nr7x96j5S65mmedGNuzTW0/9Qf2qq3CljVMFNopeaBClnq2KO2fZ7nkxGuRw0e7djb21v9TvTJOEmeb20MRBGnzV716pT5pJEGNFNwiQo2o9FI6Uk28UCBL8ezNST09WlNMRPcUzV6do52y3oNA1uzGvSCWdJBbU6i/CzLNpu1KpmyB9iH1NTnJdl6vbutS/K2D4KeePJ2drvdzc0Nf44wi+he2PIXtlheRHa8XCqpawrc1Zeh98ULJj1vvV4zqKJgW1lJWqCtq0q0FyrcnyX2nCZmXInKGf7eDgkRNq3rijJUKrkWhkgQYmkv67DgPppj4I2W8N//2X8UfJ8iAA9N6end4Y6d3xcF5WM3PIaSOIfaoSouD53zcKz2sUcAjmUAHJoE/L4MADtu3zpF1HDgt4UFLdyPhwyAchdyqYjqBIu70AlirLjO9y86/S344HFEkUY1gKoQQp9Uqiml0C8/Jbegn3uthTO1Fr1T2JClqwssrJjdHQuhIlR6oO12es7WW9TmpKef96gOTvU6q4p2lmWq2+0BYo83wlaFQZq4CqmeH6frSxNnNa7K9o9+zmYziy+tF3Bo/PQaADFUWHsGj00QtJ7prudbgawtcqTd3hpa+x5K+vI5i7JjRcV/d3V1NZmOTqVRntKqsKvtpAYhaWhW0JDnUsDkRZBoFnaHXLeOAb/T09ndn07lnifelwOgV6jJ6DY73OJg5bLz+jVypVc1zhyxTQ1OFdvRBHeFoRKBgSFtfbe8fvu+2Bu0nnIFjnxflNRHcSGeutih0JUH7vlMraHSharq0eeNL5dLjzLkxuoOskIe0TwMwzdv3lj5f40C8fmqHaKXanOE1NJAGFPindZOU76NFmijtBHPlW83dijqDWq6UdhIAHF/Nczso7SxKZKCNGhTFq4wHy+bJij5hzqe9RnZ6JYXIbHGmxVCGKXIatBbYIV1MfDAbGzkXEGmUovLGmDW8lS1WWvHfnARgPeVAzC0/d3k/7rw1S2AAAEAAElEQVTrxFv3/MANgGMB2UOfy1D7WChSx1Ir+q7mADx0TsiQfXQs6t23yQGws8Rd40QNgO5xvJ2hPxGAxIPZPxolowywLSHob1BSpa68ELqNTTKrvH/IGBauEVzteCXryHzW+9rS1sOqsokOZzS05jKHfvxImiXIWkqMrsEWjyrllyuluifVdcf9R5Nx3HgNy7Jcrtf09GsppbPZTI8MURQBHG3/y1pJvq8QQqT8V6PZgsUY0oe4Hp/OS4XrTtFZrK/sbZNyFwTB7GS+50atq0rUkDxPvAKCvXUHVpo+7tYRbkeRtYv0d476ZewNtQG2261FJDoUNZLjJb9SuZLQRwkSZZn/+Mc/ZhKnIuOGa+6SKdn5zIvFtUl6urst07QCro2HeMWqet+jrkH11sV3z2wwfnSbj66qO6rew2ZxsOdIVqFJJgBMp9PRaLTbrGx9Bqv3b8kbdHKLoQUQrPeip7NJ5/YG96rMNscnVWk6nU4mk6IoKCfKl5Rsezt+uL8y6RWD6kvqXbk1ojwWe1VV44aqpBdPBEwdfY4TDf4URTGf471o7jfgyBJ47bIj9m2qaDwa2wvT42RZtpZ3n3QX5kBvNpso6KGEaZ2HuGk0gdbr9XK51C3aS5x2NPmbY4NHy6XKHnvSBiVspV7bIXxNrJGs5p/3/uqlysvAPZXiFTI5nmnB1tbSO1VDywZ8vFcAV/6hRQAe2gA4tNDPOwMC70U9FAi+w+m+VwbAocc/9LzHei5DkYpjjfPHCMDdrTyqYX//9tbx5lkCqvqytzNkW2M+L+vsN8I+e/vHdRGVW/r7XRP5S0gWN3siWGxcoQmkHn1+xR0tL52HT9ksqlKiahiWDjGRBduWOuJxmFSn4F6RFld9m+HXeApb3XR1bkVJPDs54cq92Wy4vtKTx+Nb4OJ+2zx2z4NuZRyt5zKU/un+hKDEHtkBMtHl0FpOCghYyMlzV1v+htfPVlXJLvBl2XLN7Wc3xN/bLA2DyJ4SLopXTk9PPVaJVjZdrVaLBXhco9HoRNpohK6uag+loZ2ennrprbxsaKMbeonV/u/qxCOpdAxqUNcAs4WutJHy7m20Kjru9TFYENkuxl61z0IBsV6n5821zu/lcmk9+upCzpI2ed0+F4sL96vqmnySTuXmrgyovjJenYSnT5+u1+vFYqHvIx/36RzvC40xG+exz93aol3TRSNI3foMMMsbKqO1BquqOj8/9zKJ1Yy3xoY+mtVqpVELG93KErCVdLiqx+Hm5oYl0gi+dfaIpGCZl0xMgyRs/A6svsw5hFwplRxQFtZqtVI5IBtviSCG2w57Wh3b7ZaH1Sel7yZzpSzLqxvttJat5ADAANgfzqBLyV26us40q2goWjkHNZPU7vJMuMEk4EEP2QDgGApha5H2ex5/qB26/ztX9PS+vBW439/Zf/dxvuX2D42acmiz6g3281C99kObTdW3a0xv5dQ7QvaHAv2jAegD38chA+DQ9+VQw+mh39/B4/Q53e8YV8cSCRhqUdyTFmYh194CH4Y7UU/HLE8fMN08Aa4fK5z8tnVx1fU4DbIIquQu77ZJAhbufpMlKat8c949JNpyzfe9gAosRhPRNtnTgsQarwBIo/w6f3oLD0+n/GBF/JpCSi4vXZWaaFhVKGBEpT/SA7jwf/PqlYr6q9veui1ttAE3ErXA0RItbDKlvd8IpXz2DqULuR3Vun08dcDC815bkNTb4d4/PcqKeS57DnI9oE3etV8I1Lp1FZgaoVYTXfUsrMaIDTMd6RNlvqMW8FJCOYsTkZagUvc8OytY2cHj+kTKMGsPePZwF+jbOgD2S28hNveKmW7REajpoXbg4SySMGOVcNiyLFPDQIGg6ufYJ+JxqCzdQjzi7bhSy1DxpeWmN5EWB+g5vJk7QdToQX+2lhsjYQeKV8Zx/NVXX9lEXkXAmxU49zRmNDEjTVNy97XfdDy3oTzDbbOVfe2jxLiNEYjjr4hTZ7PZeDxW0pcF+tZpbVOTGS/qN4RyHIc6/cxzYIozK0aTQcS7c/ZGVXJsa+0Oph8YjlnB8l5qRXtzshp43kzO7Sj018R/tMRB9zh6KDUyvXGrMqyellclImbN6+YEzSaTyWq1UNmoJHUmYp7n89kpw628XxvIEs4eQiXT6VQEZ2+ur6+/swbAuwGULpp/KxDxfnIsKsuxgOPHYgB0Ze/uNsAewnPc2+fexkGu+QNHEh7aADj0+h/aADi0DV5n36B6B2rWsdSiqN/cDQUMXUZp1SHUJWxQVARpStfSMJhPUJrXeSgbZyLQc+IWbKwupVP+luUQnGkvVVQLS3n69FKpF0fjEmsXs5OTE714df6pOkrXU8uDaG1OTYKkfh9BP5c3AqDz83NVTaGOEH2P5+fn9lko2LIcYrvicrH0PPFKpfD95VhEW6+wPb4qV2pEQvIt9ii1XpDBg7lsHpddPzUz0mtp2lYm9krJ9hoAm83GWkdqyUASXtyfpGZVVcWO/fTTTzebzUIaQRif/sXFRZdrXpY5wETofDceIPYsH3dJDQXIewusb3j/tWrfL9s/CkC9jtUkTq/ZmhKKRIGqRcnUBlvYrKqPJ/fZtds9GobtikhyDOywV/pQtyxxGIaLxY0tJ6z7rFYrhfKWHUS6vKpd5Xm+Wq2Ysepxyl2ifOVyjr2CaOqAs3weT8zH3pc1hGyOSrlFfQBrWjtPdlO62NZ+tkaXpftbv4N99ei8UNkczhL0CzBIyPnEGtuj5pXkRp1nVMlnKz9BDWBpqkalcxRhtNps9pppAHicRnaFBrW8699zRpjRosWkvVOMskwLO4zHLJ2Gh7LbbejlwRxbIG9nNBqNx+O5FA7TCImOK77vfBCcP930HnxH2ztzxL0vhxoMh7aHBkYf4/Oya8OvwRDqBQQeQHwrR+JY1KOhNnz84Cjt18N9f7h2zxyAu2H3ER0Tdzxfy9zVUdfrMRL6N98C/C9ugKgwzB3gE8J/I0WBJMi0lQGtASKVJ8ATYS/hrzMo7CUla1N/p8V8og/k0ICqpHvyJhYQyA3IkkaLy3gx1+s1gMt0eiIcABoDCykHy7NPZZ1W5Prm+lqNCpx6NJqofryJqTR3EqBcML9C7N8yxXsiLQR2CscclGnKEpOCjz2JFpsyAqL4GUYhZVVT/I/xfZ3BTK/qFu2ivWJY5pPjiYGbKAx59fifNEsVs0BkqJ2cnLDftPQpf3JxcUFritmc7OfZbPZv/+2/dchVPMpsWuRBc68bpywGQNW5I1Xj6WI4GgDd6dQLrhpg/S6Rdkuw1qbXbyM5DJF1zTONGHhUH31fvOux74iNIIHYbq7K5kjYQahvjRWb0ithEjMPYgsOMLmccJMWo1b5tT51lTMqy3KUIlGeDD1LVfIK83mBO1uDrJsb4D04pc3Y8Es32MXjSEVqN3wMT3DPamoiA5KrEGCu0DrclJodjUbX19ea/ktk3HDrXe6QDXNVVbVer3nB9lI5KenD0uRjSmDZrHr7Xmu4Q/WXFP3bogqakNMd5LZ7PWcECragxjmeF406MeWk/La4glAdIIAtN52OJ5OZOlAY69CQiA5IZvIIuQ6iCIM5AB97BODQ43S9Nb1AUJvngXirx/pD04//0FrXh+RRcYb2P+4F9EaiPWdVbzv0Oo/1HB86B+BjiQAM66YHvePqUE//oW2wfySdy/7Venz39sQ/qxgy/JCCZiF31HkJYij8xFkc1lLOK4ijFJ8Q9gwgBFc3KCRo16rKqKloSWChjriKp7pcaZKc3ohd6aU47p4nj/tQR79LZCp0ed+nANkcAMv9VS8dwfR2u6XAPE/XVacBHG8Oqzdi52Sr+kfFDN3N+intE7ERjChxFX9sI8C13GLFOpER4rAP1LKWu8m+3dGogM9rZQ5vn71TL/LszWOkstjMRVu5lmenM5WuUNKIbdK2B1ysvGAUgXpUI0zVpnRbKGORvXpwe18QtSG9+/UMgLf66bQ3uh597wk2T2hvAvWuXHvYi7d0DUhbqE4PJTq8e1nvHj1Mx57hpuO5W/Yd92dWq6Uk6Xat80VKDz3cBHn2/aIhnSWtYWYfhJdz7M2W1k9va3To8bWvxnJ8+zg03cI7MneLOxQ7z97g3EjQL6piGKvgVkmadZIkjFwtFgueS9mPbtwGeMWoLkpmjnXqx00OgMJ9spVsZXG1Hm136V0U+V55YJ2d+P52rX19p7qgwloLbdQ0xFRAfS167qn0z2sOQkeMFKwvU1CFKBAtOuY1sUbH2dkZ33F9l9nn39kIwDu0Xh/DfYDdt48DPDY7cfcygh6oeZTcruPfe1EfOnn0Y2lHo8Qc6byDhkdzVd64el8GmzT6iNuJnmdQXNFGz+s4CqsIXuDWAADUF0V/yW+Don8UAYphO60L0fMUb6uEDoQwFEaSJFpgbbB84tE47QU0eQlOebsUxVEmPl0sOg3cUeciVU3sUqfvUW5yQy3VgUmxCmU0a41ezPV6bZkAmm2sNAwFQ/PTEy/m4PWhd2ue51UfrpfS4AEjy/ZR4OVRYva6y7hL1WXrDSSvw70vXiVm/U5nvMUW/O7lJOg4f/PmDQH9fD5XejphEL2DepE86YsXLyz9Q/Oz9bx6FmIR4NGgDTSpy5w5Cfb1cQZAcFeAve+tbN+R+6wI9ikr61pzST3GjuSI9rsDNKuy1yHVHVoebDVO33bweEQ4T0KKf9Xkb1teikmoeuVW4+Xq6krLCOhz0Tq79v0iAo6CvfGs96IGkvcqeZBXhZKsNcXb4fVQhtXWl+Clepx+Heea3O9dj00Et1pAYQ3Iy9thd202m9VqxdQg5bkp8zDFvm5nsl+I7GezmQJ95VYxF6KlSzXWl5XH1Qfn3usCeNorAGyLxFnD7w6Hsqeaqo8+Q2TRqaNWUBxy4Z0oRpmUKKLQFiqFOekqCLi522FX0CxU5qTmsVA7Ifyzf+U/vuNF+ngjAIOc6TsX/vtD+a4B8G4RgF8L4DjgvB9C6/pHH+76vSRg6/DoXswR6wl8aBGAd3tf7n+cIz6vg45vIwAPcT1Drb8fJAGA2m0eEOS48ojyMbT5iwj13hOp8Z5EmE0B9KMwicUkkKxQMQ9qxIObhQfoWQgrMqSlgi++lFUgteINs99qAu1xyr0kzmbxc6qFSl63/Aq79rv3yABZO1UWBeRBXRjaJPtaXEtkQ3/ezc2NokzbRevtxlsy+cX65OyzVg699757+qT6W/SXuR7FXqqqYYFdvR9JUASj1Zf0iVvXcm8ERqk+/pJUuQJkXTOmt2mHWI6KEjOUNQH28Hw+mUwWi4WeThVFLKC346SuQY0IQt/936tq5S5buqd3ne39rpWA7xkBUOqRGja0JG2ht32jsPXy2gvQjvJ0b+07axGbjhAFzdxS5k5u1YsU2fFjAXTe7K/yoBbHK3Ffx5UOey2+ocab2tV7ZknZsmts3QCb82CfmofO9d3X3fTieWGZwFKPEMVKz3yXaeersb3btbaEPa+KsWotLTcmo5Bp6JvN5vb2luULyOBXvzhfNxYGSRwPC6Od0H/oWQdys4wkdGNrno9fuzoMXEIFT8HjM8HAzp9qGKsh18U59l3WZ30ynzFRQYx/HISnjpOQpZ3FeNvq4y7yNp3G9v/NDXJLqLlkKyd+ZyMAB3sKB2aWoWbXM3UgHdFQ+b41Dx/82qwUTzZbz3t3iPnXbwAMj9vgKMd/5/flnu1Yj/Kd3y/vh4MGw5HqNtxhCFF43pMwVw+urWAKH38dJfCwshp8EiOrGXAfPn3RnAT8koWd830QxSVSD0XNPxToLz70OsCBElOml8UB1rs1Sv4Kr10J7gKkhCXSLP9lVQaVUGJQEqAFLgpu3rx54xUH0DwBD22zffbZZ65C8M2Nrl6ULVeXKtfyxQJ6F+fn55aVq31VVi5ZWUkO9uzdtdwz+C2h2Vr+bSwerrb2yA46SDgGhH7ZVVICsIXAl3nS7eobBlHSUrrdGGieciyVO93YgyhNXYruUyXAl9ftOoTqTyZ6Y8dPr4wscwCYHMmgioLU29vb0WiEOglnZ4o1b29vNfdDCeKkl/A52vlQLkDCKfuKlgpYPXevewodD4v+tjfq68Xuhl7ntg+NQrxFYL0/lGP6fm7vRuyvLJ3JXp5utFqoivzsY9IL0yRvz6BVvG55aCrPqmdRADqfz5usUPh3GQvKJHNUJXH1+QolZu8WvFIbvUmrVv2z+0ytOeHlSFiLWs3m/STyNtrmzRIkq1jjh3NLKik9VDhdr9eUA1ItUb7g3OJwuUQKVRdI+VfMkx4Jq54aoNQC8kqw6S0w3dYLBkrlkFb5yhqZWj/O9ozVQe4dw9qrKiKsOrnShzhjkkasVCI7+L4AqmbZpGpLA7MVOWiPHRwBcBZ8Ld5984mBtb+Fn5IpdcDxh9qh+79bEvD9cd4Q5/LQNgQUHtqT+qFFAIZkQB/aQFIwYXG/54uyG4+l63+sSNHQ+wg00fc+DiUAHKuw2rHG7VG4+BXHFTgwkfeJyreAztHe5zsYAMK66Tl133GiOsAqhmqWXDriKImTKEaiKvBd6H2C8FMXAPpkYpAUKq0UoMzDusUPgkF1UcrOIg3khq5YAEz+k43AYEWRV+RFyA6MKkiaMb4HYVUWNbewx6oaWbXqXQPlSJ5QDl0RhBuyJKnhn8N21qYnGrIU/C51QaMH6tHU3APP2e95KPXeKbtp3a6KOTy9du4vF1WKadN+ykhBj0NtVd6cqirKEpV9RyIw0lVfUY+sOuzdWivFgB3YarItWaTM80A7zvTYFTayqI465d37DWuoGFEDynribc6G11jwy4rTE09cXFxYNEnoyUxHPW83kdEGiPinssx15KDCRFCWBSJNcZQi3lQi6hUGsWaqVMVeEm030NqZgX3groGg3v2tzLkNCpFy1rUJwYkxkFeZ6F3K090hCKuwZHNaJiN0qeXKq3ff4n695jhuob8muRJ9WiCr3vRXr16pwWCLvGphPu8uRilkZPQUXdq9x03SF1P70z4p661w72Pi8sXVbGBXsOBXD6UHb1w7iWmjLKklQUl/oo7EarW6ubnZbrfT6fTs7Iz8IkYVtKKw6nKOUiQJUCuJaS1EwFqJIhf07+oASiTBRh50zIxGI73yvRpwoau/oXEY/lYNaasmZK2jveEklE7bnzpvXL1+Y15esJUmU9jtzAmR8wZpOoqioCzl7d45ZwoTHhgnWa/XT548sTkkqgQV/rnf++vvsGDf3wAYOs7QAj+UZT94JQce/1CgdiwP6LE8vocCx0OP//482ccBlJ6Tpptq47X3xek/roHX894NfYLVcITzHmv/YxminpxiG6GGz7wD9JETiwwqBbjuk3rM8mS8rC9dUDvOqnYx8Aot7ftKRZIiDEbiEiL0j2EKAOjXIbbAky8gHtBfzIM4gWc3kafmaecxR9ZW5+ENh4ZRoGhbkoCVG5DLFMJRgHWFyxiMBpnFAXsDcFu7owdGE2tdyWwvv3DmSlBJDEJgM68/hT58W52+Vzak+5Ky8JN9O2wI3rpUeV+2wJYdVAQcXaCDIIojp+7dXQ3CFCA/KFJhnGZJmiBaUouWalevXa/NJiTISo98ZYI2pSNrAq61JXgE1i713eTDspgWmNq7toXD9r4Yvpk1qGzEwCuSqpfhyUF6FYLVk0pymjWfhOQWOSeEMa6wp9TB6L6/+nztBaiDo9fR5qVd8vnm+c7ejg4tvi+eYQDdTOGQ9Pan5p8ox4N4q7cpR9zrn9XKUUo8rGwZPnZcbddrm2atoafr62tbZ6B1zJet/ozG37rXo/1JO9Tj3Hsjze6w3eJ61J2vhqKXY9O+xbkT/FGUqXUGvCRmNw53oOVYM6NrYNhYyq9+8adJCq8/3fwK8+w8Y996Owd6cdedRCDpWVAjmf3m3ZfmO/Et0OeC7btcTQ4tqGfriniFt2y80XDPaiYfM8lnNAaNjWU6YDabSg4q6ZvnubuMOKjKoCh3BTqymjQzz3a7vb29pf1PJQA1/qMomk6np6enYBC9mwHwcEDcq8b31sv4rhoAD32cD80AOLTdfT1dAHHoOPnY26ABeeD+wQPvf9xIlHc0QasA+t09e0OxpMz0Hqqr0sPDINO2McC6sFgSdOHjd8m6YT0CbWKPhcxzaXqWrVgpC1jUG463M2TrOgrF098W+WrfArsO2e1R2AJKu0Pvc4EBEPcIYliOrJofCiItjvQuwELSpgTsXkROP4cMdauX32X890wIiP7suc/ZuGpafXTnEm6SUL0jq7SiOvZ4C9MpPPd6j3re8XjsndQbft6QsInadjvPZbuRX2azmQfdOMJHkvPgefRpACjEtIBSqQ7eLQxFGDxBW93YzcFgd+IpN+9jd+3wXoo2wtl5X3RUe4MKaa77B9d+86wv90INUKf0fj3bHrn3fZSVocJk6hPwbpDFYgmOKaJFtauT2cwWa9OaGCzepHetA2mctao7XYaSLTnMVhQmP8c0pt/Y97SBqnvznr7dCkCt2xvek8pxkLTgGhtzSLrjqti581r0r/nQHJAUv2dtitlk3FtPwKru2HFFx42a3yqZqnZ73XhMeLTlculFZmz+g4b19K9amVjNRdobm83Gvp56Vd1cIJb2q2rM/834lFdFWhyhvIMaAPqdl60SScwqSdN0Oh4zpsHSxewBNcD4Vo5Go+l06tKmg/fU3uoB/ZYRgOMCi19/+77lBhzqER/avwvsvJDxB9IGdesPpKAcevz3RS176Pe0V0bQ+cVdwdz9/ZuS9R2g3HIovZXVg938Ij7zUs4ibrwkSRNQdfiz1hkon5jxIWW994hVdtNSYnQxZpKctWOJYDT7zZKMoxDTPSWA6ATzXH3Yo0kbcYcVTvDewsld+p5L2Dc+2TnKwrfJjook1AevMNTzZNuKBPrCduGvf6kN8OqiQ6UMeUuJpRZov3k1U/c406kLzdsIBnUzLb9ZObu8xi7g7vKeeVWKk7zrH1KbsYXV7F1rkq6etzGZTCE54/7UCMm+rj/FRloTRa/f4zfrd08uVk/k4SpbucwmDXefUXd09RoAvGxrD+sNeur1vF/mmuvIVMCaNSUOuuf1oL+67bthGava5MFQazDYOyLFizYk/0rQf3JywkGyWq10nKiEpcfY8eTIbUKCNZj3rZVwyE2m48HG6JIE97UvA+Ceu4YFrHxWRtkdQec2WVYLXSlsdXNC0aPOxPHMMBqzgIhf4zieTCY2rOGl8HbVlkiVsfwlioypCRSbtAQvRdhGEugg4OSgDgIVEeEpOA8oUbA7mHsdNzQAysIheEaxtLAAHz3nFusr0SRjdeoz8Ej0v1wuuUBYM5Kz9Hg8Zm1mvkTJ3S/e/dsRKRzd73dczENf/4dmSDw0UHvo4/waIg8H5RK8r+f7bd6Lb9MeOqL1vgwAD6m/1YS23qPu8PA2WjenPaM4xIHzRYU/zOIsSqMszsIkjIO4Cit+RnUkn2FQV3UAWrTnHOVMbTmmukLUjai/BSWqNGfxlih81KDECMCyqMUrLtNigiosq7ZGjwVMNjfG9nC9L5Kj4NhWFdVYv+X0W2KGqh4NeVKHAL2N4/OLrVFlH31Xulu3WwaIOvMsjrH8/h0o7SAAWD60evvIKlawxT29iq1cp20dLkvYsBVYhxwWFiHxfrtOd5KY9Ym0A6PcMxisNWIPbt2cdiQYrn9LJdIRpQCoG5WydqBJpgSGU2XPXt6/96J5zDftEy0FZa0UwTTOo6/DTJNrbT0s7qMPzrOmLDpUY4O9t906A9J2tZdLZh8NcVjXYMuyLM9zUlAI8amIxRfH4/onSWLrbFi1KCtPORQB2687kXoxBO852smHyepqUfDd5CswnU41AqbuZ3D9xzBsaCE7nRwzQekZdaKrJeXds/k5zpXFvlwuy7KcTCaz2YyqPhamq0XhTZIeVU/PyGTf0Whkp0S1fDRS5yVIeJ2sfUhbQgE69ZQ4CbRzpuEQermOlmKq3ctLdUnPYhZaxwo7044rpjJz0n798iUvjJYDr8eWTJ7P5+MxoijOeRE8cHsH4NWL+39tBaG+5zrrH/v9dsvQqMfoSFf62O567x563Hru8/Z69PAipeK+wGndTx2JJCzQsRaqMEI6o9nSYBTH9d9bfsIwmKSg+6RxFiUhjIA4iIK4Dqs0zqqgDKjBU+kRK03G7crwWfebLoSTycR6OhWnepSA1jvIq22Wbx7GVboVx37gUkiDuiL63Mvq0y9qAnnLlQXong3TU2bVJDtaC8EDRpamrACu66fsB7h9cXYF+t3nPp64ftM9Cd3UkNC4Chfd9c21l1vMHbjodmUB5/OZfShKD7BWhz79LiXAu/fud1uxVTOG67qmR992Ba82QxlRvwVBQMEfRQllWRKMzudzL3BhxW16bY/e61QZ2S7lybYuYu42tUzsI2Yyur1OSz23QI2XsVqt9LfKfYrjeNOJCKlYikI6ZTR1Pbj63SZP2y+aHmqpfXVd39zcEDTTF6tAbbfZMF2Vrm66eDebjbW3LXbsOjvUIPEgZrcb7ZTi0V3MLOdPDnymWmhMuf6uzm7okqFVrUvNXTtT6YTGSKydZHgBk8nk5ubm9vY2CILZbMbpTh5K67O2d63jwQsO6M6tySGuen2y9b57xQuDaE10O1OpWYuIXFFogWHq6vKt7DomGgMs7kxidHwAkWtFZ3oWLPPHu2DVIRiNwBFiWIPGEovBMelF0T9LNJyenk4mUE1o66s8tAf93fbv2gAfmmf0fQHx9+W5P5YH/aGf49CCeuj1PHS7oyDIRxEBeG/zRlNIyGvdCm53H8fuv7eQVK2n2QO+6hhup+YwHMVBGJXUxUFVBiji1HVVVjXKJEGMJ6ilchf10JIkdgBaF0IuGAQciiw9okXXrLVJnHZhiFAeYO/Ku4urpx7joWfL1fEAXx22QNk7jla6VWe/6sd7aJLHt55sG4rxHPb6aSvj2jHTjQxoFMIutG571BZB9l40PT6fxWazcbxeyXlQL6mVMtTIAE+kWb/dZEcbwVdo0tsP2lQO1QPuNulZQ/x2PNudJcdjj+qt90Je9Xq9VtUaOqGtGonlCCmXuhso8DJG9FF6qqCyz95tehi6+3Bt0qRXi1ev0/I3hKrhOPH2FaNDWnM8FOJ7nWyd6Kwn4OfZ4ynvjX/Lp+9GKqTfcBxrKKpClJqaCk+LoiA+08vT6+f12PdFHb3edjYvZ0m3e5EKvVSt7eX91cqkch9e6nK5JEGFybhadmqxXlkpG4tW1ST2zAzvIvnEqcxjS5h1DWA7b9sAV++zsBUYrE5/uD8A1uu1V/eDd6fzsyUdqWyrZEtvKa9p9UC7YrL6HDVEwLIwap/Qo08ELy6c1uTwCgtoNgKnwdVqtVwuZ5MJ1yaK/3J65KvNQh9JkjB04wyA4IHbOwOa3gXsHY7zkXrQPzTKykO3Q5/L3ePBQgfLmPxw2rFkN99XEvCxDJVjGQDe+Gkvb+CGh/SYqQrYjapzovfVdSLIdMak9sj0HAYVLAKo4pSSGlyLuk6NtGC5cs9HrlerS6Z6CtUv6AW12Rh6trfAxclLgpTFR5YiQb5tL6FCMCwSUILljnGpJlodydEs+m9dgPseRLtsO6zTIGVcVcNxh8h9c63QNzIeMqlg3wC7NNb0A3kOzXe5r2ZJb4EXJItc2oJkOPDh4WcN6KRQfbM9L3JoPkmPW1BeuKSJNrWXSOXk5KSbrMwcjF5q1u3tjW63nuZeyk2vL9MO4K4NoFQf73qoJmRTThziL93+FjXSCWopT0mSkIJCA8O+HRbid+MSXmTAA6CdMJEr0OYNKju6vOZpRumeiggtxlIjx5bxcsmyTaEoJW3zT1Ph4nsj3PK/h5YPz2z2IgP6T6W6qYXMV3UymXCwscNV+XEyGil0o4iNrfJr0aSXA6Djynr0u07osmxt++4teLfJv6g1ZflvpKwwQ1eDSFaKVA1dO+CH4iQ6ZvQUm82GSjVa7pcotpZqJBqOs5Nnt4t0/Kjjv/siBM3j1rRgHbe2fFvXytJHSUe7vkpWNMnmJHgvpgdUCol8No9bFPo5zqWwmnWd6PjnoejjZ9mE0WhECpNF/zQnTk5ONJNE3ROgaAYfGNDpvk7B97I9GgBs72D4ddG/TVa753kfuj10ZGmwfx76+O+peWQV/WxIMX7b59m3UEw8cHs1Xzmhe8mabhYOayk6vx83h9wPpCEE8PCw9MlzKLaKK6qpp5pxlHSwmDKO9zx8uqjY4rsWaf3/2fuznkmWLTsQC/eI+KbMPLcKUkEE/4MESNCDpBbUg9hEkd1qUg/9/99IUGCBde/JzG+ISTDb5suXrb23RURmnqpLQVan4nr6525uw7Y9DxtijkVVLz7c9srhUAieOKVIahdm1N4WDbTwf6YhZhqJslP8XRBC82kWHrFmw1iz+oRBrtKMAfLeDggyFkXgw/OTt4pcLpdv377B99pUxV++fNnv9+aq5F22IBUYk2EpXKoGt/jXsk+wcRWckpLFucw1kcfPEGvBo/AEQ/oRtpAwe/RQs0ihK8DPX/7yFyQDMQXnx8fH169fOXYCp4DrMFgTDgbnCOtpXgcmNpM3tp2UIAvWXel9EbPhwwAkOBhQB4HH9gKe0zsKouXv2m4CGKBq/fgocCtLgRgMnwa0ZvZd/cdgGUPWHfCR1szpBapicJMSawHsdPx4T3z9uxgbwhtdaAp8XaymLCbFL0LtzTX4/u7v/g47zi6IT09PEmZtz7OlLuQJ2XR2Pp+tToUhSbOttXLFVQDAyrNPnY9hsHW2Ds1eYbZTyZl7oarY5pEllZstlgmCkK0M/modwlnIcDh7PAKELH2nW+TWodk6qkvPKsQ+LC6LIujirL29vX3//v10OtlxPlYrBMeQmGD/6VNxTWQprvk4/R/+r/8twzFTms09LUvTlsl89+Zf/6MtAPf2/6sYtawfz9DAtH1X/79K8531A19Dx3hpYS8R0OX3V8FD1n5Vhdd/Lrj6VfUKTpHDN9g+v0H3JgobrIOHkx/Zl5KYcaXu0ICaARp0C587vK1ZdHhq7NKz5gecL88PD6WwkbMAsLaMcPG5FuoKGFmub4XEc9VHv3zL0v+BWhifgRf5ux8fazo53p1wX8o4SffJyhS+ZonCL7hdZD6spVBBZBngzDbcfwY/yJqiTsyLz7HAofjgcuHP0PRvQZ+mRmVlfLHIzCvlRh5PI/lIYLJKTYkAyfw0w+HTUwku5Fw6vJ6DJudCNP1YaoZA3gIUQ7XXAUVFRl2U2axN//Lli4dnS6fIJ0XOl0EyB8iaTlEYbhGY6bcKriUOXhvGD+6kFUR7fOIlQisp0imtJxjQb99K3n3Oo28wY8Gy4BoBSx81UTo8WFBqWmo/E7O7utCwixFU+AY/NJHC8AmUmsVGCsy1CVAQOQdAQ7vMnZRFOZ/YrwbzgsGBD28dSasf0pnsFkFU7Bi2ZWDljRc37xRU+JZ44rn+L6f1ZKU7FgohIlMpStiYb/bjR2YtAyQI59uqncH6rHiJ0rxy0TRWEPCA7SuX6rpjKYbM0gLLGwRXxic477RfSzDD4iBkIoflL4LgARWPBePaP5cpV7HwYUU+5hTUYHjbCpMh3AIE69u3b7///rvlYzVxsXyi6v6tMtqnT5++fPlibj92RkCJ1kDz//3/5f8REoCMMGeMyFWGSfq/2/T/ixi1e9sfLQDc6Asuhr/bx/Or1ufGfm5cLm9K/v8LAP80gtzpmoVN7lwV7O9ah9vPvjdh17vn+VQr1DrdIdua0UMtgBXkiWcFm2jsnh5KMSMrY8TFjCyXiZU6spJGZU9K0a5D8Z7ppQvzYRXXkcYY7TUfvDWu3NmfjtN956tnEIVN958QoQXXnG+efG+6LBZ+F3zzrizYXNZMr4x+D+Z45vHxUazqYDRDweP19dXoIlKSV3+hzWu1lTM3zBskaj8EKfoGjSarbyvj1bLTSMVf2pxR/nhZTD8v3zmUxPFGnFdGUHY5nJcxYaTAbs1YCi6BBN965vvxYoKv6tmcOsdrryHu4Kc6znmsYudFXH0smJJXT5pUqCjP1M7Zyx8Txyv9yq/ZkNhyyBYwPuCWBlQ21Nug8NYDFbRi2524jtCKal0IVhSK1sAKgfHiyJoL0qjB4n+G1AQJh80LmQCAIfEc0TPW3AqBIVAeTD/HonQxM1vNDuytCmyRyNzx4QzzUVXmdhIRhWUlsc076+npySKSJZlPc1c6lHoaIsWZYhS1h7noGwcpLUbgwvp//vJCZaTbYMq5+FglFhYXLWQfdQwQNHKqbL1J8p9rM/sJlz6ApaUMUmwKnN7rFzIuHrv9/6rrxb1tzCAKAf4n0BBn7ep35YFs/P6ZXyvC/dGC0K9i9P9owfXqOOXCa4h/bISDt/jsDyQQHj+TjcWTpv1T8uWHz1fN4m67cZp+Yhw7lmg6l5hd8+kvGThL1s7pUnSWtc75uURU1nSeNSC21t091sqn5Y2OEG5r/nifPI7PQphrXHjEWkI1YLjFN5quDYG3gMs6qeW/tjL1d1lJ4yt006fpSJZGhqWi3bSXudvIe7hdGL2ve2d7WD/RYhLaM81Fah3YChXL2D4QZExrWl2GGhAIAD8+P8MV53y5mKoftUbZ9QJRoeLSsLBU8TlCUCyOzyJUaDAuuzDhDhSTGInQ38xy4gsJWYeIKxWGaXNuFlpJiykVT30T3o6deaBBZIdpSfPqVTxtq+uWMmvIDKsGbRf5pdNMA9Q53pplQu86BYuftyCVRVs0o7DkRPXLVvYaITCsJ0a+eS5nK4yvjAouScIZs2sfn2vJdLTih0sXr48+JUYWjbMn8S4bwwqzpJWh/fj42O0K34kkP2BAMU3x71/8WXjFVtCFmcUOY9GIvzfXPphQOom993sxKVtQqDVLesNplAEkEhqB83hcijDAL2uz2Vh607eai+nz58/mRGSKdp4OBACAAQJ5cRyg0ceTBi3gwpfsSa2QcJOgyk22Y6z1xQwnGOP+5z//GcNGCqkiD9RuzR3o5eUFsewm58CYA8tzZ6fji3sLFd1iGfBS7+3tj2aY/rnaWKMvRvDBov0qweZn+uHRsu+vFzJ/QCX8k+1XWZz+aAHgn1JQ8QZfvyO/qjBZ+N3BODmD22qW3Uyny0eYcZLz4q9+C7USanU8qEXTt/vKBrSMPaTpL5TRro/VZN8NtRQHnubdtNlsF5/Nw6WQv4/CDRxrsK9bTPOFVSXcZXo/vktaQMyFP0rrv6bzg+zEPv3OQajj5rmIFd/pOT3ler3vNX7LWkTq//AgSwkt5gwGFq2wW1RKDtP2C/dpvvJG8CydyJq8v5JMrlQKJob3C9YAY0B9YwadOYz9vunU8CfQfhG0wnW7Khgjs4oMm91FeDdLBWrqE84kYFIlYTm7r9giIPzd4gRsMQFO5jMtho5MH1RiubdbK1Qnortfz/ai00fYu5a/iH3i4foiEdKi1+BPFwZ0kWFYcjA/DR4Mwe06Ix6SWUJIidva8bgKfixXcEwwiz3wERdUJlnLVo17k6jb5jJTHh4r9k3n5831yzbX/OLs+m//9n9jMGASFCvX/efKjOptD8P4qEGR1dEDijAZg+twIysRy1pMEWR9mBxwEjNz9+dzYT1YWthNBTw4bjFqNdcdswP8/vvvT0/FFUd2oSY56DzQMFQ7Fyxb2tRwfCjBUQEpC78x+We/b4HFxb1nWxJzGR9vS2d1DBCbYbuGqPHnar6wfP/m0WSCOnYWqaVanRYg4quo55a//vVo1rP2qxiaX9WuulII+ss0Q/fGbPxBggqGnaWly4M1/9jx/6r2R8PJHy7IJSc9q2T5R8NPFtPidX518JW89EXj94tGn/1HQYD320tJ4V8q/17maVf198WxtUTjVh3/Zqq6+81pUzX9cyUT6ziWNWji68I7ECfb8st0nN00vX2svr+VJDQ+7LEW4mGdMdL8CXe4rMAavCvkJ3Sh8ayDSCbSjEHxaRZlI/C71DhWowHXDZD7Xm15oyKDPy0FekCnTSuJQrz46NevXzmvthHXYg2omTUKNBZn9Moo1x3lUdV8QsY8Zq4sWoAJ4gTXMeDNsiBdSU3D6TXlVIqrFd9nAMCwSwXoPjvKAgbdYmI72DULvcEywIXAbFW/fv0KWDXexTwlGJ/zeJCGsh+/iZsBMIhaELPYL4kK5RVYMNj/qvr6l5T5bO5AoDZS8XgIDMUw5m75rEE4BEfLs2CG3oMBrmGxEbuNWELQJ9L+im9kKVDi/G1E18Zfr1oRNUKai51lkbc8mE9PT3/7t39b3cfVrMTxHryYg6PNQqlx/ziVpu1mzyLkQpDFtHY+NUWAuHKZuw7vgpiaUcLMOODj8WgwDGKBNKBWduB0Ov3jP/7j29vbNE2fPn3ienacFcBiGOBEZEjGgiWQbAcPGyOO3A+L2QHea+11DJIDS8xb6fv378jsiTIRpvs3e8Jvv/1m6ZLA/SNHELT+neIs0z1khPmHgwLHCux/Msbor62NBRImpf80Isq9Xxkz7uPxZ1rhW9qv0sRn7b+Wfu593nYrlAG8I8ovdC3LvAKyfeQArzWe8nLaV59aKH0R58dp2lcBYHOep5Np+qvzbmH5ijtKwa27cqeUwSq/m8u5ugMXn9H6cPddD+eA6t1jY+CkwcfDK8XZVQCZUmQdRCEduSJ0fRLXsnL/zFuw2y6nsj4c1uw6veChPRfqixybiV6W/2kXcH0RCYRn4ZfIwwYTb1RONS9brBjSd4oCe2UE52IMggUctJzzrqK3AgDTtEvSzrLrI+dcP1efbF9Z1jgJgK7w3xn36U8xM0aZVpuFwFNNA+o/ly0+9P3QOLKrD/zooKkVPmGApura1txQNQYAZhYcCoETrJWIyrAwc1kGcKjYa0kLI67qWEPT8hp7BG20WRI8U1u/0om44lvCWwMBleVzaMolrz9bbPAt8Sn3ZBQZZHzMD615twWS4BUD/o//8T/aLB4fH+1wWaKCS7V1hlp/L9sLGMjDyMKEGNzC+u+aAI/9kkBz3t/Sc2/rw6gAoiJMsqcoVOBWSHFfBQCEI9vwPn/+vN1uzQPKip3BjYcNVmhIWwSp2Do0E4dp+s1qh4JcJvCguIEt6p/+9CcSEkrVcFNqnE8tWuDj48OMmZBsGeOZzeHh4eHLly/2RRMa4cqF9Ecsrxb65d0zvOz484z4jeaFf4L2zz6AG8cjjBce++eqaHtV0BL0JJozT968g9AvGeevhdvb+/mjx/PLvuse8JrFH/vi+C1OQ3nLV1hHhbMwb7aPD0UCYPKPNCDsiNygsWoc501R8kLr335PR7tTf0sa/yIDbErOFPLYqQ/YaNleD+VT8WnYW4Z7UcPva8Ggle2o/1t6OxdfUhAnRFWaXieir/F5l0ydq+Jmo/4Pbf3N8bpOqSPky/K36fTnt+M2Fn8My6LDMQDMWJbVIObgeK7MsWUTX0SAstqtj6WrFRjWA9AWswkqNfvKdn54KH4CoKDNk7hn/S+Xy6dPnySo18Jzt5XhEy2mrGQPhOHyN407+3zb/V1feXddh8U1hZ3RLTvNmP6CYQ0FP3waGmKJhtwks5Pjj3+CH2KP4fP5/OnTJwzevgsl5QpK1BJXJeOVgzX3CIGV4pyB3gZgKR3FWd8Ybr7DmVucqFzatg9SB6biIFrmlXlS9jy72PmJeB08i21hcl7eehbqRMBeJIqTlwN9zAB9fT3XzNSalwvCRm3p3t/fHx+7bD+YAvgQ4f69wsJeNBcpRPpCf2+WT54ji+US8VKfXyvfsVjCeypHWGIDTPWOdKXTImYg1uV7bcjLeTgcrGwzkDbbQzZLeIlhchbYIH5wmIo5H5oafamZ0AoFUvnkJjaUtKHnYuyyxD68MqbUt54trdzLywtijk3UMd3/+/u7fQhuP0AdZS8ECaINXU26LBn2a/kxovttI5bzoIchadrPZhP3X6nSuQTqTTf9zptteL/0Eb8VPz9dsufv+63MTTAvu28ZSGpgX/FRNoEyXAXbGLmPTYveCH/TNrTa1zKn/e88h+M/bbdFqbBoZNffbXGNuGM8+WAyeAj36wf796tnM70HbsP7P9bCc7eL++/ZCxEshZscuGaNshJN581llt9Cp+o1nG3stynvL4VD5d/L8XiZp1IUarfdz9vNdt5NBa4eH/bbmjdN0j7ONTuEMSflc432nDaXQ3GTLdlEym8rbFnqdJ2rMFBkhPrXNnYwZLwazGd0ORk3mw+qyMvtjQp18dmxiGQEI1rRWUPi/LAQWq9BBwHmm3X1AgGgpdB2Alglxp2GkoWTeHMXFyABFSOQIPmrj7Kr9AkNKEOgV93Jr9nB7RcU7vX19du3byCu5vxqmksjkMzrW1cfr6+wHbEjFmeAWff6Ul1ZIsz3/l60dGAEseDm0Sup1i+XixUUw3QkKaenv5LHHePndKJ206czsr82hoacVbhDDoLnKb++viI1yna7NabQ/ENkE2GF48BTdGVMpFMen4rL0xR4sgmckMp89Vgw3pFTZKJ5xAXmD2yuj72xglNwIWMmSSJnMF+2J7CXERLOwhTJMQAGExaNNFdmyCZWfkumqdJR4QG3W9SdECV6FgR8OZ0tjyQ06OxSKMBTz51B+LYksDyd399f398Px+PHv/yX/9JipUocVBFWS7qDh4fGH9qYjYqXX6PoRbdSKF+jf+0TCpwsABgAgwM2xbmkJWX3KoE3e51d2MFwczEy3jXDrqKkt8X5qCr53W738vJi4Ho8Hv/Tf/pP7HNvyXZgIMK2Qi7db4sREv42yMxjAqr1acK/YacKvQZIx/O5JPzZ74vJ5fv3b5Q2dL8MoJzT19fXr1+/fnx8oCSc1fCGid4sNs/Pz2bOMjA2AcAOMtd84OC6sqr/x//bfy9y5zXu/BwS+KmQtuh+ouFLfcqXv9/KYBWz9Hk6z5e5+91Ne7ljv6V2Z3T/ctyE97Pfmh3kjv7Ph0sVPWb9rUfOz+t4PHPCwXoga83woq2s3gr977a6tMr90k6xwGZHPWJA72VD7xMIL1Uw+HmBJDY7XGrWiAoPfrXP00l3sORz6XQMvmf5RMWBdwgA6TrEzxcycdfqW3mi2/s/J6uameB3+64+ANCxpJHGK4+FoSwE4lzyD7ZfSx9vMFyrsvKa1J4r2rZPLkx6KUZrTF8J3d0WBr88W4Jig4SGwr82mlEEgMuu9GeaPpCqMsLlTNVcKYUcllGEjGmY7WqswuA0kX0x1GC0eN43S7kjjBp8tX2Byd1ud3KMb+hM0qbJ1/QMGHqZBawEIgN8//5d+Ln21yVPD6g7zPdhPnuk5wPDZ5p+aCWNPQVte3l58YW3Bn6JY4uc31yOjeGJm8YOUchIMHWu5D+c1wBaPP/KGmLJVRrWGYDmHuvcCkWdWoyHCJbmQwwNpTk8HA6Hx+qSIVlfBJ55qBwLgaVjwO5blRAojW8Xz9pPsLkrnFo1XPbtsQkavwXnaaSOgdTBGu4vX774m5vN5k+/lXoI/k880y6V7aJx9+AkjDsLCcBgpxpyYr8hvZYeMCSLgXH7XiwzzNgBIbQkm6R7bk5w8/xxeH97fT8cPzaX6eFx//T4/PC4Lwz+bGqWjSlhasWty26eL9V6CA+q5stVEbqNfP0rSYDslceR+lxdsVaqLu4r7F5vGnpjhRHdu9vtzDX/219+f63NmGxky4GFTSwn7+8l6YIIjZIV6kJLjTpxLAqimLd45xee/uUJYdMsE/JmISNQ/aixEPNuN+/3j2UBlvLD/CRkjP/8//kHy9xq3L+Fv7++vj49le/O8/z8/GzJ/qtgUHKSHk9N8c/JD5D3096CxaAIAKH184oAkCDQ5H6AC1LTf+JzmbUaWBTcvzdf/r3tJ1012iGfNlZYxzcoqBR9b3e3T6AkLtncO867YjyaYff2/i+tNurt7SaBBBq7uaj6gz0KeaCi/61CmIxZnuxlYxMA/iD4mX9UALi1/0wAYF/VTgN3WX1P2ZlYNJR4/vjefJ2tCQPNep162AvjjZ5Zc2ZZFNj702yPj0UptVqfZaaycUUmvhRDA6aAh+EygRfB6ICGeU9u/90Q+UilYb44N4qpv6lr36JRlgmGlYmRpJDVruHKrEvkbAvcm1/b3VIACJyWyIciMBR5v186NDDuCI8zVsb4OTNng2829tSomtFv4/m4WBVP/N56NfDjl02H2y68JpDWwwZpUbwYGxyA4J+GrCb+cHEQsACz8Nk8fl5DPMOuzJ1k3hfNwItWlBRZfcC4PO2LYMDhs9gs7weSnY5c4KzM6LxmQ18teAsXKBakwjhT9l5sEBg++Fgbf/P4+IiwSLBN5tfB8QOwJBxrDAzvS+jDsxoBKH0tn0qGN97K5+pqwls2FsilnoMfmIuz1+xh1r5//84YGz0cDu/n6taPA2iMaSzAnDfbS6AAgrXHA6Tw33zYOWYDHZ6P5Xz5RF62xaaReX5+NpGg3Cka9uZ2z8fEGH2YVQEDVgFXUDoqak+Uhw38ukSbhAog49TLzWX2PjwAC0JhMyarr0ICFyYDWHL4zbffS1A7F6qzeb28vNgYkO7Tqs4VtUgVu+wxbAEMJsg1ZAPocpYxgRwxssXm41v0fBMVwq4SBjFxy0jHkyRqviSMDuefvqn/pGX5obN5qSkco0xdKey+PWh5tNs/7xrovelc71yGH2g/VdDq6jaVE05IXMitYPOi9ZiaAOA0/Z3w8AungF5/RSc2tjvO15jweAUem7+ZwMAOwFis3Cz/3/RAfSIL5WlqD/O2MBxrnmMQAM5Otoy5cgCXU6HCEV30Gsrmvk8RCMxAhwWAzMbqu4KGXkErqRTrz10TkChLzEB04Q0LBQkUDhPyUwwZPT3OxiPLK9y/Mb6sc21UeelfaDzSsAq0nE5rP8wrmAbd/FOZ/n369InjOsz5FQaB7Xb7XBP8Sw4Q4U42P9r8LoC5ZIO7DdXg59u3Zru3B8z0z8Bvol2e5jWW3pnZZY9njhf359Efsa1LaW/9GHtha4vQzxpXsboGcW4o4VfwCWRukZUfI2rZI3xLXEEqQ9esGdIhCkXZAMAwwYXGNsIgGdPkwCE7EXD5Yx4xG3ANmVkX37ueewEYNafZU4sBQJZCYqWwm2ESgnq+Vo9/xsPH4xEYFQrgeuJel5JezRWnjKchy6oSqyytmSgqa9zRBVyLAMAPINsMylchTRbH5DR4XjqBkh4CPJces7xPxV+rxjgVOydp6OHWZYiCPXbAuPPu4/yel4fxItLdIvs+wiHAx7O48v7xxmDD5xT3Cd4aAKBbA0uUpjHPn8PhAItcscFXCQ1SDVKfPTw8PNdG8QMlTVBJTd0HzXPEjjks1RrzH6XcgQ9e4ePt22K+v60VUaFYgbMTpTfrF27tvI0nEyRuJczj5+/97o0m5nZgilfyTS4Z0LweEwEmnVc1Wd7e7hSE7OHglTFDc3sLJVImaf2TBU+yUta/xVxORcY79gLCK5xn/VbBeDj+n4SfwRfu6ye5z1km1iUqMSoPnUFgoUMcBEbdnHf7TtOvKvmepyzpHR8KyuuMwpFGvBHU+XJ4bxaYbh9Jo894rOas1zR5/BVfB9dcTeStgO9f/mkEbNCydZPFkXC39fWeNcG1iF6rJp4+yrxgFtMlo2etVejS8E5ZfTzHKUesugypNzM2Agyf0WPT1DKpQ9bqy+UCVx/kI0d5HWmwTW3uafCZtn+GZQFEHDIKahykaZoLs9LnWUcMAHZZ1uf19dXvL7h8rjwaSua8a5L7ddnHlbdmnuDj48M0iOaXzEVGO/BYGicCCr8uFQkS/GNAsi4sPsex1J2G/qNpiAXhPz4+wh9MIhDYtQOMrwmW1qeFxFi0w2YppCUVA0IQKneWaXHeW1gOPX6zcFJ2B+L99SSMa1eJhSeET4s5EenOXIbsPrJe2jog4EFKYWCFtXLWwm7Eq9FDpjhTwRUNH/LizW5hx1latj9ZWhvzd7eQnjAmDWEAHOSKKrzmosapqww24Nl/XOwJfNYYilBQjGOHROiVGoIARZY2CcpaFQi2vJlawQAJ3P/lMj0sOeKwpLZ9xsdb7IGdAptR6bm4lahhFiEQqCZmupVd1ZS3spH2a7rtWIM+1WR5d2hA731+M8+7kMO1VBu/gGHKBIZfpJHN+reFWNX4zXluU2Aver7zuF0uqid77PJR85cH7RfN6pe1Os474MeOVQVN4jPMB7ECOB61dS8HdXmSeUTPmtTRzNNma14ZRJPYr6mzvdgM7pzxvTtwr3/RfJ8lKul/W/M9O5auIL7J/Ep6RL+avJfv1Oe3piFDvhdsmWkdhIuqDPSqfa/yaiM8nNecrKvnbd38agroFrb4rq5a+TbHY03Tb2pnyQRiDBDci6GasmA15q15vt7pKGsiOXgd4bpPi66X/4kHtjWbkO+cg3qZNdyS66DAfzhO3JUn4YII7qHpkBZXLuFlwxNn+fuZ+8SALQ/3ly9fLHEenvnP//k/g5nbbrcWn4fMjIfDwTgq6NXCJOibH20+G4+N0wKLTWH8/ft38/Yx9eRvv/2GMqKc7QdLAV2jZy5tIh41idAlemWGE3RlAOwNI8YSYfu4Yi6EFk612ZRwDmxEwJAyXhKrMEj5zYXARMCWmBZYAhldYCkQ3AnVpsHD09OTuAC9vLxwxDOSwNrKPNSsMlh23peroOIPMoaKxYFLoUxEJEwRAzxzmfHfi8K+e97OCxduw/A+fy6uIz5mA0OSfKmSKIN599DVB4okzhgLqYZjFZrxoWZeZjsbh3zYFIwbNnn1UvEEiwGciYt5d2bfuU6IoRqkxreGpTPLiZmPDMDsvsUbsPahBdnXOGleBAYnyUpX6chuSfWzYcG7Jke5fHy0aJxq2ah/2hSDAF5B7QKD6iIhV1YeplQL06hRbfW/U0szOk+7/e5hvyvBHu9lOQ/H43meyLKGAzBCoJdMYZ0RxWb1uMMVIf32Xd9N249kNfkVGlw/zgYTVpnjBp/sqtw+V0Yn+MS9hbR+kQb6XgvAvT7u28ulnUAmS6GRtL1QNY44fnzt+ykG3ZITcs1kx8wfBnGLafvXrf9d3aSM/r39Mz1ghttrrIG+BaSreuzysGvp+cSn01xWeAfrKyVIV4bNeUUYL7Vxmma/1yiLj2bHai8MDVh869Cipti3G7qrbFlA9m6xCHEawfUgt/DmwBglmdrt4jx1BZ6E3Ibnwpg5weqDbE4tOJq4E/t9rVmMmDmzHUdlKWFnfbyEDfLtrUt7CsJs62+PsTsKIuE434up20HLWdlmeJKBFpV3N/c0zoLF7fPnz8Yvvr29cYbyT58+CQNtnBYXI+MGy5JwvVwxmpEPu9wI9y9CgkGjOQ/YHeNpbH2Op5Z+EZtoS2q6QzCjeGW7FN7KCl+wltcCNrz9Z2wBcEhG6w+wKtpqd8PRCDD55z//GbCEMiDTNH379s06BMdmnJ8xVWCkYHTyFvKBkA/o9hZOpB+VjCsP9T6bZaReG8MDLJmehMECw36VpjBmbIA1NHBFDQfEzLy8vDAcyqlhi2I717X8OQ+Vrxkp4aYE+/pvMY9+OjSFC7CQiaY2Bav3bGkuW4RuTcwFeOZ4cfjl29mxvJlPT09cZwCxRrIRU49CIRIDWsznXiKGsRSSfch7TjJcwenfVPKYhYklVugXIAdbqIE00h9b/RPUBkZVE0OhOKFMH+EMZp9oBdEjtd+vbfdpKLMYgOz5uwWGVCN7pwCQMV7ZvMh3kB+pdY3ua9OvcPn452xxDEnU8nBz+BwLI7UvXqNnfz8MCrxs5uPxtLl0DhXX/VnD8d9taplunO+VXoou/ObxtKxcwVdOJ9Uor1xvydvTeRcIn8rt6eGx5phaBQBQvnXAq9OChYQbYVg52nku2J8/2oyTl/m0BO0xkZaM2vwhs0V49tQyKjArY+gyywLE1Is57FPikldly8VhYBmJJWUviX2WlKUBz0Q3tyaZ9LR2Wbr28I3sS+qKZozyVJP1GC2sv2+Lb3TbyiUBPAtI3CfzpszLfhxKcB5YMWgE9/u9kS7jVEARv3z5wiwgIoORltsoH4LhRCN+rz4oa3zkj8fj6+ur5cF8eHiw7BkvLy/GkRgHBiGzZE0hBSpnN+fOhYNk1l9WVTxqRMXISmsOYVwT2mzWBCzsjcC+++K9Ey4j19MVswNPh7nAcGGtEBjzrNY4hkQ2grlqRH9iwcFi2s2Pjw/zjTbBzNgd2yOwRJ0rXX5S+FSu6I7QFI+Ws1fxerLrnSjXQwseJ9IROOF/4kVJ34zDYgK8QSw86eumQydbxtKUJNW+2/vztM+GZZsFXMVChbQ5HEbikzi160X3b1y+6dfNDGt8KktNJgDYtww5gH3n+DFeMQjGgB9DKVy/YkNLavoFiFWiv7e1ZSjCk+D+4eUlZiv7tRgVSKc4v6+vr5xiyNakrENR4TfPn+ZkSIXJ2FXSBiCFfsUqBeQAL7vO/uXPQMSg/JIIyFxDeSpZp25/PiVsyfP3aoZ+YYsQSq2MOHyFWy1pdPyhtKr/1TfBhsYHSDX14tDT+JnOMpsFZV428+lU8siKSkOQ2hWz2NJbNuzNH9nAHN84nqzxfNeLinuB2UX/BC4fvpUFyxxbsCy6YsQniX1q6xTbeBExfFzJpWhY+0qc6I3TFK6bXo5MQ8rinGCJ5JhU2xdxHtmNkrPuSNDUYJ1Dbqak6o/WkxdtBfVFEy/ml4HFSYW3passKw4Hw/FGPD8/c353eLBwNifmTdmNmE/T8/Mz51+H/+t/+A//Ado+889mTT/zwYiZQyAgp3+xf0p53R+wyEkdBgzA8oI/Pj5++fIFbtOS9pR3E/nyEYpqU/v999/BH3DaVgshEC6kuTISwwQmAynqBXisLgHvYOONCotVRC8kXMJKBvBWTH4re82NGWh2buYKrFzRNqNHhWGtAgAfYXBjgltYdmKHFq6c2vyely/+7d/+rXVrz7PGFxpisI8lt/ouPhcs7XeGl2VxsEqYF1TRXIL6TCKT+Pl4MybYSlA0ECNYUHGylkl14eaYL8ZgLCMquAFPiszM/j88TlQ5FJdIeVLsh7x3yOPJeAB42CptITvNPM/fv3+3wPqHh4dPnz5ZrQYLlTF4g4MTbG6WCB9bYOyy6f4ZLO0Bm3hood0s4zGPI6jbDS/x4uMgf/v+VSA5zE9NdPD96enJ3HjY0I28/pLIaL8tA7Dzi620WsXwZIN3n0CUVLbmREBr/Pf/6b/5H0LeVCRRVwjs1naV4e72oGbs3vw1NREohcCEmjbGYrJ6XuKvZ1XdCSR7F/e/LRWNAp6DC/GsPczT4RgHHXKaUR5ecaHvh+rHRv/UNKBeU9Xfn0+H84CBc4t5en55tAQyIIdiA5WLsj6RcppRMKThYz19xyWPL/OgYfFIuDCF1vzwHN0bdM5pRrkfCQpfHp9rAbWgT9kIdF7z6LcHeHFknHiralAumQbRMy7TbQzWumJ5kDrUFeyjsqtBjZ7TldqimNenp2fJqA2NVDgeic9jCpdlv/GbxU3uzPsdEvvwL9IsCiNerOQkxWM8yIAp9o3vv3+FSMbmaXatZsbxz19/Dxc/W89SlO22tKf2+/lL0ZSDViE1NUzqGCdHPWZD8vn1s9W2GA+kAQGt5RHyUB8fH6HRtyIDRi//7u/+TsxZWP8QHj7V9ILMJ9mfTGEhTiCsOGTuwbNcmN3LywufPtB142nYSck6fPn0FGuyaST8CcsC5OmCaHmxeubj7vuHswTL9qgDgOMs8MZI3vo5vDcm3qw9j4+PFhsKAR6pZsDc2/Ps+86rKnj78aFLa4sHLE2kP9esgGCYNMGV/wQdhLDUwOf8RSyphb2KGcE02QJpixGmcSMS5/3bb7+JKzwEDCwvpCBjo3ma+NBu0Y6J+cKq3kLxjPWHrh31uWDxE6rU6jN8Kva0/X5/Op3MzoZBYlKsDnioPvSI8YBr07dv31i6ZiaBKwFDnLMCcNMCLRZz/PT09Je//MWw7uPjoykvkHsn3PdzyUrX+fqDP0RWH3iW2lfWmiELwrFCHJCEO2Z904SZT58+2XgMl5p5hA1iAA8Rd22oKMTGAnYZ8P/5vymFwDysQ7IPOInIUeEKo+8KhKEaaNEH1GJe5c5UGdmieRxV6uVqvsWLOKywW7K73FHxd1AhuFTXdE9aP763h92jXVupMDyDccr93Vy/269+WNjL8o2cex9BBjjh19vG1cJLIW4SeXERSKa7BID6gHqLCiPV9dP8VVppKitz1gIcaiXCWqykZMy1ImjbXUd1vBdKP7bVgczzIsyjtwCyQjLPx9OaJAEvhjEAFdkZA6RFvna7B658jF9TrNxTICzwufd0iDRPNjbtE4XAUO7Kfh/27Um735eZW++bZ3irXFnL/BWyPe1KWvFa8m89s3yK86w4YeKLUgHaiQxsMVBsNU2Hj6JhDdlE2zi2NRcG5a1oOmVJ5byEwpiMNgRm0aKJwCAMeiFp1YFABg+A9OtT1uG0ZmdiqoZSmuK2+/L4JMylvWUafXYRaQSmBkGGiyn8Igdb+6VArR+wy/bW129/8f2AhfX7mAvGgVkDkQnCUhuDItvESA+gAgblv/yX/4KUMsZoWvZx+HYLB5lZGE4U9OkUZx342Tg51ssviBcMIIiKQPv9+/fQ1epwbPAfLrUIz0gm4R/2lXd5X/yw2SmcXqmmpKU0AR9VY8ggsMGd5uNtdSFj8RUME+6AsZa0m6GgSAx6cBPeTR50d/XvDAY2R1/JuHUYIRCo9hkavfuKAG2o+NhuCwtrthGurYGYCglKkVgvYa+Vuz2fRQBgyRaEnpuJBPgWp930U6suo2WcxojbLGwpEEzc2YjP54/XYvHz9QQ8pQAfy/iBl/1QVX7G64Oxtq3nalwIMPBcU51PJ7gyagJDD1nIvsUOeGyhCusbmAAA5x8WD+xdDkVA/lO2oUEq4C0GPikKtZZVo3ay8J+bbZlYU8q3qdZlzEzJGfsP0b9G+62/l8upUsOSb9a8Y8sd4wYrY1lqFtFvYRwLA13Fj/PmMp02VtWV7ve/5/B+nVD4fHy/5okvtUMrw96+vpmrgFHSzUwlz8h5/S1x13XME4285D0ohbPPm/Nc79T+q2CxnasrdIGjGrBYWeLiQHw61SyGtTLqpVhyJ8MUu8l4JsERp7apnVPmeTNPJetCsCmCUAgLdJrdQT4HgqdYZpCbTdVRzR11AmXfp7k4GU5zdbGoLOZuP2/n/XZXbNfz1oSXZjTwbL3AtH3PJfAxBgszWiCslKetTsbnlisDPFM263p07btt1sv0S77zhNG3A+X/gyWt+42kmnWm7H+y4N91F+zg2xGqloHG0M/zDiz+riRSvtRo/sbK2+9u+wBGH78F/ssHRLCp5bXKPtbUVuWgWZorW5DM4qEm13VGrc/ur7sFkOudgsCOhxoUWDXQNluGB/PpBx48n0olbdPM4USIn3powcius1OwpE2pD9RhtV0z14L6Vfz6lAgkeHcVRnENRlnOu1jMxKsbKB6U0lxEQt1zOC/Ony0DDp83DTdmxGUTmNsGmfSFigfnLrNI84eE1eNkHawG7tzVqmLs69evplEzXwJkxEcOdcxalKAhg3hY8pCItYEJML8r+heGVWFwm0a8sgueV0BqcMRBCmcvC+vZvkYyoorgnGleeFCfdNX+Clc6TAfj5CxAYF9M424IGWrR0+n0+eUTW3LMsceCvznPvd2HwdBDEa8Vo9ZTrcvhtUuShROLGUqb4fq0DaU1EStxaFRBRiPmbrGezMpDUUIB3IVzNYU6gx+gt16vvuA0gML+2kiX/i17jDEu3aR68UNd+7CwYm+U9ecX2Y8Fm8UCM6d7MhcgHBCw9bCw8RJxnQcRm4FXtzT+j48PE/vNHZQLGniZdsHPmsUL5wXZ95HwpwDtXBU3ter8YrI7WzGH0/F8+GjObLU2Q/nW5y/FPdLUEHD3h8WP5bflNDUsx6aYoAJSWYpq4Xncbs+TsdLd78O8x/V0nk+bU/29PGz1yeWZS3R/s6t6L//85rTBM+Xtel1ygpRaQpWfKBxb+jst1/Nc2Jzgt6YtnDf6Wyr3nAtDL7+FgY+e39XeKv9UfssC1/tTCf8r79aEqevzp8N7iZzfzKVob9WnbEsP82ZXEg5vt/Nl3laLwnZr4TjFnFLGKxrxizH+i3Z2+Z2225XQMoJDaXcOuzyXSsNlXmxNE1Fezra35GQsgm9e48V/asBXeaSpmHp2NWTOhJbNfv9gKZEMFddnym9luKP43YRRmHpzBDNYWBYcnlPV/Z/Oagf3yJppuUVGlfNZpAq7rsFYRQDcTsXxqrjm1BoP5bc+P8nv+XQJ7ifr6YNoGdFY8Xb7ehUky53ddo9rSzXVRnIuPrjUTzNoPD6uedBt9lW1v0boOtPztsoDpet6p/Q3kBWFtW1UsyzeEW6mnaDoFK72JwR1+aWwJzNXn9AvPNPu+4kIXcFFlWJXEs6p3LnPNW/3opmW3zAr37mci87Fy8MzH/kC2B8HVo8hVA5pQ0GA7UX2L8r2q1+Z9AHRJlj78uULv545T/Lpy8bDx1AwmJeWIfhxehnAHrzD4Svy22+/mScxu+dark+eF7MmoQyJ2BWZrNR5ADfJMcQ2TnhLszoW8GwsBbQVwPlwqcK+N6ZwF1uoBPyEfcmU0H5TpB/pX1TaVqSx4HVCp5imuO6siXoWHwbmLK1SOAKE8KLXE4WnnjljQfKK7SPXHdYlg30M8YNZRAGrHd6OGlxlJC8FHxNOO/P29t0YRONcxRFFYsQrYDT4kchvsYiuh+vchX1jf2EZEw29abjFDIgPSRgAa8Eh4dtNpAZm753L5fLbb79xniXk+NdCq7RQ/qZ94rGedMu9Y9k/n5+fbfyctNRegSVBpHSPl+xzkoGnRdzudoXbpfoDYOI5NoOHLRlROUeQN+Dw8/hKpnRoLl7PTw/sxAIHFWNi4azSGPbNqeoGA1eZ5LcyHblLD1xo2ncNUs304VwmqhJx5l/7a/j1y8kcQib5LRxR0ejrb0muGT1fc6yAQS9huO23cIDFBaLKAAWzTUUbe97uyrrZ6uG3jGo723pOhfFf/mouH4sW1n7NoWK3fWBdbNPali2MCwaJiarAX5GRLh9Fwd0JANh+38/tvL7EhPgemKrxUdna+hf+f9rORZ9rjiWmge6dxKpoODQvDLItyZOixcH9goy2xQpVUh5ft3UYoq+a9c1lKtpoS4x4+fT5pWa/2cGRycS2zAUoud99iy9EI9uvc+fSI85FFcCq5r48fS6Gls3q9bHuuFlIFltfEwJKZdliSfM0YN4VkWIxg2K15zSPkdG/5dIuqkAeUBcQVNAMBFNaBhHeYvu19H/Ay6zlDdVXIjZkACbw7J8BMRM4DwfZsPZmKADUr1Z7Asyyfp03Ty/FpWddWoP806oJQ9140xF++fKFDX1QZs/7XZh3DcUxePCw3vn1sSg9r7cWpSkLZlg3EDMR2LhJwDG6CisiI1AVSTPApry+viKzuJH83377zZSmNgaLupbgVKb9nJLSLwXHunCTrCOe8/ZFapnRgYlSyl15z2NsVlOR1jTKwpuGgN0WLeKGpUITXwiDteKHoJJ3m1HRj5BIZi/+wz/8A5bdXJhs444fLcsKHM3NOGMLwilQwgAPrLkUwsNoLQiYB8n7wjNtB6f33ceRN/kkOEd9LgFZQ/9pLpCHSYkOm7M82WpYTSgYSeDTz5uCWGo+UCQYBHjS1yuQ88gPQ3yVHDjWANv2AM7vvKiWcLIM2sGam/M6XJss9kDOo/iXipETrDwTCBiOjouHj4WXmJHN7KU4ifaYP628dbI+qAfCIfh1bI3d54Aoe55PhI2Hc0DDRcrEHh+0bQPjkmoI+UUdhhWMlyXavTzFPuvwfS9qunJnawJAVfrd7HPfPjhHOtCq8ay69KKX3Oza/Wkrvu/wgIcLAhNP05P5dppPi+bY/2YteL52X4ZofHtNjFvr81TC462KSXBhgyRBrHNlGQvjuEQgQOiCAIbf+kxVm1atLSM71kygak+B7Mv57bj4vlDz6mQyVXfkQdCfb5UgdWIx9wlWoJ2WefO0jzPPFgmnrnO5UZ1da/fqOM4jD+UW8bVFMwKPfzYz2XzabvfmkSaSND4qzTLn+nijJIjWirkFcLUvvvhh67L+ZdpuXJxLUO/qTm1rV6Xli2joa4Gz836xIEljn0vaycuhFMtszwzyKS1PVEtY1Hzl4EVDtq4598znCyBUfUNbMJOwUz4dJFC/H4xn0DMFp6wPtn5doT6LCIbEhZ9W8KBK3sIQeBcF+/04Np9y9ANWTzarrmDLBsOaIeOZsJLdIogHNLWQwa0A1YEiPg3NJQ+yaii7GAxOc4EIYF69bDxCvcTEzxDCe2QfMjYCdQYs1PLTp0/w9rGsGuAnrHPxlJDVZqLbWWCoojaHvhgcsp7VHpBgU8wOCSXB6vGLUiQBHxLnrprmUi2i625G6M4KvXnGlO0efMS8PUcEgB6fbD59+lR1oC0uHMWeraQAZatcGMG5oVkcOs51A+4flpPsvGdwFRZWC+dujT1nrhJHX/l70ESVLgIG6DtYRoP5v/3bP2HYsELEuvxlPCIxWuOUnd10CM5lXgxpgMYsjh8mR3y0VSaeOtAKfdyRMn+/33/7/ascdq/mx8HxgjcOrB35j48PsyZZbC6OKhAFpygILUXs1CkyMMovdLX26rGGkxvHkGAiNqQvX748Pz//5c//6KMFUEWYQQtnhMMJsHHCPuFit9/W3OCF4bffwmoX7Xr1aS8uBSUoE446Jg7MlcHvfnfTNrpfnGSXt7pf03i3EMJ6x8II5yJIbAYCQ1FN1d8qNjQH5ODgJfxVFqycp41bSRSvOEy9coazhWYNbkdBN8dqUqiBUYvF5DJNxfVusS+0UqyVo9vunsrkK5yfyNRupmRItIYmTpvL0TjrRK8jkzJOkVWkV20CVeLUBA7iC7GqA+fNQ8nTGfDoZbDrMHhgK4IOFbcS3cuNpwnUwySwKtAKvLF3L59kv0T7vQXLqsZXKrOGhJBbdrvn5pUI+RiACleIeaj64oaVLIbHOrF+ivnIpObo0y0jdl3PdSNEKsCohPCTkjgGmJThrp0BmeIr5pJEOL1oQGpp+rh/FITyGqDxeGS/QigaaPotrtdj/+boZup86ofpEH/CcxXCYQuvz9lX2L+F04bC9Lzdbr9//+4jSkuRZwTHJOvj8FWA9MKg5EbYllAImQ4yatsdkNtsv8S3G3th2X4wWSjFDRMajUeCL0sfbLn8jeTDAcCUxCYM+DoDIbsvu2PPsKDIf2KUInjS63claZV1ZYtjrhdsYPEb1+W37VVeMqQQzLIHGMJZQywvSuGCftGq+yXlLwdD89tvv+FJPsWfnptrEzYFDhuMYCUelOcr5y6cLD8sJEbZ4n6+jJZlcQSroEkmZcA/6+P9J7jgF6KizVrCCS7hCyAa/W5nq9ti87Y4lzQSRUdbWY3Ci1VH6TaGVjdmhRxSFK4WIQ6mZ/hnVMlCHa/qkSwqLOFYP+iWa+3xCRJoxyESV2fZdOhJ57qAxqDDYYbL8EEOx1xw9Bp9qRFeXugyYwKydoIpPx7a6RYPfqT2t9rVVifRQJ0NgByfzSNBZs/DYWX/oFqCgOdPx+58PhaP5OLY0n5PxUvYuM+yGuYbUzyxi3NzVTZswt+q+pvcr9UOLpxt9zsXX5iqcrAeist8zRDWygCUcFr/WxiS5ddYw/1SuVBa8cWOWpasKLYjbDbFZyWiyhVWwFfhv8bI+mwqCMoUX//jofRTpJrF2GHyzrYwmnRoDYgv86ZESpxP58vh8H44nI7HD4uNORep4FRDfI4UOVBS49c9h0NIcw4xy4NzqWrRqKaIx2+LBJ+C+48Pu2IameZpO+/m7bSdzQvefkv4clkD80W39TkaGWA/SAQ1Mi6wfz48PGUaWbkfKbA73kUympdPlANcQb2Kt/NmOlWBtVQbPJw382U77eZd+f8i4Nb461K7vL5ov2UYi9i0hHC3DE527W1Z/KS7Xza4rrO5xhW7kFmHWrYoykPVslHVzhhIeH1kKYpU39eRWDUBSzYVRqmFK1osFU5giwSAyzxXQPKiu7myFaG9zK06zxVmsvmP+S17fX31Hg51ZAEhRz51/6fMBUjS4PLSmWKiONwtv60ibwmcXpUXBUpKrL7mbCXBLDDBW2Uyj0/EpI5hP+z2naX0UqDzMm2eHh7riT8fz6fD+0dx+KtU73G399lUSj7pqqGHOLoq8PI86CKiVPm96iiqWCjny7tALH9Xcw0sNszugFHIlKksADAx/pu/+Rumu6YnM8uAmfJNtfzp06fPnz9bKiS4+iBLkikXEUhqKMLugxUIxylaA6grvJGK14pdfVDHQIId4QrCotF2u7VKrgInbAkRFvNwfPfaBGHgOqmmhgb6ky51ndBEg87SgoC3feIf/uEfzpfj6VjiS7fz/uHx4fHhef+wPZ82p/Ph8HE6Xz7mabd/2L48f94/bI8fLeiZ9aaczhwDQ4UjniYmCJdC4cJZS8pQDYuNKBSKu2qJ5lvQERW64k1ZnyeZltfBq9iwnsynYu7MKSJafUl/2Wg9u4CCHwDFb7blWtmXh9rwQMQgNnJUPTmEmIKCs15/Gb/F8pnbz7TdluKcxSW5JnY6nQ72NeOODodVpc3TtDSa5uDE9Ws/P5c0uLZcbI3hSsbS5NgaPH/79u3l5cUqkJxOp2/fvmERzNpgyAScNAve2J2yv3NZTy8em4IYz5N3Rheihrdso83z59OnT7azX79+fXku9Q245Jn332aHwO/fXxmDwReUFWSd8Pnv/92/ZR908zXfTOftvOc0f/Y7k5JPwDfUoNcA27hUpihOSDtSHV1c2tDDR/OV7zzjFyfrsHl4tZGG3xUTPBoUmiIKS0EN/HXbaqspo1+P4gnHEocWvmLiE8mIabULnzdfv70b22Gi8sKIWpRCx0wWaWraFFRbjypGwtfed/xcK8I2Sl8ZdwtFxrobi78w+pXXq5yl2eRKSG/1fy/7sqwOwplNAPMICOvvi4kgSI6Vf1J5NKy7IddWS5x1bPbPr1+/VuFka7EZiNBAOleXLraCBNmgjDnbb0eWK/+LvE/JX1cHsCxBbRsPMSh8wsXndT0U9Thmq+QZYqQpzBRsbEfenAp81xK2pSRby+tUf08fh5oIt6TDxV8NPbKoDoBH8U62dxcwLN5N6zHBkNK0jCU/VnDe/RehmWa4BfQ+lOwl5X1xROQsPXwR1rUYFOTiubCNu7j0WHB3//v27butp4krtp5GCEMBw2v0m+BUXYy8Ut+zrXYhaSvZtUDwIWAjJDxwSwXibQiwKAjWwAAucwMXEXYkYAWhpdN+e3szv2FLnv3y8mJaUtPow0fWWyRigbDkmegKmdlcuPBcn4YyLtToi+b6/H2s6rPd54Seg2w8meWh7nFM7zLL5GB/RZnSYNVJg3ge/vqo4GZb8PCwe3x8fnzcb7f7y6UkYi7qlnPJ97DbPex2VtukUcwCEH2ML05HKGhtzmv1VoY6P0gwvjCUgbuC6CXeOMUTuAanBq5WC3HB/ab5rh8X/zRvbEGHnMuL6ZSBrtmvIPMUOHz/mLeb3fZhuyspM0oYUIkxKuVUwcudT5vz5Vh++zw23bplreIHZmQxTimwaMB2Oh32+93j49N+v5vnrUH08Xg4n80i3dKi2owLk1O1cKz7R6G3MNhaDF8cpCsnlw1Ewm+Ay98tdsuVYy7jbHXirE8DY85QhIiU7XbaP+w+Pt5QaMXQlCURhmBDocwlptrMX4jgxzQNX5nfPwTd11pwsB1l5ksXfyEL/zAV2NtbGQmQEk8ctlZhvKf/9X/9f6H3EACUcB4rXaRXPOO1vmueLMO6AdJ/yZ0TtdBtt2r6d5a6OHzFj7PmK7xkgCLv1kyNsSk85ITq+Ndl5GdEw7rA9Ha7fxQagEI5cOlZNR+FO9xafkPxWZc0eeCPyzt1vSXkNLEAnB93K5JihMUEbD3ziwbXMxBwfmV0k20Q0jiClQQmZd9inpq0kFDxeLgaPJvXzQfXrxtrcH05Hg8P97aMAGe9ZfcPleHw3h1hgZ6ap7zl1/e8oF/MMI0gNBbSQ8FoJdyn+B0LdeEKl+K9UGOU5WQ0BC2MY31hNnEg1LAOBIAxBPYMk3KHYBDDffffHRPUcMHDQmzWz9PTE+MBQK8RGJlFWLXacxv8TzZ8+rnwrtGWdZDA6++PPFw1ROXJrg787tPDzjT3xmEjraGZyFm5BVcfLvSDdfjy5QvvlAze75GvkNoEnsJYdUTX8IavY7DMK0ij6UFFcryA0cGTCDGCMcevOd/06uS2/pa43r2YnReunxBKAgJFj7umWcSwre33e8Sgm13FHvv06RNjZnRuTIy4ABXxoODtNaGKF2hlbCXNR++kIWhKxDakq2dNLdfAlk6KzqdvUEDwwxhDybo8PEQej4XwIMG1WLeieOqRoTXJKhamuRP8zA9gvrv6rNf+SAxkQ+vbouArepp+PaXICQhxuXde58sdgh8IMTxLoawA8rDKHDajAoz/0ocIFxsvLT4WHF5AOG5NJ1CMGCXsCnXozDhjeA94exHsp/e3lp1MYpleXl5MCjVhHt5xPugcBwdOj8hYikysDGb8uidArWCkP0hhIaT2J/S1/PkK4xL9iZeS72fUk/GFKLRCr+Nme17+UVlzfNf+ufzdcmtUU84633pZlm3it1aEXhK1dsPGeFbG0RIj2p8OBw5Oam7W5/Pp9f0rM0YoPfNf/st/YW64wUopLlDqA2DpsNPb4lvPXG8bdvVG4UG2/47HD8tXs90WrX1JylPtABXNBLUt2KxMhM2kiG4FxgQjo4hwIbAnwTcIFV8Fm0TiNw2WMPpgiDERZDGzIyfjyWQ8T2hDgvQzTZxZmaKEz7OmX/I8qGht/3QVWz0TJgctpLWen1hPaE9FgC6lRuOKmarAwJ4FVXdg57Y8u5zHoi2Cyzov0VX9hW/hPpYLl70EAq3MlF8UajrQ9Gdfh88rm6qtwJMgcWjj+Ehmigwhn36cG3JxlCn7yY7pQrgvGUFihQXzwcda6I3zGiPuk31yoFQzXRp0cqYPM1sB5xDkrD7h+eKtYTzDPvoc4eAVWGE/QuzFqwSsBsxcHMnAI8G6+XoRGCevMNEgLQgwbj7ri+CEEC3jjGDAlmfJBDlWuIIxwqaYfYMVQKQJLgKAlSMUBl2Oklx7dl9wKTuRgwvkgwaLkKxDMbnRpmC0wpOgf7MA8CHyzpP8FYYxFnRtfXB2eHbET7eDIBKm5/8G1CpEp2KJ5Vj5fsqbh4em6CzqyvUr3Racz8WFwfLQF4swzRcCJNx7lPl0cXqhYI8LFuQY3qROyGaBgc2iG0T0lFkDDIaFfpW3yzSL34rl+1ng/MHslodD57Rmn+B6yUbBze8fqYchMNuq8SbyETN0Z+5/7+/v4jPCwAx8JYi34MwQX0MidNDhS9l0cOPuphXCYpN9nopRynqvjFcQ9L+5iyGwO2H2gMpyB9l7vCnWzytU0nhkZAcbJSdgAraa2DjSbdeLR/9sRgkZkkj8S//1tJS3SrSKwU51DtoWhcJcHAe2Jc9CAd0it5cndZ2FA5BJmSDk02ty1DyHhUmwFK457SPLHrwvSMcb7q/dYdcRlp3gw8cOuOZike1jKHj48d/C8P0MfI4pN2vKeTySv3y9X/dLQNGvc3YhmkJnoi1ZUEzpxessmuk+5LpLR435IiuRYLQqc4aKgysCmOfPQkHUqxismWU2FDxCgLxSGT2SIcVhBgIA6BaW1ILOhe2TYyi/ohteCedyLRYkgXNwLRmcc1YKPu9sOWEOGP0wK1yBac0GA15f1G9niiI1ttKehz7MGFDvg8uxkl5xEEpBUBwwjzvYVp+NCuvjJ0vl/JpbCxx+RLCXUywpL8Odxbube1r2vIj6q2b0WBgaTphocRffvn2zGZk8ZpOyIHXrgZOjb7db5AJibmmzKZYWDiOBWgf7xaMypWRIGpjvEYcc8dr3x4cXgc8ph2ujPgn3XyWMdWxeopCYCl5/BgnJbsT7zvSL+QEjlIKfM+Qg32Xq9nHsXN0wLy9KlZ2qsW+bWuhNslbIGYRurjiy9oNfefF+B6UQG7NG4byscawLj59thttFiV7Rzxpk7DMj4VsLJ10XYdsiiVFypBUYXRIZcY0zS2MK/yJzFnp6Ko7+9jyHIXmBkNOtsrmAQ1w898+6PFntXfEYq8vFvzWfX1zUMyt5PWpRZsAE0bR6omETZvRGlcbV72KhYzXYwjDJX33hDOttiQnUJggdB+BwKnUNPWH49OkTq7EXpuCy268VT9v4iwljyeO+WDdKs+DLikAt4Mby01uu+qenF3UBupyPx9PLkpYuW+RM1A51ot7OI6nK8DpcGoCPkBLL82cWZBMy4l+/NosKLNGchQBnCUkVkrStnb7fT1CmdutBuKGxJTTMUiftvZZGbzS1xGA0+OwqpBa/tGaIexAGroFK8d5ZZ7GC1nIu3CLU583jrcWE21+LJbQKACtVqM371DLZDufIGJ+2+IoGOmsCn2GwINbDj4c5AwHUkPHN9iu7b26mMP5CAcYuakwavVjOpDETAJhFaP9c8qCHgpAnJFnLAJXfkhQWPFrY4j6/lFidtY5VjXc0gvfx8fH9+/e3tzdYA56fn798+QKtnikIFkfzFoSH9COsPvTcc+ZmI0GEWV58TL+UenSNo64liBbsPudJ9Hvqs1rJFMTHl1jbOCYhE1BDKYJFDlHQmMsrx+naxhmDYjEAKLqM3K+Q1qxzC97AvvMelYQKFt7eS00entuUT12EriyUxHJw+ku2AHDPQhcsj3uXZ2lBdKL7bwBTfcplQzkInjcXulfOZ2WvW7Yrz5h6y6GHMaZWch5xjaJaUpdjWrLNiMgEFxSOwy6xmoXudDwQL6xY5msOmE77AFhStJygI0zBWybt13AF5Ch4WCEZ0XZhDOy7201ZBBPn2O6RsNdF8Ht4bG6KsG6Z4YuPA59c+5A5Cz09PZkoayp8Fkvaby/AADAsrsk+FHpD+IUKdYurw1/G6t3IamfkIaMaku7qKlvPjBpPbFs1grePzU8KtiE+9g0/zmsdQeFrvSbJuIftkpVIEAc4TkjArQLcabVMsbLETNtSvrcERM/zyWKraUfhQuDSbpa8zhaKaSW3UHjLOMJa2biUtKqFbaeiIO5rauCaa8sz1yv5oUOtrWA3b2GAr16oiWfFpJnkxMTJMpIRfo5PkrRoflQh4IlgIB6K3rJxrwyQnxdVJ1+1APC76DaGhxo1LwO4BQP4ByTrHHbzafEJtsb14cVHdilY2B4QTZjUp1w6ifN8Z6tUi/YFiIW554FgwO39fc2m4oFceK+wB3xFgBD9c14LQC+b/gHw4lsfduhhm5EbiNluKaQlmXDDFwdrLllQcO3zY1hjARVpBOusVQdpmPPjoyhKjE0xqmnY0vpHb4ZhLFDS7ptvIY6Vr8cSWm6xCEJ3rpJCXgTRK4vcaw3iDTN2UH/4d8NYNR8DdpXO3t5Y0yE8aIHDqkxFrlVDvMbf+xK50zRZxWIU6UMpAJnpMk47Eas8jAH4lWxvRVAKsAcXy/EkArR4i4/SGmxakti0ubCdk5GAGOQZNthRkwUPPmtsCOKlYw4E0AUihxgVk8Qke1WoHRe4DfH/w6LVFvg0zZrWrTsZw73Kn9BleBVnG0z18sSegpqbhXlgsuBBhniPAca7VrKQfGzuOkXz8vBQsAqLZ0w9+VumiH98fHh8Krp/2Pc46IX3134/3tfQJgsVOB6PlpFMspc2yyeBLiHJVdmBvKisWJE18fIwQGIVAIQuMsfTme+pGqV55nqWRYAovC0oaaWm9zDxHJAgDSW4BSbMR98+HA7AUuSezdG+rm2LA7af1lXzRa5vdYzFPO9KYGz5c6e5ga/q0sNUiqnOm//d/7aksWNvdchzKPiy4o7iu1+K5wmqqgUduiDLFWqrv5n595vu37L9fHwU38p2vwb0W1aic5TFosKACjzmnB0yPeFmgbOZovb2Vnx/BYHClOklCokZwDg/ffrE3AaTUmbyAOqZadVNNsjUzv/8VUaAsQ+3bwCPVUqsUITYBj7U4j/KRz7L6++b6CAlLYMsPjsvggPjURl/YjTOwgcsv86SbUNAfU0ppiCXjxYGCjnmeLHdzGF4EAPAz4cQEj4mDLfBM2c4EVcf/rRd8F6HUCoCT1iI0KdJ9RsdPu9PgXdegnmdCZJngtkuD00ndIrGwZthZL/fW8keJAKy9DIMiiCQRlPFVUAssSHfIHAi0ogIBl5XYnTBC1TMwXcuIpLlduknrHtwi0FbWKWMzg5a+Aof9k5lXl29UXSJGWLM3RgXREkiwSIHtSd4r2QVa46svQo/LPjoa3jhmpP8sCtRhroltfzKyS1Fb1jHFGanadu9WFZFomCZh08Bn1bGpQjOFo8U4H9Ew4Nt9ZaHwabDMZ0ZvyrLrTFyfGxhYWPupXy3xiJeSiitLVr5j7R1ZRQ1sLKtltmsBZX5bfW6icG8+Agg2E9IEvDSiTT05sYDkYCzOcnxNMvkbrd7eqqJSi9Fw2tn9ng8HT641kFbCnvRjJPM/aMeGXgVljSMJBhag5rAXBzh0CgCP4/T422ZUam3LId8ACUDTcmA4IX3U8SU9CN5zXFUqH5U/F1BiGHeYn5L8XU1kfOa+hnxur1XRQj7uhnigM+i7aXpSCwPNCMC3h4MD6drc64mY5LBhLA5BqseqjULk42/LNnTU9P8kWaiqmpOMeEXzSsGwFkj/IIL5+HXGc3H52G/sAiSxFNIvj3p85GHYbUDuGXFledxpTcc7Ks+3zeeC58/fty/aabZKGGQ4PP6tx05rz7ZfBaY4eCxZefFCCrzLpZ6+vW9rD8PyTdOmpGlj8QqyQp7H/QQPtvr5BHMPXvHfVz4fuzJp6dSj0I2xdvWcWHn3bcs/YtVfuEk00gV513pRDc55tuYUZAn4UMMOA8DizGkwVdQhwEDC8kS3hUOGCzRb59fzNXHXMnN1efp6elf/It/AZYaNnTOz40BWz9hULX4WvB+wTPExZh1HLycHT5cy2NdkKLHcvDfNfwvwZqy2nhLvujpGp8LZgKkjsdV+p7tL8sqSM9a0hR+/Wa266enJykGxxjJkltY+VWk9UTcp/kzCLKqPRQNKOoDgpOTMXc6oKgwKAetMrcauk4BsaNztsM/PT/yMYHwY1mMeEjLTsWEDzYrcP9sBfK+oAzDXS25mrWGOQ1UaOYVQxskk4D8YP2LVYrNtnYqWfDA9u2ra664OfAAmDGog1sXmRGR32LAhsyLY4q8PI/898IZwzB1tILElaEv5rhL0UEYFyHljfE6oNpkAIsoQN1A8RATJwWYdwz3QoUPYZgTZojun6Hu9fWV4VBio3mdoaAJmfzp//3v/+cQIHyeXWGgw+YJoZyujJFa31oFgW64bNrgJX7Yl4prctqRVQZf9GzoQNnZkS6qTsqMi6XnA6+P++/Fp6e9ywc7TfvY51HGhwCgcn62+5a+SnC0BAG3d6dzjRMP4hI8J2EXj48tfy2WeqxJStPnJQyQ30cQYN//NE0lTz9RX1D0jBHMthUuMQKHY0bct8HzIWHOKwFf8cG9tZ2ajTIMWoo+0GkWefzh6oFAepcqv4/FZFxd4OTUC2Lqnk9cUERCWxn0UiItGCcLab2kcbRMlzcyQJdjkEbWEAhnjQABk1LzbH8TZGX/ROEn5qgEKXPLXPKy9RHXL+mch9oGvI/z4mNT2Osa6QgBG2AETUDyPPHb21uY3AZpsCW//vevfzGfEKveZdnx4DLBWl527fOgG6Y8B15i+BdKKQJ/ybNODa+w322vRgnyx0/T9Pnz51Aw4xgSfpE96zxd9wIt+w13jnlJboLQHcIUAVz3AEOy/TW51DL8GNJ42hceCCnVkfTQ2H3EACDLBVxhJaggxCclCLhMf/UCxThTPGxRUM4/UyxdUsFXNtGYPxSGs5naHE+1ToXACQ9JNK+njwOA3zq01bOVgQM9eoPFTw4vFD0KDySgcsvwCZeI4nMH1h+jtVUqyu2Fk7FFsAveRwa5t/eWtx7rjKA7qfPT4K0UQlU8xqRZID9MwmEKVkZWHDzNghMv6bE22+vVwxmxlL0/BeoRmYehSbxVulgjfVnssWLVkJaRROjLly+eb5TCpoyXPtdYUCOU5g769vb2/ft3b3ESwUMYtiyhSyoAeIlhoGnLmpikuSvfT9t1Gh6P1ZeYbqfuvB5gRiKWIMmrFbN8sczArf1Mq2ZdgM9MzEJTT5sSpMvMgV9xaQ+7xihj/1ii7WS1eu0FgHA9l6mdz1ERBmbsxBJ9PAZZjLwA4HmpjMGS583VwX+XTwWr+cFYeCiK5psy0GmQd9Lu1ehnwfHZeH6VAGBBZqGZ0ksjVUOmiiV+0mPhbJwcispLCgQqMxpnF/Hnlxk1EmhLHXtk5g1hUvb3eFnjyW4RAJA1V/phwskI1yMle4UJJDcJFBbE4ocabqVkIeMGTb+clAyurN47mocHjz9FEEIODbzI7BRiGPCwkVsLekb6amQ/e6jaEuiMMU3JSscMdIj/M5ctCd6VjQgEg6qg8QyTxIyivb+vAh7HcYqCI96LCE7kXIdqC/6TZJ0/V/jPXvHy8+PjI/zIoZ6vFUa/SwneppIkJz1O4whBkbOhw3IbTjzCV+d9gWctFu4V5Gh7UkCE/UtjusAPoDK9BF8eT2t9FUmNHa7z0/4BFg/WHbCWl7dAKjQL3Ppxno/dufsBCiLrALV3y240ddlpMSqJUcGYD8diCRTzpkcmmMjp0Ex5GffvvxLOV+IlmHEf0Jpp2Yt1VasCyDNvAHvDS3Yoav/FooWjAfQIqofjDNePMCJCkBvaY40REr9/MzUIRyruoJ6Oh8tbsr9nYLF4t8PNvW5YXNi3+15HOyt80lLiAKumrSF0qtwpDDqumZmwQlcLEa7/t2wgjwodtbpY1e24pcwx3n05SOV566b+c563NT9Zt1V1JyAgrV8tOG/b9P2c525wJrmiJCf5DrmWapImhgZIZ6kssGK9GltTqoYljBc0r8zNhLtp37GCzhXgNnxRqzYGQ5VcxfgFYwctmqjoQO8laUOGYUPi4dtVzu8nW0aQsu/erelPmlmBS3pqPpihr3+FdiOQvh1qxUdLvL8UvGg3Qs3xtGQpnmq8TTkzFsVVBU4msSJAysRtmIvrfwsDKOlEl4Nqw2+/tYQk+/RLHsyw3c79XxX8mNT5XHisxGVXNF630LLENNI7z/ivy0h4ar5/2QIhwAfyoczOIG8o07kOb/cuvNiXLDuKZX3xyfge9oVGWmisqKj9innNrjAEnpFCWk9ZCpk7LraLCt17EbADsWwf57gUxi4EVDFuCEPJzad7xr4L4yInTtBjmNXABFcTzzBl3qnTqSRp5Q06HVvaZaBrzvzDylH25cOaM7ck8LzMRqkhaBYOPk/WLymYQllJ+RMfXhu55DIGF4jxMJz4TAD2V1sB1ENAqg/GGNhH0SJloMLtatpWaVmQqMAPOt89tiB1WIRkv/AkurQE+azehqtefcGoB3EvTrUfJu1gJOYBxiv44GIqrpWMcLa0s63P/gxianB8Qu4BA5L392IjYjxQPf4L3wifrIoNmss3YkFFZy86LI6DMrHBkgtZrggemw8DCy88aNnX0xQ6gvdXcJlvzX+8YENNjQcUGUt+SaGfrPT3VAJbQ032mn6kY1ymvuDXchGiy81m81pXnEHZ+kflQtb3Fw334kLAGQZGjGDV4HI/+IqfbJijw18APjaXzX7eV55MKwHvdg+1wuJU07CUX7Mhs8VjwM56eiwX4lLChJm9+XFyuNIhlBDwLWa1B54P4dOfBN41zzD9KgY9i6X5Za4+SZtrwXdPCdi3tecqYoYJjJqQMXGl45xomAiToizLDWf16TW1ayVLe9J6YJM3n6+SCMstMl6U33PNdcV/vVcUxBQQpAUwNvrBCy5W3Qz5xvvo6op4gZavZX+B9zILLVsebhFcMTXJ32pfYQ9gc5PgoHP2FbZUnggMxfNW34CTxjQmo7qoIUQS8hUz7owHJPuNALCgTbHA8MJmsSil+Fz/OfvnEqTeFWCapun5+RkKIHGhDpUdkHN4pzI/h4FAiGBHbGsLzK3byIed6ZEAjwhCSGlyPB6fnp4sJ5XJNha2XrjkSwuIhE4UXC/nfASM8ekQuJJ8izYcsXT54yOIHY9JU8X5wjaxq564Jopgb23/0LFMvFZYTL7/57/82W7a0oHEyy7LXOQ+4BbDBkhn53dMXxgMrCGWj702kBBTqrBJhhixCnLyH4axcACZkOM9NfzzoihhEBI49+sGk85lCQNokQ9k42UZT6QFxEtAMOYTCg6HzWXsDsRwyLIfIHk1HtavQ4yEXCpA6zUd/lDw2uJFjeAMYYifuerTLDqGLRUTYAjLNBmGb/2uQ5KTlLTbwsiua8H53b34iIq5IcMKhQT79B8WwiDBW75QEbQg56mUk6sqzborlpo9Yjvmy2a3K65KPAX7LlyYZIOEgHnFqiLEYuLZVqZ/4t/DW8kCZNrb3bSt6cCLYHCqFhivKPIm7KuMFKtVcA0fR01H2AcpcikQ3iwxmXkC6SMmPVP+M+3ewjp/dJO5Y74+6NMeOxzWYE1eEJRGl875YbF6C4M1JjmZq4bkKWfGSAQAO0m7eTKf/uV7zWRQzoUNqY2W+jRr2DKLwSiN2/Nzx76L/s+QEtM/EXg8Xs5cKyUIXggYusI1n0fmJLjwlod5OSNSx4BfkTzlPGu8xRPnzeIsRqCmlikSvhCPjyWYEnQOlPVxv0M+DeTj409g2NDMyeBFpSeng8+FZxQ8ohBCi26Zv2Hd09PTk4zT3pJ0oqF2U/YoEwBCS0641ziUgh/YxVT62e/3Hx8fX79+tcTkxtw/Pj5CkDMcDmL3/NBEAmb9zbMr5EJCJpIbL6aPXhP8wOeCWT3h9dmFzJtxGMihmrQYP790m6RxNjZGcRYOYTYTroLMFgxAUXZgM2LqH7hK48RghdXmdWNXvVIb1H0XigY24/Ra8JWvZSHKz4sHFv5TnsyoDMM2a+4tuFlsiauD3LllFLATUee7JrDi9bEkDahKzpKtePKIIyJCfnmJRAtgTehdu1jOFA4dLIo+cwB3FcqEGOGqeM0YGjGpADQppcz1YLXyu1DrcAsFzZUvRh5JlqGJlwmvw1fPZWOI5css3eG3b99kJwrobDaPS2EsWQdvUilt2uwenyaSHTnIKVjkqfnEy4KYBUOomiC4gYmH/2ouUpbQlH/rA3a2rdq0pU3fnBecK8vIvsV8gWpxsqSc/pn3V9JBMh4XqUMwGqOtzETo2X1hs+7VlNze/PqM+/9V34Xnz3pCa8+S/cCbOFlNK0F1vPUiGKxw1Qct4euhBlqyM/FmHRfXO1k6K4Alz9e0aErjPAPX/Xnx5btJdp0254MmVsN8If9zDmbwwULw7E9eXxXmoedgVr904TW70rHCLGPsMrwXCiqcZpSzjtg+MhlDoS6hXoyp4AdiFPHp6QmAx0nEFyhtfkfGM1n4o/mldLu6AC1nSYYIJMmUPd72zFNWOXuuzqLeVdeGxLWQFpt2QHf8/npaiX+yJY0xJ8OADzPzPuJNEFpiALyQI3yzfeX19dX0lNB6okO2eNQEiJaTtcVyIPyXi7WHFpuQwQotEiXEqeYCkkMRVqRue9p7EIgY4BuzUJyuVCgLVvu8pMMWsoL0kZKQx4K/IceiQ1jwQpDwyhcZvxer5CJrkmzHFxqzIwlXpeNbS6crjAfHADAHLApprvkQjzAaucB81jyn58VmKOMbg0bJA87LknLsSk05e+GHEc4OxT8riJmzZ0mJo4DspgnGUED5c81EebUcVlObYV2oS4Dl5KAxsyTepHj+3LfUAhBqTwf6M/H55pMf7lwm2AnpBd7nUgss/ZwvRSO4YsMFeXQMiqUNqR2f6D4DzaFq9NsGkAar7F99fV0zSuvZrVj9TFnoEli3bfr3WmCrpOMJLfPT+VQ14qt77MIfSH56Ye9EjefRATHTl7ASM6eJPAG5bE7bh2ljMt7iDm7dXxaxwfptF6WOd5wW1gM37+P6aYJL4VqSUlCBpscDzEAJ+pPtlqw+Y1XH+P69o5XgVKwVZ03hbxlTJZGCnMZRBsBQx3o7cZmQX//pQQEv/7rgsnVe5X+g4w/0f4N2nfvPx4YBgLRLOtowwUWompV5idDrP52lYZXXwdeKhhvPiGVgFUjIIsrsBfMZfFSZwDP7y762zAlhDIZazVdkt9uhsBpnvKnjbNk2EEfBukZeHz5x3ptiYIEJgY3xDPP6BX1Sw4um0JVELl5Bi00U+PfgzXw2u6YIjRdeGQ2Lph2az7UDxZ5GrAzc29ubiV7m+2G6fCvCYNO3KUOlbWwN4iDZR06CQdnVh7OKhVh6GV71p64CwBgvrWtOlXcv1xrAT9z9LRYi3Cyp/I3pcPoXZjStYj18P1iDy7EQAnUCG2F+dznmIZUMnxHBD89LpK9t5WFxAZVPwJWFWeFFn8gIcDqfiz0WMV39wIo1dyD5+JbRF89w2oVPC95By2YFxcZ0ndY8Wpy7DB6eLOCx56fMDkHeSDdkrxQnx2iCHPTInM+hFkBEh7A9chIXOddYCsaZocA2EgCYUVvhr5naiyOu/JYMHYUVL3VnCwdcas1uN1PHcPttVjpnQ5/O02XezBf+ff3+zvfL/0+78uXyKRX6xbTNLcsC9Kc//UlAx5bs+9uab9UaHLCiZStBHqXgbq8Jy56fN+enl2ekwmUsIJpXTC1zARLTZ7soTPw23K/v37/bfqFC8LTZTfP2tKmm23rfdtN+j4ez7bLtby1wMteCaJo/HqrBSKPTFbjhX9bk8T7KP7ELYSEYz/pf1bDey4gPgkQzhcQf18z9n6eMhUK6SedF01F9YUCFqxBCyDP1+ich/AzPXBBKFEXPz58sKsWK0p2L02D5LRbP5T5+W89zsMXpPl6qC1AN+G8ub8sd/1sZpkB9bqfeSjYiPT80hd5XGC4fntEMWe11tBFOD0WsQTatsH/7J8+rYZJdsC+erELvhZI0dgGuiAdgjv7mI255PJEwG8YTTqPM5Tbt66fTySrd2DqztkLOOLsUMkHJ6mmwbowZuNfXV57yyiG5bD/2llW0Zecl8wk2F1PRg4rrDm8rz4g3QtJT4l0R8PCiLZHoJi0NKJdpx3igIINOzd798uWL3YfSFKyJxX5YDSOzgZRyDd9fuVtxqRfPEK6DBl7T4xbC/O3/DROYk6oVskQ8W9VfWfmF4jJkXnweJwgk4J8Mz+zRzgqpLp3LNthEgx8IyUgXU5DGx+qh4CcYyqVhk2ELzvdHPktjnfUJqc+EVThxXU7V0jXNU0nIWrgHW++yrZuSg6hkhalrP1cNqyWVYbSckcL2QOEbA7qZLUU23ywrmuEHcM/YSpyjuWfTtzWbBYMoYhElBQLSdwJamDeABhmJzpbg5mYk9I0xOQ4RF0bk2B5GuWHsuOAWnwa3UYR/9+//p3A0vg6F8YWVQd/4oNJ5Lum63P3Nx1vT9IgGIlTg1SxAl9PmNF9m/j1P5/g3Cja1BslPv1jL3npex+dhxUb6cV5tnvBk/WQ2Fa/usnFyLAQzfBw2J9a94+V8PJ5Pp4N5rFn13/3e6gNUhmj5tYRr4f3k19KzBryOFKK6erAl6JzgNcjLjoPt93FcSEtkvKsaVt+mSuB9G7vShfMNdVqngwbd4gCzFq3l2pvm3XZ7Oa72dxxsOJ4iHTJCnTw3OWCYqv4m0ByLZgX9HCMX1YZrov0qVvViI9vIb4kdmqfigGGkZbn+gVYshJf115QVT/uH06YkfTsVhUNxPKmcUmEo4f9q3Cp0nHKyBPkKnWOGjxnN42UNApOjHTKymS874EdeF0s0Gip3Cm2WQkihIyW7ALGtUubO2U4Q2vu4T7PMccoREUdD2SnsBwQS+XZ4duKfwMGdqD5mpybMq13Y+lIxvbN1GE+Q0QsEUwr2yxmaTXLuzmGySGFM2cnBA5toTNlI9e3bN49Piomm+kzDpQFj+Pz5MwbAKv9aTr4bDDuPSUXVeZ5fnoprH84O3mWLJf+Wuc9F2We/prTaTOf3twOuTeFoii3gT3ud67xibAwwvDId0kiy2C1J/joPcuR9R4ggVmBfo7C9MA+XEjHaeA23nES5EG8WPqfidGQ9vzw9s4SDgl+wVABcO36jpE8sJccKej+djufzbp5NEV2Sh9TiF5YW8PmxKS4F/jOBBGFXA/zJvxx7yf1zDJXAD3fLpOe8qB7gpFSgpcZsWNwLInf5lIXVzbhzSW/DWOhyKRoNeZ49r9jDx+CqhraVJtiMU7Iy4qo2lbWBlTK6ZqaM19fXw+Hw9PRU/NP+l3/3b8ON8SJpuS5JO+ICTxlCBH+bMdCdKrFeFlBbRn9VjXpVyaqM3eJELIT2aruRQQzvZ2JPbWr6l35EyQfGV+APhTAkygdp/tgpjX1G3XjiMWfzrYJf0I9gLpHUs7WKeB3VTAPr4YvCKPvNBeLwZybMCz6Cqz5v+g8HB8PNVL5V6jw7cxCWjr1yC4o8X95eXy11vbj1m/ZUMu6J5knwVDhOVOaTw5ht9PsSk0M9NE1bLHss6ykDEGnhdtlbmviCY02QZUgQ6MPDmrdbAj1vKSyYKbrQLMheugr1oHIhz4gDjH/RD8PXi/BwK1iFF83eheZMjAa2nsxatTR2lDedlxpfF9+GzMKZtWwZwyBUZiCEwYKrrpyUh13LriPJJ1J61zNwzHyHe2QWVP8n5svDQKlQukZj3pqVR2DchREB13iqsQ2c8YLjNODlQpVNO3yFDeVzx9HeVqiL10oEV5kdp4EW7W+0+ueaF381PzJHi48Ks8UI0KuNBD/sH5piSwqACnldXblqIpBQNvMKb9boCXPpDQihhgXNL5F9otj6ly8KgEnPQvdlyixf8eweiD4OBIAV9lzehXDYdF7ibPf+XZ4FnmRqciEUB2h5IIsQu7HZLODwg3mJooeFQybixLd09IjrhDByRi0OO19+PUPiVReoI0nitQs3ziKaWkrTog2LWpG2+w2zFb5X02kAFzKIfNF+TR0SPZBRgkEau5DtPrtS4R5B+7/ysMc0yWdpAMMaUjUv/ds1CuhINJ74JkrWCx+vNu26EveDMGIZz40tk23Y5zXTcPBfQ/ipD8fMn88P7TXZjCzEOVuPzbKzV6d/7/qM+/H07HBSzTFWjHew6aRPpVAaalexhg8MjZeUxgyWnDsT8GTWQo2YVoWKg7Bys3QlI/kxdt83LrzCoSZIO2uPAa1D32+qL5jyM0HRz8Ljq444LRodttF5zoZZ8FAc4s6FUQjhXGJpPBshvAiGx1zvgBWAZp0F1Ir/4zzukowiZI9ugQHJvuIZF1k6katxH561LPIhq49f8Gw8VwtlyrKzRlP2V9ZcJDcZBisUfPAl8+5SuZnXGVp/8wZBITYLxQbaYXdBaEYlEVZnqOQgaReky8vCSx0mjgRW92nBK+dQrHrs5Dx29JdNYVkUe8HJrDAAiEB4hl3+xvOyV5DWVmTXrK6Fz9Mg+FagRdIEM10WrbN9XQRaDIA9G8UBhp9Bb+fjKngLdMnIG5BcMrqjyUX82HhqotCUxNMhcZl7p6BW2ZqyeEkGZD9x/har2wS/wZImUgfb96SMDLFzKtgAj8my+GXkZmFXZi81omabvtZ1l8aB8Nz7VVcZaZaHe4DKO4xWnwoliWzCmcYoZHcGlHugOQtHMh4P4wIJx3YX3YCzhRIOA4tmOgxUvJPDU3rbBloHlshlPJ7tkHlJQ3BhOGDfz4AF4WHQqLpgPhmzLE6oG2iaj8U0j2N2dZHD+WaU/yo8jJ9fp7acFy8AmDchM0y7bcnFYZEAonJgjTtwZZaNSlykeg7pEi6pBQ17XkR83weSv59+yPGEDPftDSdC0pSZgA1HBbiCwAXo6elJ4jsH2+fn4p9sE5mV+8/OgqRL9qfYf1QqyHIbFNZhgoqBIa+85EFHIRv7Lnipl5cXyfsOIsd0CLRWMt+j+XC68dajWxEAkKSBv571hmxyksl0sEeD8QzAIMN+wgt6fg7dSpDGmp2GMrF6LgQxiMbc+5ykGPCnT59YiwlON0w7WLNCFY8vKX9hlrRQwbyraRZ5EZiZC0+9+PRzqkcGgPLPagGoXuqdKwugi4sVMFR4IGGY5DNi8xXXKY7380skW8kX/FcZA18LtHt4FlARUVDsG6KrxgIycylqRHDAUH5zECq8Aa0jX83QM6briXCV4wenRmgEk3JhtESxImeKl+604CuTeOG6LIy4uVj7eE5Jp4G14krwHuV6GcxnEV24u9WJS6x5fm3rdbdo3CEwADtepoXAsjSLGfZLgyOdBCNb20vw9U/LTmdjC78bngSvk5Oj+KsUjX48jLIHgko2/re3N9wXz2NIllyTzzSaTAMao3ZsJl2hDfBpzsZzI+/lkVTWjzUIkAO+H4Osv5ErWl4QxzRqnoojy41ICyHcZhHk5eupBLC563kGv+Lfvlw/1roWhnpOhxZg1KlMpmlXHayNmL1+/25WZkZwYPRZyT2Q0+Sa90J80LHd3sXCfn3wq9+v7lt9tpbbOb8b2/v7O/wZmOBZfVPJ2WfpR6GzhNkUha78omWD9EHVDRfNXcXQkKliIieuYkI+pfPwpNgr3sQvH2V9PwLjfJ5vYe7hIsKCAWsWT8fikx3mYWQeSxZ2jJdkncM1RDSqLDJjGKaL7MIhIYP8uTH37+EB//TJD+yCfXmZjZCgeTl9WBNsGQKpoSyAqp7dVODeAAaFq9pZklYWGxDjiBJdGIbBAzM6PBEUkBIG+lJydgTtFs0Xc3W8LOv1pgzaXIBEsGR+S0Kq5Cvs6sY4cMk62Ki5HG2PIe11VozytyQFkIdhOewitOC+yHLoxwQwP7zdcjbFccDLVH6RvfAJww7Wc5sIaV74af8cCsyh4M2nG9jbZz+TMyhLgbmfltfNJcaC/kXTDwHAk0ipdiIucAwkkoBVqAAXCGOAv8WiyFLNsqi6g4afjW0AOirYIOsXedzlY7uHx2wc6QAjJiO74/WTYz5AXGt8HSjNCZAA3CC7S8gnZaPK6iF4wrzscfwhBnH+urgA4SQzIeGvo6BYqO/x45HZ4SLXHK8IKFyuAbPuCXzEyug6h3o49GOmbTwDecMfSD6WV6fgP3Tj/dv7MSABIyX4F37VsCRaNhVw/1hARuiezMioREz13OT7+yHMEiOVX/G8rabH/tn0s/oVv0oMsIrdErTHFRmFAcK5Ew5prMLwp4mpTrc7i8MWUxcfIe1PpdfF8Bf9W55w8rDDhLmsFwzzRiP9sc/gDuMyGAKzVm3I51UATGISljR5K8N0Cwwwu8xfkUrwzIh7VsDwhqhFG9Nc/+53J7OEh0AycHE0xc14E4U19FohdnlF5Lo5syGtOygFW2nsJhe4/KhpByWbkPi32PFZKhPFKnMhRnjdl3fMJg6w97sPlxUVkCoPZnHJogACXDE8c7VXLClcMjwSLvBZXWoZqTLceuophWlx4ZNe2IXUqcDz3vfdwwkeZoTjT4pQBARGM1vMauMwkyEL+diIAm9LDJsQndtj5MYKo3BxRPEvBEhYbQDVmcAbiOuDBFo+emFadg8nbCjjxzDU3a5L3YP7wuYxy5rpd/yCtLTvy03G24YKbJqIAipnH/lZXaeN/ephKMXFmaQS7txAU+Lxfse+X2te2pOFO0cM7lUmY8zN3FIPIZudADT+6SsTM+wieRkQHIJcpc99kh4uK+x14zr76fB3M3WjV8LdwDoH4/GCODphn29eOjAu0qTPUEAazNcP6cbGWQs6Y+thTe/I3oEs4DEj++X5JSQDmZm71xZ0HBIQGf/praax4/nbEmyX9dTfhN0MnrRhJ4qfsUB+e7PsFsjFBl8IS7MrkdMmgLH/AHbBM3wS1inALJV68WRY18LHSHjBW1bSC8zy2BggvbeJ0EiTf/jMGsYwza6MkDWO7FVVK/sGLmESfTGQozKGgHfBF5XnrDj+FWwu5wfMXIbYteDGMKEQ6fG8GCQ4qJp/xbIhFC3kaSRgzLaMbaHMFsDWgRVoTg7k6sDD9nGQdo72+4ajJK9/psE91zzroTQoa8Xe24LEJGsQbZiZQdbkRZwqEUSBZ8eyPcswIvp6QuPXRwS5ENPKUfXJZGTdGB7C0wEjD+5LoL8/cX49PQit9Kj/J6bGtiY8wBvKI/frs+5syfB8nd+TdWM/Q/g+hPATxi/hIM+U7vN8Pr+/v7OHgngBedZfCibyQrHrowiEgv1CLEEbqhgjRIaehxSEYHjbx22nlYCFQcRvSft6TxtwgSH/F0LDVQ2QnDpGQCoaUqEQfv7u2IZkSF6TOgbo7KShMjEskpyPmbuVHRVN8NvbG4MvMP64ME2YViKcrzAcGRbDfWi8xAqW+7TFzvqefbFZfPv2jVEe8/3S+b15e8ZtDA++gcYIonmpFhsvJbIQaGirOKlvt2/fvvuIUu5f8mCEaSuNgQPrxo4xH8fmWoB4PnYq9QAgwXmyRME5tSJ9kabgl7TX11eejoEE2HpJXQ+XDF6l0Fku4wPQ2DSPm9WBJvDh5vS1gsczy4zvX4gNmrBQshFswmYCCXwIJTFcTQSKIGDbGiLjtWUC3fY+cAJ1vA6GGTK8dEulZEmTF4pDnO2H87WLzy4YwcN7gYpblEQ8DI/3+HgyU4LdEY0pLDDMcGDZhYGwLEzsoGW1F4ytETAGxwOtv6UbtxSuL9WCCqFLHIjZm2hhZTpdO/hCZoA67dUlRwWR04hIdyHHvL4ymWZ6FQA842hyKZaUq/owTZGwZsCDZFLGCTLLvJjFqkIntoAxrIaQ3M2rl1r5eUn0iYmLxhoDOx8bt8DnQgog8JCE/cUUDGwkiL9MnBR2chAYO636i4Tfy+pm2JSRpMEOb6lYvKAdDz+M53lUU22IiDUNERRYon4VyyQWAT5yIqvb0cNihvYxgWSR5xfFyuraLQKMRzvhhfX2+PiIoXbQ/vd///c8H3wpC97a7ruCTfgV0x5mNWag+fy3i2HQmF9HD2T2PFxBlNgsLiuhxs6Tc/MhlhxwMDGzOsH+yi433ORA4vpwKAUmWDlhHVreZfHdFzjmX8k/vTJkD3Ha1qxldC5jdKwIgGBndCXiGYsW8muFqzxtOJ2ar7lk4mPFA8MJH0KJh7trHTg7BxPvKQlayjRVYuLHk6+vr6HsikJd0jIBbFfjB2R2MOkywQbcei2R+QgywkKCgstUKmHL4IVWdQOoArbf9xSuErYqe17IJ8b/8vLCWNuwOZfbBIPCc89kFT/TzCTtK4KHSRRWqFhiAJgKcrCsqJ1QEPAWdcm4HoWEErGmim1l9jyUx/K8r1hsF1YXwu/7HOd0GFl4Qk0np5X082VgttUzPMwUwS44uJmtKGJpWQWGJQmBV+Vijuw4IR/F6kktMyzsdtvOqfgAyArgQ7BccWIfVgD5rE3Aul06zsqgIMYX37pUvgorCcCwwnNMCpevxPhc1mH90xKkKHjesuJ4jM0Ynq0i4FlZqilFLWtUEYsiCMoMqYOhCIlUhtZfxoNCYAJX2BffSjlNgp8sFk5AC0AFroCDTfG81H9g7bIE6a6bUi0wsragdyz4YbXZECryqteO76d4/ByT0Anqi2winxayiKG+vb2xQkrwg+BDE0S5IBeWywBmX6N+jSzaX21xPV8hwg/GZgpWkYI4Bk+o/36xiIoXFismmOtA2tAQLfABbxzypp1r+EACsEMFxA6IkhEoF2DH9wBYoaKXRybGoHGlYZEUjxRcyH0+Pz/zennBF56O9mkEfQokzc71xVqmeQJDL5HgEGyw5awJ8F1xgR6mFodDy5/NOQogAUsL6RAOG774q9wnuGUMNFcC5iGF3O1AusD+AmssjN0qyHHWPEbofAECyYMZa+LD+1llYivsMsiGJJMV1gQdCmoggn2fAGAmdVkEE1z5wOMBCIqs75FztOrG5mm/fYCS/jaBcF3525WmgyYAz4TNUk/aP62SK8+ItTuhIOo1JeHXZVtvbN6JgsmkV3myS4PY668ujni7hk+K5TD08fVsGb7CYwsF/tAFwqjc7YvmY6iumunCCtbQfKNPXEt2LDTvgsUCj8cnEkvASyH7bo/hedkIszxkbgZeimYkybon3n2ROcVFx27CYiCAWirukkMzULGtD+OH5RjGiN3Df8MwTh3jQZf3xXMIvDuMrMoEtyawNZ8TSQ+FHvAteFdawUTTg1i2xE+fPoVY11sAxvDpZ+r/6rkpbj7SlF/x2fzE9UU0363eeaQr9MvOGyf/ZH6pA7+65IBSfsCHMVRg6lxVAZPsu8WCHINfqGHBrDmYh2vSGQxbbNgGnm/QuUTAhlmH5MNL6SEGYJzvWRfsNV65XWXZHRP7SXgtP/6d+fq39yiFENgRGlP5PZ5WiUT2Mry+pJq/OkNkGVz+mfm2soVBDh4vLmBOCojgsVK4LlpBKSCFP3EBKciO8CnnAdia+gq4ElXDd+BTK0F1vp5cuOb8QFZ/4JQmroxbBnbZ/VIRnAYT/gorPO6T0yrjsTADl/TMOB2dZ2UifqaFOvqS3t0yeNIFGHSPcIuhmqewKbbTAgYu6Ll9NLE8WEyLF4SQFUSqmYh764oI+ixSDXvOU6mxWQUAmcIt+e9/pmWcH2vaYK9gPA7OwDgeVjTw+MfB3zwdZjU8VN8S+9RtdF9IzmN/Jnu3nMeQqPgmB0oEAJwd0Q/dyKP4SucrnCfgcBVOxCVS3DnCWBomDWHhP68287yOtEzhIgoydCUqM1bKsjoWTjWcTpdH6NPpAt4G9RP8NMXwJdGKvALtXPR8GO+vIIclL1CA1SWKwK887zIvrKebA+E8yPY212rAS4PbkqwkL8jzc6mMezgcLC2YUZ+Xl5eUAC1Z6fiwDOAnZPXkn7wLXNkX1NAvDu+vjNOuJWsZWqmr7LRa/jhztsrw4EjaWfkTa2EE8Lh4Qu23+5OcI+97Bp9ef34F3myLzRRsAevsymiFU099cjOGf8yIJ2g9MzxIZW4WS0LJIQQJVqBIPu4MuMITV/BDKcqshFgiknnpuhgAZtxZY92dwxr0HA9qmW1HIJOHkUZQ9JQZrEthC8nQzEO1a7gE8F+XrKQxG+oT9ptGn4VRz3HKaKE5ZtjiLRElkJmE/JlkAcMjQS8bhNkea1/3CQBZyzZdlsJjQ3kxc4XKtF9vb9/5r3iGERx/nS1UfJGlCcsYTdbod/t+jDlxdsFiVUcWHJYtYNayGIlQTcuaTlbmhbpGRAF6klZM59UEGSJZGWG7Q5UvB0qRdS7JfH2BG5Hz+XzBxCwT4boHY2ZCZpHJ3p4hy1rm6lYEvUQRGI7kqh4oTIDtm3dxAaFlpCoOP8IieA0o0I53QWyFwCp+u715fS3DngcnTpbAWIJ5boZqCAYAlXAjsj1ishhGwlgLFTqYIAfRhnTNswtMB/HPMIxbODYIzHJq2BLCCgIfBCxpMXn1sgK6A82L1HkQfOJ5Qc++s7AqafjLepY5tigm9pbO0ryaD1Xz/64+5VYEDRZm5vZqFlNVPAHNhvAsedkHUrTAkmxrGBQekhIPkPyJE1ns+bue/7beRJDwHoAMQnWlOtcMPMChaPyWrDDTd851Iedd3uXBAP7h+sVVHWE0Dt0NplKoLo7RwifaMlJQmSD5tSvaFJp1ZxkTqOiiRxr0hmDFANbB56YW9s1UQsDteKWVO/YwBBci+Z3uVPKNbbh8lkR1JAjFCvfgT2G9GN4t80n1Z8/SmIZHJWTUnp+fQ7FEdDa48/XrV3+wIbl6H0pzAfK4O9NQMqM/4LTW13uN4y9v7CqTSVY+OkcWWXyg+4zj8fH2GFOawNUf3bJCS7JfPzMYQXx2Lenk5PiwGs+jJFaeMSOysgs1Zt5qhTuaF4wQOUk3P918rSL7/f69CIQ8EXZylSR33q9a8EwwBSdI+/N4SwuVBTVNatyPj5W6yvrz8K6uOSc54KMBTXNI52Tx5bv8acl+dnVI2ewkGYOAUzgYsRUAEkRo9APw1VX9hWlMhcr6+iGedggrDzlcYi28Zp2nrNR9GTa7TTPr4DsxbygwUqF8xSj3vKTXBHiwJIPJkhf4apkXDJ/tuyB/ECyeLMf+yQnCvNgQ0aa2OdUg1zWwAWsLq6CkQ/n+/bvxhS8vL2ZNOh6Pr6+vPk1+4x+WzOmhrjec70CgDVG3l+IkRIQ3OlOUeAsVuvKsP0OaQHVWj0I08VDEbC+rgl8UBz6momjlqwUAn0NDKBf4bDh4h4vJgQpYMaR7NpX/4+MjDMKwvF366ZvLYiioiNjQxh/RC+/im0HFDzcvBbUjY9SadpA5Ls9Xl+jpEArFBx0k9rxRzlswrBSdyZpkveBybp7bk6BM1ugIAwQQ56AQHr9IDoO0fV5FIeTEhs3VUjjgUnCxNEbcY2LpOZjwgaz+wGYJYvuDWkhiM/1ZVikWPtz+XRP8PKr1aJT79/t7taDGjTEAuyRqNYM3DgblflLVY6IT5wPMbwlCR5MCPYBGzCsUd5keVwnssqlB3v4xX2LdUvqU/6f19xOUluEIpHMVm7IEV614qa8HiVc4m5knkH6owvcPTpz3ReR2l0VO+rmFPHgdJI/NN9HIAh74PAofEFJZqajNo2XMvArqNYjftxQeiH0crAmu2ZLMrGomUHmNpvWcZQ1qvrGOMQ2pAx984VSkki450qwvyvkS0m6Nvd5ZtPDpIqwfzuvP24R6Izgp7WT1sYzMZ4co17K0+a1hTS03iVEO14dfFCYEKyzTbyxyFQCseCrQL0+BLaKmGH5+fubFxKFmSwuPJEummVJwj5odExZ+xfPWAud27Vl2JLn357pcOAnQH64QDn2GD4bP0Hrg689gK+k0dfcxZvPIAiyh8KUUzGKCK/ISO/2bjAfaZ05fk0N6VSDpzvJARvUx2SGDKrS1REn0a8LTFy7aLjOwwkUnkGxWfkNIvDAMDZ9/vHcFU3qGsir66mysH9Tp8uSH59Npg+biQxy0OYkBWKqiCk6ULAFirRZcxoWKhPZ/fJR+QuUcTw3rIAWkeAPA/QPULN1SmC1BTOfoBEDJsMWMrHCKviYRJGwPHGVxNve1jDBnCM4Hi2cqN54Oi2p2zVkm+iyNjb3jV3hZskq3gtrunde9LVRT3dK57mYuAISIWxQzgoX9YRFHO+5Edq1A2uYyzVuehIe97Pj8ZAOiF9ZfXOME2cGpPeMjPbkN8VgYAxB2ks2X+Rt+6zypRtN3Inhm0H/IKIfPS4wWaxB539le5Im3l7eZ4fPI0yzGYbtlnDFH3g8A8YKS993vy0CQE7rY99/hVWFuuHPPxLDMwIl6JIiW26AwECu8GD4lzIBPNBf05HWzJBmhQ6DFAon/kqxMvwVaNJ1rBvv95dg2Nol4xo7XMxRvuM4xLADmoQBcxwKAuIrZBD99+mTpa21BkBzm9fWVIV9sIBlE+RYiZ9G1cz9criFcENGC+xOXfb1xw4vGXfYRayIMK7tC8aZ4utMGaZFvrnoJxwF3R4+yxnFXVljQ555m3QRTNLgCynHDhiIvJ08cbTWO9foRWSgvickzOP6ZAsKWFs+zRoY5HLo5UlyuE8CRr/1jlcRKJhq0pQ5AYbqnzTyVlIL1+jJtiiRd9HklT195bXOp1utSTqwEJOYib4dVN5t9eX7EOMpRPx9PIVI2VxzcxzH2/WRBM00DtG/pqMQ31BfoYQ00l0ZnhIXNNvlyu93yeNilNQvVOhyKKYoxXaiSzOQTBs2QAb03CPjexvO9as3AyH2c2fPzc8ioHYtGZ91E+StvpTAoQt6ydLTW5mo649/z4VhCYC+bSz0Xdl0QX4VP32BbFPTqswMJKvSLM1hnD9KZJGAWbRaS7YECt/O03dQA38umgEdxC73spvm0KWVqz1NNXbct7L9FJpsSQr4YpqmpyxUHSd/bkCYVEGU7yMGdnlzJcbMYAM+7eLkRv2KKRPMaTettkK7H09f6wipXsLbYuzq085tYrsZowTepVIrGCg4+NZwGml8RjTtOvfmaS+qVksZ0d6V+yDiWJpQ3eEONYeUUN5AKwoUKK4JLdju+OPWWZ8EzABUBGEZxRi/M8wSDxAPzrMGaUFELPscpwL6wKUAqM7C3D8OYuEbwcRalVchoenqKSQvcokKqlxXxyySVH/CzFu6fGdAuZqBg67mmGmqcAM8FwgbXSfj69at1DpOj2UyEBKOfk6tsPYZnD7oYtpxf7K84wYLHYCKLfliByPwSkpFw2Elx3akuTH4fcWQEo7JLHhbB8t+HMQmFBBCjLKhYvCQ8xWdzh22KlW1BGp9M8DYvVn6M5QdbDYM3JFY6s+0Iq9FLm7JQNjZ8kW1KniERAFguAjU/LnzsTRHZito9+K2ywbwpLjm4v66MBB8K+cZuTf/jv/57Y3rA7oABOk8ly7gxQJuSYqswDcIoO3SgR9fSEfrTCBNMqDr15//t7Y1PEb64f+zSPvIZY3yBLZG9gW3Up9Oya/M55m7tn2FlWeR5vaPVA3k7Ic/4jZTwJ1llUp/m7X0uQ5adxsODMQT+PvLQc2MdvxdsPAH2uANtnJWFIYoJvwm6/Ft8f/s7Y742G08meGQmdUM5fN+r35jXP/UePkxIfOethzqXItIvv5dps98W5ya/Dh6u2rlbslcJZzAQbELzSBZrlDHWvmCW31kWto+5i0J47kSgRbee8V1eWfGhUAJPD9hkn3Hwg3UbP8/wPGaseUGy7FJZM0ZBckr6oCzZ6/H68L7g2sMtn2KodbPgfqsAzerhZhned3pcXCN9c1YHQJp41okVBUwtDxVf5Js17DCI72QelJf0cio6ODRertCFBnAL1wjwwd7cOkiWAAstcyrmYsfTYXOiV81UBrQwarCcC3rxmTZE90+KodXqDm5v3m4O7x8le5mrTfaXv/wFniTsJYhvYQGXCsdx+mCDBt4aMNDsZWT+63BBFPQo4qLQNZ+zUuCnU1g4hRTwKsOzXHjGXTL2UH2JwhohQTk7a8l47OLje1Hc+GHL2cF5hIuvnFPzpPACjxfsAZAQnFhm++3zJ/bTXgX7PgvWtDRxEcTvt2/fOIJ83ffj6rkgpA2VE20vTBT5/v078Cdbw8aFDqsl9VySuFaCX5IL1gwCfMdgs0TBLwytqaTNI86gcTOVggMmU1kAz85iBs7VclOui5G6jv6hcbLN76fZ2wJSKhpQKDDsr1wYi404maobmgPOWyKIid+yAlLCAFk4f7igEuzIeyk6G6yjxwI+zaiQ52wjwz/4ZwYuNNn9lIEYFq7y7ZRkXQgTg9Q0l7ElR+oh4HOcTQIyGGs6ZYJhzMAPBGUyImZRuxF4ztxpv0u6T/79gZaZen29CGtSiEQkz+5JO0FOPXZlQJaI2+SZqWQvNT8N89UoTv/VCamBjc09EtQBA0yVM+Bk1y+Zi/KjTpkqzTOaOMiszVqpHeUp5yUKXfLC9Hl2nRX6gYuF3Ec/soM3WsnQMu5f1tMTSGk8F15zA4fsu15m4AKLvnq68Ew+1iJXjK3MvYi7osb2igOBAfunZHGhSNAuG8FdaCRk2pjqQXMPAoFx+uDdRZpS/C+wIeu5XQq0QZgU+cHjCtsptglAo+wVB/wW/5PhDXe8oQBNyh2gmX4dhnQcdhZmsNHyOis+uECnLW8RJ46nXb1hDKvxPR8fH4fDwXz9We0CtbSeiPqMCGyDdcBoRcRClidRWPAc+SAztyOL4EHRe2zi/gC7ig5YCDcL6jgXxiyK1Cc9MPxLbx6iRMMtjgDAnF64ZUGrE4kXBQRPDcy6xcL5bBDc50SNp8Y8oRwTVlR55geWOrD+dtO03kJDrzWkbTUZ1fqH4r9YLAwcFuWebdZJNrRNqgPmutoCUgx8AjGMMb0iygdj+YPdTasPpsGvN/0zj44mjLggIyEz/pc3GwglJJD4nLdChgRv7LPlmwCcrHn4Rng3d0W4m3XlwbDE7Ffmcrk8VU0b4EzOlZcipPOQceRnfIEeHs948H9Eu7d/z2gCmYa9sR+PePWwYmP1fXSKh4wMZOPPKqrYX5mp4hYGyd0ioPJ0QvhnVt43rFtGbFzPcV0RCSYWBYR8FIy1cDmyjyGQe6LiLwbLlb3CZ0eGNFg3WaIB3pAjjPtc4p5xqc9Hbi119UyyZgl9FUIrgVUh/EBDnMBVF9/MzrJeEPVb4BdEjipXlhXFLdTSUHzY/MKNE5yJf+56C7b39vE8EwJe4fzAEUEDjwXPFnP4I+svPXnN8ui/V99677PKLnbcP26yezfgwe3O/PLycjoVpp+dPZ6fn31laOEBBE6ys8k15qSfMNuSF5J5jmw2wesS0BKCZZgQYoDG/UXI/TMvbsOAIhW7hvWX+ybRPW7XejJ+GN4vyDTT+KK564g1KcNsjCUA3rZuyPf/8V48R7xszIqkiZMWkGTF6mA5zitecpwhJigvWrZZ1NsZUMBsjiEfK+d92/zfVpntfKaMWO7UNLsws/7QGQi+4xLTPpkXhBthx810GCLQEF650id/gk2ZrCaEqUhOwvgACDZBiVnvVelry3mmoZ9UuI/pBqOQ00+WUkppf3I/I/zQCAqLIwoPAT42+9g1p0/l5Qox0SALkzwcCgy3NPb97TzB7nSByFo2JMHdoiHwMzqRS4wQ4DDZHysw+cVMwRBytzJOXvywMB9jHFGiZOvgg9SZ5/OOLrdvsb2LWAs9pFstfIP1CRnTLKbFZ0uzbnc7dR30/XDz+dEzXn+MCjxeHa//vfd9rJt9SApXsTjKLIJoBH3/TGUZHkQw5lh/8VdZ1n8tvOiF0nBeIU0NWXCmiWPihR7g64+JY5w8bKJ3o7SwDJmyjBJuIWdTfJ84NoYFAAbykByLYOZJoQASixY8DOj7YZmRrnxZA7Ck/tzBdYRzZlTgKOf0eCwCgElij4+Pz8/PDw8PlhZcYMDPUSw2HvXxuWDa5ys628JCAAjxKscxIz5BFtaDTQelNAuGQ94Uf8frKWQMLMQyRDGLIgG1PoY4O1kMpaDL9jkIAByjwiSGLwTOgR8gOpodBuDtV2mixk7/3C2GJyfanpy3sQWAF4S/mBVuy1uHowYS3eKS1yRhmctSybubQhEA8LKXAYQ885SA/XFtPpciEXp2xPOC8suSOiNrSKKCED2jb+3p6QnXjEQMAYlkac9352oZJ+e7DRHxj/GjaN6XbiwGZIx7Zsu+NwloxqAI4OL6+/fvOD+iW+KHQ0LrxUuvRvW+jON1+Jm9+CNaBi1efGqt10xgpsZAeFCEC5YipsR27OFEDr6wBSGXIyTnhy0hgyDXrIVZYiSglsfftKxu/BmDJcQSaxi6u4jLjQC5EIaQs8+OeSYIhfJzhpd+pvnzbr+m6PEaSnG5wcB8eUf8KQQhdstmQVcQC1OH8BwhBklgFUGcfrXDJtwMdsS7NiEbicAA1Eky5gafiStaVgneznsmw4gXKxRb4hMvMO8xc0iaJZ4BlN1eCTcIxofVA7sXHcVuz95N4hkiq83sFM7X5XL++vvX3a7w/VbyySDKiJTM18RFUTyxH38IFZzPnvPNm0DOx1YEM0ECCBVgfxvmowQnyyKsqvQqAjCEZ0y/xxic7CuMqahJTQJGnOta4Pmmua8CrSydSB0+2Bd8PwchCCIVBTwAzNaQ5QeOo7AXJGGU6K+t4VtsyfEJBjwo+s219bQ1hDe7+aVnJy5DQVLI0vNR4n+1DKa9y9EaNgkeZ7MAhKx/mKc/9H33jHjIoMsEMoYS+f5FSAUDJEt2OHWWCjHfABtKRAF6WDWpLrj7Fm9df8yyx2/kk3xexRtb1r+5QNz+PAiSz5LENAbX+0WzJVlBMg2ZZwFlPCL/+IpvPyYAXIkBCNZtuqv/fP27CYYMNK+nz0NszZJUSD+souBuZUheUSevhIgM58ITGF9oMFNQ8XdDvZonzGP1f7YviEGyf+KYH85rzI9XMfo+xdVHUql4Xi1klbJ0pQK3Xhviz4XsGi44xiBMjztoITyE6+mz+rDLpR1PsAK8toI8/fqwhhij4teZOxSFAjdYQrzsysSLyI/Cv6jEdJWW5REI91nXxFUVszAGQjSaoYWZ9z1zkRUBAA/A45w1tVhqY4w4P55Al5xrgRbZFxbeBF2woMjp9jGq/aIxFYUR+3aLDMMjwfNvb2+WyccAtQUWnz4+f/48TQ1K2TWFZyHcCL4b4gdZEBZQhVMU6aLNl3g+foajBdj4INm3fHYpuYAHQYb8M8IqpJljV9i/C97zAjMcRMsbeo4sWj7R8AoPNcYAjLvIBl6NkmnoIT9g/a3tqwVYs0X1MSpTH8kNdhEgJ+WHhQR4HgZdcVi5zdFrSUIBj3Y82Cx8zlucFhhTi82yR+tQDdi7qkD+/HtmNHQJkBgAPkISJCf2BE9TOUsMayw8FHIwMWaF9vb2xv9kGyhGwp+ABC8JizIfvkwzd68aLuQqhgzoKFr855sIZvCsMITuP8pBgWz5yZgMT3c9Tcqu/whN573tRkHOP884PXSJEfalTHP577LZdDkLeuplnYiuyJ84fsxfhAVuPGkRPChUf7A4YuHB897jP4uOkMacx5jgMe/ic7aM+SG0UCNbqUUL5hZOSNjK8OzIRfiAD1IUBcrVsGnfJ3+6ZiUNWpiCE8kVPEH1uCvbF/zTp8+Dksw3z+LA0TZUK7DLVkcmtypZ8TkKqXt4BBArIpseZgcyliI8aBLDJrvgxy+uDMxwi1YVHbL632NXIZFZoUauPyBbxquHoVqhMfE+qr7Jq2jEDLfxRsIdDngjYxw5z3LJGjnvP3/+fDyWqF+LNkb1X6Zf9rxYD0TIHJxKCaq2xhYenAisjz8OYKDxacCtH0wYwNN2f3FhzRgSjz3Cuh/YZVHD+8z9GD8zS5AW4HLsiTXWjWU58/jg1Qu5f8aEvPLoBwoLNh2E/ktSSG7qXbnQs3UrOX8YDJbfDiNhpqgqbcPmnF0eom5x3ZQjz/Ni32BTWPQnuiv3LpCgLkBo0i8AlLOXMCuPPNCSRSczzXNlX/799OmTXwKP71YGovrgQgu1ljQnjT7TFV5WntqXL194ccHIZvmkPUCMWcPsr3OSjjBDQKXaSdRShHVnGtDHp7XugS8h6U3JH68lyIYpAfs+ChX3eBAjYZ94IbrCW4RKrB+OAcjy+ucC2H3rv6runNcZM9+yPh57StoydCLp6vDFcVox/wlJTy7j9BNkom53xOQtTVwj8Gs+3N4hMIf/LgsEawT9Teg8hBgPLBhZfu6xHs4HCHGaY/Zz8JU7/QZ57tPjvSxd6dXgeOWVw6cpfbPPFSN53oAWeH+9wkVGwpDMY2PLiSBbhnwQJp+20p5hzSUv3XYb1xkY1wnxZEhCVNG8ApUTk/NCLeR55TN4rWwfvQXmoc/7zgvONBdJAEU4wfMyLx9tKXh7tyslg/iAsK88KzutSYrPFYRKlkE9LIbHOI+7nCneRHulMvolqtIO2n6/f3x83O3n33//fZ7LLsCX2AYjLlhYcHbpuYWy2CuUJbPLZuNdYrLsdszoiyJ1dachZ5jM9fEyVJdk4rdsvaUrBXzydzNQMeEKsbarr3mtlsNvAUgAHgZO1lB+gQHYZ5ESBwQJRjdo5xS3SAR0/GgF70QwzuyEB+fiKLRJSEPNmhlQxt1uZ+mnTFi15ZWVvF2b6TkHubmyXs3pib0DykTYWNfpdP7Hf/Nv72JAGdGze734ROKC80+LBoUJDCMp9MNgkaXhez+smgbeGL4WROap+w+03Be/C/oJmTm0crD3ax0D/kXQkqwe6gxIt4bjBJEtdYcCguFjG+zi+/tqOWEsnKVVHeQR92q5AXq9l6G/lxFP7yef9czHeDzQiNg/gSXDyo4o4MJ+VtZOzsJjfWbBZJkLU5Zv3gRmP80bLV1XmwgMvCDhfRkJfsP8DyEcggEKuVWrAxDiN38oOJ+3uJxaxkDIw6Aiu1roipEbCEC2RKGkx0TU66T5RNsDqNgqytexwsJzeKXGSzR+aKbF7C6Mi+xvCC3ymGhnRBnMrkS8CxZ87JfRiwegL7KYjeE7d5pgsfQGocmn1XvEs4ke3rLzkgkY21p3xVMiLBQIq33lUNdBGO7BemYHzegLHuBz5ycl6bNlvjISYxyzAlJbsgDgAXvenIWMZ4DnDPYF7KlB5j/+4z/aYzAFlGFcjtUnvsO01oQM4cJ6g8DGWV9CGPta6wnAnwrb9Pb2xsMDCLFFhXWUwA+eBGfww0wXroH/vaZAMCdmFOIxCcCA79bDw1rgkj/98PAQ0/dDww+8uS1JK+EWVOcV2RWj5fw5vG443QwP5sEhBg1rJgAwHEJimXqkBBUbF9kAYBv/6eHH6hwyv2TNFCi8vG08vWKUlYBClZpAtS0CkieFHHvJCz5vLEvbmgLLLADtjCyeBHUdqppAslVc9UHP8toKQOPCuwbZP9mtyufV4qRvXjHPmv7dQ/ON5j32oCkH3p+9W9JK8of89QLcse9mqJ6sPsodnqJ+4vSpktYT+8UMPZ9VxAAIzjXBjL0Ym6Zh3/aRTWBZXfdB8xqLG107/kqal7btItTEhHpNawJXDIehgHo1v7tAr7dEybWcuynypf4BRv/e5gcm1zIYGXzousOdiIIAXe0WAia/IBXiZyx1KvC8ERjCqu1cHA7vIZ7J9iWLLJLtZkWJiAGGEl02yQ4OfYOmU4I44UGB1/kr4ucgcJvJFfxd7xrBApLnNTnWxVATwwPvSIiB0b9sK1AQs60imYenQKgJBuPLpo6bcGPyV5bifJ4iKFDtYVhgulgscp3yRNBvk4xf8JJP5+ITB1mH8PUXNo575i2GwCPH0PAk7Ccg9MbfsyeGORc9PT2xpaXt4+oyradJVltmLepLTrmGym6Hw+F4PMKwwPkrmf/heAMwMKLh3tzfpACrAJKnUz5GxaDI9kvYaIn0YxU7kCTHzorwlmE8diVg1o7FJK4ojGe4T8bSYcBMlipKVknUJYIrzs6VUTXrw30JB4PJhkHhwhbiJg9MMJXwkyxIrzt1CUKc1+k4XKVqKryQuRAMKn2G90EwwggbPz0wvkKhOZaA0aKYwoEpmGEKVW4MHAPC6YHb0xVPsEWqk964+fz63E/01nrUWUcYDj57bJqm19dXns5aA28RYISW/JjG3RPm7Plbghd/pqVod4iNPVsQZq8KWXYJGhOqLJWnsxMhvXlwFYUuriVWhxHBjazPT+6LhPP6Ccr4ZSSSnYNdEMPjHPpP8z+FkRWFU0ZUpDfWPI2Zv/G+yAr4HcdfZddkhGTnVcLMu8B8GFKjWJsXkz1Pn1WbooH2WX0GhFPUe/BOAbYRPoyHLS65HOQtS+Tvh0Ev9tdtTZPHzE0ojOHanyO7L77y/sWwT08LhM2COkY0X+j55Hz9OV+7bCJPXKAr83cPTQcQOCUC2OrneNY/dB72Cg7hDrEUbC2ExV7koufn5471bwLA2SqXhiIig4RM0FuK+IihdLHtS+gCJMG73jWIvVZ+QAvmEXWbvosBCFUPQHqo6MzqcD6q7PePKH9Y7XyBC6WPdFPgGaw/i3NsGeAG930vHojQws5y3qIrFCQ8Dn7XoCwQYu0by3vWj+Bka1hDqcjOzzAk85YJDGSwivHUP3GdvhQlNl8sf/cWRl+wjDTcD032mWM3+zrLycGT4jVxXLJ8MFh4Bgivh+zOmJCHEphn0HGKmFr4LDoS1XesBFgeRhBbRCBXJMvMvUiigNrLsZ3nBub4bpIe7qNmVeIR+qBe2erxunkGOns+24Jf8nze0a0fEsZR4EH4S+ympDUUlYwXJD6OyuACg2BIzFjPOVXjKeD54zmw4A1cFH5mnfnY8rcEYclMrXF+d3ksZNklCw3a26Fp7j0vxf2s8F/1i7yP1ljDymwHa6wZZYsCQnhEv/5+VAInQlTgIiiOHz6NL/YXvcGkXhi7uXNRwGDYh1uwk+cahRvgfjg9EZP/EFS83OWzCQseE0XDANssyxizhiF3JXNkXtafl7GCI1M8McvCnDT7jvP94+K6I+uZjScsuCbnhd+ShDnhRrDDDyvC/YFimdMe4Fgmnhd7g8BFBCiUgynN/Sa2UE023zgRjWwEn+WQQwDfbw8YBrCCoZwvn7WwHt5QYBRgY5O61+UyRJ7ZtdTfCBlHyejqo02o10734QWYjoHmI7pwegBU2z6RN/weobGs2/p30SP8gB+/YT3skefozmTZ8AhnoP5vy7LMBQOw+zxNYfdD/lMOBfOTsolNceME9WUHm1sXpdhaCajIwFZYsCuUE0oe3DLClmUHCn1DB8mtOGWvNZ8AlAdsvmg8mBDJhuvuB+BbFgXvBThrp1PHwIFxCbnwyn9OV1EV/8m+P67bwLFZEoSEr1uhLp5mmymVpue3rgbJSZN0rv8EOv4/tK0MNDFG/rx4XOnXzeMF6c3CeKYGXXXTS+HvCm/Ww/LKfGlB5JlAzjjO+jeB+aoA/2vbwPAtx+eqeixznfIEFQyH/6IEnXO+C4+vvcqfEfFut4ZCMjeZ+eLzefRMp58XP8wsJhe+YUKeuaj5bELNz2GJAeDHQpchjvNmDOOnIzpd4wA4T5+MjS+yRLES1OtXz5OYEB6OxxX+mWTIvq+6wBoDcJUBunqUwlfqkgbOM6z+lOQWU5/WU3x1/JpIliQ8PEizKEArKmTRiAvrj/XxjJo9dqgCtgwVR0bsBhwLB2i3k8h5vXnM9TrOSRVp09aYH5aNuailyOFwaZZ6alIfQGJmJLvOD2hVMqY/OwJiacFO4RiKalJizIgzbpMN5XaPx+bN5IOhgTw5OB46CH8YvdwrTmv8TIYZBLx5tN4ctOkTWnDSams+3TbeYvLBMZOcSwanww+MDwjP12dD4dkxpHn2rz9Eauvm8ey8a01ISGTc/loGLff92YNPLeYs2WCksWaiy+FKldj8cmCcq0RI9Q14hDe6NnmBRzbSNl4YL2EIOkAnEx5/iwuf9euQ1m0QAGoTTzSs4UJVUF7NlH5/g/UJ7/a0PJTKpGXrn7UfwKFJR9f751UaF65iA1SoUQh5l/VDU822MQVgGa7kpWLncNiML7rkdJ0jnh6cn9+XULCXa4Z/CZbF4ogP6zhR0mrvovniW+HScZAou9Ej2EtCtEVjyvdlnCGQh4w4/8mzaB5g+HlUnJXCWMAbwhZAcAUKbe+eOmdffJSDjNnJe5CwgdccF6bHZe4H0YehIC31ZwQeQsFp0PwzYbFVX32CLHgrPmQLszzs5z4YEk/hfG6MpphwpXQRhvTY+8SDy/fVVwAVoUAFGspALsH0PB34+kuwL7/OhxR4T5zXWVDnAZh3xMPDg6UbMp97xMtavn8E4tt8vQghax9OfEzU4HRg2XhMcLXxfHx8HI/HBzoXDM/8IfZuQj4fBMMgK/yNEBs+sLJbl1QG8Bp9JFHA4DF+5lMZqiG9h77swpWWv9ZEtejBnNNYC8aeHd5VhgkfD1seyKrTRKx/m4is21jQnRyoZCi9JFKmT7NRiOcI8RVJFBiL+lA0Gu265iwIZecLuFYOAq/GMs7y7x18amXaAwGAL4SwZQyfR9mS1hDzt0p44iojPoWdy8pxDTJmXDxmRPyBSRncKIGAd5kgRi2WQGRIIkj4FvoKy5Akkj0Mpon4vdIsq4a/f64uKHLeBlgp+5Os/w8XOPtVLZ1Cctunb4MAEMKD51Ax6xDYPEMsTQRpoccevD1j5LFh7UhR3o8x+lebH4wHNplv+E+gI6DLcO7e1aEhxCWoXZ5H7I3YRn2F4OwILONJBcJwX3yFUUborJNjQutxshAADCmzWIbW8wLMFWHIsnOsQqhnlXnxMgqjzIyOoCYeZ6Tp6L7rF3bcRKSRDfUaQbFgr1ko9p13RyZ73M73O0TdthhO5GHCX6znA7nUev9gv0ReIoWgFe6XgD3GaWn1WeEKxt1X7AHcRi4l64qxUQXKaXZDh5VDUrIIzPtZe64x8zrjcfIE7T5nyJCCX7JHqPHEFd9YkZcB840tVQos/Xk6BQFAXJX8uRZMhd2pi9/W0NMsgbeG3zo2dI3S5p1lxX/Im0kciFfP8wqwwODJ8TypyM0C9uQokQRNeToljY8DHysvFoq6VlySOHSYVR7T1NACCxLYEX+4lgEot7nAwHoQ5rlaALIKuFebgDIHRfEFfGrZoMOaKk5QY/m8cZN9HJ+enpjYw2h1vhQE5OU5bgw6WdBtts2MQRhcwrRcFSAaA816LzYxS0KMed9cmDS2YdHYqcRfh+lj18w0ydSudUi7xLASagqxLyxqs4/mVTDgPZWRw8KTrfPmr6mFBZishXy5wH9G9nzrjsxUg67q6Q0RkJyv+VIRbq8yCfk59GNpRv28bhHkfqYxPWY8Y5ZAr2HF+RJe0wvG1mCal/n6TM+MB9ivwK5NIYLX2XQeAkNaYXqxZPrgENkaZrgxTilxn+WJbziE1CKo08KQIK6SXZq/bZf1SPgbUT97qZ7915nqw1VDpu/HKQDG8/IAcC80MuH0aJy/wpYH3pSaVrLrMNzHq40XihP4GBlGakLbFNMyCDfWUon3K8OaRf7cVZcwQI7n/HhzMVQUGgN4I/0iDizjfGy9GKX3y7kQKmnny1Knm+L8cWlW1cuijQFC3Mk6hUIeTdGwLfbR5XezOdtv9VE/FUeVgjiLd8R2uz+fj6fT5XQqvzWL93y5nB8fnw+H9/f3w+Hwfj5vttup2iGmy2lzmc6bS3F1mWoS5mmznbeXedpdNqfzaXO+nIoTZ31mqs/gfrkzb+aSerc6erZ+LvR7zn6tn3JdUPhUEH/5PW1LKSeby4VnZ3MxM9I8F6vFbvew3bY6TsKHsOFCEp0ZdJd097VKfVlB+1LxSm2/5pdc7tfOYDkB7MFig3AO7D6LWzIwr6D07L5n6J3s17EfAHIb0pSoKUX9P2i+ArqsJJMhr9NhSYw/vUxzY+xS2WsS6X2ENDrc1kKHppmqZb40+7ZYAKZ/9ff/xouzbAoXauqlWMycSdeK4wyA+gXy9Ek0E0xIQLTCDWDMxTRVLCO4yPLvQuMr90NfXimIxi0Tn5ixYMZOqkNjeSW5h2A6TyCzOglhRNRVuuXJm9dAtN57n1p50rfsvqQ9XftPgoxlqPi9JZ0r32SGwxva/MgRkeJ/vcBW+wnkh8GabLctAbb8itIU13fN1ytcb+BjupQame6T8UO2bl7pW+Zb03R6OH99fRUWAXiAcyDimXAwrHmSdAKcx5ob6mmwit3nJ8GQrC6Hj0f0rhcNL9fCc17gMQ0rtJsDp1teeUGn5rrA6lUsztXCcB4bh6kzEJSJvI2I7Qv7v2pJFtDKCt6JoLUKhElokuVl5+ANPtdCg8AKs066vVVjALzGDusjcAJfcDwMqGC/ZymhyiAkWlsJPnmodTwYzEQlkUmYIhh79STTWQyYNeKMG7FE28WnUOYrFmbsy8fHG+v14CNuqc3f39/nef706ZMl+TmdToYH7sAzpavC8grTv9s9GENcGaNtLRa2n+fNt2+vdn+aLhX3lspap9PBAgEul8lEAogTxl7bdWWsm4BxPJ4vl5Mx3AZl87wrdZkOFpQ8yy/Glt0XQaW65q5jqIney9jmzXYRRYoIcb6ULA+Xzel0vEzzZTvvt7vJRI5NqQl0ssrlXrEi2erW/JWnmixkM9U12NT1K6t4OhyLA2qRuaoWdlNEEsOriFFhHQpgCZ5jjZEtPQaKTqlRsEZoLEky5MiA/xG6NtbBXZwseqnrw6wa019vCz2fWzIVOcvH4xFYkU+NkSyutsYWLa83fPte6wlM25nc3uvX17lXUGzcsgnYtlQGh/aKuJSvB/+//X/+q5DQMrLjYcFFB3fsYS69zn9F4SG+iaFk2Xt8E19quc9wk2lAx4hD9ENZqLsQDM8YZQLJVUKYsYmC0KFxkZYD+n0CgA+WZwLjz+rDbk3Pxy1jTG9ch/XTSaGrbCK3KN29JszzFujcw4N8ccD913UbjUfgs153lgQ8Ng5Gv7osaFlBrqsCgBfUw0PHwaPsGMCVZbv1pLoZ4TBCwTusFc9tFSB7hYXHM3JOx8gqMst03qjgn8RSsWpAF45V9pErozNK9MH0eEYIhrB08vwYTvw4Pb/LQdK2Alz1Nuv/qj1Z1iGsMzNoZuL0dIcFJMYtiJVi6VFwaXcn+b5UPpbphC40fNglBLOL0unBQMSJedFohgLMAEdxCzGPCGAi0PrkH20iVUGDTvAKpz5kyNxsinafq3cxAMzzbGVTDfIl5y9PLdNEyF5iaiywiSoa5WmxI7DACDUPl85+2QLJjS3wfrS3n0fWcHf7XgciqNjDdntgY0oQdYIAifdQN/eu3ZJtE8IqmFq2WLKGGw7xzHPXGMXg1HhIw1/PlKWQW6bYHeC9S6/paGu1uHRmlEXWv0plqqLlJA0iAEDBJ5Ze0bPgE4e3Yqlow1tQaf0T20lWYemBClPyAoqHwiowS5pO5jMYE60aLKIHfEIGGvEQRbKm38seIUL3IJLJjiHx8zmG+RjDWU12PeQO/QD8QRLwhQbU02wZD/8z+6InEllasXubIKDQbfGWhRr371uIAixodfCkX5+7mP6ww1Ax7OmQdJXx5d40yR/ynzCTmQxPCop5sPnhdkOCrM7PeOAiZb9WKIcBCc42TJPwT8tu5JtUEGcdCfrv1y1mjCQNq6hdszUR1xevsCf6p2lz/VpJ5x6/YRfE1QcVST1nz9ovZit9EK30E47HX3BlYkFZnIUGKzkOjvdNQrzCdeNt8gXL+Lv+dbHUydnHmsO1xvN27RM9rsCfEEQOWSJMqoh1M5cDXjRmodiTmMHMY4xThOf5MbmQmBNP0xng4cIOuMJbPgcL9lGcqawf08hKIp3K3xcNsYivIJEWMGoeR8agc/0HhhyZzrp9CTLndHzsAoc0vmyose+GnKhMn88a/3XVTFcXu9tbdiKYe2Eeeq5BqD4Kny1yqyBXBQDRCXJvElzu5yioANYhE9uYy+QodqZfvICWtlJOuiQK83oNPsUZ8I+LI3Gbe8k5q7/kh8F8rCfEYngEbKAAqwhFgqDIRZDY4+pNsPzJ5C6Lwu8whiABfx+fKL52ggWYAHiqI3myRdfiwQUIGuCFoTCAily7SvO9uVYOgz0plYZFVhGMLyvChhtJm8W0U16xTjKGm00tvHretC3rHPK1/kJcfSCC55JueHvEoISsvPiuYXaWHcLve+6SFDfe5TCSOxszD/iqgCEP+5yD+AV8yn5x3vcbxY+rEgX/cp5ywQvhUtwrAHhceS0IOJ6aZDfDjLL1gcuN4vGlf1kTsSgKMRBaO8g0KgoOOGlILAqfd7vjjRgsjMFdR/hqVpXxvNbz8tHFKuD4Cw+KiZvF1c8L6RHtFVa5yYzGwJkJ3lyhEwsiej7Pw11tIhj7EXpuWxZWzsWhJoFgCS0Le+We1xhfcrXKBAxPWTj4T3BXVhOXs6Cy5o8D2MT4E26QfDRcH74ZBj+gN05ZwyPn3IsSLizwGciytZkLEBf3tXntdp1gCZU/OBDk3WcPCp+2LmNxhGvHmux2u+L+ssgVODXMhGUufJ4B8CiOB8BY6+pBuOUZn3WHBRuxaFkLJd4aMlbizhlUGBcB9rAI255l5KmxK78Uo/C6A06T6ucSJv9lk+O6Eb1KSHb/rhWevLQfZe3Dw6I+XuaSKlBYLBRfRJ8HCfSUIbBYNrbbGiVUUUf9I5aOVz5EBTI1Bow1S5Ux0KB2PsXV6XT6+PgQD1o0oTo8grYENaLRa/ql/oA/MAIQYLg9NpcjisGL7j/UDDG4yNJnZ1hY1TGCQA9ZPnJJh+cZO9nCzOXpV2XZl3zA/mgJW3A6qIvCmBUY15fA2go2l033LklXGWJ+xp9tz4DyW3hXAkn5V9af1kQdDMJ9xMqcTjEDJ/O6l++XdeYJyoW07DvCuWJqUmmSKUrUeXEi5flm54XZUFYy4RUWSHidfWyJtcyl0N71BS9ZWRumvJTrDA9wAmlePUn9LgDZUXHigZjlhXjjpxNvoVtbXgq26DIDB3zFHPBVgPRHZpCtCB36/v06MOLlJR0E8Us5UmEoZSnYUi1xsYLwrZlCxA+PC10xYySDx35lB9PzSVirUBjgrFZ8IYXGxBWBj48Y53mJvADAghCCQ1jx9/HxAWaDhUmLJzb1Iv40xEsBd97+0K8hC2am9WeKaV5GfEL5QGnnPcRy/+xahq3/MaIcbn24yGVeNabIy5C2krqAtIGy0R782lzo014xKkfJkhYAwkXpKeSV1zxbBHm3ZjVUcn8LirtdAJgIIfBG4Phju60dj2uhST9+T02QVAqu/wYkrPDiEVocdnH+Wbj/asCB6EVhSJbQrYRqB3Br19jHNbmFBAeAhLCBUmzNGJ8tinXNgkRH26qPL681E2yeqme8GIlnJuYsj3iWvpMrjAqm9mCRyQneZQh8ic9iYW3gcxzCnLfAiCAksHsvA5c9H1Ji5kJExfVYsxjJYAZB24Oz6hGfEZgQ54YashvnJbgvlHYyQUgYF5nU+IK/5aVf4DqP+geM5g+3q6y/b/xd1qwzpeE808z6e4XNQrA3Httw1il/BBgzhMSAiZnkNWdBLlxJaGqx3X5sTGh9jA0L9oxt7YvPD52LlGBd4UJw3j2+ksrEMrwBBgvBYMBusiWEXY/ARdmfBkkaQoYpPuw02rBD2fHQ0hiWnmRFOFxxQNRDGcD+ibSb0E8bCYdggI+C6eHX8V2kZWTRQpg2FnIyPUUJX41wFz/DF17gZ/lNvJWYRvuBhXCIW7zUOEdg5eEu8v7+bkn9TROHwGiQTsscb/88Ho8cRsmiDoN3uAICeBwUjq2E1kAcPwyePRflpVbPo2t+yQS5jrFuJgP4rRSZDX8SfNJPRJGwMBLcoAoV/S9MNMj2w84IA0WJ4+w77bWkW+B1aNfLLP0UrtJN3ybi3LKj59GXZBLzh5RHxUp6yaYlUM1fEa99GRiMD51kTvDGJI8/Idy/WSabTxJbJbwJDPY4Kd2M9eXCIqwzmHdrYS9MI3Tj438yzGGsIWHLrM/Z8z6/O4OOt0bJONHE5ckX3JXt9AKGDCN8zBovlxTs4HO7+RXND0wEMAZB72Jxe//SwgWsz3cKNi8AZMOWljFGg13O6MqA6kTArD70ngHiOyj0hibhpD4X/l0t07zmHa5oNAROWY3Hx0cGflaZyHfbeewpjqNVwfg9vxKGcrLAzHe8YkzOHZNPjAoCoWjuPbj57OyNdaucR6YUlGyVEKEzRQkHoYZZ525UEGSMOAtyLPr6nQq7lXnJ4b1xGBkf7Gc36IdpsISAM+BlRxicDQrfQvEpoZB2LZ5C+AozZAw/so+Yl2SxC5ldnmmmevCusJgUVzCV9fSnqTul1A+nSeW1NfhhPzFbIiv1Ja5H1qEJZpzpKxTUfd0MXoeWtzJiIdAV5ypk4xt2UNxp/D56eGP80P/1PkSdnUfPrggCZFUCF9pjfLvMa91cnwrT+/nw6mEAJkJzgTDWDnC2K8CPTAeMhOAE4D3ByW14LsaSVy9E74M2ueEJ9sY16AgqJGbm1i6EmpJccRKwEB8yGl8VK8d1F6D4rw8szgXzpeSKXZoPVxOxiosWl3389u2bn3ApOLJoVgR9SDo2bMDz8zMvhPTpFUsCEOx6G+IarijBe//6+uqnnWUHgmDjBRXOu++lFE4S58khnxmuJOrXIeT/VCTv+5cDyb7LdvOHecGwZa5ZrEGB/qwCaJC1Y1A3YMDYhehvdlk+ZOL3Tj/DHdIQfOZVnl5+8KVA6X43HcxOBOlsoYSRzR67vfmKqnadpXEMGSNkp+GjZNdZXn85g7g+nNc8yvy8FHgPzzK/yJpgXhPJohj6y+IBfJcRsSiPJVgI5F7ONdYBp6atAwW9iQwp6eGgaRbS4ucCjZHl1f4BqPDnzrSwgBkY9O0+I382O2Q9+/M79o7wz4svPuHtLisaNosFPzZiAL95GTJUrJie2BT/0E+D+zefclZ2Pj09MW5h1MHEC9O0QrPsVhQGqWMi7MAtQmwoBnhpnAkcDPsAVKaPoTKIfQE8+8X2f58pZJ7n3377bNLU29ubwappkS1togGwpcS1+1AqC/7J6oF4KGqW6sdHBP5i/BYYwFNDhxz5cEtdlyx98DbLU3vneWSLBO/pbkkPKdTKYrHEEc7qQ9kvnyPPIzHX6HNfckyLIDHuJwxLyMQSuY9MuHyUbCxZNMu9izxRDzSM82B/2XKIQYaZuwxv87FCfItvsnQgN8WfimKxLOOQcf+NvyqsfzcAz9mGMsaKi/7v/91/H2qMsmJ7jGolSZksq/0elrRN0lsIEOFjGHq4MRlDzwyEELYQELPvPj8/y9mwh4XQen2wEBIpfIPnOdsAoxikjctQbaYTcgoDnVq4nviTMS4eQD99+hSuv2X/9W2gpA8Xn4OEGFIPp1UzKnqpcB/DuF4ej9+dMRwyF8KCqMcg8uJyJ4gZGJKuK6nf5Z8DmsQFhsBQ8sgZiixNZ6RSUt96uy/ZD0L45z+xgM3U1OoAhIOXQycUhQ+7PwVoV+t7SON0nPJ8uI/WjQzSBGAe6roai4VH8WSSRc1zcuPxc3pW0VAKSTCaBNVGmOYoJNgh/smSLmRpZ7MsUuCthefwaeza9bQyRszUGoNiBJutT4MKwUytoa7b1P0SlzAjOniMz5qN3xesxZhlqbMK1hiS4r2EQcmUCEL7ZWByrn2ss2joGBm2cV5WvkfcwSE0WqSv6f5///3PITyEChSvIBvcbC3yu+P02QA/79PCUzB5T7h5DtqWX65zwmNBFqCxBpAnJZAwbqUUmaPXUrdh3dnZgHlVZUpUm5fZLkuSD+j+ULCZnTy5+lM4zowun0t9A3Wlw3r6dbCkgB6vss2WAYkFRSYcbC+90MR3S+J8MRJKwBXwABLty3hMocbg9P3797e3t+fnT+xug3Ea/WWZqp27Wmep57frOtTdXF5fea2HrVpurR0OB94gDGzNAiRgJ2m/0N3VoCLVwC0uQILjBFBY8h6yU9rEF1novaeUEmyxMiKLxCZ4kCvshnhK1sc7D3Tg6/rPXF8kNiNT6sh+SbNKk6EGCPUcfMY60UeKEKn7Et6N9mssd+HAi+Qmy4uuPH7k52WP/Kj43RA1C5fPcnnWuQxm6TYIRvwBjYUfuZxTeQyufVB6sW+9dxdhCwAv73aJ4eFdkHe9ROQ3KHMd9KttF54htre4UjUP4xZiyS17ntNojlUD1iwIzE+Ns/fwajwudTM8AP+S1hFvgjpf81W0RNYkayQjBA8z/iuekZVwHdwPY2kYPwsNGqQxFUQBG71EociHWPLh9TEnXRjrTcPKw7ZzBIaSP2excD4YFPylZ7xEacrDC0/cYN9DlOt5O0++Q12J0EdZPWDFS+WJUfjpfD6b/t5QDfuIWxKeW4YtH5JxjmfKWWJEJpcXMQWBMWZOxF7qY9vG+CdD2jzs8EJo8QBfyRbLfjkuxeBKcwqJakbmyCmzPAPDPj95KjnVu+Gm8ScSLeBd4OhPundhJuuMOguhuQRrpVvDorjfCBaE+IxDQWYWLdS3Zn4ScrKEtcji9zu4RE0sBSbIsLMeZM4tKWdfoGKXrZpk+RDvSQ9/2c3pErv0DDTE/mLQ/Ebar1TYxfNSWOdqHYBMc+/5UbuZBStn/WeuLyzYhCRZWnafC5QQGDWXJy8AMD3jrFCZhtI0EFf3BcMLCT8eY7F4AbmO4Q6FB8+S+nUL1zAMJhbUya/7r4Sv9yPUkERheW9soRtlOEI8DNcFcRD3uyPz4idNBsyY/sFRlaMnQXV43WIA/Lpx5WxuoWtZiIVk9fDkmKD6t2RqAn7wVWXljWQ5Cz8n63PVJQZDGo/cny/ACZN2YUZ5DaVyBXoWUTOc3ZhrZAbasyDCinkOOFwQoV/GdF4lUt6LQLJzCgvox2nKYA5yhWDAYMa+/uziRWlkV/rIKJphqTtl+eaHgCEcAL4ycGXMCkutY6CLaV6jw/krSAFkhNgQUS2GsA5swNDznvpFYHWybM1MBcjgby3wnzDHrfEx8ZDj+SXASbae8mJ4ZO5SOowtM7KkHQs3W4zKuvJsCfH/LHyUM+9AchaPf1vtseuvhyIzJnAAhg2VFQEiw/hFGEtf4abIudusn1ghn6GCbRQMQghiDgUAI8Fvb28oDPz6uhbElLoTDOeY1xL0f6l2G/L7Xxag/pW4NRq1ZPGRSdn7zQcO4xa/Lk+zPSuDjcRNRiLIVy0wmuXLFzHlKqvkTfyYPAu1aBKsHIaBM6705z9k/RnReMFJgvZCh0IvWWbzFZwI/cpVIYpRjLh8QD4RTbDvedw8pyKEMxOQACcYj23QsXcx8rx7yI/6JtCVqWT8Kzfyu+hN5puVEs2+m81A8FSWuBBgw8mafIUp37iCb88ddsFYt59HL6gIKLZZkAaIByyYJ1PAXG2hZDIWpBndcXavS9R2u47pXwWbHs6x8tn6ZM3/dbwOg/viq2rXnteRIxxKhhmj76UCLzbYRnOhNyZRVi8iDE8M58WKKnbS9amceQo+NEXcczHTw/uaTpFXw2IhuKwsgkp9XQLRLosPAAYJ1qHzGesP3S3w70mJcP9ekM70ID76k8+mVYJnV6jtdvvw8GDMot1/e3tj7SNTyVukcVkHUVgAnNbMJT2RlQl6Vahk0wIASAyDcEFeNmAxg7W2lyioNHzX32eIzfiuMOcV99C5RlcBADopYQ098SowuTi2cb08vC6ePxIdJLMIRyiQCSomLuhECGKX3RCQZBhCgzYR21ZLyXU8BjBGKEWzC5B8wrh/871hmBS1I/Yo2z7bf1qCds1zX92TqksVQztHHstiFn6PGWIx8YTsfrbBflc8+yg0NWSwBr71YcsMglmiIQnS9SdfZAZJQ+ZpnnyFfX+5Zf1n6Q4H1jRf4iCEbLtAMBArtxhJdQiix26MCzLJnj+XcQMhZpF1Q3oNcYPzXCPeCuFn4IM43kFZwDEK87MIJxsy9LeEr2Xj93CbaShh6cKhtt/MVU9YFlEP+yOZia/+vAtcCZ2zugf9ijVBNOxEspNdRRFX4UFalt1LgrAxVJ8FKxwPPncers/PN79fXsBj8uArxY4Hk8F5JlGHKIXXE7yvgKu8mJ3H7WKx5Do7PgUhGsfwsHqMFSvMKQa1VyuEwNefuXkESXvWn50l2BWHp8/5FUJFyVWkkeHhjPxnDzNNtIvMJZh7Nl9/C5I2vscU/4zbLaboRvV/Jv/wwDTppMPtyPcvESk+2Jqps8SKrAxxVN9jHNSeHY2rSqgBlcE/vXjmOGbS6i7pYkLdsGfwJIBe8AY3PI9OxsgZUzguPu6hhCZ4PmRybqGkIdhfHKaqf9VPy3cFqywVeVtmMCy1Qb65w9lNcy/0lgeP7njdWjGt/tjZOOuFWWPMOFDXvL5n/fvADIAEdmr39PQkAORZ/AzQ+Rkx2eDFEHFwkJlfVt//gLFjn12BYz4AodaHDV7yUdl1b3mH75fvX1ZM0vll/fuLcH1kvqBPPs2i/fPr1+/yURijGSauCk7pSa7YwzPWWZBfNmVkFRBV2XbfSsoPYMOvUvhPaSEjG/Y86Db8Ex9vP/Lx2G5hBVkCBACL2YoZenvL+yXz7iOLDiNicwEajNzTME7skMlOV7MACSMeMn+Mmgeud36Xx1CBWBRWKzKLI9FgPguQNZ9osu1LDZr06zNmAvwKDBQE4QowObd/hqHVMh4+AuwK7+eVfZ2fZAhEkKUUoJQx43nvQmbNLDCMN/AtibliaMdgpKoXY57m0tDn3cfAvK+/zcIEV/4iCppKekRWFSGAmINo/fkqLw6hN+SPsaQyC4+cAQwCPPIu//P9/d37+h+Px2/fvokrl5cueBgDTlEcaTwEdmmUaB1YQcZZubDaYd0eXknBHvyAP2V8dtYxJ+JxJjYLDx0+L4swQI/ihrC80vHu/hTzLkuJcaBEn6QVjG9GqcP5ch4C3lDhT0KgzRq/InKvH8nUUyhxgJT7folMgEEYDLDr6+srpw6DF9y2BulizYXnCcHJLUI3I/PpWno4TZvZc/+h/6091nKU+gUN86EKSyTeY7IHjeQ4RlMULQITohH/AQ1fhqo888FnXk4v7mQWCTYdXlUnMEKR/kVilolkaMI3QYuAV668yLnwMlcEf2DsImOwLAuQ5wYyXJkF0XqfBE694sHAw48nKmMu3KugBjxriHpkxcI98h7VP5yzLGS8MvHVZ/ET15rQRc1PYYxq/TrL/npi5l3ymDf1iHss7N1yNMKjlG0BGALx0wNj50R9dW9gfOhhJlufweAZZm6BnBCe4donEr4oaDys4mEwsjzZAfrCW8xq4FsSNgdu2Ls0IO0GP0++9UqhWVpjkRKP+QjRbKiedQBgIKuVQG8Wfhe64AtaxgpkaoXy7hBIPIrwaT0ZzcorAkUeHjyNQ0lUSV8rCaaEbb0LE/qIEUnmwbu2dWnEBSuyHhD9y/SFceSR+0JvwilmAttV1h8c4fgZwf/8VYZVr5S0Vhn3wrtDZPL7zgfHBGBAPqtF5K0b+ZOQXkihDGTT4nm1fXH4Qcic3wgv/PO52EgPLnpH+Nueka6FtHalnK5x/5COYPhid1zmo5jSwYTiMeSmWhiWqRZma6p5P3tD/cqEz5f1GIqxEd1aZzajFgPAU7J/ZunwRBCU4NEAX7ggM9a0eZuRtIyvQkM+ciEMgtp84XreZmERmGHi9WF/Vil4JP17WGefV2HIBgfGy0i8nb7SJCNEe/K3337jkcC7LvtuyKB7NMEDDRFTaJoU7oSvuQeWWCwNqH89xCnMgGZcuxess/th/1nnGX/GqYLvpXyyL7y/mVdfSG55Z6FtFcsVgsWdL3sQ/O2Dp/ErdUI8yWdYKvVGHh8HAO93yrMs9ntv3YmsSWwMlgJ1IZgLZAuANGSJETK8rSxctj4/P/4Mns0n23Ph8gk5X/4U3CV3hVW0DPAel33n4y/pVnn1+N3OUbDGfLIyUsgBh6hyeSlR/NsIYS6HPv6y4B+8bk+Gm8tLx1HFqGMgo4LLE2qFYgxML7pDMd3B/duFsCwhN8nIJBS5M/z28vJii2k+P+AHkD47JAS3I8AwKNm7PgIGdpVxlIAixJawmskeQ7Y0IayS8RYAw/UohN/wZ8FbJEImIaRQ4Z/8/jafj4iFkzsNGM417cL5XPIRn6vHlMi6m2lbPO3nbc1/ZVmpL+fLeXPZnC+ncnU+b8q86ren8nuxfwcrkM0Uv9t5TftrD2RqoHABr97nJfXPT7o+ZXHCMbjcJO2tp6cnqw1iiMvcfoz5NssYwt8NCb+/HzxesvO+jvaymeapOPVgb5YxZ2UHzudj2dvzZa4xDF6RIdwOoGg3bVfFw+ncuFgba9ske/is+enbGmzL9zMCbHXwwqMeSpDjoxIKGL6AkeAd+cQYUBibDPJ5T9P09vYW9oDKiI1BRxKbSxPdNnRRj1ZLowZTTMsOATRUXl1WYDPZgTFRtW5LO3UwuRrdetgViKwx6rM92s6nffRymWt6x0DAg0tPc4bDcin71fZxrRRbhT371jQdTotgRp79utp0sXX7eK5lcQWCAQaZxSkUXAcuZJnmJrV4RB8dPGMmv/Dt5PmucjZ+reCd19ZUz7/ylypr27KZQLgKxh2bUs97feFy2pymzXQ6VxG3alKNINRv2wg2BfOHTc6RzWaaXj9WBnr9nad3ZojrGBa8s8gnPavRCXKXckzsueV+ne10i69/nHXKZwmzX8vbzUe+DalCtpG5+tvmbKMRlgvpPpfv2Qvl/jHBP+KDzvjQAxhQeagtBt1i1Ya5QAgeG/D0XE/A84giZzbegsbsfU8RRGiNGeJuIyb2SSj4swLktNuvJQhbTsnj++l04joqXsULfn0lePO+bkUxmxfgOJ0NQj4+KmGetrtl4y7ny7EMchX5mKwyK9+lSz52AoaJfDWEsFFVbjXnSJUlynGsHMblvC25GstxBP5t6Lv+7/HUFUjCvPb7EowL1QBcjHZLIaq2SpX6FBcmtmBUOtXyi0DRcC5fLKygTW2hIs1vYcHqx+OH5fdEEhiLAThXXqJnrI1T0Tiu4LzTBTP0TJot289pUXOCGTHXLNxkcdHjAdHI4oFQkYT72QkKx7/grUAVFd73eEzkYeYaPaIQxCW62uly2k6FjfcqpPo77/rivpXJ3xam+Hw+nE+b0/l4Oc8FZDe7abYaVKfq1njaVHFiszF4A3Ze0TQdavtWlTU2h6WQ31LQbGFS67nD5BZGtJsm62K8Rg8KmkoiG5XE86bAPZfr8oN398UV1pTuZfr2pwrYQMLnllGp/FfOwaZ43UyXy3Q6nQ+H0/v7YfH1t62c5nm32RSfi8PhtNmWo44hle+UdZwulV7PBrHlb5ttXYG5wL+BaGH/6jcXL9nLVGI6Cs40bulS2K+5AL8VKBRNMS8XAKDkJeXjAehB2kcBaElPdgsPFLbslUEaTf/uVf2Tb1mGOGYcRfPHKMBTXGlszWEyLMGRYCzMVAR3MU9NZaHEo5Q1LkybfdYU0fOJ5UfGKfvrgyBlPPykNYstYZQ0FsCy+5nsPn7e67EyZecPgNAPt5CTk/tSlkXYSllME/3xLpMiTivGzdBn9vWfb1xBmT1hQjssNFheazWml75l9yVrFgbgfVUZQgT4hwWtunPhD8KNbbptX0R/5jvJRsIYnjFMpm5kizz/svIbrwDXASkBjFFRWCxLcP0SIDcGEU0cw1ina5OCao2f9EHGmLvP5gT4ZMAjHXMXByIRC/zF9kzk8MPBweLzU9hsJ0CyAoL/NHDVM8aXabTHujxlDExAhQkcR7xYWl5vwfj4KFmSpGgM25ld5WzlHzI8DHoUCgBMp1hpwjslYUUD9aJvTK959WT88tbt/fM0w2zU/piHYoZfTOfxT61sStGmFAtA1UhYBnlYhovu3xLXVV67avqnUzmUdfErI14SLW0Kx1/+r/LJZzMFzKlCLVwfn5ka/xyjUI/9+HkRhLZbDZYT1+JNv4aStpu/BU6a8//C86Vw/YeDHQerYI13By6FsizbRS8GddjC/Xfv+rOzKHib5sVzC15f0/Qy4uvPclW4i1khsHvb7QzfIHcKo7N7+/HKbM9Aswoty95zdWoswYsTiICIpJ2S1+2fr6+vvKmAPwRxDgZzy06ZwCN+Jplrjcnl0rm4SN2IDbNn+KyOuR/+uhefJLvLjf38qubFkl71sv6iUIjAZ5gtSogHH0YpmIUHio3wj5lj2CfjmuyLQrqssU9dSPluH0+IbUHgfZxcOFShMcwQh/jw3nGOg559h7cIk75/P3JJHiB/HTR5nl1oGI+ZpcXDecc0E9m2lBfiX2GNXQXI9r1aUDkff5aE4FQ19P74h4xy/efaG/IhciohNbgXk4ISFFaICLyZNVgI84CVhIZeYjlQNyNTUYtdAsVQuROfXxg9QMRip21LbIL8Rcw8cJIMpnFZDsDMI4DTs/LOwhWHdwE0lCNMMK/xwo4VkSGOEj477v8G3BUqGm4cJw+GjwzGz8HuxYP+fKpOIiuDaDvCMY3rglf510q1CBcbMtAGzzLfjGfz8ZC3t6tkhQ7CmhaMl8v3wAJAJn15C565kJnnz/t7sUkalhB5dV3wuj9wxKgr1u1jKM/wZokPEkvXrIKBbAy5RfzimgDgjyi+dDsr8wOcREZgvEsPf5cn7O/f0jJNgyFo/quNMIxq/4H5crC1kD05jXbBoOOzOHtf2DDoMETx43X2WRGAVcP7827VhwlQhr/jgke+MSss0lT4/NV0bLdw/4OWfTe7762T/kk+C97SAg2N0PJlCl02KsBDFtw/GOdd97Mm45eQI6+WMJ/4DHLuIoThsLP6GzwGD71+EZi5YfjPsiT9gKAy+KvXVmR5o7P8S9kyhsLVAMGKbzrQzvv7Oz7NGfEyAYP5jI5h7cOCeWyCACXrDmfvYTMst4rfYhcL/kpPsxvhR64P+OsDqDqjR+2fvYNsar6yOy+IhGf4bfVjlhgGzx/Y8E69RTHrFv2E2eQulwuyBSKoQxSNvIAcYcmAJL4GXlMjGjFLm8s7IlnvvGsWClmySC/Mxo0oRURTHv8AXyn9vQEVeOXCLWhEcJcgMVm0xQXofDkVAcDL2MwPrAEP1QWmKPtd84XPGqNZs9B4lJUpEK0ScKYgC2fNx5N9UvxmVb5ohVIWDBgs0WoXrZ+QdLIKAP0cj8f36vcD+ZZDpQVxGb/vtUuyjwQP6wO8X4KC8EUfbcW6QhbOrbUIGJ+HblB6XThX++e9jN29z2cn7V5eXEz5Yhn3NACaBmkZgHpNsx+/Vz55TQYKY8nrf/rTnxhLGvkZMwT+Gj6+nuBJ8CLIMFcC5oM6Ux0J3gvvW/lj+uZbTOGD5nka+f0BOLyreWlehiTrz4oKcTAQELJrJniMI5jN6gbwh87Wudx4A4UgMgTFAqR/gFR7DbcEb/l1k7SnoDpiHZZ94bZMp+MDstj3H24ZAHs2XSixND+wzOs6HL9weJIBAh1KudBwFh4/MOhupjVrjZyRMNmOJP4XBapPVjFvFG+w3cDTfmblcRK5Q1Xy0TogM6BMp8NCvQFAdtPvhWcsmiaPKrh323QMXAiEzeL7kjFQlPSSWbwG1y4hE/0UZL5ZtLTsgl/eyXXOF1KFiuMxRGL3sVXjBkuLuBJ5uXqsqpA6G2Hz48m4f79fobsXXKSEE52XCL2iiJ4t1heCN2ffrk4/kAHMTyiSUoQpqn/r9kt2zasVMsvnLWvlWTIdzFJRPlQoTK7Z+P0nAF12olkFcDoV7t/UH6jgIVUFuy1rAE39L+uwxsV16zBlun/Gw1z3U04cT5lxqbUWAwB2CvgOhFz25lcRtozxGgRfhvz0j2k0/dTe39/D50PXmlswiDRkWRHA5WwGvJfIocYIKMxH678VntWQtfIaTWj4bC+wHVn2g9NSCCPDEcJj3RiM68fJT15d/zFSvmX7BhqIu+5Ln17Bk5F/aRzEyaa9h4emuWF1V6YOH8zxlmduaV4wg8AG+OkUHhYQ75YiFKRvEfiFwYJrBH994Evt+7ELdrHgKaCw0Y0rdi+RC5Fe9pWMa2S8J2vohYrxkIy2edP24+MjfPEZsWQKESZCnJfdnvBlmCSgE1yOr9XQ8FLiO76tQd5+4pmfLpUnaUnuWd/vX9nVATL3b3CSWlYrU5ZpxP3S+Xw1gOdMSAt7zoj78XgUVQLoI/sPiIuFd0mSMB6WgsJ58Zg5ts3SesrSIeYBEc/GnMGvKbP/3C4DSMwh21X8Og/IDVsAwrMf8vpaTKD/E6MyEecA6r76bIHe6bKbd7VuVAfVnBaJ+cjzIjD4Yf8Y3yXAJjzDLf1MOYnkDsXAyIp/vjk5Lpm/Lmw36/5JUdtq/eLT8J3m+TJM1t/1T16j4Q0afB7xJz4s7K0t/eAm+8itIo3sqLzpcUfG5N3b7mU4vEbZ2r0MZRYE7DcMaxQ+OSDknskbxABIUBqYfvhwi8+oZYPxagl2vQgZCD9TP1TOAiGEk30EGfVkwZ3hggzaOOvOgGiFi5+he9ncH0BkP9yEVPj6EiHtZ6hgXADIhAZ6QN4yBHcXY31XE1wMlzOPPSQIMlwBvsjGKWkBw0Xg8zLGP55v4HoFvFned5kPwr3tKptyFf1exXtMD0SXyRf+OIPx4mfYN0bozcCMAN99IWz1zXVsTCPh6sMpEDzfia97Cypg0jOdnnCSHaMx0OxL7bl/HMmnfUk3yXn9BZCEJzvXrD442iHm5G8xohbOT+aFuAVZfOATb53zhczQj6THReNkEjxyn9VR8IzMlGOfPJ70cwS9g8djSICkMsztMoBnh8LOhakK+icgkQUX8LPnYanwsjqPbT01VaGPNReHNA/bu+3O6kYJJvSxFvVLtXO3COJ71i+OrpLHhz0Ebe5q4qPO74upzWYBBa7YBkO3zwslRcU6c/QLJ/s3L7iPjwKHpjZFID4Uu/yJHpeumK2l37JJkfSyvK4hPTw73nHRI0hBVWwuSx028majlBo9kheIr0P8fi/Byxi+sWWADT3j744JoWDkqz7xt7ewUA769wceGjXQuSWNWmcZQN0Z+JLanyBrcv5sRpRZRVJeJRYwfv/9d7Z6Pzw84Fx5GlYQ1l41ahkN4/EM1k2aIBr85mkfU+kr7OeXM/p+/CFPKa5l3lonW+mzKtmTWR0PX3na/nnO1+eXzJfTO7JmN9TJLfyekgff7dVtEgEA85JsSOgty+oTD7KPEcIRqNdxEPC9eCOD2zBOLlMN3ugixQyoxIqIdsCvJzMTCIYzi7FkMuBKq36dmfvvxkaF1fhoSHICCACe6sNNJdQUsouCp4te1Xc6tYq/YmqQGoXgqIzhYHELlhDBzNaQGAdNVlvWXz2mlnWTrEce33qpOIQi1GfgxRSv4p73LVGPaPgKoiFZ88oVXsexQyseWwifpy+imAc8CPwIEvZwnjVBy15g9of0rv7RGJ+wJMN9ep1sI8o15gQjYdmYIacN+zLXyl5rziveaz4U7X59wzK5ywQz9ZkHM7+q3cYtQbd3NY/P0a0UzHl+fmahKMYJm/WsYT5MmiXeEkfDZABj2CwSoNb6LVwT6lPJOJdvdWvo/aB8DeOQQglzn5Ez9m/UFfgf/v7vwx39Ac2osFYQNXyWm7AfCCHhMHjontD6+/cydmNBwquy5LQAON5f3xjxMYJgwRHZmv7mb/4m/G5Wrivz9ZcgS1lPoSVCkBiGzJTvIc8H/SwDuo9xvMq438igi1TNGqNwnJzX3H8uHGfYjw9iu8o74oL3QrKjoB8jhKwZzazny3g2d7UwomvQvO+43xreo5ZObuELuZ9w/beJC5CHBM8E8y80vh51jPuRDq2+R+hu7hnHKpCvQcZ8kQU7Zo2zNPD0MwY9ywrl8YBdcwwPt4EgwSUtwXlwwceQOMl8OaZIXLDEZ72t6qYJkKxEl8K6nnEXX39eAdVtnWImUqKWwUV9fDR48KsU5vXfVI2+rCQsEgze7ZmSdjHw3ZdrgGJYn2GkQLnE+yKsJG+Qz+UqCizucLfrKu+iHyiqpCH2TLyWM3q0rxkV/c5m5ysLTn19fWWkyslweQyQ/SSNOvMV4fpnzWKcZME5bav4qPB4GA9AQalobfm4N9pzD0DIll3eY7NUYVRSzQf3PVNr/5xPcZ5+P00F0BuTxNQ6SB5uTbY06IIT9Xa7fXws9TF8ckw+U5cFIIultyXKXrUAUGPZATdG/+3treXR3z2AqWPUjf0S1F1q70zTblrxm1WOavb84Lx0hmvWRITzYoMYB8kgrwzbMU6nU6z2/gEG2rvWgIUVpJZVyrT7ko8fu2UIxSP6THN/b8sotA8KFP0K7hil/PLlC0AQEdmbzebr16+wIlW4fJRodGmiKcHwrmoWMx/f0KcZs8BXBOXxP0MskEFJNq8b4cp7QHrNmb+ZpUCRSo1XtRSD+foRZkpToZdyRjgoTRhHPhRXE9RQObVf2WStfFSxuBJicUQjK4vg9XCXRDfpp8x7wessL3redyA5CM/hGWtJKMnD+7UuQOJag62X+iEZJLCKIZt42LzCBQyld/j2CIG/7gGeYz+kE1EM4fnHp0c/TZ8UAQ9wvRrPFwaM0bJdcsRAg7hUMGKxPIxJ8L3gUg+foQKbXfhCE5YAg8/2dpUBldXgxtUPsH1gTCW/rdebYDyMEFhLGo6EfdN9LLVXzUD+vJqXltef52gvQuHiWRGBcJg7pB9B+LJT2UFjxpcZTa9Y4U/IImc0SCBBjFTcg/d0z1DoXS18cYDPr9Gym1r4OuyNNh3AIdc7C1HomQ6U/YXPNfv/QCFiZwTQIgvOWNQvVOvc6qDZ8yTCXdwgDSrXB4hg8Xdlkf3Owr7EMQylAnG2yhlMjNODesQkFgq0h4cHD7vs4hJqUHDnxiQwP9/YpYch24Kl1oKOS7OIEKj5gUqen59Dc1Kmmbv3kPxA+hQfCO99+oWjyhQAYee3jBNNTk54hHj9QwvJYJxZXYsxnGdo1/M6GZlnjRQ38V3m7wrW/nmMeUsb04BbvFHDBHlr9pVIkM6y61yN1QnZqYHgyh/19Js795pLwFuoBs7qAIig7p0Ewq9wpJAXtLhBQynnJYOrrIlrn18fbAf7ePiR+2tr5hLjOQBR64oLjadzGd7ICr3xJ/hD5n3rLQzWmyjYTAMX8uIPDw/+nIqEzAxuljpdYq4Yb6Nz74jit2yw1xkSQ//4otGv8AEf47vA4WqBZ3FoUNFWMAOm7x+DRRQztQ8JyPEdr3qAYO/PO6bDi2yDYVfb8ELOy1UBANtnakFeyVByFrEkrGQs/FVoJ9EaeUvSgvCVrDFK96Q/xAm8LJ46ENyOv6wD4H/y4d1ut+C4GA4hQMr59fLzRAy3aWk53aeB4sfHx+FwgIgoMZy3KICa5ZM9+2kNRa1Wf9exMSrjmA1eH0kPigcKr7+kJWD89mvU56Gez5oHL2B8v1Kc39cLErI01rxG3AugP9MyxhHBUqK5+fqX3/EMO0d++vSJsY8JCQPEkX03S96XMUYSeMQarPC74zzNv4rRz9pV9iikfKG2/saes+ev9iME4F6oM0sXQ4g4AgpDk7VVpXlbQ+E210+HB9FC90Rm00NBJTy/4ec46CpURXu+QTRbnhH3yY+zfjzjmDWpJ4CusjoA2cHJzoUwLniMCy/eSHplAf0w+D4YI+aV+buMcjMFpMczmaYG2wG8DZ0IxwxgSDCsw2LmPRykmgr7dbA/dGMULE1Pf+IYLQvB4t3kPKeSHQ7zZYagFzwC7h/65iBfODGmIq8OcA7vTuvE/Ym/7rOJezzgHXf9pg8OkYCoVJjmXRPZwJ/TDMkLzI9Ph+/Q+6WImMErP6a8vhWXewJaHyrDwx5XfQolbYE3PhGsbQwxM4vWt9PBkJ3jkyLLJRY2DC+04Y8H4Pl+QWvWsx1SOPL5d6HIODsjp7nccLpPcP9W6BfO/YvrlBgQ2sC85bZbDQr8ZQGAZ7qc/QaugtD4HAm3wMg86nCddZcFSNq9+dHhuiM6vAy83t6KrzzngLN/fvv2zW/8ZrN5eXnxiJWzcwAIfkxdOvZN5xnZ9cND8/0ylf+ajZgKRrJewbL33MhVy9e9pmHA9MuvTz4gEBmKB1cb4PWqT7+0G/sXNJ2tg9DL24dxL5yHWI/RXFbJ0hNFe4vzOAk7cos880e3ECp4MJ6xyygiI0TfvzzG65n1KfiOqaNf7UE/nnHxWU1w4bPNhAK5MO6yPldFXM+mZxWspd1YfyBcBCbYoI5ZxkaZr+yjsFMDgdCrJ70rFDPHWZ0WiTPBNTNGPKT9tmjufZAuHDMwzcUhfo3JQXb/UHhogg25JPGOhNxbHXPnooDV8Oksjer5gyN7FOINj+254Bc7/Xt6ah8yhRGfpuX+KqAKT++BZwCBPBim74Ck8HRLE+8d4UN4bOwtHWKDENgG+5g1yKIsiIaKS35FuH9/gjAe9qHiHpis8NZcLsagF8XLuaT53Fjg61zrAFQGxuTGuobTeUx+MqHIr6fs3S1LJ2vSfut7Hr1IrW7DAFXHGpAMvHXpcVHV/ZcV42T/tsIW4Ms5qRaDg8oneCAUVxatf4Aew623rEpySFlukdMhJwjdsu6/RTsYNrtrG8YEzJ+9ECVZD2xi8/nmbek5UIzlxdASLSO8F8Ky58NCFSaosECPBGoPuz2fOpbYsLvs6eErv/rv8jKKSRQX8nzG6OOXizUywKWa2v6fVxmarGUYfEASfA++kzG9CRUJv2Q8Xv+RccxynzWIzGJmjGPW7obzPGZARhgKq+EBZw5GRoV+soI4lvjsFkgDIhtgHmG2OLhNupIgLSao6IQHLFllSCN+hS248aSYSyGTIkw5BEI/Uzw/HomwMlJfwifX67nVOMJVSKwP3vUHCunFBE+WwqN9s2csZozhUOqiCJfGij3WQe4qycPDoJTQqDENrq+sJQhgphCejNniLJiSn+c9zSpk90zbOs5xgc4A4fQryUCFnlnK4oMfAoz0Flp4ME7fgwAD+kThKs3O5IJPBkdswIfAVUyMlmwDYehlOutXwJ/l7HRnmZQ8xpDdFxcJAbYV5PqAeI5pEfOROITw4g/EqlKqsaSOG4k9/bJMA2D2/Y+xYij4+W7Bz0CPjPOy3TaEJtKUAPx2seyZAIB4YrhsfXx8MNbFttb1iVn/cMDLuAmSl8SpPh4pTPfJocb+aLCJiXGCnVOJkRhZAAaM/mCr8Ey4CvwAp3VjmcbSkPmwM8vO4WlkxkD/qpZJ3m9vb0wYoBZCWi4RzZFejZfo9u/iTpbvfOy64/dCllfO2Pi48oHPGMp7031e5fyEK5V+OO10OE5xaUC3YzgP5utG5Ufox+ldZQY1cfwAfqxy9l0tG78fVch6ymNhVSBm00Ve8r1lqN8zOjx+dOIFM7/7IVXL+onxeNHkdTE8GHDm05zRWhbFea9ZgLkqFfjZZd8V8uBHJRvk73O3Hp4FO/l142wwzOBOs87Ciz3cMnyIU8ZLytnbWM2M3iQE3xRVUP/j68ZtCFEYo3TPzIWLw9QTfY6dNG5ssmVc0I0lJRkShgo6G5IML+eIrUB2x9/0dWwy8iTrPIBzz4d4dxQowrgkVobWBvgna8Y4YiT4tFfY8X0BBl40kZFQSBGbCJcKD/CeqZC1zZrPoyrrL6jbqxJEAZSVORuPgQVaMY3yMedgAAgAghhFQbBds/2sh92w0+FwMBnAOuHcO5kmUcppd+IHrXTbhSoACL4iHnJljzl8XDrncx2qAwAGsAa0wIBfJQBwMBlGL24zPCBjoG307C3D4M7+oGYxwDSQ/OhXRQNnZ4CzFrB09fLywiY2u1nUeFTbHbMbaPoH3w0Rpde4ZOFlGWm3JkFOknzQt5DhK793UqVbBMgQ/wolyHzEQwYoC4T4gXoCfPw8CvAUC8owcXjgNHM8Kfbty8ShP6KNBZgwC1DWD2NYWSvxSTMNn5evBnUbzEWEtVzAy9KD8ARhP4x2mXH3LIsJ8H6oWRAw52X3gqhvyCojhD90SfIuBH7WIa/J87J/Cl712ZDEBCpGAIwqS08piwwVndFUyZ1X+199Z7kfdlnhbQpd9jkdrQpUx2aPFR9ZrxCx+1YAkf0BkGTwErVtokZhhMB/mreahwcxD+KijXO0+YkmmkJ0DvsGJ9vAFxEc7BXM5/OatY8/kWnQZZr4k8eHbU2cAgLrcy8fEjrVIF8ku0ezGfBnVlsqiAtRYD6Bj4kXFyFwsj54mVeLTeJThnSx3EOX4H/50xXW/9IOznyZT5sTfs/TGb98Hw7rcoh4pvfKsfwK4MHrp7C50Nkv26pKn8q0nC3d8Mb88beb9t9SIxnrb35EMM8CJ1uZiwr/m2t8SxHS6m/1rDKXIScGsCYlNNCJ5UfcLFnQWteKLjgbByq3FAvGv/6f/hfPSHkN0ErYTpqOzS6YUPmIMZnG5XL5/PlzSLDHGrLb72cmCNPQ+9e5cAPLGFYBkXPBciLhgCFOGA4zGrK6gAAAcwNJREFUYTN4Mfsu+815l0N2xG+wz39nba4+ml4Gy4KrLudgXv8EDOiNgsHVFjL6ggL4c/M22EEe1WB/Bc156atc77rl9Q/cON9U8E62JYMTwDmTQ1/dT5Yr+K4rPAfkyNQOz3gLhjDKoTbRT0eCL4VZ9PuYpcUEBheECwaIXUcwXz6k1h4fH8fnxSHiOM1x1vzsxngyi2FA2l897zeca54CM178Fbg4Yvq2Si/Pz8JgQX/m2RG0bL6spl2wdCcQYklZYY9dK8Cw4H/ZNclWxKaDEDJFgMHDrOjh9UElR8lSsq159EPBKaQvu8rwDfZIGmuC2ZEgrCPBwxa+QbjYEM3K6eDFx53t1NW7wH2GT+YfwnosLEWwCr8wZJdY0WYeBxiz8HmZeOx/55pFSkCdu0WqHwsOBL4KKRHWdh3POc6jDxc4yC32LvtE+OpDfp1DEhZuvbV63s7TZT5vTvi9TOfttDtvTrVMQLmzmS/bqdQYLkkR0tzguqrMj4X0msdjvw8Pa10I5vt3ux2YddRULUBe9STTbNwgbDuL3Ltrj1V0cSn+PPN+LhMpGqL393cz4NiQIFqwTG7kxaortM5rVM+6L7tpP+8321IRwiIqBMwAn0ALrG6eKj/mc2nKScQDx+Pq0snP2PkSsC98ZgbxotEhjUWnm8GfoEkSIxo+LHGx0CjwybnqknF7y9Lb2QHDY7hGCQkDI5ycl5cXpgpjDZxHxLI+3iSn/PpC4ZCOLXzAY0OpPLfGGFSN2tW2LtGl08heXfl7GdZ/rpZNCqXLQy4fW4bfTNACg8LrX+7s4/Rtv6qN199TdzA6wqBkz4fdsmuKnC9kx8IrnMXFt0xOA+G/mgtVnG1uhFvgK2FGmWDz2NhXPswyNPiunNaQtmWjhe+yjOqqwCyMS1ZX5GqTYQsvyPQCShOjxw8PD4UjWZ4BUs109qAd4XzxDJo3hcs4uefVhz7aFK5XIIIx98Ykjw0IsuaeJ8Zb4uY7yCsvi+PtjdLC8yuMMk6ccP8hYHiNQKi8GMRn8zahK68KxPrLLvOU/ajAY8iowmqvMh1ukuZ7IMY3yE/Ojt2EQIgCz7KqPBEZYbvZL4IfFS8ahzL7mAHfgwzYk7DgZmX66kX3e9lcpqJ9usy11tk82fHxC7NOxy9Xud//078lQfwQsOUcoeYSUw36lq2Afa3igZLtZ6oq//Jf5f7Lf5vFyYdDfjmd6FU6zjztbt6Y+r8o/qfLdjMJN4Y197Zfv93xArrt9vvIAol8pYhTskOeiefRnM6nTFIPNxs+/XxEbyc/V9tYYPC/DRb8vPp8rvM8m0zmNY4hXvPXIcQzWmR49QvCfp8hoyBkT/zLQyAI+QzlWvC/PTxkW/ZfnQAgUzufL9l8Q6EuDAoXfMSefBuyMDC8/cIjELaMsQ5N54PxhJau8ALPy6ezYE0vaPGFpL/0wBzI9sOB+XkxP4pPiKsJf4tHCFGQ86bLMEJGNiy6N2i+joRdZ1lEQiZA0v7eeDb5c3Lts+hwbgOo34pUcIpdboSwMWOXCUhBBGSpxBnDiTB2K/vbBykyvHF0GUs7+FYWNuBnxNje3mIBg/fd59UJ1RDrh/KtC1USEvCADWLB0tMvnqDfff4Kz5qPNjst8IvmguVpKGfjYQ4khFtYGr1I7L0prIllMqtPiubjLprqbVEgShwOe4fz1z0RYdByDt8Xy8YjK+mPM8bDlarYTci/zl8XVOY3OkOq3gUUb1nEPLyApPkx+H960JIxV8XxWn+JQ5yBh4XTrTFFgfBjyuhtF9hfMjiei6riZOk+PX/IUnQ4zdpLoyN1GKzAWueFTiC87XZNFy9IJhOcMrUIP8nxkJLdC20VAKSx9NOFyCyfEAQqebihqEawr8yNLQacWvteRjNrGV9Sxb9VhcOhuvaMpYBFIliUcI/FiYj1D4V1j2LCBH/eB1fwL1fwxQNmwpYT23ZkqTQ5WKgO1C6/UgD762lMJFjhbT7HvnkBT86eMBwAeCbwZb+Oa1pDBoZfFdQ7RhBevMz2ZYyFx/DMr+AciXDLPvdZTDOPASZ7IX7MoI9J+LjBJYNRFsdmDGJmmH0Zr6dnTOH+mVG7rB+Bn6vijay/Z+zGiiVW7sh1mK3FUNZ+vzcTkDFDBVn1jAvWgdN93jhf0ZswYRqzpyE76xUlcng948XmC4npFETKH4WHfaznoxQrAvDxJib7LvVzWPzANQ81E7yFw5P1kbUNv2jX3rXP/sSKNs9WehjwkCDQwvvFjI5sbqYBFeHh6vobf+cBzGdoGXO6LGfyXz3IhXC1upBRXBlDacYXhgqI7PgMTqggz+UknjO05F1GQ/BjflI651cgqAMRmZs+1mTALkLgn1dBYp3s8XQ8HAriAkMbei3i+amlT6Wx1Rz/S8Gvtdi2PSOCEyQZqzQMJz2PE7w4BD42LCQSEn1vMStih2yA3w/u7mH/EAbFWmVEb7I3H3qPcDFJhu/Nr2ssHXbYvPcBBbPCrj72AHyB/ILIKo2JtAeacMDZQeW3oMLxBzhj8kKBfsDYgcDcKHHdWKH9r6Sx9iU8V2jCr/jT4aPK5N1GCE8dIQx7+5kmliK2gcqsGbH6qXkS65nFW0RfHlUI7T5l5+BkDUYi5C3bx8G6saoCNyXdJzpkbYpg27D/UEq0vM537T5/967jJlk4xioM/wsiKlPgQFgOKUPoIWfPOJ1OO2LIWMeR1c3I5str3lvbgk6Ep+z2cRO4+HPefcYMXEjIAxiHiDA8sJQCx1d+F5S+ACGN/2cooDBYoHfQfGNrBAn4peM1lK330k4WNI+0jJhyY5EpuQXvVJjXfEBP83oF+3BGZklgLhnZ0O9af/mih+cwxZAfEhfgw18LF7hYSLzbN4/Bx6j4hIr+Xc/ue8rlKGNW0NMmWx6vLjSWELngt7Ahhkpq+VlMSwhgLDnj1JDLfgMb8dWBZaB1QuNfuNBysdtWn/ta9ms5s8fLZfr4OB0L87+iHYsrGMNGp5KovwZXc00iLJDMNIX9/uNahPV/RWzg7wqQhAwJJ/MQxBVkAQIB8LS2aG56yZ7Tpflh4Z9+vTjox7MsP89ocuVIPhVmwmBJkWsO8FkKg6UYiftJ+fuYO9LK+sXxhDZMv2gXWGcZD2dRYIp7okqx3OeARZM25ld+ldj2C3nirI15XBlJxsDZM4x82cUF3YbMB3c1KATzY+uT6XLkgtPM8bxgQvXc9uBD/knOXsJM29PTk9Bya0LIccGWLkYR3mVivCDZM4hVkOIpXqPM54s7z9C6NZ9QXzhvYVKzcRpt8B4LVwWPq/Dm5UAv8PhlPBwOzIjDUrrdbk1P9v7+zqkqRL7iOIFw3TjkhucrGkeic6O6JX47dpVAZwIAOgH0Znn9M0ZQ1tATePHJMZekTM8q/BD7iEuTzsWozpAwEODZlXcMwH53wvPIglyTptx58evPoDuAW7k55iJCL7IBDsnWnxRlXVdQKGA6jcFdBA9ZagYzpteD4XH4jVTQYyYHcCi4QhC+nHf7lg/nmDcjaHHOximTlqm0s56lPizGZlm5GKLAp0nZYy/8LEqKVR6e6/Ap3//mcDhdlupnCAoVQY4nImi4bgkpwTdnXVJiz3gH2cWoq+HVFxrDMNh1hQmKpT31CgtZDXw6gE5mcLMYAE7rBogPuQdjWIFMJT3oAFBubNnzcN2RgyRhmvgnuyhYQ0HpMVfkTyn/lZUBYp4L8R2aKGkAKOwrmX09LDQjG5SNM4OHMaL84wSDX9VEk7cOj0y6ngESHCdGYV6ZlBGsDMcftzLC0IcEcsCye7wsg8wsBvKWAKHkF/fLgjuZoMLsFEO1d7zBMz8At0JrJcsNz1FKu49XWCqMZsO4RamRufDech4zKhuOPNvfELy957Hp4aAtE3cLZk2ymfK+++EJg8VL7ZXEAs+MQvdVQ+xjdZig3jJafEUoMbv6AGOI3wsTI1QqDVfDq2y2bDKgxlmGeNZQoALCQwCQcySPhSSPGU0JjQD8szQitEnoXRjvC8Z6vDI9L7XOXfgZdMjTHEuMfv2RyF0ycnLMUsjxywUrlbuBnToPfvQpees998/uGH65ZE95MMzv8XhaP/VBvzvMRxGQXG6kv76Wq6wP6ibxOpiugfWzWBZOMNO9WCeHuW63rZM2/k0pLXw+F8RVDJbHc/GZXjhy2Ba4W16lcKayziJQ2Z9FtjH8GWZtqslVu/UBPhRkAizH8MMp7PgxYIOiBhNAsV/OesEXn7+8CKIUjNP7hAX57G3OSHPpwT1b1s097fv37wBQ5vX3VPyYv7vblXAITrwtxhQ8KRDsf0P+wDRn+KdsvwxJTixrqng9+YLXk5mk83Im+UPZODPu/0aG469ZABDGERfbXTxf8SWVxC/oBKvq09W1lZkUQsZwfm/LNPoSxOa5f4FnD+f8mJcB5OSiK85exdFaPosOEx4/Tvg0S0xbqJgcwG22bsyTMUa+uj5y2MMCfMzWOJALzsVAo5+l9bwaBCzwxi49/lxn8OPXwVIjcCkZo8RIc8xKE9P4QovG1TAyzXo2X0aG9uQCOZtwncMsMQx7ogCyEdpQmZdiy7bo1YBsJXaLlUdrOr/epoFPny/pPopGtv0mEO197pn2i02G11/eEnjIuH8BDJma0XcIhJyxceOC6XlbvSwnjAvDp0h3xti9f7x6lneapvf393D9B+coWf91TbrsUh0f3JrXfeBCsvatFshaR0hmxxKLt1wxQyxf8essN3lbA27VDliyPj4VWF2fmO6LAmU9yAgq7Uf+8PCAtJvsaoi1wnytN7Po8sGs3Z077/xFZ83S2oUW8HQ6bx92m0tzx0c9AWMOQxIwz0FeFoJVPSCS9VXQSKjLCFfeHzrMkZUXHPfv+y+T+lf/5n8OCS1MV0KwT+eu8qU0z2CFJHlAv7MD6dPh2cWgMq5H+gV6jnH/WVRiliWJCa24OoSGPMkHLIjA35dCXfi61FfikfA6rPxuEgQcMkz1e39IcGo2gKt8MGd7uEUgyb4uWSOweodjiVHxGkGf/Wk8r1QQShL1e0bNfrn+g3w3HP8u0Qiy0C8nP2QQM0ZWpFP8mquPEJ4sKwWbUL0K6ur6eP2i7wdpfOWASKErxphjuJJzF8bUDvrJCv9lfo7Zd8XFXNaBfWw6sp2vsNzPBAPv2Wwb+vz8DMYOcVwDfH5I0qfy/kqqE8/ucx5rebcm71uPA7bY6jygvtVKAmoWF4ZP++L379/Z/sDpBTt+hURWqUeJvCIhW+xPeiPPNa22WEt8UO8KHqfVEuIRfnYumOu1lsNnd3hhvkBBKx6naOgZDD4+Przuv3IuK/PNPKhMBzdRXwL7C0uLBZ2bTwjO/m5Jp46breDRNUIj6ybHEO30sSry+ElmQL1CUPYLheS8xneqaakZLQP8wpiT9/f3cDoSKI8F5HTM2dh4C3aFhe0qLTDOCfiTS1lqO3EsmdgWeCXLdNGUnTiwSOq/2+1sl+tjpauPjw+EcLR8/9F4LpvTvtT5aqE427k8iaWY6wgPh8Pb2xvqS17m7enY6n8xL8rJbDDUCp9Vj16z/bSRb1qVt7ocnDy03Hmu9a/QA3qzsGNEG6+CTe+kgwHI+SV81c7ddru1RMx2Cp6fn8WgYbuz4zR2PDFG1vKlEOBYk8e2e6+x83qFkFOR7xpDJna3QbYWRi7ylcH45dNdyVKnrWf1A/p/e3sb6zakeSQo6xMqQvy8JO3d+vA1xPdX3sK0m4OtzGIbfJ5puzYGkQUADzk/07Kh+oqqTcAmpBMqbPjhQQGvzPUryysfHhbk7/cyNpuwmWmQIpoD6WIAzBnLm3H/7MInQQWZ774M4BZ5NTyn2bptflHzwbKDjR7UVfCzHnM8YLzYsD5N09vbm+TDYTzJ6CjcenYa4UXz82K0FuaxXlZj7YSbcQzCrHBaSfFOkXPk8a0En5hg4GUM7zqbgbHUxpZdkIrg+CtSlnjNV3ighIHmiWdiG+8O+he+DYvG/GhneXaryrRShiSnHpvrY1IRuYcYHtbs1LPfRsJa0h/A51z1pQN4d7TH9MJHiLE6lpsshWB7VhizAOaHffXg+zGHImt97rxZ5AhRWg8UNyKK230ItAyQZR0WgVZeNz6Y/cyXkNwPBmCQHj94LNs8L4Wu5zVCwIxgh9rsQ5X/vqBSuGjc5BwB4KfJFF5N82V/XgGvh0BJR4sF8Vho3Pz6M96AtQT/3O/3JmCIE2A5R+y6wIg+84XNTJDCNLN86UeZUfoBSWZBmckPlIve8xID6whVvqbhdZZ2MMSerBGZ+sYoNVwfrwvxiybfZbSS1WG42oQC/bWJC6H4dPsEQx6F0d9+v4stRb8ou9FA8JPdtCeZnjFjlOWPz3BxKAiF8Al1Jg/Mq7JEn8eecuLRKN/NKJBfqAwnDNZN1kE0qT67iMcPAiQCb3gyq/9wuwgxfizDP5JGnS8Cgp2z/tn97GTxzmIkZhYP18Gz4NbVQ+9Cw3AeiiIsJzBRYEuF18uIg59Z7YVrwTkyumj6MGYmRKhmlZYnz+b2bUpo5CSRkdwixF7IRZNXKUxHy7xjxmGHWIUZF5uy5R3PEJGn1KyxFgcDHo93tReQE8VixgywWMg0F6jGxg/r4qqAuHQFm1iWEDiUheWPyn3rzbSzsLgywPC7ggA5RoKPFdLMKx/fwwnTJl4i8b7OZhSi2Yx39MhkGXBnGx83Fgi5Q+bRGRLO58blC/TCYgCPHeQYwGM+BSp/rvL+03a72W6LHdgMdOXJ8yrDv7+XTGU2cLtzXP5K0y9vSZIVbNzDw0OBxmpkWJyaKOCHcIsNCXkmwK8bIkJ+i4zkDXaZhXY7kqb+aE5ltb2+voaMfbGteAI5YEAvVls52XjRbfgeBhoy+y4kRTnGtvGet85cfUTzt37xNtYRz4cFjKyFJNZcgHxvVwnzjc2TFhmwdpv0HzIcVxHlH9ey74oA6ecrLVtPphOssa5ZyEbw/5PjzyQq8XEP1TnCo4cTzDS4mUDoqS8wEb7IZhAfXGi/0KSCSEO34Un4AK4ypl/Sm149LxiPxHGuVV76/Q2x3C0ix2AWA3rMz447Cb8ePhb4VxAXKDBzI9rBcePgUWb7RA7BrIFvBc8LPHjMI7AhApu3yAmcCNfCHD/8wpkpMb9eeIbIlnkNa8a4PD09cdyIVDobkDwngMUyGH4FYq+m/c4uJDWksOYMGJ4XhEsYR0eAUSNuZxW5Q0VY6EHgN1T2Ap1wphcZ88pQlqgTTY0Sgnr2V15VzGideFWJ8+siskpXYigL3YNFAMBCeZ3mIEjd04Vw/VnNETJaXQ/1OZi5JI4lbOyDLsqLDE0xEZGu4N7jEwwAGFhEBGQ2aNludlUAsGRl7cn61Pv7u4TmN41A1drLGooikuF/GUbTUNg41hB56koyFEkoc7awHvXxwReUZZZPHBAcfKybB6SyLuH3QqpffRazrd9kjEiIDUOCxBAmjBFMrkwbZJN8/57NRRS/B1xhXOyfPoiZH/CzyFxys3SHMrys+fHIr1ePtX9u7mhFXkx8yv8ZW8g3jB9Gw1IgO4cIACbQ3qvHvb2NXeYYruzTYf71AdPGCCWmKP2TWZ51XgF2E0LwrrAaokjAHnG68QHp9Xx/CM+ev8n64UIqfJMFFXlFBvBjW58JMPcK9ll9dAkuDLMMdxrQxCeb7wjCDBkF9qsWkiOTteaD/Dos1D/v4ZA/4ZvHePRil0adS4TCP5jrEpwPLdsGA4kPBg29g9ghAbElwsllkiRmJxf4XLZHcvxFaOF9D+kL+3yzMnLA+MqO2DXCMUUyl4Ju4+x2/ovZoqF/U2Eyt4dlZ+dD3yHP9wcUW4tPSGcjKgOo3YSHhRcQ/+RgX2DXTF9Q6VEsz4fcv5c6hGENGSSfaVdGsn57vlSquZm35bd0c9lcStguB6Pbi91B9jKYZPGy+6G/qDU+yBx0ZHw8R/X4wRuoFJX/drPflcT/RpSKS9P5fKri//fv3ys4lX4Oh5Mx/6auE8QFusae55IJbfH9WdUlPPeuWMqCjlhlgJgcjz8zsiWAAdh7enpicLWT+/HxwVmSIHuUmMNMVxFmubmavtOf5EwT6c24QDQhY2Rpobz+KfuWH2f7XB91Lg94QsWEgTeVGXr+5foGA4oYrkm4SjeuZ6YrvQXx3chb39XuZYCy73rV+Jhdy1wmYJkR7GPyzu0yxlVOVJ9PBE6pg+FjMUPBGGNY4aHnw5jyyYDZpC66HNMcCI2RL4q8za534VfChRrD82C1hdSF/XBqwjAntKe4/luefR/L6iFwDs/RddnVfz374kqpCbkPFA2h5iJEquYzKtljJAuZgFAoSGRKcbHsYeQ++QFoZPgtnxxdau4a32DOvqVcKC2/ZAFiCGEX04CKk9+LFHLKgmv9Rix/iBlBoV+MtWTr/XGTzRUWYZzT0MszYGQ9iZfK2R6DeadcgWQeWAiWXLGVeWsTDPCJMHd+hoX8wvrzZTsLM9EaT1ILiaa76Q4+M77MIDJ/1R2cPksV+oSneJh3MSMcoczPx8o7a3UbN1/qEqtUM2isVucOBfzwAPv3+8DlTnSvKwnXPtF8Qb2F6nsFYnaT6f3Zg9FEWYPb7XaNVGZrm18x/AnAYJ+wwl8dAVrc0lhlUMG49kAZnzjeV8AgS3aHKYtl0mf94uvj8fj4+Oi5/yIAZPnRPQCNGa9QWhCCGuqfRNHCvlaM2tjEH560n2xMXfian2GknPkEY3s8tg0xnZ8RE57xfG8Zzy0T7/d981fVJF3gLQw6YxCfrliX9JdCkW9jKM3IJP4adsJM8ynKauUBgBmIUG70pvyGICi7BfvvhinncHB8jjOeCK+/ZGcSksw0kjFJpm6QpBmDczRQnglV5mdCHijsZIwnB/cFP2RBwF6by4TQI3BWtjGYwRdcYMOnlWSs6D2CxLfbw0m4CyHuko2WibiJr9st+kVWHBKn3rHLwkt5N1x8S5SOcHS5UXuSwa1lAQolT25iImDK6AfMFxyrM3gXF2xBynQBYdZCcf0V9IvhSYyTzF24RhMI/ZniIGAZ57RIeOH5HeyObI3FhoKRWuGtn064Ah7JsDypQXe92Gx1aQRERcHBYCAr5oX5UJsg0p0fyeJDX3MCLiKkhzHfsiQWoovBh9jlG09yxLDJ7WITEJ0OL4Jx/4vv38Z6MrbcsMHxWNhfw3sfNVfV6VRf32ynkoRJ3ZasdVagpSJBnZRZMtfkNJclPZGV5YLsav3BkibnjqfQhS31+jHPCbCCxtJt410gPWguZMXKWnndQ7bHCyjHGg4ZXwhY8ssMB2ubRHiyyVzVrMiBz9KiIejqqkuGl86FAIe7wulT+a0svWnI/fuwNq/VyGSqrP9s3f7KGzRwIqBnDYRBaLYXLFu3myaFW/MC8E+2bP0Re8Ofk2wqV0VcSc/HfFimWc/yrFvdDMFBA9c1ia0M9VIDZl3QN3c7Zhw9AbBfdvEKeZRsX+QcXX3ej9+fwV8YS5NZtHzQs6geeHY8cuGwRZnNrgWS+9J0wGYpEiwdYsUxDLNmnQEJaZEl7Y+PduAHfCygcf8fHx9myoBS0NKAYniYMgQhYXbFaTAU/1hg9skzxnnlrTPPYfsnG5z3ywU4l++yFOStYWKB4ZOCbCdSYQp4APyotdAVEJpdnwRPznso9/IEDd7Y9cKat1i2fcwLGN/VgFcFvC0Lk4fzrB8EnUusuRcyQwEA+y4WKoC9T3KQcQXrP6dziVPd1JK3Jc9PYfSnzXYzndtvqZdtQ93MhUQGabLuxVeSfhSsHVz8AQD2J8M2C8t+NAB+eHio66A1y9phnC/zvN/NG/tvOxfr2jzvjWU1Rv94PB8PZS+enp7e3w8fH2/1gNRIg5Kx+7QpUQDTtloNdvN83mxKrb5pOh0Odn8zzwXG5uIVdSmF+RoQlhq558oeEx3s02OUYXuXObYiMv312F5gJrTSv729ITeu6T7ssHi+whBa2elwI7N8/3PNS+rpOgbW/U+FNoYMvIKoZIBy8+6a+8IrrZDVJctPH4ocYTS6/fNh1wiYjF80zSufsczEnjsvAwrzZ5sciedL38vo5nkhMDaq3hMJuIwFD+i36nhUjpffPK/zWiCsv5DCVZqcQZ7PBKFMsPGjbUs0YY6mQmtf8dl+7Hq354qqbfEqfB5DRr/XRF7K5+pXHx7X/Pq22PUixd1h/YGBa1yGFs/HOBjOAGBdz2Wjz9XEbHf8eCLCvLJ6zI2FactYQSVBgX6QIaHib0me+KaeWTa04EP3FWGdy/4yA3Epac5tm3eUfrQjhLVwkt9raGQlf2K2LyGjVt5aGEQ7ewWC6j+lkBkKPJ8WH3SZXXYnc6F8eIjrFXA/vCOSDhyTvVjahz5fuGU/8zrysp5VI8XstWG2trMAj83GWJ+P9/cOVEy9lq+zTVfArJ9WmwEhXluxwqSgcdpNpCUpfzidd7vtfleyfBh9/TgUpr+5rFwu+5IGvLoNFGfg6ePY5bPHd61QFPYITYLLZWdF7jWGLMTP4Jv5+YK3D0t+9O0qwJTHlhJCy7faYOfFaUE0fxB6RVLa7x94viTgdbGtKyHezJdz/T985bIpN6uW1O63T9ePn5P6KiUA00ZuJ3qZgC8JYn9CnQeeke0L/DoYlcGqI+EchamNW3wfz5ejv/j81ODIKmDUCVeur43tsBS8825ay/qv/AZiJBYKy/DfKQ6WqVVve9upcrA6R5H22PLXQkEXIlKoxVz/tNJZF/5Xb1/Ox/P5WMCrINLCVmxrTb+az96maUtd/tm+tsTFZqGbvG5cAV1IEot/aMhbP8/z42MJYK3E7vD+XtIN1/sbu2/uOkVqWdFyPSb1cw+7eb/f7vcPu0oQp+mynatUfJnOm/3H8eP9/fjxUXQB87zd7R9+//5a4sWn7WaeThUNFhgz9D5d5hrkMBXgqDCwKbEQl6lFRGynsk27slIljWmBkdPxdD6Uoc2XeVew7+NjLWRWlua4m3bzNBcR4XQ6fKzxdSVI+DydjmUfrcDiKi0sybQsjFikQZBdWy4+L4/7kpxgusxlRKcSsm72kI/3Arewi1aVxzRblYG7Ggd7raA1SCNIREhcC0KG4942YOAYTCFRwWVCOJIQshvHT9MMH+tuJrqAgSuCDMN7UYcCfdhJuA78YrbOGYUWZH31+bDnLkaqCpxe8SOxZYwyvMM6TMMrQxZ5IPDr4up2tYFBDJVJfu+ydeAF9HDO12OtknfWXDKkrTMF+5uNJItpCQValoSZa8f6++oKpXMIANFCCYT7dVjPXRL7keWV39zZvITQ5rtd5yvpDkU8Xgjt5pc0SZaA5tMEjxscnyQ/MssPcppYiuDVCPH2AAf6Xah3uvCVMM3iLVOzGDBp0zQ9PD7ap9/f39nHFzAsQi8DWGhYEIcimVQIn6rj0BWIlQX2PDTlvC/sGieWkMOhmfjFciLbGjLZvBHsGoQvljuLTkREnSwDzBi/+ZbVY+G0rSLYc594JXTW2vxQk4wjiJ6U6XAOe95cHpgs0UANkfIPi4bLC5wZ4bjxHFWALxSiyh5N5Wds9PlsrH8RrStAlr9yFdtw8GL7YmBgDGkbGhbUK3i1fgV+MpkzyCIUFXNWrca8inzlL9OSW7NoDbZWC64g8iJgnN8Pp4+Pw+l0matlo5QtL25AHepb+t8UiaFJUXVJqyBeqtdVlY+pfqruoWKGwv0fC4tYzCbTppggVuhlBxakHfNQ5w25vM6XpaKFPMDonfcd1c3YSg8Di+DwNQj49jbIS+3RUBUAuph3XLNVogPfu0l53LxPHvtu+tPLiKmjgtAIRvP1jMtgPb1eMHTVYMZLOr/xQ9yyvO/ohDeF+cvB/vLFLbmBOwvXkuUAd9hX2yMytszwX31QeMZMh84wfuOkcf0Hvh+KbYMmtjzPK2SMsuyLMGHkWdjtIJoVzmPJx68Gzx3Bl9JC3h0HShiI+j/X6yf4AFC/9TLscRpBf31VKhB5W+4LkDN+kD9NVWAYf+WW8XjJzUZleq9svvKwMO7gL309I0bRchawmyHjmNUt8bwmRuvVhwP8mTW4fAAYwCzCURiRgtwhR8vhr34RxJUI0wwVXuwyivEPUFAoA/DxCVHxYFmYz+BgDI8SfRwOj1+42+pC02UNCnELfyjDb+Gp9PngeTdFYexdED1QcQ/jUzaQzcQSYsPgQniM34reN0fdIsYPgHzAPzC4Xn0xo+yh4He5WEVeTb1v/BicrgEh1QSi05FxeqMTLzKHzfA4CRHVTJQ1R82ai7PfixWMz5ftdl+sH3Vh7P52uyk++WY6oVRg1Tp4eX//ePs4GkNsSmcrJBxqpqZqJwwPHcMncyynpdYvu9oDdG0YNqmW738qLDcfAQTv8sKuPHqCcCQIHts9TwV04fljyYuAzGFswS7cLQB4sxdnFwkih0w2cgbozFfy3vEMUCSf8BWIo+6zyDMxV/ljdvv4Q/WeBF2FnNC4t6vLJey7DNJT6zGDlfWcjdAPtRoqO3dP+xUfXDRklwd6gkVYRsKfDj1o5eHxCoc0bLDaWW+xlJsiaI0hy/gG9MPBmvynsHCPF+34edk49M/MCq6BUxA93I58JMhlQW9ZlphMMPB1Bq7CZ9bEsrGS8GohlFUa9HM7vrrK4/Jjwr/yILNIcc+H8R3xlvavixIaMTOigR4PO2L7urdCtYLv2XM8PBhmXF5fX0FcUToUrjj8JOf1l1AHyS4iQlQIJyEDeiN+loEJ97+wNS0O0h7DlplgL3tqDNxYISLpg5g4cj/nul+e+8+mkxX5zo5GwHLV5uVwezKkC9n632gM5GfMHULUTxD4vd1jsHH+nwM5eUA3fSiO9OZv+h2XlVxG1Tz7/dLBI5+1AH7H+a9eW8/pPlmQBtMZUjSw1Gy+4z+tZ/B8WTysDRPaM9WBfFuY+5byv+7d4XB4L1FAxxbju5gX7CuCIa0NskeycxoLMMfTatkIC2Ia/21gVt6tt6VIgigCboc0vI6bxe+HGHIOOuegdmQ1vdsFCD5e/kCGuGxeDpIQEk/v27Sxw7e17CD5uicNoVAhA4+tMGxcABHwWg+CFM0tz7fwIOFPP8BwyFkaCEIhIQmDpFn1BXFOBpydk59sIfwwYuIk34BvHirL076F3OSAgQsrevp1vsrVjQUkPkSZvLEeJcf9iKmUQdQwKXN7U97ku/xPhn8eAByr+LC3ZMsRkzdg03kpsOycfcj/+nN9I3uN5jWvrR+aO2sB5CCshuxfZLLMOWPNrzLgmDmQTuBEEtuHWy8PCH3KlAjhP8OTwh/1Fk5ebX+fh4EY30JcP9ZsLTIYz5aFef2ZrkMoFcbap2EJMban0J6i+yMcrpKnRHZh9JcZL6+D5wWUrJ78CU5zCQyT4T106Kcv+47lyvhRdMUonRUNwvqEeFLmEo4h+zp3i9gD2UQEH3fMTKT9lCHx8eF1k4tsWcQ2JdpVmXKoygmJ6XLH8DkFctQoF09SvW9PuCOAQwYq3lYYWHa7HdOjVUKo+M3g0E60kXsRJLpZlJ+qFiyu+LOp3VtynlqQ61LB6fXj/e3tfVMc+8tgTKmBnEKY/tSvp2A55ov4r4xPBJNgJe2vZp/Eshw+1soSLOR4zU6oDRQw8NB4Op5geYAjqFm0RP1vPdxtAZDtBwrjqHleVi4c5k9LRDlSRiEbSXhf8hOvWHJ5XGRo9pXvLoZ8uZ/FLcvJXYUalFCfFM43X8a1/9CN3jOOPIzsi14bMc7jzkzJ8i1FKPZApmn22etC+Mn+ySyRn8LtLhkeI0hvN3brx+nRvV9AWRnGvFtyQeG94KBVwaReGMjgxzSjPFrhDyAAsOOjXygv7gpv4YEz3K+KdIKNDjnjseCR3cd8IQCD8bqrn2w8gyfDFQsnOOAphVaJ1l+4N56FgKK4hLH26JYVoPF0d3yK6wG7z/9kzwQj5EbLH6rmj0dlJ9cngQjFaU6PE4oK3Hy2H+G6PD70DLR/3kvvUpmbG/LBMw/NvvJ+Lv6gYSUhAPjsYYKpgHv9aLP5ZqeSMdLKuvUCvyAKcYAM13N8GD2PLsw6Jsi4zgvMCHoO+ZmxGOxh3pPvLO11CAxyn5/0tN4aW1DBqRvD7aVW7lS58H5/MQBW1fkDCERkz9fCamf2/EEP2QrUjzbvF8uxaRaAxdexPGbpv0oCsONx+9CC5OAo6DPuTwlm5nl58JDpQ4kgygI45ACo/LqJBwpD1yACkF+U8XBuN5ugL3TQxL/szGSLwgVBuCEe2cXIxyb+0L/tB1rGgMrOrR+iNeX7EvSJUZmGD1gg5L97sTgFpvBOpirI+s+6zfYxy/uejSfLOx5yDJvbWqft64OAJarEp/QONfrhgjAB9iLWQKYKmyxaxqbg5l0dMqIfMLJ+8SM2rqNYojfyPrVCNnh4fmr8AGihz1nWdULjz+ji1TPLnK6yLz3Y+vMYgqtvWYyBj3OwB7LKteMg4NvH41dsGUPsrpP1UGPiVmAINXnsril8jNd13Shsi2hBF51G3zMrIcj5fsD4IpwOyi1ebU+Y/EEOz4VPimX3JbuaDGzMbYe8rzxv//TpXDPwEMHA66Rxscyo/VMyEfm8vf6ocm9isaG5xLTJq2B8mmZwMP6YyFaGebFCkpQdtEzhIk4vmB2y9zDzV5Z0+BUeGN6S0frV9ljFQ5f/hMfk3LO4jC9/nUT6hQAcFpYq/TpFmJQykOMAFzUhVVAV8e5D1mXdvw8Y4A9Vi0GVG3dt/KXULzxzLptD9fgvyYUs00zN+wLnIjmPc47r5BkPQlgl5lik5gPYbqTfMQjyyJCnzOfUTh0+yueIYQbjge6faVYLP+gH2XJvbu5sfDB4vZClQVj801kr4w7krfr+fePJmAkEQcqxZwsABwpneqnTaSUADCJZPvKraUE8HxY+9qvyjmd539nHlBFiTsg7LCnEI5tmlgbU++jDh1UQX5bnOEt7KsHfHheHrHa2/jL9cF7j9R/f95JMqB7AgovpsBKqd7zInTzW7ChZvnBGOl4+ZKsLzrswpqWoKvlOrMGIiw9xOGsPcjxZ7+MU/FI+3J9pfC74u8dDXIiQNcod8zQMAr69+RVbprxqiBmqBU5wbV4cSJI4OAii5MbrxhP4iuZMBUO8hJH3rmJK8OyvIqiH6IJP3/v7O1h/40fNdcEqs/ql4NAU7tDXixjQ9WmarD5GyPTLmuBzIX7OnueZ2h0budDT9eCTlo3PtQhCxKi1syx2YMOffH7b4BNWPlP/X7UAS4MAIAKPZ2FxX/YxW1LhkJLT1AE86j+wZtqW19KPCn4r+tR+T/1hFMIhzfP0co6gshVo8eCU3cRoQ+pW+191/zgFhjcwjPWAkPaaQYsttPyV/X7P2Utx5N9r+mA512WQi0gP3T/HYPjVM6cS8/VvxosFHqHmt4Rg8zzv97vjeXM8vr29vVmKUvMFOp2Kn8y0jC2UexnA4BoXqVNXnJb5WQAnHw6H7dwlvxF48CiiaFB6yo79Cpmx3W4Hm4PN0ewetiCCe0v77/71vw4BlDebbWE2AY8IUpK/1AHwexk/n+T7D9kCaJT9kUgZr1MXdOslKn1+inFH1s6nbjA8HiGoGUkYj//eljH0iIMRcsV5fG9p4ruJ3rJCbIdjY1h9YE24PqGg4jn4qwLVvfn7PYTbRUbwuOAL7njVAn6zOgMPDw8AM2Y0TUDy6wABwPvUhvueNWA6IajmSuRb5hKzneJ19voVu87OXdYSA1sXLOj31+PK7LthkgCf9hHItOSTS7i9jJEK9z2D55que73PQhqAk7G0MXBeULT18fg8y/7ErgLcQEGZ6vCaQIe3LPgK5+x+Kpps9G/uwpa/gt12s/y25gLEyNljCcC21RLyqUvkl/2mBh724XeZMDN+M8u5/Imr+eA+b6s1PpuXBd78eDzeqONZs1ehNPL5fH58fAzPS6me1GMY+ZBTfKwxxLzLjH8MKhBm/QOxhbKPAzzslcfsqIyFhYTMabI4uNNngWtj6P0oxE0oBCdpoL/cLb5iaZ09mcM4/ZEJY2OSbF3nx4f/b3vftiO5jmyX16qe+R6/HPjA8IH9/z8z9kx35c0gQ1paWiuCqcyu3scGzL3RUCkligwG48a4fPT6uFMSOagKUlASnZ/XHqe8LniYNz7zC364yb5hsA+9ff7117/+6cV8PEYI7TinMAoFABV57/f7z58///fPlhIAXvX3W6s3xYNPI1F3bCDoJ64S1BsGEZ4OxvbxqQptfIsNZ9xaveF1wwDS/Xj9+gLCI7fP+XxGEg5hNz8+PmOPY1LQB4LlhYUC14sLkExvYJLkP3ff3SoCMZZK2Urh3JfHWbn6lApDYTwYCJpp/5VZSOoWYTDfBdvKpzmlU4OKxalLH4u5MmBhS6nAxz6sVeDUq/n7q8YszbexN1fNx6/Ehpf0RINYAo9tiE9Q4Rg9lUoZPD4npE0UOcdb4eiCHix8bIbxCM6uEH4vAam+K0v29kdZsFvMpXV2I0cVIZ7pWjg1jiNRAZqbmhZHf0ufFx0KQ0InA3im1xwzyrOAAsan3v2+5n2P70IhkZzWYfmGqw8E1jFfcLqEVWMxxeHmia15I8gct3xR5Hgu28ebWpyOhA6kS+N0m++nLh+g5+z2g+jMfL/Q63whu4aAMEEPDMLPbNmOXjVeFIGqf3qAt0K32Ybi1Q8X1xHzzHb4xMWx+Cn1xfKseuPBD+iVX/AroEWpcGJroVASDPQBM99J0Uzw07cJCl3BRwWCKbumVAaR6aLl+2+O/ghdQG6fr68vSL2T5/21mQ9cDuQtts/ibgVpxeuVqV+6DQU9rE2WeCFHkIJkL8BGEFI7tGv4rWD1A7wgv7xkCHZiUjBZW8QNFE0QbpltZYL7SxqjheCiOO/6TpgEoyILUCX4xnSFZwwEo6f5+4XgcrBy+vAfaql+4nsb15IXHA+n8/XsFviVLY4spnjwnAiO8olXQeR72K/HbfykBOGJldHH7BZ0FobklTjIc+rAtQCZHsESyVub10tEzxAU3MzzhkIeeaPdgiAVQAeCzrhV6z4utOfss/xucdtd/iY6O1f0lMBlSb5UUYNqAxIFW8DF4ixblFknjBgA4V4cVMpDGgTAVfUiuMK0zytLi6HZuqJnDi7n2XHiPGSuyJeExlnJJW40RXC8jzwVvypXz7QEkmdhYt1MHI4HKbwEdcd4GP9W/AuxE5DLQ9QQC3SqAKRGIgERhA9xLfPCXqkiUZkeBgqPWOjT5svEa8GsB64vnCMFJ6gJalkuS1+4FFDy1kCecYlfVNnUuJaSOzO0haC5xHyns+DB9Hruj4qdpbEcmdTb6tJgN/EGb5V7n+UaXqbdZnE4HQ+z3X/fempuRPd//vrZnmxVetupbNgN2mkAEXQJ/tlljfP9A98AYT7en7tSsiAox/Q5wM3oB+IAA4pI43tC+FAAIguCl9SY8PZrMkTinFa4LS9Q+26a9kuOaxk5bte8cM+rrSLrt37EmSJBeudRO3+nG0nGgJvlkeL8kusbT8dZWU0c4G5tquDzKsDFFcQPv6SJwIfPsQ+fE3QnbcjFIbuuFR9fIw9jZwWf7aJ/Na/34Pk0/SILyh6tKD733AlrqkIoeX/iGbYgrsUaTfvInt8iQ/hecMolad0q+JRwLtLgVqHY34Xng8BiHaHh6vrn4jbRRr4vFYL5YVn08Yyq4PvYjm4+YMsuE5DIgQ27kbiyOKevxuOiiSASy3zMbDi+sA9jidXhj6aug0Fn2EnpqcsHFE5psk34aJ49Fhj+C9M1KufkmptwyXRruwwhyyFpiyrDSvj0p+ORhXOTJJPZgQvNAEmqz7n6zUmWqhoj/CcLl85qmbh5zIPAk0HN8OcHMEGBTzUdHjOvI8ZWJZ+QtyoyQndWsxakYlA4KsqLmWtoGIwmGxPjT9Uz0xn+iiTm5mHw/sVG4/S1rNgbO1sWmqc8fW7/OHfRn/2Iuh7RJP7WyW5P2kWYxhfwCkrv134HEJD4RIIJkY+5TaoXuuWJ+37nOy1p0UyO3GOFu5reosz9wsc5kgeHIeEBxRSPjUHOcycFgPW5il2lyuX/PU2oVZnVp6hUWgo0vzEk0fVTAbcSzsZ2r29v/jkXdJgYedo46QRBNqZ2a37oNAEZ/q3CA74LPhsLGogM5EP1lIuVFY3h5gYVp6QsELBX8czApqzGInYIQ3KXUMksxnSKifKrcK6Upeoo/LuIydPvCmt/Q5F2ZowgYMZezsDgr1QyECzr8m4rHWPsxPGHtyezWLB2oYf4+kY4MF0VVs1oA1YEbBSHEMF/cBwcQMGVbpyhTwDoCnaaCxWW6XT8IjOJhpNKWiLBYwtX+ePB+FNuy0vsdI/nm46nkjnwOYh0PgvuIXU0F+WWIe+WUQ+2FmQTypl6WfgSu5KT4kMiRc1f9xin9OSW4V+JaPxRSSPOy5p6WDw1IDpSyWLxvFKrDVAOuzIUgBSLHMeWn9Y+LRheiOCyvmzdR9RpuOkjPoEtBez3L1uSxXGoGadDcyk8dSV4/3hc5m8FcW4C8b31f7n0j+z7QswuamJqdOvM3uiGIIk8PBsmVhY00WO98AhOPiULBX+LvXTut1s4/SPIEGAJr6fj8Xg+n6PMAo6FHa/clTo+PTlk763xkeJKsDtMLhy/ybmrPbwg6bq5hj1fr0ikX8jnBoRmS6v6T/sUC0d6v7K4f5dldJzX3EmqaN74IoLGxJRV2Tw8uDDeiqBtvjMwCzEh2zjxLWuaYVHZD9NHkfv5T87PzVXBUxvSIAvNr19LkDSDNNZRBIKUgzK7lZC4SqBx6xGGNMi29BTOPB6vvDvuZMv+2vJdVxef9FD8yGiwBRXTJ33ifiG8KgYkAs1AervMlU0hlEuY42C7Debiwo3M9Hw+uxtPR7+c1zKXDS5+6XybK/KmTFTHVsBcWDh6QHY44bVyUseWSBWJyDAhvsush0txWck4xIzfSYrnMcNiVePBaC3sVeOI5ERIoBcAZVFJNOcB2rBUV518Dkho2q2UDWHX5xQfWJBy80oq22Ep/abP1/ep6DbiilwVVqsUV3b5E7FYpH/mwtbJ0sCJgpj07yaGNpmsWKB5fSfBcVakBetC9HeGErs7FACcEEYdAJ6jG/5YBzi1E4zmUzid5k0dNnzeH5rIer02ITiG3PpsJwJPTIf7Nb8TZUbCHjyBGFOSKgCAQccZ+lnfgFou+5q/yLmP3bAShDRcQEUhHBD56SRFqLzDKL3+E23MkJwsOtHH/ZzKrHcgK2fjgW2cuJweppAciBGvZlV7u6X7n9HO6VpaCENY4EvZe5hSp0dP8ud7Ohs3R56NHTqIBK/YN5ot9EIOZCTRWFZgi9SYDbACzFKFrx0Pm/FTVl8+lAZyOEAUwsXeFHnoVfg//W5FEyrXmnJqRfeyEAS6lUBQZcdLxW7GjQrVIw2x8AZP57ocVc+vi+3wDcJiqshKqsadmDIX6uLdkYb3sTECtn/PSsn9bBmtLJBwbs74LuEurCozaWLfepdcsdlTRcULFDh6yBZjWUTuo+dqPKli4HBI9djVn91uKj7ivgr061K8yXO58IuycYSEVrWf+DGxTKXNy5WIAUKCDXCfg9zSIOlpnGtkw6+SNQhfH3gTpfKMnBzKw7hIg7Vkq0qm/+nhDhsZj/OphZ6sD6zQWxj15WFUVuYSe4jmB6B4MwqRdA15kf7bocPucHg0q3gX9L/mgiCPx/52u18v98u11dxtJcIOh9v9cX/cwqCcmsz2a/o2EZ8OHAcvy+Js5mDpX4y8jPl4kfUBXs0qwPrcYycgFeAcIFx9Itk3J1097KeYFhzl4Yu+o1sMgFvmUh13Qfc/LKBu9+X1QQ7YDP48rn0on8qUryo83vNYUE4J9MDH8dVWxQBUjIQrXPLSV4WTKleHNOiw3c+CfZ0tieWsQs7trdIYX8W3AQPz4CEJxuV/4evP5APBUk7QxUWELPQrau7O2XLB6+KQYa7GsQS/D+cYvxzED04YXlY86u8KBj5RAIqW5mcEkXfekI6W/6z2HcuXIpdUqlogz5TecQ6283VM99cY/6t9nTI2CWzl2pypPIp6XjgcR/AlS2+cVrIaqrQqbWucm/PK4YQE/TNUhTgPdDae/gD+Th8Y/px2ME4CExGwGE9Fn2+3xTrLcmHF5ZvRlHgTvlLVN7jdpvTqSMiIn3iTYGnGJxhpE1mK+6ke9gDrMJpKfnrI+iy9QWzN1530NP5olWZXkOoNrbuCBsH20QsAtviQft38bJuk04N9YxdOwTJteF0eaDLz7vDYPQ7tSD6u781e/rjvHr1UT/sXyMbYyz5+UnIEKfZPx/PpPKW1wZnAsg13TURvI70/epBTIhL0703/Ho676f8O9ev9fn3cvm636+V+ayPseN5z/oQvUJDqGNz+c3USxYuyW0O7xxjsw54jJ0gigjMXaHnXerGWvjcPj91tvzt2OO4fu/ZvSyzdUjPsD/vTYX+43hZXUlG3BNPiE5HxE8cmTbGZz0t//PgRUkT4Ak0ktCsAHJoffwZ1Recwvuz/63//HwKL32TAG5voZOi2iu6XmBvZwE5TqrzvnG84FbgFDpUPKwYvtp/7XTVLXuzsuyPFZvu6VK1SJL6+vlIef/7QOgAQHNPnB4J7+l13whZ+kwpGDocBz/DxsOlL1rESLNink/uBL7goP8hohmnOFOSeCvTh6yxcJ7hUCudqHQ/NGTLJTsDj59Crj48fFdwYUESGcjhXdR72PS/79hZZGlxRqehAVb9ikId7u7Y/CF7n9Kw+cT8U5kqNawEiqf/AMtlau5igIYfUkW9bpCsILh7A6gZRzAIWO4kt8awy80imwD4poSp531nBYzQGqUzXscHwmhgmBvQQQb0iWIdLEkbIFcScgskXGfIV3NAU/7cx0GVeBb0SBIayhEqrEnSUqij+RaarFd3m6adKCLO8iMgMN2UuSVHW97gnifmH/FHDJLDKKV55DAk/AElreXcYDO1tvL4OuirLn7vsxzOnQh74+PgIJR/hPfObDTvCXHA8nk+nw/n82YsJhErQ1IDd7tBk5se+FeXo8kmr9tCVhZ5lppdvbNGs9+ZC3+zm96YSdCCB/pzP549WQ2DKQnM+n0MM5dKQ1+v19BHpPs+t3FgPyZ3w8x4GrJ7OspciOzXRpxE9YN39EeJ7ax8fp05qTsfj7C/UXjj+/Pl1uy3bufkV9fb11bzhuQzifGTRtB8mpLwKB7Pa7Ol4JM1ihERGnO8/YLvbHWItgmzE+Cd1p3uZOd4CbVB4EeJ+7KnrdclaJoyS8QfjbDpM9rwfOEwxUY7Bb8ua39Jk42EwLBC4CJ4aFcYUULoSg0FK7tNUcehnfsXvKHVjEvANIDOY+ARdpGCLI6NjZVnx51MQPe0nZZZpPvUt8xp/gjsRnHFiLb+yRYcZXvg+8goCntXJrHyUp+weI3LBDCwHiK0O4vzkNPxPbO3f79AVLeH0/sUtujFTyZQOVCOH4MIbp0JaHhKPPCU4E16dn6QhltfFJUboSboBhabFi9U+4oBviecTTjM/sxIT3blLPiT1Qzg0eaM+z9P0VUOskUTeu76XbqtUUJYlGGDL7+N/Jf1LMDFUFxHBF1eNQpmpPpfqz+Ii6FiNtYODx2lO4ygYJSPhkUFn9mdS/ihbnvfFAK8ksSZOUMV3JQSm32+OPCw9C/wFD10i9Baitpzk9Cqr02WY5ufElPuuA0xO/49HxAU1pnBupdQ7iDqkmw7Q/+0yeu+8R7VOBwmWFhPIFgYIcZTvWuWxB+g2hG0+OMQKu+g/HQxOBGR3bfbyOYzz0E4wJql9Nov0aOP256OLwoevazO6z4cK7bpn+5noDI4j6LRhxY7d82dvYE8pcLoRwt2oP9a0rEDA/mfEboX+GdtBkYGHJDwi9R8eoBA/I2maZYKyHI0f8W+Y4V+pA4gozOPjqab0YpA/eEvedycrDDLQKacyMkhuFSOrQmbDIe/3m+t8kAV54vipUqjuVNlUlsBtRQMWXnH0lbZdSPnVPpF+tkADF4OTIpfSxHOMjzgHBV/YEZCI5srnnjEnNW555dH4F4Ky+4tL8CVL/HCxeCmniqhk24H8RvMTj7geVFz2AWzBQ7moxiyxK4BkFSQqdBZw8zzr6D8dYeUrLIIOmlfKdNxIFQAfj+AGIypLdbPvb25QqNK8Il5N/FxTGRE+1s4XeJ8KfMTNJmaEgmUCyZQdCoPgfTrA8/fwP00+mHYl8n0sgcj9wE+uq+BT8EE6PAfe6nIsEDGgkZkk6jxIpbM09mnCE9oxTo2dPzKIZFGEOKfT5I3MZwKg1eN6AunyyZ2UrfjzqY7ngpqjUnSICrsr1jBf4FAOilkqt/gwMPjw0Rctesm/uS7vHSeiHD4RGHg+nx+zi3VjWGRNn92Hpu2JgfW6TFNy28DxWY3Zz25lzYY/5fa5Xq73Q5wAAP/j+nQ6IdJgHaqb05zqJPCRsWkhqutjt0QOEVAzqjul5XARLukFvyPZID7s1RZbbwQ8I653eGaqPiCi/1Pe/71N7BC4KQJotdPchDP4lhCaivJWXEHAl66HfI7xL3NU+E4LhK+xaIRy8pvIIuQDyi0lH+kYxvAfMDxuwo3cTvaq0CnBrylR4ImgYFA0Mfz78whyiudxtnidXRp4vmJV5YFVrmjcw+qnPhZGThGzJEhj+9aeP50/X+2gV0lHio3ORzcqfq7IvdoYh7kfz0ZVsVLWHHixKlLGr8snhIBIUpEUSSo5vtpHHtsAPsRoTF49JTF0MEqkL8bgKYlo+uVcvPPUiW7ed4sCNiDRmEWlID21VryhBqT8Thof4vHApLCXwNNnl1ptWA8RvGUq4TozF3mYYz8WN6TBpiBDifpk81B9wKm2zLuMl88HL8w63Q5vN8dD7jlV81ihdT4bvVb9CwL3X6Ou86oyLoubrB1NSPJISARc+HhsvNZhtghvfrFK4PmQ1u+T+b9rXJTh50QRQYBJaCkLHCYlYYmEiZ+Q6/N6ud0ex271X+XMEUc4rjfc7RWrj4pYvxeQElnz4F35XM8WpXRvIP07c1l7j0eHyxf7n9otD9tJsf/KuCRPLicA/1nm/6fmYdZgZLa+h7dwfVEwmBGmqyLvDvjBDOIXBvONrco+xIhe5WfgF0UzBogQFCUUtrKgv2FZqRQ8kVQqW2DaUgGLsas6IZE8JwPfaDTxJmSKKcDEGFj24oFt3xpxysu5vaPDYBjiqL377vaG9CNNVvPtPP2uPFSS3LhJkGs6QachonfJd8FQe6HDpaIz/1udbHhw50AJqbQLPkGSfSR0gyXOMERB9Z1Fec2LV0nVfO3VZiqXp8QESsd3Dl7kIMJChLggi+gbTVjJWDf+RunfB88NY+DYDMzLaSNQC/Q5JZ6J4aAeUqoDwxIMb5BZr5sM/ympSVEd43lJXZep8Z9SBEOACT7FzJ2Z/hvNmUXFPtCEBUidh1R/5t48Sx6tyyTy8tkLYwtTod01T1TPejLzOwln51BAHC9T1b97i9U1c0Z4tHfxejmRnvD2Grv+HqG7EH/nE61WGGQKfuguTKFpuikEfv9BsuBM31KHruHPZHBn2IWYEFESKn1DsJG3W1VIhIGPcwxOELQW7leds9ArFIwLjfmWEZ1tUQBc9B/vxj+hHqTMFXOICydw2AAvjTllV7jwxm8JAqWCbxSG8K+4aWQcBvCquFaJO5+fn/wADzUdWxzxDxiGvP5GFh2vrpImGI3G+bZ5Tw4E8YHc7w3BnTJm+Baz3JBCj/kfSyFBkgBPwR8f7eCnkazQ3TcluI2/xfnv+jOv7ZQKfpVAXFVmrVpzWaVU34BzGUQ4tMClPw1G7k2ynaSLwv0wV3C2J1yH6ZiMttplMh63nTPWualJBA7fR56uBB/ijB80zZWLYGqC4Q5FocJjFRWq7jgpjj89JwkHy7rMtAUxKrK8RQ14yQjls5MLlr3Y6u/mgyof/LjOjIjjAw2BK79y/HHLy24pVtn1VAbcc6YktLTij65L+CGYgCLd/nzAFXcmEfAtPitTSD+H8VSkQNBbdrH0n54M76fcWUv+XIHSCvLrWQAanIZbTvwwBWwrRsW4w+krWh2Pj+WEBz79C43qIeCrOjn3++G4OCJyw3ZGyO+MeEndaHae4S3TYxJWcEtdAe84SlqnPGKsZj9GznrkSy9pYRlX3ROBffnY9o/9zqQgFf1dXnKZVrACizs5DooO8Fe2p1yk0ra9k6edpzVE4s8wGrlxq8rK4h6TFRXwb0Wbd8L3pPt0kSVVVNgiIoOc/11GWFG38df5T2+VwiCVFNNrjGrMyFOcSesS4MKAsMqUx725gCgKDNpMxxLgyE7mhavQKVU4O8FaHvCvCBF52sZCQNqervi4udy8paunNCEV5rZ0nqbBdYGsMu3gRcm6wPjjg3SxLFX8eDxpNol0d0yEfjbky5P8XU+L4YVjHV3Z90OgIegtD+Ri9Dzwasv42T2zUuHxXvnV8cRHwjCvspYNFnHcVNJdF4rCjBCrOq7+Jr/6YCoGJM9j1oKfgDargvwAK2AiS6Us6XFb8qw7zFOVvrLQOe1NiSf2ixQRmwzGL1KtdNen5Yl8b1YGhdUBVNE/G0SWo5hJdC5ZNn9ukjdIAWNLtovg/CJXFme3K+R+hfy6yke3Ww5nUKVkUQZ6O/VAkphFR6epcvAczjvF+GLNo8YvVpORAewWoxX3fdfBdiaIH1pAwgIHWQuW/hmqzi8kKQh+kgK73A+OW/kTYtfD4kY/EhTusXPs6ec0ZKkE/J+e/AcNo/SCMky2ng445foOR/zreesrQu+M3D8tqLZsgMJD8fcbvuX549PHUq2mW3AXRQhtXJegEoir53kRceFux/gzpbnjzn19OYkBbzA+WmV6UZ0w8Jj5XWRFgB0iMu9G3mVnY5FlCH8yoRzMzlns7t7eXVQNYnVpfus/tMvf7rfK0191WK1vladcrp/iJ2yZ0oNwehm/pMqWrKB8XhyVsFP5TOQbZ/wCAR5kajhkkE5H8JnGwlwhDt9h5Y36neJOJpaUqaDMnDXL+2dtwetLKPUo1oUpFQsokg61JxBsCfsQ+8QbPxV8B9wkFeCq4e3eahU+n04nWEBTI4VkYZd0yawvOa8BuNznnmN5XRxkZQ82Y5cmXf9c+OnMCv3EsuKPosIxfeOfIMimcHZ8mOC24aTR18v3qWBUSsd4aVgudJ7o/Ytd8nA4tCDsY/SpBStcSycBV7MncdpcYb5YWRABFpY+Pj7iLUQNHY/Hy40Kh5EGfr02l7ZjLzPHCPz5+dlPMKZsORhA1MEgJXCP44dQAGQt4AHFRxMIOBbTTGU0aW22QLADj/uf0zomh3LCOHgAsg35mlM5Y3d4WGzKKVjRlW0lzj+65f/9P/5niuhP8x9L8/z6cZHmcffTPdeoZM+w8xnfr/JPi2aG+4im/03KXmcpyQlQDcCc4bmulnbI8OFCfUCOp3nlhT2cznnhqkoBqObFAu6gn+W7Xff1AjoF0BIoRUt9puETKVlxJBJL9piwlrjzt7/9DTeZ4XFp9DWcV3PhTZ4qHpw3fQveHnsiaEAD14CD4U++jnX9jVWBJOFYifGy53PYjg8SpOUL5zatvB/LrsOvOzwZT8TdJZ2gixpjBTLFn8fj8eNvrXSLz6uiJyy4y3xFEASTljBNKLQMAbb8pXn9pe4BEeQVWHBR5fWv6mwIp1z+7RZiYW8hoLCii/GnisQg69cbFZHTNoi7HcxX5KpGkbI6CSnpY9bJIY+MtNv3qWTFAYimQk69iWNPGkUWQeFi9R8ZgO5P+JoMuIpt8x2BfZE+X/L3gs86nsRP7DKaPiCNqYrw37R+y+XXT5HqwBdCOQ+70qxN3X/8+PHojvUCf9nvWKOP/RH1BCS71PF4PJ/PwcgikIaZCDSBoDM/fvxI+fXt0aY8jbOdb03OQh/nRv8PvSoOJ7o593phXnflH//4B9YRQcANWofF0MAg4uyujCTHfrDgx4bi1v+YX/mY09rKvIKUBTXjAlvsYsRcwFUUYdNi4P74+OA6BoHJp9Ppn//8X1xlz49ktXVbTEAjzDdw0HIVZckCtL1VjNktpimJZKNR2k/lI84/MX1hBYMXOBgny2pu+9nSBgR99+fb06+IFYFZZrQqf3/VZB2fosdYQUrpNZNaPqx3T1YOFpQmrlwVe/Assezs6NBwCiJuSJxekD09XE3nYYiYIpbdFQHqvstiNh6cd41d0Sq98dW20QrwjXhV0biBYjwenoBRkiOVSSFsPLIWrDjxmN1Wmho+nlKYwXzFLgU1RjJJC5NDPzj0H7DDsZTmmOZyZ9VKOXVdGdehgSMXPuX3PjlmbIBOT9tv0nnBN181p95pRDIv30bjyLhJ5RDch6LF7o6D9LKOBpUCMI1/OKqUiKXolNoFtqPfq20L/rg+Vl27Qs6HEoJ10W3I/Rzs236a0EnFGwcFsO7r8pUuKIuYbN5il/ToCnmBGDKAD6pBt7fmOgDuOTYTqLahu+1/sd9LcC19epVTm30gOeep0a6V8JMu66OO08ADKCPIi9W1ZU0nKvuCRyXeOCyQIM8Si0NRrZUHAwNBRZe4Hz4SEXxY5JA3FIB0Nwp3SUWrSmHYOAaeA67H2WYYm+N6S3ChD/tbLEAvfdelRu5fDkD511TelT3gvmi4rtKwvDp+93WWf+XEBnSKo2G2AFZIs9AC+VUEvtRSGNcSKsQKAM9CDscHrYKn0EcJA2CA5P3OPp0OpRR/Xm3Vu9VHq/Zqep/UV34wtsG+S9Ebljnx10+DqNL+Wbh3fBPGv+y7+2RBTNUA3ynVfCVNJAR6VyzZUg6aMNWNX7vxOFvy5vaawVoMEKN6/rHm67iWNIsM53QrSZYhfOLtxC8b2wBXXatveEh1DNIXHQNZmEj5bJU9k7eDxBQB4Eh+IKTVT4xdsxJUF2yZFYCc7vlQBxeDujob0S+F81i2GfdW7fqB4UZ8BSeLchGFFc42UACmu/ugA5qgLxVhJ9mxZ5cSL/+odIuByYkinGpY+pcYFYwTdLVNsH9cwLL2LGsniq0ucTtXbPkjwtBPSv5u9nF7PO773WNh7tyhyDOMhId+Ypluk/v62GR2flqxZswxTmAQY8B5jQXzReQQuUKAJnlNAuDIYtQrLq8OZv3kU9rxeIzcg+AI4iIoGPuaNOyCDgtwY4FDNtJTCiUXgwJAKSuVo+c/Tfe/vTkwXbnnJrU8A6WqRdlC0TbafaUTt8i63I9f+SdxHmUVX3RWPMDbCR9NT5YkVRx36wUHAmhewVSA7yR+IL3JLMT3nQ2x4uqDkVQKxuM+Ek/9YotAn7bKDPxGW4kIPavMlu9WIsUYCZ0DyZNSapeprdBuH/wAmBDEhWPdtxX+k/59vuIB4idawnKCYfPDPNpx7mOZWkpAfHumr295Pm2uKXHBI1mydJzvoeur+8XF0GgwqcrCORFLpbcKD3GdKuSpRCuds/TDxlR5Pt19/eLJQvOQ2r+Z4leNXziCdJXGMGxJzrGChg3SQSRbOGVzA0fzlGI4nZlc8siAxesCw/9qOSa+sJJxhfpJnhketksLjKVxnwuEMfUQsCz7kVzBg9atpf+lZlkULW4y6mHJZTd5+iyKx1JCpNcMXrnIeoITnt1MONRY7iLEgSE802eBBmpywYHKhRk+wZD15e9yZDDgyfIAMg7xCaeEL26hS250c2tjMwK9l61FEIg/zwRCCEe1G5/aBcfjZCjHheS9FuBub6/CJ2rafVd7KsbhQlx9UgLKa1+dIlXyetWk/gunWE4VgCp9KjY2R5UhOEmIvkstQu55/BhPStkdkpwNw8fpFZTd6JI2T3Mhu4bhIIN/Cn/vU/582s/TJhAenEKmrcKrijlXE6mkPXGzcdiKhix/4jG4eEn/qaVjkKe/InSVZFyt1EC6ZbHAx5NGv7FrENi8THPAL/u/ZZ513JRBjuEgz5/WFZd9A7KA5dsZBIFdm54uyp9rTN84QB/tsc4qOMBzgaqrRt4Gm1TqiK1Suc/Nv1KpVa5yb5S/eZyDV17q7Y3nfTx4XeAPUFSM2AXxdAkkSwxePB6nivLAE67wpXlOu4N7vCp0lYVI/koYJpjZQQCFlz+Lp8yX2TfMtfFJMcgQMkT/KAS2Dk96nM+ne88yem3/xddbDyH3TwrArQ+4TzZiHRGgItUJEgvCLpeISnryWBETrAXb/uFg04G5AD9lHHInpWYcw4lIxcjckHo0DLAasSIcDB1/8mPo4eUTgI3NAT0YtJCPalONjQTyuVTg+xZJaNy+q3+3McgOlwtXVFzhkSVIZZFXXZtkkPjXBWXpSgiTiNGO6/KniP6eyla4V6qjCo/kh6USsJRPEoA8Pf7iX0GIU+7ugtR2NpbiTPr1V1oyBqehT3t5Fa9cUXQToNwcKMlSJlboA+NMZJ8Yj411UVE40bMrchWUZLQyx5SvCNOVRB8S4QC88uC2tMiAyJS27npfkGE8rwFsMYa058pPV0ICnEGKlr57sT1V5KqfRHXxoPy4EA8Kpo2p/rMFo7xDpwYuuoFfjAtByq4XMKQDXiED3R6QlBr9pgun6p6LeRP9NNUlWgX/Cp4uevqv/nGgK23PaVHiJgJAZTzzt5NMSqk+PIiZjIZ0Un5CxTZ7ib8HTwQKoQ5MH9OC6lOEUlcAyAFpGtsUc9xt/5Gmgsby6KHaCf4zDLdXiI/G2/DAyYLJ0C7QgHMUYNI/qtFWPKqKeTHkHfORnqErGCthaUBvp9cJ2UDhXT9/PwagCnpL+6kIgUgPaaoj2TwSVDomEIPCSa/ygAo+Y3b+jS0Va1IQCX0cr2wFf3ngKXpIMKWM0FGWNwb/6870HBYs2wkjdCkcmSvk33hS7F6uIIkewjRui4Q9aC5XeXMBiIf09BPpYMYc6GmrGDP3/1IS4Y14xSvOtE8Ihdc5EjyUlPBi8vcyWGI0TaE3EAor9+vKruGCr4Daa+jGn3xQJkMS1OXBSEy8FCoSyBfrngttbmweo0T1/KCwII8Txxdw9URvL1UK//bmooYLrCyqisWdSw5xh2jiyugPCBa5iiv9pFFMUse0qkUgmCbULGdVz/TGitTI/UHdgHE/TxdOetv4eppccmD48PTH+C4TK9i52RK8jGq/qiALyZWRMC1kwUsGj3bIuwxJyc4nzUttRJKnGTsXqjKnHFjSb8T9r8uv+/3ak/2jXXe7dgzSq3Ix8NtZBzLlVyXbAfwJIGt6JckD9nQuOv06H4C4hTGk/4AJAqajjtNAOPFVS7SO2UUzHK442KPlVVoTkzFdDfmc+0ndXjDONxUAgZG7grDlYGDi8lYFXw58u/FuyqSdSL003/E4vW23eL3UUqHBFSpGwcF4tugGAzgPFADncKn07wI0H4myaQoF2lKGyr3FnbmEuDIPpoYi1qcKBtIvCkxczxkLLpWAFenkXO+t5LmnLd1l3smrCm2qbj21uAy62pgGlFfc7VJCuyWtKq+RWLzQP468K0dJkaErSWWQ1tbpZHNp65UyByKUqCWcLUQc/WGR4gl6rAsGJmCEAsx7wbNM2LorVshFaqeokCFR1Is0kbIWkFo4vzvDp0rX+F0GoPHzKb0SXGJQ8+oLpfLx83q5ermxpSdCSAuLg7L0aEWQVnYWPwzldpn7sBL5U6md0SatG7BRzHjaKvhXLaUDg9fD5UOkz5bQ83Y/nvbHw8fpfDgezrt9c6S/P66nw0ez99/3j91t9zi060cs0CRfMbXkOjCyZLfH/bA/nFoN4WPr6zGJ3/vHrrve7KLo1r155bd/I91nj9VtEnhf1LCUzKL8oQd2T75sHUPavR5M26J7p/kGgh8OqyorPdHNpdn377vuWhhJMB/3++XQ033i3Qlou+YSLFEKUoi69dLnsr93ZNgnaAnk3LsCs3adYtRiwzx8dc49bbpvkEr6Vw/AuX1+fl4ul5B2kOw1MAt1HlyproKAox9I/4Fs6fP7f/tv/5H/MH9JOMq//vVz9x3tVQG6SgdZPf9q/3V7TQGoWvVdr1cQrcoT39O+qyAlyqWIOx4yyGk3RSBAtLvkreMCMTykKqsSZ+FIxynASbOpwPLhgiPP1NP5i+AFmRU2FfpWni/fxzm91fOU89fHSAVBUOwrHCQqgEpNX/4JKCrVp3P493orLniVJ4yFQJZWRK7ue30GgqruL5Zu+bg5VhmuU7Jx+OSHhRIWxJkcI9g6Xff0fjrfU0EG6johq7yxvKzM2DCR++wSIFk7UslmkOWsmteRsrLwRbrvOFZHhPJq3SNzH29DUdqFUon+z9wH6cA5FS/muxHfXqXbzSeDwILvVjlnBqpRfn8S47RV9VuikJy3gWLPIIVlUQoO8EdYNAFOIkuM9t99pt2XvaozUyUCrcAoD7hQ+PTFcTuGULvmFwMDBxuYMFPJSc3rdfn1k9xFJt1VYpZW9OQcobHnTs+iym8TAW+3FvE7p8JszxwOp6AZYj/iuXDRG1btjrtGWHa3+9ftevu6XO630/5wfdwf11tTLx4tO1UrM3ZsykIAt49ucVc7H5cKvr0yVw/evV6iTk4QdTjrTzEMh9U5/2Ttv6xcbuj84SDZh0Imvlwuoah0HF3g9nFc6swwIYi6RlzJmG1D0bimnkjt6Onnz5/sBLVUQd6fUDABRxMcqczSCDzyIZqHRnE8HuF6yhLa/vC4/FpckfnicrlwxUZ4Jd2+csNH1PfgM8b4bhkE/JTZbGx/2uLy/3qrXKriqIufnBnGIyV5XIiN70vQj6SuZ3IWL0LAilMkfB39CEMam2r81/SAXlx9eApVPQG398Q1TgzkYc6vXwn3CbRN1kflyFQ88ozyabxUOqMKYpMgmJ2wbdkv8oD7MuGxFK/iudQSmZppx75S3hiLeAzurCUV7ty4mCrMFV5VYxvodfwVGvmb6V/l2gtvzROccEnosBj2NlLa6knHvRIf1qCueqZ3NQapepK7ZYWHZRqx/MkYnG1/Y0td3cbSaiX9p3tfUFRYPs30Nf4oyUYgdoieidacONbbBIWE3MiSwvwl6lTB7dX7b4sNr74oJw8MDcCZGQ2LgOhBBrBA/xAF/qZzti7r72cTVaxXrEIMQCuriBrjDpBQ7C99lSept1fnvcZbTbNo5vNDNz3EKPqJQwy99dUs/rvd/tiqEHcHlenTLcD3fN49bu2pTrV6hp9e+3x/72cBi12cjDutFFv/f99s941chDa1bITVBGfpP1/H+XyCOYvHtbPL1qNgDfxRvhbbBCeNkJ3llI0P1hidUJRN9s56hVet6mc7G4qmUqa8IISpj/LP5tP8z1IAagvKn+q/MjFCcE/lQi6UUwmRKacxQr9YVaEBp0eHsLwWAlAOt8ERNo/ZBT7ZijKFRRAfFmDCY9B2Io7KLccSBFysHhH62SLu2zvdZr4nBW7VkrEE4CMBZR+4HqXfTdUPoZLp1FLh1X+S/JIuOPpXnMiI8CFmYEFmybgnChj02IH0z2Nzl0LH843CZaUj8azxsLiyLE8eNfW1CKMiINZ0LB9zSjcGF2N+4a9AAXDqIZo87rP0H64+yEyCV6ojEVy8Wu9lS/M5bodbdfNOaXz5SQnjXoC2YWzc4ArsweJp/bvUBRF0MnF0qRWALdL5GDgvQXIsOYyVXt9fT/e4ZxmRFJkh4J7oID2FD+/6wzEMf0qccSI0OAYUBUBMJyLReSZ7yZrIg2xZOqcOe59dul/FJHRnm3b/0FSCJeSXcpQxgnE0basWkLEAV4PdL873o0j/HLwuSwZX9hvRFsCZsQL29bieTg1ma/r1ung64AxBdpOsBc+Ox+CAGqBfyIcc4xsgPRXyOXtYMMqVMQCVZaKyQGxhDN7/9vuv9v+NGv9Lz7/aJ9MFL7Q+IHzSPK98Kq6Jigl0RxPXo3XMftIGQXvpNU+E2XYVp+IsMP4V1xrQMj/xcAvrOvRn5QLkmoMsx/XrIkDGtVANp9E+u1SSENCJxaLSoDbCv2J7T/vZoialn5i4iCkG0ZhAy3gcXVnUwAqOIcPuIqlCIheplXcgEIzhxtgLMp1uZzEsya/CEeUcj8e5fR0dJlvozFixyQRczbLFf0ouESFNEBTchoell3ovlSq+ZV6v0u2ncHuq5EMBeMlV7KVxCk/hZwSRMl6/KinNotgiGO2SxR3k43fc/h014OlPKUz8c2P13k0wjsxwQfTyUkJ2AE/0tojLXQFAYS9pjAlgeRy6Iw+vsnPOY+DYJ2HBnBW0AmN4/fcToe7I1Icp8Joky+6xI6CDOzHCjnePhY+7IO4y8f5ABKeDULQpwTHUXQHkwU8fZLN3SstUKAqlcY41+NbfblNBNxao4sTMdbz4Fywp7gc0XDmM3ubpJgvB/UABOBZBdWz44yBjzQ/60sb4/+3VlnJNRk1gwKVX7OPHxs0tRkAL+a6rdoyj7CtfZVLaQnOfChwyAMe0VPAVJsSMKv4cVKwU46IIlHIBC4F0gnoLIrV42rjUNUu+OJi7MFRx1npazqIi4s3Jc4ZPKhC/tJqyrN6tKACu7dxu14qnCikHPBnyIsewaIJrH2G1E98wQIwhJvtu4Jse9S4cOdNylSxD4LGN41Q4kADq2JhKP5U+j4u0H1lfZqV87sFCPzPmtOK7ewRVHm7f0taCe14PocpnXz0fj6TGmjdG6FiXxsx4llg6Fsh75roKEJu6QLaKvXmVTTBxflX63yL3V59b/rQ6KhUnqrj2IK9/pPWUaWLz4noxKrc0+itXGe7NZ817zRmiGBQ4ls8VOdxMDRBxp9fsmsZ8n9IcN6ehEMqjt/OpiQ2QL4UgYHfjWC/8jEQeSMXO9OaYOqErz53FaH/PTr9lU8NrH2Rqdv1XVxwhcTK8ahFdbpnWZRsZqEgufxoUAKvT5IpKkqh8jiuLxasWl+2bdtz/q4Sy+u73BQ3nTUgJLljQTLOPDdIs8k1krRHRxy0f8au4U7MdYpAvfPvCyfPpBMei/0R0inoCX19fACPzsyr4WNKZwb54oihOJytSjnq/3//4/HSixicweHGgbrEi4cX5Uq3JDXXcTwV/Z3jscsCASsXudk0UyMEy5vR+7QqVB4+K4ocWEMAJj9ey5ewNVV3bFMIyr+oQIJ0XgkTTrzhwKmyPYO5EPZ6fFLVHVgGtwodqURBTmipIA7ilin32fJklTKYTO4jlA9Z5/ASpKs7Nhfy+sT1F+LFsWl9sEv2Xzmt25MxF6EA0zu/JzGLGn8TgIqI/EDNdVsdznrIIxC9J9huBn7aK/jQP9AL+KTzxkxcSYUguSDtXOvfOGbeRFz8q+4oiMYaAcFLumRU8Fna9qpIEU/FPS4dT3TFauDlkHH2G4d8LFIIyY3e3O73gb8offQVdEFqtlCXamosIJCnd0jpCu7WUwqoULlh4iFlw5WYMSXQqHhIPht8SBYAQIN/wLN1xfPNTeZur/o0Kgck2eCPR2Hvtr/nKX/9dwUL8WfleIwZAf+rDTKlzqr/KroZsJJZUtiymFoXKxDiAm6DyYG+niRedgQmZ47nzHnOAp5VKZ+1rJXnzpsKfDEOppoyppYIRBwn5qES14M/5urtv7lOkXcmR86zvlDlh7PU+XayzAA1WRLTWagUFGdxkKycnLAVCYXYsZcXPKfKgybwG0EjnWx25+qzxChMBXm4WILif9LF0PE83YyZA5M8Izo/F00Fef8SMyb5m72R4BcRRODaUZOn2cfqJHENp9x3N09s7HUspW7VGdme18ZkCpxPZyKbQj5yQ8BhkOrxAzjVYqFotX/f/9p4rOHiTfbpR+q90gAo/S/pD9H9QNFrWBSDCY+LXsRx4FqPipEzceYfw5JXOHwI/Et+SirDAEID5ii87mwhhrU+2cMvqiW3YP9pfnQwx3cFm/1hM7OfT54w9M2g7EHp+/V1P8dl0opZ39B47S4suL58uGAqPTegJFgVTbomUMuJQJRfZz1HywPNYIGRHRJViCZgE/NlgKjtaxH3sJojjAocBPUfMGB+EtkUvyB5GCKyLkT9XAARAr7bvIsR/utWwfvxRBcArzpJsusgEgOSBfeDoX+SVF8FXUBwdBs7xYVA8Ax/B+BPHAp5X2/tfQY2anObz63JHGrryfz8+Prx/FijTmAoW/WPil8uvdFQhUKJqLECE9JHCh2DBlYNgPhmQeYlqDYqTMj+xaKb6xgD+Sw+HPA99JbtL3u6KT6diBP/LlUSZAUchFR42f4tpVtiWBFyYoFRaHQusKYMfv17VIamSIvDZjuAeb3ZPwC95/dKkUqDm6RTSxuvF1y1nd63CbZT+B7pfvOHgFdv/9Xr9+vpqQWz9pM4jIuSEbXDi8ec4DlPjsZj+0v2U7r16glFRmBAUPAi4suVHhhkmm5JZEogXJPR2WdLC8pYUVPFFETx8+vxLcK5edPoT9E0lyxqeYlPDHUmTvcwr65Y1jZWLzoxiLP/59h9AkveOS/+xX+AL5G6xDCuBSSgAGN753JxHHre5VO+cFpMNNE52hDnK0vCf4j6EqcnkeSFEZphkdLOgT4awbH89iqxNIf+4/tD40X06tOQ8dZFzU2wc6BMBxNgpiNPwQmxVCxGOQ7Gnb/U05enUsI7RJjr2X/7t3xmUvnJG+p+YIOR5L4HOf1av/36T1LyY0avZIarhVJxSzAC8z30bvOF6dDovKZyZglTrVZESdxmKNi74JQ/HkZ/Tjih0lcLfgxfHsoW4rrJghGM4hjkXftrS/1QucD1IuAwljHDeYMInPBjRC77gE0Ej0iwcoZo7razGz/m519kV8rqYp4/PAg55/8dZwBUCzVlimaxwWjR+K+Ajsm9/YBX/5IKvnJIHXqUSTGrREXzANCNV83YBl+tjTKwoFLzLrzTbhiSu4RQQ7uvfC+J8yWSjtytZyLYIOlV+eqmYu8x0jc+4eOpaJqssJ5a0jqt30fgYHeY0HptsjciTLUVInPI8BdQWOsPDuM1w226ZFkEB8laK5+FEnSrkqZLQajfl+ftXw2bFNcW3FAidnix1RTgYQyjwIs0U9MHBNV/kFoSqSU3Jp/TQ6QBLbC5An7pBjaEnMqX0Cb4AEs16kTvenFpinJUIC9Mbb/Opn12Ddiu6laG3bLr4lfc17w6YeEXg/vr6wrVQG8yI8ep4bLFJE+iujfZGGMDHZ5Mf4gSA8/1jK0U1q9vt9q9//evnz5+uIs70+cwuf7BPV/Tqvptq1UH9CNtQP5eYJsw09jCzcTHPhTf/fq4ugvQ+l8slHjidTufzOfSlXvDr7BlHGl36eUkNNOJyjO9yMYGgCfGh4KfJ9nw0+UHqFdxut09yReYl/jiugqph67xcLrCjwZTWxrn7M63y1vrLmpMV2VG/2S02oczUs8dIilYm3G8MAP1IvmEuLCVkQgQpMGB5frxMaTrLVLGp3K+FtlYXsnaisKFnOXdTtkp9jlnF9brK6iP5kpmLTxt4bfHF+lYWLCha4gvEJ7/8bgiCrDRCoJSRR5N1rE5a3sb8QYCUq76y9M6ufI3Qg6yguPqAQ7g9UqjN+ENoHmOAdXdFlxm/zPRjLsQmGeVkGNh3cG0CUuFoXsb8ntdlLXjlbft+4d7839RFsPPXpmjxMWPAJxie5CIc7HdBDxePtkx2CxzSrjZK/7iuMDxRACKrun1942iFSsgK8odc9vKBSd0SEbgdVaQ3vhBBfAvc0sZPpvt9/Ep638GY/sksXu4ziOJmqpSyOicsJs0eMdOfJQEOvsgancDc+bs8xksZDwvf5Gecfi7uQ3EY29OAwsuFUwWywhmJTEK25tyXgjOgma5rpY3zgeJ8Xk5aGCCPuRChYFG8dZuLskW3If2zRgQZ3fMspZgvezDlmDyGGKq7fS6TncfDPsOwEvpekJg6NEGPJU1tBWgZytMqxOnmd3q0+6uaqN1vf/0phRqwJe7BfdPfGAygyue5S0YtG5hkTRGXg5fm6wyeBVPgNASayo4iw/OtIizNBTL8iQeYlrkyw3TW2SQHlUq+eZkRM4P0IrV+gWDxiU0QTQY4KxsMBLE3p+vlwXkMZJ3yi4hXkbnU1jgQQEVMwVuVyxayl6SCtc83dWIWRZfB6BnNZZ8KIgk/drAItmDfyUmgPIZ+pJKx41LKZtL1eknAGqviaf9j9uyrIHJJyAR+gJOemGM6DEMe6tN0kxubS8mYcNo/A4QvfNWEphkJytWYdPx9WCtxXKLhq9VMxehUT7jdFkskuk210wn+8wlSOvFv0QFe0uu243+K8CnYfT8KiKpTqRgCn1xxmo0EZ3pNLvTpzI73BStmnK077ktMFBsaUsOETGd5oOVJam4uLcr22M3J3QR2v13baI9tOs1ODsN2DxnY75uFvsv/rcLYfn+8t2Do+MoUFjHT28VDREhf2uAqw2K6WwoAjdvsT+Wrdu+0CGcyoa7Ei2HuCckq7OU4ORF4wgWUBYwq5zWelPMi33HLBrdjohhwWV+ox+w5dwPucRjDOzEAFV0VMUguXmIwg1+3jBacRm4+xa1qRP4JJ8HMnAYsYeB8vLH5ET+SywqhwU5YZjLj7iCodyBoyvjjAr5xwk4q+KdzDxeaFd2Zx88Kho/Qya5cVODFr5+fP8SoE5CJI0h2TpjgfFlVGk5BxxdwlcHSQDT05MeicjPpF9aLxpmM5WFn8FPOhQ2tEoBSBQN4NSbcAvn4M2IAZNFdpWQfVoHYQMmsZA7ep66AMbggl7sLU3T169dPx1vhQ/i6nI+xaTwdecgEL5GsSiCuWrVfXjUEuDYuFbjjDCdy58WBOzNsMWoIt4ZCNR7nUwF6MC/fdxPjXCt+aSciYchPqRVsIKD7fbEy4AFuT5HE4ZkOQIJMxKm9guH4zu/rAOlW3TLfpzpAzCzVAZyzMOXx/LOphStKU7krY5UxyXXC1PaM/tmhSMRT7gENJ2yMPF6nbOEXXVBk88rsWz8JHs2hhDKGR4xibPP4V6YppBvBrDyY8eLi9QDmFADWFVEUAvNX3Gx0n6fMPJTjcXk8HgMWDYERQs3wsM8Im4vPGeSEnw0EGGQAEwlJV2g2/3u7Nlcft1iFGoMKBujtZRegp2vjov926f/tNqCzvCRbCOW4oX/RpLl/Z2MSk8Ab4GnaPp+pIJzIHINk4SkBddaSNlG1ZRc5hxjAP0UGzubBmxPBzXhFRA0BqR+Iy7dSzdYFTdfLU+Sp6n5z5073mYukQT+uaInEw5+T015mRU5bx80xBIV+qodFtK3gLHQKF0jDKngSAjdDKdWcpUMe2wCxvYoT/h2IAjLruM8+1mvCvXrLXeOgDYKNOVR71qbSGDxelI0CsQNz3FIQMQQkCBIh2hD9RQ1jqsVJEbz/arLb5cjxvIS4TQyeslFtkV/fCNbHRTUdiSvYsqmlE+lZ0g76p0WDhcAhCMwPi67yLXJ/5YI4bimfYi+UlGLInSrOxGlRuhDLus/Q5ubDS2fBn2MPUiyNuJJir6VFaXzfpVRaphOGuXncrehvkLLPz4/D4fBxOob0j3UPd/Nfv35BMIi9X+EbU+mn1ocKSgEpJGWWAw3htnEHxv5Hv47RnnsLGLJ5HhlQfMlMeVNE8mzsapJbywCQfyYXAPIgwCyqFII8KggbYl/jnBmN/1aQTRWX/m9pQxTRPzVa4GILA9ve0q843Af7re45FzUqX/86W8iyS39HD3ELTQwmstD4ZCULDabAFViFNwy+7nuJfXaZYElF3rGeBl95F8QrPUcqLDqPkb2RFLHv//78+dNNFDwetOmMpQvEDjev9B7/IhhIjDFSOIbJASDDXclJiAusTn1cZ/AsCilM+BOc5UZIqmcTT7uV8VgBL8UQEGi5I2NI1Rt/WPj3WHMLHsD38RgXVGKXMA4WZ4AjKJbVvJ49Y8oWhQFzhGiC0nQC4HxlS9tCany/jN+SKdNqqpb79dVEgWCxgBg2r6yd5zZI17fC1S3C5WBeqcA01jG2fHegusSVw1a+WymfTgfSYYjwB7AXgvLC3USUMcqwdwNBqnj8jg7wnpwgpLtSgNfzW8En7Talz74Qq03Rc917sp00pusx7WvNjCkCovcmrJO1NQDKDcMipzkdg9fQZBfvxwH7Wd7o903h3zVqFufenORXoMSc3dF7YLCA9z/WYppvFobXOuybz71kuaTXfbb9I6MJfyXM8xwkvXIJpjTZsl/SGUEvQlAvHHvS+XKsAvp3/x+XKlN9j0ExxQSnX2UUGe9keVJ0AHlALv5oc+L1dj8pw+OeK41wLLi8Nx4RoUAI0sq1PlTX6+T5KgtQJXfiKzjVYonW4VBlAXKSzYRbVgHdukFRkBC/ckVeHhJ8EIX6M3laDWjDyjJ15nSuYoTgOeIVUah8CVJO7AfQaSf9Y0/WVzpv1V9qqSLFNNdJ8AoHwM1jXlkWmUBXU0jH7zEejvz+uqCTpN8VIPuUG9s4Lb7+KSTTojBsBcTB7ni+GwV0wd6ntv9qv1SNYctNxgw2Gdl7GFHlhCqlP64AyJgHIma60E+bG03Tbp9SeMEZIGT5elE/QZpLabgfTeh/BQq8Lj7iDAcxJVRkGQaFMYh+UwcY43n1Cu++LSiRisVslyF+sTrxY7jh6yv/2/t0AsxSNVxfxOlxVysAzpcHdHJKkrNONgiDdyq9VKgViZ5ajeLHI6rIf0ytGTKOXBrs1sTwHt/TPON76v8YQ/w5QTd6jW96gcun8iHSX7J7UhvJmm6kKMGkGOl9HnOqnDBMiIKBBzgDD3t/9dmtmghIMqmYcmgaCOD0+jNokRCJIz/jKLUKMxBFiwOreArI3fRtLkAD0d8f+wtalU/9uxQAYRVP0VdcBt/O9xzYD3zFSNhVhscpaSXFl9plnUoB8DzriCZZiF1haPc/XURDfn2WkLh+darfc0IAVj94jdzoxce41RaQtIwLwb2ulG/WiAAH9vnx/O6wKzDlhTdI1DeAl14aguzNz/TlgeXm2uLuExF8uBcnHoI5zj9Ec/NkWSCgEBnl60/FL2HAUl+WT04qoPm/vB95Opymbe2BtrLM8XjSdL3O+KusWb9Dh186Y0z3y6AxeeGkAkwVwTt5RcS6lmJdxAwIseVxuoy+RUwX+FRAqN56SYpNO3nas+8X7rzSCqotk0IJnff6JyvXSlw7vZW6B1KA+V6oYWJpek/6f6P5Qgh8ZL7Vn1CExGom3q34EFvoV+pfobuGDCeZIqEAuJ1O5Blc8Ek+E2Gu3caMqcp/Ly5Pi5ywXzmOH4/Hj4+Pv//97xEbuX+sMrM9do/rr+vjMEkdKO1XCRupCSBdDgEgQoHh4NCOknv0cSoq+CfCVenSIxiRGTPofKQ0ZdcgLp4QTFnSrzPoeIT8UUggSAGCdAiQQ1xiYV4G7//I6ZlDZo2rosmzZht6yP8BYW8soyBMdmMAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
- "from transformers import load_tool, ReactCodeAgent, HfApiEngine\n",
+ "from smolagents import load_tool, CodeAgent, HfApiModel, DuckDuckGoSearchTool\n",
"\n",
"# Import tool from Hub\n",
- "image_generation_tool = load_tool(\"m-ric/text-to-image\", cache=False)\n",
+ "image_generation_tool = load_tool(\"m-ric/text-to-image\", trust_remote_code=True)\n",
"\n",
- "# Import tool from LangChain\n",
- "from transformers.agents.search import DuckDuckGoSearchTool\n",
"\n",
"search_tool = DuckDuckGoSearchTool()\n",
"\n",
- "llm_engine = HfApiEngine(\"Qwen/Qwen2.5-72B-Instruct\")\n",
+ "model = HfApiModel(\"Qwen/Qwen2.5-72B-Instruct\")\n",
"# Initialize the agent with both tools\n",
- "agent = ReactCodeAgent(\n",
- " tools=[image_generation_tool, search_tool], llm_engine=llm_engine\n",
+ "agent = CodeAgent(\n",
+ " tools=[image_generation_tool, search_tool], model=model\n",
")\n",
"\n",
"# Run it!\n",
@@ -118,7 +599,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -212,7 +693,7 @@
"outputs": [],
"source": [
"import json\n",
- "from transformers.agents import Tool\n",
+ "from smolagents import Tool\n",
"from langchain_core.vectorstores import VectorStore\n",
"\n",
"\n",
@@ -295,7 +776,7 @@
" tool.push_to_hub(repo_id=\"m-ric/retriever-tool\")\n",
"\n",
" # Loading the tool\n",
- " from transformers.agents import load_tool\n",
+ " from smolagents import load_tool\n",
"\n",
" retriever_tool = load_tool(\n",
" \"m-ric/retriever-tool\", vectordb=vectordb, all_sources=all_sources\n",
@@ -315,12 +796,12 @@
"metadata": {},
"outputs": [],
"source": [
- "from transformers.agents import HfApiEngine, ReactJsonAgent\n",
+ "from smolagents import HfApiModel, ToolCallingAgent\n",
"\n",
- "llm_engine = HfApiEngine(\"Qwen/Qwen2.5-72B-Instruct\")\n",
+ "model = HfApiModel(\"Qwen/Qwen2.5-72B-Instruct\")\n",
"\n",
"retriever_tool = RetrieverTool(vectordb=vectordb, all_sources=all_sources)\n",
- "agent = ReactJsonAgent(tools=[retriever_tool], llm_engine=llm_engine, verbose=0)\n",
+ "agent = ToolCallingAgent(tools=[retriever_tool], model=model, verbose=0)\n",
"\n",
"agent_output = agent.run(\"Please show me a LORA finetuning script\")\n",
"\n",
@@ -340,85 +821,283 @@
"Note that **using an LLM agent** that calls a retriever as a tool and can dynamically modify the query and other retrieval parameters **is a more general formulation of RAG**, which also covers many RAG improvement techniques like iterative query refinement.\n",
"\n",
"## 3. 💻 Debug Python code\n",
- "Since the ReactCodeAgent has a built-in Python code interpreter, we can use it to debug our faulty Python script!"
+ "Since the CodeAgent has a built-in Python code interpreter, we can use it to debug our faulty Python script!"
]
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 7,
"metadata": {},
"outputs": [
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[32;20;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mI have some code that creates a bug: please debug it, then run it to make sure it works and return the final code\n",
- "You have been provided with these initial arguments: {'code': '\\nlist=[0, 1, 2]\\n\\nfor i in range(4):\\n print(list(i))\\n'}.\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: The provided code has a bug. The `list` is a built-in type in Python and should not be used as a variable name. Furthermore, the `list` type does not have a `__call__` method, which means that you cannot use parentheses to access its elements. Instead, square brackets should be used to index the list. I will correct the variable name and the indexing syntax and then run the code to ensure it works.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mmy_list\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m2\u001b[39m\u001b[38;5;7m]\u001b[39m\n",
- "\n",
- "\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mi\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mrange\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;139m4\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01mif\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mi\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m<\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mlen\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mmy_list\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mmy_list\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;7mi\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01melse\u001b[39;00m\u001b[38;5;7m:\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mIndex out of range\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m0\n",
- "1\n",
- "2\n",
- "Index out of range\n",
- "\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: The code has been corrected and is running as expected, printing the list items for valid indices and an out-of-range message for invalid indices. I will return the final corrected code as the answer.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7manswer\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;144m'''\u001b[39m\u001b[38;5;144mmy_list = [0, 1, 2]\u001b[39m\n",
- "\n",
- "\u001b[38;5;144mfor i in range(4):\u001b[39m\n",
- "\u001b[38;5;144m if i < len(my_list):\u001b[39m\n",
- "\u001b[38;5;144m print(my_list[i])\u001b[39m\n",
- "\u001b[38;5;144m else:\u001b[39m\n",
- "\u001b[38;5;144m print(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mIndex out of range\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144m)\u001b[39m\u001b[38;5;144m'''\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\u001b[0m\n",
- "\u001b[33;1mLast output from code snippet:\u001b[0m\n",
- "\u001b[32;20mmy_list = [0, 1, 2]\n",
- "\n",
- "for i in range(4):\n",
- " if i < len(my_list):\n",
- " print(my_list[i])\n",
- " else:\n",
- " print(\"Index out of range\")\u001b[0m\n",
- "\u001b[32;20;1mFinal answer:\u001b[0m\n",
- "\u001b[32;20mmy_list = [0, 1, 2]\n",
- "\n",
- "for i in range(4):\n",
- " if i < len(my_list):\n",
- " print(my_list[i])\n",
- " else:\n",
- " print(\"Index out of range\")\u001b[0m\n"
- ]
+ "data": {
+ "text/html": [
+ "╭──────────────────────────────────────────────────── New run ────────────────────────────────────────────────────╮ \n",
+ "│ │ \n",
+ "│ I have some code that creates a bug: please debug it, then run it to make sure it works and return the final │ \n",
+ "│ code │ \n",
+ "│ You have been provided with these additional arguments, that you can access using the keys as variables in your │ \n",
+ "│ python code: │ \n",
+ "│ {'code': '\\nnumbers=[0, 1, 2]\\n\\nfor i in range(4):\\n print(numbers(i))\\n'}. │ \n",
+ "│ │ \n",
+ "╰─ HfApiModel - Qwen/Qwen2.5-72B-Instruct ────────────────────────────────────────────────────────────────────────╯ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m╭─\u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[1;38;2;212;183;2mNew run\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╮\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mI have some code that creates a bug: please debug it, then run it to make sure it works and return the final \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mcode\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYou have been provided with these additional arguments, that you can access using the keys as variables in your\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mpython code:\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m{'code': '\\nnumbers=[0, 1, 2]\\n\\nfor i in range(4):\\n print(numbers(i))\\n'}.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m╰─\u001b[0m\u001b[38;2;212;183;2m HfApiModel - Qwen/Qwen2.5-72B-Instruct \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╯\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m0\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 numbers = [ 0 , 1 , 2 ] │\n",
+ "│ 2 │\n",
+ "│ 3 for i in range( 4 ): │\n",
+ "│ 4 print(numbers[i]) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mnumbers\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m0\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m2\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mfor\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mi\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34min\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrange\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m4\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m4 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mnumbers\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mi\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Code execution failed: 0 \n",
+ "1 \n",
+ "2 \n",
+ "Code execution failed at line 'for i in range( 4 ): \n",
+ " print(numbers )' because of the following error: \n",
+ "Index 3 out of bounds for list of length 3 \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;31mCode execution failed: \u001b[0m\u001b[1;31m0\u001b[0m\n",
+ "\u001b[1;31m1\u001b[0m\n",
+ "\u001b[1;31m2\u001b[0m\n",
+ "\u001b[1;31mCode execution failed at line 'for i in \u001b[0m\u001b[1;31mrange\u001b[0m\u001b[1;31m(\u001b[0m\u001b[1;31m4\u001b[0m\u001b[1;31m)\u001b[0m\u001b[1;31m:\u001b[0m\n",
+ "\u001b[1;31m \u001b[0m\u001b[1;31mprint\u001b[0m\u001b[1;31m(\u001b[0m\u001b[1;31mnumbers\u001b[0m\u001b[1;3;31m)\u001b[0m\u001b[1;3;31m' because of the following error:\u001b[0m\n",
+ "\u001b[1;3;31mIndex \u001b[0m\u001b[1;3;31m3\u001b[0m\u001b[1;3;31m out of bounds for list of length \u001b[0m\u001b[1;3;31m3\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 0: Duration 16.39 seconds| Input tokens: 2,059 | Output tokens: 100] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 0: Duration 16.39 seconds| Input tokens: 2,059 | Output tokens: 100]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m1\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 numbers = [ 0 , 1 , 2 ] │\n",
+ "│ 2 │\n",
+ "│ 3 for i in range(len(numbers)): │\n",
+ "│ 4 print(numbers[i]) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mnumbers\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m0\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m1\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m,\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m2\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;102;217;239;48;2;39;40;34mfor\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mi\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34min\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrange\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mlen\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mnumbers\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m:\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m4 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mnumbers\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m[\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mi\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m]\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ "0\n",
+ "1\n",
+ "2\n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ "0\n",
+ "1\n",
+ "2\n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 1: Duration 17.45 seconds| Input tokens: 4,370 | Output tokens: 210] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 1: Duration 17.45 seconds| Input tokens: 4,370 | Output tokens: 210]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m2\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 fixed_code = ''' │\n",
+ "│ 2 numbers=[0, 1, 2] │\n",
+ "│ 3 │\n",
+ "│ 4 for i in range(len(numbers)): │\n",
+ "│ 5 print(numbers[i]) │\n",
+ "│ 6 ''' │\n",
+ "│ 7 │\n",
+ "│ 8 final_answer(fixed_code) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfixed_code\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'''\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mnumbers=[0, 1, 2]\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m4 \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mfor i in range(len(numbers)):\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m5 \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m print(numbers[i])\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m6 \u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m'''\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m7 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m8 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfinal_answer\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfixed_code\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Out - Final answer: \n",
+ "numbers=[0, 1, 2] \n",
+ "\n",
+ "for i in range(len(numbers)): \n",
+ " print(numbers[i]) \n",
+ "\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;38;2;212;183;2mOut - Final answer: \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2mnumbers=[0, 1, 2]\u001b[0m\n",
+ "\n",
+ "\u001b[1;38;2;212;183;2mfor i in range(len(numbers)):\u001b[0m\n",
+ "\u001b[1;38;2;212;183;2m print(numbers[i])\u001b[0m\n",
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 2: Duration 11.55 seconds| Input tokens: 6,885 | Output tokens: 286] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 2: Duration 11.55 seconds| Input tokens: 6,885 | Output tokens: 286]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
- "from transformers import ReactCodeAgent\n",
+ "from smolagents import CodeAgent\n",
"\n",
- "agent = ReactCodeAgent(tools=[], llm_engine=HfApiEngine(\"Qwen/Qwen2.5-72B-Instruct\"))\n",
+ "agent = CodeAgent(tools=[], model=HfApiModel(\"Qwen/Qwen2.5-72B-Instruct\"))\n",
"\n",
"code = \"\"\"\n",
- "list=[0, 1, 2]\n",
+ "numbers=[0, 1, 2]\n",
"\n",
"for i in range(4):\n",
- " print(list(i))\n",
+ " print(numbers(i))\n",
"\"\"\"\n",
"\n",
"final_answer = agent.run(\n",
" \"I have some code that creates a bug: please debug it, then run it to make sure it works and return the final code\",\n",
- " code=code,\n",
+ " additional_args=dict(code=code)\n",
")"
]
},
@@ -433,147 +1112,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "my_list = [0, 1, 2]\n",
- "\n",
- "for i in range(4):\n",
- " if i < len(my_list):\n",
- " print(my_list[i])\n",
- " else:\n",
- " print(\"Index out of range\")\n"
- ]
- }
- ],
- "source": [
- "print(final_answer)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 4. Create your own LLM engine (OpenAI)\n",
- "\n",
- "It's really easy to set up your own LLM engine:\n",
- "it only needs a `__call__` method with these criteria:\n",
- "1. Takes as input a list of messages in [ChatML format](https://huggingface.co/docs/transformers/main/en/chat_templating#introduction) and outputs the answer.\n",
- "2. Accepts a `stop_sequences` arguments to pass sequences on which generation stops.\n",
- "3. Depending on which kind of message roles your LLM accepts, you may also need to convert some message roles."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[33;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mI have some code that creates a bug: please debug it and return the final code\n",
- "You have been provided with these initial arguments: {'code': '\\nlist=[0, 1, 2]\\n\\nfor i in range(4):\\n print(list(i))\\n'}.\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mmy_list\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m2\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;60;03m# Renamed the list to avoid using the built-in name\u001b[39;00m\n",
- "\n",
- "\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mi\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mrange\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;109mlen\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mmy_list\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;60;03m# Changed the range to be within the length of the list\u001b[39;00m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mmy_list\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;7mi\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;60;03m# Corrected the list access syntax\u001b[39;00m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m0\n",
- "1\n",
- "2\n",
- "\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mmy_list\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m2\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;60;03m# Renamed the list to avoid using the built-in name\u001b[39;00m\n",
- "\n",
- "\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mi\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mrange\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;109mlen\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mmy_list\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;60;03m# Changed the range to be within the length of the list\u001b[39;00m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mmy_list\u001b[39m\u001b[38;5;7m[\u001b[39m\u001b[38;5;7mi\u001b[39m\u001b[38;5;7m]\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;60;03m# Corrected the list access syntax\u001b[39;00m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m0\n",
- "1\n",
- "2\n",
- "\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mcorrected_code\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m'''\u001b[39m\n",
- "\u001b[38;5;144mmy_list = [0, 1, 2] # Renamed the list to avoid using the built-in name\u001b[39m\n",
- "\n",
- "\u001b[38;5;144mfor i in range(len(my_list)): # Changed the range to be within the length of the list\u001b[39m\n",
- "\u001b[38;5;144m print(my_list[i]) # Corrected the list access syntax\u001b[39m\n",
- "\u001b[38;5;144m'''\u001b[39m\n",
- "\n",
- "\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7manswer\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7mcorrected_code\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\u001b[0m\n",
- "\u001b[33;1m>>> Final answer:\u001b[0m\n",
- "\u001b[32;20m\n",
- "my_list = [0, 1, 2] # Renamed the list to avoid using the built-in name\n",
- "\n",
- "for i in range(len(my_list)): # Changed the range to be within the length of the list\n",
- " print(my_list[i]) # Corrected the list access syntax\n",
- "\u001b[0m\n"
- ]
- }
- ],
- "source": [
- "import os\n",
- "from openai import OpenAI\n",
- "from transformers.agents.llm_engine import MessageRole, get_clean_message_list\n",
- "\n",
- "openai_role_conversions = {\n",
- " MessageRole.TOOL_RESPONSE: \"user\",\n",
- "}\n",
- "\n",
- "\n",
- "class OpenAIEngine:\n",
- " def __init__(self, model_name=\"gpt-4o-2024-05-13\"):\n",
- " self.model_name = model_name\n",
- " self.client = OpenAI(\n",
- " api_key=os.getenv(\"OPENAI_API_KEY\"),\n",
- " )\n",
- "\n",
- " def __call__(self, messages, stop_sequences=[]):\n",
- " # Get clean message list\n",
- " messages = get_clean_message_list(\n",
- " messages, role_conversions=openai_role_conversions\n",
- " )\n",
- "\n",
- " # Get LLM output\n",
- " response = self.client.chat.completions.create(\n",
- " model=self.model_name,\n",
- " messages=messages,\n",
- " stop=stop_sequences,\n",
- " )\n",
- " return response.choices[0].message.content\n",
- "\n",
- "\n",
- "openai_engine = OpenAIEngine()\n",
- "agent = ReactCodeAgent(llm_engine=openai_engine, tools=[])\n",
- "\n",
- "code = \"\"\"\n",
- "list=[0, 1, 2]\n",
- "\n",
- "for i in range(4):\n",
- " print(list(i))\n",
- "\"\"\"\n",
- "\n",
- "final_answer = agent.run(\n",
- " \"I have some code that creates a bug: please debug it and return the final code\",\n",
- " code=code,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
@@ -581,10 +1120,10 @@
"output_type": "stream",
"text": [
"\n",
- "my_list = [0, 1, 2] # Renamed the list to avoid using the built-in name\n",
+ "numbers=[0, 1, 2]\n",
"\n",
- "for i in range(len(my_list)): # Changed the range to be within the length of the list\n",
- " print(my_list[i]) # Corrected the list access syntax\n",
+ "for i in range(len(numbers)):\n",
+ " print(numbers[i])\n",
"\n"
]
}
@@ -601,7 +1140,7 @@
"\n",
"The use cases above should give you a glimpse into the possibilities of our Agents framework!\n",
"\n",
- "For more advanced usage, read the [documentation](https://huggingface.co/docs/transformers/en/transformers_agents), and [this experiment](https://github.com/aymeric-roucher/agent_reasoning_benchmark/blob/main/benchmark_gaia.ipynb) that allowed us to build our own agent based on Llama-3-70B that beats many GPT-4 agents on the very difficult [GAIA Leaderboard](https://huggingface.co/spaces/gaia-benchmark/leaderboard)!\n",
+ "For more advanced usage, read the [documentation](https://huggingface.co/docs/smolagents/index).\n",
"\n",
"All feedback is welcome, it will help us improve the framework! 🚀"
]
@@ -609,9 +1148,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "cookbook2",
+ "display_name": "test2",
"language": "python",
- "name": "cookbook2"
+ "name": "test2"
},
"language_info": {
"codemirror_mode": {
diff --git a/notebooks/en/fine_tuning_smol_vlm_sft_trl.ipynb b/notebooks/en/fine_tuning_smol_vlm_sft_trl.ipynb
index 398a5b3d..bbe34a8a 100644
--- a/notebooks/en/fine_tuning_smol_vlm_sft_trl.ipynb
+++ b/notebooks/en/fine_tuning_smol_vlm_sft_trl.ipynb
@@ -19,13 +19,13 @@
"source": [
"In this recipe, we’ll demonstrate how to fine-tune a smol 🤏 [Vision Language Model (VLM)](https://huggingface.co/blog/vlms) using the Hugging Face ecosystem, leveraging the powerful [Transformer Reinforcement Learning library (TRL)](https://huggingface.co/docs/trl/index). This step-by-step guide will enable you to customize VLMs for your specific tasks, even on consumer GPUs.\n",
"\n",
- "## 🌟 Model & Dataset Overview\n",
+ "### 🌟 Model & Dataset Overview\n",
"\n",
"In this notebook, we will fine-tune the **[SmolVLM](https://huggingface.co/blog/smolvlm)** model using the **[ChartQA](https://huggingface.co/datasets/HuggingFaceM4/ChartQA)** dataset. SmolVLM is a highly performant and memory-efficient model, making it an ideal choice for this task. The **ChartQA dataset** contains images of various chart types paired with question-answer pairs, offering a valuable resource for enhancing the model's **visual question-answering (VQA)** capabilities. These skills are crucial for a range of practical applications, including data analysis, business intelligence, and educational tools.\n",
"\n",
"💡 _Note:_ The instruct model we are fine-tuning has already been trained on this dataset, so it is familiar with the data. However, this serves as a valuable educational exercise for understanding fine-tuning techniques. For a complete list of datasets used to train this model, check out [this document](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct/blob/main/smolvlm-data.pdf).\n",
"\n",
- "## 📖 Additional Resources\n",
+ "### 📖 Additional Resources\n",
"\n",
"Expand your knowledge of Vision Language Models and related tools with these resources:\n",
"\n",
@@ -53,7 +53,7 @@
"id": "gSHmDKNFoqjC"
},
"source": [
- "# 1. Install Dependencies\n",
+ "## 1. Install Dependencies\n",
"\n",
"Let’s start by installing the essential libraries we’ll need for fine-tuning! 🚀\n"
]
@@ -109,7 +109,7 @@
"id": "g9QXwbJ7ovM5"
},
"source": [
- "# 2. Load Dataset 📁\n",
+ "## 2. Load Dataset 📁\n",
"\n",
"We’ll load the [HuggingFaceM4/ChartQA](https://huggingface.co/datasets/HuggingFaceM4/ChartQA) dataset, which provides chart images along with corresponding questions and answers—perfect for fine-tuning visual question-answering models."
]
@@ -315,7 +315,7 @@
"id": "YY1Y_KDtoycB"
},
"source": [
- "# 3. Load Model and Check Performance! 🤔\n",
+ "## 3. Load Model and Check Performance! 🤔\n",
"\n",
"Now that we’ve loaded the dataset, it’s time to load the [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct), a 2B parameter Vision Language Model (VLM) that offers state-of-the-art (SOTA) performance while being efficient in terms of memory usage.\n",
"\n",
@@ -324,12 +324,12 @@
},
{
"cell_type": "markdown",
- "source": [
- "![updated_fine_tuning_smol_vlm_diagram.png]()"
- ],
"metadata": {
"id": "b1gKdVq8guTo"
- }
+ },
+ "source": [
+ "![updated_fine_tuning_smol_vlm_diagram.png]()"
+ ]
},
{
"cell_type": "code",
@@ -655,7 +655,7 @@
"id": "YIZOIVEzQqNg"
},
"source": [
- "# 4. Fine-Tune the Model using TRL\n"
+ "## 4. Fine-Tune the Model using TRL\n"
]
},
{
@@ -664,7 +664,7 @@
"id": "yIrR9gP2z90z"
},
"source": [
- "## 4.1 Load the Quantized Model for Training ⚙️\n",
+ "### 4.1 Load the Quantized Model for Training ⚙️\n",
"\n",
"Next, we’ll load the quantized model using [bitsandbytes](https://huggingface.co/docs/bitsandbytes/main/en/index). If you want to learn more about quantization, check out [this blog post](https://huggingface.co/blog/merve/quantization) or [this one](https://www.maartengrootendorst.com/blog/quantization/).\n"
]
@@ -704,7 +704,7 @@
"id": "65wfO29isQlX"
},
"source": [
- "## 4.2 Set Up QLoRA and SFTConfig 🚀\n",
+ "### 4.2 Set Up QLoRA and SFTConfig 🚀\n",
"\n",
"Next, we’ll configure [QLoRA](https://github.com/artidoro/qlora) for our training setup. QLoRA allows efficient fine-tuning of large models by reducing the memory footprint. Unlike traditional LoRA, which uses low-rank approximation, QLoRA further quantizes the LoRA adapter weights, leading to even lower memory usage and faster training.\n",
"\n",
@@ -799,7 +799,7 @@
"id": "pOUrD9P-y-Kf"
},
"source": [
- "## 4.3 Training the Model 🏃"
+ "### 4.3 Training the Model 🏃"
]
},
{
@@ -1020,7 +1020,7 @@
"id": "6yx_sGW42dN3"
},
"source": [
- "# 5. Testing the Fine-Tuned Model 🔍\n",
+ "## 5. Testing the Fine-Tuned Model 🔍\n",
"\n",
"Now that our Vision Language Model (VLM) is fine-tuned, it's time to evaluate its performance! In this section, we'll test the model using examples from the ChartQA dataset to assess how accurately it answers questions based on chart images. Let's dive into the results and see how well it performs! 🚀"
]
@@ -1271,7 +1271,7 @@
"id": "Wgv0-sy8TLPE"
},
"source": [
- "# 6. Continuing the Learning Journey 🧑🎓️\n",
+ "## 6. Continuing the Learning Journey 🧑🎓️\n",
"\n",
"To further enhance your skills with multimodal models, I recommend checking out the resources shared at the beginning of this notebook or revisiting the section with the same name in [Fine-Tuning a Vision Language Model (Qwen2-VL-7B) with the Hugging Face Ecosystem (TRL)](https://huggingface.co/learn/cookbook/fine_tuning_vlm_trl).\n",
"\n",
@@ -1296,4 +1296,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}
diff --git a/notebooks/en/fine_tuning_vlm_dpo_smolvlm_instruct.ipynb b/notebooks/en/fine_tuning_vlm_dpo_smolvlm_instruct.ipynb
index 21cb0683..6fa33fba 100644
--- a/notebooks/en/fine_tuning_vlm_dpo_smolvlm_instruct.ipynb
+++ b/notebooks/en/fine_tuning_vlm_dpo_smolvlm_instruct.ipynb
@@ -41,7 +41,7 @@
"id": "R-7khk_xFuZZ"
},
"source": [
- "# 1. Install Dependencies\n",
+ "## 1. Install Dependencies\n",
"\n",
"Let’s start by installing the essential libraries we’ll need for fine-tuning! 🚀"
]
@@ -232,7 +232,7 @@
"id": "t-zGbB9OGTo6"
},
"source": [
- "# 3. Fine-Tune the Model using TRL\n",
+ "## 3. Fine-Tune the Model using TRL\n",
"\n"
]
},
@@ -242,7 +242,7 @@
"id": "irI99bhxzpVM"
},
"source": [
- "## 3.1 Load the Quantized Model for Training ⚙️\n",
+ "### 3.1 Load the Quantized Model for Training ⚙️\n",
"\n",
"\n",
"Let's first load a quantized version of the SmolVLM-Instruct model using bitsandbytes, and let's also load the processor. We'll use [SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct)."
@@ -297,7 +297,7 @@
"id": "AwDDBxIqGjDV"
},
"source": [
- "## 3.2 Set Up QLoRA and DPOConfig 🚀\n",
+ "### 3.2 Set Up QLoRA and DPOConfig 🚀\n",
"\n",
"In this step, we’ll configure [QLoRA](https://github.com/artidoro/qlora) for our training setup. **QLoRA** is a powerful fine-tuning technique designed to reduce the memory footprint, making it possible to fine-tune large models efficiently, even on limited hardware.\n",
"\n",
@@ -463,7 +463,7 @@
"id": "n2eD3ZwHzl-U"
},
"source": [
- "# 4. Testing the Fine-Tuned Model 🔍\n",
+ "## 4. Testing the Fine-Tuned Model 🔍\n",
"\n",
"With our Vision Language Model (VLM) fine-tuned, it’s time to evaluate its performance! In this section, we’ll test the model using examples from the [HuggingFaceH4/rlaif-v_formatted](https://huggingface.co/datasets/HuggingFaceH4/rlaif-v_formatted) dataset. Let’s dive into the results and assess how well the model aligns with the preferred responses! 🚀\n",
"\n",
@@ -770,11 +770,7 @@
},
"outputs": [
{
- "output_type": "execute_result",
"data": {
- "text/plain": [
- ""
- ],
"text/html": [
"\n",
" \n",
" "
+ ],
+ "text/plain": [
+ ""
]
},
+ "execution_count": 1,
"metadata": {},
- "execution_count": 1
+ "output_type": "execute_result"
}
],
"source": [
@@ -804,7 +804,7 @@
"id": "Znti4_dk39av"
},
"source": [
- "# 6. Continuing the Learning Journey 🧑🎓️\n",
+ "## 5. Continuing the Learning Journey 🧑🎓️\n",
"\n",
"Expand your knowledge of Vision Language Models and related tools with these resources:\n",
"\n",
@@ -838,4 +838,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}
diff --git a/notebooks/en/fine_tuning_vlm_trl.ipynb b/notebooks/en/fine_tuning_vlm_trl.ipynb
index d773e8a2..7b3cf7ed 100644
--- a/notebooks/en/fine_tuning_vlm_trl.ipynb
+++ b/notebooks/en/fine_tuning_vlm_trl.ipynb
@@ -51,7 +51,7 @@
"id": "gSHmDKNFoqjC"
},
"source": [
- "# 1. Install Dependencies\n",
+ "## 1. Install Dependencies\n",
"\n",
"Let’s start by installing the essential libraries we’ll need for fine-tuning! 🚀\n"
]
@@ -180,7 +180,7 @@
"id": "g9QXwbJ7ovM5"
},
"source": [
- "# 2. Load Dataset 📁\n",
+ "## 2. Load Dataset 📁\n",
"\n",
"In this section, we’ll load the [HuggingFaceM4/ChartQA](https://huggingface.co/datasets/HuggingFaceM4/ChartQA) dataset. This dataset contains chart images paired with related questions and answers, making it ideal for training on visual question answering tasks.\n",
"\n",
@@ -388,7 +388,7 @@
"id": "YY1Y_KDtoycB"
},
"source": [
- "# 3. Load Model and Check Performance! 🤔\n",
+ "## 3. Load Model and Check Performance! 🤔\n",
"\n",
"Now that we’ve loaded the dataset, let’s start by loading the model and evaluating its performance using a sample from the dataset. We’ll be using [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct), a Vision Language Model (VLM) capable of understanding both visual data and text.\n",
"\n",
@@ -1165,7 +1165,7 @@
"id": "YIZOIVEzQqNg"
},
"source": [
- "# 4. Fine-Tune the Model using TRL\n"
+ "## 4. Fine-Tune the Model using TRL\n"
]
},
{
@@ -1174,7 +1174,7 @@
"id": "yIrR9gP2z90z"
},
"source": [
- "## 4.1 Load the Quantized Model for Training ⚙️\n",
+ "### 4.1 Load the Quantized Model for Training ⚙️\n",
"\n",
"Next, we’ll load the quantized model using [bitsandbytes](https://huggingface.co/docs/bitsandbytes/main/en/index). If you want to learn more about quantization, check out [this blog post](https://huggingface.co/blog/merve/quantization) or [this one](https://www.maartengrootendorst.com/blog/quantization/).\n"
]
@@ -1246,7 +1246,7 @@
"id": "65wfO29isQlX"
},
"source": [
- "## 4.2 Set Up QLoRA and SFTConfig 🚀\n",
+ "### 4.2 Set Up QLoRA and SFTConfig 🚀\n",
"\n",
"Next, we will configure [QLoRA](https://github.com/artidoro/qlora) for our training setup. QLoRA enables efficient fine-tuning of large language models while significantly reducing the memory footprint compared to traditional methods. Unlike standard LoRA, which reduces memory usage by applying a low-rank approximation, QLoRA takes it a step further by quantizing the weights of the LoRA adapters. This leads to even lower memory requirements and improved training efficiency, making it an excellent choice for optimizing our model's performance without sacrificing quality.\n",
"\n",
@@ -1361,7 +1361,7 @@
"id": "pOUrD9P-y-Kf"
},
"source": [
- "## 4.3 Training the Model 🏃"
+ "### 4.3 Training the Model 🏃"
]
},
{
@@ -1556,7 +1556,7 @@
"id": "6yx_sGW42dN3"
},
"source": [
- "# 5. Testing the Fine-Tuned Model 🔍\n",
+ "## 5. Testing the Fine-Tuned Model 🔍\n",
"\n",
"Now that we've successfully fine-tuned our Vision Language Model (VLM), it's time to evaluate its performance! In this section, we will test the model using examples from the ChartQA dataset to see how well it answers questions based on chart images. Let's dive in and explore the results! 🚀\n",
"\n"
@@ -1993,7 +1993,7 @@
"id": "daUMWw5xxhSc"
},
"source": [
- "# 6. Compare Fine-Tuned Model vs. Base Model + Prompting 📊\n",
+ "## 6. Compare Fine-Tuned Model vs. Base Model + Prompting 📊\n",
"\n",
"We have explored how fine-tuning the VLM can be a valuable option for adapting it to our specific needs. Another approach to consider is directly using prompting or implementing a RAG system, which is covered in another [recipe](https://huggingface.co/learn/cookbook/multimodal_rag_using_document_retrieval_and_vlms).\n",
"\n",
@@ -2205,7 +2205,7 @@
"id": "Wgv0-sy8TLPE"
},
"source": [
- "# 7. Continuing the Learning Journey 🧑🎓️\n",
+ "## 7. Continuing the Learning Journey 🧑🎓️\n",
"\n",
"To further enhance your understanding and skills in working with multimodal models, check out the following resources:\n",
"\n",
diff --git a/notebooks/en/index.md b/notebooks/en/index.md
index e8b6c0b5..7d2a639e 100644
--- a/notebooks/en/index.md
+++ b/notebooks/en/index.md
@@ -7,11 +7,11 @@ applications and solving various machine learning tasks using open-source tools
Check out the recently added notebooks:
+- [Scaling Test-Time Compute for Longer Thinking in LLMs](search_and_learn)
- [Signature-Aware Model Serving from MLflow with Ray Serve](mlflow_ray_serve)
- [Fine-tuning SmolVLM using direct preference optimization (DPO) with TRL on a consumer GPU](fine_tuning_vlm_dpo_smolvlm_instruct)
- [Smol Multimodal RAG: Building with ColSmolVLM and SmolVLM on Colab's Free-Tier GPU](multimodal_rag_using_document_retrieval_and_smol_vlm)
- [Fine-tuning SmolVLM with TRL on a consumer GPU](fine_tuning_smol_vlm_sft_trl)
-- [Multimodal RAG with ColQwen2, Reranker, and Quantized VLMs on Consumer GPUs](multimodal_rag_using_document_retrieval_and_reranker_and_vlms)
You can also check out the notebooks in the cookbook's [GitHub repo](https://github.com/huggingface/cookbook).
diff --git a/notebooks/en/mlflow_ray_serve.ipynb b/notebooks/en/mlflow_ray_serve.ipynb
index d0b16f5b..543efd09 100644
--- a/notebooks/en/mlflow_ray_serve.ipynb
+++ b/notebooks/en/mlflow_ray_serve.ipynb
@@ -1,1081 +1,1030 @@
{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "view-in-github"
- },
- "source": [
- " "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "I17bSxxg1evl"
- },
- "source": [
- "# Signature-Aware Model Serving from MLflow with Ray Serve\n",
- "\n",
- "_Authored by: [Jonathan Jin](https://huggingface.co/jinnovation)_"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "IuS0daXP1lIa"
- },
- "source": [
- "## Introduction\n",
- "\n",
- "This notebook explores solutions for streamlining the deployment of models from a model registry. For teams that want to productionize many models over time, investments at this \"transition point\" in the AI/ML project lifecycle can meaningfully drive down time-to-production. This can be important for a younger, smaller team that may not have the benefit of existing infrastructure to form a \"golden path\" for serving online models in production.\n",
- "\n",
- "## Motivation\n",
- "\n",
- "Optimizing this stage of the model lifecycle is particularly important due to the production-facing aspect of the end result. At this stage, your model becomes, in effect, a microservice. This means that you now need to contend with all elements of service ownership, which can include:\n",
- "\n",
- "- Standardizing and enforcing API backwards-compatibility;\n",
- "- Logging, metrics, and general observability concerns;\n",
- "- Etc.\n",
- "\n",
- "Needing to repeat the same general-purpose setup each time you want to deploy a new model will result in development costs adding up significantly over time for you and your team. On the flip side, given the \"long tail\" of production-model ownership (assuming a productionized model is not likely to be decommissioned anytime soon), streamlining investments here can pay healthy dividends over time.\n",
- "\n",
- "Given all of the above, we motivate our exploration here with the following user story:\n",
- "\n",
- "> I would like to deploy a model from a model registry (such as [MLflow](https://mlflow.org/)) using **only the name of the model**. The less boilerplate and scaffolding that I need to replicate each time I want to deploy a new model, the better. I would like the ability to dynamically select between different versions of the model without needing to set up a whole new deployment to accommodate those new versions.\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "fXlB7AJr2foY"
- },
- "source": [
- "## Components\n",
- "\n",
- "For our exploration here, we'll use the following minimal stack:\n",
- "\n",
- "- MLflow for model registry;\n",
- "- Ray Serve for model serving.\n",
- "\n",
- "For demonstrative purposes, we'll exclusively use off-the-shelf open-source models from Hugging Face Hub.\n",
- "\n",
- "We will **not** use GPUs for inference because inference performance is orthogonal to our focus here today. Needless to say, in \"real life,\" you will likely not be able to get away with serving your model with CPU compute.\n",
- "\n",
- "Let's install our dependencies now."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "collapsed": true,
- "id": "HfLQGO6E2hnW",
- "outputId": "c9634e63-5aaf-4e59-e970-aecb36d25b77"
- },
- "outputs": [],
- "source": [
- "!pip install \"transformers\" \"mlflow-skinny\" \"ray[serve]\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "C0UziXBN4Szc"
- },
- "source": [
- "## Register the Model\n",
- "\n",
- "First, let's define the model that we'll use for our exploration today. For simplicity's sake, we'll use a simple text translation model, where the source and destination languages are configurable at registration time. In effect, this means that different \"versions\" of the model can be registered to translate different languages, but the underlying model architecture and weights can stay the same."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 66,
- "metadata": {
- "id": "D2HsBFUa4nBM"
- },
- "outputs": [],
- "source": [
- "import mlflow\n",
- "from transformers import pipeline\n",
- "\n",
- "class MyTranslationModel(mlflow.pyfunc.PythonModel):\n",
- " def load_context(self, context):\n",
- " self.lang_from = context.model_config.get(\"lang_from\", \"en\")\n",
- " self.lang_to = context.model_config.get(\"lang_to\", \"de\")\n",
- "\n",
- " self.input_label: str = context.model_config.get(\"input_label\", \"prompt\")\n",
- "\n",
- " self.model_ref: str = context.model_config.get(\"hfhub_name\", \"google-t5/t5-base\")\n",
- "\n",
- " self.pipeline = pipeline(\n",
- " f\"translation_{self.lang_from}_to_{self.lang_to}\",\n",
- " self.model_ref,\n",
- " )\n",
- "\n",
- " def predict(self, context, model_input, params=None):\n",
- " prompt = model_input[self.input_label].tolist()\n",
- "\n",
- " return self.pipeline(prompt)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "-PFbVlpdIBHA"
- },
- "source": [
- "(You might be wondering why we even bothered making the input label configurable. This will be useful to us later.)\n",
- "\n",
- "Now that our model is defined, let's register an actual version of it. This particular version will use Google's [T5 Base](https://huggingface.co/google-t5/t5-base) model and be configured to translate from **English** to **German**."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "SpGCrnAx6eVf",
- "outputId": "11218a74-11fa-471b-cc86-03a150b64f20"
- },
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "\n",
- "with mlflow.start_run():\n",
- " model_info = mlflow.pyfunc.log_model(\n",
- " \"translation_model\",\n",
- " registered_model_name=\"translation_model\",\n",
- " python_model=MyTranslationModel(),\n",
- " pip_requirements=[\"transformers\"],\n",
- " input_example=pd.DataFrame({\n",
- " \"prompt\": [\"Hello my name is Jonathan.\"],\n",
- " }),\n",
- " model_config={\n",
- " \"hfhub_name\": \"google-t5/t5-base\",\n",
- " \"lang_from\": \"en\",\n",
- " \"lang_to\": \"de\",\n",
- " },\n",
- " )"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "NaUwo6E0DPbI"
- },
- "source": [
- "Let's keep track of this exact version. This will be useful later."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 69,
- "metadata": {
- "id": "e0o4ICh38Pjy"
- },
- "outputs": [],
- "source": [
- "en_to_de_version: str = str(model_info.registered_model_version)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Jn0RU7fXDTdD"
- },
- "source": [
- "The registered model metadata contains some useful information for us. Most notably, the registered model version is associated with a strict **signature** that denotes the expected shape of its input and output. This will be useful to us later."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 70,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "ZKMgYR_jDhOA",
- "outputId": "7f1410df-cde3-4160-eee8-30788a402b3b"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "inputs: \n",
- " ['prompt': string (required)]\n",
- "outputs: \n",
- " ['translation_text': string (required)]\n",
- "params: \n",
- " None"
- ]
- },
- "execution_count": 70,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_info.signature"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "iwa3o-0B9FPO"
- },
- "source": [
- "## Serve the Model\n",
- "\n",
- "Now that our model is registered in MLflow, let's set up our serving scaffolding using [Ray Serve](https://docs.ray.io/en/latest/serve/index.html). For now, we'll limit our \"deployment\" to the following behavior:\n",
- "\n",
- "- Source the seleted model and version from MLflow;\n",
- "- Receive inference requests and return inference responses via a simple REST API."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 74,
- "metadata": {
- "id": "7OZ2lqOS9oqw"
- },
- "outputs": [],
- "source": [
- "import mlflow\n",
- "import pandas as pd\n",
- "\n",
- "from ray import serve\n",
- "from fastapi import FastAPI\n",
- "\n",
- "app = FastAPI()\n",
- "\n",
- "@serve.deployment\n",
- "@serve.ingress(app)\n",
- "class ModelDeployment:\n",
- " def __init__(self, model_name: str = \"translation_model\", default_version: str = \"1\"):\n",
- " self.model_name = model_name\n",
- " self.default_version = default_version\n",
- "\n",
- " self.model = mlflow.pyfunc.load_model(f\"models:/{self.model_name}/{self.default_version}\")\n",
- "\n",
- "\n",
- " @app.post(\"/serve\")\n",
- " async def serve(self, input_string: str):\n",
- " return self.model.predict(pd.DataFrame({\"prompt\": [input_string]}))\n",
- "\n",
- "deployment = ModelDeployment.bind(default_version=en_to_de_version)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "f018wd2fEia7"
- },
- "source": [
- "You might have notice that hard-coding `\"prompt\"` as the input label here introduces hidden coupling between the registered model's signature and the deployment implementation. We'll come back to this later.\n",
- "\n",
- "Now, let's run the deployment and play around with it."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "MudMnivd_DrC",
- "outputId": "7f23394f-9f3e-4ce1-c67a-82c59a5bc25f"
- },
- "outputs": [],
- "source": [
- "serve.run(deployment, blocking=False)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 77,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "VTk1E5pp_gRz",
- "outputId": "67a20366-f637-4a0a-8c51-0f71bf5e1ea6"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[36m(ServeReplica:default:ModelDeployment pid=32047)\u001b[0m INFO 2024-12-23 16:00:41,540 default_ModelDeployment rekqfhvc 23cc9c43-746c-4575-968e-ee8d14972e6a -- POST /serve/ 307 5.8ms\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "[{'translation_text': 'Das Wetter ist heute nett.'}]"
- ]
- },
- "execution_count": 77,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import requests\n",
- "\n",
- "requests.post(\n",
- " \"http://127.0.0.1:8000/serve/\",\n",
- " params={\"input_string\": \"The weather is lovely today\"},\n",
- ").json()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "i3CNI-mmE_22"
- },
- "source": [
- "This works fine, but you might have noticed that the REST API does not line up with the model signature. Namely, it uses the label `\"input_string\"` while the served model version itself uses the input label `\"prompt\"`. Similarly, the model can accept multiple inputs values, but the API only accepts one.\n",
- "\n",
- "If this feels [smelly](https://en.wikipedia.org/wiki/Code_smell) to you, keep reading; we'll come back to this."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "hsJ65rNNDMVj"
- },
- "source": [
- "## Multiple Versions, One Endpoint\n",
- "\n",
- "Now we've got a basic endpoint set up for our model. Great! However, notice that this deployment is strictly tethered to a single version of this model -- specifically, version `1` of the registered `translation_model`.\n",
- "\n",
- "Imagine, now, that your team would like to come back and refine this model -- maybe retrain it on new data, or configure it to translate to a new language, e.g. French instead of German. Both would result in a new version of the `translation_model` getting registered. However, with our current deployment implementation, we'd need to set up a whole new endpoint for `translation_model/2`, require our users to remember which address and port corresponds to which version of the model, and so on. In other words: very cumbersome, very error-prone, very [toilsome](https://leaddev.com/velocity/what-toil-and-why-it-damaging-your-engineering-org).\n",
- "\n",
- "Conversely, imagine a scenario where we could reuse the exact same endpoint -- same signature, same address and port, same query conventions, etc. -- to serve both versions of this model. Our user can simply specify which version of the model they'd like to use, and we can treat one of them as the \"default\" in cases where the user didn't explicitly request one.\n",
- "\n",
- "This is one area where Ray Serve shines with a feature it calls [model multiplexing](https://docs.ray.io/en/latest/serve/model-multiplexing.html). In effect, this allows you to load up multiple \"versions\" of your model, dynamically hot-swapping them as needed, as well as unloading the versions that don't get used after some time. Very space-efficient, in other words.\n",
- "\n",
- "Let's try registering another version of the model -- this time, one that translates from English to French. We'll register this under the version `\"2\"`; the model server will retrieve the model version that way.\n",
- "\n",
- "But first, let's extend the model server with multiplexing support."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 78,
- "metadata": {
- "id": "d8GcI3WLE3Sc"
- },
- "outputs": [],
- "source": [
- "from ray import serve\n",
- "from fastapi import FastAPI\n",
- "\n",
- "app = FastAPI()\n",
- "\n",
- "@serve.deployment\n",
- "@serve.ingress(app)\n",
- "class MultiplexedModelDeployment:\n",
- "\n",
- " @serve.multiplexed(max_num_models_per_replica=2)\n",
- " async def get_model(self, version: str):\n",
- " return mlflow.pyfunc.load_model(f\"models:/{self.model_name}/{version}\")\n",
- "\n",
- " def __init__(\n",
- " self,\n",
- " model_name: str = \"translation_model\",\n",
- " default_version: str = en_to_de_version,\n",
- " ):\n",
- " self.model_name = model_name\n",
- " self.default_version = default_version\n",
- "\n",
- " @app.post(\"/serve\")\n",
- " async def serve(self, input_string: str):\n",
- " model = await self.get_model(serve.get_multiplexed_model_id())\n",
- " return model.predict(pd.DataFrame({\"prompt\": [input_string]}))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "f-gisRU_FKlJ",
- "outputId": "a0c7318d-8271-4163-d58d-9ed97df72266"
- },
- "outputs": [],
- "source": [
- "multiplexed_deployment = MultiplexedModelDeployment.bind(model_name=\"translation_model\")\n",
- "serve.run(multiplexed_deployment, blocking=False)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Qs7snXhxdlUR"
- },
- "source": [
- "Now let's actually register the new model version."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "K3_essFBEuCo",
- "outputId": "b7f4f9e7-62bf-40ae-ed8a-db0110ad2e4f"
- },
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "\n",
- "with mlflow.start_run():\n",
- " model_info = mlflow.pyfunc.log_model(\n",
- " \"translation_model\",\n",
- " registered_model_name=\"translation_model\",\n",
- " python_model=MyTranslationModel(),\n",
- " pip_requirements=[\"transformers\"],\n",
- " input_example=pd.DataFrame({\n",
- " \"prompt\": [\n",
- " \"Hello my name is Jon.\",\n",
- " ],\n",
- " }),\n",
- " model_config={\n",
- " \"hfhub_name\": \"google-t5/t5-base\",\n",
- " \"lang_from\": \"en\",\n",
- " \"lang_to\": \"fr\",\n",
- " },\n",
- " )\n",
- "\n",
- "en_to_fr_version: str = str(model_info.registered_model_version)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "rxOzkg65dnZW"
- },
- "source": [
- "Now that that's registered, we can query for it via the model server like so..."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 81,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "EyeLmnPJFuRH",
- "outputId": "9dfb8df0-f207-42ae-b78b-db51d8843c15"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[36m(ServeReplica:default:MultiplexedModelDeployment pid=32383)\u001b[0m INFO 2024-12-23 16:01:41,179 default_MultiplexedModelDeployment hnpendkt 1943df13-e56a-47d0-a49f-55fb78aa665b -- POST /serve/ 307 4.3ms\n",
- "\u001b[36m(ServeReplica:default:MultiplexedModelDeployment pid=32383)\u001b[0m INFO 2024-12-23 16:01:43,214 default_MultiplexedModelDeployment hnpendkt ee559e3e-a71d-48aa-8c24-10de5d7ad7df -- Loading model '15'.\n",
- "\u001b[36m(ServeReplica:default:MultiplexedModelDeployment pid=32383)\u001b[0m 2024-12-23 16:01:52.414753: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
- "\u001b[36m(ServeReplica:default:MultiplexedModelDeployment pid=32383)\u001b[0m 2024-12-23 16:01:52.472202: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
- "\u001b[36m(ServeReplica:default:MultiplexedModelDeployment pid=32383)\u001b[0m 2024-12-23 16:01:52.491131: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
- "\u001b[36m(ServeReplica:default:MultiplexedModelDeployment pid=32383)\u001b[0m 2024-12-23 16:01:55.152832: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
- "\u001b[36m(ServeReplica:default:MultiplexedModelDeployment pid=32383)\u001b[0m Device set to use cpu\n",
- "\u001b[36m(ServeReplica:default:MultiplexedModelDeployment pid=32383)\u001b[0m INFO 2024-12-23 16:02:00,506 default_MultiplexedModelDeployment hnpendkt ee559e3e-a71d-48aa-8c24-10de5d7ad7df -- Successfully loaded model '15' in 17292.0ms.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "[{'translation_text': \"Le temps est beau aujourd'hui\"}]"
- ]
- },
- "execution_count": 81,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import requests\n",
- "\n",
- "requests.post(\n",
- " \"http://127.0.0.1:8000/serve/\",\n",
- " params={\"input_string\": \"The weather is lovely today\"},\n",
- " headers={\"serve_multiplexed_model_id\": en_to_fr_version},\n",
- ").json()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "jVMCS4CedudN"
- },
- "source": [
- "Note how we were able to immediately access the model version **without redeploying the model server**. Ray Serve's multiplexing capabilities allow it to dynamically fetch the model weights in a just-in-time fashion; if I never requested version 2, it never gets loaded. This helps conserve compute resources for the models that **do** get queried. What's even more useful is that, if the number of models loaded up exceeds the configured maximum (`max_num_models_per_replica`), the [least-recently used model version will get evicted](https://docs.ray.io/en/latest/serve/model-multiplexing.html#why-model-multiplexing).\n",
- "\n",
- "Given that we set `max_num_models_per_replica=2` above, the \"default\" English-to-German version of the model should still be loaded up and readily available to serve requests without any cold-start time. Let's confirm that now:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 83,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "jEJFQNlwGGKh",
- "outputId": "b847d92e-fe0f-4439-bd87-e5773680c4d1"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[36m(ServeReplica:default:MultiplexedModelDeployment pid=32383)\u001b[0m INFO 2024-12-23 16:02:13,267 default_MultiplexedModelDeployment hnpendkt 8e680170-df74-49ba-856c-a7e9009abaab -- POST /serve/ 307 26.0ms\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "[{'translation_text': 'Das Wetter ist heute nett.'}]"
- ]
- },
- "execution_count": 83,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "requests.post(\n",
- " \"http://127.0.0.1:8000/serve/\",\n",
- " params={\"input_string\": \"The weather is lovely today\"},\n",
- " headers={\"serve_multiplexed_model_id\": en_to_de_version},\n",
- ").json()"
- ]
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "view-in-github"
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "I17bSxxg1evl"
+ },
+ "source": [
+ "# Signature-Aware Model Serving from MLflow with Ray Serve\n",
+ "\n",
+ "_Authored by: [Jonathan Jin](https://huggingface.co/jinnovation)_"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IuS0daXP1lIa"
+ },
+ "source": [
+ "## Introduction\n",
+ "\n",
+ "This notebook explores solutions for streamlining the deployment of models from a model registry. For teams that want to productionize many models over time, investments at this \"transition point\" in the AI/ML project lifecycle can meaningfully drive down time-to-production. This can be important for a younger, smaller team that may not have the benefit of existing infrastructure to form a \"golden path\" for serving online models in production.\n",
+ "\n",
+ "## Motivation\n",
+ "\n",
+ "Optimizing this stage of the model lifecycle is particularly important due to the production-facing aspect of the end result. At this stage, your model becomes, in effect, a microservice. This means that you now need to contend with all elements of service ownership, which can include:\n",
+ "\n",
+ "- Standardizing and enforcing API backwards-compatibility;\n",
+ "- Logging, metrics, and general observability concerns;\n",
+ "- Etc.\n",
+ "\n",
+ "Needing to repeat the same general-purpose setup each time you want to deploy a new model will result in development costs adding up significantly over time for you and your team. On the flip side, given the \"long tail\" of production-model ownership (assuming a productionized model is not likely to be decommissioned anytime soon), streamlining investments here can pay healthy dividends over time.\n",
+ "\n",
+ "Given all of the above, we motivate our exploration here with the following user story:\n",
+ "\n",
+ "> I would like to deploy a model from a model registry (such as [MLflow](https://mlflow.org/)) using **only the name of the model**. The less boilerplate and scaffolding that I need to replicate each time I want to deploy a new model, the better. I would like the ability to dynamically select between different versions of the model without needing to set up a whole new deployment to accommodate those new versions.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fXlB7AJr2foY"
+ },
+ "source": [
+ "## Components\n",
+ "\n",
+ "For our exploration here, we'll use the following minimal stack:\n",
+ "\n",
+ "- MLflow for model registry;\n",
+ "- Ray Serve for model serving.\n",
+ "\n",
+ "For demonstrative purposes, we'll exclusively use off-the-shelf open-source models from Hugging Face Hub.\n",
+ "\n",
+ "We will **not** use GPUs for inference because inference performance is orthogonal to our focus here today. Needless to say, in \"real life,\" you will likely not be able to get away with serving your model with CPU compute.\n",
+ "\n",
+ "Let's install our dependencies now."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "D8CgPXcsIg5C"
- },
- "source": [
- "## Auto-Signature\n",
- "\n",
- "This is all well and good. However, notice that the following friction point still exists: when defining the server, we need to define a whole new signature for the API itself. At best, this is just some code duplication of the model signature itself (which is registered in MLflow). At worst, this can result in inconsistent APIs across all models that your team or organization owns, which can cause confusion and frustration in your downstream dependencies.\n",
- "\n",
- "In this particular case, it means that `MultiplexedModelDeployment` is secretly actually **tightly coupled** to the use-case for `translation_model`. What if we wanted to deploy another set of models that don't have to do with language translation? The defined `/serve` API, which returns a JSON object that looks like `{\"translated_text\": \"foo\"}`, would no longer make sense.\n",
- "\n",
- "To address this issue, **what if the API signature for `MultiplexedModelDeployment` could automatically mirror the signature of the underlying models it's serving**?\n",
- "\n",
- "Thankfully, with MLflow Model Registry metadata and some Python dynamic-class-creation shenanigans, this is entirely possible.\n",
- "\n",
- "Let's set things up so that the model server signature is inferred from the registered model itself. Since different versions of an MLflow can have different signatures, we'll use the \"default version\" to \"pin\" the signature; any attempt to multiplex an incompatible-signature model version we will have throw an error.\n",
- "\n",
- "Since Ray Serve binds the request and response signatures at class-definition time, we will use a Python metaclass to set this as a function of the specified model name and default model version."
- ]
+ "id": "HfLQGO6E2hnW",
+ "outputId": "c9634e63-5aaf-4e59-e970-aecb36d25b77"
+ },
+ "outputs": [],
+ "source": [
+ "!pip install \"transformers\" \"mlflow-skinny\" \"ray[serve]\" \"torch\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "C0UziXBN4Szc"
+ },
+ "source": [
+ "## Register the Model\n",
+ "\n",
+ "First, let's define the model that we'll use for our exploration today. For simplicity's sake, we'll use a simple text translation model, where the source and destination languages are configurable at registration time. In effect, this means that different \"versions\" of the model can be registered to translate different languages, but the underlying model architecture and weights can stay the same."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "D2HsBFUa4nBM"
+ },
+ "outputs": [],
+ "source": [
+ "import mlflow\n",
+ "from transformers import pipeline\n",
+ "\n",
+ "class MyTranslationModel(mlflow.pyfunc.PythonModel):\n",
+ " def load_context(self, context):\n",
+ " self.lang_from = context.model_config.get(\"lang_from\", \"en\")\n",
+ " self.lang_to = context.model_config.get(\"lang_to\", \"de\")\n",
+ "\n",
+ " self.input_label: str = context.model_config.get(\"input_label\", \"prompt\")\n",
+ "\n",
+ " self.model_ref: str = context.model_config.get(\"hfhub_name\", \"google-t5/t5-base\")\n",
+ "\n",
+ " self.pipeline = pipeline(\n",
+ " f\"translation_{self.lang_from}_to_{self.lang_to}\",\n",
+ " self.model_ref,\n",
+ " )\n",
+ "\n",
+ " def predict(self, context, model_input, params=None):\n",
+ " prompt = model_input[self.input_label].tolist()\n",
+ "\n",
+ " return self.pipeline(prompt)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "-PFbVlpdIBHA"
+ },
+ "source": [
+ "(You might be wondering why we even bothered making the input label configurable. This will be useful to us later.)\n",
+ "\n",
+ "Now that our model is defined, let's register an actual version of it. This particular version will use Google's [T5 Base](https://huggingface.co/google-t5/t5-base) model and be configured to translate from **English** to **German**."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- {
- "cell_type": "code",
- "execution_count": 84,
- "metadata": {
- "id": "u9GPbQrnP7OD"
- },
- "outputs": [],
- "source": [
- "import mlflow\n",
- "import pydantic\n",
- "\n",
- "def schema_to_pydantic(schema: mlflow.types.schema.Schema, *, name: str) -> pydantic.BaseModel:\n",
- " return pydantic.create_model(\n",
- " name,\n",
- " **{\n",
- " k: (v.type.to_python(), pydantic.Field(required=True))\n",
- " for k, v in schema.input_dict().items()\n",
- " }\n",
- " )\n",
- "\n",
- "def get_req_resp_signatures(model_signature: mlflow.models.ModelSignature) -> tuple[pydantic.BaseModel, pydantic.BaseModel]:\n",
- " inputs: mlflow.types.schema.Schema = model_signature.inputs\n",
- " outputs: mlflow.types.schema.Schema = model_signature.outputs\n",
- "\n",
- " return (schema_to_pydantic(inputs, name=\"InputModel\"), schema_to_pydantic(outputs, name=\"OutputModel\"))"
- ]
+ "id": "SpGCrnAx6eVf",
+ "outputId": "11218a74-11fa-471b-cc86-03a150b64f20"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "with mlflow.start_run():\n",
+ " model_info = mlflow.pyfunc.log_model(\n",
+ " \"translation_model\",\n",
+ " registered_model_name=\"translation_model\",\n",
+ " python_model=MyTranslationModel(),\n",
+ " pip_requirements=[\"transformers\"],\n",
+ " input_example=pd.DataFrame({\n",
+ " \"prompt\": [\"Hello my name is Jonathan.\"],\n",
+ " }),\n",
+ " model_config={\n",
+ " \"hfhub_name\": \"google-t5/t5-base\",\n",
+ " \"lang_from\": \"en\",\n",
+ " \"lang_to\": \"de\",\n",
+ " },\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "NaUwo6E0DPbI"
+ },
+ "source": [
+ "Let's keep track of this exact version. This will be useful later."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "e0o4ICh38Pjy"
+ },
+ "outputs": [],
+ "source": [
+ "en_to_de_version: str = str(model_info.registered_model_version)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Jn0RU7fXDTdD"
+ },
+ "source": [
+ "The registered model metadata contains some useful information for us. Most notably, the registered model version is associated with a strict **signature** that denotes the expected shape of its input and output. This will be useful to us later."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "ZKMgYR_jDhOA",
+ "outputId": "7f1410df-cde3-4160-eee8-30788a402b3b",
+ "tags": [
+ "keep_output"
+ ]
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "PgetOY1LKp6m",
- "outputId": "ada066e3-72b3-42af-c284-41118fcb2e20"
- },
- "outputs": [],
- "source": [
- "import mlflow\n",
- "\n",
- "from fastapi import FastAPI, Response, status\n",
- "from ray import serve\n",
- "from typing import List\n",
- "\n",
- "def deployment_from_model_name(model_name: str, default_version: str = \"1\"):\n",
- " app = FastAPI()\n",
- " model_info = mlflow.models.get_model_info(f\"models:/{model_name}/{default_version}\")\n",
- " input_datamodel, output_datamodel = get_req_resp_signatures(model_info.signature)\n",
- "\n",
- " @serve.deployment\n",
- " @serve.ingress(app)\n",
- " class DynamicallyDefinedDeployment:\n",
- "\n",
- " MODEL_NAME: str = model_name\n",
- " DEFAULT_VERSION: str = default_version\n",
- "\n",
- " @serve.multiplexed(max_num_models_per_replica=2)\n",
- " async def get_model(self, model_version: str):\n",
- " model = mlflow.pyfunc.load_model(f\"models:/{self.MODEL_NAME}/{model_version}\")\n",
- "\n",
- " if model.metadata.get_model_info().signature != model_info.signature:\n",
- " raise ValueError(f\"Requested version {model_version} has signature incompatible with that of default version {self.DEFAULT_VERSION}\")\n",
- " return model\n",
- "\n",
- " # TODO: Extend this to support batching (lists of inputs and outputs)\n",
- " @app.post(\"/serve\", response_model=List[output_datamodel])\n",
- " async def serve(self, model_input: input_datamodel, response: Response):\n",
- " model_id = serve.get_multiplexed_model_id()\n",
- " if model_id == \"\":\n",
- " model_id = self.DEFAULT_VERSION\n",
- "\n",
- " try:\n",
- " model = await self.get_model(model_id)\n",
- " except ValueError:\n",
- " response.status_code = status.HTTP_409_CONFLICT\n",
- " return [{\"translation_text\": \"FAILED\"}]\n",
- "\n",
- " return model.predict(model_input.dict())\n",
- "\n",
- " return DynamicallyDefinedDeployment\n",
- "\n",
- "deployment = deployment_from_model_name(\"translation_model\", default_version=en_to_fr_version)\n",
- "\n",
- "serve.run(deployment.bind(), blocking=False)"
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inputs: \n",
+ " ['prompt': string (required)]\n",
+ "outputs: \n",
+ " ['translation_text': string (required)]\n",
+ "params: \n",
+ " None\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(model_info.signature)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "iwa3o-0B9FPO"
+ },
+ "source": [
+ "## Serve the Model\n",
+ "\n",
+ "Now that our model is registered in MLflow, let's set up our serving scaffolding using [Ray Serve](https://docs.ray.io/en/latest/serve/index.html). For now, we'll limit our \"deployment\" to the following behavior:\n",
+ "\n",
+ "- Source the seleted model and version from MLflow;\n",
+ "- Receive inference requests and return inference responses via a simple REST API."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "7OZ2lqOS9oqw"
+ },
+ "outputs": [],
+ "source": [
+ "import mlflow\n",
+ "import pandas as pd\n",
+ "\n",
+ "from ray import serve\n",
+ "from fastapi import FastAPI\n",
+ "\n",
+ "app = FastAPI()\n",
+ "\n",
+ "@serve.deployment\n",
+ "@serve.ingress(app)\n",
+ "class ModelDeployment:\n",
+ " def __init__(self, model_name: str = \"translation_model\", default_version: str = \"1\"):\n",
+ " self.model_name = model_name\n",
+ " self.default_version = default_version\n",
+ "\n",
+ " self.model = mlflow.pyfunc.load_model(f\"models:/{self.model_name}/{self.default_version}\")\n",
+ "\n",
+ "\n",
+ " @app.post(\"/serve\")\n",
+ " async def serve(self, input_string: str):\n",
+ " return self.model.predict(pd.DataFrame({\"prompt\": [input_string]}))\n",
+ "\n",
+ "deployment = ModelDeployment.bind(default_version=en_to_de_version)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "f018wd2fEia7"
+ },
+ "source": [
+ "You might have notice that hard-coding `\"prompt\"` as the input label here introduces hidden coupling between the registered model's signature and the deployment implementation. We'll come back to this later.\n",
+ "\n",
+ "Now, let's run the deployment and play around with it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- {
- "cell_type": "code",
- "execution_count": 88,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "x911zDhomWMj",
- "outputId": "7dc78df7-4f06-4871-d45f-37cfb852ffc5"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m INFO 2024-12-23 16:03:30,503 default_DynamicallyDefinedDeployment iwidgax2 8989a73b-3173-48d0-a0dc-d301363e731c -- POST /serve/ 307 10.8ms\n",
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m INFO 2024-12-23 16:03:30,544 default_DynamicallyDefinedDeployment iwidgax2 e00d9137-a259-4954-8a12-81a3314bc5d2 -- Loading model '15'.\n",
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m 2024-12-23 16:03:38.056305: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m 2024-12-23 16:03:38.085864: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m 2024-12-23 16:03:38.098177: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m 2024-12-23 16:03:39.580308: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m Device set to use cpu\n",
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m INFO 2024-12-23 16:03:50,242 default_DynamicallyDefinedDeployment iwidgax2 e00d9137-a259-4954-8a12-81a3314bc5d2 -- Successfully loaded model '15' in 19697.5ms.\n",
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m :40: PydanticDeprecatedSince20: The `dict` method is deprecated; use `model_dump` instead. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.10/migration/\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "[{'translation_text': \"Le temps est beau aujourd'hui\"}]"
- ]
- },
- "execution_count": 88,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import requests\n",
- "\n",
- "resp = requests.post(\n",
- " \"http://127.0.0.1:8000/serve/\",\n",
- " json={\"prompt\": \"The weather is lovely today\"},\n",
- ")\n",
- "\n",
- "assert resp.ok\n",
- "assert resp.status_code == 200\n",
- "\n",
- "resp.json()"
- ]
+ "id": "MudMnivd_DrC",
+ "outputId": "7f23394f-9f3e-4ce1-c67a-82c59a5bc25f"
+ },
+ "outputs": [],
+ "source": [
+ "serve.run(deployment, blocking=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "VTk1E5pp_gRz",
+ "outputId": "67a20366-f637-4a0a-8c51-0f71bf5e1ea6",
+ "tags": [
+ "keep_output"
+ ]
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 89,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "EX7ff2wg5PjL",
- "outputId": "edf0587a-abf5-4160-a621-f9ac4faee6bf"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=33001)\u001b[0m INFO 2024-12-23 16:03:57,563 default_DynamicallyDefinedDeployment iwidgax2 df6b7526-edee-486a-a06e-f15407d4e1aa -- POST /serve/ 307 7.2ms\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "[{'translation_text': \"Le temps est beau aujourd'hui\"}]"
- ]
- },
- "execution_count": 89,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import requests\n",
- "\n",
- "resp = requests.post(\n",
- " \"http://127.0.0.1:8000/serve/\",\n",
- " json={\"prompt\": \"The weather is lovely today\"},\n",
- " headers={\"serve_multiplexed_model_id\": str(en_to_fr_version)},\n",
- ")\n",
- "\n",
- "assert resp.ok\n",
- "assert resp.status_code == 200\n",
- "\n",
- "resp.json()"
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[{'translation_text': 'Das Wetter ist heute nett.'}]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import requests\n",
+ "\n",
+ "response = requests.post(\n",
+ " \"http://127.0.0.1:8000/serve/\",\n",
+ " params={\"input_string\": \"The weather is lovely today\"},\n",
+ ")\n",
+ "\n",
+ "print(response.json())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "i3CNI-mmE_22"
+ },
+ "source": [
+ "This works fine, but you might have noticed that the REST API does not line up with the model signature. Namely, it uses the label `\"input_string\"` while the served model version itself uses the input label `\"prompt\"`. Similarly, the model can accept multiple inputs values, but the API only accepts one.\n",
+ "\n",
+ "If this feels [smelly](https://en.wikipedia.org/wiki/Code_smell) to you, keep reading; we'll come back to this."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "hsJ65rNNDMVj"
+ },
+ "source": [
+ "## Multiple Versions, One Endpoint\n",
+ "\n",
+ "Now we've got a basic endpoint set up for our model. Great! However, notice that this deployment is strictly tethered to a single version of this model -- specifically, version `1` of the registered `translation_model`.\n",
+ "\n",
+ "Imagine, now, that your team would like to come back and refine this model -- maybe retrain it on new data, or configure it to translate to a new language, e.g. French instead of German. Both would result in a new version of the `translation_model` getting registered. However, with our current deployment implementation, we'd need to set up a whole new endpoint for `translation_model/2`, require our users to remember which address and port corresponds to which version of the model, and so on. In other words: very cumbersome, very error-prone, very [toilsome](https://leaddev.com/velocity/what-toil-and-why-it-damaging-your-engineering-org).\n",
+ "\n",
+ "Conversely, imagine a scenario where we could reuse the exact same endpoint -- same signature, same address and port, same query conventions, etc. -- to serve both versions of this model. Our user can simply specify which version of the model they'd like to use, and we can treat one of them as the \"default\" in cases where the user didn't explicitly request one.\n",
+ "\n",
+ "This is one area where Ray Serve shines with a feature it calls [model multiplexing](https://docs.ray.io/en/latest/serve/model-multiplexing.html). In effect, this allows you to load up multiple \"versions\" of your model, dynamically hot-swapping them as needed, as well as unloading the versions that don't get used after some time. Very space-efficient, in other words.\n",
+ "\n",
+ "Let's try registering another version of the model -- this time, one that translates from English to French. We'll register this under the version `\"2\"`; the model server will retrieve the model version that way.\n",
+ "\n",
+ "But first, let's extend the model server with multiplexing support."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "d8GcI3WLE3Sc"
+ },
+ "outputs": [],
+ "source": [
+ "from ray import serve\n",
+ "from fastapi import FastAPI\n",
+ "\n",
+ "app = FastAPI()\n",
+ "\n",
+ "@serve.deployment\n",
+ "@serve.ingress(app)\n",
+ "class MultiplexedModelDeployment:\n",
+ "\n",
+ " @serve.multiplexed(max_num_models_per_replica=2)\n",
+ " async def get_model(self, version: str):\n",
+ " return mlflow.pyfunc.load_model(f\"models:/{self.model_name}/{version}\")\n",
+ "\n",
+ " def __init__(\n",
+ " self,\n",
+ " model_name: str = \"translation_model\",\n",
+ " default_version: str = en_to_de_version,\n",
+ " ):\n",
+ " self.model_name = model_name\n",
+ " self.default_version = default_version\n",
+ "\n",
+ " @app.post(\"/serve\")\n",
+ " async def serve(self, input_string: str):\n",
+ " model = await self.get_model(serve.get_multiplexed_model_id())\n",
+ " return model.predict(pd.DataFrame({\"prompt\": [input_string]}))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "kwkDDzebG_dd"
- },
- "source": [
- "Let's now confirm that the signature-check provision we put in place actually works. For this, let's register this same model with a **slightly** different signature. This should be enough to trigger the failsafe.\n",
- "\n",
- "(Remember when we made the input label configurable at the start of this exercise? This is where that finally comes into play. 😎)"
- ]
+ "id": "f-gisRU_FKlJ",
+ "outputId": "a0c7318d-8271-4163-d58d-9ed97df72266"
+ },
+ "outputs": [],
+ "source": [
+ "multiplexed_deployment = MultiplexedModelDeployment.bind(model_name=\"translation_model\")\n",
+ "serve.run(multiplexed_deployment, blocking=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Qs7snXhxdlUR"
+ },
+ "source": [
+ "Now let's actually register the new model version."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "JYydMogXHsOJ",
- "outputId": "d8cd96f0-58d2-462b-8902-d9a65b604dc0"
- },
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "\n",
- "with mlflow.start_run():\n",
- " incompatible_version = str(mlflow.pyfunc.log_model(\n",
- " \"translation_model\",\n",
- " registered_model_name=\"translation_model\",\n",
- " python_model=MyTranslationModel(),\n",
- " pip_requirements=[\"transformers\"],\n",
- " input_example=pd.DataFrame({\n",
- " \"text_to_translate\": [\n",
- " \"Hello my name is Jon.\",\n",
- " ],\n",
- " }),\n",
- " model_config={\n",
- " \"input_label\": \"text_to_translate\",\n",
- " \"hfhub_name\": \"google-t5/t5-base\",\n",
- " \"lang_from\": \"en\",\n",
- " \"lang_to\": \"de\",\n",
- " },\n",
- " ).registered_model_version)"
- ]
+ "id": "K3_essFBEuCo",
+ "outputId": "b7f4f9e7-62bf-40ae-ed8a-db0110ad2e4f"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "with mlflow.start_run():\n",
+ " model_info = mlflow.pyfunc.log_model(\n",
+ " \"translation_model\",\n",
+ " registered_model_name=\"translation_model\",\n",
+ " python_model=MyTranslationModel(),\n",
+ " pip_requirements=[\"transformers\"],\n",
+ " input_example=pd.DataFrame({\n",
+ " \"prompt\": [\n",
+ " \"Hello my name is Jon.\",\n",
+ " ],\n",
+ " }),\n",
+ " model_config={\n",
+ " \"hfhub_name\": \"google-t5/t5-base\",\n",
+ " \"lang_from\": \"en\",\n",
+ " \"lang_to\": \"fr\",\n",
+ " },\n",
+ " )\n",
+ "\n",
+ "en_to_fr_version: str = str(model_info.registered_model_version)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "rxOzkg65dnZW"
+ },
+ "source": [
+ "Now that that's registered, we can query for it via the model server like so..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "EyeLmnPJFuRH",
+ "outputId": "9dfb8df0-f207-42ae-b78b-db51d8843c15",
+ "tags": [
+ "keep_output"
+ ]
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "5Yn-5VlIH6gs",
- "outputId": "e22f1791-b013-445c-a2ab-08916c5c1032"
- },
- "outputs": [],
- "source": [
- "import requests\n",
- "\n",
- "resp = requests.post(\n",
- " \"http://127.0.0.1:8000/serve/\",\n",
- " json={\"prompt\": \"The weather is lovely today\"},\n",
- " headers={\"serve_multiplexed_model_id\": incompatible_version},\n",
- ")\n",
- "assert not resp.ok\n",
- "resp.status_code == 409\n",
- "\n",
- "assert resp.json()[0][\"translation_text\"] == \"FAILED\""
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[{'translation_text': \"Le temps est beau aujourd'hui\"}]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import requests\n",
+ "\n",
+ "response = requests.post(\n",
+ " \"http://127.0.0.1:8000/serve/\",\n",
+ " params={\"input_string\": \"The weather is lovely today\"},\n",
+ " headers={\"serve_multiplexed_model_id\": en_to_fr_version},\n",
+ ")\n",
+ "\n",
+ "print(response.json())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "jVMCS4CedudN"
+ },
+ "source": [
+ "Note how we were able to immediately access the model version **without redeploying the model server**. Ray Serve's multiplexing capabilities allow it to dynamically fetch the model weights in a just-in-time fashion; if I never requested version 2, it never gets loaded. This helps conserve compute resources for the models that **do** get queried. What's even more useful is that, if the number of models loaded up exceeds the configured maximum (`max_num_models_per_replica`), the [least-recently used model version will get evicted](https://docs.ray.io/en/latest/serve/model-multiplexing.html#why-model-multiplexing).\n",
+ "\n",
+ "Given that we set `max_num_models_per_replica=2` above, the \"default\" English-to-German version of the model should still be loaded up and readily available to serve requests without any cold-start time. Let's confirm that now:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "jEJFQNlwGGKh",
+ "outputId": "b847d92e-fe0f-4439-bd87-e5773680c4d1",
+ "tags": [
+ "keep_output"
+ ]
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {
- "id": "DMhjLZh-jCVa"
- },
- "source": [
- "(The technically \"correct\" thing to do here would be to implement a response container that allows for an \"error message\" to be defined as part of the actual response, rather than \"abusing\" the `translation_text` field like we do here. For demonstration purposes, however, this'll do.)"
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[{'translation_text': 'Das Wetter ist heute nett.'}]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\n",
+ " requests.post(\n",
+ " \"http://127.0.0.1:8000/serve/\",\n",
+ " params={\"input_string\": \"The weather is lovely today\"},\n",
+ " headers={\"serve_multiplexed_model_id\": en_to_de_version},\n",
+ " ).json()\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "D8CgPXcsIg5C"
+ },
+ "source": [
+ "## Auto-Signature\n",
+ "\n",
+ "This is all well and good. However, notice that the following friction point still exists: when defining the server, we need to define a whole new signature for the API itself. At best, this is just some code duplication of the model signature itself (which is registered in MLflow). At worst, this can result in inconsistent APIs across all models that your team or organization owns, which can cause confusion and frustration in your downstream dependencies.\n",
+ "\n",
+ "In this particular case, it means that `MultiplexedModelDeployment` is secretly actually **tightly coupled** to the use-case for `translation_model`. What if we wanted to deploy another set of models that don't have to do with language translation? The defined `/serve` API, which returns a JSON object that looks like `{\"translated_text\": \"foo\"}`, would no longer make sense.\n",
+ "\n",
+ "To address this issue, **what if the API signature for `MultiplexedModelDeployment` could automatically mirror the signature of the underlying models it's serving**?\n",
+ "\n",
+ "Thankfully, with MLflow Model Registry metadata and some Python dynamic-class-creation shenanigans, this is entirely possible.\n",
+ "\n",
+ "Let's set things up so that the model server signature is inferred from the registered model itself. Since different versions of an MLflow can have different signatures, we'll use the \"default version\" to \"pin\" the signature; any attempt to multiplex an incompatible-signature model version we will have throw an error.\n",
+ "\n",
+ "Since Ray Serve binds the request and response signatures at class-definition time, we will use a Python metaclass to set this as a function of the specified model name and default model version."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "u9GPbQrnP7OD"
+ },
+ "outputs": [],
+ "source": [
+ "import mlflow\n",
+ "import pydantic\n",
+ "\n",
+ "def schema_to_pydantic(schema: mlflow.types.schema.Schema, *, name: str) -> pydantic.BaseModel:\n",
+ " return pydantic.create_model(\n",
+ " name,\n",
+ " **{\n",
+ " k: (v.type.to_python(), pydantic.Field(required=True))\n",
+ " for k, v in schema.input_dict().items()\n",
+ " }\n",
+ " )\n",
+ "\n",
+ "def get_req_resp_signatures(model_signature: mlflow.models.ModelSignature) -> tuple[pydantic.BaseModel, pydantic.BaseModel]:\n",
+ " inputs: mlflow.types.schema.Schema = model_signature.inputs\n",
+ " outputs: mlflow.types.schema.Schema = model_signature.outputs\n",
+ "\n",
+ " return (schema_to_pydantic(inputs, name=\"InputModel\"), schema_to_pydantic(outputs, name=\"OutputModel\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "cCLtQCgsjwPM"
- },
- "source": [
- "To fully close things out, let's try registering an entirely different model -- with an entirely different signature -- and deploying that via `deployment_from_model_name()`. This will help us confirm that the entire signature is defined from the loaded model."
- ]
+ "id": "PgetOY1LKp6m",
+ "outputId": "ada066e3-72b3-42af-c284-41118fcb2e20"
+ },
+ "outputs": [],
+ "source": [
+ "import mlflow\n",
+ "\n",
+ "from fastapi import FastAPI, Response, status\n",
+ "from ray import serve\n",
+ "from typing import List\n",
+ "\n",
+ "def deployment_from_model_name(model_name: str, default_version: str = \"1\"):\n",
+ " app = FastAPI()\n",
+ " model_info = mlflow.models.get_model_info(f\"models:/{model_name}/{default_version}\")\n",
+ " input_datamodel, output_datamodel = get_req_resp_signatures(model_info.signature)\n",
+ "\n",
+ " @serve.deployment\n",
+ " @serve.ingress(app)\n",
+ " class DynamicallyDefinedDeployment:\n",
+ "\n",
+ " MODEL_NAME: str = model_name\n",
+ " DEFAULT_VERSION: str = default_version\n",
+ "\n",
+ " @serve.multiplexed(max_num_models_per_replica=2)\n",
+ " async def get_model(self, model_version: str):\n",
+ " model = mlflow.pyfunc.load_model(f\"models:/{self.MODEL_NAME}/{model_version}\")\n",
+ "\n",
+ " if model.metadata.get_model_info().signature != model_info.signature:\n",
+ " raise ValueError(f\"Requested version {model_version} has signature incompatible with that of default version {self.DEFAULT_VERSION}\")\n",
+ " return model\n",
+ "\n",
+ " # TODO: Extend this to support batching (lists of inputs and outputs)\n",
+ " @app.post(\"/serve\", response_model=List[output_datamodel])\n",
+ " async def serve(self, model_input: input_datamodel, response: Response):\n",
+ " model_id = serve.get_multiplexed_model_id()\n",
+ " if model_id == \"\":\n",
+ " model_id = self.DEFAULT_VERSION\n",
+ "\n",
+ " try:\n",
+ " model = await self.get_model(model_id)\n",
+ " except ValueError:\n",
+ " response.status_code = status.HTTP_409_CONFLICT\n",
+ " return [{\"translation_text\": \"FAILED\"}]\n",
+ "\n",
+ " return model.predict(model_input.dict())\n",
+ "\n",
+ " return DynamicallyDefinedDeployment\n",
+ "\n",
+ "deployment = deployment_from_model_name(\"translation_model\", default_version=en_to_fr_version)\n",
+ "\n",
+ "serve.run(deployment.bind(), blocking=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "x911zDhomWMj",
+ "outputId": "7dc78df7-4f06-4871-d45f-37cfb852ffc5",
+ "tags": [
+ "keep_output"
+ ]
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 124,
- "metadata": {
- "id": "fXUPRszjIGYN"
- },
- "outputs": [],
- "source": [
- "import mlflow\n",
- "from transformers import pipeline\n",
- "\n",
- "class QuestionAnswererModel(mlflow.pyfunc.PythonModel):\n",
- " def load_context(self, context):\n",
- "\n",
- " self.model_context = context.model_config.get(\n",
- " \"model_context\",\n",
- " \"My name is Hans and I live in Germany.\",\n",
- " )\n",
- " self.model_name = context.model_config.get(\n",
- " \"model_name\",\n",
- " \"deepset/roberta-base-squad2\",\n",
- " )\n",
- "\n",
- " self.tokenizer_name = context.model_config.get(\n",
- " \"tokenizer_name\",\n",
- " \"deepset/roberta-base-squad2\",\n",
- " )\n",
- "\n",
- " self.pipeline = pipeline(\n",
- " \"question-answering\",\n",
- " model=self.model_name,\n",
- " tokenizer=self.tokenizer_name,\n",
- " )\n",
- "\n",
- " def predict(self, context, model_input, params=None):\n",
- " resp = self.pipeline(\n",
- " question=model_input[\"question\"].tolist(),\n",
- " context=self.model_context,\n",
- " )\n",
- "\n",
- " return [resp] if type(resp) is not list else resp"
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[{'translation_text': \"Le temps est beau aujourd'hui\"}]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import requests\n",
+ "\n",
+ "resp = requests.post(\n",
+ " \"http://127.0.0.1:8000/serve/\",\n",
+ " json={\"prompt\": \"The weather is lovely today\"},\n",
+ ")\n",
+ "\n",
+ "assert resp.ok\n",
+ "assert resp.status_code == 200\n",
+ "\n",
+ "print(resp.json())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "EX7ff2wg5PjL",
+ "outputId": "edf0587a-abf5-4160-a621-f9ac4faee6bf",
+ "tags": [
+ "keep_output"
+ ]
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "_p4FrmmhPAuq",
- "outputId": "d5293b38-e56b-4b3f-c4e1-9906ba9c4383"
- },
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "\n",
- "with mlflow.start_run():\n",
- " model_info = mlflow.pyfunc.log_model(\n",
- " \"question_answerer\",\n",
- " registered_model_name=\"question_answerer\",\n",
- " python_model=QuestionAnswererModel(),\n",
- " pip_requirements=[\"transformers\"],\n",
- " input_example=pd.DataFrame({\n",
- " \"question\": [\n",
- " \"Where do you live?\",\n",
- " \"What is your name?\",\n",
- " ],\n",
- " }),\n",
- " model_config={\n",
- " \"model_context\": \"My name is Hans and I live in Germany.\",\n",
- " },\n",
- " )"
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[{'translation_text': \"Le temps est beau aujourd'hui\"}]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import requests\n",
+ "\n",
+ "resp = requests.post(\n",
+ " \"http://127.0.0.1:8000/serve/\",\n",
+ " json={\"prompt\": \"The weather is lovely today\"},\n",
+ " headers={\"serve_multiplexed_model_id\": str(en_to_fr_version)},\n",
+ ")\n",
+ "\n",
+ "assert resp.ok\n",
+ "assert resp.status_code == 200\n",
+ "\n",
+ "print(resp.json())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kwkDDzebG_dd"
+ },
+ "source": [
+ "Let's now confirm that the signature-check provision we put in place actually works. For this, let's register this same model with a **slightly** different signature. This should be enough to trigger the failsafe.\n",
+ "\n",
+ "(Remember when we made the input label configurable at the start of this exercise? This is where that finally comes into play. 😎)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- {
- "cell_type": "code",
- "execution_count": 117,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "g-0mQytrKyOc",
- "outputId": "dd59ef90-ed96-490a-c27f-8f5dbc023ed3"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "inputs: \n",
- " ['question': string (required)]\n",
- "outputs: \n",
- " ['score': double (required), 'start': long (required), 'end': long (required), 'answer': string (required)]\n",
- "params: \n",
- " None"
- ]
- },
- "execution_count": 117,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_info.signature"
- ]
+ "id": "JYydMogXHsOJ",
+ "outputId": "d8cd96f0-58d2-462b-8902-d9a65b604dc0"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "with mlflow.start_run():\n",
+ " incompatible_version = str(mlflow.pyfunc.log_model(\n",
+ " \"translation_model\",\n",
+ " registered_model_name=\"translation_model\",\n",
+ " python_model=MyTranslationModel(),\n",
+ " pip_requirements=[\"transformers\"],\n",
+ " input_example=pd.DataFrame({\n",
+ " \"text_to_translate\": [\n",
+ " \"Hello my name is Jon.\",\n",
+ " ],\n",
+ " }),\n",
+ " model_config={\n",
+ " \"input_label\": \"text_to_translate\",\n",
+ " \"hfhub_name\": \"google-t5/t5-base\",\n",
+ " \"lang_from\": \"en\",\n",
+ " \"lang_to\": \"de\",\n",
+ " },\n",
+ " ).registered_model_version)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "afpSjdgYPaCw",
- "outputId": "b01dcf25-289c-4ed6-f878-172966e88438"
- },
- "outputs": [],
- "source": [
- "from ray import serve\n",
- "\n",
- "serve.run(\n",
- " deployment_from_model_name(\n",
- " \"question_answerer\",\n",
- " default_version=str(model_info.registered_model_version),\n",
- " ).bind(),\n",
- " blocking=False\n",
- ")"
- ]
+ "id": "5Yn-5VlIH6gs",
+ "outputId": "e22f1791-b013-445c-a2ab-08916c5c1032"
+ },
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "resp = requests.post(\n",
+ " \"http://127.0.0.1:8000/serve/\",\n",
+ " json={\"prompt\": \"The weather is lovely today\"},\n",
+ " headers={\"serve_multiplexed_model_id\": incompatible_version},\n",
+ ")\n",
+ "assert not resp.ok\n",
+ "resp.status_code == 409\n",
+ "\n",
+ "assert resp.json()[0][\"translation_text\"] == \"FAILED\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "DMhjLZh-jCVa"
+ },
+ "source": [
+ "(The technically \"correct\" thing to do here would be to implement a response container that allows for an \"error message\" to be defined as part of the actual response, rather than \"abusing\" the `translation_text` field like we do here. For demonstration purposes, however, this'll do.)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "cCLtQCgsjwPM"
+ },
+ "source": [
+ "To fully close things out, let's try registering an entirely different model -- with an entirely different signature -- and deploying that via `deployment_from_model_name()`. This will help us confirm that the entire signature is defined from the loaded model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "fXUPRszjIGYN"
+ },
+ "outputs": [],
+ "source": [
+ "import mlflow\n",
+ "from transformers import pipeline\n",
+ "\n",
+ "class QuestionAnswererModel(mlflow.pyfunc.PythonModel):\n",
+ " def load_context(self, context):\n",
+ "\n",
+ " self.model_context = context.model_config.get(\n",
+ " \"model_context\",\n",
+ " \"My name is Hans and I live in Germany.\",\n",
+ " )\n",
+ " self.model_name = context.model_config.get(\n",
+ " \"model_name\",\n",
+ " \"deepset/roberta-base-squad2\",\n",
+ " )\n",
+ "\n",
+ " self.tokenizer_name = context.model_config.get(\n",
+ " \"tokenizer_name\",\n",
+ " \"deepset/roberta-base-squad2\",\n",
+ " )\n",
+ "\n",
+ " self.pipeline = pipeline(\n",
+ " \"question-answering\",\n",
+ " model=self.model_name,\n",
+ " tokenizer=self.tokenizer_name,\n",
+ " )\n",
+ "\n",
+ " def predict(self, context, model_input, params=None):\n",
+ " resp = self.pipeline(\n",
+ " question=model_input[\"question\"].tolist(),\n",
+ " context=self.model_context,\n",
+ " )\n",
+ "\n",
+ " return [resp] if type(resp) is not list else resp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- {
- "cell_type": "code",
- "execution_count": 130,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "MsLq5vbsS84T",
- "outputId": "73489ce0-984b-4915-e8e0-27db7a8966ec"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=35834)\u001b[0m INFO 2024-12-23 16:14:40,551 default_DynamicallyDefinedDeployment z6r4w9bp f766b328-7f11-467b-b6fa-04f6d6c17a84 -- POST /serve/ 307 8.6ms\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "[{'score': 3.255750561947934e-05,\n",
- " 'start': 30,\n",
- " 'end': 38,\n",
- " 'answer': 'Germany.'}]"
- ]
- },
- "execution_count": 130,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[36m(ServeReplica:default:DynamicallyDefinedDeployment pid=35834)\u001b[0m INFO 2024-12-23 16:14:42,857 default_DynamicallyDefinedDeployment z6r4w9bp 74527eca-776e-497f-b478-b4dc8e24f53a -- POST /serve 200 2181.2ms\n"
- ]
- }
- ],
- "source": [
- "import requests\n",
- "\n",
- "resp = requests.post(\n",
- " \"http://127.0.0.1:8000/serve/\",\n",
- " json={\"question\": \"The weather is lovely today\"},\n",
- ")\n",
- "resp.json()\n"
- ]
+ "id": "_p4FrmmhPAuq",
+ "outputId": "d5293b38-e56b-4b3f-c4e1-9906ba9c4383"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "with mlflow.start_run():\n",
+ " model_info = mlflow.pyfunc.log_model(\n",
+ " \"question_answerer\",\n",
+ " registered_model_name=\"question_answerer\",\n",
+ " python_model=QuestionAnswererModel(),\n",
+ " pip_requirements=[\"transformers\"],\n",
+ " input_example=pd.DataFrame({\n",
+ " \"question\": [\n",
+ " \"Where do you live?\",\n",
+ " \"What is your name?\",\n",
+ " ],\n",
+ " }),\n",
+ " model_config={\n",
+ " \"model_context\": \"My name is Hans and I live in Germany.\",\n",
+ " },\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "g-0mQytrKyOc",
+ "outputId": "dd59ef90-ed96-490a-c27f-8f5dbc023ed3",
+ "tags": [
+ "keep_output"
+ ]
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Conclusion\n",
- "\n",
- "In this notebook, we've leveraged MLflow's built-in support for tracking model signatures to heavily streamline the process of deploying an HTTP server to serve that model in online fashion. We've taken Ray Serve's powerful-but-fiddly primitives to empower ourselves to, in one line, deploy a model server with:\n",
- "\n",
- "- Version multiplexing;\n",
- "- Automatic REST API signature setup;\n",
- "- Safeguards to prevent use of model versions with incompatible signatures.\n",
- "\n",
- "In doing so, we've demonstrated Ray Serve's value and potential as a toolkit upon which you and your team can [\"build your own ML platform\"](https://docs.ray.io/en/latest/serve/index.html#how-does-serve-compare-to).\n",
- "\n",
- "We've also demonstrated ways to reduce the integration overhead and toil associated with using multiple tools in combination with each other. Seamless integration is a powerful argument in favor of self-contained all-encompassing platforms such as AWS Sagemaker or GCP Vertex AI. We've demonstrated that, with a little clever engineering and principled eye towards the friction points that users -- in this case, MLEs -- care about, we can reap similar benefits without tethering ourselves and our team to expensive vendor contracts.\n",
- "\n",
- "### Exercises\n",
- "\n",
- "- The generated API signature is **very similar** to the model signature, but there's still some mismatch. Can you identify where it is? Try fixing it. Hint: What happens when you try passing in multiple questions to the question-answerer endpoint we set up?\n",
- "- MLflow model signatures allow for [optional inputs](https://mlflow.org/docs/latest/model/signatures.html#required-vs-optional-input-fields). Our current implementation does not account for this. How might we extend the implementation here to support optional inputs?\n",
- "- Similarly, MLflow model signatures allow for non-input [\"inference parameters\"](https://mlflow.org/docs/latest/model/signatures.html#model-signatures-with-inference-params), which our current implementation also does not support. How might we extend our implementation here to support inference parameters?\n",
- "- We use the name `DynamicallyDefinedDeployment` every single time we generate a new deployment, regardless of what model name and version we pass in. Is this a problem? If so, what kind of issues do you foresee this approach creating? Try tweaking `deployment_from_model_name()` to handle those issues."
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inputs: \n",
+ " ['question': string (required)]\n",
+ "outputs: \n",
+ " ['score': double (required), 'start': long (required), 'end': long (required), 'answer': string (required)]\n",
+ "params: \n",
+ " None\n",
+ "\n"
+ ]
}
- ],
- "metadata": {
+ ],
+ "source": [
+ "print(model_info.signature)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
"colab": {
- "authorship_tag": "ABX9TyPKW7x903JxiHL2pqDZChKh",
- "include_colab_link": true,
- "provenance": [],
- "toc_visible": true
+ "base_uri": "https://localhost:8080/"
},
- "kernelspec": {
- "display_name": "Python 3",
- "name": "python3"
+ "id": "afpSjdgYPaCw",
+ "outputId": "b01dcf25-289c-4ed6-f878-172966e88438"
+ },
+ "outputs": [],
+ "source": [
+ "from ray import serve\n",
+ "\n",
+ "serve.run(\n",
+ " deployment_from_model_name(\n",
+ " \"question_answerer\",\n",
+ " default_version=str(model_info.registered_model_version),\n",
+ " ).bind(),\n",
+ " blocking=False\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- "language_info": {
- "name": "python"
+ "id": "MsLq5vbsS84T",
+ "outputId": "73489ce0-984b-4915-e8e0-27db7a8966ec",
+ "tags": [
+ "keep_output"
+ ]
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[{'score': 3.255764386267401e-05, 'start': 30, 'end': 38, 'answer': 'Germany.'}]\n"
+ ]
}
+ ],
+ "source": [
+ "import requests\n",
+ "\n",
+ "resp = requests.post(\n",
+ " \"http://127.0.0.1:8000/serve/\",\n",
+ " json={\"question\": \"The weather is lovely today\"},\n",
+ ")\n",
+ "print(resp.json())\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Conclusion\n",
+ "\n",
+ "In this notebook, we've leveraged MLflow's built-in support for tracking model signatures to heavily streamline the process of deploying an HTTP server to serve that model in online fashion. We've taken Ray Serve's powerful-but-fiddly primitives to empower ourselves to, in one line, deploy a model server with:\n",
+ "\n",
+ "- Version multiplexing;\n",
+ "- Automatic REST API signature setup;\n",
+ "- Safeguards to prevent use of model versions with incompatible signatures.\n",
+ "\n",
+ "In doing so, we've demonstrated Ray Serve's value and potential as a toolkit upon which you and your team can [\"build your own ML platform\"](https://docs.ray.io/en/latest/serve/index.html#how-does-serve-compare-to).\n",
+ "\n",
+ "We've also demonstrated ways to reduce the integration overhead and toil associated with using multiple tools in combination with each other. Seamless integration is a powerful argument in favor of self-contained all-encompassing platforms such as AWS Sagemaker or GCP Vertex AI. We've demonstrated that, with a little clever engineering and principled eye towards the friction points that users -- in this case, MLEs -- care about, we can reap similar benefits without tethering ourselves and our team to expensive vendor contracts.\n",
+ "\n",
+ "## Exercises\n",
+ "\n",
+ "- The generated API signature is **very similar** to the model signature, but there's still some mismatch. Can you identify where it is? Try fixing it. Hint: What happens when you try passing in multiple questions to the question-answerer endpoint we set up?\n",
+ "- MLflow model signatures allow for [optional inputs](https://mlflow.org/docs/latest/model/signatures.html#required-vs-optional-input-fields). Our current implementation does not account for this. How might we extend the implementation here to support optional inputs?\n",
+ "- Similarly, MLflow model signatures allow for non-input [\"inference parameters\"](https://mlflow.org/docs/latest/model/signatures.html#model-signatures-with-inference-params), which our current implementation also does not support. How might we extend our implementation here to support inference parameters?\n",
+ "- We use the name `DynamicallyDefinedDeployment` every single time we generate a new deployment, regardless of what model name and version we pass in. Is this a problem? If so, what kind of issues do you foresee this approach creating? Try tweaking `deployment_from_model_name()` to handle those issues."
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "authorship_tag": "ABX9TyPKW7x903JxiHL2pqDZChKh",
+ "include_colab_link": true,
+ "provenance": [],
+ "toc_visible": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
},
- "nbformat": 4,
- "nbformat_minor": 0
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
}
diff --git a/notebooks/en/multiagent_rag_system.ipynb b/notebooks/en/multiagent_rag_system.ipynb
index f2ddef89..dd90a34a 100644
--- a/notebooks/en/multiagent_rag_system.ipynb
+++ b/notebooks/en/multiagent_rag_system.ipynb
@@ -27,12 +27,12 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "id": "jw63UzwbREye"
- },
"source": [
- "![multiagent_rag_system.png]()"
- ]
+ "![multiagent_rag_system (1).png]()"
+ ],
+ "metadata": {
+ "id": "CxlkPJntNJrA"
+ }
},
{
"cell_type": "markdown",
@@ -55,9 +55,20 @@
"id": "8rVK5wUFrNUI",
"outputId": "acfadab7-6fbf-4b8e-e6ce-7597a1b9687d"
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
+ "To disable this warning, you can either:\n",
+ "\t- Avoid using `tokenizers` before the fork if possible\n",
+ "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
+ ]
+ }
+ ],
"source": [
- "!pip install -q git+https://github.com/huggingface/transformers.git#egg=transformers[agents]"
+ "!pip install -q smolagents"
]
},
{
@@ -70,7 +81,18 @@
"id": "62DKn6XJB0MW",
"outputId": "c03b6378-fac9-466b-941b-590b2a401aa6"
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
+ "To disable this warning, you can either:\n",
+ "\t- Avoid using `tokenizers` before the fork if possible\n",
+ "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
+ ]
+ }
+ ],
"source": [
"!pip install markdownify duckduckgo-search spaces gradio-tools langchain langchain-community langchain-huggingface faiss-cpu --upgrade -q"
]
@@ -88,34 +110,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 17,
- "referenced_widgets": [
- "5a42eb084caf426baa8819b8dacd6ce5",
- "ad9759e412ce42568a36b1ac36d28fcf",
- "9a9e65cd2e94477f86a2d5c0689dc701",
- "fb38bc0d0a95486c95538a38c805401b",
- "a5809adb789f4bfd812c01f4abf53fa3",
- "a7ca84c99f4a446bb5d8971ae7ef3a59",
- "414672e3ec3841978cb526b38cb8d685",
- "fe051dd146fb4618b1fe2db660c25f5d",
- "217fe35b1ccd485bb52d343f1a63b245",
- "067aa4555ee946feaae9bc3431899246",
- "ed7825a787ac44788c5bcd55da87f41c",
- "2885445f7fe34617a3eb1e56bdca050d",
- "3c9daca3e6994941bf06f81f44965daa",
- "22e7bccf86944a43be3775907bca6303",
- "62aaaaeceeac41abaec08d6f1b48550a",
- "3faa374827614774b864198771ae8582",
- "14ab1e713ac74da59cdde9e9d7788fb6",
- "32084b5a783344c782385820cdd8e745",
- "d4ae15a394304817afbc52253963e3db",
- "f41e677cc7804578931e279b9c00c8be"
- ]
- },
- "id": "JMP5q2oWDR7b",
- "outputId": "a8c12a60-4ec7-483e-e4a0-c1e1b4a973ca"
+ "id": "JMP5q2oWDR7b"
},
"outputs": [],
"source": [
@@ -152,18 +147,14 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "DWKQ948UmF5F",
- "outputId": "ea48b408-7c19-4cbc-f08a-5dd531950888"
+ "id": "DWKQ948UmF5F"
},
"outputs": [],
"source": [
- "from transformers.agents import HfApiEngine\n",
+ "from smolagents import HfApiModel\n",
"\n",
- "llm_model = \"Qwen/Qwen2.5-72B-Instruct\"\n",
- "llm_engine = HfApiEngine(llm_model)"
+ "model_id = \"Qwen/Qwen2.5-72B-Instruct\"\n",
+ "model = HfApiModel(model_id)"
]
},
{
@@ -203,9 +194,9 @@
"source": [
"### 2.1.1 Build our multi-tool web agent 🤖\n",
"\n",
- "Now that we've set up the basic search and webpage tools, let's build our **multi-tool web agent**. This agent will combine several tools to perform more complex tasks, leveraging the capabilities of the `ReactJsonAgent`.\n",
+ "Now that we've set up the basic search and webpage tools, let's build our **multi-tool web agent**. This agent will combine several tools to perform more complex tasks, leveraging the capabilities of the `ToolCallingAgent`.\n",
"\n",
- "The `ReactJsonAgent` is particularly well-suited for web search tasks because its JSON action formulation requires only simple arguments and works seamlessly in sequential chains of single actions. This makes it an excellent choice for scenarios where we need to search the web for relevant information and retrieve detailed content from specific web pages. In contrast, `CodeAgent` action formulation is better suited for scenarios involving numerous or parallel tool calls.\n",
+ "The `ToolCallingAgent` is particularly well-suited for web search tasks because its JSON action formulation requires only simple arguments and works seamlessly in sequential chains of single actions. This makes it an excellent choice for scenarios where we need to search the web for relevant information and retrieve detailed content from specific web pages. In contrast, `CodeAgent` action formulation is better suited for scenarios involving numerous or parallel tool calls.\n",
"\n",
"By integrating multiple tools, we can ensure that our agent interacts with the web in a sophisticated and efficient manner.\n",
"\n",
@@ -215,18 +206,17 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {
"id": "NVnfGll5B0Ma"
},
"outputs": [],
"source": [
- "from transformers.agents import ReactCodeAgent, ReactJsonAgent, ManagedAgent\n",
- "from transformers.agents.search import DuckDuckGoSearchTool, VisitWebpageTool\n",
+ "from smolagents import CodeAgent, ToolCallingAgent, ManagedAgent, DuckDuckGoSearchTool, VisitWebpageTool\n",
"\n",
- "web_agent = ReactJsonAgent(\n",
+ "web_agent = ToolCallingAgent(\n",
" tools=[DuckDuckGoSearchTool(), VisitWebpageTool()],\n",
- " llm_engine=llm_engine\n",
+ " model=model\n",
")"
]
},
@@ -241,7 +231,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {
"id": "igUZsVP3B0Mb"
},
@@ -249,7 +239,7 @@
"source": [
"managed_web_agent = ManagedAgent(\n",
" agent=web_agent,\n",
- " name=\"search\",\n",
+ " name=\"search_agent\",\n",
" description=\"Runs web searches for you. Give it your query as an argument.\",\n",
")"
]
@@ -298,47 +288,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 113,
- "referenced_widgets": [
- "e407e4b12d664e99a4ca2896a8212ee9",
- "a6365be6a38c4f45908f28ade7aefec8",
- "872b9d7206054a0c9cd57475b362e559",
- "220c6ab6e75447e4a06254cd100b5c7a",
- "c91f0a7b6901427b90ccfb98433d144b",
- "59929f34bb0c4fcab5b3bd77ff52a087",
- "af3c4f7aa81b4e30bc485c8d90222ebe",
- "120dcc7594584481a9527334703830a4",
- "49f382db6b7946ce9d29cb8ac0535b0f",
- "fc19288508dd431399e46fe3a0df4a8d",
- "ae0f44a023784266ac81dd37c306676f",
- "9a2de3885dde40b4b602b27a406ddcee",
- "e5b7916ed4264be3b144d76ff48a602d",
- "84cdbe770e714a51b6daffa433975754",
- "b6ef553cd3b64436b1b415405a3ac58f",
- "6b8ddc7dd2c24c67898c1710f31f7e22",
- "357282b51d074387be6ce2f041cb727b",
- "b2572a3433a9462a9f517e68b924d5ba",
- "1a8bde04f3e947da810575442a0071ed",
- "38d49084ddfe4861a44b49d5a5091e18",
- "62c1c2fa8bde49dda36e5cd75136822c",
- "41c6bf7693ec476091174e635e7c0541",
- "71c74019277a4384b2ebe14181a59141",
- "0f6eca6ca64548a1a2c2f07eb25883e2",
- "82628f6d76f641aca015fbd822c32ea7",
- "835d539930374782b4dc8c28f80df128",
- "49af880fd9f14ef5b324df381cff1edc",
- "45af5ed9f8e64060bed1e6ea0097892f",
- "4f4084edd0114176b5ac9c1d7938bbcb",
- "2cdbd581381d4c79b27ff4900be97152",
- "0427598215c54e849c88e9e0aa399095",
- "fded125e6df647968abd9c76141f0d0e",
- "0fa5435a1e3549089dbc9d9d99fe84e1"
- ]
- },
- "id": "SOYbiRkjEZOF",
- "outputId": "ee3ee958-50ee-43ec-d995-6491a3b1c289"
+ "id": "SOYbiRkjEZOF"
},
"outputs": [],
"source": [
@@ -351,124 +301,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 389,
- "referenced_widgets": [
- "d5f9d42b4484478f9eb847d6468dd71b",
- "84a047b7f2b6426e9022498e994a1a56",
- "947ff4ed5154454a9d996034a56da8c2",
- "aecdffa8eab24c5485f1486d42767424",
- "12a79d3769474ba8960ba97a7caec40e",
- "b43049a9d0194d7d83924f8d0b49a31a",
- "ecff3586d5444b359f7f14ef828cb4ad",
- "3f2bf03588164e78a09bdb4fe39ad348",
- "50a4ace43043474a93185f64de74aa07",
- "f312c77f044d45a1912a640d6fe0d614",
- "4ccda049f7394e53bcec09953f0415c2",
- "da3f81ed8efd4f9b8a58e434c50507b8",
- "593576e0663b4581b402a73fd1ba05cc",
- "56ccdc68822a42278030d8387863f99c",
- "4bb4213551024f21af7758dbec28a278",
- "a1614a34c99e4353b0a16b885d75e8cd",
- "72dbe76158ac434395cde39ef75a9c09",
- "333827a3c433444dbe0447f1031cc3a8",
- "4e26fa814776485bb84d89bc3b33b9c8",
- "7f5e6de0b2df40229658b43a8c04ce68",
- "af96e6377640418e9ba9e1a26cbf2475",
- "6afd8185cc67474aad8a7943fc43c964",
- "36e263e06d6a4ef2a91fd83a12ab1843",
- "2c2d06e1bd61409a85a52b0dde8ad077",
- "ad57aefc12f847da94f2a870469be1da",
- "8ed3d6fd95aa4a76b0a47e17abe54169",
- "d9090c1a519249b98b0f896b5569f944",
- "2837986a4c884a82b270b9e558b2a6db",
- "dc06d4cc6a93428a8a57532fb8916274",
- "bd21cf4ff79b4a5c9b51f666ac8b0b11",
- "613977cd6dcd4f8396a3295219f53606",
- "54b704118c5048028ffebe57b1fbdbbe",
- "b74f756351c345f1a3737378adeac641",
- "3376cd9b0ed64537b725ca4262e86808",
- "987fdc25c1704a39a76ac205c0b6b588",
- "68f094640ad44c56931679b257c1eeef",
- "fa4322032e654ac792fc0deb4039e4fe",
- "a12fd8a1397c4fdfa09874055e362114",
- "978c7c61334f41d08a4e803e5fda988e",
- "a4cb51460ac54ba79be42185b0691af2",
- "d1a87e03c29848869346bd43165441a2",
- "3a459483b6d74de1a4125fbec158b648",
- "a2f8cd5a74c2421ea9c00c6bad4e4d1c",
- "abdf89bf68f54ed7844a39e04687869f",
- "cd636592fe404502919efe2ce09ab278",
- "4776f2db68fb4207add72a7ae5fe574f",
- "90b0003117404f8f864c56da4c4a8840",
- "ab70946ffd44433c9b5b997f3010404f",
- "de2f101e95da43c3ab15133056601129",
- "ee8de986bb3548c49106ec02eda7477e",
- "d3e71a2168bb4b5ba6e96d0e033484ef",
- "f12bde8c70ce47d999f3abb7c63b5d65",
- "c1042ad6f3224fc8b4d8006d8d1a0e6d",
- "9243c5a93a03453cbe93214022d806d2",
- "04d655a7f05c4f6ba0115a9c6e9e3f45",
- "24ae34aed9964b83a7058cc25efbd26e",
- "608dcd06dc81496cba6f81fe4dcc458f",
- "e45e4452978b4421962dbdf190c65af1",
- "72bce75effb14e81b6a3eeb6fd512ae8",
- "17cd4b7ffce446278ce2868ae2ca51aa",
- "3886b25df8e3478ba38a3a4a9ba75818",
- "816bf86b4c8c4c928164fbc51f80ca73",
- "ad1d4ccdf2e449ff9df5f454474f8263",
- "9793d8d381504c5ebff34669906b3aef",
- "8adf7ccc0c8b4680b160d62197d84ce7",
- "3a64c18641e245759e4e0ae07eb54691",
- "7434a433bd6b4e5e84bbfddec26a5898",
- "d32040c5b8a349b88e72d647fbca4bdb",
- "7adb17651c06416985afa74c49acfe89",
- "d72e036050554cdd95e139f579813a8a",
- "3f90962355104657b2f2ae703048586e",
- "875cf838dfc440f6a77769b4f6df1812",
- "ddbd044d2b1f48708abab8465f094bb9",
- "f3d0ef9e2f634cc7b3f294fbebc79805",
- "218bc0acf1f345379a362ae116231758",
- "437b38447064489f8bad4e72e87890bb",
- "97cbef07a312430b856a2c59975a2aa4",
- "e6c90de1ada942fca857e4d9775ca37c",
- "70a1329bd5a549cfac63028c6e2502c0",
- "78dc758f05014b58a0a2487142bf702e",
- "e87efa9693b74002ad915848f39546a1",
- "e7529db0e3c5464183e1ad4e5e9cca76",
- "073c9dfe6c1f4ccd9958b9d6fce7f5aa",
- "67532369879546e9b788453f891b8de8",
- "c1e1929304da41c2a0ee2f36b82a0776",
- "cbf85678049d4dcabbe438248305847f",
- "a97e6c7d0b04433dab25e70142f6a043",
- "4529e629b15d4b6599392d74fe53cfdc",
- "d03b8a529de349dcbf05fee656c6842b",
- "bb1c61bcbdfc410b9ed9c74f1b05def2",
- "c8240758f9dd475aa4c82f97bf2d5b22",
- "e5d35da3fa514c838827c21b427813ef",
- "0f3bb0fa8aa9495e88f57d4b57bf161a",
- "8093a02c0be04c13983339f8943b5b9a",
- "df93f471e3d44e2a9d2410f2b7b09533",
- "15c8fe6981114d1d99cac94cb9acd85c",
- "f4e09994d60141fe82681daac10ee003",
- "6df83f25c50a4387af981e589db55635",
- "8c7c374e9bb24853be5d6c8d795bea21",
- "b2932203ff7748fdae7df5eeb1ec0494",
- "07493f33dd0647ebaef9ce8ff4a5b206",
- "a17132f33e824a4ebc7540e35c56edb8",
- "8f774fcd2e5d4e4fbb595053a4662870",
- "53068737626b45d9adfeb58537a05c4a",
- "d9a7848b52794984b2ee7bd8f3c3c60d",
- "6ec1cc9e77fa46eb98c7f5b6862c0a36",
- "921406ba366445938d189246478c0997",
- "5947f6a29dbc48fbbcef0ffa28b9249b",
- "ae2a6eb914ba4b598676113c22f7363b",
- "6fe48fcc4af84818b04fae414826c59f"
- ]
- },
- "id": "U0RwHsxBEb7U",
- "outputId": "655a4690-b8e4-4820-f761-1ede44b0158b"
+ "id": "U0RwHsxBEb7U"
},
"outputs": [],
"source": [
@@ -528,13 +361,13 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {
"id": "PLHgqg9ZEeFV"
},
"outputs": [],
"source": [
- "from transformers.agents import Tool\n",
+ "from smolagents import Tool\n",
"from langchain_core.vectorstores import VectorStore\n",
"\n",
"class RetrieverTool(Tool):\n",
@@ -570,7 +403,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {
"id": "jsAg8QHaEfj9"
},
@@ -594,7 +427,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {
"id": "mPuUlyoXjMS2"
},
@@ -606,7 +439,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {
"id": "U5XQ0CWEOb8_"
},
@@ -620,7 +453,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {
"id": "L70WuWFcOmYJ"
},
@@ -632,7 +465,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {
"id": "oY_6EW-2O4Y6"
},
@@ -652,7 +485,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {
"id": "N44gaSalO-DJ"
},
@@ -676,20 +509,20 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {
"id": "cZhtN0zFQHiy"
},
"outputs": [],
"source": [
- "retriever_agent = ReactJsonAgent(\n",
- " tools=[huggingface_doc_retriever_tool, peft_issues_retriever_tool], llm_engine=llm_engine, max_iterations=4, verbose=2\n",
+ "retriever_agent = ToolCallingAgent(\n",
+ " tools=[huggingface_doc_retriever_tool, peft_issues_retriever_tool], model=model, max_iterations=4, verbose=2\n",
")"
]
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {
"id": "wsLeHcZhQKNo"
},
@@ -697,7 +530,7 @@
"source": [
"managed_retriever_agent = ManagedAgent(\n",
" agent=retriever_agent,\n",
- " name=\"retriever\",\n",
+ " name=\"retriever_agent\",\n",
" description=\"Retrieves documents from the knowledge base for you that are close to the input query. Give it your query as an argument. The knowledge base includes Hugging Face documentation and PEFT issues.\",\n",
")"
]
@@ -723,11 +556,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "gS0Zj6D-Ro2p",
- "outputId": "07f17845-5072-4e90-b06e-322e6633e6a5"
+ "id": "gS0Zj6D-Ro2p"
},
"outputs": [],
"source": [
@@ -740,41 +569,12 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 188,
- "referenced_widgets": [
- "4a64b3c94e6045f8a8c60f8ae6056443",
- "37724cc707264ed485f8719fcbfc1e61",
- "0361745a607246e4b97af810da87e516",
- "3b413d75f0194fe084c596b03e7cdcb2",
- "67cb55390e294cdd87ce16f2d7205d8f",
- "f21f26609ac7414a931112a2422affa0",
- "b85ca98a878946258a725ca17e985885",
- "60903e503a5041ea824c98caf2c761fe",
- "74cd318a0ee44368a76a78acd0e8c619",
- "ed0b6e7a9a7b4c6c9c38c46270b3b1c5",
- "0cbcb594b4a343c783b7169b79821aea",
- "33a0a39364fd4e51ac95359b7f013f73",
- "7ffd8b04ac43480f81b5870c686aab96",
- "fa1cbc8c5bec4449b4f9413a39a9661f",
- "594581d63f1e4b2bb321330abb18d5bf",
- "e5f17f29eba94e73b39fa11aaa578d32",
- "ec6801817e344df480535841cd659f2f",
- "bdbda97359364c188528582c42ba274b",
- "fa0c5c93c0454d12a0ca11c45236a6f8",
- "729d6bb6b4df4917aeb66274f0e7886e",
- "5b9b2fee102b42ffa8c88ef9fdaa5a29",
- "9ddca2183f0e40ff9906a6c1b835a3de"
- ]
- },
- "id": "GlLMGeXqijq3",
- "outputId": "6c98d876-2717-43cc-a60e-3389a14f25eb"
+ "id": "GlLMGeXqijq3"
},
"outputs": [],
"source": [
- "image_generation_tool = load_tool(\"m-ric/text-to-image\", cache=False)\n",
- "image_generation_agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], llm_engine=llm_engine)"
+ "image_generation_tool = load_tool(\"m-ric/text-to-image\", trust_remote_code=True)\n",
+ "image_generation_agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], model=model)"
]
},
{
@@ -788,7 +588,7 @@
},
{
"cell_type": "code",
- "execution_count": 52,
+ "execution_count": null,
"metadata": {
"id": "6tzo8Yz2i8Ez"
},
@@ -796,7 +596,7 @@
"source": [
"managed_image_generation_agent = ManagedAgent(\n",
" agent=image_generation_agent,\n",
- " name=\"image_generation\",\n",
+ " name=\"image_generation_agent\",\n",
" description=\"Generates images from text prompts. Give it your prompt as an argument.\",\n",
" additional_prompting=\"\\n\\nYour final answer MUST BE only the generated image location.\"\n",
")"
@@ -822,15 +622,15 @@
},
{
"cell_type": "code",
- "execution_count": 53,
+ "execution_count": null,
"metadata": {
"id": "47He6oOXjMC1"
},
"outputs": [],
"source": [
- "manager_agent = ReactCodeAgent(\n",
+ "manager_agent = CodeAgent(\n",
" tools=[],\n",
- " llm_engine=llm_engine,\n",
+ " model=model,\n",
" managed_agents=[managed_web_agent, managed_retriever_agent, managed_image_generation_agent],\n",
" additional_authorized_imports=[\"time\", \"datetime\", \"PIL\"],\n",
")"
@@ -862,7 +662,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -960,7 +760,7 @@
},
{
"cell_type": "code",
- "execution_count": 54,
+ "execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -1041,7 +841,7 @@
},
{
"cell_type": "code",
- "execution_count": 56,
+ "execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -1551,9 +1351,9 @@
"provenance": []
},
"kernelspec": {
- "display_name": "cookbook2",
+ "display_name": "test2",
"language": "python",
- "name": "cookbook2"
+ "name": "test2"
},
"language_info": {
"codemirror_mode": {
@@ -1566,5745 +1366,8 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.0"
- },
- "widgets": {
- "application/vnd.jupyter.widget-state+json": {
- "0361745a607246e4b97af810da87e516": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_60903e503a5041ea824c98caf2c761fe",
- "max": 414,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_74cd318a0ee44368a76a78acd0e8c619",
- "value": 414
- }
- },
- "0427598215c54e849c88e9e0aa399095": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "04d655a7f05c4f6ba0115a9c6e9e3f45": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "067aa4555ee946feaae9bc3431899246": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "073c9dfe6c1f4ccd9958b9d6fce7f5aa": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "07493f33dd0647ebaef9ce8ff4a5b206": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d9a7848b52794984b2ee7bd8f3c3c60d",
- "placeholder": "",
- "style": "IPY_MODEL_6ec1cc9e77fa46eb98c7f5b6862c0a36",
- "value": "1_Pooling/config.json: 100%"
- }
- },
- "0cbcb594b4a343c783b7169b79821aea": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0f3bb0fa8aa9495e88f57d4b57bf161a": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "0f6eca6ca64548a1a2c2f07eb25883e2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_45af5ed9f8e64060bed1e6ea0097892f",
- "placeholder": "",
- "style": "IPY_MODEL_4f4084edd0114176b5ac9c1d7938bbcb",
- "value": "Generating train split: 100%"
- }
- },
- "0fa5435a1e3549089dbc9d9d99fe84e1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "120dcc7594584481a9527334703830a4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "12a79d3769474ba8960ba97a7caec40e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "14ab1e713ac74da59cdde9e9d7788fb6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "15c8fe6981114d1d99cac94cb9acd85c": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "17cd4b7ffce446278ce2868ae2ca51aa": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "1a8bde04f3e947da810575442a0071ed": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "217fe35b1ccd485bb52d343f1a63b245": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "218bc0acf1f345379a362ae116231758": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "220c6ab6e75447e4a06254cd100b5c7a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fc19288508dd431399e46fe3a0df4a8d",
- "placeholder": "",
- "style": "IPY_MODEL_ae0f44a023784266ac81dd37c306676f",
- "value": " 21.0/21.0 [00:00<00:00, 1.22kB/s]"
- }
- },
- "22e7bccf86944a43be3775907bca6303": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "24ae34aed9964b83a7058cc25efbd26e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_608dcd06dc81496cba6f81fe4dcc458f",
- "IPY_MODEL_e45e4452978b4421962dbdf190c65af1",
- "IPY_MODEL_72bce75effb14e81b6a3eeb6fd512ae8"
- ],
- "layout": "IPY_MODEL_17cd4b7ffce446278ce2868ae2ca51aa"
- }
- },
- "2837986a4c884a82b270b9e558b2a6db": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "2885445f7fe34617a3eb1e56bdca050d": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "2c2d06e1bd61409a85a52b0dde8ad077": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2837986a4c884a82b270b9e558b2a6db",
- "placeholder": "",
- "style": "IPY_MODEL_dc06d4cc6a93428a8a57532fb8916274",
- "value": "tokenizer.json: 100%"
- }
- },
- "2cdbd581381d4c79b27ff4900be97152": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "32084b5a783344c782385820cdd8e745": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "LabelModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "LabelModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "LabelView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d4ae15a394304817afbc52253963e3db",
- "placeholder": "",
- "style": "IPY_MODEL_f41e677cc7804578931e279b9c00c8be",
- "value": "Connecting..."
- }
- },
- "333827a3c433444dbe0447f1031cc3a8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3376cd9b0ed64537b725ca4262e86808": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_987fdc25c1704a39a76ac205c0b6b588",
- "IPY_MODEL_68f094640ad44c56931679b257c1eeef",
- "IPY_MODEL_fa4322032e654ac792fc0deb4039e4fe"
- ],
- "layout": "IPY_MODEL_a12fd8a1397c4fdfa09874055e362114"
- }
- },
- "33a0a39364fd4e51ac95359b7f013f73": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7ffd8b04ac43480f81b5870c686aab96",
- "IPY_MODEL_fa1cbc8c5bec4449b4f9413a39a9661f",
- "IPY_MODEL_594581d63f1e4b2bb321330abb18d5bf"
- ],
- "layout": "IPY_MODEL_e5f17f29eba94e73b39fa11aaa578d32"
- }
- },
- "357282b51d074387be6ce2f041cb727b": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "36e263e06d6a4ef2a91fd83a12ab1843": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_2c2d06e1bd61409a85a52b0dde8ad077",
- "IPY_MODEL_ad57aefc12f847da94f2a870469be1da",
- "IPY_MODEL_8ed3d6fd95aa4a76b0a47e17abe54169"
- ],
- "layout": "IPY_MODEL_d9090c1a519249b98b0f896b5569f944"
- }
- },
- "37724cc707264ed485f8719fcbfc1e61": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f21f26609ac7414a931112a2422affa0",
- "placeholder": "",
- "style": "IPY_MODEL_b85ca98a878946258a725ca17e985885",
- "value": "tool_config.json: 100%"
- }
- },
- "3886b25df8e3478ba38a3a4a9ba75818": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "38d49084ddfe4861a44b49d5a5091e18": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "3a459483b6d74de1a4125fbec158b648": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "3a64c18641e245759e4e0ae07eb54691": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3b413d75f0194fe084c596b03e7cdcb2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ed0b6e7a9a7b4c6c9c38c46270b3b1c5",
- "placeholder": "",
- "style": "IPY_MODEL_0cbcb594b4a343c783b7169b79821aea",
- "value": " 414/414 [00:00<00:00, 15.8kB/s]"
- }
- },
- "3c9daca3e6994941bf06f81f44965daa": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3f2bf03588164e78a09bdb4fe39ad348": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "3f90962355104657b2f2ae703048586e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "3faa374827614774b864198771ae8582": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "414672e3ec3841978cb526b38cb8d685": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": "center",
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": "flex",
- "flex": null,
- "flex_flow": "column",
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": "50%"
- }
- },
- "41c6bf7693ec476091174e635e7c0541": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "437b38447064489f8bad4e72e87890bb": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "4529e629b15d4b6599392d74fe53cfdc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "45af5ed9f8e64060bed1e6ea0097892f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "4776f2db68fb4207add72a7ae5fe574f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ee8de986bb3548c49106ec02eda7477e",
- "placeholder": "",
- "style": "IPY_MODEL_d3e71a2168bb4b5ba6e96d0e033484ef",
- "value": "modules.json: 100%"
- }
- },
- "49af880fd9f14ef5b324df381cff1edc": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "49f382db6b7946ce9d29cb8ac0535b0f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "4a64b3c94e6045f8a8c60f8ae6056443": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_37724cc707264ed485f8719fcbfc1e61",
- "IPY_MODEL_0361745a607246e4b97af810da87e516",
- "IPY_MODEL_3b413d75f0194fe084c596b03e7cdcb2"
- ],
- "layout": "IPY_MODEL_67cb55390e294cdd87ce16f2d7205d8f"
- }
- },
- "4bb4213551024f21af7758dbec28a278": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_af96e6377640418e9ba9e1a26cbf2475",
- "placeholder": "",
- "style": "IPY_MODEL_6afd8185cc67474aad8a7943fc43c964",
- "value": " 232k/232k [00:00<00:00, 3.49MB/s]"
- }
- },
- "4ccda049f7394e53bcec09953f0415c2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "4e26fa814776485bb84d89bc3b33b9c8": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "4f4084edd0114176b5ac9c1d7938bbcb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "50a4ace43043474a93185f64de74aa07": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "53068737626b45d9adfeb58537a05c4a": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "54b704118c5048028ffebe57b1fbdbbe": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "56ccdc68822a42278030d8387863f99c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4e26fa814776485bb84d89bc3b33b9c8",
- "max": 231508,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_7f5e6de0b2df40229658b43a8c04ce68",
- "value": 231508
- }
- },
- "593576e0663b4581b402a73fd1ba05cc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_72dbe76158ac434395cde39ef75a9c09",
- "placeholder": "",
- "style": "IPY_MODEL_333827a3c433444dbe0447f1031cc3a8",
- "value": "vocab.txt: 100%"
- }
- },
- "594581d63f1e4b2bb321330abb18d5bf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5b9b2fee102b42ffa8c88ef9fdaa5a29",
- "placeholder": "",
- "style": "IPY_MODEL_9ddca2183f0e40ff9906a6c1b835a3de",
- "value": " 650/650 [00:00<00:00, 45.2kB/s]"
- }
- },
- "5947f6a29dbc48fbbcef0ffa28b9249b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "59929f34bb0c4fcab5b3bd77ff52a087": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "5a42eb084caf426baa8819b8dacd6ce5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "VBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "VBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "VBoxView",
- "box_style": "",
- "children": [],
- "layout": "IPY_MODEL_414672e3ec3841978cb526b38cb8d685"
- }
- },
- "5b9b2fee102b42ffa8c88ef9fdaa5a29": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "608dcd06dc81496cba6f81fe4dcc458f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3886b25df8e3478ba38a3a4a9ba75818",
- "placeholder": "",
- "style": "IPY_MODEL_816bf86b4c8c4c928164fbc51f80ca73",
- "value": "README.md: 100%"
- }
- },
- "60903e503a5041ea824c98caf2c761fe": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "613977cd6dcd4f8396a3295219f53606": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "62aaaaeceeac41abaec08d6f1b48550a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ButtonStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ButtonStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "button_color": null,
- "font_weight": ""
- }
- },
- "62c1c2fa8bde49dda36e5cd75136822c": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "67532369879546e9b788453f891b8de8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "67cb55390e294cdd87ce16f2d7205d8f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "68f094640ad44c56931679b257c1eeef": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d1a87e03c29848869346bd43165441a2",
- "max": 125,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_3a459483b6d74de1a4125fbec158b648",
- "value": 125
- }
- },
- "6afd8185cc67474aad8a7943fc43c964": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6b8ddc7dd2c24c67898c1710f31f7e22": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6df83f25c50a4387af981e589db55635": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6ec1cc9e77fa46eb98c7f5b6862c0a36": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6fe48fcc4af84818b04fae414826c59f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "70a1329bd5a549cfac63028c6e2502c0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_073c9dfe6c1f4ccd9958b9d6fce7f5aa",
- "placeholder": "",
- "style": "IPY_MODEL_67532369879546e9b788453f891b8de8",
- "value": "config.json: 100%"
- }
- },
- "71c74019277a4384b2ebe14181a59141": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_0f6eca6ca64548a1a2c2f07eb25883e2",
- "IPY_MODEL_82628f6d76f641aca015fbd822c32ea7",
- "IPY_MODEL_835d539930374782b4dc8c28f80df128"
- ],
- "layout": "IPY_MODEL_49af880fd9f14ef5b324df381cff1edc"
- }
- },
- "729d6bb6b4df4917aeb66274f0e7886e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "72bce75effb14e81b6a3eeb6fd512ae8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8adf7ccc0c8b4680b160d62197d84ce7",
- "placeholder": "",
- "style": "IPY_MODEL_3a64c18641e245759e4e0ae07eb54691",
- "value": " 68.1k/68.1k [00:00<00:00, 3.64MB/s]"
- }
- },
- "72dbe76158ac434395cde39ef75a9c09": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "7434a433bd6b4e5e84bbfddec26a5898": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d32040c5b8a349b88e72d647fbca4bdb",
- "IPY_MODEL_7adb17651c06416985afa74c49acfe89",
- "IPY_MODEL_d72e036050554cdd95e139f579813a8a"
- ],
- "layout": "IPY_MODEL_3f90962355104657b2f2ae703048586e"
- }
- },
- "74cd318a0ee44368a76a78acd0e8c619": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "78dc758f05014b58a0a2487142bf702e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c1e1929304da41c2a0ee2f36b82a0776",
- "max": 583,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_cbf85678049d4dcabbe438248305847f",
- "value": 583
- }
- },
- "7adb17651c06416985afa74c49acfe89": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f3d0ef9e2f634cc7b3f294fbebc79805",
- "max": 57,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_218bc0acf1f345379a362ae116231758",
- "value": 57
- }
- },
- "7f5e6de0b2df40229658b43a8c04ce68": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "7ffd8b04ac43480f81b5870c686aab96": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ec6801817e344df480535841cd659f2f",
- "placeholder": "",
- "style": "IPY_MODEL_bdbda97359364c188528582c42ba274b",
- "value": "tool.py: 100%"
- }
- },
- "8093a02c0be04c13983339f8943b5b9a": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "816bf86b4c8c4c928164fbc51f80ca73": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "82628f6d76f641aca015fbd822c32ea7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2cdbd581381d4c79b27ff4900be97152",
- "max": 2647,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0427598215c54e849c88e9e0aa399095",
- "value": 2647
- }
- },
- "835d539930374782b4dc8c28f80df128": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fded125e6df647968abd9c76141f0d0e",
- "placeholder": "",
- "style": "IPY_MODEL_0fa5435a1e3549089dbc9d9d99fe84e1",
- "value": " 2647/2647 [00:00<00:00, 4405.77 examples/s]"
- }
- },
- "84a047b7f2b6426e9022498e994a1a56": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b43049a9d0194d7d83924f8d0b49a31a",
- "placeholder": "",
- "style": "IPY_MODEL_ecff3586d5444b359f7f14ef828cb4ad",
- "value": "tokenizer_config.json: 100%"
- }
- },
- "84cdbe770e714a51b6daffa433975754": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1a8bde04f3e947da810575442a0071ed",
- "max": 21954601,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_38d49084ddfe4861a44b49d5a5091e18",
- "value": 21954601
- }
- },
- "872b9d7206054a0c9cd57475b362e559": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_120dcc7594584481a9527334703830a4",
- "max": 21,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_49f382db6b7946ce9d29cb8ac0535b0f",
- "value": 21
- }
- },
- "875cf838dfc440f6a77769b4f6df1812": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "8adf7ccc0c8b4680b160d62197d84ce7": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "8c7c374e9bb24853be5d6c8d795bea21": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "8ed3d6fd95aa4a76b0a47e17abe54169": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_54b704118c5048028ffebe57b1fbdbbe",
- "placeholder": "",
- "style": "IPY_MODEL_b74f756351c345f1a3737378adeac641",
- "value": " 712k/712k [00:00<00:00, 3.67MB/s]"
- }
- },
- "8f774fcd2e5d4e4fbb595053a4662870": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ae2a6eb914ba4b598676113c22f7363b",
- "placeholder": "",
- "style": "IPY_MODEL_6fe48fcc4af84818b04fae414826c59f",
- "value": " 190/190 [00:00<00:00, 15.6kB/s]"
- }
- },
- "90b0003117404f8f864c56da4c4a8840": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f12bde8c70ce47d999f3abb7c63b5d65",
- "max": 385,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c1042ad6f3224fc8b4d8006d8d1a0e6d",
- "value": 385
- }
- },
- "921406ba366445938d189246478c0997": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "9243c5a93a03453cbe93214022d806d2": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "947ff4ed5154454a9d996034a56da8c2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3f2bf03588164e78a09bdb4fe39ad348",
- "max": 394,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_50a4ace43043474a93185f64de74aa07",
- "value": 394
- }
- },
- "978c7c61334f41d08a4e803e5fda988e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "9793d8d381504c5ebff34669906b3aef": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "97cbef07a312430b856a2c59975a2aa4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "987fdc25c1704a39a76ac205c0b6b588": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_978c7c61334f41d08a4e803e5fda988e",
- "placeholder": "",
- "style": "IPY_MODEL_a4cb51460ac54ba79be42185b0691af2",
- "value": "special_tokens_map.json: 100%"
- }
- },
- "9a2de3885dde40b4b602b27a406ddcee": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e5b7916ed4264be3b144d76ff48a602d",
- "IPY_MODEL_84cdbe770e714a51b6daffa433975754",
- "IPY_MODEL_b6ef553cd3b64436b1b415405a3ac58f"
- ],
- "layout": "IPY_MODEL_6b8ddc7dd2c24c67898c1710f31f7e22"
- }
- },
- "9a9e65cd2e94477f86a2d5c0689dc701": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "PasswordModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "PasswordModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "PasswordView",
- "continuous_update": true,
- "description": "Token:",
- "description_tooltip": null,
- "disabled": false,
- "layout": "IPY_MODEL_067aa4555ee946feaae9bc3431899246",
- "placeholder": "",
- "style": "IPY_MODEL_ed7825a787ac44788c5bcd55da87f41c",
- "value": ""
- }
- },
- "9ddca2183f0e40ff9906a6c1b835a3de": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a12fd8a1397c4fdfa09874055e362114": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a1614a34c99e4353b0a16b885d75e8cd": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a17132f33e824a4ebc7540e35c56edb8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_921406ba366445938d189246478c0997",
- "max": 190,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5947f6a29dbc48fbbcef0ffa28b9249b",
- "value": 190
- }
- },
- "a2f8cd5a74c2421ea9c00c6bad4e4d1c": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a4cb51460ac54ba79be42185b0691af2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a5809adb789f4bfd812c01f4abf53fa3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ButtonModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ButtonModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ButtonView",
- "button_style": "",
- "description": "Login",
- "disabled": false,
- "icon": "",
- "layout": "IPY_MODEL_22e7bccf86944a43be3775907bca6303",
- "style": "IPY_MODEL_62aaaaeceeac41abaec08d6f1b48550a",
- "tooltip": ""
- }
- },
- "a6365be6a38c4f45908f28ade7aefec8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_59929f34bb0c4fcab5b3bd77ff52a087",
- "placeholder": "",
- "style": "IPY_MODEL_af3c4f7aa81b4e30bc485c8d90222ebe",
- "value": "README.md: 100%"
- }
- },
- "a7ca84c99f4a446bb5d8971ae7ef3a59": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3faa374827614774b864198771ae8582",
- "placeholder": "",
- "style": "IPY_MODEL_14ab1e713ac74da59cdde9e9d7788fb6",
- "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. "
- }
- },
- "a97e6c7d0b04433dab25e70142f6a043": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ab70946ffd44433c9b5b997f3010404f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9243c5a93a03453cbe93214022d806d2",
- "placeholder": "",
- "style": "IPY_MODEL_04d655a7f05c4f6ba0115a9c6e9e3f45",
- "value": " 385/385 [00:00<00:00, 27.6kB/s]"
- }
- },
- "abdf89bf68f54ed7844a39e04687869f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ad1d4ccdf2e449ff9df5f454474f8263": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ad57aefc12f847da94f2a870469be1da": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_bd21cf4ff79b4a5c9b51f666ac8b0b11",
- "max": 711661,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_613977cd6dcd4f8396a3295219f53606",
- "value": 711661
- }
- },
- "ad9759e412ce42568a36b1ac36d28fcf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fe051dd146fb4618b1fe2db660c25f5d",
- "placeholder": "",
- "style": "IPY_MODEL_217fe35b1ccd485bb52d343f1a63b245",
- "value": " Copy a token from your Hugging Face\ntokens page and paste it below. Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. "
- }
- },
- "ae0f44a023784266ac81dd37c306676f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ae2a6eb914ba4b598676113c22f7363b": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "aecdffa8eab24c5485f1486d42767424": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f312c77f044d45a1912a640d6fe0d614",
- "placeholder": "",
- "style": "IPY_MODEL_4ccda049f7394e53bcec09953f0415c2",
- "value": " 394/394 [00:00<00:00, 23.7kB/s]"
- }
- },
- "af3c4f7aa81b4e30bc485c8d90222ebe": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "af96e6377640418e9ba9e1a26cbf2475": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "b2572a3433a9462a9f517e68b924d5ba": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "b2932203ff7748fdae7df5eeb1ec0494": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_07493f33dd0647ebaef9ce8ff4a5b206",
- "IPY_MODEL_a17132f33e824a4ebc7540e35c56edb8",
- "IPY_MODEL_8f774fcd2e5d4e4fbb595053a4662870"
- ],
- "layout": "IPY_MODEL_53068737626b45d9adfeb58537a05c4a"
- }
- },
- "b43049a9d0194d7d83924f8d0b49a31a": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "b6ef553cd3b64436b1b415405a3ac58f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_62c1c2fa8bde49dda36e5cd75136822c",
- "placeholder": "",
- "style": "IPY_MODEL_41c6bf7693ec476091174e635e7c0541",
- "value": " 22.0M/22.0M [00:00<00:00, 36.0MB/s]"
- }
- },
- "b74f756351c345f1a3737378adeac641": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "b85ca98a878946258a725ca17e985885": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "bb1c61bcbdfc410b9ed9c74f1b05def2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8093a02c0be04c13983339f8943b5b9a",
- "placeholder": "",
- "style": "IPY_MODEL_df93f471e3d44e2a9d2410f2b7b09533",
- "value": "model.safetensors: 100%"
- }
- },
- "bd21cf4ff79b4a5c9b51f666ac8b0b11": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "bdbda97359364c188528582c42ba274b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "c1042ad6f3224fc8b4d8006d8d1a0e6d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c1e1929304da41c2a0ee2f36b82a0776": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "c8240758f9dd475aa4c82f97bf2d5b22": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_15c8fe6981114d1d99cac94cb9acd85c",
- "max": 66746168,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_f4e09994d60141fe82681daac10ee003",
- "value": 66746168
- }
- },
- "c91f0a7b6901427b90ccfb98433d144b": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "cbf85678049d4dcabbe438248305847f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "cd636592fe404502919efe2ce09ab278": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_4776f2db68fb4207add72a7ae5fe574f",
- "IPY_MODEL_90b0003117404f8f864c56da4c4a8840",
- "IPY_MODEL_ab70946ffd44433c9b5b997f3010404f"
- ],
- "layout": "IPY_MODEL_de2f101e95da43c3ab15133056601129"
- }
- },
- "d03b8a529de349dcbf05fee656c6842b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_bb1c61bcbdfc410b9ed9c74f1b05def2",
- "IPY_MODEL_c8240758f9dd475aa4c82f97bf2d5b22",
- "IPY_MODEL_e5d35da3fa514c838827c21b427813ef"
- ],
- "layout": "IPY_MODEL_0f3bb0fa8aa9495e88f57d4b57bf161a"
- }
- },
- "d1a87e03c29848869346bd43165441a2": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "d32040c5b8a349b88e72d647fbca4bdb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_875cf838dfc440f6a77769b4f6df1812",
- "placeholder": "",
- "style": "IPY_MODEL_ddbd044d2b1f48708abab8465f094bb9",
- "value": "sentence_bert_config.json: 100%"
- }
- },
- "d3e71a2168bb4b5ba6e96d0e033484ef": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "d4ae15a394304817afbc52253963e3db": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "d5f9d42b4484478f9eb847d6468dd71b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_84a047b7f2b6426e9022498e994a1a56",
- "IPY_MODEL_947ff4ed5154454a9d996034a56da8c2",
- "IPY_MODEL_aecdffa8eab24c5485f1486d42767424"
- ],
- "layout": "IPY_MODEL_12a79d3769474ba8960ba97a7caec40e"
- }
- },
- "d72e036050554cdd95e139f579813a8a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_437b38447064489f8bad4e72e87890bb",
- "placeholder": "",
- "style": "IPY_MODEL_97cbef07a312430b856a2c59975a2aa4",
- "value": " 57.0/57.0 [00:00<00:00, 4.38kB/s]"
- }
- },
- "d9090c1a519249b98b0f896b5569f944": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "d9a7848b52794984b2ee7bd8f3c3c60d": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "da3f81ed8efd4f9b8a58e434c50507b8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_593576e0663b4581b402a73fd1ba05cc",
- "IPY_MODEL_56ccdc68822a42278030d8387863f99c",
- "IPY_MODEL_4bb4213551024f21af7758dbec28a278"
- ],
- "layout": "IPY_MODEL_a1614a34c99e4353b0a16b885d75e8cd"
- }
- },
- "dc06d4cc6a93428a8a57532fb8916274": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ddbd044d2b1f48708abab8465f094bb9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "de2f101e95da43c3ab15133056601129": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "df93f471e3d44e2a9d2410f2b7b09533": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "e407e4b12d664e99a4ca2896a8212ee9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a6365be6a38c4f45908f28ade7aefec8",
- "IPY_MODEL_872b9d7206054a0c9cd57475b362e559",
- "IPY_MODEL_220c6ab6e75447e4a06254cd100b5c7a"
- ],
- "layout": "IPY_MODEL_c91f0a7b6901427b90ccfb98433d144b"
- }
- },
- "e45e4452978b4421962dbdf190c65af1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ad1d4ccdf2e449ff9df5f454474f8263",
- "max": 68084,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_9793d8d381504c5ebff34669906b3aef",
- "value": 68084
- }
- },
- "e5b7916ed4264be3b144d76ff48a602d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_357282b51d074387be6ce2f041cb727b",
- "placeholder": "",
- "style": "IPY_MODEL_b2572a3433a9462a9f517e68b924d5ba",
- "value": "huggingface_doc.csv: 100%"
- }
- },
- "e5d35da3fa514c838827c21b427813ef": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6df83f25c50a4387af981e589db55635",
- "placeholder": "",
- "style": "IPY_MODEL_8c7c374e9bb24853be5d6c8d795bea21",
- "value": " 66.7M/66.7M [00:00<00:00, 129MB/s]"
- }
- },
- "e5f17f29eba94e73b39fa11aaa578d32": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e6c90de1ada942fca857e4d9775ca37c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_70a1329bd5a549cfac63028c6e2502c0",
- "IPY_MODEL_78dc758f05014b58a0a2487142bf702e",
- "IPY_MODEL_e87efa9693b74002ad915848f39546a1"
- ],
- "layout": "IPY_MODEL_e7529db0e3c5464183e1ad4e5e9cca76"
- }
- },
- "e7529db0e3c5464183e1ad4e5e9cca76": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e87efa9693b74002ad915848f39546a1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a97e6c7d0b04433dab25e70142f6a043",
- "placeholder": "",
- "style": "IPY_MODEL_4529e629b15d4b6599392d74fe53cfdc",
- "value": " 583/583 [00:00<00:00, 21.4kB/s]"
- }
- },
- "ec6801817e344df480535841cd659f2f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ecff3586d5444b359f7f14ef828cb4ad": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ed0b6e7a9a7b4c6c9c38c46270b3b1c5": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ed7825a787ac44788c5bcd55da87f41c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ee8de986bb3548c49106ec02eda7477e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f12bde8c70ce47d999f3abb7c63b5d65": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f21f26609ac7414a931112a2422affa0": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f312c77f044d45a1912a640d6fe0d614": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f3d0ef9e2f634cc7b3f294fbebc79805": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f41e677cc7804578931e279b9c00c8be": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "f4e09994d60141fe82681daac10ee003": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "fa0c5c93c0454d12a0ca11c45236a6f8": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "fa1cbc8c5bec4449b4f9413a39a9661f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fa0c5c93c0454d12a0ca11c45236a6f8",
- "max": 650,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_729d6bb6b4df4917aeb66274f0e7886e",
- "value": 650
- }
- },
- "fa4322032e654ac792fc0deb4039e4fe": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a2f8cd5a74c2421ea9c00c6bad4e4d1c",
- "placeholder": "",
- "style": "IPY_MODEL_abdf89bf68f54ed7844a39e04687869f",
- "value": " 125/125 [00:00<00:00, 8.33kB/s]"
- }
- },
- "fb38bc0d0a95486c95538a38c805401b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "CheckboxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "CheckboxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "CheckboxView",
- "description": "Add token as git credential?",
- "description_tooltip": null,
- "disabled": false,
- "indent": true,
- "layout": "IPY_MODEL_2885445f7fe34617a3eb1e56bdca050d",
- "style": "IPY_MODEL_3c9daca3e6994941bf06f81f44965daa",
- "value": true
- }
- },
- "fc19288508dd431399e46fe3a0df4a8d": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "fded125e6df647968abd9c76141f0d0e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "fe051dd146fb4618b1fe2db660c25f5d": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- }
- }
}
},
"nbformat": 4,
"nbformat_minor": 0
-}
+}
\ No newline at end of file
diff --git a/notebooks/en/multiagent_web_assistant.ipynb b/notebooks/en/multiagent_web_assistant.ipynb
index 84d62e28..79796577 100644
--- a/notebooks/en/multiagent_web_assistant.ipynb
+++ b/notebooks/en/multiagent_web_assistant.ipynb
@@ -41,7 +41,7 @@
"metadata": {},
"outputs": [],
"source": [
- "!pip install markdownify duckduckgo-search \"transformers[agents]\" --upgrade -q"
+ "!pip install markdownify duckduckgo-search smolagents --upgrade -q"
]
},
{
@@ -73,11 +73,11 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
- "model = \"Qwen/Qwen2.5-72B-Instruct\""
+ "model_id = \"Qwen/Qwen2.5-72B-Instruct\""
]
},
{
@@ -96,7 +96,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -104,7 +104,7 @@
"import requests\n",
"from markdownify import markdownify as md\n",
"from requests.exceptions import RequestException\n",
- "from transformers.agents import tool\n",
+ "from smolagents import tool\n",
"\n",
"\n",
"@tool\n",
@@ -145,14 +145,14 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Hugging Face \\- Wikipedia\n",
+ "Hugging Face - Wikipedia\n",
"\n",
"[Jump to content](#bodyContent)\n",
"\n",
@@ -162,15 +162,14 @@
"move to sidebar\n",
"hide\n",
"\n",
- " Navigation\n",
- " \n",
+ "Navigation\n",
"\n",
"* [Main page](/wiki/Main_Page \"Visit the main page [z]\")\n",
"* [Contents](/wiki/Wikipedia:Contents \"Guides to browsing Wikipedia\")\n",
"* [Current events](/wiki/Portal:Current_events \"Articles related to current events\")\n",
"* [Random article](/wiki/Special:Random \"Visit a randomly selected article [x]\")\n",
"* [About Wikipedia](/wiki/Wikipedia:About \"Learn about Wikipedia and how it works\")\n",
- "* [Co\n"
+ "* [Contac\n"
]
}
],
@@ -193,23 +192,23 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
- "from transformers.agents import (\n",
- " ReactCodeAgent,\n",
- " ReactJsonAgent,\n",
- " HfApiEngine,\n",
+ "from smolagents import (\n",
+ " CodeAgent,\n",
+ " ToolCallingAgent,\n",
+ " HfApiModel,\n",
" ManagedAgent,\n",
+ " DuckDuckGoSearchTool\n",
")\n",
- "from transformers.agents.search import DuckDuckGoSearchTool\n",
"\n",
- "llm_engine = HfApiEngine(model)\n",
+ "model = HfApiModel(model_id)\n",
"\n",
- "web_agent = ReactJsonAgent(\n",
+ "web_agent = ToolCallingAgent(\n",
" tools=[DuckDuckGoSearchTool(), visit_webpage],\n",
- " llm_engine=llm_engine,\n",
+ " model=model,\n",
" max_iterations=10,\n",
")"
]
@@ -223,13 +222,13 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"managed_web_agent = ManagedAgent(\n",
" agent=web_agent,\n",
- " name=\"search\",\n",
+ " name=\"search_agent\",\n",
" description=\"Runs web searches for you. Give it your query as an argument.\",\n",
")"
]
@@ -247,13 +246,13 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
- "manager_agent = ReactCodeAgent(\n",
+ "manager_agent = CodeAgent(\n",
" tools=[],\n",
- " llm_engine=llm_engine,\n",
+ " model=model,\n",
" managed_agents=[managed_web_agent],\n",
" additional_authorized_imports=[\"time\", \"datetime\"],\n",
")"
@@ -268,90 +267,566 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 17,
"metadata": {},
"outputs": [
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[32;20;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mHow many years ago was Stripe founded?\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: I need to find out when Stripe was founded and then calculate the number of years since then. I will start by using the `search` tool to find the founding year of Stripe.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mfounding_year\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7msearch\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mWhen was Stripe founded\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mFounding year:\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mfounding_year\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[32;20;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mYou're a helpful agent named 'search'.\n",
- "You have been submitted this task by your manager.\n",
- "---\n",
- "Task:\n",
- "When was Stripe founded\n",
- "---\n",
- "You're helping your manager solve a wider task: so make sure to not provide a one-line answer, but give as much information as possible so that they have a clear understanding of the answer.\n",
- "\n",
- "Your final_answer WILL HAVE to contain these parts:\n",
- "### 1. Task outcome (short version):\n",
- "### 2. Task outcome (extremely detailed version):\n",
- "### 3. Additional context (if relevant):\n",
- "\n",
- "Put all these in your final_answer tool, everything that you do not pass as an argument to final_answer will be lost.\n",
- "And even if your task resolution is not successful, please return as much context as possible, so that your manager can act upon this feedback.\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: I need to find the founding year of Stripe and related details. The best way to start is by performing a web search.\u001b[0m\n",
- "\u001b[33;1m>>> Calling tool: 'web_search' with arguments: {'query': 'When was Stripe founded'}\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: The search results provide information on when Stripe was founded and additional details about the company. I will now visit the Stripe Wikipedia page for a more detailed overview.\u001b[0m\n",
- "\u001b[33;1m>>> Calling tool: 'visit_webpage' with arguments: {'url': 'https://en.wikipedia.org/wiki/Stripe,_Inc.'}\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: I have collected detailed information about Stripe from the Wikipedia page. Now, I will formulate a comprehensive final answer as required for the task.\u001b[0m\n",
- "\u001b[33;1m>>> Calling tool: 'final_answer' with arguments: {'answer': \"### 1. Task Outcome (short version):\\nStripe, Inc. was founded in 2010 by Irish brothers John Collison and Patrick Collison, who serve as the company's president and CEO, respectively. The company is headquartered in South San Francisco, California, and Dublin, Ireland. Stripe provides payment processing and financial services for businesses, enabling them to accept payments and manage financial transactions online.\\n\\n### 2. Task Outcome (extremely detailed version):\\nStripe, Inc. is an Irish-American multinational financial services and software as a service (SaaS) company co-founded in 2010 by John Collison and Patrick Collison, two Irish brothers. The company is dual-headquartered in South San Francisco, California, and Dublin, Ireland. Stripe offers a wide range of financial services and tools, primarily focused on payment processing and management for businesses. Some key milestones and details include:\\n\\n- **Founding and Early Years:** The company was founded in 2010 in Palo Alto, California. In 2011, it received a $2 million investment from notable figures such as Elon Musk, Peter Thiel, and venture capital firms like Sequoia Capital. In 2012, Stripe launched its first multiparty payments solution, Stripe Connect.\\n- **Growth and Expansion:** Stripe has rapidly expanded its services and reach. In 2013, it made its first acquisition, Kickoff, a chat and task management application. In 2016, Stripe launched Atlas, a platform to help startups register as U.S. corporations. The company has continued to grow, raising significant rounds of funding and expanding its services to new markets, including Europe and Africa.\\n- **Product Suite:** Stripe offers a comprehensive suite of financial tools, including payment processing, billing, fraud prevention, point-of-sale solutions, and more. Notable products include Radar (anti-fraud tools), Terminal (point-of-sale hardware), and Stripe Capital (merchant cash advances).\\n- **Partnerships and Integrations:** Stripe has formed partnerships with major companies such as Ford, Spotify, and Twitter to handle transactions and payments. It has also launched the Stripe App Marketplace, allowing businesses to integrate third-party apps and services.\\n- **Valuation and Funding:** As of the latest data, Stripe has raised over $6.5 billion in funding and is valued at around $70 billion, making it one of the most valuable privately-held startups globally.\\n- **Challenges and Layoffs:** In 2022, Stripe announced layoffs, cutting 14% of its workforce to prepare for leaner times. However, the company continues to innovate and expand its offerings.\\n\\n### 3. Additional Context (if relevant):\\n- **Impact on the Founders:** John and Patrick Collison have been influential in shaping the fintech industry. Their vision and leadership have driven Stripe's success and innovation.\\n- **Industry Position:** Stripe is a leader in the fintech sector, competing with other payment processors and financial service providers. Its robust product suite and global reach have solidified its position in the market.\\n- **Future Outlook:** Stripe continues to invest in new technologies and services, including AI and carbon capture initiatives. The company's focus on innovation and customer needs positions it well for future growth.\"}\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20mFounding year: ### 1. Task Outcome (short version):\n",
- "Stripe, Inc. was founded in 2010 by Irish brothers John Collison and Patrick Collison, who serve as the company's president and CEO, respectively. The company is headquartered in South San Francisco, California, and Dublin, Ireland. Stripe provides payment processing and financial services for businesses, enabling them to accept payments and manage financial transactions online.\n",
- "\n",
- "### 2. Task Outcome (extremely detailed version):\n",
- "Stripe, Inc. is an Irish-American multinational financial services and software as a service (SaaS) company co-founded in 2010 by John Collison and Patrick Collison, two Irish brothers. The company is dual-headquartered in South San Francisco, California, and Dublin, Ireland. Stripe offers a wide range of financial services and tools, primarily focused on payment processing and management for businesses. Some key milestones and details include:\n",
- "\n",
- "- **Founding and Early Years:** The company was founded in 2010 in Palo Alto, California. In 2011, it received a $2 million investment from notable figures such as Elon Musk, Peter Thiel, and venture capital firms like Sequoia Capital. In 2012, Stripe launched its first multiparty payments solution, Stripe Connect.\n",
- "- **Growth and Expansion:** Stripe has rapidly expanded its services and reach. In 2013, it made its first acquisition, Kickoff, a chat and task management application. In 2016, Stripe launched Atlas, a platform to help startups register as U.S. corporations. The company has continued to grow, raising significant rounds of funding and expanding its services to new markets, including Europe and Africa.\n",
- "- **Product Suite:** Stripe offers a comprehensive suite of financial tools, including payment processing, billing, fraud prevention, point-of-sale solutions, and more. Notable products include Radar (anti-fraud tools), Terminal (point-of-sale hardware), and Stripe Capital (merchant cash advances).\n",
- "- **Partnerships and Integrations:** Stripe has formed partnerships with major companies such as Ford, Spotify, and Twitter to handle transactions and payments. It has also launched the Stripe App Marketplace, allowing businesses to integrate third-party apps and services.\n",
- "- **Valuation and Funding:** As of the latest data, Stripe has raised over $6.5 billion in funding and is valued at around $70 billion, making it one of the most valuable privately-held startups globally.\n",
- "- **Challenges and Layoffs:** In 2022, Stripe announced layoffs, cutting 14% of its workforce to prepare for leaner times. However, the company continues to innovate and expand its offerings.\n",
- "\n",
- "### 3. Additional Context (if relevant):\n",
- "- **Impact on the Founders:** John and Patrick Collison have been influential in shaping the fintech industry. Their vision and leadership have driven Stripe's success and innovation.\n",
- "- **Industry Position:** Stripe is a leader in the fintech sector, competing with other payment processors and financial service providers. Its robust product suite and global reach have solidified its position in the market.\n",
- "- **Future Outlook:** Stripe continues to invest in new technologies and services, including AI and carbon capture initiatives. The company's focus on innovation and customer needs positions it well for future growth.\n",
- "\u001b[0m\n",
- "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
- "\u001b[0mThought: The search result shows that Stripe was founded in 2010. Now I need to calculate how many years ago that was. I will use the current year to make this calculation.\u001b[0m\n",
- "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;109;01mimport\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mdatetime\u001b[39m\n",
- "\n",
- "\u001b[38;5;7mcurrent_year\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mdatetime\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mdatetime\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mnow\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7myear\u001b[39m\n",
- "\u001b[38;5;7mfounding_year\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m2010\u001b[39m\n",
- "\u001b[38;5;7myears_since_founded\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mcurrent_year\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m-\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mfounding_year\u001b[39m\n",
- "\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7myears_since_founded\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\u001b[0m\n",
- "\u001b[33;1mLast output from code snippet:\u001b[0m\n",
- "\u001b[32;20m14\u001b[0m\n",
- "\u001b[32;20;1mFinal answer:\u001b[0m\n",
- "\u001b[32;20m14\u001b[0m\n"
- ]
+ "data": {
+ "text/html": [
+ "╭──────────────────────────────────────────────────── New run ────────────────────────────────────────────────────╮ \n",
+ "│ │ \n",
+ "│ How many years ago was Stripe founded? │ \n",
+ "│ │ \n",
+ "╰─ HfApiModel - Qwen/Qwen2.5-72B-Instruct ────────────────────────────────────────────────────────────────────────╯ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m╭─\u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[1;38;2;212;183;2mNew run\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╮\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mHow many years ago was Stripe founded?\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m╰─\u001b[0m\u001b[38;2;212;183;2m HfApiModel - Qwen/Qwen2.5-72B-Instruct \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╯\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m0\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 found_year = search_agent(request = \"When was Stripe founded?\" ) │\n",
+ "│ 2 print(found_year) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfound_year\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34msearch_agent\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mrequest\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34mWhen was Stripe founded?\u001b[0m\u001b[38;2;230;219;116;48;2;39;40;34m\"\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfound_year\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭──────────────────────────────────────────────────── New run ────────────────────────────────────────────────────╮ \n",
+ "│ │ \n",
+ "│ You're a helpful agent named 'search_agent'. │ \n",
+ "│ You have been submitted this task by your manager. │ \n",
+ "│ --- │ \n",
+ "│ Task: │ \n",
+ "│ When was Stripe founded? │ \n",
+ "│ --- │ \n",
+ "│ You're helping your manager solve a wider task: so make sure to not provide a one-line answer, but give as much │ \n",
+ "│ information as possible to give them a clear understanding of the answer. │ \n",
+ "│ │ \n",
+ "│ Your final_answer WILL HAVE to contain these parts: │ \n",
+ "│ ### 1. Task outcome (short version): │ \n",
+ "│ ### 2. Task outcome (extremely detailed version): │ \n",
+ "│ ### 3. Additional context (if relevant): │ \n",
+ "│ │ \n",
+ "│ Put all these in your final_answer tool, everything that you do not pass as an argument to final_answer will be │ \n",
+ "│ lost. │ \n",
+ "│ And even if your task resolution is not successful, please return as much context as possible, so that your │ \n",
+ "│ manager can act upon this feedback. │ \n",
+ "│ {additional_prompting} │ \n",
+ "│ │ \n",
+ "╰─ HfApiModel - Qwen/Qwen2.5-72B-Instruct ────────────────────────────────────────────────────────────────────────╯ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m╭─\u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[1;38;2;212;183;2mNew run\u001b[0m\u001b[38;2;212;183;2m \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╮\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYou're a helpful agent named 'search_agent'.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYou have been submitted this task by your manager.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m---\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mTask:\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mWhen was Stripe founded?\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m---\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYou're helping your manager solve a wider task: so make sure to not provide a one-line answer, but give as much\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1minformation as possible to give them a clear understanding of the answer.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mYour final_answer WILL HAVE to contain these parts:\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m### 1. Task outcome (short version):\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m### 2. Task outcome (extremely detailed version):\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m### 3. Additional context (if relevant):\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mPut all these in your final_answer tool, everything that you do not pass as an argument to final_answer will be\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mlost.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mAnd even if your task resolution is not successful, please return as much context as possible, so that your \u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1mmanager can act upon this feedback.\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[1m{additional_prompting}\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m│\u001b[0m \u001b[38;2;212;183;2m│\u001b[0m\n",
+ "\u001b[38;2;212;183;2m╰─\u001b[0m\u001b[38;2;212;183;2m HfApiModel - Qwen/Qwen2.5-72B-Instruct \u001b[0m\u001b[38;2;212;183;2m───────────────────────────────────────────────────────────────────────\u001b[0m\u001b[38;2;212;183;2m─╯\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m0\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ Calling tool: 'web_search' with arguments: {'query': 'When was Stripe founded'} │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ Calling tool: 'web_search' with arguments: {'query': 'When was Stripe founded'} │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Observations: ## Search Results\n",
+ "\n",
+ "[ Stripe, Inc. - Wikipedia]( https://en.wikipedia.org/wiki/Stripe,_Inc.) \n",
+ "Stripe, Inc. is an Irish-American [ 3 ] multinational financial services and software as a service ( SaaS) ... Irish \n",
+ "entrepreneur brothers John and Patrick Collison founded Stripe in Palo Alto, California, in 2010 , [ 9 ] and serve as \n",
+ "the company's president [ 10 ] and CEO, [ 11 ] respectively.\n",
+ "\n",
+ "[ The Collison Brothers and Story Behind The Founding Of \n",
+ "Stripe]( https://www.startupgrind.com/blog/the-collison-brothers-and-story-behind-the-founding-of-stripe/) \n",
+ "Stripe is a payment platform that aims to give developers the tools they need to create the most secure and novel \n",
+ "buying experiences. The company was founded in 2010 by brothers Patrick and John Collison, who started working on \n",
+ "it while they were still in high school and college.\n",
+ "\n",
+ "[ Stripe's Founders: The Story of Collison Brothers - \n",
+ "KITRUM]( https://kitrum.com/blog/stripe-founders-the-story-of-collison-brothers/) \n",
+ "The factors contributing to Stripe's rise in popularity. Back in May 2011 , Stripe acquired a $2 million investment \n",
+ "from a group of venture capitalists, including Peter Thiel, Elon Musk, Sequoia Capital, SV Angel, and Andreessen \n",
+ "Horowitz. Stripe then launched publicly in September 2011 after a lengthy private beta period.\n",
+ "\n",
+ "[ Stripe, Inc. - Simple English Wikipedia, the free encyclopedia]( https://simple.wikipedia.org/wiki/Stripe,_Inc.) \n",
+ "Stripe, Inc. is an Irish-American financial services and software as a service ( SaaS) company. It is headquartered \n",
+ "in South San Francisco, California, United States and Dublin, Ireland. [ 1 ] [ 2 ] The company offers payment software \n",
+ "for e-commerce websites and mobile applications. Stripe was founded in Palo Alto, California in 2009 .\n",
+ "\n",
+ "[ Stripe | Company Overview & News - Forbes]( https://www.forbes.com/companies/stripe/) \n",
+ "More than $1 trillion in payments now pass through Stripe's software on behalf of customers, a milestone reached \n",
+ "just over 12 years after its first product launch in 2011 . ... Founded 2009 ... \n",
+ "\n",
+ "[ Building a $95 Billion Startup: The Stripe Story - Wishpond \n",
+ "Blog]( https://blog.wishpond.com/post/115675438299/stripe-startup) \n",
+ "Stripe Background: How Stripe Was Started. Stripe was founded 11 years ago by John and Patrick Collison, aged 19 \n",
+ "and 21 at the time. Hailing from Dromineer, a small town on the shores of Lough Derg in County Tipperary, Ireland, \n",
+ "both the brothers were academically gifted and showed a special interest in math and physics from a very young age.\n",
+ "\n",
+ "[ Stripe History: Founding, Timeline, and Milestones - Zippia]( https://www.zippia.com/stripe-careers-39818/history/) \n",
+ "Stripe was founded in 2010 by Irish entrepreneurs Patrick and John Collison. John and Patrick first started working\n",
+ "on Stripe in early 2010 . In early 2010 John and Patrick began working on Stripe together. In 2010 he co-founded \n",
+ "Commonred which was acquired by Income.com.\n",
+ "\n",
+ "[ The Collison Brothers: The Story Behind The Founding Of \n",
+ "Stripe]( https://medium.com/startup-grind/the-collison-brothers-the-story-behind-the-founding-of-stripe-ae013434c080 \n",
+ ") \n",
+ "In 2012 , we updated this piece to reflect Bloomberg's latest report that Stripe had just raised an $18MM round with\n",
+ "Sequoia at a $100MM valuation. On July 28th, 2015 Stripe announced even bigger…\n",
+ "\n",
+ "[ Stripe co-founder and CEO Patrick Collison on \"prizing the small \n",
+ "... ]( https://newsroom.haas.berkeley.edu/stripe-co-founder-and-ceo-patrick-collison-on-founding-a-company-that-shoul \n",
+ "d-have-already-existed/) \n",
+ "Stripe was born when Patrick and John looked for a payment platform but couldn't find all of the features they \n",
+ "thought would be important. And Stripe debuted in 2010 and grew exponentially because the product is really simple \n",
+ "for businesses to implement. Of course, the back end is anything but simple, but it's easy on the front end for ... \n",
+ "\n",
+ "[ What is Stripe and why is the State investing $50 million in \n",
+ "it?]( https://www.irishtimes.com/business/technology/what-is-stripe-and-why-is-the-state-investing-50-million-in-it- \n",
+ "1.4510680) \n",
+ "They founded Stripe two years later, which became a tech unicorn - that is a privately-owned company worth more \n",
+ "than $1 billion in 2014 . John was named the world's youngest self-made ... \n",
+ " \n"
+ ],
+ "text/plain": [
+ "Observations: ## Search Results\n",
+ "\n",
+ "\u001b[1m[\u001b[0mStripe, Inc. - Wikipedia\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://en.wikipedia.org/wiki/Stripe,_Inc.\u001b[0m\u001b[4;94m)\u001b[0m\n",
+ "Stripe, Inc. is an Irish-American \u001b[1m[\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1m]\u001b[0m multinational financial services and software as a service \u001b[1m(\u001b[0mSaaS\u001b[1m)\u001b[0m \u001b[33m...\u001b[0m Irish \n",
+ "entrepreneur brothers John and Patrick Collison founded Stripe in Palo Alto, California, in \u001b[1;36m2010\u001b[0m, \u001b[1m[\u001b[0m\u001b[1;36m9\u001b[0m\u001b[1m]\u001b[0m and serve as \n",
+ "the company's president \u001b[1m[\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1m]\u001b[0m and CEO, \u001b[1m[\u001b[0m\u001b[1;36m11\u001b[0m\u001b[1m]\u001b[0m respectively.\n",
+ "\n",
+ "\u001b[1m[\u001b[0mThe Collison Brothers and Story Behind The Founding Of \n",
+ "Stripe\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://www.startupgrind.com/blog/the-collison-brothers-and-story-behind-the-founding-of-stripe/\u001b[0m\u001b[4;94m)\u001b[0m\n",
+ "Stripe is a payment platform that aims to give developers the tools they need to create the most secure and novel \n",
+ "buying experiences. The company was founded in \u001b[1;36m2010\u001b[0m by brothers Patrick and John Collison, who started working on \n",
+ "it while they were still in high school and college.\n",
+ "\n",
+ "\u001b[1m[\u001b[0mStripe's Founders: The Story of Collison Brothers - \n",
+ "KITRUM\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://kitrum.com/blog/stripe-founders-the-story-of-collison-brothers/\u001b[0m\u001b[4;94m)\u001b[0m\n",
+ "The factors contributing to Stripe's rise in popularity. Back in May \u001b[1;36m2011\u001b[0m, Stripe acquired a $\u001b[1;36m2\u001b[0m million investment \n",
+ "from a group of venture capitalists, including Peter Thiel, Elon Musk, Sequoia Capital, SV Angel, and Andreessen \n",
+ "Horowitz. Stripe then launched publicly in September \u001b[1;36m2011\u001b[0m after a lengthy private beta period.\n",
+ "\n",
+ "\u001b[1m[\u001b[0mStripe, Inc. - Simple English Wikipedia, the free encyclopedia\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://simple.wikipedia.org/wiki/Stripe,_Inc.\u001b[0m\u001b[4;94m)\u001b[0m\n",
+ "Stripe, Inc. is an Irish-American financial services and software as a service \u001b[1m(\u001b[0mSaaS\u001b[1m)\u001b[0m company. It is headquartered \n",
+ "in South San Francisco, California, United States and Dublin, Ireland. \u001b[1m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1m]\u001b[0m \u001b[1m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m The company offers payment software \n",
+ "for e-commerce websites and mobile applications. Stripe was founded in Palo Alto, California in \u001b[1;36m2009\u001b[0m.\n",
+ "\n",
+ "\u001b[1m[\u001b[0mStripe | Company Overview & News - Forbes\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://www.forbes.com/companies/stripe/\u001b[0m\u001b[4;94m)\u001b[0m\n",
+ "More than $\u001b[1;36m1\u001b[0m trillion in payments now pass through Stripe's software on behalf of customers, a milestone reached \n",
+ "just over \u001b[1;36m12\u001b[0m years after its first product launch in \u001b[1;36m2011\u001b[0m. \u001b[33m...\u001b[0m Founded \u001b[1;36m2009\u001b[0m \u001b[33m...\u001b[0m\n",
+ "\n",
+ "\u001b[1m[\u001b[0mBuilding a $\u001b[1;36m95\u001b[0m Billion Startup: The Stripe Story - Wishpond \n",
+ "Blog\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://blog.wishpond.com/post/115675438299/stripe-startup\u001b[0m\u001b[4;94m)\u001b[0m\n",
+ "Stripe Background: How Stripe Was Started. Stripe was founded \u001b[1;36m11\u001b[0m years ago by John and Patrick Collison, aged \u001b[1;36m19\u001b[0m \n",
+ "and \u001b[1;36m21\u001b[0m at the time. Hailing from Dromineer, a small town on the shores of Lough Derg in County Tipperary, Ireland, \n",
+ "both the brothers were academically gifted and showed a special interest in math and physics from a very young age.\n",
+ "\n",
+ "\u001b[1m[\u001b[0mStripe History: Founding, Timeline, and Milestones - Zippia\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://www.zippia.com/stripe-careers-39818/history/\u001b[0m\u001b[4;94m)\u001b[0m\n",
+ "Stripe was founded in \u001b[1;36m2010\u001b[0m by Irish entrepreneurs Patrick and John Collison. John and Patrick first started working\n",
+ "on Stripe in early \u001b[1;36m2010\u001b[0m. In early \u001b[1;36m2010\u001b[0m John and Patrick began working on Stripe together. In \u001b[1;36m2010\u001b[0m he co-founded \n",
+ "Commonred which was acquired by Income.com.\n",
+ "\n",
+ "\u001b[1m[\u001b[0mThe Collison Brothers: The Story Behind The Founding Of \n",
+ "Stripe\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://medium.com/startup-grind/the-collison-brothers-the-story-behind-the-founding-of-stripe-ae013434c080\u001b[0m\n",
+ "\u001b[4;94m)\u001b[0m\n",
+ "In \u001b[1;36m2012\u001b[0m, we updated this piece to reflect Bloomberg's latest report that Stripe had just raised an $18MM round with\n",
+ "Sequoia at a $100MM valuation. On July 28th, \u001b[1;36m2015\u001b[0m Stripe announced even bigger…\n",
+ "\n",
+ "\u001b[1m[\u001b[0mStripe co-founder and CEO Patrick Collison on \"prizing the small \n",
+ "\u001b[33m...\u001b[0m\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://newsroom.haas.berkeley.edu/stripe-co-founder-and-ceo-patrick-collison-on-founding-a-company-that-shoul\u001b[0m\n",
+ "\u001b[4;94md-have-already-existed/\u001b[0m\u001b[4;94m)\u001b[0m\n",
+ "Stripe was born when Patrick and John looked for a payment platform but couldn't find all of the features they \n",
+ "thought would be important. And Stripe debuted in \u001b[1;36m2010\u001b[0m and grew exponentially because the product is really simple \n",
+ "for businesses to implement. Of course, the back end is anything but simple, but it's easy on the front end for \u001b[33m...\u001b[0m\n",
+ "\n",
+ "\u001b[1m[\u001b[0mWhat is Stripe and why is the State investing $\u001b[1;36m50\u001b[0m million in \n",
+ "it?\u001b[1m]\u001b[0m\u001b[1m(\u001b[0m\u001b[4;94mhttps://www.irishtimes.com/business/technology/what-is-stripe-and-why-is-the-state-investing-50-million-in-it-\u001b[0m\n",
+ "\u001b[4;94m1.4510680\u001b[0m\u001b[4;94m)\u001b[0m\n",
+ "They founded Stripe two years later, which became a tech unicorn - that is a privately-owned company worth more \n",
+ "than $\u001b[1;36m1\u001b[0m billion in \u001b[1;36m2014\u001b[0m. John was named the world's youngest self-made \u001b[33m...\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 0: Duration 3.77 seconds| Input tokens: 1,599 | Output tokens: 20] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 0: Duration 3.77 seconds| Input tokens: 1,599 | Output tokens: 20]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m1\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ Calling tool: 'final_answer' with arguments: {'answer': '### 1. Task outcome (short version):\\\\\\\\\\\\\\\\nStripe │\n",
+ "│ was founded in 2010.\\\\\\\\\\\\\\\\n\\\\\\\\\\\\\\\\n### 2. Task outcome (extremely detailed version):\\\\\\\\\\\\\\\\nStripe, Inc. │\n",
+ "│ was founded in 2010 by Irish brothers John and Patrick Collison. The company, which offers payment software for │\n",
+ "│ e-commerce websites and mobile applications, was initially established in Palo Alto, California. John and │\n",
+ "│ Patrick, who were 19 and 21 years old at the time, respectively, began working on Stripe in early 2010. The │\n",
+ "│ company publicly launched in September 2011 after a lengthy private beta period.\\\\\\\\\\\\\\\\n\\\\\\\\\\\\\\\\n### 3. │\n",
+ "│ Additional context (if relevant):\\\\\\\\\\\\\\\\n- The Collison brothers secured a $2 million investment from notable │\n",
+ "│ investors, including Peter Thiel, Elon Musk, Sequoia Capital, and others, in May 2011.\\\\\\\\\\\\\\\\n- Stripe has │\n",
+ "│ since grown significantly, processing over $1 trillion in payments through its software, contributing to its │\n",
+ "│ rapid rise in popularity. The company has become a leading player in the financial technology sector, with a │\n",
+ "│ valuation that has surpassed $95 billion.'} │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ Calling tool: 'final_answer' with arguments: {'answer': '### 1. Task outcome (short version):\\\\\\\\\\\\\\\\nStripe │\n",
+ "│ was founded in 2010.\\\\\\\\\\\\\\\\n\\\\\\\\\\\\\\\\n### 2. Task outcome (extremely detailed version):\\\\\\\\\\\\\\\\nStripe, Inc. │\n",
+ "│ was founded in 2010 by Irish brothers John and Patrick Collison. The company, which offers payment software for │\n",
+ "│ e-commerce websites and mobile applications, was initially established in Palo Alto, California. John and │\n",
+ "│ Patrick, who were 19 and 21 years old at the time, respectively, began working on Stripe in early 2010. The │\n",
+ "│ company publicly launched in September 2011 after a lengthy private beta period.\\\\\\\\\\\\\\\\n\\\\\\\\\\\\\\\\n### 3. │\n",
+ "│ Additional context (if relevant):\\\\\\\\\\\\\\\\n- The Collison brothers secured a $2 million investment from notable │\n",
+ "│ investors, including Peter Thiel, Elon Musk, Sequoia Capital, and others, in May 2011.\\\\\\\\\\\\\\\\n- Stripe has │\n",
+ "│ since grown significantly, processing over $1 trillion in payments through its software, contributing to its │\n",
+ "│ rapid rise in popularity. The company has become a leading player in the financial technology sector, with a │\n",
+ "│ valuation that has surpassed $95 billion.'} │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Final answer: ### 1. Task outcome (short version):\\\\\\\\nStripe was founded in 2010.\\\\\\\\n\\\\\\\\n### 2. Task outcome \n",
+ "(extremely detailed version):\\\\\\\\nStripe, Inc. was founded in 2010 by Irish brothers John and Patrick Collison. The \n",
+ "company, which offers payment software for e-commerce websites and mobile applications, was initially established \n",
+ "in Palo Alto, California. John and Patrick, who were 19 and 21 years old at the time, respectively, began working \n",
+ "on Stripe in early 2010. The company publicly launched in September 2011 after a lengthy private beta \n",
+ "period.\\\\\\\\n\\\\\\\\n### 3. Additional context (if relevant):\\\\\\\\n- The Collison brothers secured a $2 million \n",
+ "investment from notable investors, including Peter Thiel, Elon Musk, Sequoia Capital, and others, in May \n",
+ "2011.\\\\\\\\n- Stripe has since grown significantly, processing over $1 trillion in payments through its software, \n",
+ "contributing to its rapid rise in popularity. The company has become a leading player in the financial technology \n",
+ "sector, with a valuation that has surpassed $95 billion. \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;38;2;212;183;2mFinal answer: ### 1. Task outcome (short version):\\\\\\\\nStripe was founded in 2010.\\\\\\\\n\\\\\\\\n### 2. Task outcome \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2m(extremely detailed version):\\\\\\\\nStripe, Inc. was founded in 2010 by Irish brothers John and Patrick Collison. The\u001b[0m\n",
+ "\u001b[1;38;2;212;183;2mcompany, which offers payment software for e-commerce websites and mobile applications, was initially established \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2min Palo Alto, California. John and Patrick, who were 19 and 21 years old at the time, respectively, began working \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2mon Stripe in early 2010. The company publicly launched in September 2011 after a lengthy private beta \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2mperiod.\\\\\\\\n\\\\\\\\n### 3. Additional context (if relevant):\\\\\\\\n- The Collison brothers secured a $2 million \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2minvestment from notable investors, including Peter Thiel, Elon Musk, Sequoia Capital, and others, in May \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2m2011.\\\\\\\\n- Stripe has since grown significantly, processing over $1 trillion in payments through its software, \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2mcontributing to its rapid rise in popularity. The company has become a leading player in the financial technology \u001b[0m\n",
+ "\u001b[1;38;2;212;183;2msector, with a valuation that has surpassed $95 billion.\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 1: Duration 34.02 seconds| Input tokens: 4,290 | Output tokens: 288] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 1: Duration 34.02 seconds| Input tokens: 4,290 | Output tokens: 288]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ "### 1. Task outcome (short version):\\\\\\\\nStripe was founded in 2010.\\\\\\\\n\\\\\\\\n### 2. Task outcome (extremely \n",
+ "detailed version):\\\\\\\\nStripe, Inc. was founded in 2010 by Irish brothers John and Patrick Collison. The company, \n",
+ "which offers payment software for e-commerce websites and mobile applications, was initially established in Palo \n",
+ "Alto, California. John and Patrick, who were 19 and 21 years old at the time, respectively, began working on Stripe\n",
+ "in early 2010. The company publicly launched in September 2011 after a lengthy private beta period.\\\\\\\\n\\\\\\\\n### 3.\n",
+ "Additional context (if relevant):\\\\\\\\n- The Collison brothers secured a $2 million investment from notable \n",
+ "investors, including Peter Thiel, Elon Musk, Sequoia Capital, and others, in May 2011.\\\\\\\\n- Stripe has since grown\n",
+ "significantly, processing over $1 trillion in payments through its software, contributing to its rapid rise in \n",
+ "popularity. The company has become a leading player in the financial technology sector, with a valuation that has \n",
+ "surpassed $95 billion.\n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ "### 1. Task outcome (short version):\\\\\\\\nStripe was founded in 2010.\\\\\\\\n\\\\\\\\n### 2. Task outcome (extremely \n",
+ "detailed version):\\\\\\\\nStripe, Inc. was founded in 2010 by Irish brothers John and Patrick Collison. The company, \n",
+ "which offers payment software for e-commerce websites and mobile applications, was initially established in Palo \n",
+ "Alto, California. John and Patrick, who were 19 and 21 years old at the time, respectively, began working on Stripe\n",
+ "in early 2010. The company publicly launched in September 2011 after a lengthy private beta period.\\\\\\\\n\\\\\\\\n### 3.\n",
+ "Additional context (if relevant):\\\\\\\\n- The Collison brothers secured a $2 million investment from notable \n",
+ "investors, including Peter Thiel, Elon Musk, Sequoia Capital, and others, in May 2011.\\\\\\\\n- Stripe has since grown\n",
+ "significantly, processing over $1 trillion in payments through its software, contributing to its rapid rise in \n",
+ "popularity. The company has become a leading player in the financial technology sector, with a valuation that has \n",
+ "surpassed $95 billion.\n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 0: Duration 45.47 seconds| Input tokens: 2,691 | Output tokens: 268] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 0: Duration 45.47 seconds| Input tokens: 2,691 | Output tokens: 268]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m1\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 import datetime │\n",
+ "│ 2 │\n",
+ "│ 3 founding_year = 2010 │\n",
+ "│ 4 current_year = datetime . datetime . now() . year │\n",
+ "│ 5 years_since_founded = current_year - founding_year │\n",
+ "│ 6 print(years_since_founded) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34mimport\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdatetime\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m2 \u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m3 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfounding_year\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;174;129;255;48;2;39;40;34m2010\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m4 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcurrent_year\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdatetime\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mdatetime\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mnow\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m.\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34myear\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m5 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34myears_since_founded\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m=\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mcurrent_year\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;255;70;137;48;2;39;40;34m-\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfounding_year\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m6 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mprint\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34myears_since_founded\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Execution logs: \n",
+ "15\n",
+ "\n",
+ "Out: None\n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1mExecution logs:\u001b[0m\n",
+ "15\n",
+ "\n",
+ "Out: None\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 1: Duration 7.91 seconds| Input tokens: 5,155 | Output tokens: 350] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 1: Duration 7.91 seconds| Input tokens: 5,155 | Output tokens: 350]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[38;2;212;183;2m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \u001b[0m\u001b[1mStep \u001b[0m\u001b[1;36m2\u001b[0m\u001b[38;2;212;183;2m ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "╭─ Executing this code: ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ 1 final_answer(years_since_founded) │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n",
+ " \n"
+ ],
+ "text/plain": [
+ "╭─ \u001b[1mExecuting this code:\u001b[0m ──────────────────────────────────────────────────────────────────────────────────────────╮\n",
+ "│ \u001b[1;38;2;227;227;221;48;2;39;40;34m \u001b[0m\u001b[38;2;101;102;96;48;2;39;40;34m1 \u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34mfinal_answer\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m(\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34myears_since_founded\u001b[0m\u001b[38;2;248;248;242;48;2;39;40;34m)\u001b[0m\u001b[48;2;39;40;34m \u001b[0m │\n",
+ "╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "Out - Final answer: 15 \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[1;38;2;212;183;2mOut - Final answer: 15\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "[Step 2: Duration 5.18 seconds| Input tokens: 7,808 | Output tokens: 406] \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2m[Step 2: Duration 5.18 seconds| Input tokens: 7,808 | Output tokens: 406]\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
},
{
"data": {
"text/plain": [
- "14"
+ "15"
]
},
- "execution_count": 26,
+ "execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -376,9 +851,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "cookbook2",
+ "display_name": "test2",
"language": "python",
- "name": "cookbook2"
+ "name": "test2"
},
"language_info": {
"codemirror_mode": {
diff --git a/notebooks/en/search_and_learn.ipynb b/notebooks/en/search_and_learn.ipynb
new file mode 100644
index 00000000..4fc052ed
--- /dev/null
+++ b/notebooks/en/search_and_learn.ipynb
@@ -0,0 +1,8207 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xctusmJ6BZ6_"
+ },
+ "source": [
+ "# Scaling Test-Time Compute for Longer Thinking in LLMs\n",
+ "\n",
+ "_Authored by: [Sergio Paniego](https://github.com/sergiopaniego)_"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "JmgoppItAO7B"
+ },
+ "source": [
+ "🚨 **WARNING**: This notebook is **resource-intensive** and requires substantial computational power. If you’re running this in **Colab**, it will utilize an **A100 GPU**.\n",
+ "\n",
+ "---\n",
+ "\n",
+ "In this recipe, we'll guide you through extending the inference time for an **Instruct LLM system** using **test-time compute** to solve more challenging problems, such as **complex math problems**. This approach, inspired by [**OpenAI o1-o3 models**](https://openai.com/index/learning-to-reason-with-llms/), demonstrates that **longer reasoning time** during inference can enhance model performance.\n",
+ "\n",
+ "This technique builds on experiments shared in [this **blog post**](https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute), which show that smaller models, like the **1B** and **3B Llama Instruct models**, can outperform much larger ones on the **MATH-500 benchmark** when given enough **\"time to think\"**. Recent research from [DeepMind](https://arxiv.org/abs/2408.03314) suggests that **test-time compute** can be scaled optimally through strategies like iterative self-refinement or using a reward model.\n",
+ "\n",
+ "The blog introduces a [**new repository**](https://github.com/huggingface/search-and-learn) for running these experiments. In this recipe, we'll focus on building a **small chatbot** that engages in **longer reasoning** to tackle **harder problems** using small open models.\n",
+ "\n",
+ "![Instruct LLM Methodology](https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-thumbnail.png)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "twKCzVIg71Xa"
+ },
+ "source": [
+ "## 1. Install Dependencies\n",
+ "\n",
+ "Let’s start by installing the [search-and-learn](https://github.com/huggingface/search-and-learn) repository! 🚀 \n",
+ "This repo is designed to replicate the experimental results and is not a Python pip package. However, we can still use it to generate our system. To do so, we’ll need to install it from source with the following steps:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "t0YDC2_7XTm8",
+ "outputId": "d804071f-8a3e-4463-9721-d6100ae1d48b"
+ },
+ "outputs": [],
+ "source": [
+ "!git clone https://github.com/huggingface/search-and-learn"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "kT3jH_d_XcEb",
+ "outputId": "b50f463e-2c9d-4554-cd20-00887acc2114"
+ },
+ "outputs": [],
+ "source": [
+ "%cd search-and-learn\n",
+ "!pip install -e '.[dev]'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "VAQHu9T176zh"
+ },
+ "source": [
+ "Log in to Hugging Face to access [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct), as it is a gated model! 🗝️ \n",
+ "If you haven't previously requested access, you'll need to submit a request before proceeding.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 17,
+ "referenced_widgets": [
+ "2eb64217adde437ea678f68ed612cdc5",
+ "931ce892773c44c6a1e2610d3c620617",
+ "2cbb5166d93a45eda909a8b7fd6df23a",
+ "0b25f7b04ee34fd0a2b1b6920d958d2d",
+ "52d9e4bbb17948ee80f9ad60e21ce32f",
+ "7e130cc78a7e435d9bc06b360ee9c895",
+ "80afab3a0c0b41c78ede99a63bd3ae89",
+ "836f79da2255418dae54c518bd5e9f18",
+ "85d1f3abd57444608539f45a7532dae3",
+ "9fd575fd748f488399f886d1f1d840a3",
+ "2d92e9d40c174518bde5a8f27c3ff270",
+ "e365dcfc89b2464cb5edd6d66eef6ac5",
+ "af7f28d3b88448d2ababbd739be1c431",
+ "2950fa6d48fc4220a8350ae264a09452",
+ "fd0276e87a70434ab3c0f81f54c9fdcd",
+ "e25c2e7311bd455389dd4387bbab4eb1",
+ "8b382820d7ee4387ad39070fe09eb214",
+ "a771cd3bc92e43db917238c1c23c1a58",
+ "cd2a46d086a64dc4a7e53facc3ba4c84",
+ "316860b81fec4959be9f7ff9c077c4a4"
+ ]
+ },
+ "id": "pnEaTlFYZF_H",
+ "outputId": "aa361d8b-23b9-4c21-aa4c-2c0771ea40b7"
+ },
+ "outputs": [],
+ "source": [
+ "from huggingface_hub import notebook_login\n",
+ "\n",
+ "notebook_login()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "wX07zCTA8MWL"
+ },
+ "source": [
+ "## 2. Setup the Large Language Model (LLM) and the Process Reward Model (PRM) 💬\n",
+ "\n",
+ "As illustrated in the diagram, the system consists of an LLM that generates intermediate answers based on user input, a [PRM model](https://huggingface.co/papers/2211.14275) that evaluates and scores these answers, and a search strategy that uses the PRM feedback to guide the subsequent steps in the search process until reaching the final answer.\n",
+ "\n",
+ "Let’s begin by initializing each model. For the LLM, we’ll use the [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) model, and for the PRM, we’ll use the [RLHFlow/Llama3.1-8B-PRM-Deepseek-Data](https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data) model.\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IkJw0x7gDJEY"
+ },
+ "source": [
+ "![system](https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/system.png)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000,
+ "referenced_widgets": [
+ "fe0917922ba74b39b30a65f7124dc928",
+ "7aa678d10ec94310bae0d91230f29c59",
+ "0cd30408a9064af3b4714480ca7e07af",
+ "a5166e10eb854c928e7a3c574b064117",
+ "e5f328d18abc41c7ac45d2d155f0b7a6",
+ "f54b35d34059478398858a0fee55a27a",
+ "6e2a18c548c340a68f1b02ef088c479e",
+ "417f706120084013894c37a03a801b72",
+ "b9f16648d0634c33bcddc53b6fec64c1",
+ "5aabf826c3624049a9e0c74af162fa6e",
+ "913de0704d284aae9d3c370c498c260c",
+ "61842fb4022e49858721245d2b53665e",
+ "e6658676c1794dab9846f7728e0ff693",
+ "c4bf4bd8225e49838a35c03755789009",
+ "8739c11b9bcc4ea8ad52b39e79ebf64d",
+ "047c712bf83749b5865154b6c9b9b2cb",
+ "676754b3e45f42a8b5b2d9ef4ffa2d2f",
+ "3984f25f0adb4500b547c88f89c94d1c",
+ "fdb9573f543044f6a5aad23f93bb4495",
+ "3245c34c321d4b619cf298b3e115dce0",
+ "eecc4d3405044a56ae4e35bd781dc24b",
+ "716a8e95d08046638d18073903ab7dd6",
+ "17b6419533e741269efc9b1bc576bbac",
+ "166fe6e879ed4ffe93e95e57cc1a33c1",
+ "e3e8a88baf3d433e9e7ce21b5cef25d2",
+ "7a57d35a8d5849978c5da915066fba07",
+ "694b13c90089406495c9cbb889abcd7c",
+ "5f3a01f17a1047c1a276dbe68dacb01b",
+ "64c21cbdda28425888cfb4490c6577aa",
+ "f9bce0075fdf4307917b14fc6ad1e8a2",
+ "199d637631184408ae4381c3be8119cf",
+ "a95c1f7fa74f431680d3c1fb9c26cce2",
+ "5b2c2f30b7ec4c0cb9673800f7e638d5",
+ "ccabbd872fff4674920bb1363ad4efc1",
+ "4979a6b731ce4d9aba7048af131363e3",
+ "0984271be2ac490cb567ded20c7ff573",
+ "0cfd43ace9cd4a178a5aad78b6ae5e9f",
+ "50830d1a523c475cab4324618abe8bba",
+ "c5ce9e4f6e304a1a982a667b981c4813",
+ "9216235054cb4792b2d3d8069b47e513",
+ "93568386697e40f9b94108068a0fe532",
+ "5416b2d19a9a46deaa9296c2d013aff7",
+ "7bfeb8e8e669467fb69e2f67fee07c70",
+ "edc7686f862f4b51ad7b372de5b874b2",
+ "b115a214ab7f407daeaa5698dfb6d5e2",
+ "f8e8e5f49e7b47e094cd04be7f477c82",
+ "7f03403ba2df49bda5eb54a0a45dc7ba",
+ "9d664e016bac47318b70a30886c79b36",
+ "577aec88dafe4477b8879c8880fa5ddf",
+ "e43fff8b542845d89a1c2fbc1fdfdfdb",
+ "677d343dffae408d91b67b5e213190e1",
+ "0a86ee24d2fb4317afb7e71f23d5e635",
+ "40ffcc80dbe947e49153ee2f1edde632",
+ "6d248ceb52884dd7b213f8bac52487c4",
+ "08e1f1d7e8dc433f83b0b9b2f18f3c20",
+ "3b5875979a77480c99e55337de349cad",
+ "a2c38c928e154ff0a4467f979379bd70",
+ "bbe1645a775d4055baa8a53d644224b7",
+ "e782eedd0aaf405fabb591c1c5acc498",
+ "4260a751046e48dbbc298d30e2dc1230",
+ "b587f122a951473293a6bf9456731060",
+ "e196bc1e77bc47559ac55fa913678959",
+ "8a8f4325061b4d1dbc71a5f36f952cd2",
+ "4f8edb03b9c14c1d8c4d74044d9266c3",
+ "f4f3b8e3e31546c99504c85595275955",
+ "a95ea38c979b4cbea9497438544f371c",
+ "b91d1e46e6dd4ccaad36c4976d0f574f",
+ "78eb58ae967d48d5915fc9066caf53ff",
+ "17fb70d770d64f1991048a53c12325a0",
+ "bb8347cd04104220b694f263ca08d656",
+ "3ded49a724024b67b2c9fd4ff234b19c",
+ "ca6049f7a93b4204afdda5b51ab7a96e",
+ "7d480ed9e38a46db9ad725ae0eaed8cd",
+ "8c9e29eafb7a476292f3e2f2f465139a",
+ "9b8b3bd3dc7e4b62845ef9d536963383",
+ "4aa47156ddf84e479e25f525fc9f239c",
+ "5be5c23b43a348f38fb3acc7e6d3f492",
+ "e22cf91ce2b745dfae177a9f9d2b4876",
+ "d43a139190b84e099cf40d1ca28bb40e",
+ "be3a7ca798224d85a6952c600713f5a6",
+ "54ef03232c434e048dc5a1ec9fa10767",
+ "fc9cfc8f2ff544de9c96a0312e3bb8f3",
+ "b73e30c255f049368f4977d75a3e0fd5",
+ "23c388906e2546be81a1b4874d5b3464",
+ "1dff9b27141b423fb6248db6ef94d6f5",
+ "17d0dabc9102456e99fe798db17a8394",
+ "8aceeecc53a24af3b0499e414b89a967",
+ "c5f3d65377b1403d84735c0a178ebe4a",
+ "96b5f18e9a7443cdbde7830d878cdd41",
+ "27b93682d01f489394a9be7019cc984e",
+ "776e6c081234415f9749bdd715cb14bf",
+ "30d26d7f53f042f2b55fcf96d74ac705",
+ "a364e102048540ac820eed7aaf7bd22e",
+ "a1a08c49fc404304bc11177d7b891523",
+ "0dc7cb7542944ca2aba3998ea795b935",
+ "30ce2ff2c5bf423b9a4e18d206f8f9dc",
+ "efd6b64338224df085703de02c227b12",
+ "9ff13ef60be54ffba65a851d7ad0c808",
+ "eb4630737b314b648cc972ecaa1c04d8",
+ "d6b26032e9a24e2f82d4ff35fc30d0b2",
+ "a3e1772583b748a7b6b28a6a50a1986c",
+ "21b0ba9bb6324bfba88072bdf8d9cb17",
+ "ad110b20a34a407689cceb7eb8d4f782",
+ "3e3655585fd64b1e8e544b201ca05484",
+ "3426b45fb7694749a94000e2cad3176c",
+ "0ab2e258698a44b8b73bb0ff08bb119d",
+ "fb3d75575d1b488aa84901cfcc7fc41a",
+ "606b2dd779634d74bfdce28ff0486500",
+ "ac5b6d37904747158108ebfb92f6f8af",
+ "c0110e7b524a40ccaf047ef8d54d90e9",
+ "d5ab5ace61064974a5efdc8ed24205b2",
+ "941c2a47c62748ac8e06660cba50a15a",
+ "5ec2f4d3b3b443f79753145a62c593d2",
+ "4dcf482546714ff5a90056d43a7ea454",
+ "ea9e9603b27543aa808ef73079aa7789",
+ "e7106f0a63ad46ccba4225e0ebfa4b91",
+ "d8d78b7fdc19439490e4471652faecbd",
+ "e283f794d33540c5a2f1d0f6f5b659a9",
+ "7f0fde3e3b4b4f948c65ebb6985690aa",
+ "be6306c271df4f749d5c8935df7687fb",
+ "d2b41431f8b647c0aa6c3341c844ada5",
+ "ed4bff3ec46c4109bec062e64a0d6535",
+ "578d4d8fcfdf467fa7cfacc412fc3b70",
+ "6008116117644c29aaadec6bcc54c163",
+ "9847da876cd34890a78773de534cce5b",
+ "d52efd72ac444cd0a851209b01a14b27",
+ "befb9effbed24ffba832a7145a99d877",
+ "f6b3a3c1127e4dd88dd104ba720f0485",
+ "973b5ca280b74764b2b3d54a3726eb52",
+ "424838cfd80649969cff21fd3025f0a0",
+ "1924e5d88281470d88030ea2d4ee4195",
+ "882c79c490a345a096eafb4e683fefb4",
+ "d75ebee963504f0f86351d99a58d570f",
+ "d6aa51bd4be7442ea3448dbf14fe2b75",
+ "09c264c2f16f4edabb255012002d4a9e",
+ "b2a4df20aa96473ebc8181a067cadd9d",
+ "1007054a3230483ab610b9dd60bc6597",
+ "229a7fee80174b20885e2d4e9e09aade",
+ "bde3cb2b605a4dd5a640a0b2dde2cbf7",
+ "0efc75672b2f4541be367c227806a1aa",
+ "b62a7faa1dce473fbb5a26f8965b5a9c",
+ "7cc997df524d45acae5b8521a26c125b",
+ "18beaa5117a24a5a9fd67a68392d6dc6",
+ "3ace764f64954b5ea8c1a358c6fc23af",
+ "85b961a40f3c4346974d45234e7267d4",
+ "22b0318fcc3546d2a43ec2125fc7ac2c",
+ "e5768e2bf62c4a41be68d5d7151bb979",
+ "3a928a4e95e84092ad6e758ac76c9740",
+ "8de158062e3d434ab06ab92533499336",
+ "a7d9853c71b44d1d98e9ef9d97f122a3",
+ "99a05b35254a49618d2acba96830a8d5",
+ "1d0378f0f591482fbb4a6625c409e390",
+ "567f20c4fa4c44aa94f0e96bd15a9753",
+ "eee8e68099a84ba991d96cf4eb194d2c",
+ "fa97670d8c654a62b97428d374d37a69",
+ "20dece21a48b42bdbaf7d65365722edc",
+ "dd8279f4cfb44f54a230dfb42dcb8ee2",
+ "355fbd23b17c491592dc6708184d8b75",
+ "a5093e51b2304f4aaca34f4cb5db6891",
+ "058cf74b83fd45abaa97527a87d426b8",
+ "f85fd34e4774481bbecfc3e96390541f",
+ "af2c573b7a214269b7351aff23cdff56",
+ "955ee6acd8474f5a9b4497ca9755b96a",
+ "2e0af3ad38ec4374a9804366f7e9226d",
+ "513595a72e544b3cbcb51c7d52d826cf",
+ "3e37a6a04aa044f0ba9d83cfce888a27",
+ "27ca78201e8f4ceaa1d95d75c29e89f9",
+ "39218069dd634dd2a2315b24d489a94c",
+ "83acba963a954725a6c04080d9c07408",
+ "3bd8247268724e25b95ded14cbe5d7a7",
+ "33d05b505b694362830c5bcf1107a829",
+ "8595ec987546450a910098762ce8ac08",
+ "91863a63c00d4159ad96ab56e6e5e724",
+ "a28292c6f89d4157b53f77b4fcea1f97",
+ "1dece532a91d4db2a0e72a06e32ec0c0",
+ "0f98f44b8348400aab1e3752df6f8ea9",
+ "e3b9f6cabff94c4d992fa7b4e4ef7f0e",
+ "77194e7f70104fb3a667df3ca6091c98",
+ "87798f9512e44334a3cc47046dbf1140",
+ "7b875683e91c4690adbc3040bc2e606c",
+ "a0ddf05138c84444aecbbd98c119844d",
+ "fe79650b16f747d9ab6f7d47534e6fd0",
+ "cc29d971064a4593a66b65a7ce930631",
+ "c4c21241031947f19fd94a4651f3c330",
+ "5ad5c21faa634862ad6b07c913e0d830",
+ "eef9192b46c248b2a22c48b2669cd8e2",
+ "5570f559162a49108e8b1c53b5adda91",
+ "3f3eaf9ea4af498d986d02d1d0452ae7",
+ "2288b85ce9b84347b56e9e3070347d54",
+ "f02ab5e985664a719c51ef9e942da895",
+ "98f56a4bb9454d8a830c015568ff033f",
+ "a26c6e4b1ba04a6e8ae038ecea3f005d",
+ "6d0ba4c3a7c148829133f1d97b856d28",
+ "7a77a067304a4e5db1635bb816366db9",
+ "eba1fc38263348868f59f7896f950f62",
+ "3cf67a7115b345d8960364a6de6ab679",
+ "1f8ae4fec2c34cdc80171cf0c2755511",
+ "a4fd1197ec8e4c659b4a7cbecbe7e3e7",
+ "874387baddbf4db6837530a19f7367d5",
+ "b5717c9b0d544d04be1499cbcaf41578",
+ "25d693efa97841f9b809acae2d755aff",
+ "297453fc2b014deda635938ee6243082",
+ "eb08a8283d35405fb0f1a278fbdb896a",
+ "534a1fc160834acbbc668a75ae0de72c",
+ "7d1dcc9929434797af6d9b8e69f2e576",
+ "51f74002a7d149c39beacafffd3a9498",
+ "0913e55c2b024d7ea50d368b5bd73e5c",
+ "0bad67b6787e4d81a6a43c388d498c97",
+ "62039f5227084c18911025d04ed8d3bb"
+ ]
+ },
+ "id": "MG1MolfxmZ7M",
+ "outputId": "b8271db3-a092-4ef9-aacb-730ef489a89e"
+ },
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "from vllm import LLM\n",
+ "from sal.models.reward_models import RLHFFlow\n",
+ "\n",
+ "model_path=\"meta-llama/Llama-3.2-1B-Instruct\"\n",
+ "prm_path=\"RLHFlow/Llama3.1-8B-PRM-Deepseek-Data\"\n",
+ "\n",
+ "llm = LLM(\n",
+ " model=model_path,\n",
+ " gpu_memory_utilization=0.5, # Utilize 50% of GPU memory\n",
+ " enable_prefix_caching=True, # Optimize repeated prefix computations\n",
+ " seed=42, # Set seed for reproducibility\n",
+ ")\n",
+ "\n",
+ "prm = RLHFFlow(prm_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xYtPn0_V_YRx"
+ },
+ "source": [
+ "### 2.1 Instantiate the Question, Search Strategy, and Call the Pipeline\n",
+ "\n",
+ "Now that we've set up the LLM and PRM, let's proceed by defining the question, selecting a search strategy to retrieve relevant information, and calling the pipeline to process the question through the models.\n",
+ "\n",
+ "1. **Instantiate the Question**: In this step, we define the input question that the system will answer, considering the given context.\n",
+ "\n",
+ "2. **Search Strategy**: The system currently supports the following search strategies: `best_of_n`, `beam_search`, and `dvts` (see diagram). For this example, we'll use `best_of_n`, but you can easily switch to any of the other strategies based on your needs. We need to define some configuration parameters for the configuration of the search strategy. You can check the full list [here](https://github.com/huggingface/search-and-learn/blob/main/src/sal/config.py).\n",
+ "\n",
+ "3. **Call the Pipeline**: With the question and search strategy in place, we’ll call the inference pipeline, processing the inputs through both the LLM and PRM to generate the final answer."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xSWINPerJrhm"
+ },
+ "source": [
+ "![](https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/search-strategies.png)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "z69xD6i2L5a6"
+ },
+ "source": [
+ "The first step is to clearly define the question that the system will answer. This ensures that we have a precise task for the model to tackle."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "id": "83puLxhzsOM0"
+ },
+ "outputs": [],
+ "source": [
+ "question_text = 'Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$'\n",
+ "input_batch = {\"problem\": [question_text]}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "yGpyzMNkAO7H"
+ },
+ "source": [
+ "Next, we define the configuration, including parameters like the number of candidate answers `(N)`, and choose the search strategy that will be used. The search strategy dictates how we explore the potential answers. In this case, we'll use `best_of_n`.\n",
+ "\n",
+ "With the question and configuration in place, we use the selected search strategy to generate multiple candidate answers. These candidates are evaluated based on their relevance and quality and the final answer is returned.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "id": "C6s6GS16QZLV"
+ },
+ "outputs": [],
+ "source": [
+ "from sal.config import Config\n",
+ "from sal.search import beam_search, best_of_n, dvts\n",
+ "\n",
+ "config = Config()\n",
+ "config.n=32 # Number of answers to generate during the search\n",
+ "\n",
+ "search_result = best_of_n(x=input_batch, config=config, llm=llm, prm=prm)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "lsLHD_6C_15p"
+ },
+ "source": [
+ "### 2.2 Display the Final Result\n",
+ "\n",
+ "Once the pipeline has processed the question through the LLM and PRM, we can display the final result. This result will be the model's output after considering the intermediate answers and scoring them using the PRM.\n",
+ "\n",
+ "Here's how to display the final answer:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 105
+ },
+ "id": "v8medbURbgdI",
+ "outputId": "3620f3e6-a25d-4bec-f41c-c4f03a6ed770"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "string"
+ },
+ "text/plain": [
+ "'## Step 1: Recall the conversion formulas\\nTo convert from rectangular coordinates $(x, y)$ to polar coordinates $(r, \\\\theta)$, we use the following formulas:\\n- $r = \\\\sqrt{x^2 + y^2}$\\n- $\\\\theta = \\\\tan^{-1}\\\\left(\\\\frac{y}{x}\\\\right)$\\n\\n## Step 2: Substitute the given values into the formulas\\nGiven $(x, y) = (0, 3)$, we substitute these values into the formulas:\\n- $r = \\\\sqrt{0^2 + 3^2} = \\\\sqrt{0 + 9} = \\\\sqrt{9} = 3$\\n- $\\\\theta = \\\\tan^{-1}\\\\left(\\\\frac{3}{0}\\\\right)$. However, since division by zero is undefined, we recognize that the point $(0, 3)$ is on the positive y-axis, meaning $\\\\theta = \\\\frac{\\\\pi}{2}$.\\n\\n## Step 3: Combine the results for the polar coordinates\\nTherefore, the polar coordinates of the point $(0, 3)$ are $\\\\left(3, \\\\frac{\\\\pi}{2}\\\\right)$.\\n\\nThe final answer is: $\\\\boxed{\\\\left(3, \\\\frac{\\\\pi}{2}\\\\right)}$'"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "search_result['pred'][0]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "F-8hIu05AO7J"
+ },
+ "source": [
+ "The model’s output might include special tokens, such as `<|start_header_id|>` or `<|end_header_id|>`. To make the answer more readable, we can safely remove them before displaying it to the end user."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 105
+ },
+ "id": "flbIu6-rDapM",
+ "outputId": "fcb197d5-0f21-4953-8a21-869c92a1f957"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "string"
+ },
+ "text/plain": [
+ "'## Step 1: Recall the conversion formulas\\nTo convert from rectangular coordinates $(x, y)$ to polar coordinates $(r, \\\\theta)$, we use the following formulas:\\n- $r = \\\\sqrt{x^2 + y^2}$\\n- $\\\\theta = \\\\tan^{-1}\\\\left(\\\\frac{y}{x}\\\\right)$\\n\\n## Step 2: Substitute the given values into the formulas\\nGiven $(x, y) = (0, 3)$, we substitute these values into the formulas:\\n- $r = \\\\sqrt{0^2 + 3^2} = \\\\sqrt{0 + 9} = \\\\sqrt{9} = 3$\\n- $\\\\theta = \\\\tan^{-1}\\\\left(\\\\frac{3}{0}\\\\right)$. However, since division by zero is undefined, we recognize that the point $(0, 3)$ is on the positive y-axis, meaning $\\\\theta = \\\\frac{\\\\pi}{2}$.\\n\\n## Step 3: Combine the results for the polar coordinates\\nTherefore, the polar coordinates of the point $(0, 3)$ are $\\\\left(3, \\\\frac{\\\\pi}{2}\\\\right)$.\\n\\nThe final answer is: $\\\\boxed{\\\\left(3, \\\\frac{\\\\pi}{2}\\\\right)}$'"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "formatted_output = search_result['pred'][0].replace(\"<|start_header_id|>assistant<|end_header_id|>\\n\\n\", \"\").strip()\n",
+ "formatted_output"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7ZuLZNirAO7J"
+ },
+ "source": [
+ "After removing any special tokens, we can display the final answer to the user. Since the answer is based on markdown, it can be rendered properly by displaying it as markdown."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 385
+ },
+ "id": "P4En0qJRD0cl",
+ "outputId": "56400fea-e304-4f16-d255-909f42f636e0"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "## Step 1: Recall the conversion formulas\n",
+ "To convert from rectangular coordinates $(x, y)$ to polar coordinates $(r, \\theta)$, we use the following formulas:\n",
+ "- $r = \\sqrt{x^2 + y^2}$\n",
+ "- $\\theta = \\tan^{-1}\\left(\\frac{y}{x}\\right)$\n",
+ "\n",
+ "## Step 2: Substitute the given values into the formulas\n",
+ "Given $(x, y) = (0, 3)$, we substitute these values into the formulas:\n",
+ "- $r = \\sqrt{0^2 + 3^2} = \\sqrt{0 + 9} = \\sqrt{9} = 3$\n",
+ "- $\\theta = \\tan^{-1}\\left(\\frac{3}{0}\\right)$. However, since division by zero is undefined, we recognize that the point $(0, 3)$ is on the positive y-axis, meaning $\\theta = \\frac{\\pi}{2}$.\n",
+ "\n",
+ "## Step 3: Combine the results for the polar coordinates\n",
+ "Therefore, the polar coordinates of the point $(0, 3)$ are $\\left(3, \\frac{\\pi}{2}\\right)$.\n",
+ "\n",
+ "The final answer is: $\\boxed{\\left(3, \\frac{\\pi}{2}\\right)}$"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from IPython.display import display, Markdown\n",
+ "\n",
+ "display(Markdown(formatted_output))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4uCpYzAw_4o9"
+ },
+ "source": [
+ "## 3. Assembling It All! 🧑🏭️\n",
+ "\n",
+ "Now, let's create a method that encapsulates the entire pipeline. This will allow us to easily reuse the process in future applications, making it efficient and modular.\n",
+ "\n",
+ "By combining the LLM, PRM, search strategy, and result display, we can simplify the workflow and ensure that it’s reusable for other tasks or questions.\n",
+ "\n",
+ "We simplify the workflow, ensuring that it’s reusable for different tasks or questions. Additionally, we’ll track the time spent on each method so that we can **understand the practical implications** of using each strategy and configuration.\n",
+ "\n",
+ "Here’s how we can structure the method:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "id": "YpswbcVi37KR"
+ },
+ "outputs": [],
+ "source": [
+ "import time\n",
+ "\n",
+ "def generate_with_search_and_learn(question, config, llm, prm, method='best_of_n'):\n",
+ " \"\"\"\n",
+ " Generate an answer for a given question using the search-and-learn pipeline.\n",
+ "\n",
+ " Args:\n",
+ " - question (str): The input question to generate an answer for.\n",
+ " - config (Config): Configuration object containing parameters for search strategy.\n",
+ " - llm (LLM): Pretrained large language model used for generating answers.\n",
+ " - prm (RLHFFlow): Process reward model used for evaluating answers.\n",
+ " - method (str): Search strategy to use. Options are 'best_of_n', 'beam_search', 'dvts'. Default is 'best_of_n'.\n",
+ "\n",
+ " Returns:\n",
+ " - str: The formatted output after processing the question.\n",
+ " \"\"\"\n",
+ " batch = {\"problem\": [question]}\n",
+ "\n",
+ " start_time = time.time()\n",
+ " if method == 'best_of_n':\n",
+ " result = best_of_n(x=batch, config=config, llm=llm, prm=prm)\n",
+ " elif method == 'beam_search':\n",
+ " result = beam_search(examples=batch, config=config, llm=llm, prm=prm)\n",
+ " elif method == 'dvts':\n",
+ " result = dvts(examples=batch, config=config, llm=llm, prm=prm)\n",
+ "\n",
+ " elapsed_time = time.time() - start_time\n",
+ " print(f\"\\nFinished in {elapsed_time:.2f} seconds\\n\")\n",
+ "\n",
+ " tokenizer = llm.get_tokenizer()\n",
+ " total_tokens = 0\n",
+ " for completion in result['completions']:\n",
+ " for comp in completion:\n",
+ " output_tokens = tokenizer.encode(comp)\n",
+ " total_tokens += len(output_tokens)\n",
+ "\n",
+ " print(f\"Total tokens in all completions: {total_tokens}\")\n",
+ "\n",
+ " formatted_output = result['pred'][0].replace(\"<|start_header_id|>assistant<|end_header_id|>\\n\\n\", \"\").strip()\n",
+ " return formatted_output"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RWbOqkiKPVd2"
+ },
+ "source": [
+ "### ⏳ 3.1 Comparing Thinking Time for Each Strategy\n",
+ "\n",
+ "Let’s compare the **thinking time** of three methods: `best_of_n`, `beam_search`, and `dvts`. Each method is evaluated using the same number of answers during the search process, measuring the time spent thinking in seconds and the number of generated tokens.\n",
+ "\n",
+ "In the results below, the `best_of_n` method shows the least thinking time, while the `dvts` method takes the most time. However, `best_of_n` generates more tokens due to its simpler search strategy.\n",
+ "\n",
+ "| **Method** | **Number of Answers During Search** | **Thinking Time (Seconds)** | **Generated Tokens** |\n",
+ "|------------------|-------------------------------------|-----------------------------|-----------------------|\n",
+ "| **best_of_n** | 8 | 3.54 | 3087 |\n",
+ "| **beam_search** | 8 | 10.06 | 2049 |\n",
+ "| **dvts** | 8 | 8.46 | 2544 |\n",
+ "\n",
+ "This comparison illustrates the trade-offs between the strategies, balancing time spent thinking and the complexity of the search process.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "2ROJwROGX8q-"
+ },
+ "source": [
+ "#### 1. **Best of n**\n",
+ "\n",
+ "We’ll begin by using the `best_of_n` strategy. Here’s how to track the thinking time for this method:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "c_fWKy5CCTLV",
+ "outputId": "8d77eea3-b23e-4eba-cfe3-5935fae1405d"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Finished in 3.54 seconds\n",
+ "\n",
+ "Total tokens in all completions: 3087\n"
+ ]
+ }
+ ],
+ "source": [
+ "question = 'Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$'\n",
+ "\n",
+ "config.n=8\n",
+ "\n",
+ "formatted_output = generate_with_search_and_learn(question=question, config=config, llm=llm, prm=prm, method='best_of_n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 428
+ },
+ "id": "uzKfFoKG9ejC",
+ "outputId": "38326907-685e-4a9c-ca8b-32a7c40f1d3e"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "## Step 1: Recall the conversion formulas from rectangular to polar coordinates\n",
+ "The conversion formulas are $r = \\sqrt{x^2 + y^2}$ for the radial coordinate and $\\theta = \\tan^{-1}\\left(\\frac{y}{x}\\right)$ for the angular coordinate.\n",
+ "\n",
+ "## Step 2: Substitute the given rectangular coordinates into the formulas\n",
+ "Given the point $(0, 3)$, we substitute $x = 0$ and $y = 3$ into the formulas.\n",
+ "\n",
+ "## Step 3: Calculate the radial coordinate\n",
+ "$r = \\sqrt{0^2 + 3^2} = \\sqrt{0 + 9} = \\sqrt{9} = 3$\n",
+ "\n",
+ "## Step 4: Calculate the angular coordinate\n",
+ "$\\theta = \\tan^{-1}\\left(\\frac{3}{0}\\right) = \\tan^{-1}(\\infty) = \\frac{\\pi}{2}$\n",
+ "\n",
+ "## Step 5: Combine the results\n",
+ "The polar coordinates of the point $(0, 3)$ are $\\left(3, \\frac{\\pi}{2}\\right)$.\n",
+ "\n",
+ "The final answer is: $\\boxed{\\left(3, \\frac{\\pi}{2}\\right)}$"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "display(Markdown(formatted_output))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7S9AwP5lQvUN"
+ },
+ "source": [
+ "#### 2. **Beam Search**\n",
+ "\n",
+ "Now, let's try using the `beam_search` strategy."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "F7CH6KN8Izp9",
+ "outputId": "adef4782-3278-4994-9520-43e23ea047a6"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Beam search iterations: 20%|██ | 8/40 [00:10<00:40, 1.26s/it]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Finished in 10.06 seconds\n",
+ "\n",
+ "Total tokens in all completions: 2049\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "config.n=8\n",
+ "# beam search specific\n",
+ "config.sort_completed=True\n",
+ "config.filter_duplicates=True\n",
+ "\n",
+ "formatted_output = generate_with_search_and_learn(question=question, config=config, llm=llm, prm=prm, method='beam_search')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 364
+ },
+ "id": "Hw6tQD_dMwXZ",
+ "outputId": "0f66c7ed-2071-45a4-e562-3967deb0bc9d"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "## Step 1: To convert the point (0,3) from rectangular coordinates to polar coordinates, we need to find the radius (r) and the angle (heta).\n",
+ "\n",
+ "The formula to convert from rectangular coordinates (x, y) to polar coordinates (r, heta) is given by:\n",
+ "r = sqrt(x^2 + y^2)\n",
+ "heta = atan2(y, x)\n",
+ "\n",
+ "## Step 2: Plug in the values (0,3) into the formula to find the radius (r).\n",
+ "\n",
+ "r = sqrt(0^2 + 3^2)\n",
+ "r = sqrt(0 + 9)\n",
+ "r = sqrt(9)\n",
+ "r = 3\n",
+ "\n",
+ "## Step 3: Plug in the values (0,3) into the formula to find the angle (heta).\n",
+ "\n",
+ "heta = atan2(3, 0)\n",
+ "Since the point (0,3) is in the first quadrant and lies on the positive y-axis, heta = pi/2 (or 90 degrees).\n",
+ "\n",
+ "## Step 4: Combine r and heta to get the polar coordinates.\n",
+ "\n",
+ "The polar coordinates are (3, pi/2).\n",
+ "\n",
+ "The final answer is: $\\boxed{(3, \\frac{\\pi}{2})}$"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "display(Markdown(formatted_output))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "GxBBUd7HQzhd"
+ },
+ "source": [
+ "#### 3. **Diverse Verifier Tree Search (DVTS)**\n",
+ "\n",
+ "Finally, let's try the `dvts` strategy."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "HzXW1g-dI5wN",
+ "outputId": "86979d67-7dfa-4346-9adb-c386a52af58c"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Beam search iterations: 22%|██▎ | 9/40 [00:08<00:29, 1.06it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Finished in 8.46 seconds\n",
+ "\n",
+ "Total tokens in all completions: 2544\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "config.n=8\n",
+ "# dvts specific\n",
+ "config.n_beams = config.n // config.beam_width\n",
+ "\n",
+ "formatted_output = generate_with_search_and_learn(question=question, config=config, llm=llm, prm=prm, method='dvts')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 416
+ },
+ "id": "RGkG9MPXMvN0",
+ "outputId": "18a333ae-7b3a-455e-df2c-bb497b1381a5"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "## Step 1: To convert the point (0,3) from rectangular coordinates to polar coordinates, we need to find the radius r and the angle theta.\n",
+ "\n",
+ "The radius r can be calculated using the formula $r = \\sqrt{x^2 + y^2}$, where x is the x-coordinate and y is the y-coordinate.\n",
+ "\n",
+ "## Step 2: Substitute the values of x and y into the formula to find the radius r.\n",
+ "\n",
+ "$r = \\sqrt{0^2 + 3^2}$\n",
+ "$r = \\sqrt{9}$\n",
+ "$r = 3$\n",
+ "\n",
+ "## Step 3: Now that we have the radius r, we can find the angle theta using the formula $\\theta = \\tan^{-1}\\left(\\frac{y}{x}\\right)$.\n",
+ "\n",
+ "Since x = 0 and y = 3, the angle theta is 90 degrees or $\\frac{\\pi}{2}$ radians.\n",
+ "\n",
+ "## Step 4: Now that we have the radius r and the angle theta, we can write the polar coordinates as (r, theta).\n",
+ "\n",
+ "Therefore, the polar coordinates for the point (0, 3) are $\\left(3, \\frac{\\pi}{2}\\right).$\n",
+ "\n",
+ "The final answer is: $\\boxed{\\left(3, \\frac{\\pi}{2}\\right)}$"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "display(Markdown(formatted_output))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5PM9HHwBSYWk"
+ },
+ "source": [
+ "### 🙋 3.2 Testing the System with a Simple Question\n",
+ "\n",
+ "In this final example, we’ll test the system using a straightforward question to observe how it performs in simpler cases. This allows us to verify that the system works as expected even for basic queries.\n",
+ "\n",
+ "Let's try the following question:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "bq9vM1uRM7A8",
+ "outputId": "65ef318d-2b89-4d46-b660-293195c2b8e1"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Finished in 1.03 seconds\n",
+ "\n",
+ "Total tokens in all completions: 544\n"
+ ]
+ }
+ ],
+ "source": [
+ "question = 'What\\'s the capital of Spain?'\n",
+ "\n",
+ "config.n=32\n",
+ "\n",
+ "formatted_output = generate_with_search_and_learn(question=question, config=config, llm=llm, prm=prm, method='best_of_n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 46
+ },
+ "id": "ysfR0nPfM-Ub",
+ "outputId": "b474aeb6-6cb7-4f15-ba48-fa59022f31ef"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "The capital of Spain is Madrid."
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "display(Markdown(formatted_output))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "NgdeSegeANoT"
+ },
+ "source": [
+ "Even though we set a larger number of candidate answers (`N`), the time spent thinking remains relatively small (1.03 seconds and 544 generated tokens). This demonstrates the system’s ability to efficiently handle easier problems, spending less time on them, while leveraging its enhanced capabilities for more complex questions.\n",
+ "\n",
+ "🏆 **We now have a fully operational pipeline** that leverages test-time compute, enabling the system to \"think longer\" for more complicated queries, while also maintaining fast response times for straightforward questions.\n",
+ "\n",
+ "This approach ensures the system can scale its thinking time based on the task's complexity, offering an efficient and responsive solution for both simple and challenging problems.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "92znAyJ0AOPY"
+ },
+ "source": [
+ "## 4. Continuing the Journey and Resources 🧑🎓️\n",
+ "\n",
+ "If you're eager to continue exploring, be sure to check out the original experimental [blog](https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute) and all the references mentioned within it. These resources will deepen your understanding of test-time compute, its benefits, and its applications in LLMs.\n",
+ "\n",
+ "\n",
+ "Happy learning and experimenting! 🚀"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "A100",
+ "machine_shape": "hm",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "047c712bf83749b5865154b6c9b9b2cb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "058cf74b83fd45abaa97527a87d426b8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "08e1f1d7e8dc433f83b0b9b2f18f3c20": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "0913e55c2b024d7ea50d368b5bd73e5c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "0984271be2ac490cb567ded20c7ff573": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_93568386697e40f9b94108068a0fe532",
+ "max": 296,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5416b2d19a9a46deaa9296c2d013aff7",
+ "value": 296
+ }
+ },
+ "09c264c2f16f4edabb255012002d4a9e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0efc75672b2f4541be367c227806a1aa",
+ "max": 4,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b62a7faa1dce473fbb5a26f8965b5a9c",
+ "value": 4
+ }
+ },
+ "0a86ee24d2fb4317afb7e71f23d5e635": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0ab2e258698a44b8b73bb0ff08bb119d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "0b25f7b04ee34fd0a2b1b6920d958d2d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "CheckboxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "CheckboxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "CheckboxView",
+ "description": "Add token as git credential?",
+ "description_tooltip": null,
+ "disabled": false,
+ "indent": true,
+ "layout": "IPY_MODEL_e365dcfc89b2464cb5edd6d66eef6ac5",
+ "style": "IPY_MODEL_af7f28d3b88448d2ababbd739be1c431",
+ "value": true
+ }
+ },
+ "0bad67b6787e4d81a6a43c388d498c97": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0cd30408a9064af3b4714480ca7e07af": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_417f706120084013894c37a03a801b72",
+ "max": 877,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b9f16648d0634c33bcddc53b6fec64c1",
+ "value": 877
+ }
+ },
+ "0cfd43ace9cd4a178a5aad78b6ae5e9f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7bfeb8e8e669467fb69e2f67fee07c70",
+ "placeholder": "",
+ "style": "IPY_MODEL_edc7686f862f4b51ad7b372de5b874b2",
+ "value": " 296/296 [00:00<00:00, 25.4kB/s]"
+ }
+ },
+ "0dc7cb7542944ca2aba3998ea795b935": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "0efc75672b2f4541be367c227806a1aa": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0f98f44b8348400aab1e3752df6f8ea9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1007054a3230483ab610b9dd60bc6597": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "166fe6e879ed4ffe93e95e57cc1a33c1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5f3a01f17a1047c1a276dbe68dacb01b",
+ "placeholder": "",
+ "style": "IPY_MODEL_64c21cbdda28425888cfb4490c6577aa",
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "17b6419533e741269efc9b1bc576bbac": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_166fe6e879ed4ffe93e95e57cc1a33c1",
+ "IPY_MODEL_e3e8a88baf3d433e9e7ce21b5cef25d2",
+ "IPY_MODEL_7a57d35a8d5849978c5da915066fba07"
+ ],
+ "layout": "IPY_MODEL_694b13c90089406495c9cbb889abcd7c"
+ }
+ },
+ "17d0dabc9102456e99fe798db17a8394": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "17fb70d770d64f1991048a53c12325a0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8c9e29eafb7a476292f3e2f2f465139a",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9b8b3bd3dc7e4b62845ef9d536963383",
+ "value": 1
+ }
+ },
+ "18beaa5117a24a5a9fd67a68392d6dc6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1924e5d88281470d88030ea2d4ee4195": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "199d637631184408ae4381c3be8119cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1d0378f0f591482fbb4a6625c409e390": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1dece532a91d4db2a0e72a06e32ec0c0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1dff9b27141b423fb6248db6ef94d6f5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1f8ae4fec2c34cdc80171cf0c2755511": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "20dece21a48b42bdbaf7d65365722edc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_058cf74b83fd45abaa97527a87d426b8",
+ "placeholder": "",
+ "style": "IPY_MODEL_f85fd34e4774481bbecfc3e96390541f",
+ "value": "model-00002-of-00004.safetensors: 100%"
+ }
+ },
+ "21b0ba9bb6324bfba88072bdf8d9cb17": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fb3d75575d1b488aa84901cfcc7fc41a",
+ "max": 444,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_606b2dd779634d74bfdce28ff0486500",
+ "value": 444
+ }
+ },
+ "2288b85ce9b84347b56e9e3070347d54": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6d0ba4c3a7c148829133f1d97b856d28",
+ "placeholder": "",
+ "style": "IPY_MODEL_7a77a067304a4e5db1635bb816366db9",
+ "value": "Loading checkpoint shards: 100%"
+ }
+ },
+ "229a7fee80174b20885e2d4e9e09aade": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "22b0318fcc3546d2a43ec2125fc7ac2c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_99a05b35254a49618d2acba96830a8d5",
+ "max": 4976698672,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1d0378f0f591482fbb4a6625c409e390",
+ "value": 4976698672
+ }
+ },
+ "23c388906e2546be81a1b4874d5b3464": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "25d693efa97841f9b809acae2d755aff": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_51f74002a7d149c39beacafffd3a9498",
+ "max": 184,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0913e55c2b024d7ea50d368b5bd73e5c",
+ "value": 184
+ }
+ },
+ "27b93682d01f489394a9be7019cc984e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a1a08c49fc404304bc11177d7b891523",
+ "placeholder": "",
+ "style": "IPY_MODEL_0dc7cb7542944ca2aba3998ea795b935",
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "27ca78201e8f4ceaa1d95d75c29e89f9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_33d05b505b694362830c5bcf1107a829",
+ "placeholder": "",
+ "style": "IPY_MODEL_8595ec987546450a910098762ce8ac08",
+ "value": "model-00003-of-00004.safetensors: 100%"
+ }
+ },
+ "2950fa6d48fc4220a8350ae264a09452": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "297453fc2b014deda635938ee6243082": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0bad67b6787e4d81a6a43c388d498c97",
+ "placeholder": "",
+ "style": "IPY_MODEL_62039f5227084c18911025d04ed8d3bb",
+ "value": " 184/184 [00:00<00:00, 16.1kB/s]"
+ }
+ },
+ "2cbb5166d93a45eda909a8b7fd6df23a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "PasswordModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "PasswordModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "PasswordView",
+ "continuous_update": true,
+ "description": "Token:",
+ "description_tooltip": null,
+ "disabled": false,
+ "layout": "IPY_MODEL_9fd575fd748f488399f886d1f1d840a3",
+ "placeholder": "",
+ "style": "IPY_MODEL_2d92e9d40c174518bde5a8f27c3ff270",
+ "value": ""
+ }
+ },
+ "2d92e9d40c174518bde5a8f27c3ff270": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2e0af3ad38ec4374a9804366f7e9226d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2eb64217adde437ea678f68ed612cdc5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "VBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [],
+ "layout": "IPY_MODEL_80afab3a0c0b41c78ede99a63bd3ae89"
+ }
+ },
+ "30ce2ff2c5bf423b9a4e18d206f8f9dc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "30d26d7f53f042f2b55fcf96d74ac705": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9ff13ef60be54ffba65a851d7ad0c808",
+ "placeholder": "",
+ "style": "IPY_MODEL_eb4630737b314b648cc972ecaa1c04d8",
+ "value": " 17.2M/17.2M [00:00<00:00, 35.7MB/s]"
+ }
+ },
+ "316860b81fec4959be9f7ff9c077c4a4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3245c34c321d4b619cf298b3e115dce0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "33d05b505b694362830c5bcf1107a829": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3426b45fb7694749a94000e2cad3176c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "355fbd23b17c491592dc6708184d8b75": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2e0af3ad38ec4374a9804366f7e9226d",
+ "placeholder": "",
+ "style": "IPY_MODEL_513595a72e544b3cbcb51c7d52d826cf",
+ "value": " 5.00G/5.00G [02:10<00:00, 35.3MB/s]"
+ }
+ },
+ "39218069dd634dd2a2315b24d489a94c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_91863a63c00d4159ad96ab56e6e5e724",
+ "max": 4915916176,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a28292c6f89d4157b53f77b4fcea1f97",
+ "value": 4915916176
+ }
+ },
+ "3984f25f0adb4500b547c88f89c94d1c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3a928a4e95e84092ad6e758ac76c9740": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3ace764f64954b5ea8c1a358c6fc23af": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_85b961a40f3c4346974d45234e7267d4",
+ "IPY_MODEL_22b0318fcc3546d2a43ec2125fc7ac2c",
+ "IPY_MODEL_e5768e2bf62c4a41be68d5d7151bb979"
+ ],
+ "layout": "IPY_MODEL_3a928a4e95e84092ad6e758ac76c9740"
+ }
+ },
+ "3b5875979a77480c99e55337de349cad": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a2c38c928e154ff0a4467f979379bd70",
+ "IPY_MODEL_bbe1645a775d4055baa8a53d644224b7",
+ "IPY_MODEL_e782eedd0aaf405fabb591c1c5acc498"
+ ],
+ "layout": "IPY_MODEL_4260a751046e48dbbc298d30e2dc1230"
+ }
+ },
+ "3bd8247268724e25b95ded14cbe5d7a7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3cf67a7115b345d8960364a6de6ab679": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "3ded49a724024b67b2c9fd4ff234b19c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3e3655585fd64b1e8e544b201ca05484": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3e37a6a04aa044f0ba9d83cfce888a27": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_27ca78201e8f4ceaa1d95d75c29e89f9",
+ "IPY_MODEL_39218069dd634dd2a2315b24d489a94c",
+ "IPY_MODEL_83acba963a954725a6c04080d9c07408"
+ ],
+ "layout": "IPY_MODEL_3bd8247268724e25b95ded14cbe5d7a7"
+ }
+ },
+ "3f3eaf9ea4af498d986d02d1d0452ae7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2288b85ce9b84347b56e9e3070347d54",
+ "IPY_MODEL_f02ab5e985664a719c51ef9e942da895",
+ "IPY_MODEL_98f56a4bb9454d8a830c015568ff033f"
+ ],
+ "layout": "IPY_MODEL_a26c6e4b1ba04a6e8ae038ecea3f005d"
+ }
+ },
+ "40ffcc80dbe947e49153ee2f1edde632": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "417f706120084013894c37a03a801b72": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "424838cfd80649969cff21fd3025f0a0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "4260a751046e48dbbc298d30e2dc1230": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4979a6b731ce4d9aba7048af131363e3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c5ce9e4f6e304a1a982a667b981c4813",
+ "placeholder": "",
+ "style": "IPY_MODEL_9216235054cb4792b2d3d8069b47e513",
+ "value": "special_tokens_map.json: 100%"
+ }
+ },
+ "4aa47156ddf84e479e25f525fc9f239c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4dcf482546714ff5a90056d43a7ea454": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_be6306c271df4f749d5c8935df7687fb",
+ "placeholder": "",
+ "style": "IPY_MODEL_d2b41431f8b647c0aa6c3341c844ada5",
+ "value": " 896/896 [00:00<00:00, 76.3kB/s]"
+ }
+ },
+ "4f8edb03b9c14c1d8c4d74044d9266c3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "50830d1a523c475cab4324618abe8bba": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "513595a72e544b3cbcb51c7d52d826cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "51f74002a7d149c39beacafffd3a9498": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "52d9e4bbb17948ee80f9ad60e21ce32f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ButtonView",
+ "button_style": "",
+ "description": "Login",
+ "disabled": false,
+ "icon": "",
+ "layout": "IPY_MODEL_2950fa6d48fc4220a8350ae264a09452",
+ "style": "IPY_MODEL_fd0276e87a70434ab3c0f81f54c9fdcd",
+ "tooltip": ""
+ }
+ },
+ "534a1fc160834acbbc668a75ae0de72c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5416b2d19a9a46deaa9296c2d013aff7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "54ef03232c434e048dc5a1ec9fa10767": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8aceeecc53a24af3b0499e414b89a967",
+ "placeholder": "",
+ "style": "IPY_MODEL_c5f3d65377b1403d84735c0a178ebe4a",
+ "value": " 55.4k/55.4k [00:00<00:00, 4.25MB/s]"
+ }
+ },
+ "5570f559162a49108e8b1c53b5adda91": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "567f20c4fa4c44aa94f0e96bd15a9753": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "577aec88dafe4477b8879c8880fa5ddf": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "578d4d8fcfdf467fa7cfacc412fc3b70": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_befb9effbed24ffba832a7145a99d877",
+ "placeholder": "",
+ "style": "IPY_MODEL_f6b3a3c1127e4dd88dd104ba720f0485",
+ "value": "model.safetensors.index.json: 100%"
+ }
+ },
+ "5aabf826c3624049a9e0c74af162fa6e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5ad5c21faa634862ad6b07c913e0d830": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5b2c2f30b7ec4c0cb9673800f7e638d5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5be5c23b43a348f38fb3acc7e6d3f492": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5ec2f4d3b3b443f79753145a62c593d2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e283f794d33540c5a2f1d0f6f5b659a9",
+ "max": 896,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_7f0fde3e3b4b4f948c65ebb6985690aa",
+ "value": 896
+ }
+ },
+ "5f3a01f17a1047c1a276dbe68dacb01b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6008116117644c29aaadec6bcc54c163": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_973b5ca280b74764b2b3d54a3726eb52",
+ "max": 23950,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_424838cfd80649969cff21fd3025f0a0",
+ "value": 23950
+ }
+ },
+ "606b2dd779634d74bfdce28ff0486500": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "61842fb4022e49858721245d2b53665e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e6658676c1794dab9846f7728e0ff693",
+ "IPY_MODEL_c4bf4bd8225e49838a35c03755789009",
+ "IPY_MODEL_8739c11b9bcc4ea8ad52b39e79ebf64d"
+ ],
+ "layout": "IPY_MODEL_047c712bf83749b5865154b6c9b9b2cb"
+ }
+ },
+ "62039f5227084c18911025d04ed8d3bb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "64c21cbdda28425888cfb4490c6577aa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "676754b3e45f42a8b5b2d9ef4ffa2d2f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "677d343dffae408d91b67b5e213190e1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "694b13c90089406495c9cbb889abcd7c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6d0ba4c3a7c148829133f1d97b856d28": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6d248ceb52884dd7b213f8bac52487c4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6e2a18c548c340a68f1b02ef088c479e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "716a8e95d08046638d18073903ab7dd6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "77194e7f70104fb3a667df3ca6091c98": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fe79650b16f747d9ab6f7d47534e6fd0",
+ "placeholder": "",
+ "style": "IPY_MODEL_cc29d971064a4593a66b65a7ce930631",
+ "value": "model-00004-of-00004.safetensors: 100%"
+ }
+ },
+ "776e6c081234415f9749bdd715cb14bf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_30ce2ff2c5bf423b9a4e18d206f8f9dc",
+ "max": 17209920,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_efd6b64338224df085703de02c227b12",
+ "value": 17209920
+ }
+ },
+ "78eb58ae967d48d5915fc9066caf53ff": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ca6049f7a93b4204afdda5b51ab7a96e",
+ "placeholder": "",
+ "style": "IPY_MODEL_7d480ed9e38a46db9ad725ae0eaed8cd",
+ "value": ""
+ }
+ },
+ "7a57d35a8d5849978c5da915066fba07": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a95c1f7fa74f431680d3c1fb9c26cce2",
+ "placeholder": "",
+ "style": "IPY_MODEL_5b2c2f30b7ec4c0cb9673800f7e638d5",
+ "value": " 9.09M/9.09M [00:01<00:00, 7.09MB/s]"
+ }
+ },
+ "7a77a067304a4e5db1635bb816366db9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7aa678d10ec94310bae0d91230f29c59": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f54b35d34059478398858a0fee55a27a",
+ "placeholder": "",
+ "style": "IPY_MODEL_6e2a18c548c340a68f1b02ef088c479e",
+ "value": "config.json: 100%"
+ }
+ },
+ "7b875683e91c4690adbc3040bc2e606c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_eef9192b46c248b2a22c48b2669cd8e2",
+ "placeholder": "",
+ "style": "IPY_MODEL_5570f559162a49108e8b1c53b5adda91",
+ "value": " 1.17G/1.17G [00:27<00:00, 41.3MB/s]"
+ }
+ },
+ "7bfeb8e8e669467fb69e2f67fee07c70": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7cc997df524d45acae5b8521a26c125b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7d1dcc9929434797af6d9b8e69f2e576": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7d480ed9e38a46db9ad725ae0eaed8cd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7e130cc78a7e435d9bc06b360ee9c895": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e25c2e7311bd455389dd4387bbab4eb1",
+ "placeholder": "",
+ "style": "IPY_MODEL_8b382820d7ee4387ad39070fe09eb214",
+ "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. "
+ }
+ },
+ "7f03403ba2df49bda5eb54a0a45dc7ba": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0a86ee24d2fb4317afb7e71f23d5e635",
+ "max": 189,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_40ffcc80dbe947e49153ee2f1edde632",
+ "value": 189
+ }
+ },
+ "7f0fde3e3b4b4f948c65ebb6985690aa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "80afab3a0c0b41c78ede99a63bd3ae89": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": "center",
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": "flex",
+ "flex": null,
+ "flex_flow": "column",
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": "50%"
+ }
+ },
+ "836f79da2255418dae54c518bd5e9f18": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "83acba963a954725a6c04080d9c07408": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1dece532a91d4db2a0e72a06e32ec0c0",
+ "placeholder": "",
+ "style": "IPY_MODEL_0f98f44b8348400aab1e3752df6f8ea9",
+ "value": " 4.92G/4.92G [02:06<00:00, 41.8MB/s]"
+ }
+ },
+ "8595ec987546450a910098762ce8ac08": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "85b961a40f3c4346974d45234e7267d4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8de158062e3d434ab06ab92533499336",
+ "placeholder": "",
+ "style": "IPY_MODEL_a7d9853c71b44d1d98e9ef9d97f122a3",
+ "value": "model-00001-of-00004.safetensors: 100%"
+ }
+ },
+ "85d1f3abd57444608539f45a7532dae3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8739c11b9bcc4ea8ad52b39e79ebf64d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_eecc4d3405044a56ae4e35bd781dc24b",
+ "placeholder": "",
+ "style": "IPY_MODEL_716a8e95d08046638d18073903ab7dd6",
+ "value": " 54.5k/54.5k [00:00<00:00, 4.20MB/s]"
+ }
+ },
+ "874387baddbf4db6837530a19f7367d5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b5717c9b0d544d04be1499cbcaf41578",
+ "IPY_MODEL_25d693efa97841f9b809acae2d755aff",
+ "IPY_MODEL_297453fc2b014deda635938ee6243082"
+ ],
+ "layout": "IPY_MODEL_eb08a8283d35405fb0f1a278fbdb896a"
+ }
+ },
+ "87798f9512e44334a3cc47046dbf1140": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c4c21241031947f19fd94a4651f3c330",
+ "max": 1168138808,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5ad5c21faa634862ad6b07c913e0d830",
+ "value": 1168138808
+ }
+ },
+ "882c79c490a345a096eafb4e683fefb4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8a8f4325061b4d1dbc71a5f36f952cd2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8aceeecc53a24af3b0499e414b89a967": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8b382820d7ee4387ad39070fe09eb214": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8c9e29eafb7a476292f3e2f2f465139a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8de158062e3d434ab06ab92533499336": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "913de0704d284aae9d3c370c498c260c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "91863a63c00d4159ad96ab56e6e5e724": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9216235054cb4792b2d3d8069b47e513": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "931ce892773c44c6a1e2610d3c620617": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_836f79da2255418dae54c518bd5e9f18",
+ "placeholder": "",
+ "style": "IPY_MODEL_85d1f3abd57444608539f45a7532dae3",
+ "value": " Copy a token from your Hugging Face\ntokens page and paste it below. Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. "
+ }
+ },
+ "93568386697e40f9b94108068a0fe532": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "941c2a47c62748ac8e06660cba50a15a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e7106f0a63ad46ccba4225e0ebfa4b91",
+ "placeholder": "",
+ "style": "IPY_MODEL_d8d78b7fdc19439490e4471652faecbd",
+ "value": "config.json: 100%"
+ }
+ },
+ "955ee6acd8474f5a9b4497ca9755b96a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "96b5f18e9a7443cdbde7830d878cdd41": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_27b93682d01f489394a9be7019cc984e",
+ "IPY_MODEL_776e6c081234415f9749bdd715cb14bf",
+ "IPY_MODEL_30d26d7f53f042f2b55fcf96d74ac705"
+ ],
+ "layout": "IPY_MODEL_a364e102048540ac820eed7aaf7bd22e"
+ }
+ },
+ "973b5ca280b74764b2b3d54a3726eb52": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9847da876cd34890a78773de534cce5b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1924e5d88281470d88030ea2d4ee4195",
+ "placeholder": "",
+ "style": "IPY_MODEL_882c79c490a345a096eafb4e683fefb4",
+ "value": " 23.9k/23.9k [00:00<00:00, 2.08MB/s]"
+ }
+ },
+ "98f56a4bb9454d8a830c015568ff033f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1f8ae4fec2c34cdc80171cf0c2755511",
+ "placeholder": "",
+ "style": "IPY_MODEL_a4fd1197ec8e4c659b4a7cbecbe7e3e7",
+ "value": " 4/4 [00:06<00:00, 1.49s/it]"
+ }
+ },
+ "99a05b35254a49618d2acba96830a8d5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9b8b3bd3dc7e4b62845ef9d536963383": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "9d664e016bac47318b70a30886c79b36": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6d248ceb52884dd7b213f8bac52487c4",
+ "placeholder": "",
+ "style": "IPY_MODEL_08e1f1d7e8dc433f83b0b9b2f18f3c20",
+ "value": " 189/189 [00:00<00:00, 15.9kB/s]"
+ }
+ },
+ "9fd575fd748f488399f886d1f1d840a3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9ff13ef60be54ffba65a851d7ad0c808": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a0ddf05138c84444aecbbd98c119844d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a1a08c49fc404304bc11177d7b891523": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a26c6e4b1ba04a6e8ae038ecea3f005d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a28292c6f89d4157b53f77b4fcea1f97": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "a2c38c928e154ff0a4467f979379bd70": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b587f122a951473293a6bf9456731060",
+ "placeholder": "",
+ "style": "IPY_MODEL_e196bc1e77bc47559ac55fa913678959",
+ "value": "model.safetensors: 100%"
+ }
+ },
+ "a364e102048540ac820eed7aaf7bd22e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a3e1772583b748a7b6b28a6a50a1986c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3426b45fb7694749a94000e2cad3176c",
+ "placeholder": "",
+ "style": "IPY_MODEL_0ab2e258698a44b8b73bb0ff08bb119d",
+ "value": "special_tokens_map.json: 100%"
+ }
+ },
+ "a4fd1197ec8e4c659b4a7cbecbe7e3e7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a5093e51b2304f4aaca34f4cb5db6891": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a5166e10eb854c928e7a3c574b064117": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5aabf826c3624049a9e0c74af162fa6e",
+ "placeholder": "",
+ "style": "IPY_MODEL_913de0704d284aae9d3c370c498c260c",
+ "value": " 877/877 [00:00<00:00, 66.8kB/s]"
+ }
+ },
+ "a771cd3bc92e43db917238c1c23c1a58": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "LabelModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cd2a46d086a64dc4a7e53facc3ba4c84",
+ "placeholder": "",
+ "style": "IPY_MODEL_316860b81fec4959be9f7ff9c077c4a4",
+ "value": "Connecting..."
+ }
+ },
+ "a7d9853c71b44d1d98e9ef9d97f122a3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a95c1f7fa74f431680d3c1fb9c26cce2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a95ea38c979b4cbea9497438544f371c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ac5b6d37904747158108ebfb92f6f8af": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ad110b20a34a407689cceb7eb8d4f782": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ac5b6d37904747158108ebfb92f6f8af",
+ "placeholder": "",
+ "style": "IPY_MODEL_c0110e7b524a40ccaf047ef8d54d90e9",
+ "value": " 444/444 [00:00<00:00, 38.2kB/s]"
+ }
+ },
+ "af2c573b7a214269b7351aff23cdff56": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "af7f28d3b88448d2ababbd739be1c431": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b115a214ab7f407daeaa5698dfb6d5e2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f8e8e5f49e7b47e094cd04be7f477c82",
+ "IPY_MODEL_7f03403ba2df49bda5eb54a0a45dc7ba",
+ "IPY_MODEL_9d664e016bac47318b70a30886c79b36"
+ ],
+ "layout": "IPY_MODEL_577aec88dafe4477b8879c8880fa5ddf"
+ }
+ },
+ "b2a4df20aa96473ebc8181a067cadd9d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7cc997df524d45acae5b8521a26c125b",
+ "placeholder": "",
+ "style": "IPY_MODEL_18beaa5117a24a5a9fd67a68392d6dc6",
+ "value": " 4/4 [06:55<00:00, 89.04s/it]"
+ }
+ },
+ "b5717c9b0d544d04be1499cbcaf41578": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_534a1fc160834acbbc668a75ae0de72c",
+ "placeholder": "",
+ "style": "IPY_MODEL_7d1dcc9929434797af6d9b8e69f2e576",
+ "value": "generation_config.json: 100%"
+ }
+ },
+ "b587f122a951473293a6bf9456731060": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b62a7faa1dce473fbb5a26f8965b5a9c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "b73e30c255f049368f4977d75a3e0fd5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b91d1e46e6dd4ccaad36c4976d0f574f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_78eb58ae967d48d5915fc9066caf53ff",
+ "IPY_MODEL_17fb70d770d64f1991048a53c12325a0",
+ "IPY_MODEL_bb8347cd04104220b694f263ca08d656"
+ ],
+ "layout": "IPY_MODEL_3ded49a724024b67b2c9fd4ff234b19c"
+ }
+ },
+ "b9f16648d0634c33bcddc53b6fec64c1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "bb8347cd04104220b694f263ca08d656": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4aa47156ddf84e479e25f525fc9f239c",
+ "placeholder": "",
+ "style": "IPY_MODEL_5be5c23b43a348f38fb3acc7e6d3f492",
+ "value": "Loading safetensors checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 1.43it/s]\n"
+ }
+ },
+ "bbe1645a775d4055baa8a53d644224b7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8a8f4325061b4d1dbc71a5f36f952cd2",
+ "max": 2471645608,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_4f8edb03b9c14c1d8c4d74044d9266c3",
+ "value": 2471645608
+ }
+ },
+ "bde3cb2b605a4dd5a640a0b2dde2cbf7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "be3a7ca798224d85a6952c600713f5a6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1dff9b27141b423fb6248db6ef94d6f5",
+ "max": 55385,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_17d0dabc9102456e99fe798db17a8394",
+ "value": 55385
+ }
+ },
+ "be6306c271df4f749d5c8935df7687fb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "befb9effbed24ffba832a7145a99d877": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c0110e7b524a40ccaf047ef8d54d90e9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c4bf4bd8225e49838a35c03755789009": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fdb9573f543044f6a5aad23f93bb4495",
+ "max": 54528,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3245c34c321d4b619cf298b3e115dce0",
+ "value": 54528
+ }
+ },
+ "c4c21241031947f19fd94a4651f3c330": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c5ce9e4f6e304a1a982a667b981c4813": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c5f3d65377b1403d84735c0a178ebe4a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ca6049f7a93b4204afdda5b51ab7a96e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cc29d971064a4593a66b65a7ce930631": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ccabbd872fff4674920bb1363ad4efc1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4979a6b731ce4d9aba7048af131363e3",
+ "IPY_MODEL_0984271be2ac490cb567ded20c7ff573",
+ "IPY_MODEL_0cfd43ace9cd4a178a5aad78b6ae5e9f"
+ ],
+ "layout": "IPY_MODEL_50830d1a523c475cab4324618abe8bba"
+ }
+ },
+ "cd2a46d086a64dc4a7e53facc3ba4c84": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d2b41431f8b647c0aa6c3341c844ada5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d43a139190b84e099cf40d1ca28bb40e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b73e30c255f049368f4977d75a3e0fd5",
+ "placeholder": "",
+ "style": "IPY_MODEL_23c388906e2546be81a1b4874d5b3464",
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "d52efd72ac444cd0a851209b01a14b27": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d5ab5ace61064974a5efdc8ed24205b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_941c2a47c62748ac8e06660cba50a15a",
+ "IPY_MODEL_5ec2f4d3b3b443f79753145a62c593d2",
+ "IPY_MODEL_4dcf482546714ff5a90056d43a7ea454"
+ ],
+ "layout": "IPY_MODEL_ea9e9603b27543aa808ef73079aa7789"
+ }
+ },
+ "d6aa51bd4be7442ea3448dbf14fe2b75": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_229a7fee80174b20885e2d4e9e09aade",
+ "placeholder": "",
+ "style": "IPY_MODEL_bde3cb2b605a4dd5a640a0b2dde2cbf7",
+ "value": "Downloading shards: 100%"
+ }
+ },
+ "d6b26032e9a24e2f82d4ff35fc30d0b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a3e1772583b748a7b6b28a6a50a1986c",
+ "IPY_MODEL_21b0ba9bb6324bfba88072bdf8d9cb17",
+ "IPY_MODEL_ad110b20a34a407689cceb7eb8d4f782"
+ ],
+ "layout": "IPY_MODEL_3e3655585fd64b1e8e544b201ca05484"
+ }
+ },
+ "d75ebee963504f0f86351d99a58d570f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d6aa51bd4be7442ea3448dbf14fe2b75",
+ "IPY_MODEL_09c264c2f16f4edabb255012002d4a9e",
+ "IPY_MODEL_b2a4df20aa96473ebc8181a067cadd9d"
+ ],
+ "layout": "IPY_MODEL_1007054a3230483ab610b9dd60bc6597"
+ }
+ },
+ "d8d78b7fdc19439490e4471652faecbd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "dd8279f4cfb44f54a230dfb42dcb8ee2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_af2c573b7a214269b7351aff23cdff56",
+ "max": 4999802720,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_955ee6acd8474f5a9b4497ca9755b96a",
+ "value": 4999802720
+ }
+ },
+ "e196bc1e77bc47559ac55fa913678959": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e22cf91ce2b745dfae177a9f9d2b4876": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d43a139190b84e099cf40d1ca28bb40e",
+ "IPY_MODEL_be3a7ca798224d85a6952c600713f5a6",
+ "IPY_MODEL_54ef03232c434e048dc5a1ec9fa10767"
+ ],
+ "layout": "IPY_MODEL_fc9cfc8f2ff544de9c96a0312e3bb8f3"
+ }
+ },
+ "e25c2e7311bd455389dd4387bbab4eb1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e283f794d33540c5a2f1d0f6f5b659a9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e365dcfc89b2464cb5edd6d66eef6ac5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e3b9f6cabff94c4d992fa7b4e4ef7f0e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_77194e7f70104fb3a667df3ca6091c98",
+ "IPY_MODEL_87798f9512e44334a3cc47046dbf1140",
+ "IPY_MODEL_7b875683e91c4690adbc3040bc2e606c"
+ ],
+ "layout": "IPY_MODEL_a0ddf05138c84444aecbbd98c119844d"
+ }
+ },
+ "e3e8a88baf3d433e9e7ce21b5cef25d2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f9bce0075fdf4307917b14fc6ad1e8a2",
+ "max": 9085657,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_199d637631184408ae4381c3be8119cf",
+ "value": 9085657
+ }
+ },
+ "e43fff8b542845d89a1c2fbc1fdfdfdb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e5768e2bf62c4a41be68d5d7151bb979": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_567f20c4fa4c44aa94f0e96bd15a9753",
+ "placeholder": "",
+ "style": "IPY_MODEL_eee8e68099a84ba991d96cf4eb194d2c",
+ "value": " 4.98G/4.98G [02:08<00:00, 42.0MB/s]"
+ }
+ },
+ "e5f328d18abc41c7ac45d2d155f0b7a6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e6658676c1794dab9846f7728e0ff693": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_676754b3e45f42a8b5b2d9ef4ffa2d2f",
+ "placeholder": "",
+ "style": "IPY_MODEL_3984f25f0adb4500b547c88f89c94d1c",
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "e7106f0a63ad46ccba4225e0ebfa4b91": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e782eedd0aaf405fabb591c1c5acc498": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f4f3b8e3e31546c99504c85595275955",
+ "placeholder": "",
+ "style": "IPY_MODEL_a95ea38c979b4cbea9497438544f371c",
+ "value": " 2.47G/2.47G [01:42<00:00, 18.6MB/s]"
+ }
+ },
+ "ea9e9603b27543aa808ef73079aa7789": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "eb08a8283d35405fb0f1a278fbdb896a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "eb4630737b314b648cc972ecaa1c04d8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "eba1fc38263348868f59f7896f950f62": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ed4bff3ec46c4109bec062e64a0d6535": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_578d4d8fcfdf467fa7cfacc412fc3b70",
+ "IPY_MODEL_6008116117644c29aaadec6bcc54c163",
+ "IPY_MODEL_9847da876cd34890a78773de534cce5b"
+ ],
+ "layout": "IPY_MODEL_d52efd72ac444cd0a851209b01a14b27"
+ }
+ },
+ "edc7686f862f4b51ad7b372de5b874b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "eecc4d3405044a56ae4e35bd781dc24b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "eee8e68099a84ba991d96cf4eb194d2c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "eef9192b46c248b2a22c48b2669cd8e2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "efd6b64338224df085703de02c227b12": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "f02ab5e985664a719c51ef9e942da895": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_eba1fc38263348868f59f7896f950f62",
+ "max": 4,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3cf67a7115b345d8960364a6de6ab679",
+ "value": 4
+ }
+ },
+ "f4f3b8e3e31546c99504c85595275955": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f54b35d34059478398858a0fee55a27a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f6b3a3c1127e4dd88dd104ba720f0485": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f85fd34e4774481bbecfc3e96390541f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f8e8e5f49e7b47e094cd04be7f477c82": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e43fff8b542845d89a1c2fbc1fdfdfdb",
+ "placeholder": "",
+ "style": "IPY_MODEL_677d343dffae408d91b67b5e213190e1",
+ "value": "generation_config.json: 100%"
+ }
+ },
+ "f9bce0075fdf4307917b14fc6ad1e8a2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fa97670d8c654a62b97428d374d37a69": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_20dece21a48b42bdbaf7d65365722edc",
+ "IPY_MODEL_dd8279f4cfb44f54a230dfb42dcb8ee2",
+ "IPY_MODEL_355fbd23b17c491592dc6708184d8b75"
+ ],
+ "layout": "IPY_MODEL_a5093e51b2304f4aaca34f4cb5db6891"
+ }
+ },
+ "fb3d75575d1b488aa84901cfcc7fc41a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fc9cfc8f2ff544de9c96a0312e3bb8f3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fd0276e87a70434ab3c0f81f54c9fdcd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "button_color": null,
+ "font_weight": ""
+ }
+ },
+ "fdb9573f543044f6a5aad23f93bb4495": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fe0917922ba74b39b30a65f7124dc928": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_7aa678d10ec94310bae0d91230f29c59",
+ "IPY_MODEL_0cd30408a9064af3b4714480ca7e07af",
+ "IPY_MODEL_a5166e10eb854c928e7a3c574b064117"
+ ],
+ "layout": "IPY_MODEL_e5f328d18abc41c7ac45d2d155f0b7a6"
+ }
+ },
+ "fe79650b16f747d9ab6f7d47534e6fd0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/notebooks/ko/_toctree.yml b/notebooks/ko/_toctree.yml
index 881be5ce..d420590c 100644
--- a/notebooks/ko/_toctree.yml
+++ b/notebooks/ko/_toctree.yml
@@ -14,4 +14,14 @@
- local: ko_rag_with_knowledge_graphs_neo4j
title: 지식 그래프를 활용한 RAG 추론 향상
- local: rag_zephyr_langchain
- title: GitHub 이슈를 위한 EEVE와 LangChain을 사용한 간단한 RAG
\ No newline at end of file
+ title: GitHub 이슈를 위한 EEVE와 LangChain을 사용한 간단한 RAG
+ - title: 에이전트 레시피
+ isExpanded: false
+ sections:
+ - local: multiagent_web_assistant
+ title: 다중 에이전트 계층 구조에서 여러 에이전트가 협업하도록 하기
+ - title: Multimodal 레시피
+ isExpanded: false
+ sections:
+ - local: faiss_with_hf_datasets_and_clip
+ title: 유사성 검색을 위한 멀티모달 데이터 임베딩
\ No newline at end of file
diff --git a/notebooks/ko/faiss_with_hf_datasets_and_clip.ipynb b/notebooks/ko/faiss_with_hf_datasets_and_clip.ipynb
new file mode 100644
index 00000000..a6eca10a
--- /dev/null
+++ b/notebooks/ko/faiss_with_hf_datasets_and_clip.ipynb
@@ -0,0 +1,587 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "q3n0GCRvMXNc"
+ },
+ "source": [
+ "# 🤗transformers, 🤗datasets, FAISS를 사용한 멀티모달 데이터 임베딩 및 유사성 검색\n",
+ "\n",
+ "_작성자: [Merve Noyan](https://huggingface.co/merve), [이정인](https://github.com/jeongiin)_\n",
+ "\n",
+ "임베딩은 의미론적으로 중요한 정보의 압축입니다. 이는 유사성 검색, 제로샷 분류 또는 새로운 모델을 훈련하는 데 사용될 수 있습니다. 유사성 검색의 활용 사례로는 전자상거래에서 유사한 제품 검색, 소셜 미디어에서의 콘텐츠 검색 등이 있습니다. 이 노트북은 🤗Transformers, 🤗Datasets 및 FAISS를 사용하여 특징 추출 모델로부터 임베딩을 생성하고 인덱싱하여 이후 유사성 검색에 활용하는 방법을 안내합니다. 필요한 라이브러리를 설치해봅시다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Gqmxny3tNASX"
+ },
+ "outputs": [],
+ "source": [
+ "!pip install -q datasets faiss-gpu transformers sentencepiece"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "X4z-2K6MM4yW"
+ },
+ "source": [
+ "이 튜토리얼에서는 [CLIP 모델](https://huggingface.co/openai/clip-vit-base-patch16)을 사용하여 특징을 추출할 것입니다. CLIP은 텍스트 인코더와 이미지 인코더를 함께 학습시켜 두 가지 모달리티를 연결하는 혁신적인 모델입니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "5WY6waypNCjT"
+ },
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "from PIL import Image\n",
+ "from transformers import AutoImageProcessor, AutoModel, AutoTokenizer\n",
+ "import faiss\n",
+ "import numpy as np\n",
+ "\n",
+ "device = torch.device('cuda' if torch.cuda.is_available() else \"cpu\")\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"openai/clip-vit-base-patch16\").to(device)\n",
+ "processor = AutoImageProcessor.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
+ "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-base-patch16\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_jBbLzJUSOwQ"
+ },
+ "source": [
+ "데이터셋을 로드합니다. 가볍게 이 예제를 해 보기 위해, 작은 캡션 데이터셋을 사용해봅시다, [jmhessel/newyorker_caption_contest](https://huggingface.co/datasets/jmhessel/newyorker_caption_contest)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "wMxvOhkA0l-k"
+ },
+ "outputs": [],
+ "source": [
+ "from datasets import load_dataset\n",
+ "\n",
+ "ds = load_dataset(\"jmhessel/newyorker_caption_contest\", \"explanation\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_hbosSHI10zy"
+ },
+ "source": [
+ "예제를 하나 봅시다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 305
+ },
+ "id": "5gpAhbAcMrm7",
+ "outputId": "682033f9-da37-4cae-e1bc-4a5fbbb7f2fa"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEgCAAAAAC/HnplAADVA0lEQVR4nJS9d9htWVEmXlUr7HDSl+93c+emu+kmKEGhAUEliNkZxcHBPI76M+uMYQZ1HB11dByzDphGxayoGEkCIggI0hE63/zl74Sd1lpV9fvjnO922+gjs5+n+97nnr3PWXvVqlpVb71VCwU+vguP/tKpcZ0UwbSZQW1KnX+sT7pPARQAgBKSGOjQq5g25ubJ3/cv/qDWziUHUOWmQ6+LR/RfeUwQEEBBAQEBP+Z+AUJQnd/08YzjaDjJQpdNS/bQWZOQmhIAAGrnAEQ1TTZkOoLoQAEQ9GiwAvOBHI1rOjwcqgkRM8NgILrF91+dv/93gWQQNOsc1eW03xbypM+fIJD5n2K1Q8cOUshiDk++/1+89lcVdTLqssReQen/WSCA+ISF8uTP6Z8O81+9UKLk0c2nOloUqUsLiqCNegcAE/LGAMBcFnr0ngQKqjAXCygwW1cz9QBEgR6fhaOB2I93QEdXRcGgV0ElsKKKgP/se83HAEAKmINGo1YQYNL/OH8nDDv1hyvjHAwgxo93Ic/f+2gMH6sgQAoC+LGC+tcuJQVk4VLbIrLrDjadRgeh8yVoa+3B8jT5SKyIiKrgrj6JigpqFFRVwV84FV2ZtodqPEh6wn3z6+MWyNEL5OawsLCzgoejptBy2kNF0IWKPuE+XazOxAzsrFc2lrx8vAoJHqEDAsw6sMDNxyvHox9XRVDUf0aOKKCA8PgK/ji/Ei1C9356EREohre94dWXu9mwa3rNeG86uPUpP/z6k1Ad9jpHBkFB24VGu4XpFBVhUX3gR15x+41NXCNJDRr6mIXx/6whqJg1xdCqQbpyDFAVFUA/xgTh4v+aYQxkYpGkc/Zwif/J5//ylXaPK/THJbCJxnzcpn5xox5Zjo95DnVuzwTw499AAEAF6VDfvPZJtvK+ufKBD9yxTzPb2kZUbbj/kd32Q82xtd44GUOquNgKEDpcKK2qqAIc3v3MYlKtnJ0OehmBNsWTfuf/WSDdbL1NDbz1OX2xb3xVlhtQBaSPsQ2oAKAKRhVHcN87/z0bBH7ni8qP83fq41M0NAKxvk32Y1fSv3IpzBXkYySic4VWBPwn5u1fuwTU4NJ4w1161MzOPfyu2V1hhcb1MWe4E4ptNVqOMGmQAVUBjVn4NbLYQ1QBEAkPHfyjUL9bXj+5PuxZ/2Rn6P/ZZBUGfu9zm62fflqvSX/zmc4kFQUkNE+6jxVUFTRyNKvprt/8ImsMTP707G0f5+8VoD0MD5+1s5Ws3Tl8ysc7zqN9/J8TxmJ8CKqKc+P+cUtEbesKAPnR8Yy0rlcuNyuZFymbInXJalPWrSk8FA0CKBIFmE+AXwwJUQENoZx76MxgDL3p/iOj4cp11z7Zhn+8JvTq1fi7fzhfyceUcHoIRapm08lkOquefF+IIXRd13FepGks1pxX5vjQx73Q6fUJ2sNvvaSX97C75+76430O5+ZhvjL+mV+bOxuqIiIi+nHvaUrtLF3YfeidlzPhotzck2PQAlSxnoXeKJwz+TAnG6u5i4eUee+ccy5GZlVEQwjKKQ1WbVcLxaFRPPjHd75HF9fV9/7YF0JEAEDuEiKmGaOEhKjcTXfOP3j/I5dhs4IxOou1W9qrY4wxhtBNqrZr2y5UdV3NJocHKQmQIWNRUmbec7qIqnY8XK7qpouskFhg/ksqLAosooCIgKgsiLMffUSL8f46//YBZPdUPZSuCQyAoogqmFRTQgSOjAgKjIgyl4OqIXVioDY0m8+mKqgCIiIwHbQWs+xbLzh7/8+blFgW6xeEdT6kuYIxs6hwil1TTbkF05j8vWcz4AJs45d3KvZ5lll7LON1Wp468EkLAyKA3IkoIBnrnLXGECGKRXX1R6amB76mYHqVK6q/rhOjiebqwvgXTVbnchAxznFjMzl/PiEaYww1F/92WsB2z9bZvf7y2oxAEUBgaiwCEPLilXjhWyb0+ezw3B2MwObipPGLZRoNMqt1R2vW4VwcgghAzlw5eW09qG4Gqfri7vlG7lwOqowgoJBAHQAgSMglRVRAUGBB0GQNoVSzT/nFF9BgqkM90hpQBRC1OPnWn6/L1t3Hove9r81hbukRQUVV28X4eB7JIOM8vAyUEgtTxsDUm+4Pey5ZE0mMc0IIx0cuEtHVlR6PYtMnrnwVCTg77BWinR5gk0vxc+ZFtxb5wfK/Gof4mNCbGKVX7F08hMwIx0hEtLJcmMPaGoXHXA3CSAggkFQJUIkXGja3GApZCwjtpZeDJ9GLSnN3XJUIuNHCy2K6OkBABEyEiIbNhYHN4NygiOeNhIP+B6AsIAS0ACZzZO2MEA1ytEmzzCAaATAGwCsnA8ZpL02X+y3IkbsHqqCisyXKnZn1AxHBBcmrRXwQEUQVaSGPxSwiBCRCREiQknJwwRkyuURKIGi8b1CFBWNPuujQXA20deFXHH2VzPcQ2O+ZlJCkLblIdmr8/h8fz2UYjuKRf1Eg6j2oOg8XHq57/TAbIQoikUiVy5LbbwfTAL2G0mIheCREQrQw31ZpAU4YBmtMfb0aMLS3UqDOBZDmI9aIhDj3mxER0M4BD748Sr6ZIM12E9xvHhovhSl3bF0HgMqiYAwBAgCDN6GJS6DgPKYWyZUl8dm7rnMV20MDc8tIIgoqGi7ac78UernM7l6mnZUrab4Q5tEiIaaFRMyRUqkoHoVV3LmY5YIBwSbWCMJIAkCI0BlJ/0wgeqQiQgCEBi6uLmfSRlSw4DnG9fGHXmZ6/Xh0/78oEOrYOZxODlJuuMmPTQEJQZmm4+PVaNJNB7FdylprABSI5sGI4Fw18UhXURufd7HWazUC0u6GCXP3HzWBWoDAKISgYBQVANUAIBLA5c0V4HSs293wdG+qTyOosWBoSCgphDgwJImNIwaHnY2ZJo7MEZ1W+23ddn/9ycNxz5AcCUQVAFTKbly/bb1/qBf/bMucOxERkZAQAwASPW5jZLHz0BEmJyASKhxYLKGOk2FmIGrkwqFxjlxmvKWo+vjzc1N85H0CggClbnuIETGSaW1TzrB79KObg+lK1fvXoRNKIc62dgrGzEFqMgCVlGSgNzzkZoltstvXqRfShSOgMvdeABEJkXH+RhY02GCMC4Rhf1PtYt91oBZBxS1MFh/tIQpkFGC7hFlx//WxurWgbmU9qwFNBswzZwGsQhICFkOJSYz3KCiswJEzKwWiXs86caP9bLHgQVURAejK6PzJwuwUTrffpzuDIi6gLxUFRFA3n//5I6LKuFBhJk7drPChKnKG6Qp535JE4YhsUu0VrCLJ0cSaxR5yNc5AVBGtZ0sTKr0AwIrHJmvypc0Tsyq/qln/okDa3M3O7+NyYFXhyIkMETptqsmFEsLxEbdXnglGBRERBKwCIi0czjmIpKCqruGY1yYBWqjGt4HXeaTEc0dGaIGHEh45XaCCIlc+eebgI893k6FP555SdIRkSVl6BiJzijahz5TQIHAXwaAjVDSQQ+rUOVLxQ+0Qj9xImiO8sMycVh9d9bPBcqGHYac333nRiSCiqiyEQQioKMqLvU3FKHDXb1ATe4o5iKgpPCIAYZgOKRlAG49mlhYacnVPQQREkOokGavoVNCe01WXy4GY2dK/LhB37kLXH4aZMc5JSDQAABWFdOLDn3SwdNcrsnb/IEEHQEQooiSCCIBWVVXnwIQCQKV9TdvYh+igmfX0yFjSPDwjApnHavNRgxcBEObtZ2Zu39/st2d25+1fGzfGACAsUFtktNZTJ0rSCdvMEYARY1lFhQm8MZpufO/Dt6UwGPcWZl1UAFW1Xj5/7OJt3eXiGgz5/q1r9UIzowga83gAM98ZSREIEQEQSQnUtsuOG6K01ouhNc5ba3MxQseHjapKOloA/CSTFRUIrPq6t2woag7VdvV3x7I+XXhRrv7CWvZkgegioEIWIJD0oGaWkpI32qmh1BmJYEkyfmRjUCXXGd4+oU4JQBUIgAhAEFVFQY1JjibLY6GsqcqJK7PWQ2UeWwYmnG8WCoBmITWkuYFDgMRk6szsNaeMjuISbJ+qtjePUW0Md5hJi7Z1GB0DKZPNpXUUE4LYFIEMGNUkBMJSW2MYe7qYmKSASAr9bhz9tPPxel93fkUNgSihJLKIoupUZCESXIT1oAhgrRTTg/0za4rceW/XatZcOQ9+YrpiVpctBMoaJ4g0V3RaiHSxFxkGna5cnq5ZBwm4LQxvPS/ZWb7cZiHLQQWA/hkNYSIk2bmUBc0oSpYUFUgNqqD1mJI2G5TNjmuIy8fsE+GJ+V+RLKqKWG7cVLRsSZNOKSEBVuJNAgQAvGpb55kJfUK+Q8BmYb8jCrGRerLhWiDQpAJI5KIxJEzsVAlVhAiRgJTJqCgSo0EAJNsNiPWqSQcz97bFdufVhFQEFEi0dDV3cPQeHSAaJOT5P6HMP0OhlKhj6IyzYqUxBtUSkVOXRBw4QlEkUlyAlov/ZP7lCCSaUfORNd9Fq5AyafdNnhpVxx05RZjjOB8TqTtQTAeHHSSGOJ12zCwiIgSKxiA6iGeJH81NGPeW9aqJXoBnCG2U2LZRkkQbR3BJc6v+cGCIwOzZPs3FsXAEEFGBDKEKABERgEFlkHDx9BpItrxZXhzZsTWo1qBK7DoFQhFFMoZARXDul6KgMSCKSoZQgdxsIAxPhEbm617oIkBqO6NJG7chqqqgc3urAECGCJQTLtz4BXoAaiTSVEwbYhSCGGJSAGEbbJuSTRbQgF59rSOxgKrOUyREiplsrZnIQNoqd7tovNYzUjaunaerVD9WQ5LD6kq7NmXRFFVQQVUlOQXggOJiHEG9pQ6viMaSn5QHwVFTUT8PtbCnw9ng+Kyv6nY3jKiardUhACLoEzSEHkddceHtI0YKFKwkAHlsgNsjR2pAVTQFMqoA5OY+EaKIsiIqqgIpsCoiA2i/dZ2aJ7yXKiIaTf5gNUqaDUV01lsJ80nDq5gJAYKKaHbVZC1SwQbEHpLzkDpAnwcEiyhCyXekiCYRMIESHH0TXt1HAQCSuBTBOi/gPXcBvZ245GC2D0QkwcxDh481WbWDOOtS1yF2mlsKgIioGJFAxFqdzRLUxRK4HcuGwpGKKKAiIMz8kENQHrTmwoX2bN9yBLd1PaAoPXa2L/MQ5XF/f+7nPw6vCxsHofDS9su2qNJOXy8fs4aSJiA0Ls7zofNwDZFkPmtAkBBJWBBFGWQtp0j+cdBu/jdVOLhyoxGTCYip1vts5nmCo7gJEyIiEihczfMgIAAhgexnWT+CVTRZ7sA6TJDEoYHgMlajSoswE+BojRHMEzAUwHCIFTE4YoeIWA1ROkwOiFmDdYCiHyuQHA+vVIYOPCUG0CAGDZI1gQyJ2hxTBWmyuh7N/pr3kvw/fRwtB81caH/mXWuf9bJDzCcChAfXEAvqR87YeR5C/0kKFQEB+ciWIyZo8PyzRsHlz+ptw0guPQWIkAlAVQ2CAggTKCIRMQKBAQHVORwlIIrMK2tISFcDYDAqoCpqzm2pY5sHk0x9iwG8qq3zoVmYe5PmKAGMcxNLTNjulh7EZpyEcyuEkrgTTgDjfGiEkI6Qk8cFuYhywLWck4wfKFWkE59BDNOTLkxpsCys6AMYWizQf3q52cWtaRNBuw4wNgEAkQiRdG7trTbrOs2HSfePlSY+ISU8X6kMBvfe/n2fv/9ffunOLZtPcyALs5MAYPi+dV5M/+OXKJIhBAAREQCx0ArVHz7h6gnfDnvLy7CzyUiEoJJCBGFBQwCgwjxP/hCCCqBymm/0gMAwSkY1mScODxQAKs9axI+AUZkeY0vzAAhVVQGJvDPztb3YQ65u0ZGo3c9dbJM1rDmoMHOKiSIqVEsjB4gIDIsIf6EkqKIASKgIkR1vOxWJCZBDaksFu9c/DgxKIQmA/jMaki4f9PBQRlWNgyyqjwgqyslFIQKOoW02bbK5pOm6SelqyH/kbvHK4Z//cffiL1txD42GOF4OzIarXjSIfLFI2ZMZBkxkUEWOllXrNQ3KauciL0EYSb3c19mQAZvIgIomYTLGWJkTOwQZCFSFwRAnMVZBgRAk2OBFxKaj9wJFJFApNpKsXPy7a5Gx7gfPR5vvQgwJFMgiytVk8GKPSw5D5QhFDFKxysAGyIDNZ5a8WSvm/j8bPKJWzOV45KVFazouCkJRQuFUCQm0bvgBu2LYMDPPjao9suUIqslf2TxgDWQ5aknaITF3w2h7hwoGCBQJ5MZVPd8LBrdvVzYtEBKoqJs6q/WJK6PdN7ztVc92TqRoCqI60ajNZydRCIzckgOC4gJYAgSADCB44nrtULwkIo9UxDbyMyVkV9arqoeEOabGJ7QS1Fl1nKBGUrCksfUIwpGIJIIxEk1AbBAVlxwX0TVuMbEW5msXw67t7RGCmK5b7gmpgvI8BCPlOfQjAEQIonoVmyPHRd0NZOZNA+7KMJ+yaVymnbTOBix6LXIhmusR9jXHe4EWGVWqS02z8YFtRomNobTfdeuaQhik4X7MWpf2T0Cbd1dNFoOwjyv1PVeaLoLWxhCCipBBMiYvEYkIQXvVYYhXRn1KtWnVOEIEVVWT+hIGe93/+bTHfvbTlk8dmiUpBp1xJm+tNJKAADdGuczXzdwvVABsJR/qRE/sZCMDRASCyGCk7wqKvXycGl4KIYKqigCisc4556ykGEJkiUnJGMJ5gmseayMgYQmS4HG3HI+cn5pATbum7BAGACwC83fDuYN75LTOqV2Pzw9BnO2BFM5ai+QRgLw3ygLAvJsdJSof/4InGnJVJCCCWSLgJMrJ5geWVOnQdLOk6gC5BlR6PFIHZRd6F1rjCA2EBfoCSKKSkBgJgUAn06R8caW1EpbYqyzcd2jXz/XWP/R7j3zSL50lqffOtI8em21fIxPnp2UonYmIcrbEkC8GSwsuW891HS1351dx3GQgfWWLbCjK1GeXrqXpSMy1YtEJgIgi8JyjABYZEJEEkEBVcf59c2SMyMiqQbbmqnE8GifvUmrlyiqmfAori8APEQWVCFEXkNoCGiXUI+gl4zDeuo6zCFZFrYiStcDW+gzS3jMJRf8J+UbnjucRokWkBsxe8sgKoMn2dpZLxyQn8wAQrdpUFSYZexX2FST1zSUXOwBVtYBEBkFJCZOyICgosA5ODiQ8E5BkzZmQsrnTqfWh/vjBj/xg1+/qQdWDvfLhN3zKc3eKlSl7oNt6LiXCmynRE4LYuSBbWutCWI7dLM8uT08NhRGJ05lCwl3P7N1z1sEZMESCsDAueDQ+IFSZ7/YKHkHmmVqcxxtrYJPFq5EhHsUVu4XhcOVmk0xtl+YKi4hAoHgUsD6+tpFksTmSpTSb+sRRLTJLGwmVgRUTare9OTcU8E/kAYq6gGGUCCzZXcotKJFy8leuzaFTPpurxUSK2qpt3eNeVkDfucuVbadBonhQBSJCMuozsqoAIiqcmLjZOZYrRguwmAVEyn/5C/RrB4d8GLvWWFO+5c233TjphxmEXpBnO/CE5ibh8moYu4C1fZkODrMCdQB/893f8IbLqKwOIF+3js4ZPXet6XpRY5hTjfRoQWNiAdAUDYII0NybWoDoiGRl2BEtiIRHgTMiom71M5/aZUd8OChYjSEEUKAnulSL6Hxh6gAAwIDKRC2HyKoqEtSQRCFvDRLjtf8SrWIO2IgqqTFmNzOoqioc424Rk8hhL4Y5OmCY4YleFgMI7xpvXOFataiKACoCwXomAZyDcHvnDxR3O2Vqpkz2yPJAvfq6Z03QDBuzQrPdd7zlzJedQYlLBwXbSq5VAZR2I7hcFq89j9ZVFcyoih/Z2vvQe/KXf/maB6tqOjrFLO4wh/FJU6OqJgOINGc5zbF9RUQFFVQANBRFEeY+LyIiSTEdoiZ3FUlAQCXV+pxV09oemjA+7hEMqM49qSdTghbQ2pFLGFj2LBhBFEBSNJYY0How4EL/uIousnT/1GQdecGCjAC7maoIsMSCtYzeKQxl7uewDa0jvWqy2CrgQ1NbKSUOIv35PCOmJvPJJktzF1DBOTcsMDmtjFg8gmmXvn58oWiWJ2rksbe88cyXPrfSild1pXUdRQ8sPuwVaPhxc4WoAmKipje/7a6N62//oo3cZr7KgmAcPKWPKtthdqmPSSwSRgQkkoWPj2DnUAgIzcHVOU1B5WgLMFmlCODS1Qmax2nN5WHIq9wy1dXTLOFiPP9EGIpzPRNVNUdebALddVoaogjGoJO5RWs1aLG3SCJc3XEWJk9RUVVVEdQkTbBv55CPKnX9EZB2SyvGqhCbzsisR49jWSlLCA9p0aBNarxhAYMG0AdVAFSapwahGNCMyh5w6SDvJOY6X+fTOsuWmpZseMMfvvQnTxftUp31JnGIri66aEAQZz7P+AijkEV+sN5831v+8eWvWV+vybZVcJgl0ejOsKntDI3TlAIIQCKDiCS0cGWUBRSBgAyKpLl7Kondwsh4jkhEPj0+yfPJb5YVQ2kTpbRuaB4mPCE00ifgv/McweITJZhaLA1AVEI1wIyEkitJgYNc9EilnqBfiycF55JhrBBpnuVv66wA7sbesTJYMGy4SYQkopJiTDYpfUiHY4xNBIg1k+tPETqAIbTS5QxN1MSHUK3m7lCCq9JmoylHBmfI2SyY1GUy+d+f/eAvfe2popXamtoUyYQeTc4Su66oV9iwmZdnwECMbWDk/uHrvjf+5BdeV4bUtXZ1kJIKmf7FymDvXmN3lo9bvYWBFfo96dRoAgMpCqasimrrzDhnENB4A6pknToMmrsWV8+bkMV5RtkYg2gMKuBul8X8ygbXpj1/E7GZr1hJstjT5xwTFWYWIFBmASIksRnuD5cOJjPpFZyctlD1oQYz85BmwyE4p0JGUyFpJSZJiAfYHweJUTQmcVwdDOtz/SYx5laMHRwX28TBWoHZlLK2QyxHiGjbDMQSNJ7NpQ4n00pSCElhp63tYX+2e7JusFxeGc4clx4GaKebtFNlxKyABkTIpuipXjYHfnrwu/c87Ts/pbiU2eAetwPqkiJAunQG6eoSmiW0K+Ydv3z4sm8ducbZLEuJKzuoQTVicUuC7rET2N650nXbmKdkx2BMlKwSAtQYXNUTTOU0b8H6XFKk3Gqo2iF4BKp1YmcZT1wExbm5modLeMEu8cVU2qRoHM1JQkfOLsKcGfD4MAkZ5vk0UtzZKV3oM0ZWW2BuZdZk1Nqsnhw8pc9zDFHzdhivLDWhv7d2/c7OIK8QkoJKV66kvXxvYJEVNIBS7kCQrEm4ovUgWmS1qbMeEtH4HW8D7P/DYNPysrUg6P1zOGVpUB9kJi8gREiXt0YnKBycoRsJR2sdKTkiFUOTbP1w/9iFTX3be1/xzaWEg3ozNsvVUb4NQV1KBNh95PkLVBcBwBrbTJY/5RnSwgBoWmUummGsgBSJNdxARi6ePPibJZ3cVfb6kWdgPbdJrCoaEM7Hg87FQVcIAyfmpRhqpbzoOk4ZpNHSbHti0mrguSFHO2f6yI56e8X0XBRyJREt3OKrbhUt/CxQFSDEq2x9pkfPPxUQNCkjJyiti7GXLEiqD651aSEQpBR06oZv2zP9Sxd1ihSrhBLLSWtGX22exSgJQCiawoIQNnIwWdtITQCoYc056wGb0P+Ml+Th4c2s36ICACHhYe4UOiiBUFIjdqVYKXxwg3T+mXqYLVuhokBBaPqDZjdfbTb/9I93vvJ2w82o7KoGV5qjgIMAOGOjJj7s5nS+ua1NdoCzDswQ6cKoHM2Wp9MAxkclm+Klp4nx1Xp5/kUpfPClMAZNfVMn72QmAkiEVdNqWVdwoSggsPOVggFgLSNXna2GrlstSWJztElaVBZgndVV0RSUiNH3Ca9ywuaDVbAgKjjPLj8RtYVI53ZN5xp1RiHWwUqmHurVrkJsTic9Egi0bdGYP/vxzYvtsi15v5/bwUZPZgUOjKbDEQIZIZOSBUCI49mpdNiB9KzJUBPZ2rkBB1MmftTzJDnfBcpN1y1nGBz5LLGmJK7cK3KI4NlWm3r+oB2K7feVLfZ31lauSPj717kveM5JzWvsSOx6+/DKQh5iBQ83AdnSlgkMugiDiWotVuNOsacnh3t/eR+87NaeZxBktmgufaLVtIdmb6XbDY+l2U43bnZ3OqudsZZUjUm0MxzuXzmjvRLagHYgwoJEcWY7m6WVauW2ykvXu1qfgaqAmi4QyOHINFkE10NdbNx45E4vODEAPN9bgI5gdJEtwNAD44zVDrqgAyoiazJ53S5fzUxi8DZmf/sjx55XUl91PMixw4K6K079+J6iRwRkVAhbiI40dD8rvWhKXfZrt15/BtCWzazIs9DYKl4zrRTRYj7MOBRcdys9Ly3kWTjsaMUiFA55xaxgPSQRLHJIVmF9/3Bz501v/8+3Z017bLfM90xRt70Tc+cMVFHcpbMEKDqeczHmGlKXvVhX2Up3Eu//tQ8/5aW924f7TZb7hpMFf1AA0HS1O7/Xf+yh3/XDumwP8drbVzM7LntOkoAZXVhd2rr/pjUF4K5u+92sZlvmW2wcedk5c80zemxTPJrQZFRAU/fo+kbcv2YQIYItVOcoMyAeVWmyzs2WzKOaea5bEYDilaEn4wFFidAFbkq/XzbG2Vb6V1Hl2ncqH/hf659LXvftMHGEBKJhqcfL7YXjZAkAOaoJGC1p2sClk4Xu3jNLD6f8aQ5s7QuIyVm53Ot1DUqeg8EENhdpqA1p2LYiNuvtuh5XYdC7shur9sSAooABxLS7NLLv/l/FD68cxuXDmXattcl7rf2CUy4U8ovOoG3bOhEsNERhlKbgReLhW95+5XlfcqpTmEKRycwYS2L2oHPUXd/L1y/L6NXXHKsVJrjW72qpfeGUWbL+hltZX131Cs5hiGINpCjybKmzRpu/ePbT12bWDtsj+DwgKKCk8cCH2PcuBKFMRXFOdrmaGNIFuXrhA8wppoDAZnp+VGaMoCImhQyQY3rkRsy0qkb9q3hQyBvf/sLWN8DWqD8spNRoLKpaaA+jgT7RHJ5HYiMChMWd1zeNv/UTNuNWFqMmm5NGzLU1FwdNwkwkz4HBZ5P+qhl1mBWSlAPScLLfG4pLaeXa/iw1mTIrEvI6nf+Vd3zml/dl2NsaphxBo8tmaaW7+oJC+4YUUxvYPO6o767j2OH73nbv2ie++hl7zRI24qSzWfRkg+zP+tBdLqMsDa/76CtJfRdXbNg2uQMNiRAwHOgOhFURa6BT8kGTCDlb65TUZlsffXYfTOP3y6txxoJfGcZKFIrAgAYWQdQCx9I5lRVUZE4HQkSexxAQXbOdeR8KY0UgdUrFrG0eWD7jqmlY7YUj1KU89OW5t39Dp8eySU9212ZJncQErhyYiYqbZ9Ssn+9WxoTplThou+G5E0up5sxaUrEIlKelmpMLvZoieyftSqjM2FmYBTAmA+rsmdqh23toxcpbPquc5WETBYm7pvy271FVwnakKsjkMDgzNWgRRNSlQQg++tS/nzynsrfdlgI2ZQ+88x320170ogCIbamB7DyHUEyW2+zCP/ShDvUt9y9df/mhEycJQ2dUyYLw5v7KWMtxacZ6wnXU70zNBXc5IYKKSCF9osRnZcXWNKx6ioSooA6j9mL/Q+fvNCBmoC6/fFPe5q4FRJyDlggAmk9X4kEJdXK1DLTzudYpx0TOXbrynFpXVKZZk0PW5THLLppjVTvYy0eDKI6xaLsylu3d3/h9x8SmWBAsB2ucgUzAROdHjyyRiJI4I3p4Ik+S9OSxETtD3bHKLo8cJqtAAKqYXH8PRju7uYCoRLHgAVDICZCoRMsKgphdXufD7eJwuUrCCcBaUU8CZl42Iws26XwvBEQQEomiqhAzRNTz62la2GB++q7Rlz0/xLwDXUCjR/5nwnB+WOW0NxzsTypuY2Od90EUBAknRd29+1MNba/YqQzsOFOviA7ndXwKngFIsQcuelRxQRc0eyBV5TqAMBkFGlxezyjBEXByxJppy4OQX+mvhp1HwoZcOjADzzGZct1fDNUyHmTkBp47ZxA4NAYzMzl79+2Gh9RJCuqLi83/KPNZwQqoigZRhFl0aFQkOTWoiIAGFVkpA+d8QiHbgWKIBi3PWQPatrZMbX78YkKweabRGhRFSgwExlhWtDYKBumXd41WK1WLgmqMBzN3HFFRAY8yZHoVIlLtFAGgzhVBjrWpcJO/+dPnff5T6r0y3yoWaZ0jgbAJPl5eFbUXlwaxhskEvVNhQ8qqxjJFN4UcemR6jJhH9hTJsyxQTlIjCNDfxaavge1RicackhLG1HfRYItVeXib06NaWYQjHlDwgYatu/BrWw9sE0/DgNkO144tDcudEWqHSzVPArcbzoBoN8hnJa5deo7xbVdSvZqfM9Off//3mAEwEigjOARWVUUrAjGXhApICLEBBSIwCKLJQ8qUkiZrAeaFqWOced+6cVFC4ADGIisYYzvVhEi2ZfQ2ctp5quPVY7VFLb0SgwABMykhoiLigm6zeFFSMIAtGgQ4zBMBjG27lP74wy/7rO4wXxdcjjoXyJHfGFznHRc90u2BI9uTyjgfQ1eSKqtgeVjS8wk6N9PMJfHCBpN3cR6HInKSaJL07hdjO9RFKA5AQCLAhyYn8A5A4WB9oRiPl+MiQBkys+/f84v3D/ub0vVN0WEG3b3T4HN7EO2JSgeemv0yZ4ta9Y2LttnvZTb1KdgQYPrLb/vRinmyNE+okRKKIRFxJkJbQjAkYA3UU0LSVGcQGTgg2QDWAVhEEETg3eFe58rmDz6JCyQil0TQWhSPiVUNIIIoqISBtscGLCjeihFMCCIKR1488ryFhBAs2JGoWqtR1P0iOoS+ySr5Ej0MJdZ1Zton0YhAypYxNgR6uIxxhP3ILYFTNkgirKCSbt5rTco0aUHRirKCJLdoYCFMQqorB82KjdYCLcJwEFUh3ueIYrw3VtKmqjDgAnw/ipuChVD8xZ9uBB7lPaOucbbxK6p7u3yuXFrOsjKS70xkEj4Y1UvTekw32CBLU146mJ35nj/9gS093aggIgFS60kElNnahOPjajwlVgXoHCAADyyrFVSLEoeWwc5dvFjPylCkSL1xL88KqyRK1iNHCwBgCD1AQGMVBwZH+eCAgjAaniMNhMqKoPMMGYKCCs0JbSrAlZACTkpB0L3+xB0/2DthZlLaSP0K9J8kdpyxSS9RZ/XyCTx/ou2mZH1UUkEFFG6X6jCBVDJ6Hyu2WWaFNLBRUUUUQktWdL2+uJ4AYT6MBZyLJmz1BYmjBTjE9YQIRyU2RwNobdLRYx+6aXU620/9FbsZjUfybbUycOPu8ttezsWkNGEIYlmbMtV5l8zJ2uv2wI1X6I/e+N1Vs6YDJ4poiLBDFEFQZuK4tankiJmTerYCaG0GCREUKEl9ApDtfAbrfTgc+sOw8sowtAqxSz0kA0CuQ2MAUdW6zhptH3iWHt68fOXYTCSSlzn5BZRV5gw2M89JzDMXoAAo0CmKQDuwRmQpjvhScbIG50kwzRa40VW42rQZdw/eIkwPvJLuvkGrJs9tJ2CEFRCVUOw0z1XqbIXGl8ONq0aIxS1mVUkAiGCJHrpZ3ALxAwAEISJsLq1ZwNg4TTu9Y8CEfDUdMOeXeNKpvOkj1w0HPZxiT8ePVCb21+SYbc1S7yyfy3I7aPfqUSSDsOSrpeHWshOfbZd8pbz0a18328iLSXMiiCIZUO9E1SJClLa+cLNRJVQFwQYEQdkgIAhZVdNkyYhVAALtJp43d3kVB9F1sZeTOARh8p4NgnBM4H1eUFNtg1kJ6CdFA6wwr7lA1HmqChBJRICIeJ6IAyJFISQGLqwRCaqQpQr73CabW+ZFiuuql1Uvcbry+Vmix/rw8J25QwpcF2VUUURSd0C5C9nU9mFWrJ5//3LfKyUpWFEUAFJyLAq+3AnYS2ATzOvSQIgI2oNCyAJYUV7bsI0+TguZ41aqsz7N7i6xY1t4iNPyRB8e3Jt125ku0UzLQTu1wy6NOEZGLX2WikfOFgMe9w9k48IHb5fNTmJ29vzSvGibQTmJs8Qsbb3XZYBkrKIczlhBQm0dIpHLo9rWJovWBsmgCVmSPdrg0JlEhRHEushB2iuT6zB2JjcC2mmCzJ5cg7ZKuUzJ+qwCleG2L7cHBiM1Dz6Go5PXS9GZSGxclze+rBlbdCy2KqqKWt/rknWoUAMVFkXFIM45UXPvt+nVuLV3HbnZxZvb7kzteLkEqp22WpqgPuXCtkgZAWJLn/AJbJMm8AiIwCLA2hRWOl6TItlpXxVRNRFSv4nDyWHb03JCKUvd5LRne9QYBhQFLCoYXjkMB28846xLde5iEUqSUxs2v4SzK7aOoweW/vHW1XIDsU80lhCWmA+flidByHep++9fX9RErp7lAZHFEat6F0KrmU1r95dlgVYBxLigrI4iOEFUclI2OmxyiFYBQZmFmcmSJQI0REqD7rC/Xt/1llct9bIYTNZp3Xjtu1R1PbbQ+A4ZLBLWo2mXE9QX3voBtwxygT/zi2W2cWWlHMPhyO2WaHIGUqNVgYXbseANhwSeIDSm6E2OIvpFNCLOH1b5apdttY0z68a2K5EMJfUi5GI7LzAzeASJeGUFAmmMQQAE7lEzBes27opUIQsuGImaRCJwtcpN3RvADA9fguyqYlHbCEqL6uBO/W9SMUjWgkQ1iIQOiM5gI6XIYJLCNSbe7oMattblHZmsl1lx0/r4Y/8Nocd2qUr73sYApU/JCEtSS5lP4aJpbakxooNUOI3GmWy2RhGNhJSFWhqbWwaClESt4SNeEhGihj7UW/nta855FhWclcaYSpNJIYcAyUUITiilNqN6+fDgD98x/LfPGVo596G3vegEsGxfM1le3TveY0XfgUJldk7rlj1Rq7BgL9/Jc8OxbRAAVR6vdh02rl9TnsWHjEHs1Th+erSZjWCI2WJURBTEed4CAQwzGEIpQUIE55xtKum7cPYd7FoHYhZ7uhUy7LiyeW/sOYDs3a4xD6XM+WYoc4aZoGSTN63nnTEeEoOxCpQZNFadOgS3+kixYkYbM4mWXeZdQxA0IpHdeOi9f/FVm7VoXa8ns98rUxuyYVRRIqRpBrMLm+UwSBRjQtdK0cul7iJ5MWVeTXOgnmmtBQJmIYcKYOb1PoQA6FFE3LBQCIkMBzG5s3VM/aFPJwIQaJ9YUbJceW3a/H/Hvve5h5KTf/bgCz//f5y9cKZ7+HQ1Hu6EHiO0CaGn4doBtBf7gYmgq1xXk888ThVQVOGoxJswDR7dLMAdXHcjXdubtQebKkABESBGsAHnBKWjdAvPawAxGDQswl5Cl9TJRkQ0YNLc80OlpBhdUzHj1CK4Bk+zRicKKiTzpk3KoJabd+w+NYsEZDAK2KTkrCIjcWeofXjn1l4YTBRZMFv2YCBVsYFsajj94u23VMtj27gwjaN2YkvbTZdSjEkRyiTN9NrQtQaBJfEo51ZcNhJm4FY7mZI3ntgiADN5UKJ5sQrMU55Zl5yJtQ7aRjNSWMqtsEJjhvnsmTbkya71NBltuCkf2Puuv6CGV/ZTfnl0wyO//oNZ8Yefe81++NXX/NtjSWJEMdRUs+G5k/n56aTJlntWl02SmOgqpeAoMByvh/Z9zyyndHcO8brqSlMtEbCiZcBY+4GZwyC0YEtgtJZE0WyX/czFlIJzbu9yfzk7SZy1CIyoikIxJU281+AsXVodUTDX9ITaIioICQCQKiorKT/6uiFiv0tsHXTJsBKBQudyFu/l4nV39Pf329wIEa1TZwC0IMCNx37hrS/KHsoe3C+bExcT+35P6pj3GAilrbquzsLFp3chWgytcXmnqiw8PWvIpVkr/bQxELYzi/PKcJNY5nW7CCAI1Il3XShWdtQDJkbLuUZqH2OAeINtUaTvIqCUhycv4y+88NLJ3h5sSLUxO1zVb/qCL//da7oMPv0bz/8AoExKBEJubly58B733o/eN9u48YaNl/b6TinLO0S42osPAVBYL94Jpty5kfQFvd6hGITICAyUoiGawx0LzANB0QAo4oqhBOShYy1WMuebY6xO4yKRByoEiPHAFmUvehGjdxigNlMAWDjs89KB6M/d89TEliQ5A8LzvmOqTB4YpDr1TA1l02uyXKgeBnHocZihHFy5cvxe7CIvTe95jpxozLYUfd8cLm2f38OltcF+DNvGOTGG22nmsyut9bY+uPjWk55S7Uy29JJb2mgKC4BIBuLi9YDmtC1SSa6k5nyPFIABOOY2FfHKsokAgqyRWIkkxZbufeRrnlqHdTyEgXhIYfOH9k62jsKpP/rC/b6TyZBE9bHp6EN/9DrnxK7gPe9p3njjc591TRZnvXnmYZ4nUcBy4jSt1GXY+uw6rs4M2Y4NR2oEkMqMIIninD1PSAg5igqAnOiaIESYx85sUGgJmToXaYGNIHgGrKelG6xY26nvrtFEps3iEWZy5Han+5YGqWoLlSRRAACVVcERGmPT4U1lxSM1HMuWpj1jIkDypIrXfn81uuwfqzfePPjMlTNbmc2cRnSTmMBgjGCrP0JL4yEIWKftyMfgoLe2dF2mLIVWKzeul8CVVQQkkegiI6qoQxQEJC20S5QbaILJHEHWdNr5obtmkLKZOLBAYKxvZNj4h6976ja7KZQmCaRR3Tw3n7nEsnzw1WMP2hSQoGjuHHzFpVPSEwHJh3n9rreffM4Ln7HZqKIKqJnz/DRB72K76lKS5/oW68y7NhlJbmZJXc8DqqAxMuesI4FPiZFAagav3IbSmypY7lwlFJamVhakheQFNVQW2qrKy7qpehwpn4yi4uONQBDQ731wMD3h1ChwCkJECsoKUYQUeNYbn2xatz9oc/Y87LkxSwQkS2G4fPmWrVsmhw9sPrVqB6Zr1FFbkTAAidTH0n7sSpWk3jquLFqTYQy33eKqaLPWIu0cRx2SKhqI4lVTMkVuAICMAUE03iOHzpReEmZSgCutJ6hcUPWM4wybprOObW+lzQNinqc6EbrGWIp5WG7LWp/y0UJmh1cOHDcv/MLv8+tVBioJjNS4uhb/+hvvy/yVRz+41GCWehOzIqnf9eEwbjqYHea6OyA3zZc1OvJ5UZaeUhsodwjG2iz3pCyd2syiahOYRU02q8ApWIp9qvud6LxcQsRMrdbx0lpmRU62WZM97E00rsMFDwtNhhFtaPx7+4OQM7rMABmM5YACegtSjFUOH7HDWfK+qN2ezMBIY/LDWz+p8anC0K5UvcG1x8efUJvORbKg5DNE5cRoVyOf62/UTthvqxQjwBlUM64ggBqNS5mZUhdFrFEFQ9IlykAjL4ClOeIIZEwUQYOqlBtG0x5mAogJtS1M3NCZ6UxrX/Hu//vqgAJzdjopAoB97ESFw+/+zq7fdLG0PX7gtX+4sTRhVgUFQ+1SOzmefvV9H94N8IWbp7Prp2cOD3TYkb0vaw+P292ZGM5YOzKOYxutMboIqFUAZVEQg4vGMmoXrQ0NCJGAGZzeWW9troKqCqSUADAlQhTHFrOuENCIc1I9AJB0DCKU/+OStmAtzns/UABpJAOw2d5Qq0ctgoqANQaBd6wDFtoYOFU7h++VoQVFMk5VIiqCBVYk69JUjvkyYherkxAoicRkOsgsoooGMllReIsWVRFRYjAZMMM8yYpEDABIzmoSMMRsHCTUZvyUHKTIkFHKnQ/CAEfDgL2v/J+vNsAAC6cGACBbuXxx7fDGbz72KZ/8xp/hg4H9+b857eT0AyMEiSnZYn+54P4D71kp8fDPuJk11Wd83ebx7VV/5ZY/fvqtUAVT2nFs4+UQS0aXEhJZoxaP+i2pggCBUUUCFqPzdpNGEgEj4rFLx4L1U3PUPy9FjE0VGGTFImPqiUK3qHIABIYoLkXz8K/Pat932ch5gylJn5KIU+aBrhycM88LVlLyaCM63jppoEK6ZiUTNQu7F7uxsBE2KsJAxGBAwJoQHmhGkWIWZPcOrf2YDQJN2SMrgSRHPs8dgFUA4QRGCJAAMSEokCFVAYMaFRBVFIhYKAS76WNbeu2WHn7d9g3lOd1d2hqMPkt53sdA5kA9APCFVevybxnu/c+v3j24QZp0sV1zW3EjEnJSAFcFHdNo1g2xN3N2eaX74Gv+8/OGs2Lp/M5ZNr2Lh4l3TIa7LonYPEYAa2hOIVzw5xUQwCSFo0WAgECBEARgZvajBY4GVASUrEldjCFGkU2vXQpOHKhhmldJaTAKwMGO37u0L5yyHZcXRe7NzJKzlkOcFeP9h572lKqQzijo1OZm7Dgl5bOlRjgivpumQbQSHdIcflZVIFCG+7OMA5PTQzTM2660ahIAqzhiEiKDAGoFQboAWSvyRE4+WhZjNXQOSJMiSkxoOrOZRKLhpO11P9WvrEzG8tExT5/aedF5C4VFPrTXmmxSXP7iw0/6qmsHh0sZQ1GlJeoQDFl0tj52JWxM41mWqQiJFY/Z13/H18v+qeG5WxHaaYB4mTWFDcscFXtkDKSkpMCMoPaoh+LcP5v3/bSAQvNmIynNZqPIqKAiKggZtWpdZrAZMSSSiJmoTYGMQVUBJWZ0cN+527iwrem6mbiilw0iEIfYHT+Aeqd/PDmniMJSIHTT2CTDcZOS2KPANj+0mfWckJBUQbIYFIFTwVdOZYUWbnmWBKGZrGQA5JlUlBRJQUUEySqiJAZjUxJCVQOoIKAGEEBTnJs4wmiYHNJgkryjFv1sWZvlND29FK6vlsc/NGwWTVdk0bSjXpq1Jzuvp8rnylPk0onpau3Xsiv9oAKKwtDIkrW2Cep8mEXrvQ0nv3/8H+0H3QOfRV1OWYHbqZtOVzWSco4AALIopEQUVATC+T8xLeh3CBiNQXQS8uJiUyZneV60oR2yaNIyh8NRnUFZVZS31kgERAQRnxBiTntvblvTA6v91IXUVqxoi34/81M22eHNy5giooHEBUsdU8iQ0yoDEC1cd7kw8MwSDBCQquSQGECZqp2nAoYiFrVDLLt0Glmx3zgCBGGZF4IRWARRBGEFJF10GJ7zxwiZ0VkVMADAOTBqs3+N1eQQzWi77KW8OOihr9v87yMSEYhIQlKjCHThuglsWTv29tboClim6fWP5idmIIqgEt3ecDAbuAmji4FXek04vLZt/+/d0oSvf0ZT+1mHputRd+XahH0OLqgiKpIighpURiUikQTzrlvz9anKSKKkEUfvoCSOmRCQAKWLiNNZRmmyEjPMh5V1jVfj56ANmda7RNN7Hr2+sFgBi/E9w12AGKpDFh2VbgdPZxYdkk8GA9qUAY5axZEQES3qfrqLazlHIKNzqt08cWcMbx0gRmVotwqKBuK6gLN0aAhIRWAefipaUkVD0iW0KoqoNM+iJUPKYpxNggYloYfAPLn4LJpOVoxEWxTMNRXT4WxJf7lNhgyKiDCRRQKcXnul3F0txssXH7vF8GjmP+2n6zNt1Rog4wxBNyy2i3xrpa1D9JAuUzqrdhl2337F9zE3UPR6NkGopk7VcseeASQJzbtpLHIvc2RBFcEwKKokiVZSchK5OJeDYKc0b4tddJqFul6J0LpADL0xGTaJCmEBMKipsFEP7vro7Z0h7OFMumiNtVqASmQdd9WjN1wLHJMaShFCXvgesDWOCjWLRJ2iQrXWJzLWsCgiaCMiitbLVKkUY1w6zGVqp10p3piwOy9UAwoGVAWAIkE9i8kQAllrULiS6FhUVUQAAzlNKlEPgmZDE24al+dXtOAWKuzyEMvd+77nVn2b8W/8+vDAuz287iWv7//+S//ggfdh2a4fHhRbL/nC74oYM/jUV4xDtjrqe5t8YMQsOpgOtuMg5s2Akl3L9qresb3e9ZtLnHx9z2dk4VEtD+tbZDA5GLYNpEazvADTzBBblq7puqZumhZITKZNBOWubQBj03Xc97uP3Suuri0pM6dUd8biQT1axsvF6Xx9epmGbV8YkFzR6+d2aSUjd/D6H7tVswyKdqqcQhTjvQGlYjB8ysZ917wkqBa9vulwMFzpheNnimFX+EeXk650okhExj36Z88I+QFCG5WMcRmM/+Ld7/+j3/j5e9+3fpwG2uvtfeiTYCPfhZRifdiOgdGSd0Hqw3zZObLzxoAqdt7sWUtUEvBZNy+TEFIlBDT9EDEmSm50WM+G0wKvnNxaGvPyfz135frX37htf/7vXvvIlzy4963DX779e970jdd+6Ze//cxKe2ryyDfc8WJTB8/GfPJf4zGVST4SzWEqHfg8PXCybW3qjYulY+eixYCYQJCTyy/eLHuFwpV6YsukLCQKHMU7AeoQNCVBFFYQdaoCSdUgkSgrkiB6x4nm9eSKSJg3IaTYaGR2wKxFLxGC7wWZ0xG2+m2+/Dd/eeNRX4ycGaxzpgEiRNUas2sNFq0KkHUomLRDdSaOayE6dItUNF/CvhWKqMJsCTTb2t8aDJbN8s4qpdBnmpY1QrduORNOVZdZZVUBRkIQAQsADEkSq6qCgc4KBwvWzBsPg2c1yOqqWBVNzZWvlvB7dRhH0Du9dM0NPzb+z2ap59qvHPzOe77ttX/7gzf9r/otH/yZ/W/7t1/6il9zdT37Nv9NT4UBG8XqVlyRAzxWNUUL2drU3XvMmM2DK9cNDmsXacuuVnXhH2DrwbOEj7zUhOW2zENddoAMDEISxGW1t8yWgs5bv9kEhgOjsqohImElYLDOSU1o5j2cyJAxiBlBKSE5YIF8g1EYPc67X2jPUXrwby8/TVSYFMkigTGEDEgEIgpLpztnMDEQkSSMmAoyLO1MnTlYnYOBLA8VI8OesyiMakEuhK/YJJfSfRdvdRzKWbl1pvBpgqpGjQYtbBRCRGM1t4hgSaWFIHrUfCWgKzBPIHNAgYDBIoPprB8xGZq4xJ+pO8WVU+987N47zN//6nItew//9dO+7s9+7Sfu/Pov/ew3/uU//Oof/crXfNVvvXat58KZu147eIs9uQd+5exotLIlPuUJsjjJDi+eXet4Kzu11La6GSmb7UsJgSNGryV09antnZG22x4NCqqTpKiKrh5noyTcWWGa1xKKxIaMY1ZBVWI1moAU7K7gvDUNEWHEjKRSZztENGjGq4lcDhQXheRlB+nS3UMwykKIRhSQCPQocuxvXVPWNgEgGmQWjYX2Seusl8ipAQABY5QfWykk5mKMzKGDmz8CMctm452mbxRnUS/cloPNZg3VaDQXA0oGwKBVg4BoUaS1wUAmzCKCEqNDAmZLwGjcEbfPeMamndCGCeMvgHMm4+fXvd/6gfcO63L7d//k9E829Vsm9/2w91c+9wf/y/QNN/3Czz5QP7rZgfzuL0+Ou33be8VXf3B3FE6n2Uaz58H43uc0Fy4ePrtPD8zC8cPKZOs4g6oe9yE0xjQPnVsrKmed7fkMFdUlYAVC8ARggNjO3ReVBNhFS1kMLCgyJ0trirJ0ocuSGjKWAAAtcHqIk6vK6By58XGu7FAqj/Oixwpj5s4XZWBWNIbSnPMLpCqIhFifTC4L4Mgisxqec7dZlnKF2AuoomhRt49xsCUgGQBDoBce+oLBuE6r942UMZssdzsudCvH74dsavMWqmAYraoFZGYGY1GRLVtgnVduMDcqlAwAoiFjxACAEeAU9ysdD5ab/mRXV6gBHj38W9+XLp/aXb/1zZ+83v6HvYf+YPzF+Gr76Nn/4P7DB77xkTMDgm7lu8rhYJtsO8ru3ig41psT9OFR23/Tpb/lL7jxPbuPLn36pf5jZmtTKuU2X/n5tcHmcRcm1x4bXCx9+5H1XoY4j2MZDbejHgcAcKoCIAJNBGKTWSNGVUQQQQQ1RTz9aJ0jkrGWVNSoqjy62pPD9a4gtuPjPjI4TiSgCpDzoHvr9MZxCXOOWwdk5my/OVx8hX3bg9YaFUgJrWOWFjBjWdHEWeNARZW7vU+IbJJNaA0igm5EiT1o2ntPITt0ww8VfYOI504MpkhhahIogShaEERDYFUNOSQIC+ghJ5MHRy5Kh0gayKuC1ZQZ3/hS19fy9tFeu71UXNjYK0++9Yvh/A07v/7ipd/7N/rvvvF/wJs+6Udf8AL61tP/5uDOay8e2xqYje4TkbHgA/yh3xlJGfPLu6/5nE+U/KNffSz7hluvfxVxE//HG8ypFTcbyEfCV1z7lTZh9fCjH/yBUfX3n4wP/8a/Wy8JbRdDAYouVcFKZVhdJvPKjQAE5HMNSpYZIBpMTMhor/nb1hmcN8QiBSaTbW+66uDpXUrstvp5MZ4aJVFhIHNhsjb5rf7ybq5ICMwRSQVEPCCpqhye6WxMnaqAASEVijaY5NqdYyo2WkBE0lBPNjV3KQtqLIoA/Pmj/V6Kq+bRO/OcmrL+yPWrzqbpuWfrcku4u2mskoqSUTTOAFgFY5xZ9DQUVcidTxzUhEieUuhZjWglEZpkzUGb7/VPNMPB5bRWZeZ7vvb7vmnjUbv39Mc2OvzJX9p71td+4zu+4P3mJXd91X+9Ze/Y1qB/MH7kBbum14Xy4F29zcOlCDkND86tbr3mDWflI9/3Tc88HPX37/jVa8Kw8YePnPivr/hOG2M57N34ApFeONGVZ8+uEVvTpcaCkmu7sO6S7TovogBoQI0jdSYFMgSqGAlFjbKljXGy1uCC9AuAFg6WxqlaZk7BcoHdgw8fykw4MDi7kXrDg5sunJoAAaiIBSJUkYAGQJjdTZKlRIRJnLNka9QMbUTcPk7oD5daIkSITbdke6YxysbMu2kXphLAeq9f9ni/v7X1wqwqQrRL05NR6WAzN6qoaJKyIjBbiym0vsobFuModkXTzXJ2gLYpAbmPASyGpEbtqIqbdzUD365M2qG70sMsvfY33/28Ak8/8rLzmZz5oT/8kU/e/c4b3/y0H19av71b3VmNMzn74eRjbIvZH799kLLhfgODpb/86Z+s166pf+Kr7nz9U3/9vlue86qv7e3MUM6/9Guef+mSWqtA6rGD6Q2IFYY+gPRnPXcAZaVeWrUSFTslspZgvBytrRASCbIqmMI1NWWD1NxSw2DHl4qIIAyuHk727lh+pCxdf1/bafPIn/9xe+JywYOaHF1Bg7y0lbbKA/LJ+RatN4SAaEIsewfnnzlYnYlRHlGdXCaN6R1M6uQFH7hZcOKF/MzkTXERwGmLwVGL+cF6O/nQZ0zWosbu9PpB8Ov8aLUWHAty5ytsdfopHBUUM3DD7SUAo7amgqvOVcZyCmgzkznyRkUg98TSoqEkCtAx+B4lzVKctII4XZapX7rjhpf+z+c23/Qds69SVvzMz6sK+b07f+LpN7/6xjDNOoz93uFsVHWj7fHr4rJItOXswvN+5dWnLm/9Uf/7Hpp+y2cNPmfpkf95enaiKv7+zzaurwZXGYwxu3ByxT/Q73uVxFk5IYZ2NEsxoRgFNSAsQcWGaK2zkHFSkBgHErMCmkrD1tKFm1YjAeIcvMMkytQMBjrxJuaj1/3eLdnBs+OxD19TxunTO5IuKQhP2tSEYIGreduU5Ea2wZM32HEoB9oxDKg+8D5MAKnLKdGpRVdtQ1Fpv0A0giDc48Ynbq+c3ggHZy67a2pvqPMHN+SAqWuCWhVkzQkVFIkcOUMAaHvbVR+9Oj2c+uVeampAYCISdkw0xDajTgxpNdLZbCk/QcgNIirbiRt24+JV/+c5+foPfsvWf7gOknRWDn7s5f/dvi5b73DsVi7i3/wEtnzioe2vHV/bq4s4deWNw1+42Z5945//3Rd1P7L86OvejZ/xy8enW/b+O2/o741XjsrCQfXcB1VwVJIiRfUrgzLO6kluNLJTiUc5EReilSgSrE9R8iGKxhDA1pvTzYsy6yMAzdsGEGOhOBnY2UNnszRNp2/iB7f39rPikOzaJZ85Z42Bw1EOPgZi44xU4ypVUlWt6T987PQwthBCQO4G+QSbnELMNeF1RgwlShaS0sOrlsiggBbTrhf4cnvlfSu47x44GZeYIe48U1KmBqwbOqYYc5X5iWoOc4uiZPc3ZHJ5M5qJXZHZJCtG3DS1y6xP2FbRxr52My5MwoMw2ijdNREdZCkxQUb1znqc7Byu6J6e/uXvHIUmrk/uXSrh8Je/I9mdpYOPXis3PyWH/t6HfvDcqtnKR6nM7M5/+DErbu0zvryW8jd/5/t//3Pf9iidrh+88fvqVepv7x4JRBCX3Wy3yoGtiSx82QE00DMmKSBIWnTZ6SVfqgKsVBXmLjalqMSQFaXa/F7LYo/Y1mqQjvkUB6n6yHAV+/z5n7MzgUupft9g6Z1Tvn84ysgQemqkaKtsiVuyZcZiIHQx8eWPuJX1a4/b2e5gXfaX1nYQdPcWEZWNeWui6IFR7jmTISoJmATWhnT35O//rOOT//V+l/suFefCcgTBsla24DBBPwq5eWlyQZjUWASejEJVECsgEW1RPNw7OJxNlJrdpDOEpjJ96lwd16YFvyplFEGAeo0K9v1vPus/rle9mz7v5lcND91SW8nvfgU0/+PZz7h4rD+2H3jtu+7rX8Fs58eqpVEcDnlayn7znT9w7Y+MR8d2h/4HD77wDfojP302e+z+177mhEycP3/1VD3k7Vey3bumbzokSFxOmjiEYtKYwB6SsSDCrLqvo65D4kvWaG3Lft1ob5S6KrpTX/Rosz6H/BaH59Sny5aW0AQyeZGn7ExnzpbTL862v+P/e/hdg4FRAO1MFdx06u6u9ne2L28dpmIwGpVW9pb7S7D94OVYHh8PV/SBpT532xmrQM5G2AELEPIjn1igKjHZyvQUmru+7bPU96eX//tXZiFTvW+tZxyDb2vkkMW2WE9sLAFZ0fmr2zLYS6cu+1134Qr7OKl2wuEBD4dZclTYm9bc6dRGX0I3qi/lfuUtLRGPQ0QDnZHV/K9++EPt4Vp74uSn2+0NPrzro7d98PPcY3/2XadTVb3pJ+/cfMO4KqO7+fu+sktQxNbg3mr/ge+8rnGQptXZhz7ZhYded9qapVOvXNlazwEfvcrHycaPncKSJw/kUzUdSoBpE+1gb9XGlBkxiggiALm28bDn+dHMzPbbvKcMyImRV+xt/64fex0IIKiIk/jYenYQe0T9vjPUD23XrqxioOnST7/pD67xlhMS5FCQjcE+nSCOL13Ym3z0/p2dLhvUPQxsVtcu4bm/X7rjmmXMull0kdqeVQTOFFW8mOqkAwATCdn61uxtDTy2s+xXz/Sg68Pk0ecT+NqY1h8rI3VN1idBMmo8m74CAljbXPmr+7reR9AWhXAxcqu3rK6tutSDPbjr5oEPzGggue64mZY33oUGwpQVYZr39if1X31aPN6dv2nrmE4KqItTD7x+8/js/ux554b66A/+yDOLE3sodnv0tF95xx9XcccNIefef/nJGws4HOVflj3watA/uFIcrz74Dae7zf08ra097SpByjVk4cH33LXcqREnM3z4jkl/NAs+RW/A7BpDCkjQDrd3jvU5P6yHJ0e745UMJgfRZ0t/fmr2wqXDsMhPgVCa3e1cF0uZGiutrTS3eb7bnpyNZj/93z5JCAwRgOMMwZQCQCY/9gyAEHnn3g9f/KXs0Xx92cISrzxz590PfK5EOx2J9dP1nNAmVYsMXBYjFDIuEJca0Fzyz5ixKbp33+xT3qpmm5QUrMb1gXW9aaSUKxEqGfZ9BRK19MPvv+nM8fyF1FsdcUW9aLgj4HjQd8tL6wYzNZablkrXX7VaraFyMkajk0b9/ru/v9hrb768GtJQLh+Hgy/7d1LwT33PwHbuo9fdfrYaq62Wju9sXvcJn/fg+99z4fx4xeRr//iFLS/ddeNfvP49M6h/4+aN2SRfcX5vQ0IYX7q6qWePfNLBYP85zzpljYVM9h/86283y92szVNnDJjKkLIA0rR4bPeG1TQAIEMIKcM2SNcc3P9bcIC+Kea1UyDE1cOMTAUfRE1VnXddFrpyvc7b9PKXgxAgAgh1mWECSgQAChC9a89e/7LtN58yh/UjjR0saX/9WXFvuRnWy7HI6vWC1ImAAVVxQy+A1hLG4awtdH/UmTPt7MFGWIeXbHG8KGpA6prBuIveAnYjnGM95ApWQrH87e638kGTNdSfUL+2gaPtUSp7uNE9k6BHqmzcENTkgZo4Q5bWH+YtW+hXfnCpmOAB1Mf2TlbHD9/9la+57iu21h+4g7t8Mgvl2HiGvIFi3AsnTr9o76FHHnrIDz/xDXffjrPXvqTNX/pJ8IH7bp3iLPmWfJQ6w6PqBEjQhaXpR//tzS6zCEjF6hrYfuz3djfCxHXHdKWeDaTN9ez5O5pio00MJFGtRGMydfmBHXAHpe2HvNvx5YE/LNL569zWGU0hywiSOpoOOwpbm/bvv2wtpb1j2pLvfE5VL8ZsutwZmyQzDB6YNk8Wt9S9Ha2v7NWP0ObpQoOeu+X4LMZQ2BAGgb1NVW//mEsgVFszmrFxzb23bMh+sfK+vRN5nG3sNDdLW5Dv0i1SzpYv2+loKA5ZXO5jFsiCkrWe07it7AbaJYZM+rkx1OHwLZvX+6JkMwNFElEriQrAjlKs1KrhYpzjyhf81otPaOsxayvXLJ36hOmlC6ebb1pv8un6H7yg6JwYhDkNQcT0b7mDKp+qP3nkFuh/2YeXuq/8x8lPnRo0xVPe8YevblakLt3etUcC4byjkNp94QRICC67cTm2g4PsGOM66qMrVePLJDa/8uGn+/xQnKqKHDXeBThxTF33yLlHHqEb7zizsXu3O3Z8sJRXlY0ZIPtcP/L+2Xl+2tNPXjvZ/r3/ne3ZpQeXh248oJntVT3Hy21+UGZw9cSc41fqgZyaLZ+YQqdFubbnjeoklUVsnHU2xQTUs03FaB3EFMH3087BvU+brWIz+atbuy5RcuNhj4ymBBbQI4VmXS2AcowpcwZAVSyAXZIBuyxoL9JS5ySih9BeyadkJHGuAEjCDgkIfAncztgwuQSA9UsfmtVU57jy5ldJGN/+nC+6HmZ/8urdnrjH0otHQVrxi4NKWIXVeKCef+rffXalD//8p3Zfcfav33Fj7E0Ozjz87a980RBMeODqUbke4HR2MLxpzRhDZAi0R1lay1ozWbEPPnWYOkcu70MOx87UvThoREEEbTCogMrFUy//zVuKW6958WNX3nlo+fIoTjbe+iW99pRz6jWO/db52265/4O/0b38lf9wf++B97zpA/WrvxuIOgegVY87F4em4f4RK/95/1cYc6AOMlQI7ZDHYTnTFqZ1icKhD9x5LU9GI8xRSHox0O7Z5682vv8P9376pqdc/NZNjkFUAaCDVpr2uG9w3vjGLApkLDgYVZYQTFRw+ZUVS8F41Jf0l5pkiUBFUQHBmdiKWWYIyBAzCb2Zacv/9PCP3b98x/Nu+r+fvpxPt74nYPzVn32++/EHe6feWOz1ZkvVUWP6Qq10xAFrc93PfW/RfcNXkXHtN//xX/xUfaY91bzxueNMUrz4gqsaUrXH4AG83SIhEZHtMJW4s+IQdf/eJW/Lfki5b8PGHWVr8szMGSgUDCga5c2/q7/8q2pXxDud1N5rct2H375dxuOe275Ll6//tGctm5fkcLn/Hb13/Pu/eMmbKT72U98d9vt+77n3Dvb8+u89B/fz3tXzUV78uv70WGvEzLn0YRR2YEgYqDUDia6cZT7pJBWejIJzPvR36/Qnj/6MWbs2/MHZdePQNunKrdJZANTEahrLcjrLUxLlFksVRUKyDNivk8YqB5Z0+f3HrxuGaZ7ZzXrWqUjpAAQWJ8dJCkFtuwIKGAoNxcqVk089oY/+0bu/qNvxWzd0XTb765//2bL6fFjd/Oi1WXX6wf6CuYNtRE1ZltlGD0dMrsnVxN/9wVuf+Ynvrz50+MzPuHPQcoft1aac5qDXTxepmPfFEOnAoNH3Pi+53uHqC87uzVpnqEvRSX9WerNfWMJFVSsYo3rxzpuzuk9NwUm91c4krtsN3HdRmwFCfS1stJonPv6Xf/UHtPLsta/5s7vfeRKKHsibP/SZ9yFffMsnQpZjOjr+4XqfpawbwyYQA7Cd2HFfDskNLoxrCLWDlGJebD+lswJgDEGlo+IlL6ZnDbP3Ni+2dS6hm05RhSEpkAJ1xsJQMSWTZZn3lgQB0UZHo2lO3QywsbZyVZMlwq4aBJdbbIkBUQANhUR5W28TTk6AOs15vFyHcjvL22c859zwT9/3FDMuJ+5XXvujz7h0vFuh8a31/uZWvwhzgWgvggZDNLYH731NDpojjV9795vH8TOfgTiV3kYA7aZNfjUwPDhJZI+H/uIsoC6n1FBT0jgGV+wdHNs9zHykQdY5GLWQ6VyPFy1POHb+kTtyliIBWoAQcy4Pk42rpDbIDJpTAh4hFrtvfPnT2p9865vufsBf+kygzsjm137nz77z8FXvrXu92pojDfGrabXF+4ph6+ZNoOOllTyh9McHYZAFYzVYh/eXAkRA0i3NMtz91Li+EyePrs7KFQ9ixo7RQUzgLKiyIYlBAmfksqzIjAKoWE/gAptqFLUjm91uS/WlbaARFLHaIRlMgsCJjbWoIFdWkmSdm4GvZqWZDWJVrHWdv3AK4KGf2/rVT3tkYJdan53P+4Nu0UMSACfsLUoMy+aBB16IycXJPd979jeag2PjvABd0rHNVa7omSOBNA+POj/uQ6tKRKrORFZ3e9FqGDgHo4d6NllLPiZj60C5WmQ0qAFBCVT05MWpLXhvBaUDsIMOzMGqPJgPHUZKOtmkGfQDRvcPP1CVv/35z976tb/8hGfBpRNc3fn6713DV9672a8RrnaZhTBi6eKF5ShISJrj3s71RYodRNszzdilXm41/MMtQ4sMKGnfe8x6FyysHrx1tLYy24DOToZsQBXROWzRo0m15MTahDY/hiqICpaJQYy1EDxiNxsaiFgnu1Tlvk49C9EbFFEIYEm0WNW0mwU2sTPLO9loamy0ujuCC3CqieU3f973Ll/emOzFk1v5sglbBo+8FMw6SZHIHri9/gZx+OU3rnzHy/RKJiavci9YYJMcDK45moD8cOR0m5YqQGNIlWNwXq/fomGTUrb/gb/7jBtbX4TZyEWKo1pQJao3i95wwv39+28vurDKRh1B0Ey6yyVVN/VDCEXZdTMvFkKf7wp3Zv/79ukyfN/XaVmd2F9aSv/7rz9Ef/bfP5W8h8dPeQtk9gcTl+fiVFgksK50Nbmuixcf/OCDlEYZuVPveX7oupaNxuLkIZ2qVqE4nD105/qsNzWNm5VoK0JrDEhtjDgJ9gCNAdsbxohRjYIFYNclBikwIy5a8B7ZUA15nJ2csZmVjjGDEHLqGal6HU37y83YYaicVAiccj289m76vJkMv+Hnrq+bIhZYTEurUfp86HWQamcZJ9YKqZjBwd9+Qq/NL/7V132GcueKDjobvUDstwO+vMRHm0h66MVdMTk+EyQQUXWQacLQmyl44WMP/9mjX7fRS6Z/4Dy62hhBmjdJUAQRMXjwt68BGtRlQAfgU+v1g3Y0dNpOLbbkKqBgi868/aYL9//03abzYQk5l2VkGP2bz9jZfwao0/kJSPMFQuNjMZ9scKGJzaAoLoWVhL7t2Xf99vLZLzrpt9cudb/2rv9y33vuKTdtnWDyoue/+cP58IbldwxWW59sZnce+IJ+IjLgmzwU9uI1GEOVfOvL0jc3dFhqgMwSgPFkORAmQGsczZvMxOhv+8AKtwbAaEwxsxIopbycveWrProy3PdsC50Gqtce3dv/7wfvSNnv/+IvLjXFbBF3VAOXDs0Gg9tvjmnV85PWY1WlW9zq9+yaF770/5SH05W8m3mYN482YkQOi6uHA9DsVFM88Fyji4q3+bGLAscv5Xff+03Dz6Zvf9Gr/v1DZ5qemVsBY4BUWZBIkpCl/PzbXhy0BIcAIki093cvSbc19TUPjdfzc9OVX5j95pVL1z178oNv+ZN1j7M+HO0/KqY8sQ5PumxzEzZFWqp8VkisZ4PokhqU/fKV168CAJyhm+AVu3/+9JccL7WmAq644Se+utfV977zus3y8pqOaXfFJcmiGDHGmmx9loa7l37t5vzGf3jwJ+L2ip/qAFurANbOieTMZIyd1x5gn+PekkfXkTOxSWgIVLQuptTcfLqKru7HrXy0fc+b7x1fLH7szLjX/fg337Dj9o4muJjqhplM9wrsDztt7nnw3vsOApfLL+dj586++8RXxE4H7UwHaWEUbLIsl0dXBRJ2lwzsroPReYGnzNkhuq/hJ677ln//wp+B//Zdn7uWBgnm9SK8OBacDCmAcY3jbcgY9voZQIc58IPD1UOojj2QUb5fZm8/V6fvetfwM374AxP59J2VJZmXAwEQaELn9UkC0UNGImuctGTJSnXoIxpR32kOFVnBvROT6vinLDuoXE9nxarTwkNYvm73TISB1bG/tJkl9QkhGaHJDGKo3nT375ypjfmSr3nOsU9/3qBJztqEaCAuCtVBmUXRGtS2sJxZjpkgpJb6yVgLXPf6M799Eg/82rSNd739/Ttbzzq+bm+xy+076BVblLJFGxkkhxUb3IwyLce/8ptTgHxgkOTNl46/8abhp567QZvicRI/AKYs8KXbrs7DbAxDzdbYLOqk5pJCYIvHb7rptZ9/229/w5/zcGxVFAwCakJVJCsgaAgF8HTRZbZZhU6KIjDSOdof2VPn8gN67J7z7XO/8V16zTuX92brcPHf/J9Xb/ij9r0GIKZIT24btX8wG/ltW/iuw6KwMJ70jFHxmSszoALqcoOH3fap6LgLpGmWWcSxGbTLFltzbOaKbOdphkHFJQJxI456OX3ut5+eju45+z/vv/OtxfZ6AYBW0HqK4gMoGqPRCFhC4UHYlt974Q2DxElnVekZDaANa9Mr5Q0zP8DdD/3JO+N119/w5pspvftdz656Tz3zHd+2zlm36BgWC90aLG9hVtHfv/69+WbhoAlZv/jIyyYX3nry/tt/dDSLUMRZdtScSYi63c2rAmm5wBQGYmHOTSNVBSDIJsvf8h3f88rf+rnx53zHB+9Yg1oFQAlQRZXQCANa5ZjLdfe9BD2OSyONRd45OWuGaWvVProT33Wnff5X7t71HwfR9cPhrf3tD973vdccaZogOisCTxbI3sBoVa+34rLCciq7ldw2Id/V0oKH1lc5wPp434EbKOASSGudS+Cqg7WBpIQDmWZqVSjbWUbBpt1bX1l69vVKcM3Bxun4iq4DSGCtQcw8KSRAa+2cuq/M3AxOhheeyZkZRIyznjQhxmPDx5p45rHw8JvunzzjJMdcd4sT/hfvv+7FB+3b/2ORT3JYNAJrsZd3WIQP/to7aERy6Imt76bm4m91D/zvbul3X136WZMeP5WABOrJ8av5kNQbTLNxPu8/RkikooqA0Qbzzq//4S879UM//FNvfM65E/MjyRQdCygDgYohYE7upjf85wA0YkHjtj/8kfe8d/UP94v3gOz3vzffviaBX47ru4NeGTfrr/+WP/iWOaMeDCsYMh9znOD4gCZL+UzIWgcxJV8fY+DOFit5B2AsZjEP01XF7tAWFBN6p1C2k37WP9n0a+bBrlqx3CmfW0miuOnT1vk1xcHljVPTxk37QwjBGmsVTZ4lBSJSJUJAEEDTYdx5xjT2RNVZnR+eq6brNZeHcf+RP/n9zWvuwBYKWrv01MlSeNa5H7vn9vEffUn0Ot9CgH1a2utOXvzDX3nwjGshmqTWYYrlh2n51Gp/7cFgVBCuWga1SabdxlWvph0CmBXvFqdYMyy6KNHoDx75w7v+4/e/+Jlf9ne/cs0zlInm7WeASBgWx76g7bLr28kgItd5Du3bf/yVy+mF+Z+sfNaF17/2D9rndBcnuyIbo90Tpz562+0f2tz/6kUD9PmZWwpPPLUVAAA+PKiD2V1JQ0RpgOx4lk8z7+QgsuYJ7JVN6bIl2PNuhKDWNWjqtsjz2t9o1GGEdDHPgCNC9/AzOaZYRxlde6sc5Mcn2rPQg5BcH2pLidV5FkCSFJwzoEpkKLX21sMMDABaTymwNQraaupu3H7BK5uXqQ1ARuLpDz1l33fH/+7XX2Nv/NEvISuLIzj84GHKBg8+94S9jZteHnwAT5H96mP3v+dH4Jq/me1e25eOV2uYixCp04YHVzWmLg5GdJM1rAAKDPMTVkS7125/6Ut/6O3f8rmv/m33mj++KQvWKACZpMZCVGJSZUAnMlr5+xcZ0nj/7/zlU1/+zY/xF7+8fc83bj3w7auf8Dvx8/72yjS++e/eAl+69Mbh8R+/9LsZzXv4IpOFq23mnnC98zqzzB+8bsTOaUiC05gFN3C8VJUeOOXHZj5TgjWAFI0HyJPtAUiXb/VnG40LJLtlgSn0QzzIMLGPm5PJuOnWQoDRYT8hWS+RSgviTQHM2ss5KGqL3mkgDz0zEaCGiZAFSPNJL8i0WYO/+f2X2SHEGK1Xjp6uLPUu7r79FaPdP2/B5w3MGZDF9lpw0/cOPEUorVJEFHQWrhx/z8+lG9q1R2rXBFeGoyOBABAfO3VM5rEEoF8reLLqkBeN0VA5T7Y4TF/82O/9/k++6I6VmXfP+uVZvrI72h4MKhIiQQOgzGgJVCk862/upAjnfvVeCn+y4ceD324nPyWTX9zik99/3cVzIb7+a15At2zJjn3t799zKysokIW2iBZb46N6IUhEnbGN8Rfvuaaue2tFeZA5EeAokg2yKtm8TF0BOUDvqO7TmAVsqwCYh+2eNMFa6u59riuvrLexzhoLZaybRpd6Xh04Hc2rn9GCWjRAxdgKtsHmtqtLUAHjslY0qbGgCCoAGENicusrfPiPz12rs2ABScHYJTldXMn+oX9c3oOfvbuWLXqoY7My8dvb/+mWmUElUkZVFRTOdt5cD1vlgSEm1Pl5CfMGv7x9zMnREc2Xp864Uag8zs+ratZCx10osnTjdcMfe/HL2v75089I5/vbQ3K9bmU7J0RVBUYHoGgy2M8vZCD26d+Nl5t3n9t56D1r0426Wh3ceu725d3dr1n9T299ZnG4lKajlP/bz3sNWwQAgRJEsYiN9Fpf5/sbkMXozZWDh24tQ9BTM+wYRNAlQlVOigENPNm+PeHic0VqMHI44F4OmQAkZYNURG/UOPtk99omCDafmpRxEGvIgAgbgzjvsUNqFAQQwRuIqCMnjbkJKPjaWATj3FY16y31/vYp2T3nPgfOXTv189bmWjZ8ePy/TCtjUBBErMzZO9bfBUN2re2YcX500zwIiq79yM2Q3Pz4FbjYNdkjG0Ue5uNECuPB8YOJXrntfX/1odt+6aYz7/z9R3/7BW95jqmCnYZ2owJQVVG2BCIExujSPeMcZnzo+8/4ZK5+4f0v3kuTFazSQ7Prd9d63/dfn6XTEenqYdEd+8Jf+WJGJCIIxoGic1qnnGjj0gmwdQ/Kd+Ky58lkPdrQWVLrK0MAisozRrHyMU7A0eXvXUW1jLirfRty9awWkQhQUi0fYxnBKgmUyYOxmqou66d5CpodgEHSZGVe92oIAslI7OQaPz12CZwxqIR6w217x1fKj9585a1fWNbvfOHVHtFTW45+/U/uAGEQJJlXbKJgtZEkkTT1flSEeYMCAABQ2z78UjjqawrtDbZ9x4nGEaACEC2DTxcPe/1rzl+462duxeB/+j/1f+NVX/9oL28HYWm2P48jAHR+VD1HomN2avd+NRymw2vc9Lq/9rvlxfTYVFePnT5R3nns9KeNj2FnQ5Zxuf1VpRVGBBGTXAgeyZnmIzdP5UTiDCQN/+gW06RpFZ3t2JnEMrOWDDgNQSBmT17nj1/6oTuEqMvsYZ5zUwo5cagcJSVtEdOTlcsaMqbfc5laY7rk5nldA5EJkUDY4pyvlUTA6GaGh1Ll5WCyAqj6/3P3ngGXXlXZ8Fprl7ud9vTp6ZlUSCNA6BBAivQiggjSBV4VRRR5pQkoIk2KiAiIihTpXQi9BEggDUhPps9TT73b3nut78d5npk4wzAhMwMf7/Vnyin3Ofc6e6+1V7kuLpjM1SfzcRODHz3CqbmP/N7s+G0Zom7y9betrxUIj2cJxhNButLJMG9WZtQFRFjl9REQsGbY2wRjriUAvuH+kbr6QoYxyyZg7Y2tNtLVk4XubTuzTNzZn3jlpvTCbz68u7hh4uYZCAKokEQLkwIJUZ0GfK/52htbE1k/Wtnxue2dXfGX09lTi4H72c/ohPD7U3lfZSUO68m6o5wXUAoRaKCM1sCXvuMn2XMer1c6eWTY/vCW+ytSesMo00CaOHCZRkqJYWgZXR1ohdtg51VbtXG1rZenUxDgwKVCES+gItVIfs4KAQA1MdLegTFBKg2IhL4Co2GVQByQEAU12DBNYEOW7poIqzqz0thwM87PJV/YMjtyO8/4+zeNV4gA9L/9V2ZmUaUESIpkBMiegNqjBBSCoUoLMch45xf0up5Xk57HCyzw7pMQdnaqqBAZ8/GKFLX58Ssfe/Hxb7nsP559+uwfRQ/9fP+vH3n+v9DCH59XDjMGRYSsmAEpoPEop5k/f5EFgNium77gJXkpf5OEUQsAIKiPnc+dn77oC3ftvPGMvqiGKITg0JDUGnJX2pf/+VPaH73+L4oJClr4jZtOVuDhQjXSgIGDcyGLERiFNsVIcPDWs4ZrlrzSgXBp+ayYEs+iODLKUwUYqWZ80NKiAAI8GQglgFKELvgQ2FcsAMxoxrSdHJCsibDhWWeRGxVZHST4gLbomNHMZHfrSSuNvjU33rjKfC+73YcWQg8y58a+QxAlBNBJqMjUuh97ECIIa9TvjKPF6c6qvA2w08dDMRoOR6ufE4c6JtBnPPNt1/rsLqf/6bM+3LT/7FqTD3nkd1o//ZeryqkQQmARCALsnVBXt9afckXfBAC2oYYQZes3JLVqgRvlDsNXj5Pi+ZdcvPm6312yprHy7a9dVynjSsaFPSNIsuyN69Zdt/3hagNbBrjiByeT7gnNETmQqmSEyhCHAFKvU7CvyPBzcG2WEJJ1/WIjhtgra8c+hBAUJfagjAARKMA2aqUVFwXECAioCI3RKDKWYhIOofZAmlKSFVnsr+vVUWyxykvv2/W2zt7/3pzrKg7thaXVAX7YdO2VG1q2uVLWntnXJSlNIKgqozDkuNOG4IHGFX8ERGu5nO0YC+ML8rZ+UTV1HBERIhFNQJfTEdzttX/630X2wHc+9LUv+NlmA51T4ayr77LjzVfnIGPRSReA68pLU3YXs8O6Cuw8SNAVmFE5clCNTBYbH24tI3rE6Y3yAaaIde+lz3nwiz+7gpbgTX/4+397GVB56tYnvv9L5y3ySJHwdyazHbdctn2+5xoC4hwYWwkHFqIiDQDhwNu6H7s7qbgAOUOnrlQwiryvyrKyRhkV64OWFqmAzkCSREo4bpnCGGvBQdpMoyQiZlAK0BhK6k49ckawJBWWFdqiRo9R2LRwyraFz92/M9t04YrpmU/YBKMQR5D/bJca6XSqWmmSKBWy5VGqgPJcecakBBqijAJpUmN5YSyqvVvBiVOVB6Bqs0nCisTAgcf0N0FJJbvWn/fSH//p1zh55H8sPPmrBXzp9Q9ev06fvvsfvx/itvbiEx1HJACwojPu3LzDWifGYwLKIakMwUZlUTtlHNLSs57ZaU2fMue626962J2ufe61YWSv+8Kbp827tmmn8c+fEo3mqKGc3/u+dNtlt5y18rNvf/U7P1js50kDSz+VadL97vY25Spypa8d+9KhDzUOEByXNUqRh+taS9BvS9i5QXu1S7uKdk23S52lPIpH7IoCMbii3GcYvZqb9Z5FAQKOeZ9QakRCYq+BxpUGKT2PojIRIDJAojVra/2NpySjr55xsm/pcrjk28u7tlZ5AsP24FuY2bIEz56VII6ccSwsIsKAwYsCYlyT3Qaok/ZyE1RNY8ns3XduBd+IyioGABKU4WgmWok773zogzZ87v3vOf+Rd37da1/4/c//1QlbCg/p+m1/+/Tz1rW4iHsgZAgRmkWZtOJtdx5FGhA8q5zF1AgOjAIAOGU0v7l+5gOePfnqADP/c6+nzv3zwnvvZuHy+Y98+CHzo5BVnOydg8pHuY3edN+HhFNhrj/sf3/hW19qndrsMG7gIiSqsI3MxH1oGAhOIlMvdVTl41DFeYoVpTDa2QqNSAq9c26iHiWaU1me2j1dm+607bqzTBGXTie2HDTWDAJCCEp7EEBCNdZURKQgqA0KOEYBlpAQJqxPzFiElGXM2YUAwc8u6wddexwlFUUZxhuuzXbazrbm7FJ946RXQVNNnjUTDj0AASnSoAEYveZV7a3VQLkyvS1WghKioOG6tmDlh2JwlUNjsuoDYfSjvQ8474LrvuvLHY2Xf+wJ8+aeP+uxqeeSm79yw8NPVh27gCKoxLvUMbe3bAOlQ2UMQNUKUT8m0MQVKxKnNnYjPu2b4EEvnFvfZ5TPnpnbYsqn2adPNKrfKt2MW56zVdkcXPmZqDZFLNN0ZnjK5Z+++ocn3ndw0rrc1ItzC9edElexHblEx+C9nQpgva2BGs5bxYuL+TmNvolm4nZryL2GalTUPyMardu1ZdhzE3P5rItjVwSzb1JJgyCwsoUGRli1DBGREiFARau7nASq0RebAyGSphBiF7S1StfLU+bk5vKuTKuGgon+9WeGMFsv4ddhtqgTnbNlwYDQF0QtSKRBgwSslbO3FfONltLqZPREnsgD/GyyirtlHSc8djG4d0r62G/9tVp622V3ecK6Xnt4vQzO+9lVtWsmg3xqZvunrnvMb432TFbiGUJVCJo6PnMBI6h9DAGoXpzKkAZNufnSa1dWFjYo7M9miyZxupqZ2fz7FPZsXErlwQ9eedYsA+hhwwPNuaWp2Q+8/Fq6+QRvgHuRT47b+OhhY++bbrn0bveiauLK6098w9vOK/F+D6n++7P5qWdsmWzdOrPzG+WDpl9SnP2w+JKr7WDFLW/zp607P56Yu3X711emb4ndqPfj4ssTmdQzeRqFQhJbjdLbGARFWzEiwDAemAdUpEGYZUyiAkgaKRCV1kVAhBLYCiuqKF2ZnNxjS8msDxAGinaeWy5pWy78I1nkuCwkAqCKZJQSkPCY/F441MZHQriWTERBP5oAtCBKAHDHSQpWMLWVXeUqS/0AW3rXCXu3POvZtljKBuK/vn5nutiwgbOi34ru9vXR5o1zCx0ILMJcGSKz4fvCYGKsHVnZ0I+udV/+UVzDnZ64eTT3mpdtAJjOORs0/cKsQDm5rEe2Ktq4a+MgdMraLnXC/MaFm9/0VlNuklrQpmMhjsbu9X/59I/cq8x8f/Inn3lWlMLVH//Y7PF/eFIDlCk2w9x9Pvqu7rlPOA/K+678aNOPdj/u7p2No/X9eio3e+H7X/rO9luyR5x/VmGXv/Cz7ffS62cS8Crav0IYkJUBBCTkoBERlVaEKMxAyGPRW6wp6FTZOCAp4IC7YwVciETNYZvr4UnzDsxU7JuLuVI1/uw9V5/sUx9KI0aEvGJKIiBBDIREiACxEJDsy+6W7XwoZQyMIMQ4bCidM2sIY7UVEd+G+XSwwlrV2CwrXu7+4R9MNoxk9agTVdIaPf1jb31RsyHjHY7IhQkw149StpBTBpCX/i2f4RMuuu9W6EdR1v/RVy7MnKEipl6YUHubkEhaGjDd9sZRoiUeqhZvP3Hb8u+868J+q49NqRwoRCg71Qyoj4FPnZvsHf+sdu3grPU3LJ29GaoIStnTavnffmJV28CcN+9/lyvDXaNRFtetwold7x768PnPyBtnCBqQPBs/84lUZaddOAPd9j6DAKBoI4A6Uh5BA6BCBAcACjHESAii9DwqnbmRBFBKROimk6dQ6RqGE0PDWbQzALqJzkL63ad53/7S27+3IXOFaLGeAkMQMDG5QNoWAEiCYjLSbnXLQgAQ3aVJARACVgFhhqBCD6YeszBB3C3jdrs9mO2HpizVKc1M733Zv968YTKJKx+nUsPui2982T8c55RSSEQBSq7t4t5TKnDVBOyIrvzgrfotWyuNuYsjKNK/ft5bz9G9Zrw8CcDFlOJe7GJnZDJPMyiSfqOO4cSb/vHd61baK0GnoziOISgoOk6wbjiNS1MK2pCyH06DvesogxECcKoDQQq+Oeg1Ug7cvIhVHUNgm4AGBURTz7t/o9KYm6pFj3hEDjU2AdfsMU4SCxAI6lhVQuNMEqMX1IYkDL0oCKgbrCHBkhmIWJCunZ5kikLVdmSk1w6hHq3koVSmn44++Z5bT8wc9qPYVEHCuOIjtScTaceehL23sRoTuMO4gBIVe9ItMTMoZi1EZ+hR1cpCAauUfb2W83jdDC21eAUm3aLPDN8bPnndRH+ixdqUTewsnnn9J59f23EzhM9GZZnx4ineoIGFT3988KRnXCDKGGciHlHavfOrX/2gpzbJT5acBtRexREEAJXbQGXiEheFfPCoP3/1ZX//oQ/X8cIMeA0EnBTWgGJT0nQYdHpp4abyfqPh0hFkUEm6NCkiMIy7WbMuDVV1AyrLZSJQRZSrKKdUtgKUKtXOgw0xKQben5zUogNqNlmeQomWcyMynjgJaVQhjawWAAqFCWZYyYjjpDfoUNCdInIgRHU8XQ5lSGBrleXcuWkob/i3jScHEtfyA+sjcanJCue0UhIUpH3th1t6Meh41PFiKgBCYHb+p6dHdUQelSpds7ZAC9MOQ8bCgiCJY6wmBWwhJnSDbg/r2dGFG69411w2mljqkJC3K3jJnhelVZLJfMuMtJKZ9TffnXzgL386vKfZxuC9EQ1AGkDDAy74z6c94nFWYmAhh0EFUhRQOzKxD3E1anzoXz95/Mp9LvjG0x72wE5tEQR2bQhYK4PgIxBqSwuaIDMAoCEFAQsyCRasZNAGMQAQRwBG0DKKFUhAkjG9bQQgTQAhYQMAal9FTI+JnW3mnSgjYmms6hYicQhBUi0CEryKfBxUmDbBaxQWTCofSqXMiJs2zinrFa1yAdbFN/3jDbvOxZ1ThKTAc5WZolS1YGQUIRtcbo6SqR03bRmhEEiQVRFaRKo1K2AtzsYU+l7XI4UavQgRrYoEoAAjjHmxrPcUn7Lp3j/5yOzejiubpBPSIXth9by775097TrPEysZ+saPv/yV1tMuvg+WBoHGoSQAADRd1Xjq8/b+ef/0i86asuMaGQtLZDRKOSze/dOtD3nqU+L51pAfct/kOx+on/DAbgtnhlnspQjJL6iAHBk0AiJj3C4cR9qxGpOvek6xDtq5tXQkEwLByhSEioBBIBt48i4JU5IvqxS6UQnrL6sLrz4WNvabmwYWgFB8mRGKF/K+CjZSxC2lzfzuZjvqaADUq3J5KEDDOEQQSEBQiTXku9qviXqND0djndTxUI7TwliERjr5AlzvWtAfBtEU56de/jZ4+N6qMhPFxGjd3/NfP+JNJ0SVRA0JOCZCHKMmUVE+91rz/e984cQ7bYw6q6rJoVhZ3L1t+9IzfudMX8GedZU1HPxFF37lo+k9BzqVpcy1TK33HeQOh0OnHX/+4xoRgclkYrQCAEYZa38WRmqFwaOMk8beY5CFhqci1Iwoje2YYYlOMCKUYign+B8uehOrjajIh6kcWIDAM2trPedFbjDWypPyK714i+5MI9dg1GrqGkm6pwgCAxlhb9drcAsTAVGtkhIKIiCLjJnvRBICm4xyMf6x31g+4/rZIMycZD6+78/e/KDZOh6tqNpf+enROzY5YIidYl6drRoj7xjRvsr0fe9762Wf35HHOmo000jllU82nP/4qdr2tIpplDn2jdzJXR58j7v9Qz7wHQ0s3ka30x6/NPQ4d6hMbSkETU4jExLpykilLeC4+UZhAAYpVG1HddEwELIiYEbKh6BMMbLrZOn71/+26Z9wwg9wIi6rnCF4QkKNWgliTUppozTs2dDPjweFxlTESoex/AQCSncaISAwBUJoOlUsbCY1bssay1ShIAoFDgxIwZU6sZKZ0R+Gr8briQ1CYAujhY7/56etzE7ckO54T/zsh+XgLAoEQUIQXFtw0Amxn282Vwyq4457DFQ5i4gEnkCtCUJVW8xGVTLoq2hkXKbj5c+9/sF/f2qz27FQ1an+Bff0CA0yVrdDQGA0IgEQWIhaOgQRvcqAjuTRiwiIDEPNLIHyYUg9RRDlK5K5m8zXu0/xreaeeGFzshcavZhQhIhS5XxA8kmmrTjkuRXVicTkHn3GBEHxqk4F9GcIvIbAQduKCbmbScBVmWdy4wCZWEQQFeZIWHiEQRL/SeOTPMFRxVQB6I2Lm/4pfeRe3vzihRc+eGqQeAAvEDtFILfpJqn7OLmBqyQKoULwPgUkDQDCwRGhiQYRLE/oJgBElPKgOVm/5rPPfcxjjwflberrg0tLPx9rFzxUTfHAxzUwEhFgu67YgKDXSliIZEWn4giRWVAQvQkI1mFVIEgIIBJ64IPtpmxI93be+kef6TY7t2y8ZEt7OSuW5oY0ZvCy4MVrkjjVFBxAunNzNqBm38agPVHA8WEdKeRTGnwEohwINjVAnooXI8C4KmyHq2NrAgF0MORQFTO9KfPo8uvDDcZT6p3mBafOeevMnfkld3lpaUMaqlSB8S7G/31ThtOwlHE5CZoA0UIQEQfMiiwAO58JwWzEoRdl1rkolWUaPGzuky/8MDcq0OH22uOXhh4LCAFOzdeKfBBUFpwHuKE7cxIVShuEgEhIGkgStoNakfiAJs2G5NG0d4f2cNv6331o48of3f+W5NbZH0ICkRkBaS0AwEDIRoONjdQM6vshDg23rNIohNqshXsoKC4jCeCJoOZoXU2+ijRoEhZmEEBBQUS3pirXY6JOVA4oX9j8kqe+eyUUOq2GBhWr1v3+6NRXfKIbMrewDln5KoMEmAFpfy/xZNdMEMReCMcyAuPGL1FcCygbla1aIiY/6bxhjVBOYrFywYmTj7/bM9sl92YPXUU/QoN4qpNRk8lUzbgSFTnvgWzw0XxSm3TkdPACASBxbO0uw82osHkU1SlD1iRcbsR2h5n9wivK3vr/6W0qE245Nhw5AWbPGCt0ZFUQDVJyY1ezTlEY8nTXSscTIVcw/tmjjmarqJUbM8pKAdZuNNveM+siRcFzXdHObXlYGibNvVVt1KLrcwlNK3rjSldPZd09N99pMl/ODDnPZe/mP/jDO7kGBDUrGIlKRQngWPhhDdIGWP3P23TxEAARAIBEYkBQlIw7oSACiWOZkH954etfGYUpryvUQHBQk8Iabu9WdZBBNChA76VlPWWQ51J7iqzlqQubdRVRow+kCZj3tFs+N7S3pRxyEy1nkUcrzZ4ss7vyBB197zNS5On2zAAicDDjhjcBVAqRpeCaRtRaOlFIHGXxzoWmIxG17wP7mrWgIaFamfocrneufFAmp1sh73b73aGPAq2boZVb27vvV207J2om4hhs65ZsbvNMdcMN13/89M241JbGSvOG0WOefu5qEe/gFsQjROsdj/z7v5QyDoLAovb1Ve3r4j/C99deeyKtoXZh6LVuDokQgg+SBT+p9uYNIgRBbMXbq612NFfz0KvBwHpNGiCH1m6refFluPSRn04MqhY4qBVzYBSWwBiA9FjxQ7nYaN71+G5feRtJfyVm5BoRZJWORIMKqJl1mUF/q46iU0/q1TeN4qxxXMtC1mi3KY829m789+NP4sm90MCy9rZ9lg+aZtbdbfu6/+qt7+hqdwsW/vOcVr9x5Pfm56Iy//EU/WIFoojQCx3ti+gyAkyh8qBjO6hLhzYi8c7HwGFHrqb7EConANOD5oyvtB/sWuidVAaa2eArNqa1UE+l3zvnt/Mvfnm6mj9+NNnTeaqQdEBHQXCsVglIFgnauJMuvPWbDdI6r3coIGY9zuUCeLXFgJAIkQ1UNvvuxr1PzCZv7WhCpdirVt237eG10xue0yn0Xhtq55Wqu404MVj70H4qv33Lyoa9U9fv+osLar0qlnD0QUvr//0Ff/y3dSJOtHb7trsDr3U4H3Oox3UDiqLBlEHoW8pIrShyeV7z/LLA7kFYXDZSOiDYanab528wYI3ddS5FdZH2YnAlytx2ufIfoxv/K6zr7oJBwzb6WjOiFxFEJEUoDKicj6osX7rP3dtfinWkKr66H5MQjSNRAWfOsQBYa3JRQVE9Azvq0qsJpUCCsJeCGr4XnbHkz16eUfOuiWRjqSGOIh3YKlc8aP6Lp22fvqX732e2ip4cI3sAri/SD/7hJx4fdFlmuH9s4XA+4/ZCl0gRdfP0B5fu7i7WbE6KszhKsnjrorQFd3/2WY2EgyIZwhbJrqV+Or1yc66S3RNzixYqHhUN2faCR2z/u5+enW/6iZKhzRjYCyhQChAUEYkgkvOtuuo3nnZy1bcJKzt7Qz9ZpdwZb1n9O2kRYAUMTJAs62su2kKD40ZKkbYY7CiLv/eZmd+Z7dfBrswEl7SYAkcjAUIOgJOd1z7l/YPP/Nan1psy4eyg/pqjhGBG0/B3/LrnzKSl4P4s7dGKujQYKnd85HLeuDB3uk3TJgEgEuFK5n2tNj9yqDAETaJ4JO1y0FquhqVLdcvI19sRr6eTl+a3PRgmr5mIhib2VKWxgAijFjU+dJICFEEValMMNl9gpgvWgdXGbb05knFEAwKgd28W9EYJK9Byy3mN+fkHxpaphcLg2DnjuxseZ5PEV63GMAzQGBQGmqmdQ7S23NEO7Sc+4z6vXS9l3DOAR+0W/W/Ee+dGMgk3fP7+myIIfh+xwNoPYM1Ch3PyB366fdledBrX3/fi0+srhhRIKDBojbWL0n7cWA4nLmc6dwFBQaeo2s3FToxzSTWIoeGt6ure9yfwQbPLjfnTt08tJcNY2VgZTaLGMkQcABUCBzH1yoQr2+JSlTScN3r74vEWDNWrn0QvnsYqgGYfeVv/9Fzup00pmt2MUIhQDNYw2SxzgVa9bKrEiSNL3lcOIsNcL2zqpY3tz3iVrW09PwuBAI+JRXpzK6aRR695ajaRAgMdGGUdKbQG0HAngLgvdeQ11JO9hFBNkbRD2PTT49cxtxABvF6Zoaafdsaum2/YELlI7Fluxn738U9Pp7rkp0RbifXAYtmGQEF7RsNlrSRijmS0Pq3j+gxdpZEsTYdast1zy4ktk0oi5SpWc6UKhgNbT1guiYx2r4RY2sikoWbiwFChZR/VkE9UECkIhVGBvPIFGGwsNt31//DNEtHTFAPBMfIhpj9RVSnMvPUFw993vemVtkMrDo0WZiBCp1ACaATvYMx8wSKIWGuNLEheIzMK25JsAHLaKR1QqrWj/77WOR8hp8ayKlJMTa1hqKP+tV/b+NjxuUiUUElYS1nNnnrrOVgVqrrplGvKqpXNtO2SmxFgkxZTkBilMIgW0oKklCDXSGwqpbisJ6c8dkYzjpwJi/24b2VAylUBbVUaAEKxtQaObqmj2rWqxLESLxBAaK3ReKBgIm9iudpCPCRho0MZsiXzt49ZmhtLqR7988ca0sWak2Fkz3zzY+98p+m9K5+7pjhtXZkeN2F5/qZbu35k4rQ5MdnMi9EwH45KmtqyaVJ7tySj3bvLRufEydnJloZQX3nFcvO0M6ZIGIJP0v25rFVgw4nRxFIkDd/3cQBfpvc6fcP8WINDrItqlQINl8zMt05vV7590q57dU29kv/kst+Kdw+mINhoZSPGkdUgoHJkZAkSUJzBOhqBh+BarPiU720MSNHkdaiaEifsPaAv1DAeS8e4yDPsBOipGdBBwfgcT4EZEEWiIfvGrceteR9oq7zgUDtTuv97xvMaNx53jFbGGrrTeTokM7Snv+KpT7nUDI+/6OS91/fLL7RIQnTcvU6GUHQXFnffUlCUTkZKbH/hG91SCNNmOkNEO2/ur+SgcXn9GXfqfu9D83Nz97h7k4ewv1FuFSqudKgQi6lhPdigb27ZsBhitaJWJ5iIVWFjpWIRJ9vbakmmdnQnknquvOoHF5nlpsFAeucJzRCnJBqYGRAEVCXGk69jKEJio6ky9nf7apE4i9n1N50ioa5JmDQR9ZLAejzAa26xibu1kxqvAMdneQyrg28LE53lvT+ZnF1dIVLYIOw4lp3/M3xD0jvJH6t4dxXXbJ5Z7tBKo995wjf+qqpdourygTEMzZhfnlZsayOAjKW3QbhvYwXAwYAgiHNa6jJojY0SjfOhXKbppPLRPqKC/XG0cUZ5b2av/ICzN++aoEGY2yDKErKray8ioa594PZMx598/ZKeUqfM/KQuq7pB85p2TzNQqBe7PFIJitG1tTayNmnltTXCwciQQZLZBOUeU0tSUoU7vlHl1lPczFTAyCxZLwgkFhgvP5HCtVswGkERgJRSyEppRaT0HN44mLxodhFFAJihqnRTF8PBF/7y9z/fVMfu/LGGk16wY3KlmOApZd9144481Tm09fxyI4qIjNEy1dS+dqIQODCzTGRQFXnhakE3zE1GcWt23VRmBa3N2hNTp54yq03DurX3J1xDgzCIQDj9DJL10xWRHwwLXSsiEAHSsSgokUvbUluLWxSVzU3zI5OqWhaTzi2EYBCpoMIjAnNQhAgUZfUIlZC2aW3dEBJF+tQLBoX3sq7X70+4NK37tTGhpL3CCgOCZoTLT2W17fQoEvQ+CLNIYAAAERjZZla37cS4jsPSAIBKsPfhl97J5t0t/jZFwWOC9K7/4iZVP5K8XEiePOkgw0GYnSxrrxT7OlRV6Vk4IClCUrp2YJM0S8sKTCPzpQGfj7xNITIwWPGRhnowCPv75/dXvjqRqxQ5p8+JzWg57qukJKMXJpA0gCK0VQSVVj4nnZ1406lxhJtu3DEZBZjduVRd06yCImqMaqlcBAUY9p4DKQODSQwRqMm9EKLZzKPBiy/ttYNuZisrC7vsVA6NGFRid3vR4DV5iPLdDwp+98UxxEIizKBWReqFxNbkI1MWdqygDOUwUnU2uOEhj8zTUacI2TE6f6wheu6Td83ZZCSxjmHL+57CpTQBgjLCPqA2nggAnB9TKCJY4ABE0Aq5ioDqymoNAEH3OG0g1MTG3jYC2WcQl5jSd3QN+ezCrPatMM9pvNCeGxKJSMBalRYqxFYoNJ72w5VJGCSd7acgDmDkcAcrr73S/V5zVCdSQhyEgZE0FpURg5yOarsum9NVnJ+TjNa7sHvjNx/z1nJ3K2257YtzW/+26wGAWTkFZZjAwXwERVRrRAlISApRgpCqQ6svI2XWJrVQJVCWP/nP7whIyNMAx+j8sc8gdOI3nyKDDlXeNZ/wzqeFFEIAbYRZR8C1Fg+IWgmtDuMBEUiQoBIIgokXZEEEbCis2Wpy3nJQa0yC+w1iOC7tsMkU99ISohWMMQxspccjo4DGQSvXw07fJ1JmF3z/YjFy5s9yl1Tne4jP+1qDuNFbf/VJFalyZTi7xFHXTwxl7j7Xr2wZqcVgW4vYu/gVEnadIQsnFoPF3qb73XL8G7ot35u5aTiV2N8OAtu21E5Vkbcn1HuNh0aImRkRGTEgigiLqCr1xAoVKECggnN23R9MOKCQjVMZx2TP2nfyLqcGECIBiFXxyP/83EOGjWDrvOGcHUVRnlBdtkbaNWStJXMsFgsKxg7bQrXrxk1bHalx45bEIHSbAax9BglgVJDaRwqRgxe1qgaKOC5F12CLKiXOFuW7rXjhpp1bt3Wa6y498/sn3Tr1ab9zRx1NXj957xTOmqQf8OaV2ixNnNLisHD/F/3RtsnF+Oa0ObjoIZtd0T8fzD2fdH79hxedPHvjpW99ak3r3QayqJ58v5desGW+kWA0L6GaXkozrhBri+Ne0n0/e/SVyih4QBQOmBZqd3LJZz+9dt+OrQcB4GzyR1e0TsiLqWHDFM98/z3ai1MuNErI4JtfXm6d8nsxL8yE2h2qC6Krr3nTU1/0ggcf6v33vY51YksI7LXCwDAWtbhNgY0pzl1DycJZ72hnjhf+4JILFxdGiblX+9y9W9a96pY0/nF8ynDHyid63Qedt/k06ydGRjubefveF7W++omLSIqvL345e9Rplqqt8tGTz7nhu187PZn5ypsf/oK4AbkMOt9ZfOcX3nr+MNs1uaDSsDA3QUEhACDd1lH/+zlnxXllKAihhABDuzD7LrVt6VhHV2vweu59tCt8f/PFjz5TwQObz379ulGjrEkN9N3uS/O3fMbO731hq+kP9foO3OUDA/OB4eMP8fh+Q2KiUYEOgIQKBIBIAiEAAgmi9gbQMtmBrYNKp976Z5ddd8YTH3nff98Lx39z4T/fMRxsNRPRbPTfr+g8438G/Yc8lRrpcBr3JvHxn/NP/95d7NX/PKMv7P3pa+45ZILj3kFnfWahM3Xl53TLKnaYYjxqvHTmub/7J9XGHdvmtO/OxIDCStamemGchbzXjKVEiS+FBBgwWzRXfOvz1DpW9Y8DYcsdy3sb/IC9n/jYifd9ZnG3zg8et7MRjSYgIyhU86StreUfJQN76Mn1nVln8vzN3UM9fJuVpSUQ6CBeK8WBQY1bBXE8qaDLoENVNaE/2gLo3WnveckFLzx5Zfn7E98dtbedTJFJ8p6KPn+irXb4c594/cv/Ke6n/f7mAhLX/8+/e/XvXzO9/aGf/8EJ9a3H9aL+XeQFcpqeXzr9uFeeS1iqCOKlqUo996JXPmpLvekzMUQrneC0FyP75qxFRFDOKEcBiMgEYQBUo5mv/9eLN19/SjjG9li7wYPoiq1z1KPpe169558u23qfB3/1IccXdSrogzWSJCVO3cXwQYwZ+xA2eigmk82Heny/O2H0HrxoEhaREEJgZl6dGxcIXJIMnEjT4mKvavnG+05507bJien+A/74ocM31GL3mnakPndiD+OLzas+X49CBu11o6Q3ima6L7nHy54xesElp+Nr7nrcchsa8yf+6dvvpb8t173jTL0EWsvATYmtqrM//KLLqiW+zyisTGpWY8cNIDyWImXmPaNoajKJsjjS4xneW74RPyM5pTzW5481NPnH0fJuXoDri6mzi6888RWf+mA3b0fLy0RKu8EoXl60HFHvUK8Pi3o3QJUd6vF9K4RAAVBwFkECgAIWP9ZwEGBBDspFXGpWmYJJBAdZ+ZwfP/ehz7r0uP/Gkx7Z9ulwzpdx+cyv/8255lunPeYzg0SBCsOJsg0rE9HonvbUa971gVe89nSBrNuBVvxwfZG7x+b5WXENAaQGLjadjoN/wkM+eBG7CBZOzAq0Y+4yEBAQZBbBiXJQNOJyuSUgwsLGfvc/DAz0sap/HIjyv3zLNgFnfjYBWUg6g/Qf/v2C+x2/PtNuvmMShLaSXBqdQ30aM720XnZtWJg+xOP7DYJaKeLgiICBtHgWEaQA47yUyxwIRzAwsagq8lAkcs6n3/qM4z+74ZptL1fR0lQZ6zI+9c7Fv3780d2/u+9d06DKeAJsoBZT4h9wHzYPP/O43BjpwDBZmixCZ1NvdpQtz+UWwdnpUYOHmD129iWvvfKe6eJiZAcuGkdZ495eERGQfqdTlEGlZYCxfrt+/P0HabM+1uePNdz4CjOS+IaZWxq1CaWZbYUtyz/6Lz7zzs/Y0rSFiyqFo2bt6vQQrx82O85MljOHbA9aq3RJlWzfDU57RksioEg8aGRGRBAB5TIcXv20Wj/rlVu6dXsUD5a7TqfRTOR6kLpuOyCHOA45JOtGNyVzFaNCslFVDmoThyJbhJaubrnqJCkKnUG5d1TE6XBomiVW35IdDTNter5Jo9OX9WPP38z5k/7gOG2HzVEkq62VzKQxeLDkPAFHUDgdQr/8z9dvGST6kP1RRwtB59qnO//m8tNCf2KY+Wi+HVyrljxVZILTcv022rzxPs/DgMSeLBN4DQCFRRfB8iSPmnXecWXTo7AFp/DnFzX3O3XFhhWj8RI4yPjJIjxmxUVgszgZ+WtPv+ynf1FADPnN649r+VENu4fUVv3agCMQg0VDsx10pyanvE5CdxhmhyWp4Plk06j26o3ty+JIqZVB76ytwx365HLvVDljHphOpomNoKhVYqo+tTTM5yknvYaPWcYksEoQAUh7FkYAGaSIeezTH13eLqNDM1scNThF1hbb5+/L19tlSQpqNGHgtUSGay866Z195x23XP+z7VtPOmUy1jKMS/INJkhgcRq6kzU1d052ds02PREEr/XPIa373wYR5SJWjCRhjX0QxzMyCICAVHcqV2+BO72uWa9rjtRoehq4Ittd1hv1kutQJeCx6iVpkQ9kJm45k8JKz20aSkq5jxrOGADJk3EfexhMgdfgcx2pKlrsqFEItuGJ6jheDKVdTiNkhCoNgIRjuVoUQO0DAiGDRo76UvFXj28PG8Ed6wUCiBjEnPeXT123sY4a0naxU1DFlTHBe1E0yVXrHvW1X/jI+jvd7fwT0wawBagjZ1emueqw6pmNC8ncfDNiQABBxp9/iL3NCqkiFAYWUqSEGJGQBMM4fGGcmKeWKfOJe0JtMGn0dK0xBklmEKQFuialUENL21BXkvkk4krShE2DIkG2husAvio9Kk2AKuuVStVRh2lXB6alaoCvtK7z1OlpqHPZ1d+yHHtbaQFGYRFAYCCNIqQQOCtdYip19ZXvriPxYI61A3GxVuLsBXf7xua8irw0VDeOTKMPhJG4UHZnp3qSnqyuLr7wyXOe+IA58rUaxrEdNfwo43LblVfmw9+723pBKDhRq93Kv8ggAhJpD8JMiogxwDjyD6QIhJkWV86+ajCJIkWCgL4tLihiH8UQguaKkL2PDI7qOk6cL+ZNsXegsM41hiAA15f94aBXQMyBQWu6adaG9kyq/LrtZmQnZ60xOm1F0h/sohUx/sHREidlnTEHGS9UFGaFxKAUsCoDOQvu66dcnHccmJ/z1Y4uEiljRUN+y4O/e0ZMrd06qiBFQAIGDXU15btFEodwj8Vk4toXTz/oYZtnpmq13HIZXH7LpT+Zu8t5x//l1+8+jPNm5AjCKrvxLzQIqXgFgzAEYUFhYCAIY2FGAA6Ny9J4z1VYcbPol8Plcjio0ZogSFw6yRxXhbauy1Uzcarys81gJpLQi8ixJp7NJtYdH1V4Qt1drrXihROzEdLeHfFek547Wey5ydXD+SXVHm1M1y8Zn99wgs5uOT4ICYqMR3bGFPBIigLQKDPDIFff+n8xBc14yNzR0YIWqiNKlH/WK5bm+nnk0pb3oQpxXYdIAFzIMh2E+rae33zczq9/Jp575sXtMOpc97yJ37/738cy/8a5J+tG+OoFGw2zGHeIY9O+KMsbZ67fpjV50QSoAkkQBWMmAQQo9Vde/+IHnVTNBQpQRZoJIDAgCaHUjBwIJDKVQG6N2HqUxhiY2QKKc4wl5YVbqdrbIz9w0F/k2FeGe8M6QKOeWMwzbUDi6emQofbtdZL/rP/gRljcuiIsON5IQQApgDLimBzyqO6/7eS3cOw15PpYr5HCaqjEg0pe+S+bVqKJJMNRZHMblJeIJDJVBqCHte3YGhIoGnUhyz9sPOxO5063qtfulsvveeZxd0l99JpHn8MCEtXjae+DsH+FiALrLZME0UqZVVOhFmFChbZ+SP2vD1RTI6TRlM81uVoImX0kBSTap8GDL+u+jnLPEBU6r2W0UupduZPhQk415g6WB43ZqO6bSehOpnXVzEZ9fVx7+lN2eEJi+rv95MKtuwYcbLc1lEc8yo46x89rwdWDoSAhAiOCBKF4r0uk/4O/knhQT0GVHmsfkjpfqRhGZs/DPzqZTNx8Pahi4/p+WieKAgN7FVVl2tK9UWmsq8u4aoWZnff+a/nspTt++3EnZys9vvQ1D36oZ4UelTv0OMLaX2ytpKmt94QhEJerNLBjpmoWTPdM/ja/4qU35jiaXynrypCdibwebPZeoFhYzqTf9x5jWQwTvrPkVFmwOmHdLXy23jLcc05bGatJKdUOSOzBtMYiDNCzkvzk+PttKQWYBTE4iI2r/LDj4iRnKZUWAa3WaIMMghclPJSO3Pyph51lpQEChzwYHzWMElKBMcLJnee/Adqj3fny7luv696oR1G3NbUylbbAh9j3fBu6Zjopd84O4kvql5G5+LHhVSfesufcTv6I9vsfGropLM7U2a71hzMIIKCyOOYaVcTAjIoQ9HjKQ/KTlxdP//rLovWh4qzBIycL8+Jb5nuO40aCPFPq2dnUhy0LWzojR4KBYzsT/SSZLtdV562HvjYELOgAiFCoHP/iJap59j6bpYxEGEgRs4pN8AJKIxCKBiFCYZDx3skcWBAxGlI//tlzpo61IdaQkHgWlL1T29ZNqLzdAQCoRsX1dP3esGfbYPvOOdNohjubgtu8O8RmNJq69c/BXbW3d9nlj7jhI3+31Gyd/KKleIF7Jh4ONxyy+33f3xABjQcmEGAREkFFwmNvKqLyAWx6kkzGmiswGIpObc1yjdWoJKuNNWEUUqjEyqbA0qpmNLvcR605CYWZU2WmFbILnHlWJCJGAAlFjA+0sel9FrxnRKrHpVrMnPdGS8AgoBWHVd4sUEEYUFE3XpKr5MJfTb4EACiI0oCwcdetBEVSk4BSkW50srtGFe/9i5eGm7926+KgzKY7tZr0Q+TGTn1x3cY92x/4uyef/Wj45kcveAJEO3Bm4jL7NXX/Q82573PqGACHN/SJFQpqZAIkQuHxZCpLcyUe7EjSlcRiVaGiuR3foTu3nbOFNyqoCKnyir3m0Bw0GlaqIu90aMd3HiLo0ASIkYADc+yD0hQ4ASAEYdKhqiFqAPvAAgLKKGGkwGAiCk54PPKzukAQhJkBYEXiq79d/Zs7UOfjWIFZEQirG096ylPvl7eriBkAhJUeJitT8qcb/8gHe/W33rfE0ydkRTSzSBb0P+VJTaYwX/yvx91tyr2fnhHesvQafMRHv33W3GFzWQysip07I1TAqDB4rcEzEcJ4jRRJOsxbBaKrMbK+zKcHEg/1xLxXiRY0wY2wY2sIaZ87etf6MqqFdTpUmBYhdkaYRQDEBSajOOhVjhNS7BueVQGoCJmV0cCClCtjSHwQQhBQqydxhAoJ2bvg7VL8iredccxP6Le5VRCcKPua+TcRjGKPSIQA/VZXNWotL/y72OPyRs+gFr704atk05kLX981uHHhDKDtX9mx8Yr/2ranf+opr3zk+b3UwLBRHeqHtM8gjsT4peszJvFAwLU1UgelYbUFz/uAVvI2Bs8AwVPUs80yUBBAAhCS3FsKhuJ+U3ZefWY7lUbKYUWxDWRr0N6Htaqe1hBYxuV6JIYMGMdjuz4Eo0QUgVeGBIkCAXtRClcrVSUpZFd72tXkT7w9RL+aKggAoHjRJB/6y4+eG6g0BgBEWEKMgsNq6iOPiMoYckg5aBx+/RvXXbb9n54DZVz6xjCD5bjODPbatS0g7gFPHnqCat/fiEHFQo4ljCWGGFARjgc3EXw/acPALmljyLFJBpzauk70khY2idSFUSKBonKYRdw6ZcI0vZt3nekRB0Oewrg3FwQVCWkcE9UBiBDQ0CgTCxAiiiIQJBLgGpEMkggjIYyL1AgGhAOjKlQxcZJdNr+qJRK0sCEYPOeDd+IiyxwjIoAGW0Z+ONHI1yvIOcEEPKDo33pYt7rqbsuT8a2b4h7waIqzhZkqHsWDZq+cAKjdodLz+1ZI0EHx8IetioAp0pAjIq4e1QERiqQum0XDYR20oeBTV9oQMucicDpx/UbVx7bKXbM/vYJJstzUwyhzLs9UHfthgo4ZFYoES4xGiRcWRAD03HJpWRkWZYh9pSCgwWCBBQFBh0BaA1QI42JycD4AYuE789G5k4dc+kcbzrKzuLxNnZiGUTNUDQAQQRT0GpwJN2xdlPInzkvMYcPp2dBYqZI8DVIZCw6D0l4vTYGUGJdVpn8ODf8BBmFVo+neNERDDFqhD6w0BU/CiASgao9EWg+FhbRWWAaSYNLcKHYOVeVFKwHkwEiKqBYTcaWS4Mhw7jUCEgKLckFZxYEEiCR4Ow6DhXh46V1hohuNl4iSICgBKBEWIaJKhBSh6FDUkldR1sFL7rf12NdBDgccNEOtXPb914NrnnpquiuGld1dSs498Z5MS5M91eyreNBZbhKJCFJ3ooixtk7qRImrUyZyRXN56uBxBEAYF3IFIYhySCSMWjsf0GhVgtXogxhmQUUkwIiE0lckXpQmQq2YQVMQBBHjRZDEm7Eenx1z8ZOUQRiUsBqTJxDJODUTADsW0dK4hg4oQIAwbixGkLEYFWIlAXRsY6yDn9Bw7PPuh4FoYG0Epv5o6xQoqKxjS/XexR9+8k2PfMTU7vWu34K6szATOJBCDhNV6dLcOtMog8LGiBuuau3cOFwrst82J4dAGlVALY4oaIXAQCwiwEEqNChulQyeUYgZFUJICESj1jWiQRCx7D0zsQkcFLEXFi5KhXZ8ZzETQUUoI0QBwP1Dk1qvsxiMIAKIBBIiCqCYBQkleEQISOhRUCtMamFMwf0KSlO/GM4CG8Bw63kNKiIVeQYBOxWfM2rsftI9nh8Chbd/eOLCxnFC5JZ3LOoNd7mv6gCrL7w3i92TLsqcMYsbd+4rse83CI8VEDCgQWAwhCAsPgAalDpoV9TEgBqAAAVCCIAkwQKIIIEO4/kIIvGMACTAEkAUMhhRukYY06AhQOAxCZkgkqwmqrTSU4ROjZn5ZZUSXsbaCMjMBMJjRuGAClUE0qwG6pjnsA4HVAIgQlfd39VMzBChKyFO88ZS84N/89Q/upjf8N73nZ068KwjAD/62Dtf8VUxjddf9oqpJH/ZFU9tM04sbdzfqrpvfDggSrF3t64wpQoiFRiAnQNUGoLzE3mtLIqY1SxlWTllFK6StgirwCiMWoHPHSlBJAqsjPYCEAQqpQiAUIvwWJFwXIkcdyMDE1Ya0BkZuxQJQgaCEAiQgnFRWYAQVO2sQquQrj1xs/4FUiq/IqAjDKQe/mGKAXyZsgBBCCyNxWn41p/8xaPu8qlNddUEcB6IcETNT7/+RQ989fzfRxkF9+KNt4SHPUBa+7pQ9hvEE3m3uB08xSqIjpwTlNrp1fNCXLO14rwlQhSW0gfUmhAAtUEOEhiYlQnKj5zWwkqBF2NCEFISfDCaAJAiZgYRBhARVIoEkVDEi+gxbxYQjUNbDWG1j3TclIWIIKidtxqNDthbfJAqjxm12+0EsrcsqvvYTxrljAZmJoXex06HAnHpSXd5+uxktGzExgDAoni+cfNrPv/U1xmLEEQ+v3np0huffed9OvK32bIUCmoQhUya2QURAYUUAqNSWIlS4seD8hw8B1QCgsQsgooZgBAA0aMIoAImECQIxgAQMBeKQERh7T0QhqBFgihCBiERYA5WlFCRsgTBcbMeChAQcWAkCQENslf7dFjr6NsXtY8VP8DthgCBi8JVJ415MZ3SIA6Nhj5MUQbVi957pl6pJvNYas8UqW1bfOPENz/id8soN6Fq179lu2fv/NG5bq2e878KbYKIQgRAUPO4+cfWSGOeKWXQe2URCcYVYRRApIbzaJSEEojQ41jlixRoCaAQAihgBkRFwKsNC0gE7IEDIKAX5HHYa2oMVGaro1HAY6fPiMhBoWYmpT0j0bh8SMyX7mkf60LhYcGkpI7Kn5ymQq0sMLBCK0FoqhpFZeg8+tE80M3FSR7Ls4ctK7O9eN1jhtHidCntxU4oTcdsjfprBtmfXHQawS/sqgJaBaB4xI2odlTXBsq0UUAZ4hg8W+FAWoIeVjrWREWqBwpGTQUQPBPZXjV3U7y+x6VAiCK2JGFcyRKlAaDyaA17qYCDji0idVszS71YCykQE4fCG+Mqb5hJK2AjIZBVHHDUGkzrRZaWcxm4EC+s/O1PP/BoUVwlAMe8hHsorEyuNFS38bD3d1IJ6siTz/u/h2H0tY3BC4IA52iqlUEwEx6IKPgMg+Jxrk/pCLkyqIgB4yCgbAgIzEJKc9PajcN+5bwxxhqXhSoIitdGEAlCpH1g8N7ERhgJepzxtmQdFqCMOF8QmMho5WtrlStGVQhVyQo5/eGm5XJUz1VFY3ZdfVrU+59vZO+57p1nnN6ntGbf+HU593RxenF68pK5RgQiAuFIz0X7tWdjJq6g9hhFWFe10VjWZcW21tZaKwMhAhMpBO+dZy8MzEBS2knsGZsNUEQ4OLbl7qYPejFEEQbv6hDEotROQyAjdQlVIRSqupmEIhB52hCqlX6jZCBxTsD5UA0GlSCXw9zJgiYVJVpGjavXN3dPfXXj+qXrO7tO2LX3/m+Zmj1t92vea+OaY7jdPLpHG2a6bOfJ+8/IFAgchY7vfVtWHZWRz/XNtfNMSquhMCgZDtbVAVUSgQQhAhBD45O2MAsDYrSSAHXCSCGKq2tfYb47G1I9X/hQCrk+AXMo8tiiRwuVmFBCAoWPdVWKMaEuy5OG19/LOCcgwpvJRgZFpiSwirN42UY20uJaWpfVXPf4lenlbPjS/hMfelKK3cbgZeGf9k6Col9b9FsP22Iu/T+fmiEJ47maI8P+sFeGJpRh2zjP7QN5hxH2V6bZeWXTBntWsRXvSOogHMSVNQOHbw4y5A6W4Kt8OBzVOU0M0kZr2XOU2kYmM1lmtUFZNOTRoFcJeZ1hpZXUgTTWEor1t379jPsFL4qELQIAMCv2IsKBtUZF7Koo6P4mi7rf/843nvV0J7av0kKyP5x7qYEiWZo80jtxB7EwO2xUT7vohW6crAtHmjrYb5DCaqh271GKhENVVYAkwYUl6PeKETcWWGyrgb5Prshd7bSvPGoJG5rrRou6MTEUMHEa63bVGtZNWwAnMWqq0Y77UxSCCCIFA060uEiBAAUnLuuHrG6OlCJF7A0AGA2hK2SsYp+jsImMVLHCzbfQyVf+16UXPeBR0IRRBvNJsxj8ziUrZJY3/bqWCPZ44oonfm7L6vk4HGk70v4C1U24vGvnVaOVqjeidjvarJJMY5TqWChxoZkGF7ThWgyNPbgSRkuSg65MNNLkPSit0NUKPAw3rkgSg6LKaAqiNZaOyTuKRYILLJAoAgBfc9Su+9aUKjKICgIBozGharNnAZBYvEdNQuw1x/yc15zVyIISZq5awDRsVA96wvPKdPumI7wRdxQ7NsP3XvyVfsMCgoj8Ip3i24V9Tv2Dl+tu3Q6naK0oaVqIK4ipxrhIQCeDbmUQgvcSgMaFCjTKeU9gDDiLXqM2RBJ8U4Umb7t1aoNTyisirQhRSZjIg3I5pT6oGFBHQWFg5IDZYpgu1OaBJQ/GYA5EsXWhb7RmRhxqMlqLx9HULeu++XdX+4lBwOWJgFHUa9LidB6/7+mdJ998yBGxY43Ni9OfeFQ1Pa6fCR2xM9u3Qq7c1KTerd/fVKzql+vKKY0AlNV6kBWhrbDOLVVBEQogYQgBiCgC0lYTMggaVZeNfmLqvf/2bDXdT8NgqocOEwtAbtzgxcxo0ItSgUmThFordqw0xde31nUj5UWIAMY66oJQt249rhpVzUZvtPiWwdsuUrjalr+KCqMfvuOuT4vKeIQp+HBgKuVYbWWSN2qXeQ2ufPDbzxk1AozL00caZu0zyEpbSe/6azZU3onSBI5BE4CKIFi2AfM0zjGMm8C9kBoLFhAKCypNCCigKFRlRw/D7PXre8SWPNQNQQUBlecxVXgIqCCwil0NShPUijgIUbrty9P36tjhSBkCADLBOwZFtt8esNL9KFxyyaN+D+bCuHC4/wv0LM7/VftVzbLJBYb0wC3jWBkEe4lB6FnQ7v3PIlrqHB173DbKIp//ZO9cKAo2kUJCrSWg9iVSxhaTUW/pJKQSFInjsSTrakDGqAiQIABJsFBRrpPl1jBSmgYmQhLv0QgHICIsBRWykPZBlALwsMp1YHY1p4eKk+AZSdiEEIAURfMmGVKSzL/i7s883vYjhQC3jfZXJufb0eBdN7/NDSelivMDa9XHyiAOjCepsir64nmZT4OBozMGvL9imCe1r1JldcxKK0QhBV5IR6bUTgcplrZNSxwaAGjHOgnCImIRCVEgaAgBCcwiTiW700hFqKVQsUMa9x6Ox2klAAlqxBq1IvZ+rOvBTGY6RkRLrmJrwFWAhkRCOQGLTc6u+NDf3BuqntIHfu32aDawfspVN5+Y9rNQ/4pGPwF8CpWKY1HyuQcPI1BwlMayb5sCoiKnQaQiYAmkHGslHLwyZZBQ0NRUa24pSrwPZNC71YY1DKCIABgVsqDCPElHrQ5EZTy0xeJ6JAmoFTIjIcB4ZBGQgFARIKIOiIQcIM9dDATLaQcDe45k9TzUyFv5xo98/BX3GEHDqH7jgG+usnJxOkkaL/j9e0nI3K+sYGWhNhHIIPn0JXWj0oNsLPpxxLjNBBWYEce+iDVyEDIEyhLDEEJsDOpCoqZADei9IjUWtUUkrJEQVgluiAhQ6QG5XhqsSPBaUIRJcQAY1zUMCYuwWJEgQHb19qJLN2BZef3O08+a0WQtBy+EWiU7O5//yOue++IhpwQjaR94w7tNv6lyyzPvSF89+N0t7Vu3HPk9uX03zkFU143WBz9zVd9y3wiM54CPmlMPAdSPFyYqNoY4COhAVoMgD/1MJKUKNYeUMYw1c1n8qm91gEQADAqCEAoWEcclNwdxTr6egIDiUVPAsbiVoOIACkMkPJaiFwEEEVugMom4b23eFNXO+zQE0Apk7wm7PvW8M5yiKiqqRjio6wdHWTd2zV4LFwbv7L8pPbBAcswa6QKqLjVv/N2Jc/4mxCsTfvViR+2kzlCpb+Wz5Wr1Q4iMAS9kdg62Rr7XKMGakgyWSokXVDUhAjObcQsiCAmjggBMuhS70qqpNqkDNFizVlgzCxFBUOLRIAsRcAhixtzvKD6DmlwdGfHK+tyyEHHtNnz8P78b6VFEVCkN7iCCAOQqCapUBTV2bbjq3U8758AveIQ36JDgGjjb+4bG71737t/+PdvNVi91pAfD/SvEJQvfmjIkIIA0rgKxAEVLMh0gW0xlLBalx62M4z4ERPQKA2gIQlpBcMFWklA1ng9iASRGDYFstWq4MUklAhEyA5Eftweh10pcQHTaoPegcov1+u3R3g+Z/3O3BdPhcMD540AIuTpzl3xq66M3Q54OrQ6gUcK+X+zRMgyPu2WQl6dXJuC7r/ywpZveuPySs2yRUlm29hVE7uj1btPkoG++qmFAAwIhrpExQlR51XMzIuNGEBQQAQBgGE++BwUBFYSgDQkg1ZXEOrCqVg0SUBupw9jFAPPaNqsRmYVo3PFA6AhDYKXSvFCJrspcqRk1/5UP/d4LWrfOpEXEB5w/DsQgU5XEPLr0k+v/SJMBZ/wIGmofBfjRMkggHNc067SA4XNfcidJ9nb++41//KTaN0cZ9NfKAEduEPRXzhsjdnWmEAFQIUiuXKIk5Wp1RQQZj4EGIho3UAEDAZMm9qxNUUmkBbXDsUE8Gi0uAJPSin1Y07kZfy/EIDAefADxDEYXzKiVhGqpI1PvvPpNx892TbYik/6A88eBYJFQS2JlcNk/f3BPK4UaLDhv115y1AyCBMAsg6ld0/LvNz93E+ydNHDtH535D3nkaZjuK8Xewfe/zdBn/3KAmFdXCBIzIDC7pLSJhzoatx6OtyoBECQkAPBjEU4hRPaCJE6UYlCAJCLjOj0AqREpjeKCXiXf51VuMgcIRIQCzIxa9SIDDCIewva/unxilO2BdSNurhyOEAsricHXUHeGcN3ll3WeOdcAr6FeCyOP2pYF4/kM2rEl/1FxznTfki26E7Z44O8+rdFr95pHeL3bGGTPNWmIWYMIKiLFLMIsdad0LA2NzCyy2pEz3igRidABIAggCygNHIiBMMh4+kMABUmACGtABAmsVg3iAZEUYhi/DdaAIILgmTHS5Ujvvenv33bxdBjoRl20obSH+ZJOE4gQQG3zlPde+U+P/K0pjqBec7JHrcWRBYhAnJOr/uaz0G/t2tANU3k6Cq+86c/PaMuBKgm/LG6zZd2807hIzKpT9wjCAlgkNSplepPMLAIYZNW7iwCRQsegkJGIRRup69U+qtUGREBnDIgEHwkDylgWWQAgAJBSiDWM9dVrJARmrpDFxly6a1/xf58Po5TzZkDqtw534GMFzhNK1G+Vkk/B8ON7HnjOKJ9ZI8Q9agYJjIqEFXzyB8+aQQ/NpbbuKmhW4fJ/OOHF02vXOWKDoL++rNyYoApRoNaKPSud1IUlGl19Vxn7Yw8sDGuKtIguoEZGpUQQg3N6XIjCNbvU1ghD8BZkfFIHAECAIEJKAazqpWMYa4kxWwpI9ejL//NvZ+6cY+tr7SCDlc5hvggH0ATgKpV4DBag/vrH+FH3iQ+i8D5CMAOROFe8s/qTaVhp5w2olBaUQjE97aSXrmWbj3yFlNfabrDklVEogcEqroM2UAdVJea6E0EAkNCPW0FlPNEl4gMaCqRzGg/3aGDPpHDNh3hNATSxQySUwKuxEnpmUgiySjoKfkyVzFFdYOxvufHT/3JG3nGk8nSY4XKcHI6gDJ0YcWiwtMSinJQt+OZHRme/8Ahv0IFwgIp8Wb31gXcNERbaVBF4Dblvsef4L/545givd5sS7s9K6xKvEIWBsKRxn2ilkR1YW4+pTyAgEoAAjacLwGtkUSAqAHINOhL2LESKw7gvVIMHDR5gHAwoEUEi9DieLzSkEAGx1OA9QAC7OFmvbH3B+5spBqQ70OgkMP5hFL4FV37j2gc+KK4iqAwxYslpUOINQKAAChgPW1DaJ9gybEOeYG2kO9lPqmc+7qINvkpI1h4vsiLpdgZ/8K7JXrvbgINTCrcT+7tORjfW2qcMq+evWikUIKoVCYtS5fjp45ZFEYmYAVAkGGIgCYaBghPFa0LCIojAohQEUBB4bViRxluTRmFlINS01oLKHhQy9TNz1dd2fr5INAfEO/BLG/fT+xiCI66b+P0PXfWg52X9lgxtBOLBFFEw42E6kdttEKpAaaidAbs8eeV/PsfOmpo07+vDqiGflFFj+c0/eLedybM7PEi0zyBVb4dHTrEUUIqYWSkJoFU91isVJ+NBcRyvFFGrM4JBkwCKV4AYPFNQmgARSwRC4UA0PtjzqqEZEYBZImAmQ1KtzokEEEZiF5V2x8dX3rWZCcLq9MIvCxEAKdDo4KwJxDz6l6tfuUWAoO/bObcFi9hZZnV7eBrXnsGaHXgVS1i+5Z+u/bNHIRQYj3syxo+rvjLDOF354nu+oJy5w6N2+1fI/CIHifWIRWvy3igKAbSpWVABM65uNeMtQYAFUBGCI2BU4mX8w0cmRYS0r2QLqyNRq3MgoJkFlCKC4NAoERRhIPKIQFyOmuXo7RN/d1yeyLiWewfS6QIgoEqIQUpJB9zuRf1Xb37A2aAUVFHtdWFjDEGUBuHDrcB9BqGgEaSrsvd85DHPNKMIWKk6JGuPV3EYtWBUTwz/ov3HcSx3tPtkv0FuGUqNRtcsSoP3KQEHMDp4D4pE9LgvDse3FcZ8ToTAEAIaCIGQWQT82HEo4CAgIIRIwCI83tshEhYgRQDBi9XAMJYNFgBBKYu094OPve/cWoMIqTtY8BMAQJTAqBH6rQKSrrvm0uV73kvXE10q5wbNEWkAJJRwuJ7gfee0AHqQpMvfe/nvPM1mvQlnACA4s8+gowYAOCO72/d+93lwh8ck9md7f1JTRaiDCCoIIQFgQFLovRABKBZe5ZcWWG15IQRR4oPS4FGBZ0RRIiyoFATPgAIGUEEQ8GtbFhEJe1YkAawhhyI8bvsNSOwG86/8+0exZQyogPkOZ0/zCCuOtAxbuxvN+bi1MvGDd9HT715yWtsiGWZMyIJ8WOe7dn9UWbWhlJ/829POUoiwbRM5n0DY//p+poZMZIx87u0f8u0jPqnjj4KpNauwmqFQzEgEQGN2vdWdSkCJsABCGOubCwGzUqGOlDhWJAaAAyCKMCCIaCENnpFX56VKpQiCC1pLAGPJ4djBsMIgEHz514/9s+1bYNhgIPCi7ugXY0JBgDJCWLDtwLpG/tn/bJ/cepf1kNV1I48UM6Icbstauz/dqZG54VNL+iUdT+TEBqkkw7BvSLIiQUXQy0Kevfgtd7zXeH/Ye6lEznoaT8MoCp7RkIR9A0wAAOPoaszyIYBECB4BFdZlprhmrcQjCAcBOx6DZmQy4JjWop/x0K0AavGiDHpCYBEokghcXVRv/VjsNY8ayEAS7mifE4JHZM/aQpdaPs9Uz5JF7+MiueGfR4tnn39hGjGrwzfjrt2fxW//293+WOctgDyCKsobyAQl7+upKONC2VKRKhJXv/A9d1ilYT9v7w99Giw7pTjomEtnMECkxAEwo9aM4gXCOMnIIiYIAqPS8cBQnQzapVckQJqrWidQBlCRYkZZPdXniAji2cWRIqxLQ8iokUH7YJiN95xysXD9Yyfa6I5B9/S+92NUfunWPV9tnXXOpIlsYakiTTUpAs9IQRR7q0WoUBASpqGKq93f/NKOU95QzcLudYe7Dqsqqh7+5/eEhGvhTJgkaORRqgA8k8Jl06g4ptrCykSh7IHfc/8KucwlbMURMGjFTo0LkoqrWrSS4LPIV2BNb+zYRaMyXNYSqwF5N21HARQKGWEfyEAIQpaYMaxahAVAOHCILBH5SrQC1MKiPWsJer4dieqO/vIbiQUGOOxW8sti7YuPyW+Eix9/7dKFDWetv1Oq5sy0AwyMSpFUlgAkBIi8Bqdr1wjf+tziiSffR9b3IqqjwwUBQYuj9+x6SVT4FgEwCoGvjPUu6Bik7k+qUKUwyvbOUL/lDorGbmMQnwSLYz5+ZlGCCphMKaiVOJcQCEJd0epepWoPqGy0Ar4BAwgxInpW48lZRiVMGlgIYJy296tOKGhFSOJro5GUhGACm+C1jXY3q1s/mr0fRBDhmDE0IAALEtQW/HL35p/8uNq92dw5nVkvpj3VVEEsV7F4C7A46q6E4puMmy48M/FaV2QEu+3DvL+wLuzy732k2Y9M7TjqdSIPWvJsVVIgWhm025zrOHDR6h7MhPe/ZwwBUBgQQ1CFVoG0YmI3Yp00fe0pJi5jDoxaq1K0lno4iF3oo2i92qcVQlCKHZKACDCiW3NACAKoqCYUZkBFsOqYEAFAhsPB9Pynf/heYAZ9FJOzB6IwmoADau9GdPKpd22Fbmtn9+rd3eW9QzAalmdB2lXPQjUv2eypnUdsmYgM1HGvNWoVRh/WV6PDiGdat5yMkXCKFOeLjZhDzCICRDiYmPDsdJwvHDcadbw/MDzer7ADAMK46rsBQ6QqiagCZTIQrmqt/chmrXmyRIQg3gdh0H1tKm9BO2bRmsTL2H97UAwCoGV8KAwy7hk2AMKCpAkCC61WAQWS0Rnbt2//wN38WNznmE3gRBIAkSCItUyQEXfMiXAnAoQwWti1MqH3LLUbjXXbJ1rrGkyVz6RgRmhiSw9tddi5eDE+YveIL24NFcXk8zKZUAIk357fWyjfXXGTm889Py59cdxI2fHh5X/htry9ND40gwgpiiwxAIuuvYqgKri/46Yd3VF1qklixT7Y3vKgwiR5pM/ilhmFSQ4MUteKUEShBCQQRlHAJALABBxAFAICekSFzKvNjMIiUk9dl//da+6uxyXSI27eOAj7S7ksIIGtF/IcGRaqqSKyINRqnwx5Cl4D02brIwCwRrwx4F2JMSQqx8OdwFmLV+7hzx91CqHCJI3RNd/+UTjz7Af6HBMtVVwZuuHTP03ve8JZtVm2B+0E+w+GV0hSEQRREFArECYtHnSepHq065b5L8aTx51x2vrIKqsBmLUr88HKyL9lZWL95tl0Y6yJmesqMkqQgD0ZzQ61X92xiJADkwIk8jVqIAmoUUC7oNlrUzb/bde7VUgZCPyq4OpRxJpBBkobBOAQIgwMTlmv6ljQA4CEwKQxCIFYVSuprbNsgIEAhNml9UFR0YEQEmcFX3bnx6EzXi8sfn7b3e47AdHQWnFiqBebAKbYcckXX3tc3eb+gT5pf28vyZjTAkFAacYhpVBiY/Puy773k2J67j2dlhIGGMs/Kaokbs4FxvOX4j3f+srSaQ9tZJoF0CtgtODH+5qwXW2KKJQCQCI3roBRrVYPJMwBmcXjzm3r0mDAi6JjqJbTHB9cySgEMQAOvSnjobRCQFIiAEo7pV0gQTJaoWdyRHWI0VBxWHsAjTIlUD/go4+ISlNe9++XPfePVG5wJSVB7StpO9QlJeuf/NTffu2dgjrIq6OsnrjhOxj7ZihcB5dMM/UDFYfQwIWvfKtzv3XrT80OfOHav2tbuyb88EvXuubWM2egjEyZW10Ha0PQwEY5MOQ91AoZiKhkZaXGSBwwJ5GrCSUIUmOw9/UveFL+ayeTOWLI+Aj8hBfdufmzf77hkU9CIhpr3v0vdJs3vuLEP5sYJqrmONRJGDVoFFr9fQZZvjHCMmNn/ELTTgwom3ft7Z+6acuZZ943GsTmoBLqvixnAk4sVDuWL/tOdfbZbXSh0fGFXomQUuuc8aIpMIQxbzs5FhDRtmRFENuaxyMmpKo9L/i3+7D8uvmvjhhjbkh5R/iTr3156+OLBozZVA9eCYV724/ePuuMAIUa493Tww46s2oQkfm9rvQpYjTa1HXluj2kvvft6NQL7x005a5Do0NyBI6H0yNYsdkV7/px5/5nrfNoqjwNgrDK6IMCCMELIiATBNAKajYUDBWKEASQPH/vfZ/aEPSvnQDrCLGaCYfdD1+3/t16efJQKz7HVKq373pV4iLpJrErmzDKRjEir+Zuty0NMU2IKr08V+EHP3vWU+4XuVJaXEuMw9oeUlas5BSl8JjCMKRR6H3qS+m9t1pVjXQLazA1y3hANTCiMPjYMGmpgA16DQWucjvW+LcX/mn8c05Kv2HYV9J95f3vktTZcOK2/3kblFq5qLziDeWN97jL8My5T2+z7cfc2TDhuPDHfEO/TK0LEhdmsPjG9S+564DjCKD0DSiF1CGF+XjcXYI0hAaUPmFz4/u/NXnfC0OlKURxFUAYSKEPpNEFdLFi0qFCNiSRrgIAESJ4fPInTlal/rWzyRwhxmddgPChb70DxzohCD9HbqpIVzLlo+dfdP8ZH5fddfX2XR9b/IAzqwYJfHNZJ+yTwu/9n1vn/nrTCK2WXhyPJGGfQF20DnjDtThIUCqvUEhJDbGCpTSB6z791fknzx2vV6JkGNOYhsmxNlyxJggBFQZgjRCZWgBIIYrmp31blO034Tcba73LRXjGW21DqXEd6GCD4A2bYl/G3SmWEBKsqWwsfPXR/SktAIAsQla3TCu65op/3fyCuwlUk/XItqoyA1CmdPagQZk1OAETAwTWIB6hnsS6PvVPH3fj/1y344IpYUQFwohAgOAdEtWekFEFAGQJngQASQTcJuXp6B8Ify1AgJiS3edyFY/bng7OxucnQ6+ZqEYlsS4KctBcmXmgnlrZt0MkgVOFN/7X5/7mtxDUcHJpiopmMhQUhDiGPDnEtW0gDCXGWJO1ACZoFQmv33Lhi/51x/0n4omSkIFQFBJ7p2nkIFGBsQRS2hgIMuZNdqOWQj38tbH6HHX0tizCqLlWsz/4azEJlXXiOZAWHRcS1RND1dGsK4nzxk3Ls42isfy1m/9jjihw5idFNQSytQr6QfbYdwUCoRRgrdajhAiIoP7n777qB487vZNPBqSk65OcjAuhjPSKgzytlKvF9DYOR41OosgYZ44vSTd+7Ty8R4rV1BxIo7Vt1Dx0kJKAtCUCUQpAA0gMCUgGgN1An5qId074ePkfV/7qYa0y04HNkY8T40KWdrtf+7tT3Y5N0bDD3rY7rQ4N8qo6YY4jZ9VUEanMqeWFnP1oZNbFT65yddge3t8YlO+r/rjQv7R6nG4vTj6pNPE2s+OSpRc+rRtFEGqSIxfZ6jZwZXD8oz655/l3LiAPKEryEHUH8/c4RRbKlNuj1KlomNiJDI2GEN2SLHcm/P8z9hgT5Zpfmh1Ih+mVJN07M7Xw/JMuOc5RhShIGPyRGiQFNzExiD/wL++5x1N6g4kFTeJMI5GfVQytOdOPPMzERQGlSYAZTTOejQB+/dThRwsclc0y+uU3GiyU0waX3Zsvuk9rIWotJ5oQEQ5JFn97sTQNN2WdfAJ++PItT1fAziFSovOo1ImpCylmfUKVtfX4mILdPacdn0Psj70i4a8GDG9e9zgyv/ROQ1ZpWw3/58lbLm4N0yYYo5C9P/KKXbLEm+YiXdcnvNf/VdZII5tNd6ztJFnbsM7Wf3aREhPx3lGIYhUEN6ES+TUywx1tqJooKvY1rdxuaCrYuhe7927mbkOX0hwryR/5zpFJqQcYG7Dmzf/4rXNbykRxYCWl1kM70Vt+0Enlis/qTqkt1iHI/A33gaSGX5X6xLGHVM1fOKV6CGgw+JC7vYNq4U7wcS0iqFD4iNk1e+3K2tzAti1u+Bc3P+ov7sJcBUWuNTIJj9xU3B+Ndl/7Md+U5qkXnL3OTo/ilYnY3+E2/v+/QWxvukyrX9oVa9A/esoTqCZQQiAGxiNnR55zbYkVSAQ2V9FEccKbXv77d4/KrCzaebPqrl/olO7Gz375uDNffW/58VXbPvqWU+//KLfSEUe/6ams/UtitHs6/PJRL2B38JBL037zDnfaHQ7Bx1wly1/764c+asPIJN0klCVNdq599yUPeP7JbnpIMTi/+ytfDpffMmiIU7/pUdbafeTBC/9+Sv18RehfBN3ovt3UsfAx64NCBgiTjzr9WY2LN69Ml1E9MT/pb/1P/4G75m2os4rA48knPv6KV/fLZnD/rwRZ4GpuHlLF/hdAq6njoLrN+PBRB9Y6dj7a/MYXpo+fuG591dxJxSUfyL4SQgO6oROXkMkoJPd6akv3k0bvwKzybxr2rYgVa2RVpvuXAQ0a20APj3rn5j54RYKG6/Tk171fwsY07m4YvOGfn/TvPLRmt52qHYV+nbX03oxTcv+PZHsBwG5fLwF/6agXtIYt3WYJxyzLikqVoqzqTp734u1b/EpG337zKR/fHPmJPszhctMnNuROyUaVS7MoDlUp/o2DXHs2CMgv70OSfH4LHcNeDw1AHrXoxfYTH/XYe0Xl1y75YsRmiRqpru0kmIrjJgAsbrWjPFKHrN3/pmDtTg6u+SMSCL/wuT8PGurjR/VEXcSHf+4dg1PWAlRJI4/++KUnrXvfW8qhmLxpXdEEdpFEXINFaJkfXhTq5Dc+7F1Db9txFMD90ikoLW1JUzGHDZjv8ACKBgEAK3lS3vNl7zrnvz/ECoFAdEMMWAFBCyCg2juKJMBvfJTF2nHEKNvWmW4LDO3jPhEBABYt4zHkQznLX1nXDaIL2YUTb3rrA4kBooMO5EEWzKBRHruWxV8Z0FZVny4/h1KC/XvWqPRApA2ieOfkkDvBr8wgzmgMG++dXZzkLoirD3wc/X8Xzcq6X9XnOVZACeh1DD88r9LA+1tPs8SSBFczECEdOpj8lRlElESj4v4vD31uWjEHrRA2+U/LaPQb70MUBxAdXT59Igs4s2/FhxB8AG1dYNTq0Fng25Bg/mIcqeW8GrShn/UmnYES4oPbYoY7XvwRoF/w2/nNAHoXFca96lEXKq9Hmd9nEQUAIuhRWOlQHyqI+tWtEFICGiYEQx2QD9qyQuNkd3n8a5e2PWKINxjRNdvv7iXAbahaipLFV0VutJIgh06i/uqcOjSgUko8gM4iOiiaQr902q397CBD/aYhiGLQ378IfAW3re5kMYnoLOt7MoR4SIP8yvZsU0XoE+hOghMV5KDRsABzW3/82F/Vpzl20IJ11bnqhXnmDGi/j7qjN1qcX3EmOmV2SknAQ4a9GkdWNAF4EiIfDIlwPRrk08Jk4tisTEp3Au74AXpfy6kVSEEmZDzSefD0abd58V/yoHm0aF33pcHX/kRC4CBWYMwfDGNN35/DhL3WWnWHEAwbczWcjqwYgCi3ptcprv3GD0yUTk+EwRdceO5ZGWNwlupoacqZUEUQrBsz9IEeZUXsEbtNxX1s+x/eXBV5URT1bjJaEcDjp4+fdoU94gri4bA0nR838dUH5McqY0DAQEQQAEEYRIOrBRCPeoWytlX00Sfs+z1FOH/FV26dPu3NVoHVkmejS1/6ynvmVoOPwspUpT2m4AMYgODBINa9JOu1Adzwa9/ArXc5D8JY3rRURgGEAPaK//jRE551h7tQ9q2Qw30Pn3V3vOQjstYiebRXCAGzyNq2LuLHXFNHfYV4nWfulX+97wCCC/PHmaiKqggkkPjKSFp++B3v3Dy9PMml0TVRXdoMuA7WQD1EWW5Dry34vX/HP7gAHI9ZW2Xfp8KhNK+99Tx9uIH5IwX2MTbPuviJR5uJeh+DAyoFIGMDjKdQQZgPOjIfqUGYBq382nP2ZXlHWpJABflIBVYE3vZVsvLBT/7H7HISYTdOBioWxctthd5hRLgwXYbMz78tPPOUymmOgBAgMEdjGivsdoqkKjrHXGu2jpbb/qeve++RsnoeiH3c9qs8atEqaSoAj0duD3g+HaFBME/rH194G6o5wGGMyikaj5wz6H4L4A8ueszkoDloDhsrUToaNdJKaQieRU/tnHKjz37seecLRCOdOkZEQANjciaRFBxFyMfcILqYXJ48vbjqgmP0/lbGCuO8esMrpXRgf9TnfTkK9r8upH0rvAsdq0cJEcj48j5vzU+55//Zk/bs2uU3neIzKGgah4nUgMqg7s3p+HfitzciqHlSBioF4MBCa5uWYSNewR3Wkd+3lx7meYrrDtsHfOFoGeTAX3iNajxsjgjCzAkAh2PQmRdMv75V9i+Qji8JUl/H4xuqAKSeDeGs4//wx43Tz/r40octK9u/9mbceNIMeUfYb3YXvvjMCAZR5GtjpFJ6vwdBgFBmMIr0HV7Ct9cgIlBHvn7Ad1b/faRblhzwJ4rPl3bP94kUinM+ciUn67bMrD/gdUe6ZYFXX/zBXxf7xjeWO6IGTb+PzrOMc4oHqfriM766IfP+mydPtgf//R/N3zFXXjt5/3vNMK6lV4+WzgbWwaAHCxzEIlQR1xEHWykC+IUsP8yEXLsbzl9p6DtAs4qVVmUwVnBMvOBUCMhi+3tuvu6qvdMnXdCanWkq7/eF1avz5P3ecPHHP6rWbT1x66xFQuQAGoODuLSUm30f43D3BaWO2NtqOPW9d/+z6OEhh2T3Xx4AAN73qR0PevKZMMxq5e27v/we9Adc8EgNMmyWZQeWOsM4AvEBbpyFRlKSBRAn+hcwZrAggfevem2JZXt56pf9hVYQ93UahkkArZhBAJduHa7csrOcuODCjSS5Gt/cfe+7Ok9OBWQwWi4+uKs3fec7H98JSgIYA155Rcx4e++LN8IBLED3nVsfbgfp7WU79f/afKIuYkC/NAfz/3TGvijjaDm3HJIwyCKmsHTrrdt3LNYunmnd6b4NpcAz6UMX/VlQgfCD/vDRlKeHrqgdCr2O12Fl2pkSYiglKS957082nXL6+XcBQq6FIpDAgLj2vmvz5CNNaKgaTIO78Rs/rGeOP+98KyXp0ppQI0a3Nwz3iiqlqqioX/KqSfGHmgA8+HXeKk8yyMDUdTK8I40qh/1gAOLD9i9ePXdcMn3clqgXfvbh+dP/TxwBIx6yc2xNWO8bL/tKlRbwS6dqsBtFAVEtTcEoxcs+/7GZxz1mQlQVDAkTgh+LMBzkW6oE6tLGsChJA0Yr9U9+GH7rblJlUNvaRzXdXoEWrDHEMEjh03uf4ZS93bmmMqnqGEIM/WalXdI/6gbBPhkx13/+psfcy+cTWI8aJrj41n97QXIYgwgLIkL119N/whGv/LL66HvXrWDHU5Uw7Pn8Z4fHP+kujdpKHpMEsRBG8bhJdV/GYW2evADUSpgj8I61Jr/7e5fyhffYRD2KDMpgzRccbgvCCpT2IQq/99rjh426PpwP2fe6Xa2G93Ft3dK6oIYDPHBJHmkYOGqMst6rfvzcxwuCODQAPWj7EFUavKhDb1kowgAI4fK/ed3ZvfiwRGEHvb5rEkTB+vIvXL/1IadJo7ChmICe1VB7naIfcw3LWu5qbZ4cnVjwNYASMAqcKi1d8/mfhPc5soN89japl8PBm8I3qy/d+nyvoDxsY9Xa/e411DC0cCWNnLMhgqNukJVJqHXlWlAHZcHXOkDCQMttZA/m0E59HPQgIucvuOAPsl+aQGDoJ3ZsuvT5T3zAhhlwRkFQTLDk5lCEAJxLYY32aN/1xqIDQsjB6FJrEI8KS4mgxui6715+wZ3n5nbNrT7/cAbxpkhKiL9y0+80C5Nnh+X7WrvfXheu5UYdKJLd6wu7iAcq0Bzx9O1yGvdskqcsBAzK6xrAx1QSgiI45BAkj9l8cdhwO5/1ztn4l+0HCq4f/vzmD826WLEHEFWDUQSlYSLvtTkwO7pmkPEgufdxKTFUGJVIioAF1Lb+5254znm3d4XU0cqEYPnKF4U53LOOq8Nlrfd9nIFKwSObPK45YXVIHyIE7EWrUlOR8fI09BCbRcJUWYRalEtKiH2V1baKfIg8jlSWp5U50mit28LB1/7tX9t55DAqf8GSKikCBhg1hg0us4WZW9/xpQf+4fF3WJXgQHhWmq/9+o8efuJJsfOkKJja+j2b1uTDD+IPk6KxPFl/7YFHeN1DGqReaziYv2rlvOOClG2oy4xq/4OzJ0oVwW5OPn9Ty808HjnFOigbqrTfoCOehcPKNYo/nfyzzvzsHi0zh4xWvAGvoTfasGtDXTa6ky+84gHPbkjrkIwTvzRqbw30eldfMzr/Xp1QNHyvo6qo2xzTqB7kC5emw+LcKLdH2r1/6CjLi1JQlh/4xsNO/ODU33RbRay8vvkEeHn0EgWw9Ir7vTt9eKa3/0FkhXNM59eV8SjSR/wLDd0W5r1nfxx5fpOGfuNQK66ImWhFJnNb1W368Qfuer+Jogkr6miR16A4RiLoTez8+sq55yW1zY2ULUfw8ycHcUU3V9TrXnvE1z2UQZADUsiLF/9jx6sXXvS73c4Ir/ngP2C5/MxP9ybh6sd+5/EfmlDDZvjTsx/V1tVlP32yMizqDss0rKGKYWHG/3hqfVz2Z7tRcqgtyxuo0VS9WS9m25t++sRHGYqkC9NHK1lYawXiGaIicpd8oXW/e1ZNEOw3x2IFB1tEgLvTn1z6gyP2wYcySBBBkhA+94m//ewVj3xwkXz8Ja97MAznED7xkf8YvHbne9V9XtHbXT3whGjwlPRf4k/8zxsbdXR4X3Z7PlDQvfYP/va0l7Ty7NApIVxOkq7JuC6eE79+zlkYNKHbosOTs99OOBrTKnknBgLZb3zkzIdPZODWRM0O+jzOlK9+4p2O+Ad56OCBtEKK0sdFT+q+5n559KO/fMejGw3jy/oRppt/8Z20uPyaL9Ubi7QXfWbdQ4prpgg9gz/iDAwP+mZXZ+H0d531rJ/qvFEc8nmVB2tg9P2XP+1fZjAvQ2NhV1b3D0ze3mFY4roui9xHqTGx9vd+U/my/77Jm3FK8uBglB28/YTTe0fcCnvoLQvG0i396y59ZgLgX7b9DdF2c0a/4XF56nUrr0rp3l8xcP0Wz/EIPvPdb7zzPBs4KQ65xdxe1FHP2r0baju//Y2nviRenDrE8/IMikS+9dkfP/9hoSRMS6MAIIyOlg/xiApA2BnFgRSMQmv0T5c//l4tXPXqBzyfe99b+P0iucO6IWs4pEHG9bXAOv+/rxez1P7+t7b15ga/e5961xw9fc+7T5LBX73OwcQNk7YxSv3Sn/17X2XDhq+PNMoRGqpde/Osr/XEl7defMgwWrhOF//zqjP+D4iuQrprg/dMER4xJchtryCCqAMrYhZTB0iu+pf5f1sNew+8Dq788/MauPzLZnwOwmFzWewe/vJ7wfAzv+OFQs2k3vl7E/d89h8sTvOjXnrrtmvT9MVZ7EL81fseYWFnmNVaV4D/9bOf1Bs3x3Vhd3f9Tc855bwkn+h2RplToWw6XUelb/RNUjHGo99+xLN/ZTy/Qr7McM8VVz3b+ET3s7wZhulgspdCvbxnfuDyPq2bzqbWNWCsThcBgAiLT6Ef29v/OzmsQYbNS173/tmy7gRU4IHIm3w0s2edX/mTrXD2SVtDHQ+T9D+edMTtM2YxW/nKNT89Z/OZJ02p4KOwrO13hj++7JQzH9Jo9xNcmYHFzqi9ffMIU8hTqK97+xPvjvpXNVBSWQik/PAd33vNaVXmRWpoQrjh/2vu2kLlOqvwWv9tX2fOLSeXJqlt2tj6UNraYkEqQtGiaH1pxYqoUKGiICjWvqigj0qlqAQr6IMYK6lS29qClpKIleKlVHpDKqFJTWISk8mcObNnX/7LWj7MOacx6Xim5zLke/s3G2b/+5u11//v/a1vdY8dOVzP755S7Wl3qlKLxx3Jqd1798zrGmMMKMid2UVNMrYmYVVCuJ9ZZaDWJCQwIBetQcaDRk4tpFpAGLQHGfz4L/vi9RLS2bf7XiAOBsAFpZxmhiZxPoGFn7z0znsuq87ML86YbsZRIyX3fvizh28Stj8/qQgJLIT3RpbpkRcP3R/PFd1fPUHf35PqslS5gqYxCiVAo5iZgwvP//XYtbdfIyptgIJPxvbNWpWQJj69rd9M18nQ3hcFi8V2v8XkYuJKYNJpiWNffIRb65XPQJH7zjauCLQBa0nLqDKLYgq6acT791/1oEEYcA4VpwXSFzoPXdbkUNXTa/y9t319jg03QYNm8eS3H//N0+1rPjG19fS2IlZAleOZwre4izMAKIB98Hn4829P3PKhq0/n5XwYjO2Utyoh3Rk6Nw+9bGjPy+zSHs0OEIwVMdcJ91JTPNS/P+N1ErKYc51CkQsOnoVBGDS5zYvcQ4gY++GxJz/w0Rmje3Z+wNEfvvG5eztTirrtt28mskY4FBIgOCtygN//+o2fbndpJYJvOQfKIPSMQQEQRPAklAKwLoNjTx7c9eVd8sTOZmybo1UJwaOtuWM7bOokEggmVWpd6GixhUVea1nkzqUf/Prle9ZLCJ7cASd2Qk3KAABxI7WoeTBXJ75LW7GO//n4M/fcJYM8uwX8LV/65OF3NTavs4k5PwxS4UkJEmyrdv/Z90VxP4Ym5xBIKrZW5OhZczncybrQZKK0USR+eeAHyTxXY/sArEpIrZVXTpdaIoGE4DQNdMCWNYPERSGQYuhu9azWSUjDaLVplAELGoEEFxEbZrkA09A0CVatZx6c+sqNNu3XT+29hfXZWXFy++JIP+GNhldog5Dgy9nG5WfmgUtkwJAjDF15mTE4aULwLJQUSyKqCnv3vOfTe7vpxkVIr9UY2W85BYElB1NkwyYkjVSM3RngMis583KdhLAoE6y1dEvrpn6LkBG9IvTIGshFbPcfeMph/MDr+xZmj1zZcduhjidFCAYvFYQg1LnZppjraxeLJi1ygIACIIQlH6PhkyKQdk4wadOdWfjFH/fel4/7Fnz0Tt06FQEwlCoCxuBiYAyknccIOYiN+qA1LrCMfN1+6Uf78FsHH42mzk0tNRNbbdkbgpIexbD8koft+IgFUgAp4E3rvM1aPjMP2v3vvnz3ncAek0KstnEeSUgZKSAgH3sWThgAKrglGhIRuEokK4RP7JExaIsyFv19jx7kMN3LcExCEIAsR6Ie9h5HK6QA8sEsNXrc7Ose5M7FZT133V2fvTJ0tq66HxlJSBOhI4PswICX6HyECGCRA8kIwZ4nFpgIsFSmqtMonNnWmy4WLwtjEuKEh4idWNlBEoFEACcFBfg/OrENAltgjKE6/sjT990e8aqGYKMfWcGDkhQQFJCA0qhgkaUBLwSUMPHWRCQIJAzqmRolGzy+Y0xCSDrQYJdasyMgBQJE1ORZQPDjynXWjIUktrVwmfndPz4frd57d3RSd6jBWZHUASARXnENCTgyjRcIazATXCfKDBolCRGAa1lOjxshgGyJVOQZAQVCpYaxQgximFY2F1ZjYFBY9vXsmTnPq622RoscSAjyGsEpBGtLrxkiJRKnIbDavNaoo+FIWE6RTu+sfb7QGpMQrqQBAYMMgBgAJARmYFACgifEcZWJawUL61LfxIroX3sKN7P2CEFvZRQG2sV89OXXO1foqufzXVfc5FGRk/FGl56tBiwpQ2AmULw4RVaPm9SLVPRU2j1LwRMzVGim59sCwFmMJPD4Qrg1woYUqNEh6qZKVnLNOcRr32Rw5IW/z9x4Q25lZGP24CE++/MXb71z1jXLapCJERIEeyWsYNClMjB2Um9a/zlE10+3GAClRHAk7MnX3ij6fMXN12Yrq55NMwFldFUmK4zruCy3XNTt7qLzL65CZWAGXpyt1dHHXrj57jRTRFIsC+rq7JUj/75tRw6nZk0DJAx71gI2TA+14RhOZyUCxNLYh/7pV157xx0zhsiBbsyID0+TxihCINRx56u33SETrTGwWDHiamKkh/+2+1NTaUOEaScxIpAUm+eiuU4wDAk4LwKGY9HYlv3ToW3XvR+qBByM+DQ7aVxMyHAGwPWBA0+Xg3mAYUfIlfMq38aTzzz34VtnnCnrWSDrVbTpy/k1Y6lQ6vwcwcAAQVOJLX/y1ZfPfeyGIgsJjJCTTBhvlUMYgOHVb17+HcT4zBYmQPHmeYJ4MQ2u8713f+b44fRo66q5LQr8pWvvyrBUKfW/x7jnZ7VtEgXNs0/cfKef8pcGH29FyPDP/sDOj+Sume5ME6BEXomA0KTe1DE3d8/dUM8PyJ0qdr/3+vYl2/djuVIKLzgoGyKfqZ6q5+zD2cdPbBshgJs0LiJk+c6XeRlJONtWAOJ808agoJNKU+SnOOdUVVoiVBXJ6cld89vChVXAy+OFJAEnpFdnt3gLzz3/tUuDj1GEIDRxXwezOMcXKL3ZRgiFjg5fHVx8LmwpUSmmzX8ntFYsz+fCMXqnVc1JZy5ILjMII0TUk8ZbE4IAoU4kEDYKkeG89tPEgBJCMAsJYcw2YpJAjtcrodwsLM/nwnGdeDLQREF4n0CZjiozmDT+C49bXTLNE1P+AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds[\"train\"][0][\"image\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "id": "FOxmdk-HM7L6",
+ "outputId": "ff7c2ca8-0c6a-49d0-cfd6-4be775e012a1"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "string"
+ },
+ "text/plain": [
+ "'Two women are looking out a window. There is snow outside, and there is a snowman with human arms.'"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds[\"train\"][0][\"image_description\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Ri187NrFNMaF"
+ },
+ "source": [
+ "우리는 예제를 임베딩하거나 인덱스를 생성하기 위해 어떤 함수도 작성할 필요가 없습니다. 🤗Datasets 라이브러리의 FAISS 통합이 이러한 과정을 추상화해줍니다. 아래와 같이 데이터셋의 `map` 메서드를 사용하여 각 예제에 대한 임베딩을 포함하는 새로운 열을 간단하게 생성할 수 있습니다. 이제 프롬프트 열에서 텍스트 특징을 위한 임베딩을 만들어봅시다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "xB0EfabiBHgR"
+ },
+ "outputs": [],
+ "source": [
+ "dataset = ds[\"train\"]\n",
+ "ds_with_embeddings = dataset.map(lambda example:\n",
+ " {'embeddings': model.get_text_features(\n",
+ " **tokenizer([example[\"image_description\"]],\n",
+ " truncation=True, return_tensors=\"pt\")\n",
+ " .to(\"cuda\"))[0].detach().cpu().numpy()})\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qZcZNgSpCH5e"
+ },
+ "source": [
+ "동일한 방식으로 이미지 임베딩도 얻을 수 있습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "AwXh-WlZB6q-"
+ },
+ "outputs": [],
+ "source": [
+ "ds_with_embeddings = ds_with_embeddings.map(lambda example:\n",
+ " {'image_embeddings': model.get_image_features(\n",
+ " **processor([example[\"image\"]], return_tensors=\"pt\")\n",
+ " .to(\"cuda\"))[0].detach().cpu().numpy()})\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "A4N4iQq-scYQ"
+ },
+ "source": [
+ "이제 우리는 각 열에 대한 인덱스를 추가합니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "iUWvvRB3DJwy"
+ },
+ "outputs": [],
+ "source": [
+ "# 텍스트 임베딩을 위한 FAISS 인덱스를 만듭니다.\n",
+ "ds_with_embeddings.add_faiss_index(column='embeddings')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "s9OX--PsDMNE"
+ },
+ "outputs": [],
+ "source": [
+ "# 이미지 임베딩을 위한 FAISS 인덱스를 만듭니다.\n",
+ "ds_with_embeddings.add_faiss_index(column='image_embeddings')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1BS3TvQO5GGJ"
+ },
+ "source": [
+ "## 텍스트 프롬프트로 데이터 질문하기"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "pxx9fTf83xgE"
+ },
+ "source": [
+ "이제 텍스트나 이미지를 사용하여 데이터셋 질문을 던지고, 유사한 항목을 얻을 수 있습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "2UQQyXAbNKGa"
+ },
+ "outputs": [],
+ "source": [
+ "prmt = \"a snowy day\"\n",
+ "prmt_embedding = model.get_text_features(**tokenizer([prmt], return_tensors=\"pt\", truncation=True).to(\"cuda\"))[0].detach().cpu().numpy()\n",
+ "scores, retrieved_examples = ds_with_embeddings.get_nearest_examples('embeddings', prmt_embedding, k=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 190
+ },
+ "id": "O5bkNf4M3_Nt",
+ "outputId": "b56009fe-dc99-4cc3-84e5-559fb3625d30"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "['A man is in the snow. A boy with a huge snow shovel is there too. They are outside a house.']\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAACbCAAAAAACKYsbAAAgmElEQVR4nO19aXNdx5Hlyaq697794WHfCIDgAu4UKVIibcla3PLS09Ht6GUiej5OzPyCmZ80ExMTE9HdY7u75XZrbMmyJEqiSIo7uGJfBOBheeu9VZnz4QIgCDyAIGm14Q7nBwRxeZc6VVmZWSezCiT49yHq992A35X8uwFift8N2F5YrDZCu7x7746IqNIw8a6n8N4F4tzdDrXrAdmTQETEOagv/HboXQOhPWl+xZn54dYD/BwzeC9OdlZE15ePtET6OR7acyMiDBVOzCZOmEiJIgGEBKQEO2vZXgMiDHo009xRePoqGLTzdN5jQFhQv+sfSITVcs2EkRVllK7WSNSR5B/UiDDs1109kaqOGkPGOAGzRMm8QeIZE2avAVGP3EGnsHVCPMuj7DmrVc0JEUQYaq3xAqhnTPW9BoQFPgECIQUCARCACNJgjJ6WPebZBVgmECmi1YYTESAEEuw4C/YYEFUd7XGrEEQEEBEBWwfHzMy87ZN7TLXMw+ZcpAQA4iGJfyg8y43sMSCAMlCiRKw451hT2bIiqSxHtWolUsR/7W1jvvYWEIXMVYqipepEKRmkFDxXC3zf03ox8FtyBpKh7Sb93gICLizdTFeDclO6daq7jZRXtTqhuNyS8OejtDcyuO2ScW85RCFXv7NYVqXE8pD0aShdrirPs+XIVy7jCUXNyW0M8d4aEQISZ8vjI8FyUHJRTexcKYF6qahOrCy01DGXjNDDjWOVvQUEotmlh/aN3ah4y9qZ6w9PhxFyqYXuWltSoZPDLIMb2q+9pVqxCKF61dqm2vLia485CmvvjuQqRpfqTao00BZ6fwCqFYuAk13DyQPW+3pOTpQydxbqns9RJhe53K2ug411ay8CISKp+EtfWVNpC+Abcc5pTSbSKdWX2cb+7kkgIFLUdITN5ZATTifEhlpYXHkq5U2bQkMLvBeBAELl9OxVnxY7r43X5yb+kwK00SpPnlaB/YNRLUDA3HSoIs5m8ry/y5lq1ZCROc4iDF5n1WBI9iIQZjXvd/zCeiZ0lXc4/2G62EuBeHzcaITW/cGMiAD3j5bRI/hgYP/VBcPVheZ7XlO+CnpQMHKss9G6dy/6kci7Y4/XR6eojXvz9QXJ3xvRZIK2ZgkpKGgx9IcAhCH6/uyFVbZUWAONdWmT7DUg4thcXzmvNTkgdimAxI0kwvZL9z0GRAjF66nTpNSW68+QPQRESKwXDS8PdlisMVtMtPqvZ0HZQ0AA5tHR3v1aSAhxkMsMFhuG5eZU41hxXfaS+WV1e/xi1sr8YlTzhAFOrnhJpQyicib7jIf3EBDG/Pi7hjXq6UB7Rqxz1a6sKCUaf0iqJda71L0v8jZdJVljG3eWvTMiZFy1Oe58IOZNQTFvuptE4t4BAquDUiqmGUUAAoGJiURABIgQCAISkBCE+Clue+8AEaKKFWJAFIiEhaA2uEBa+xlfI2jA0nogvHeAwEwlemIuWhxIlAaqLiSJnBXtnNFV9gLl4NecZywtm+Xsgb0xIgJ6Kl1Qo/m5aKluIw12ps7VaiZTV4qLy0SBTyU2+cjlq5ER5HJuPm/7+MnDvy8gIgIBSNZrAljbS5NmJu+amqbz6WE+jvHTI+mOloe5N6ZKh8aC/LWLDyoHbx5J3BnwrjX3XDpdzCQh8ntWLRFSAKLQf7La48w5tdD5Fx/p1mw18c5i8Zi/cmRl4sSjxyFGvfHMcu4euWk3LkExaoru1HLjdwJ7jF8GSGw2XkpIMP4wUaF66d2m1XeR6+qy08Oiv5ks0pGHmcwttThtLLjTM0ddh66aasVV86pWs3UThcqTvrTjF54jAhEmRfySKSJnPnDHgyj/4LMfWUMAoJSI6RmlphP5yp2FMGorlzuC2jQCm8qQUffrOSTJr69EqKuR9PFhyuhUktZJrucDIqzIGQ04UGPmcrcvojDXbxAkz1Sf9AgRnIUt5fyzt0qpkDIPlyjgycESD87e3p80RT/gUqthZE98MZzWxo4netcDgecDwlQuFb4ZSzV1aLddxmV3oqNc034qTS3v25AaFGINGxGcSS34kHTPowpaF7Olh0geGallZZlo0iTp2okDqqorfi4nO6rWdilUYZQ/M3OFoDZzN7Fyul3UC+cgif3jX83nPzp3slOeLGRJnIJKQKm6udhhS/cWu4oIE0vtvUH6supdzufqdNg+7Mgv5CejocpJlQpeaI4Qezezs529moLa8sJCl1PYPjm5s4ig8/zUwplXHOsNYSvZENoHwbiPOsQl/P225o5O0LgVv/vLsR8mr+H7DydHvluvHJpwZIWC9UefB4iYm0s9o+02opXR+nft++dr6aYXBEIgWbapHDuzAYeQECwBcPpsb1h+qJyppkIiTq5kXHBOLQ8u1Zdfv17yKp8VjIPyd3aI2+v+3dRUJl1KuIf++PjsbWp69Ha7NKL9ni2KVU1JQj217iOQgmOwDv37o6BESUNMZh65SqQog2QxIcHifEWqiddnFkCRe2I8n2uyl0plOe50eaRj+tX2o/v7AnP9PSvyzLVCY1nqG91CrYuDWBBc9XBn3T4IZ0LUb+pyzqSdN7O4L/sxX8h93keJ8fF9Zv7/1Y5ccC8ARGilmGhJcfVB15lfodseGLu7dIFFYTckRwNxupLa/AVhwBdAy9gDsyIj94/kZx+cz3RNZpYHT3Fr4UdG3iwXHkt3piRN+3VB1o3NcwAh195W6Xp08JvKad2bZOD+g/+CMDH1eKDVY9eQ/tteRFxU02qTMxJhSLlAqNkjvaCPU+mQmv6iWh3xFSeG4FyXWEmulNzs4ivlieOm/oS7ex7zSaY/8WUwtZKqFB8HCnR6uWjqH16n4UtXKt6zSvU2i6kSNg0IiMS66Palm3O+vvfbz6aaM8N556WROeNUSkWW4FhL4tLdRLbNpA+WR2deLPql+qll4dHqKzXbrQT0yN0c/PrwIYWVsd/2HbW7L20FAFnMS24LeOeRerUyc9PRfHNmwvR1h9aLsmNfL3StQAMKLN4sTKQqSvYdA6IXA2KCH//02pQ6H0RTPYLozPFPx97OOkeZYwMfuhNs9e5NmKhyUzm3+SKxVuQ396ImSAI1XE10SChmkAgQEEE5b+KKOVBdVHw1CtMH1lXruayWFn69g0euNY8mVETewt3+gyIaIjbx7gffHOp2gt1WuArK3dMdm0ZEEBH4TlPkoqikvNC0Pt7nTZU7swvFfoBEABBN5UtKN+mSzi9U3QvGWqTaO2rhwoftQ1VpuTF2tsPGfpkk+MH0o+HXMru2XwoVRn4TOAXPh2nqItGu5OCsQYLnDla8wmzNQRwBBIm4gGJrLSmPrxaOrT/8nNEvsdXfoy+Wm8vBl0tvJyMFIq4LBSI9vZduJRKHI7MrKMLkPF/iojKnBIpFL684K9WRlVrTVCm1YOoznnsz6J2dbQ0n+h3FnUZIzLclspf/cq5l9ECXeRHzC4CgFBxO/M99bZ90fl/Ec445dDog0s50TAz9Mx1i2oUBE1VOVJmcBkhEBHAid+e7DJOfni0e+6aQ+Ea12P5zgf2zlS8L+xZLacU6ZruOTGdHQoxUjh6sHnPrb3yBFaIS/8ez4wcGQuVCEWhKegRxXuXj1/M//GVLYTcLFULJm94HFTtBg6qn5Fbmgjdevjn6li3qseRxU+w/V7CRRtt3/pU6air2faR431+Z377xp9eON0E2FJ2/ABAWarl8pKtK1ioQTIIhor1HX545ZAsXP/0BYn2RNT5WVutF42sxicimpk0LQwhQavlxSVQ5f8C6Zlk4/LGKLg8O2B+lNCKlSIRVqQ9FYk0QKKbM+2258DSYaUPE+dzcr8CJ/rCnpWYURJHxDSkiN3KXL7Q4bc2X3um6Us82w7epfNIH2LKdGT/YYSOVdnFF5gpnFAHCq9V/IsWV4WX+QRqKxHrEv2o9RVviiB2BPCFbEEeGAgIi7/N0f9WD1hoBgCpWHk8mDw460hCJfvVqq4uiSkQMIXGW6jbrgYhERVYLBGGdaieuZ6qt45rrJscrp5usUsIxJSqKLKBoPRYVEKK54dT50LNO4CZu/rkLtrR1i2qJKImsEiilN/QrwVnRntQjpO/WTs/WKn604pTvI1yoJDrfbEFESgjin/zqT/B4oinlgcjTHpRXrEFBGMLK91mgyMsomLDJBNr3fcBaBY6HQwkxKdCT4Emo9rCijJr7yGDO+dpvHpjp3Nrpm0eERW7NFEg53zmusPKVE5VQshCZpLK2lvLktS9abtQSrVrl/Ey9Srl0Tq2OFQBx5rPMCfvMqRdeT9sTT3p8exHW1xZP+lohhBNFNvQednduVd0tXyR36GCgABInkavX4BuxEnXmjBaJyJA3U8v3dTcn178kcPRkSaL56KdHlNtouRq1tBRVC+IAtYvUR3b5AXNNsqpc8qwKbHap9dmqRWx8MIOYFDxsTHiJiC8sla/Ot3bWyYpogJzCKmm++jwk3zI+4Da2fUtDGVRKV1JEenuk61+l6bmCThESCeiAOWRv5d7BrfdtAaJjX0sm9MhB9Jr2EYhE4PzPDrXWycS/QRQRVpOva2+Q/bf7eKduFucSXJ0aEh4bAbebASV6uxhNQq+q9s2VXYk1agvQk+Vk9Lf+VqJnG2Um+rKoDncLNufozZg9aBUpkIigQW9DXEs027kzvWKWf0YV+Yvrt7rL/K+d/T/cfkqxWhkbubNIddWS1aq5gEMZVZ/OJbcY2+2AXF14d/IXbx90T3etsHlwSITivBihUd09CbVNdO7sntz7Ayf/T1kV7xzqTORHRh8cs9vh0Hx96KhQVsMx16pW29pytdVsfX1DIKJuzr9LfUfd/zh9smZWqxAE4jz1fvlNMY7igHodCG2Iekmj68oOIITEfLN4dl6Hw58E/xL9YH/x87/cBrZYs/LV4hgrV2YjbrL5QNVzbLrsR993m3W3IRBC7v5o051qT2W00BvGQaCwU3r6i/p7gtjmx7s6GonNUN3fFgiBzfXS8v9TA1f7cjx2R80c625cFAf2xm52HCynuJzX5NHigSa/VEpTvThR2rxK3ka1uFvfCgcv1GftRwOvaoBJlNZf3m46cNQBAKvYCTcmHFwisdy2/dYVpvlPTj0489FM7qL369c//yl+uI3VEnXti+6lBa9WaWrSKH+dcVMG/X7K3R/wt3y4MUFH3N1tVekfh4ZKV//u7Zm2HlDt/vjE9wcQagjH3ldAVkO2jIyITZRarQc4aJEt6WU2V97KPE4crpuZc3/l2V+2HYQ0qGQSITf6N1ABsdEAeOrd1WH+RH+Pt0DfZrIrEZF/On5gKdf6vu2715J20+UD+TZ2xooiQ6GQAFtDNwAgB+/B/upEkM419BCKZ88V20xwYsrCw/jQxc9+0jjGpGt9eeccST1yrMeqS5VFQQD59L+6XXj2WFgRk2+p5YN/OrX/RHlu2XPNPRMawvFy01grLNCJBtNEGTs0+2H7vaMz5cNtAG/+ppBfD0Xqpu1u/4OpYCiFaKs1BUi43vTFCnladAXJ9Jg/H0ZJL4Fk960LVu1qsscRm/zpP4w2DaePHaiorn6zuOxZ5ShySAgpcZV6xN5c+jBjs+oIjHnv58Gfs8xf6cpkWq0Wkg0hi6jTX7QMDXffePPm3/Ue6k38ejHZqEaOnefCrv5kACIoqDB9ZPV//uwfozcdhfqpTT7bh/HCcJdK6khLSTvh4MvShZFT6WjZek3EUaXC2iYrV95sa8D8OoDt/303T/7IWOtiVy804J58VdjVP5oqnpDpxEW/PjJZNX+TlAZInL6SPMLguKu82wvftbQaFd9eSA8lI7Xxoe19qhDoTVz69dmBsgKH1fy8v5SuWu1KVIuIgODxw9fatygOBJpBydeu/NC57n7Ur3XU6kY1PZlOpGz2/s3//vlEOn9J2+TrfCMdNrY5TWNHFBQkCsVSbnTZAuzqEdt6afhnFy8kNt69PRAF0VZel8/zzRVrkjoR8Xg6FEc1EYhO1K67t1qfOIB1c0sCBeLBGzMdTjEH5oN83lvB4YyEygcRnNbceca66f9cqThKTj0I3g++tzU4E8GsulnVGrWKlRL5w35S+U6MCZq9tqPlTw73OLU7EpugEZ6z//vk6ebHH9TnUl1sQkNETFWURqu9g7a6mSuMHwNIcHCsQ5RS0lLYD2B65NRXw50BJaqRRywd1cepCw8ypDW1DhjzYKGNZTNnoaTrSq7VaKJMQhHQdH5jCdS8saI3PLPzCkhgojcOf/SbgbvvtM4/mF5uTkUuisJKndFxNF0Pkts/avd/VNcAuJvqiqQ9K6WLfXUhhoEApKJy6+qtTt+NsAUHRK30n2IFWLasTL0uDsSyGlLk3xmZf0XvnAxdFyKIb9v/+v2R9zq5pycaf1QS4npvFA1aVQu1tyHftIULSDZNDMaVSBoQBKRyHKzVWTJTIulECQmJQHzop6yOCDm9cP/1yCkiYWNICcxTyde+3Cf2OcqcCIbdjwBrhGlgf3xxZPioDQ1hh0MySKFzfFDiBQ5AopaRiwN/AROpuJoppqadTW9x/+Lhi5Od1lcADDviSLkQzgIQcWxEfptG9FxMIxkrSjutxQkpgLnjXlk7RWan5A6hZXiDuoia1doC8aZVUgQSgOP2VynY9CIxtbGv8/LPKeURKXGIvOr8Y6t5gVNpHVYqNievfDx8/MmyZzdARCNeXGsSEITMSPPRCFrvsAwUuGS9lAUggAhZb6FXRFbj/bXYhuKixWqamJ5ojThNNyZzFztWsl4kBO37hr1HzYciBWjUh0nnIkmvHDxKz8c0PllqgACwNywHKsrfcTkLQA9aq0EEsCLfLZ3kOGIGFOHJ2pMExYBkw2Y26819mbmQA2fXKQMHTPWDmExx/PHRtoSHqDqa83m3VquhsNy96IdKfH+nozHYzH5z2AAQkCvOU9kk4rrkzaEEs5k4BLuhJfr29IneKFJwFJ+5owC1VG1xMOXbiy2vtVtATOp4faM3fl7KlIn1yNc/KBmLJr0d/SGsWD8cO3G3o00bj/jOQjfYfdNVqLmgVVtogjhSEAg0ouJ1JaH+Tjp+VuQX7Wd0tBrfclxd7szX7kwtMf31oX4FRyAheTo99txlTtZf+OyNUDE8tW2CnVnM1dLZKHv7q0Krlxw4bAhA52fZAOGD/h5mV6eUqimfa8nlBzV1IOf7Kk5zszOqOa+x5vtWdce4mYsIylcuFBwrjTUt3yDPOyKOlz5+tbmuRCW3rtLWxEJ/Uj5vXaDqrIvzF61iKNYkBMx/OJAsSnLJy8wZr6/jzjd93WmAZd0lzI9P91HoESuIF1mjSSsvOfrw3XpwdX//thzm8wKJ1Jc9PUtGKGhoe+NZoO2vzTEWss4LCzOls0xCgFi/NFIOnN/jB4bvV4/K/N3SvtPkhOL+JRZMji727fNnA49EojovR2kv4qhsPj3XqkbdjyO9ne96rqIaVs6Um6+nCxF04y4QAUjNfZodqvvilNyYay6/zrEiROrOdPNgIbaY6jCA7o5iq6xF8MJswp+39r5ugIHN712ovzpG0VnR2x7H8TwjIsJm8sr+6eGLpyEM2qCnMdUlUKJkcqQ40LyS0hwsfu06Z0b/Y2+8vVZG773hw5m1DAWInfdk0crOm73ZdEpb0RRXXQMiUFY81p+PDWTzLpfc/sCExv2K1br0TWLN2KXjGb/0qRw8kV2982lyQeqTj3SqCzUdcGr+VneWEyvXLxxyWgiuYoI4OFkDL7xuMASQq/PHuyPaWH0tQoCMTy+7wUG9fUVcQyAMJg0BRbT5mC7B8q/PJhw0jT9ayrYMJvycElGQioM4S25+sUpmX5Yjp5TxFr464ocQ2JtDZ0tpBdKyNcRde7Ul91nqfLyQXG+vANZbuBf01nVnaBrOjvXapAZA7HK1ajm9f8tDrK7PvrasvBAUVWvFsA7Pz4ZRIPUIBjqZTLOvU1hRRkHI/KqrwCLKKvO5V3+vd8e8NVv+Te+WKhCBM/enhtoBsbpxH6wD2ZofQW3KSxl6NHtYJf2nRpPQdL8GWBLnkukW7TlKPp4/U8AqDTB5+3u1yAW5SEBsJtP7SlAMze5idflnf9mxlabYIN5DPlo3mzwshf69uddV3dA2VOQGaQAkdxIAmh7XeYlakyGt9yRxt1tJsZBAwTnDUNfcxVxcsQWRJvObCoJ6tinfFIk3dSfZo6tkxCLyM0M/vXBiW8UCIAOXF5p5XaNiWln05NwFJiO0LQO77pO3qTIV5x+FuMUHHa1PcvJwXmJugAFAmMTBFH/637L1AKs2xntrpey8aGbuYfawqZ70Rof398HBsSYa0qkd8u9OT33ek7W0HpUTRACp3n/F0e7KQrYxvwIBHEzt1kDhSXxt9f1rb4UKTJaVE2W8ics/aVaxZxSGrIbV0c2HSTL2JH9UOecJi9KqmHol3LZbmar/8N3+p74ft/1qcmjjry8AZFVZnVp8cI4jvcbrMf39wa5Qg1mYtdacHb/y12vrXQaBhSCiNNvKQrKQwK33fywgsjz+J8qs3xZ7HbX2JdZzlzsXwyCdVYpEnObuTGla6rWAPeMpTrcqC+idqka39+zx4loj9SjVnRcX3+agehbbASiEZAiiSoMzN87GA0IkWE8KktfUBGHq7w6YmdP3Wv1wNcEV75V8ojAEVftl5pUVRFXheqViNI8O99R1a17P+Skmtzw/nu/z3I4wdsGiXKw9CAZSq3kEQss9vwKwKAFDoGsD186u3koEazkMLRfSAhEiQpXZkXKzc6cc2RiCLQnEmqQiLSyg+tLKw+MHo/QTsnF+ubsrbQBuAQD0cGXy6762jWTl8wIhQPcCMzeH8tbEPELXjbpiKKsgkWj4+v4CM0FIzMhjryDCEd869QqTdRzWWwoRkXgLvznTiXgzodDPCm1aVZzHLMqRNeFC9HqPCJQIhMR505cvtkAEWD3ViSlzuHhvrL9gd9oc+sxYS8TppUcnVKw1rH7a1xMRHDkBBWHxcvon8RyOqj99pT/wCMBvq77vF5WKqiuHi7PnSU1Ke5VCE4TkbFh+O7H6YiZR1/ubAF7deSGA6MVLrxU2O89I88JoV/dO9vtZ0a8QlC2UJ/rWLnTMHbAkHoyuzI8Xc/7g+AJY22VKDB7ywASL846ISAv0oysoOWWqhYAzRIoMtJeUSMUlQ4r1Nc4xWBRriktR9M27FwqbPLyQYW7PLGzlmZ8DCIG0ko5b9XgZRXzg71ozjiDFuYWo90R+4XE6k/RUOHHyEEI2QlhjBETo3q39/puRTaoN8Y44Wt0a7dgfW3oDKlYhgRAi8yv1w6Rs9dJacaLXvQwQACDx3Eo7QUjEFd69CW8sSKD5dJqiWs4cISD88MQBS6tLLbXWBepqIlW9Z+vLqjtStOau9fphf6b49Zu0XsJFIKFf9JzamlVbJZAapR6eDwiAYjMxkRApe+BAxd6i3hXDEcRjYueXPxg6ZA2rp5OJ5A5eKXomU9jXmV3LJsdVcPFtir54JbvBS5LTl1tPhdttSnmGT9wVEOLUyDfHEsLRzMIyJXR13yeqCVqJs2piqmvpX77TE3rQT5MRQu7MmdV/cxyObfhPQPSXTT2REaHYiQrrhdK7zmtAZ++qjbtaIbKy09OvGFy++15CBQpq+n+9WXDEcOZ6mFeDhxuUYYuwgOJ8yZpN2rCkFP3gzn+IX+6UaIJYvjrQ7l50P+HunqOQetW9pcpKT5slQC098srNkS9Q9qyKhlsbxoOreyWFKPZlT42KYO7We9NLGiqTSGtZKq6Uo1rQZl94B9ouO8BjLkz1JZO65itXmbzS/rZXNrBO+aFSkVKNxpXWjs2Iy1Y2bgoDnPl86HJtf9rZcQ67V+r5Hi8gs93R0fLsHe27Jh8E91sLcBh7uFCSVwu1iNLVkud5Wn759lCDEdn03tUTQQSkIAIhff/qqcMA4PTHk2+1GGDbIFcgoiOlVstXG/Obu1ZJUam5vBBfPtqrE/UwSBW/znZF1TIm+fDmYwEaCAGyXi6oyE6Ojp89VPOUROaG/xPtthTJPCWq/qg9F2/uZZGGR7TuGgghXVPgWc5GcKZeHKuOcEc6LHhd5xrmZGOJB0KtDRArEia98ng+0fFKOgoABNeL33NidtQckeHhgf6UVp6LEgAsbXUpu+e16pd1PtWDG9OJ8gKaqXAiPZdZnHwVcW3DVqMV/2RgNY0AhhCBvfJwpbk/ru5hUXNX39q2fG7tVRTyb6cm3/EHpsf2lZYmMu8lXwKIRBOuMha+1QxENSQ8OOeXPjuXdevNeFrDJWbHmOLzYUkgClbEfzC+rydYZeCYo395o/lZjkNE3b724eFuNCV/9befPz51tqtBQL97IKIA3P3qXY+U8hIQZyqXTrQSXGidQPsJcJzcBNbsFAA4qJgPBu6PejoaP3Q87bCaf2TUZvueuXvGqfnb/Pj8p8X0939+th6+l2i0eWj3c4QEcEP4ZSbwNXFyX3vl77/btjI371XDlK5GCU4dSsQsKlvyZLlaqdcilx6kGuAlzeTtUvZUxlSj1yTe8RyHZamBZ3eh09en/rzv2jv56Tsq2WV+fq77peYIEGdwSAFRZWKq3NM0cK8SdKZ8LQTY8qP5E2VrWJpaFCbHwwLplGfHH+XyeZTLmeF3gqzRdMl+9+n+fDavII7qi82kSFtd8zTNfXls30uo1upLbZxuU4TRKwdm+/f5YAEIzFrfvTGUV1HpG9k/HR5pXe20SkIBqH+Y+Y5zVL2cPZR93p3KIiA4EGsGCWDQiLR80ZNqJAxuTLyV2EBEils722Pxs4Ej8eeJiSKDujEfnc5axb8+0b2rU792/nTDQPiFj9yx7EPshkojWd0zwmIAu7p6EoiaGYOa8d8R512vvVbX39IpEy/8Wk3Oab0xfiKQiCIlEq0zzs7wtXB/TtozDIVqO6uXHpBt5OUOQdp5plolKA53DMaJN5KGOZfflbzcQO/YLCE2Iw9Ot0R6tT6gUQDwO5Nv8VgqceqL+T8xAnpGBP47kW8TCGO8NWW9Z+x0+R3Jt3lQmJPNmZtvUb7Fk/xFyO1w9P7vWL7lo9te9mie3cu3/LcV/s1w7LU/EvHi8kcge03+CGSvyR+B7DX5I5C9Jn8EstfErNcUbajn25hZ+reMl15G9s7BxS8p/x+aoKM9pg0DwAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "def downscale_images(image):\n",
+ " width = 200\n",
+ " ratio = (width / float(image.size[0]))\n",
+ " height = int((float(image.size[1]) * float(ratio)))\n",
+ " img = image.resize((width, height), Image.Resampling.LANCZOS)\n",
+ " return img\n",
+ "\n",
+ "images = [downscale_images(image) for image in retrieved_examples[\"image\"]]\n",
+ "# 유사한 텍스트와 이미지를 확인합니다.\n",
+ "print(retrieved_examples[\"image_description\"])\n",
+ "display(images[0])\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ufn0oqPx5DUR"
+ },
+ "source": [
+ "## 이미지 프롬프트로 데이터 질문하기"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "R6fNviJ28fns"
+ },
+ "source": [
+ "이미지 유사성 추론도 마찬가지로, `get_image_features`를 호출하기만 하면 됩니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 217
+ },
+ "id": "t1BGXpT659Px",
+ "outputId": "53478699-5753-4946-90d6-0aa8b76694a6"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAADICAIAAAAiOjnJAAEAAElEQVR4nGT9d5Qkx3EnjkdkVlVXtfc93pud9YvdxS6w8IYAQRL0kgg6GVI66WQoUTo5nu4k3enudCeJcqREI0oiJXpSFECQ8B5YrPdmdmfHz/T0tHdlM+P3R9Us9H2/fvvwMP1murMyIyM+EfGJCLz/7SAQJAAJkAAkQQIQAQGQBCQQBCSACEgAACACAjAOnKGigKqAqoGqgKIgZ8QZcIU4Q4UDMmSMkAFwQgREAAbAABAAgv9KAilAEkgJJIEkSAKQIAGAABGAwH/5/48IAMj8T/M/hIAkApD/h4KACBEJEIEAASQR+R+39SH+t0gBAMAoWAYBIAEyUBhwBRABEBBQEgVro//wD4LPIel/HTAODIEzZBxVhTSFFAU5A8aAMckYIAPOgTEABgwBGSDzvyVYrf+skkAIEhIEgZTB5kva2nkEROAcOAICACJJkjeX5P+5BClAIhAASCAAQiACACAJgFs7SgC4tcMSCND/DARA2Pp8/zEJpSThb9rWcfi/yRAQgAiQAWPAGTLGUAONNEUPoySQkqQESSiIJIEQAAhSAMlgcf4nEkP/EMgXOA8IQCJICUKSwlFRQBKBSiSBKygFcBUAANnWI22tzH8IokCO/QdCDihh6ydACCRJCgrO0v8rCcjeenJgRIIkofQ3Dv1PIACQxIgAGCAQMgAJhAAEjCEiIQL68iYJERGBMfJXy3BLDhCJQAr0hCQAKYJTDLaUmJSMhPSXS4CEKKR0BUoJXEFEyVVESZyBJ4FxQAYAwDgAAHIAJJD+mxTcNALhywds3ToBCL6M+lcFBAAiSElAICSArwsYCA98OUMGhDe3GgFACPI3kBCCb6Stf8G9fOvKCwDAQNb8e0j+5YdARm+eDkPwt4UhcE6IghE6zFLCIZASpGSBuEjwCFyXCFAyEAKE52sEAA4kifxLBoFC4gw4EPNvHWzdHYHIAYkQCTwAhsQRGAH5dyOQh0Ce3pI2REQGRAxAAuPk3wYiQkQEAEZEQJLI347gXSLpPyYgAwJCIpK+EsDgxgEhBQqMMUCFkMjfEoY3rx8AEQLzpZBzQoYMAQAJCTkgohRAnADw5gokgBQkfXFmwQ4QoUdMIHBBjKEQyJiUHJAReMAUAAQUgAgogALd4x83AGyJlAR503oIQAAgkBIYgNhSFf55CwGIwcZLCYSBZgIM7AMRAaAQAAxIgpSALFAKzFeEBHRTyLbEEbYEiHydTYFev6kawF/GlmAhA/SAcWCCAEEJqUgEIAGIEZEEFBI8RUrha2P0VCIJXrB6DNQGESAoHBQOCmNMIYbAEDgi54AAHIADsEBSULhE/kP6W8IoEP9A2YKvTgAJAQEpUNEIDBkhAYD0CAAZ+nK5pdAD43hTRaEvV4ggJUiSIH09grT1S+AR8q0vlkgIDAObgszfRV8pIqCvDMgXIxIY3GCg4EvllgViQBJQIjAAAmIoJZFHLhDjyJCQA2OAHBhHcAk5IADyYPHI3zrKQDf48rSltIiAI4gt8+SjEf+wSW6dNAZSBRQIqKS39oUApMRgG/x3RKB1GQALNiHAIb5NuGnuA3W4pb2IAjn2VZovWIGOJMDAOqHCfdWs+CaPAaFAoXEmPZIIUoAgJAAh/MX5K0NEZAwYAeeAQIyBwnyRQmCEgUXCmxaeMSQEzz8LCSC3EJNvihj6D8CZb/r8/wYihIQMiWv+saO//K2/JxLMB0pSYnBlCYkAkZBQEhH4wkiMBUIiJfp7jwScY3CEvmT4hpKTkAgiuPQISJL8pQZityXejAEJyQCJERAC0tbRISGQIEIMhBPegpiMA2KAtxCDIwEGNy+brz8C9SMC1cIwOHX/KsKWcATCzkCKLbv2H7SwL6OSCDDAdj6qkRIgeCZQVOD/QSHdFCD/dhGhf4sCIQO6aZluvujmDZfAEBgDBQM5CLAuSVL8C61AoFgQCJgnyLspv76AIjFEjgyQkIGCgAx9Q0DBmokIwLee/hPClkUDAhaYa2Q+fA0MNsNAYoAh+jiBETDYAghbhhgDmZPMP2Xyba8QUnpIAIyDFIScCALs6v8VMgQZGD7f2gIwIGIcSG6JMiIiBpZaEgXvABEwjlt+AN1cdiDmgOTrSwApJcoAIhABMQyelogwMF6+lNx0a6QXuCz+6QoZbPRNJREoIoKtz9qSb3gLDAXitAVRaevUpW8TOIAXAJ63nCEC1waBCESSAm3tb5gURISSAAhJ+lrAtwc3AYC/DgQAzgM/gwEpjClSkMKRIzAF2ZaOC9QGIiJHJAJmOdJzJSi+7vaPB4AhI0JGgIwkIQIhggyeUEog5hsZHy0SMiQgxt9Snr4VAgCmIPgAKABh6GvStzSTBMJAK4AEzhAkEQPOAICk8A9NIkNSfaADxBEApaTgCkoAAMYIyL8D4KMoCgQKgAeQjvk2V0Hfo/RBPUMUuCXfEGgdQuQAJAHfcgR8/UQkAq0jJQgJEv//7BQEV5wQpOeb2LfcT7i55pvqYUtd+bICWwLHfC2LgZWkLVWKCOw/CJnccmOBAeOBO8wYSiIpwHXBP8Cb344EJFEKFJKAgCHzgR8CSA+ECJDATbcDEJgEkAyZYhiGIgQxBGS+sQLkyBjwQIkhAQExIgippARQ7aZLhIDI/ItLIBiTvo5iwBgAgJCB1DCOxAjRx1wADNgWhMf/D4L2dfUW6PYvHwMiYkjo2wNJ/uW76RX6HgFwlAKJ+XjKx9eAAIIICKRE6cu6R4wBU0hK/6IhAPC3vCcIbHfgtUn/ZhEQQ2ScIZAMXP/gnS0XDH1r4xt3BABC3/IyCUIEYMW3d4H2/o8oioJTlzelit4CMcGiBJAMNtbfHh97+fvJWYCffJXvm9eb1tZ/CR/pYyCsgoAhCA8AUQqQAkmij9N9WyEFBz9W4AJ55EmBhIqqa5wxUtORTAi1jmnZXpehdIWnca6A4gJoqGZCMcXxQAIpTJLCiAGXgQPJWOCCEpEkyRj6DqoftgGCmxAbAaTvnoktRw2AALiKUhAyQEYSwf87VNC/LAwD80sAnBED8JEvcmAoAYDdRIYAjAODQE36SHoLaSECEhEBCkFyy7UhCb4N4lthGD/gRGwL13HwlVlgGoNbtHVT6T/gUgxEzXc+OUciAoZIgez6Btt3a+QWVMAto+ZbMCGBCLwt9bNlit8KHAov8AR9BRmANQqMXKBrVT8M8BbG4sqWzw+EAJyBwrc8X19psUAJSAAFwJPAJBADIQABPA9IABASYRCTEzzQT4RSAHlahKcZKB2ng6DmE/n+/AAjdCw7l8pGQ+HNSrnZqiIJReWayjzbqne7hq6loxHFlSAEOh6pglSOKgcpgTM/qEkEJH33PsDavvQH6MK/vJLIv3OSQLLAmpB/5gogBs8PnAC3NKdviQiAEQJytmX4fHeJABltiTIC8x1KQCBUEUSgD27aBP+uM4ZEJAUFHg1g4N2wQC9KQaD4OAFIEAEw30UNHop8zwh9oErog8MtWAkk/TsEBIASgogDIgJJIvCRZSBb/le/dQWEBCFu4uhAS/l6JQCTCBwAFEAGwibXJk+CogJX/BvmK8itpSL58UXGAlDv77CCwLlv4IAhSiLfXgd2kIAjEIKQ6AJ5EpFQEpBABAJJ5JHnCiFAuCgcBkLtz0xuHz0AgtWqlXQqOzYykUoluo1Wq17nDITn5XPRdLq/26l3WjXHagBjYT1GKFwhFdsF8AAJHS5VBVSFKShVhioHjkj+RUUgkhLQ92f9SLEPVnwDIIgkkpSMpB/MJkQESYwTYwGuZYhMAcb8gEIQSPJllDGG8FZwkiiIWTAFSJLv3wVxZz+GRMA5Sg+AI0mQIBmS71UFoJ5jsDIOUgISSOkDaJTSB9lvOTsQYPBAzSAFrrukm3jbV1pMBtgtuFEBwgiAM/nIPQBS8ma8G/0IhqC3wk5SAiIyROAghRQeAYB0IcRBUwGA9eSGDC1XqS207U1FIZLgEUkHOAdUgPu+KgOGoHJggFwBDsQ4cAruJ/hq11/4lmBJAZIBEvn2UXgkpe9wAZOgoJFPDcX03pAa9zyugj42NDUxNildr9vqImMaVznwcETRQjHXcgFJC4Uc1yquL3a6XjiVyebzqqJb7RYxR3E8IiDGmMqAPCKUAklIEgAcGPgpEQAp0d86TxIScAUZBgaJgASBH0WUHvi4BCQhA0akcEAJyEDl/rXzPUfiDBlSAKIBuAoMA4jo6zvGgCEQC6BYYHQEAEeUN3EeBEIMAAJIBM7nWwZFBrgLGEoBIIEkSUKSgOymbqObPjxuARo/FfFW1PGmHt7yyKT/41Z4O8hHbBloX7H4MSbpYypEIHAtQgGcmCulKYgBJKI8l5k21KzTtVrdctusqzobG7593/gDzfrm8fNPW2azkB0I6cbmZrFUW3HtikdtyW1FRY2Tr9E4ADLg6ENDZDxwV4mIGMitO+FRELV3JXguoeS+3icpQ2psrPf2HeP39maGQ5rhuB6RCKkhwzAUVXESVr1cLa2tt5o1AiKGmmpEIjEpELiSSg2mUsPxVCaaiCKC3el0u23FFcA4IJAngTiSC4pCwMF1kDFJwSVFRBAEEoJsDwveBfKdgwDT+5A8cBYUDpyjJ0lRiCOiAOSkeH7mBDjfCiWQnzzxUYIvkcjZVs4BCQiRE8gtj5KQfLy5BYGlACCUAoAoSGgCYRBuBT+UhBJQoJDoeeRHyUEy32oQEUnwPN9sAuMgJAiP/Ayp3DKsfv4kiCkwkIIkkXSkJwEBuAIK33Lsg4gPAAPJQfpxL0bShWgkc2TmQ73JgWsLF2t2JZvOxkLZfGayJzuoKrxtNtrdenF9kQGLRVK9PaNGtEfYXjgUCilKtVwx3Va7WVspzpUaFySWI7qmQoxzJOYK2ULe9qTlelJ4hBzUEKgcQAk8Sj87xAESoCTUEGN8od5daAlXgKKFe6K7J3oO5hK90XBMURhnzHU8t+uQK0O65pq2sFxOyIFW1xcbrWo6XYgncgjMkwI5NyJxReWOawopyHNJCsW/hcKPWEjwkDxCRwBDRA8QSQLzXSEJ4DqBat3SE0hEkrYsTpAbJv/APESukSJQSlB8RwxBMlIU8DUTEPpAAYGQgHFkRMiBISgMGKIQW2BpKyXjAz7yk5tEJBkJkBLJd74AbwaOAxjuJzoFAYAU4LkgAEiSkFI4N9EVAIKQgBw4QxB+2GzLqSYkAcB8JxeQQAopJXAEDUFXs5nkkG6kEFSOoUS8oKm6Jx3bdW2zVW2sbrauWV6NpGSoWF0sxLaN5vYkIvn+wwfj+XQoHDE73Wppw7VdxFAmO9KjqUMDu1u1uoIhZPrYxHbbcsj1nG4rZNguSKAmR00XBYCkLhOZeC9XVNdxhNdVVAYKCOkQM1vtVWhtxhMhxlTpuJKbHqvHtWhB7/FamkkQNZRbDK7I1WLdi4cnBlP7o0qmUzc7tSWQnuu6nu3pqh5JJhoVRziOETLiyaRq6KiG+kkY4bgRiwHyVq3a6tTrpbXq6pKWNkI8ZLCQpqt45GFERM4AeRDk9SWHKcjQB9d+0oo8L0DoyAgpcIWDYH/guRNuRVAAgDPkDNQQKJw4B00FhYOioqoSR1AU9HE997PinJBQUYATKAqg76cEEChIHvsR5CCJ5jvnEj2XpPAzOUBbcNs3pkG82UeIgglBrisBQNrEWSyR3JYpTOjRFErRqK0urZ1pNVd0Droetz3bdG0pfZFlJIEYEQKTkhyIhMLZ1CiHEACbnLh3YuSQHg5bHafT7SichOMJkuFIFJE21tfWV68JMjXNQGBAWipTSKez0lOiiaRUpWs50nY79Wp1bcW0zexAL0hpd7qEqKAaTcQRsVauNirr9damQ6SpvNWomraTTPZm8+PpfHZzfdm0NkenZ+LxnKZEjWhEU8Nc0TuddmV9RXpmPJFqbK4XS9eWimfrlRLDcK3RLjZbRpjdseP2XG640xUMI2HdYMAApRJiESPMkQnP7Zpdx3ZU3fDzK8C4wjU9FInFMqF4TI9GNa5Jz7HdbrVUrVcroEMylozqYRbieNuDWwmUrZizlOi7/VwNeBk+1vbEzeiZ9DMbjG0BVQl+2NPXN/7H+Y6MooDCSFGB+4lFBRUGikqIAfFGUW5SCVABUBhwRPITdIHf5UcGfauEkuTNqI+UKASRROkFMcOtyGvgekqJtMUg8Vz0XOG0IJnctv/2XxyfuTeRzIY1HaRo1mqV2sqZU1++dvzb7/7Q3zRb1W/84PdBlSBReiikFIIYA51DX37Xgd3vG+vfUy8319fXsj09iXQuGo/YpiiubTQqK4rCND1EniAp2+2mGtLD4WQskdUMLRQOG9FYyFCtRvfGlTON+ioQWK2u9CiTznBF6Vgd2zaFKwAAUeFcsSy7a3ZXlq5U6iudVmt4dPeO/fdP7dydiCcj8QRTYOXGwo3zJ5K57ND4eKVULm+USEKrUy/euNps1vtGpnryw4YRBhRzc7Obpc1sISVdp9VsAYbSqVz/0IiuRTzbq1fLrXq5a1eMsFLoGeRalCRZpgnS41xFLm3bVFUlrMdUzRBCtsyG53nxWCaRzSWzGd2ISscTQmqhkKZzpnFFelusHALGbqY2GRJIlTFVSsaASJKUPo4BkhJ9aCK3vHEhAVxABooCxPx0CggghRAkAUMpiHFwCLlCnAHniABcIYUDIijcZ/OQiqgogCQx8O58j42QIYlAd/lkB9+H9zFQwLgiJAoC236QQfrg2nfWiKQrFTsyveODvSMP9A7PpFO9GCLGSOEsGUql8/l0uk819iQLe8dGtWde+tJa9brOiLqgq1o6OZgI9xayU6Ojh2KJXpdCsWzUiPc4rttuuc3qJiBZphmJJaPxiG12bceUDulqNJPrC6eTqq6WV1fnr593HS8SjatM7XQ2SyvLjmn29o9HMwlVDbW7LakoudwQEghPglRVVY+lM5qumd37SpsbKNRC/3gyn47GNEQsb6x1Wo2NlaVOu6GGY/NX5xhj0VjK7tpOd8FsLmXTfelYstNqrK4sZDMJ6bXtbqVVYX09fTEtHUlkekZGEplsSFE91+l1+uuV8vrqtXaj4jju4Eh/JJ7yTMdzTMdxFc6JJGMsrEeBoWmbWFXb9VKrutZobZaK0VQ8l8hmIpEkAmiGoYVDeOAO7mdvGAeGSBKEh5IYCSSJPASKBsQ8KQiAhJ869FO76OsyH8egFOQzBRQVGA8Cx5wB2+Ll+Yk5riAJQH6TT0ecIyIxBM5AU0BhSJIYDzC+b3AZY0DEGPp2FgEkoe+aBbkA8slJiD5QJUC6mVzy06DSadD42EfveefvJhPJ0mpdC0eyfRGSyBEVRTJknCnNri0ti7nej5/77JkzX2Z2NGFsn565d3pmP8OwZ0qn3bWkHYrF4sm4ylUScrO43qpurMyfWpy7ODp+ixHLNuut0emJbG9+9fpCbaMUL+QkUWllqVIqxlPZwYmpcDTerG9uriwoIW10YhtJmrt2qVJZBrsLhK6rjm/fMzazrV2rbBZLRjI7NbPTFUAK69RaVr3aKa912m4kogun1uluKuEI57luq5ss5FP5ZGll/szrT2UGxoYn9zQ2GpyMZqvB0as3ajyk9Q0P53JZ2XEEMFUJKVwJhdRmu44cOXobKyub6+uJbGZi375QWKusLpXWlh3bSSTymUx/Ip1WQkwIwRljwIi4FMyRrud27U5HeDYhi2Vy+b6BWCqlgOR+nAOJCT/sSUiCkQQp0G0BV0CLqMgkgeSMCc93vUhKP6RFFPAW/CAjeSKgsyFHzyNEQoaMbsYstwyln+f3gw4AioKKAjbbeh+JKwGXgyvoJ/H8dxjDmy5CwBQFIEFbgTHw89R+8ImIwA8rCAqFeqZ2vSedzsSi+uK1kkCKRtIXzq61KvXRsf50IU4oEnG90pZWw86oO3qNt/dNHJzZdSQSMdQQMzvd4upCJJYZmp5QNdas1UpLy/X1DdO29Eh4falhm8mRbXemC5l2rdltrZ984YW52Sv5odFo30AimU/3TGp6KBaNd6xWt1GxWnY6Xcj25EHY9XY125/lXNbWS/FkKt87EMtkO7XKypUrLrLx3XusVuXyiaPt+mpp8ZontInJW0YnxpPpQqeiXC2ubKw1wnFIZpLdTrkxW3TMds/QtlA027W9wfHxTKyn3mnVGmtqkXWqxXMnnomEw4V4oV6tKkxP5nsMnYPuVap17slwOJ4b6E0V+uy23ajUOg1TYdFQjAMojUazY1mqjipD8ARTlVA4rocTRthgEKUkM5vVzeXF5c0rVqfbNzKhSI/5rBUhiXEGiML1xYv54MkxSQg0Ypypkog4SCCU5AEhQyQpGTI/pogE5AJwkB4SEFMAfe4DgvQJTxzI84NF6Mfig3AdA0UBzkDxcxQKcEQfhyEDxokBIkPFA/S1IAdVBc7B91pJBsEPPxSF/psUAD0gCQxcE6LGeDzZSx4JR9tYW4tndc8ZW7l+9dLx1+Lv/YjremoYPMu69OY57jiMGfv2fnBgaNRxnU6nJmu0ePlqrVQamtpRnF9pt+shI1Qp1jsVGNm+XYtHHhza1q7VW63K2Yuv2K1GeX2DQDtw6327b70NVLVW3jzxwg+X5o4xpsWHto1v357OFxauXLl6+piqedVqK5rOptJ9U3tuT+XSILv1cnH92lqz2siPDpx745WNhWvFGxdV6ezbd4uWKLBwst3pnHzlC7qhJCd25XiKSCfVA3Rj0Vy4J8JU3mmYAl3V0Ddr5eLSRmVztl5Zsh1Tj2bS2b5Mpmdy5x3I1GpnY3H29Oylk65rG1pYRcX0zGRPz9T0Lfme4aHxyVg0CeCTikS1XGzVKqFEKpntRU0TIJiqRLKpkB6RgGEnq8azpcWFRqUCKBQiJMmCay8CBhWhnwgLBMO1JCFFE5yhBBVRchJc+nCMcSJCRgwVEiT9QCUREXm2RA5MYUTkZ0/Je4uaQgRMoicAOSKi8IgzdDkwJKYCZ+C6gSvg5yWQAQPgHBQVEMkToCi+kaUgMwNAfjibgvi5T7BFQABu206iZzoSSbkelDbslcVL21ITrkuNcq26vuzY7YWLi5KaF147LiTsuvXQ4PBYPJVcuXZ9dXElkojapoM6jO3dbYTjzzz+z3pIPXTfo/0Tg/E9GUc4ltW+fv71y+dPmi2bRyI9A327D2zfsXuvZbsXzx2PZXqNUCSe6hnaNp1IJLK9O4b37Y4bKT3RUxuZAHSj0Wwimei266quabq6OleWanrswBSCXLx61na9HXfcffDu+8m0OrV6pr8n39f/7Lf/6UevvBLNZ3do0XTSMnhC4aHegaFC34gEl6OSzauKpoXizOpYPQNTRuQelYHX6W6ur28UN81WybGr3Y7pSTedzGzfdXuiMMCk0NVQubi6sTLfrVarkmqrC3bbZOFoIh6OJqOl8tq5M6+lE/GZ7bdHsiPxdCacDGM4zJLRaESTLiULuf6J0frGRrtTV/yAXkAv8rNWLEi/o09bZEQMXVN2QUYSHFFyBOKITEjvZh6apEcSkTGSQqJERkGcXroAjEkm/SwKcqItegJJJCQ/i0cciICRzx9E4S+HByxvnxHFGHKFFA+5Ap4AxhGBFIX5HgDjGATDgji4j8SIEXM7jtuCRCyr6WEkZWNhYfXKmd27J7midKqlCJo6eD/89x/EMvr0rr2jU7tURVhm4/zJG4yxVD6D5CFHrscjyd5kOh/PTxghZXhyulUqHn38B+mxsVxvwbUjt973U32jM2hJRKe8sXDt0pVypZnKqOFopNAzrmiR4lJSU/nUvtvUiGpbond4oDCQc8yG1W6aZjne02fo8bNvvGqEI/tuO2h3awuXzovORkhKarRmF+dXludts7V9z45mva4mRt73sU/3jMwYkbCuMs/yOi2XJFTqq+GYxgUXgmtN7rZAT+iS29WK6TgekctQFHoybkpF1QIyV1dW5+YuebZXrZaMeHJsYm+uf2p6520EaFomCUfLk2CaK2zbJSXUO7LtXtfy9OxMz/RoMp00ElGmqJ4kEDwSVViYUzQeTydt21YQAsoFAoBEIQkZ87UV+ulRBkzhKLjT9RinSIwTSiBgxJhCUgZcOcYDu4RBChEJUW4lWISHPmM1iElz8NUaUwAIGEMgFIIIiRhKDMhbvqcZMOkAGQJX0WXAFVDUgJiqKKDwAOwrHNELWECBCgN0TDcbvR1rVqfr1Gu1jO5dOfWD65eO2db7G5VWcX2V6ZGLJ0+iGr7nkffEc/qFU2ftdq1naFhKrW902HbqV0+9Xl6vtbswMi33Hoq//b0/oWk0d/HU/LXr0/sPFoZGgfPbe7abrcrq0tlGZc22pMHE2NTk7oP7SSjJgXQsFXbN5ibEcoW8VW92TDCMUHlt7uQzj189fcJl/L4Pfmxk18Hq+lrY8JioLF04cePKmeLiCvNwYGzSstVs7/j49v1aOGoz0zHViUN7Uumka9rtVrvRtMxWB9x2p2tfmD957vyrtWZb4/jOB9934PCDCaYCkGmKVCbhic7qjcWVK0ulci2WM3K9o/Mlw9XHB4YHR6bH4rmMlKA4PJ1L6NGwBHK73fXFudLGium54bCuhFjvYF88nY+GU5X1yurly5ZjphK57FBfNJNpcVYqrrc2y+hSJJ7C3fsjzOdHok/u8/PJLMC/wG4WP0lJJIRmoBHjjIkgcwZAJKW3lTALcrdSeluFD1LKgHgI0k+wsSD/4zNqmOLzcPwgGoEv2EGyJWBg+lAJOXIOjEvGkXP0S9AYB8597xI4R99z9NP+nKHnOjE2/cuf/PG/ffVPl1bXDt3zwdZGbW32jera9W13PYo8tTB75sjd9xDp8XSua7U7ncra6trw0M6BodGegUK9svHGcy/oiejktl21TSuaNgbHMq1y+/Kp4yvLm/e/96FcNjZ3fVGh9PVzbz713c+trV5oWY4p2QP3PDo8MnL2zZMPvOsje+86VCquduvdZCadiEdWFm5AVFdCtHDx9JXjrwhb3PHwB/fc+bYzx16/8PqLjeJqoq8wPHFLJpPvGRpwTLfWrDXqDavVlNIWrme7XRBqLBYfmJgKJxKekHrICClKSBXdlleqFBdunL02e97gicP3fHBy904kxbKa3U5r9cZCrbrJNNE/NBbPD8UzcRCe2XYjMS0SNdATG6s1VwgG0G5UULjJfLa8Up2/drHSKLXNFkrTdjq1ci0Siw72jkEXhNXQDY7MSIwMJXoHNhfXasU18lrpbE8q34979kd99mOQyvV/CPiObCu2jn5CzedmqQoaMa6oQFKgX4TkKyk/hiSIJEjhx46kz+/xKYDS591BYA1hK3XtizRTEFngoOJNxhxs1d4gACekoMzG59lxTgqHLTkjBFA4Mo6MEWPAGXPb8PY7/tvdR372f3/mVw7cdWTPwXtf+N4Psrw1e/XcyauXUAl/9Bf+y/DU9mtXV3r7hjwhBod7iytFQnV4YGCzsvz0E9+//YHbxyb3VDeaZhtTyUhxcb60UUkWMtsne5997usvvPz0uz/6a9Nj937x//zaE89//eCuI1OTe3bcevvAyNRrzzyfiKk79u6du3bVsTrhSDidzXhN+9z5k7bjhsLGoTsP1Uprzbp7y213nT55yvbcyanJZDrRrtfWVouW0+q2291GQ1W0WDgejsa4igwplY4bhuZZjmBGPJsBVJZvrLabrVwubIRSZseNZeOhSDiezumGQgSex0ERnusYYT0SDSNhpdxsNjuReCQaDyEjxwLXVax2y3OdVMJYuHrt4tmXe/sHxsd3OR0CcDq23XItVUrwHAZKS3icuIKyvV68vnCFRdTe/CAXSnl9XrpWF4AbEIlEFL82CAiQ+4w9DKgxW2YLt5hr6CdtiUlPmE2pGahqCirA/NQ5k4whSUIAAcBRSiklAEckSQQot2juJIAxIPDLD4A88qMRnudjbr+Khhj3cT2Bj/e5XwZDRACCSQaIIBE8Ig4APr8GgIA4kaIAQw4CJkYOPfyux7qVRiqRuf3uuztd5jRrZdh8/vQJq2s/9MhDgkdX1psjkzt6CulLx0499fobt953b2Ekd/zVZ7751c9LgD0Hb5m7ciOixxTE5bnNqGocuOvgWm3xt3//4z8+dnTv0EwqNQ5cTm2/6+Pp3e/80HsiGQPDuLq8dvc7H05GYqffPBGJZjWmri0tnnzjzWQsPrprdySsvvrqU//yxb85eNd79x14qLheG9y2M6LyuUtnTx9bVBCNZG8m1zO1ra9WrXi2HUvm7I559cIZz9y86tLG6jUp3MLgtr133e/ZEGJqf28f02U4ricyYZfAtCx7rRpJ56LpkBqhTqMNrtOo1tdMp9sVHimJJC+WV8+dP722eJVroUyyf3x6x8DQ8MnX3vzuV/8qEo1s++SvaVFDQW/1RvGVl378wtlnWq2S4rlpI5TP94yN37Jtamcqlq53Nl8//vJE32AynEOmKUjNtk1gGjrinv1R5ntcIAEQGQIhSEYSEQPk7OucLR4TEIAQgiSpKlcN5Jy46kdK/Sh4QPKUQkgp/QQwSRRBAtmP3ftkXOmXBfvlU3QzW+Q7eX4VNWwFS7kPtJCrGLC4OHAGTAGu+MWcxBgyRL8amzEWQtYsJ373U/8Uj/X/7q/+54fffn8sOfjEv/zdjbkrBx54Tz47Ho3l+sdGp3bOKCRe+uGP7E6zMDikaAlbmJnehLnZzuWGJQtlBrNep1Mubaqcb66c36zN/eDJ712Y23jo3nd+4P0/VxiZcLodr2vF4lGuayuL68WVxXg6qTBe3qzFY9GJ8aHKWrFeq9vQrdfmK8tr5y8d22zXP/7zv3X7fR9YvHT+4itPrs1f2VjfyA7vO/TgQz19fQ55o9MjlY3GNz/751zUc8N7JU96jHK9SjqdpxYHcjPJaKIvHY8nO2vLpcXlYqna4s7otp2RcLLdsIxINJfNqZpaWt9ol1Z0FEYkaeTiHcf1mCu97tyFs/OzJ+evHC+VzOl9Dzzy2GPFxe6ZN1/P5uJ33f/27GDvxsYm2C0uAARtbiy3atcbjZqRzGXTGbMj6sUiA7xevPj0S0+udwXn8J63P/Suhz8S1uJkessLC1uChYi4lUkGRGAy4BnfDG0yZL7VQ0AmhQAfPhExjlqIqSHOOAXl8dIHWiSBAsESPhlBBBxLv+gPtqi3QIGiDHg6foJJos+pZ0BbJYqIyBgLgqU8+Afks1aQ+WlvdSvWD3JjgT7x2F9i2/7zP/2D/Xt39/WNvPbGGwNjh3/l9z5zfXGVS210dNy0ak995xue5B//5Z+3TXnuzQv9o/nRmbHFK6VOx873ptfmb6gxI55Kibb71c/9wcK143c8/KH80J69Bw6Fk+GOadoNlyyrWqrGs8lO3YxlQ8wF5MrAWM5ut65dvXz5yrnVhSXDiGV7MslMwrW9bCIyfcfdS9e7//Lnf6LK4v67Hpi69ba+oXHb7K7PLzSbzcndU5yx1ctXheV6PLn38K0ITq2xVN0srSwttmrt2mZ1uXSjvDm/WV5LKtGPffCn+ya2dRqdttsETZeekNX24tLSytq1TqMUUjlFk9lCIRfPp/LpsKFE1LCrYrml9PXOjM7MsKjidD1NsnQ2TGb79KnTm+XizEB2c31z/sZqs97otuoNu+EZfPvYVP/QNIrG3Okz3U7d9eqXFq62hb5v990PPPJwiGKtSrtUW8Pdt0Q4MiAGSIz74UomxVvW0OfYBaUTDG9SVoJoFZGUxIAhAtNAC3FFBfSpu4GK8hnDkggkSeFJIpBSAoktMtoWvc4nPvn6zKfVsYBcG5Q5YECJQQSuIPjYnyNjxDlwhqrCGEOOxBkxApDc2cDx3nvJkavz1xbLjWgs+egHP7Vt/yECu1kzd+2aajc73/i7r20/tP3QXUccIbgKvdns+nzl0vnriWR6fMfI849/f2npwod/9dNOi7c3G8s35pCLRG8201dAydsNG1SI6roqpOs4ud4MY5rrdY2w2mw1T77+5uVTJzji6NRUvm8kmsnGsynLdF944jVVlw994I7SktuttQZHClyjar2mhWB9bmnx1MVE33C2L94uVlfnFof27Ny2f/Ly0Reee+lHF2cvCqmPj+/cu+9QPjfqgHvitVdWls9lU+r7P/Du8nL76R/94PzC1ZCr33bo/nf8xPvnl250uq2EETr6+hsvnn2zZre3eEJgAAiAO488+rt/8H96Csm585cXLp2vbNYNQ7k2e/K14y/WXDsX0g2u7N61/+Bd7zb08Mra3MW5C1RuTOw8tGffLSHbcx03mop0zCY68XC8jxndyka5s1lCbuLufZEgU+jHSQkZ50DMr6v3y0/92IPPs9oiwEu6yTkH2CqxIgBUVNQ0pqjIOAEJ3yskkiBJeH4HCyKSfl476MYRiJQM2OJbjGDpY/aAhxPQ2/1VBAXTLKgz5gw5Q6YAA+BIDIBJdLqYlP0D0d5LVxdGdt2xc98dVy9e/ugv/3q9bgM6w/19sxfmOk5T08IHjxzYKFeZgrLTmTu7EI4lescKAB4hW7p+dWRyNJbMFW9UOq0uY8C5TPWlwzFdWKQqisMcu+Og9KwqD4WUTqOqxpT5xeUnvvHlhx+5Z2J0zPOqb7786tJy7eHHPhLvHWzWvVQ0amhqrd7QwqFoXNND3Oqyy2fP6zGW7+nr7U2HDe3UG+dIgh4KJWKxYy88++PHv6GE47fd88jM3sPxfFKJQCoRDTl6s2oXq7VvfeXvk5nQ+ORhSYoSkdu2TWupaLXRjIc5b9SS4Uw0lV8tLr386oura3OKLtvtbqlUC+tap7HJbDk1uatWqy4uX9YikYnJqbZtLq4sb2xudLtdT8oYh4FcIRqJRMM6kBD1ev/wWM/uw/loX7u8HNKUeCydSqRDRkZhHDnUSpX1lau455YwEAPArSo/hsQZsoAXjUgSEBmR9OvXbh68XxDhoylfBCjw/YCIGAeFM64AV/xfkeSXbgWFUCSlpK1yKp+cQBIAiSEhMkApt3qjEJJfW0G+NsOgHsKvhvCdWc4RgDgHBYEhoUASvFF0333Hu2vrjYVN8Ut/+P9SqexzP3p234Hbm2V3YCRrWa2NlcrBe6eFC0uz1dxgbPX60qWjN0amx3fcsu361eNLxY27HrrPCCmdtthcq6Hg+b5EZb0e0nkkEXPJEY65cG11cXFNB5zas0NlkXSKm01zaLrvz/7kvy6++fi2yclTN2ZXFooj4zM/9YlPDc/sMmUkFNIVB5dmK4UBJTsQk57cWKx4jhBoxbNht+lapl2ab0HIm947fPHsVcdq9WYL4URvNFMwIqFoTKWQo0eFommlhZLboXAkur5SCsd0NRKOGWEAZIpXL1bXbyytLVy4tHjRtUQiPTQzMT483Dc8Od3bX2i1qmulerfjdeqd5YU1bih9hajqku16DadmcDuiRLxu06w3O1XHJX3TA8a6wrNNs6043dX56xsNM5MZf+X4jxeoFQHIRrVEujcfSqUSqcO335tOFvDAwVBQ+Yp+QB2JOCKHmwXSEv1D3RKkrQoUvzh4q2RHyqBczK/b8f1ACRIJ/FAT4345gy9Jvp6TUkrfYvoRCZ/xzjgCSKbQFjNhi3Ae8B1QblVXk3wrRuJzvziAdIELbrWgU4Z9o9uGdt6/+94P9g6N/vh736gW13/io5+ornUk4Oj2TDgSWpkve13HcRy7Xa2sFLOD2/Yd2fv4D77y+T/7k9/8zF8cvv/elRtl6SIH1HVWrzfCMV1TcG21MbFj8MKJK/FEqn8o2miuLF5dnNl5pLx+4/vf+tufeOw3n3nhm9//5udyyZHswL4H3/au2+67Qw8blVrXsZyefDSeisRTum2Zl05cURlqpJp2Z2W5lMxmhBQMef+2PDjcbG9K4tX1RqZvMNuX7dTLpaWLC6sbydjA0ORktWlaZO3ePdmbT59747wW01L5+MKl+WMvvnH68ov11aVWZXPdanUgyKQwAAcgl0zedfvd73z00dHRPWE9pUhwHdu0O5F4lCHbWNmYPX+a3HoilVbDCnioUkQKzfOIyLPdDihOiKuOEwvF+1Jx48bClTMXX7l2/dSpa1c7bhcA0gr80s/++tse+CklEhdCgPR8poKUAoBUEZTdBFWQQgJDJmkrJeeXeZAARM6CihDmc/olSpBIPj6TjPwGTtKzyaexc4aMM0AgKYXALRcywE8IvlQRcuJ+Vy0AVPxgFgQUUQr6iyAyKYM696DvDSPhEZLWqXrUNcI8ZGnDR9794aHpyaUb1bNvvnnb3bdX1qt6NDY42sO53FhtRYxUtKCuz6+02u3CyMTOW3d84yt/+td//X9/47f//MCRe1fma4lkknmyXW0sLy2P7uxXVW1jqTa2vdfxvINH9m0snvv93/n5c5dO7J6+/c/ufuiVl1avza+07K6mDT30rk8/+oGfGJmZcD2327AQ5ehgTI/wTnOzeGP5/HLT9cx0PlauLr3wo2dyye233v/gzJ6xhieAUxzc1flystB79uXT+cxwJh5pLN0oLq5cn5uTGiV0FklEcr2J2vr8yR9/9+Kxq5N7D0/snmnUGrF0atehezN9fe1qU9VlcXOz3K21KuvltWLX7Ngh1bI6jz/19JNP/TiVzU2OTo2MDXqt+tWLZ/v6hqZ23KMZjLuGzlN9yWFmhDq2HYkbIa5Il7er1eWrS1cunC4Wr3Ta3dzg+NDgYDKVG80NbisMPnInnr14+vTsKdNt1zrm0nIRH34XF0LQVj8MT3ACjTyFhKqgDoyDRCGFEJ7nSOHzhQEAJSIiQ8b8KgPGEJFxQRKJw1ZRnd/3QEgRYCsZELgo6EUkKahfIEVBRfF9PT9AKhmTgcLkADJoybLVdkMCAyn8UmwMfpmjcIlJvb5kpdKHUpkd3W71Y//pd2LpXDKTOn/84tzZ8+/6wDuuXymOTA+HFE1RUNPUVqU5v3Dle1/9y6jR+/O/9yevPff497/z2Y9+8o8PHDriCWl1O88+8Z3Dd97ueRCNhzfXu6uL9Zk9Y+GY3teX7pbr//d//uZGqzYxtn37rtsfeu/bK6sbnildFN2WuevWHYLLZrPhdZxUPObZnfrG5oXjpxdmLw2Mj+08tLfVsYorpXaluu3WHbsP7KqslErrwBRDceonnn86l9E9LyTi4XBK21hcqDU3Ytkerxaav3p+cHR0dGL01WdenLt2NNHff8d9HxgZ3uG4dv90wrKs9aVGy8R8Kp/MhqNRtSvrIW4oqFDXw5DqCntxqbg0v3Dl2txGYw3sVmezy6TqCdMDQfamISWB27aMtugItFTm9iZz+3bcsevAbalcwRFup7Y2f+74lVPHYwW93GjUK7XeQk9/dljTM56U65XVpfXFmelb8MM/nXBc03MFMh8+qYg6g6jKkgqPMaZLIiE84Ylu12y1Gman5QkhCQLQA4SAXFEREJFLQchxS/woIC77hTBS+mZQEpEnJUlAqXLQdVA04CpylMiAMcEVQiBFAQDinFhQcriF4QKQh343K47SL60hSaqSXL3e4ezA7/yvrxx77Y14LH373XetLKysL60lMrrGjWQqi6TGkjFVwcpGtbJZ0xX1X//h/7x57Mn/8sffOnDb4ae+98Ncf/bg3bdW1zdT6cw//NUffOvxL/zBf/viO9/9yJVLFSH1qfE+02ojQybkM99/bnz35MSeGc1QzrxxcWNtbf9t242ogcAK/dGV+Uq7ZRVy4cpqZeHauoK2EePZQk6PKIvLS0uXiv3Do/vuni70FK6cv/zKD5/u653ID4wbCfHHv/7z566dyCT0VtcpWa4pYDja8973PbbjwP6zz1+/9cgd1foaGmoumyAhtDBeuzhbXzKH+wt6SlOiSiQRjsUjGo826pYahlCceZaNoBjp/pCuU6tjxAzFCBmqoYWYEJ7ZsK1KxxIuMySgbbU8z3Zsh6qNorBM1/Y0TQVAANkq1SvFTQNkNByWagijorKxRl2hxFOJQo/lUSIaiyvaRrHebrfw9z5zyLTbrtf1axIIFASdY1xhCQQDIUSAhFK4ZFlWp9uu1zc7nbpj20IK15Hkl15yxcf4SCD9Fj5bbVoAQEjhe4AEQFIAMYagqBQKKbrONJ0Y9xA8IEIkpkjOJeekKUxTmaYRZwRAvuITIgh0CO9m2I04Q69LKNPjY3ctLMUe+Ylfe+2lZ3fsmxnonYkYqdOvPX/u1NGP/edf4dxoNTuGHgWiteU5TYsSskw6/tLTz9UqjQ9+8ufCIWE2PGKuHlYbZScWM770d38ZjkY/9LGPOp6rh2PFtdmTr7w6Mbp7cHr6me8/u//eHYOjE+mecHW9/eKPTxy6c7x3pE8KVwhyTLtREqrZtZxau910eLfbKnW6zO3IZCYxPDE2OjUohfXSU69dmbsWxdT2A/0xntBw5NVXv37+/DPR4anZ5XLK4JOjwxMj26fHttc7rlRRAV1U6+nhnJqItjcq185cAO719RnEWLtaBSUazQ4nkkm7Vpu/PF8qdRI9obbdrpXb2YT2tve8o39im3CsG1dOQL1sRNPE9EgsYsTCqh7jmsEj6DpmveyUVteBmmo4ur5U4SGlJ5XVIoZk6Jlms1zullt6JJLIFjxHdM22WRdty8sNREMKcy2buWa9WC6uFfFv/uZnbNf0PIukK6UkYiRVZDoDHVAl4lIiSem6nmWbjm1bZqfVqna6NbPbtrq2aUlJDFDx2x9A0JsKhZ9AxK3YlSThScZR07iuK7qhhEKKFuIKJ84JmMeYYIwIbIUB56CFFD3EjJCqKpwzgcwV0nRdUwgpPSEJpBd0xfQc9ByIa8N7b/29J7/7wgd++lNXZy+9/OwPH3rHo33DM325odmz55K56Mi2bQpnnaanhyOf+4vf3nfb4SN3vKtWbgEJx5Q8xNKFsOeI0mornlAQlXa1k0pFpKtwxuudRqNe/8Y3/tfRE0/tHDvy8Y//lhaOZQpxI5FEDRNxvdO0YrohXFAjLKQpQNAsVc4cfe3S2Tek7ESS+Y1iPZ3ITc7s2HbLdLwnNnv23PM/fMFqdgZGdh46cktPX8GqLyjRzOJy57lv/9ORBz+489Bex2tYFiZjMVTslt1da4jRZATbzZW1qyefejkzvH1s1+RLzz1x48bs2Pjk8MCEdIXp6el81kio6XS+p7+AKg/pXOPMronSanNlYXZ57TKxTgT54y89t3rjIjciUcPozcYHhydHR/f0jc9YdtVztR3bpjPZ/Ppa5Xvf+O7LL3+n2ygPjIweOHD3xM5b+gq5fDYJXK1s1NubLavVUiCsRRCt7ury/OrSXKVRLNY2DQL816//oSdM4TlBcwJiiKqUHIFLQuGR57qeEI5jm1a7222b3Xa307DsqtmpdU272XBMCxmGkDG/JyAFFfTk53MkCgRQFa4Zih7SIpGQbmi6pioKIpMKB/QzMJwYSkRPUYBx0ENaKKSEFIUxYMxFtIS0JXUdp+PYXeFJ4ZLnguuCZ0NxAfbe9luZ/I6v/vXf/uLv/2U8kezv73n635/pG+jt6+9XmBqOh33vsd30FGC//mvv+G//6/MDg9u7rXYqGV5f7IIO0YQCSFyCZblhQ6usN+KpsBFRF2+sRNOx8nL9G//wVwOD2z/56f8Uy+jNSofxkAs2ELVbViJlhNVIJqOYpn3hzJtPPvFvx196JqZHZnbdMzy2LRpOjs1s55quat768lLDXOEI23fcEk/EKmtrp46/8p1vf+PEpZMfftcvvfOxj1fWV3fu3+d5zsJGZax3PJtIayGz1DD1EKLZ/eE3vv34E/8+kMwme4dH9k9EDdVQorFQgite17EUDpbFHLNrWjW73ah01VQ+YcTB3qwVF8xqq7K2cfGl869u7+nLDg2/dvFst9OF//AazyT3DOSXy92q5e7ce+cj99+979aDYHsXjp+8eObM5csXmu2WHtYTOb3UNjulYqPZEMBv3709CdTc8LrciMTlysbSubX1RDyMP/zRlzxhk3D94j1kCmMa+SQqIV3X9TzH9VzHMi2r3WxUu+1Gu13tdIu2VWu3u42G2+4wIB2ZIqRPuyGS4EohhWAcQzqPxSOGoRlhPRw2DF3TNC2kaYrCmEKcITLJFQoKlhkwEloopGpqSNUYEucCwAHZFWS6om5ZTcusO6btOOQ54HTBdQw0t129GFIiiTvuffjWu9+rRzSFsxsX5pv1zWxPZmLndqvleNKTRMjURrn24x/+64d++pesLikM4klt5Ua3dzjl2A2mABOa2XbjmbCCwDjOXbrWsbv779hdK9pXLy5t3zuW7TNQgWbVUxEKPbFazdEU0apX5+YuPf3MD9585dmlhYXevpHb9z54z8OPGtF872TStYk5MhoPaVHOVVI1vrFeef2JH67MX7s6e/qFk8dzhf6D++/96Mc+TG50x60HEjHt2rHTZrd0/NTRVtnWKZKIx/qi3ZMLN9K9E7c/9HBtlVIjeZU1L71xrtbyIlHDaXWqa/W22XZlXTiNaHZ0den60EBhsEfddJqJXDplJBHihaH+GydPPP3NL9Tb9R179ifzI4ul1TPzN+bWFpptEwBi4fD+4eGEkVpYn19YX8/ksw/c9eg7Hnr/yPCoI8T68kK9Wau2ahsbxeLq0uL1C6vN4tr6xnBY+dBHfvfBd7yrutGqlxc2yssvP/0Uvvjy96T0pF9QzJChyriKiJJAeJ7n2kK4wnNd13Htrtltdpr1cuVGuXyt1Vpvt7r1BjVbzBUaYoik35wRpCtQxZChRBPheDQai8aiEd3Qdd2I6CFDD4W1kKqpKipA6CEKIAIQyIlIgJQKD2lqSFUUQgFgSs+U0BWyZtk12y6325VOy7YsIJeLlqxuTmeyh1uV9rs+/OvpbG+jYcVTcRDUrDQ1XVF1LZlLdtsOkTAMHRgsXV+LJ7Rs36Dd6a7PNaP5UDYfqSyXnn36iff/zE+0a+i0WSYbThdCV87NFtfX9x2a6XZYabUzvTdBnqYnlG7FlZYksqqbmzcunHv9zWcuXD5Rq5nZQs+unfu2zdw1M7O3UMiEMipTZSyNSOS1hWdzAlyaX7544tyJl9+Q1J6+cxdZVirZF/JYYXhsaHQo2ZsszV546ptfP3HqBDDW09974JYHZm47wLyl3/yvv2vw+G/82h9oap9eiF189fWLp6899Nh7Dt27N5bUG3UhXFeP6p7nnX7pZDSfRSauXLp29Af/Wqu3Eql0tie349YDA309K/ONUL08vzm3Mj8/vfPgzpmpaJbXut0f/fjZ7//gO0vVTQBIx6MP3bJrx7aZ8ycuvXniaB1geLDn7tvu3LnvrrGBwagR10DtdqRwTAzBS6+de/3Jr2fG+j/60Q+sXFyvWvbttx0mE/D1N58GkpIkAjHGGVcZKsiYlERS+m2BSHqe53i26VntdqtaqS6srZ1bX79crddqVdlsKo7QiBQhfFIohnQtGo9ksqlMKhmNRSOGHg5H9VA4FNK0kKEqIVVVVEUBBAkuMD9pLQklSSmkUJBxrnBkkjxPtIk6jtfw3LLtVbtmsd2sthqe2UG3K0vz2rbpj0TTk9O33JNND3Q7luPJaDjsunaz3hka7QsZSrvrInCFQSIeLq6vLc1tZHvTYUMbHC7Mni5lBmOaoaxc3YhlQplCttmUsXCsU2660H3pmWcP3bkvVUiFE5G4pp5+Y2FiVwFQMZvO+tXN+cWz3W6ZEQunjVyiJ9s/nRnMqjGVpEgmGVOAJAspIbdLtgWVldbqwpXl5WsEMpvPRFRVj+cz/cn56+eunVwa3bFjav82a3nl3778ldNnXh/afsuRt909MjWZy4/E8olGbeG/f/Izt9794CPveODC5TPtknP6jefj6aGP/ZdfndidsR3X7DghLaIwaM7fKF0+3Tj1Ymd9U2w/cqmO++48QBA7c3LRs1vZuNYw1zuulwiH+xPZuBa2a0udyrKdyyiQ6o/HbIAz51554vmXF27MGqpz250P77/r/YpbqhbnL56/euzCpUazFFLc4Vy+P53pMk2LpPKqJiz74uq1C+trGkEUoMGgP5a7e8cBPHb65SBB4jt4XEXGtzrrQlBCRVK4trAt12p0O+V6Y31l7cLyysn19dVqhZotZnsaSUYAqqqHY0Yqlchk0vlcNpVIRGOxUEgNGeGQGlZDmqKonDFknPkFh37jMQJJnpRSSs8VLkqJiCiFIMcVbSGajlt3vbJtl9udSrvZNFt2eQmikR1r1zLTO3ff/ehHw+GejZVqKp9UuK5p1GzWktmssCXjqmk58WhEIFw7N1veWM7le+OR6NGjr4QM75EPfNTpeo1aAxQ+ONTbqJkqN19/4YWewenekZ6F84uDk8N9I0khvH//0pvD2zMH75rotJxoPOTaXjKlS4/K6+vtFiWyhVTB8EhIFChBC0XAg43lzcpGcf361cXrV1ZuzN2Yvwo6JFNxl/FqadFFAS4r1crvfujn/utf/snmWvHv/+fnCiP9D7z/nZlshrwOore8Uu5eP7V27ZLHeyrV0te++b1Mb74nGpuZPvzY732qdzQqHNt1EFDbOL/6xD/86QvPP76+uihBhgEyA4XddzzsiBAh21hYnJ29dK2+1ApysgAAUdD2T0xOT87kDAdi8eJSOQStvsGD+4+8p1mu1DijEBb6wk6X0tGenmRvvdOorMw9/uKPn3/xuxvlZRP+P6+UrueT8WulqoRgNIPCFO1mczG//lgEXawRt4rVffqe3zSEwAXyNDWkqorPBfSnORCCqqlG1Mhk87lMriefTafTiWQiYoQ1XVcUVVVCakjnTGMKEpKUEgBJeNIPwpPrua5HwJgrhEvkCuEI2fJkx3GbntuwnaZlt03Xsy3htqLC2TZz8D8dONQ3f3lWVZOm5XJdUxQlFtdLxZIgQsBKqYWMDw0Xzp889dm/+v27Dh4mdaBvcCJVyN1+59uWV64DiHq5Xas0x3YMlEvNVCp29tXXl+bOPvKhd8+er0STqVRPtFZxGTiH7t82tT3bbot8LqaorOJUXnv22OUzs6GQfvcj96UL2Kg3TZtlUrHqevv0a4+/cfSZRn3TdjcXlmdX11e6ghwMRnsAwEBu7LZbDt3/wAMz09PNaqe0urywuP6f/ug/9ff1LsyubszOl+dnz505ExbtxeJ61atKulFttD/8Sx+qLqKwm4fuOwzEupalMXRt7dILl7/43z/+47njTb+DEVOkJ3eB+78/8djCKq22zYNvT4SYLspXq7WNzWrDdiEaiwhhf+kfPvfS9YtZXXv41kM/+dgnJnaMHn31xMvP/zAWLWRHsxPT221pLq+vmIZobzY6bkthndGe/Dtu2e+pB0Ko19cX6yh1Bpns4O1H7u7pT/3pX//v4yfPmwgOocK4utURcYuIKYUgV0oPAMEDRoQkhWt7rum6pufanuOSEDKIrgMSKapQVKaHtUwm1ZMrFPKFbC6XTqYjsZgeMriicIWpXFc0XeGKBPCkJ6QnhScBSDgkPSlsT1iuZ7qyJaXlkS2k5XldT3Qdr227ddtqWnan26zJlrL94P9Ixw8PDOVaNRoZ26Vy3pVWJBGOROOltc1isbj74L5mo6MYoURMm728bFsybqRNmw/09CoK4wrLFLLpngwKNxzThicnFK40yC2ubOb7J37lHQ9KhoauKyjcDoRDPJ4xsC9aLbWNkHr5xPr1q5cbzXqhP/WOn3wo31NgGrodgR4z1+svv/zSlUvXlhavdurrS6Wl5dpGub3pq4kQsImhiUMH773/vneOTW5rNTZmZ9/8l3/4QqcVOjD/wLs+/tDq5Ruv/tvxjeWNRDK66+DQDn3v0//+nbYTKfSOhlVleiJirqyMjk8Lk+pVV5pSumq9BlfeuPiVP/7Z5+aOd7jK/NoEIZGxxdXqS888OzRxe16F/qTIZpOl6IjTrSbGJxPRgUb57MbS/PDQUGvFLTeaX3v5lWdOn/m1xz76Ux/55L5DsHjy5PyZV59+9ZnemYns8O7R0bxbXr524cqPnvrm8toZDIUGhm85MjM2dOe9fQPjiWQyU8gDytLy0p6xHbC+4cUTYLt47tolAHmzU54UwvVs2+m6Tkd6LiBjfn7OdaTdtcxGx6w26+vV6sLq2onVtWqjBrYLqCjhWDgey+QLo32F4Z5CPhlPR6PxkBHWVJ0rnHHOmKIoKiB6wnOF7XqO5zqesF3X9ITleV3PtV1he8IU0nLJ8YQphOXKjueatt20uht2vVvIPrB8ozeZ3P+un3yfKzyvDdJlm8VyJBsJhYyNlfLmxtrQ6HAu19sxO5Go0m50qpv1kfHh4y+eunHt8n3veHsiEYvF9VbHjkU0RLm0VB2ZyLkOORYt36j0DUVjCd1y7OVLjXRPOFlQ0GUEKBxnZWGxWmpHk9F0X3p4oiekqss3NpqVasSIceSLc4uNWqfrrpPUEoW0rqme1zJb5sr16+2OiMYT22Z2D4wPJHuSC9duvPnc8VatGo1n86M9QxN9Q2P9V47POq5MFXp7R9N79o+9/tSTf/f//mT+2oVCtn+90qrVG/3Z7LahfTsO37c4++q27e966Kfe3nZZebH2nc/+zpPHv7HBVeF3IQ86mVGI86m4EdNCJkoVaXLbnunb7tqz89bR6anrl+f/+fP/l9nd977rfa1W5dzrP37j8o2ztQYA7O4pfOQd9zz4vncxy1meW6o1zddePXZ8YX7fjsl7bru9WrK/96N/OTq37ErIqrB397bbDz88OjwdSyQVPebVrWqlLj1HM3QFJc6urAhhS1cQSM91hXAdxzTNZtcqu07Xn2fAAZCEa7atTrNt1putYqVysVyaLW/Kbhc8D/SwEYtmM9mBnt7h3uxgJpM1ohFdD6uqzrnCOWdMZZwRkBDC9SzXs1zPdl3b9bqusD3X9Dzf/XRcYXvS88jyqC2E43im47W77QpW+Z59fziy82M//tYTkVDj4D1vd+1uNBw/89qZZCbWOzFodVxEb3726tjMjGcq4Sgrlcu5QjQRjc1f3QDhIVAqlYmlDFVVO7aTyRkr801Fk/FYWA2pjZrgGgjLDEWhUnYzOSUVi5VWukpYoEfF+c1IThuZ7iXJnQ43W2atUfE8shqNWtXOFsJKUrQrbWGKfC7iOrZpNz1HCSnJaDpjxMOAXAhoW3Lh+rzs1obHBvryUUsAUxVCt1v21BjvnRzIFOLXzl3+h//zx8/+6Puk6QV129j2qX1373vbAw+0HPn5P/1fAwPbVmbfmN5z/+E771tZN8+/+u0f/+BvZgEdkCxglmDQRRVgupDKZUZtLZZU7Ori/EajpnBlYMfM3UcO7Z3Yk0vHQxwYaoThbnnz+pXzPz5x7JULpyqNhgEQVqG3N/muex584LaHnn7l+D/+699rGfWxd35gILfzqeeeXFs41pAR4dHB8fHth+9Ppfv0ULLQk0+kYkbCEJ7Tbdm4vFm1HdNxbM91XM9ybdPsNtqdzUZr1eyWLashyVTUkMF16ZHdbXe71WrrcqO52G16ZgtsG4hBOBxNxYdyual8fiCfzoeNiKpruhHhTOOcIzJgIEkKIYTnOMJ0PdtzLduzXLfrCcdzbc8TQrqucKTnep7rkeNB16Ou6XYcp0Vl854jf1uYei9H7/SLrw9MDYR4nBzrtRdffu757/zip357dHKX7Zi5fOT88ev5gf6Qoisoi+VK73BCmlJYXqViMiAkGc1GDD0EgrU7bUYiFDc4MimZEQ6ZZbNhdtJ9Waa5mkKNipfNhITrtptuKh2LJvVmze60u5vLtU7bjKUMJlE3wv0TET0E518+e/3KopEJS+JcjTAtFFfDw9syqYIOktpNr9N0mx2LGUq+kCJhttdaDrPDuh5OxCOxBHFZmiuef+n4Sy98v13fGN6+/5bb7r3lwAFbpeXLpzeK8xcuzq9cnD1y7303Tj9r9Exn4sObxdKJN752ebNUCfrN+Tl6BkAMUUjxsUce/PRn/twD3So3XbuxsrGxdPXU2TfeeP7ihRBI4XVd8kZ6e6enJme27dg2tjse1izbMTuNcqV27vKVbz3zo5rnbM8nPv2Tv6Qq0T/5+z+91m08tG/fxx795Wp5yfQ6emIUPRtJALLCyIgeVurry5VSqVRfVzSOK+Wq49im07XMjmN1LavVapZq1cVa7UqtcbXRWu46DWJqMpIKa3HPdUxr0zQrrkPCBeGB6wAg6HpPb2ZbKjmUSeYjsZge0oxQRA3pjHFgQISSPE/Yrue5btf1HM+1HM+yHdsVlutZnud5nuu5jkeecFxXmpIcDy0XW0La7aVW1Hn4Fz7zNVd4KmkvPPXSLQd3F5c3Lx1/0zS7ihG56233xZJpSV48rm1WujEjUtooaSp3XadvMFdaKddqjcLAyMZCbXQiDlyNxHirLFwwhRAhNeqB6NpWOBpqb5iD4ymuap4jNBXicbVZFkoIjBg0K26zZRuGXit1bcscHs+E46qqqfVqdenq6tXL89/9xtd2Thwam945sm2sZ9SIJhViTrviCk+xugKZ3rHV8R16Mqa21hq2bTku6BEgjnpML86Vrp9eBqfuyXplwx6cntm2b7jeqj393OPrNypDuWi2Z/ClZx9//fyJA1MjTr0yMLlTONHyytXi5vxl03NIsGB4QdDEExlKKX7zQ4899su/xYg3S6bGVT2h1aqdZDppS8sIRRbnrn3/O996+ujTq6VVH15HEKLRcMbQk4lkjxG+vrQ423UsxwWQP/PAI/feuvezX/3HU8tre0f7funjvx5moXz/cKZnsFmsXjp/1oTO3gO7XBFqlppCWq32Jt4objhO17K7VrfdMRvtRqlRX6tVFzc2T1fqpztd07VBMjAM0EN+nSEggBAgguZBAEIxlNFCcns20xs2wqrG9XAkpBlM4T5dXgjPFo7jdBzHdlzbdU3HtTzPdl3XoY7jmq7r2G7XFaYrLeF5kgRxB5iHzNNF+ImvtH/25z//3p/9Ga9lFxdr6+sL22cml66s2rapGUYkHjPiEaZw1xZ9AxEC+NY/fXdobGDf/ls8cBOR9Pf/9dvRdOT+hx6WrhuOktXhpfUWKN10OudwNx0zyptOo9ExQiwVT+i62nZdTQ3HFCytrnuyLYE0LazqBgPF9WRuIJZMaovXV5fm5zdmy+VafXLvaK3YVSOh3t68GzJXlmab5VJpbX1zjd9x94O9+X6r25wcT1mVjc1Wo1xasyE82DeV78tUm01L1lqblfqKk8qHPdeOZJN94xPosTOvH13bWBkdzcZT+tX5hSFD2Syv/dkXvpIkZ9W2do8Nx2S0WVmebXU2hCCSbKs1OvpKi5Eq6TcffThSGEwWZrYd2O9aOvdYqt/otmqN0ur65mql0poeGuIk1tYXGs3G80ePeo4Zj0Usx6tsrM5tFmuW1AGyuiK4st6xHt4z+siBwz948Y1n5hZG0tFf+uQvF7KDyVgh0zfarFduXDp79eRLajx5633vHR2fMtsdvDB3zXI6ttm2rVa7U2nW1+vVldLm2WLtbNusMUS/rE8LgaqQX2QctIdEv70noheKqlOF+I5wOKppTNUUJaQi8/nN5AnHti3Ta3fNmuN2HeG4wvSk5zm2S7Yrup6wXeEI6QJKn5LqDxMgCcmocuo5ubKw/d+feQ64ElXjF45dD+kuSWJKaGi4r1Wzbdeut5vZ3h4k6unRr19a//bXH//gRx/R9bCmh1TQbKehaRFFQUUV4XCoWYNmszs8ETFN4RHWVh3JWDysxlJGZbnUaMPAUP/sued+8K2vLy2t9PdOHb7vntvuPJzMJGslO5HVN0vLr7z8cqvUHBweyvUUUHMa3XYun21ttOYWry+fPZVkUTVnjPTkdS13ZaPUaKxFve7ZGydPXTi/adohDqOFvm3T2w1Qh7J7XCe6bc+27Qf3ma12w5SZ8Uhtc61ZdcbGenOZ6LnvvXj+ypW6V90oLh6/fnKz1UlqSqnd3ZGOpPSILfFMqdyRN8l0gVuPiJJoLJe5bajQLVcm99yy/cC9O3cd2NxcFYDHT8xePnmUso7TIadZtcxuPNt7194Hsn25VmW5Wap2zO7O3Tvn56+dvXC1Uq1aAg3gjOpra5WoQYcO7F5rWGdX11LMfvgdHxws7M2Njm4/sNfzxPyVG/NHXwEGo7fsjYZj+Pwbz3iu5Tody2q2WuVGc7G4eaZUu2C5Hb9wDwkYgqKAnzAGZAE9mbYmQbh6nE9lwhNaKMQ5AwUluJJcQbYrbNuyuna941Rtz/LIdj1B5EmQ5AXTLRmCP+cNcavNpJ8YYpDg0X/46/btRz74pX/+VrNdhw5cOb1oRF3d0GO5TDSi1jedjeK6oqtDY2OGAWbbVjmaLbw+Nz8wkW7V7LHRfgSwHbm2tNI7nEunwqurrUJPlDEqV636huztjeeH9HMnjl85PjswMh1KKE988/MvPvPMjr0P3XrobXc8eKS3NzZ7bi7Rk87lE3NXiisL55dXV7Lx/tHpYaawi8euDoz3GBqtFp3G2vrjT/zfudJyw3XGM5Ge/glhpHPh1tFXji53Ra/B8/FUf9/QZsNr2s6BsUN3P3jfvjt3WA6U5sye0UQ8n223nGjEdNbmXnjyiRPH3ry+udESuFEu1V0XAKKcR7jSFKJP1SRjqsJXO2ZXOPRW3zEAAM6YJ+W+/p7H3vNQtVS/evl63e5MjY2qMeXKuctLG52Ziam+0eGDBw/u2DZ56dLStRtz2XBI0cM8nMpk4tl8JplK67rRrLUQkesGeSp3zIbTuXzxyurCUirEC9HwwtrGlbNnxgZSqUKv3jsS7y2MjE8VBsaF7a0tLRbni/iVb/wJCel63a61WW8ulNtXaq0VKYlvNd1jCEjA/QZ8ATxUCBGYRCTpEUolRH1RrY9xJPQ8cFyv47imR6YtpGtZptt1hAQASeAJf3pk0LvK3xB/opZfFsGQ/KkQqg5mUX/8O3Y0nvyZn/4vu6cPDI6NtCqma1rDO/qAccdyPJPmrlyf3Lc9bsTK1VY2G4pGwu2q1WrYWoSYSkwCoNKpuc1m4/CDU+srVWE5G0tFNRYp9A+qmrK2fParf/93l0+fefDhj9x639vOnTi+tHR9354H9u471D8ZvnLu6Lf+6Z927jj8tg+827GF2W7OXryuh7XRqSnOqF6pRSKRpbnVS2fmc4M9hVz6xNEfta8+2bY2LtQiqfzoSvFaq7XRk+vbs+PwYGzEdVjDbKR6C3fdcef0vh1S3Tzx8vHFpbk9hw70xgdqC/X1xTNvvvbEky88fbVjyZuCAjCZixtcrbRMkGSRTKgh07KbQgAHW5AthT/ixJ+biYxLKX/5/jsgHN/s2oVcHzcMlcHa0oawiq7XXlvdPLu04QHkMpGDe++8+9CRseG+VtVcWS1LYY6Mj+YKPQBOvjDkMm2zvGbVHcfVs4ORfC4e1qKbm7VGad2uWY2OLaFdaTS63YbiWYqqO8gHp3ZPjE0lE2n81B/tAMYsu2t7dcutCSlvjohV2FZLNF+cGCIwhROQQsABSKLnj7FDCiHqAOBJV3hCkCeFFFIKiZ4nBIEUSESe6w8rBPSn1m2NW6WtljXgV/RLSQAhA5avqG++4vmppf/++3/20Ns/tHR9rX8kpxlhPRoi062X25VGe8f+qeJKXY+yqKZYHVq4sZwrpHI9Kcs0W412X29h8drmyI60Zdq1StvpWtVKuzCQzuRTzzz+/ROvvD6189bJ8RkMhcKpcDaTjUTikYi+vnD561/4s42OvXfXwR3b7hjdPyQ65sJcaXCgJ9ubWby+dObs4r5bxlAorZYTS6nxRCQRD4Np1858Y+nFz7+yEjf7H5q65fZY3KotXHEdI5XLF7Jju/fP9A0YVy4ff+aHP6J2dOTgpAL24hunGsuVy5sLL55+YdPxAMAwwv3xTJTYvh1TU319Z09fOblyaanZGgwbtpRRhmVXlF13OJH0BKy165xzKVHhCkeyPGcmm/3jP/6flO7Btl0tVvtGhizRfvOZ19obxXq3vrg2Z4VELpLtiWqbXcuxzO27bhvrGQNbkIbVpQqXrReP/tDL537yvR+88+63O21lvbjsdOrdZsVz1VAmlxpOx0NGec2sFIt9PalwPKFGkuGIWinXO5VyMm7EEjllceOi9Ce6cOAKMI5bfWD8Aqtgzh36jfZRCgBEj8DzBUMGQ0EtKW1PSOm33vdrvARI6c8fA0F+pxAACdIDDuBJ2Cq12RrN5Y8wJZKCARJJrFX8Emh5++Ej9z306PpyRQJzbNFqNHr6E7VS4/rs8ra9ExxBZRQ12PK1IgnV8yAUUSzTqRY7I9N5BATF7jSs0mY935OoS5jcl5W29/g3fthtmO/+8M9zLSw9q2cgE4kmXZtUFY698tzn/+d/ve3hR/dtP9io1kd2DUV0dXa2Oj4+GkuGXGpfv7Ryx707FdDqTTE0k4tGIB5XMnmtVuKL500t35dsNpZK5xrPrucN2TcxGovFDt/7rqjRPXbsRz/4L3/36iuvH5q+/f6HHjv18gmntTp77lTJLGp6ZvvozsnxCaXZqJuOmtTL5YUrG/NtziMD40NGeNhpbazOtdutmBFetboEMDU6Q7Zpzl2oOCLMWUTlIKHA5Vgq1Ds8nhncvnpptrArn0iGakutx95/b31p4ckfvhS59bCETmetZKgw0z+xY/uu/pk9nXqpUauV1qunKtdnLx1bKG7Yq+svnz6XDP3PT37kF9/zwXf29E3EI/HaprlWLRsRLR818uGuO2J0am2zbRsp1dCxN6KUaqy4sFjCOXz0l4NaVEUBzgmZ35EWuAp8q5e/352RADgPpoGjP/JagOeRJ4EkEx55EoRLngDhAYlgFAL6o8g9EH7HbH+8sfD7afv9ZzGYASEQiAmPfMkOaTh7jlZXAED84s9++pG3fdxyEHVm1urDk/0Xj18Ox5gej8/s3tWqN9udVrdsRtJaLBSzXSVdCDcaZiympFLhC+eup7NJhUejMbRtQQCagmvzG8W1NT0RtW07m09xNEIxI5owFMZrG+3Xn34135/oHx+oVjanZsZVjJRK3XQ+GjbUVCr0vX9+sm94ZNe+ic2ilcwa2R6dM7ZRLL7+6mtKqx5dfmLl+KtfOVujbP9ozmg2jZ2HP3D/w4+U1t785j/9/dzctcHJW9796IebLet7z37ZbrVsr7tWKmt6KBEJC9tB1Wib3RAnQ1HVUGzXzHhUC08OTA1lEsdee+bFM2cdIXPh0JlKk4B+5X0fn5u99vzlox4qmXAiqYLRaLiIi9L76Q++O2nkG9VKo1PrNIu2RTOjk/H+0XAkOj0z1q46a/XS4uLK7MkzttnVk3qykO3t74+pipHMKQ6cOHNmdu5iPBdzJcxfuVy2nUI6ccvIUGF4e+/oqApw9eqNS5dOVZobhWTyoUc/MjA4VllcXZo7l8nlC7mBSrWJ7/xFQADkwHnQCHSrqb/feTYo1kOGTAm6/UmJBCildBwSAoQAKcAT6Hng2FJI8Fy/niwYWSLEW1JFAqQHJBhJlIL8USXS73DsIQKXUkhkXdtWUC3Os2rNYQgfuOcjj7z34+l8nx7R67XSnlt3Xjm9PH/59PT+7bsO7Tn6/CkE0gxjZlf/xeOrQxMDmsY77ZoSYuePXh2cHBibGe1W2i3LbtWtSEhv16vXZy+E9Fiuv9/QYwyRh3QjCoqKkbAOjDXWmosri6iwmR1Tlm0TqSpXVIUNT8We/d7po6+++cj73w3MjUXDfQPpWqX6ub/9629+56vFyvxgofdv3rf7iSefv6Rm795/ZHa1OD19uN7k1dJSuTG/f889u/btszxYnLtw9sqlA7fcvbBy7Lk3Xl9YXuDIhPQAIWPoI/lkkkd37drTqEGL1ZCzkNl5/cyJhY4bVdSczhHYjbbZl8n99s/96qk3X37y1afTupFP9aXR01qVY20TCz2Lq+siiJqCroWSsVixUvZ/VAAikUgyFhsf6H3//e932umvv/z0sfP/dhP+b+vr2zezk6sUVmQ20avw2OzK0srcmq143WYdPGt0bGhgYEQLaYAJy9JqjY7K3f7+ZG5wCDzKpKO9/SOKFMGoEiQQAKgCSmAIUvjj3YA8kAzAkyQQkPzRy54rXY+EB54HngDPIyHIc8D1AkVFBODPovXniwogX7w8EC5KgSSBBCMAvxeXbzpJCkTetayJ/qmIG1rvXgagoXw+Gwv1D6VXV8qxTgjDrqLrihrzRCJV6C8uV1VVSaWi4Zgxe7ashIxkSnnl+aOe7eb7envHhmb2jtc3m54UnQ2TgVN3GmfeONUzNrD7lgOuJbjOpeARg7qWG09qQsiFq2vdVjtsJHN9BZDSbIpcIZbMRVzbWpzbPH/yzPT0MEfsdqnQF15fK37uf/z2F3/wNQmgqcpyaeOrx+c3u9r733Xg0rqz/9Y7dSM6v3gulhm6+50fHhudsER5+ewb2f7MLfGd3/n+P2vc/a2f+/SLrz357ad/OKhnpgu9sXhsYLCQ7RtIJ9KghNudRrW5fmN+vndoXKwWHRIt1yHHlkB7JiczmeFoYqgvliIpdw1n1q9e6xLk8+k//8IXb1xf/vFTT924cm1pfX1iMPHQvQ8NDw14gpvNFqDTFna70yIHam1rIKZ++LZbbx+IbWxecpyWasQ323UFukYs1ajZUtLI1PTHHnxXMhG1W7Vr56+ePXsq1Zcfn5zO50dSuXwipkWNJDM4qN7a/Gat1ir0xzkxRXiAfutGvjXwCAAk8K026Ri0HgLk5Hd6FwTSQ9cj10PPI88DzwXPA+FujV/3gACkEwx6FB4IAdJD8GVLMr/xH/jU0WAKo4/g0XW9vszgh97/yy99/Yu9Ma3hiuF0KhwLVzaKipsoNkuF6bRrOrYpJ7dPRHR9fXl9YDTXqjmtth2PR3oHkl/70td7+7MjwzPI9OHx/Ppi8YWnn7nrnrs9r4acb6w0dhzcs33vjOW4qZReWmnHkth1ZCanW6Y1d3nZbbqJVCbVmwhHlUqlnevJOW75y3/+5RNHT37wkx+2umWVD24WyyPTQ5qGf/2nv/Ojl77bNzh1+/3v/O4//rXC4TsnbhQi8ldikXUr1Gp3Xnzh9UOHHhzatm9m+3Rp8fp3v/XFYmlTj4RcC37lI5/YaK1+8av/xzO199z/vkduezibyeeGw6tr585duHx17ardQibNkIYT+cx0PrEQwlNLax2m7BifOD23fMvew9ITkXD/wcOPbFaW18oNphvzlucKPr9aGZja9SvD6Utnzz579Pzludm//Ocvb88N3H//fdeuXii1Gi55uWR2uGc0ntXSQ+7+XUMdc7jG3nnmlaevLa+kkj3VtmOUlF0z+2+/+87+mUx1bfnsqy8gj6VHtu9PjjqeWW83I2nhNKvnTl+1q5VIRIsYURZKZ9OR5uXVRrWB9394qx8QC6aP3IRZKIOxkUL6bfXAL6X3IbnnS5U/+cgFKQOh9OuqpQDPA+kGoxalRwBIIhisQpKAGEnfIwgGsPojJmub3d/4+V8EcNdmL2zW6qvzazPbDu+85e3lqnffvQ9fWZg9dO8tfSMDi5dKDFyJXNEhFNK6LcrlIpvF5dNnz4cwtO/wPlS0SDScScd/8J3vbK4XH33PT66vLpTrncNHDnQ6JqkynoiVFtuddieei0UMtllsWV1T11XPUmLJuCKANEUanWe//52jL76RSw3c+eiDhhFdmlvr7R+JJ6Lb942/9IOv/NEf/spSh339G0+/7QNH3vvIb7zwo7/gjEVDyju2ZQtjR+ZWHTWive3uj9z24J2vvfStl5/54cTMreFoLBoKx0KhTtP+26996ed/9rHpkd6VGzfq7fLKysq16zdadTk5uevOB/bs2LVdWPK551/74te+slxfjTHcMZh1bHtyal+iMLX/1nuaxfmWHW5UGxPDqfNvvnHp5I80jqumbWUzv/DJ35gYHSqE1Z6enuKV62+cu/Ha689fnHtzYmKba9JiczOka7qQlVJrOJv8hZ/76cX51dMX5naM73rvYx/AENY3W8XSxnpprVRcKS6WQlzffefth992X76v19AVzjEUUl2nefrYyuf+9MsvPPd3JlicQNOUjuOpCOFwWHEsv4cnIAOh3BwnAegPhQgYPkEhvJAgCEiC54GQIFwIMJZEckEIJAFCkvRQeEE3hmBmbjDQBhD8IfJbcgocJILgQhIxaLY6vYX+fCzy6lNP7Lj3J8sv/lshjCE9vLBSHOu/VbidRLTH6rDicpmpsl0VoQiCq1mmlcvFn/y376+vFW+76/5EKuVIEQ9rZsctW+03Xzv2vg99MFmIb2xEjtw3U1xscpVVNupmi04fOz+9eyqq65VyQ5JMZ9JSQjijN9omhpSLZ0889eMn87HsL/3mH+ZH80Y4dOnYqWjMYIqSzCS79faT3/vaUtN65B2f3PvgkQuXFv/wM7/z+gs/dOzZji3b9U5eUm9Pf7upTu0Zu3z+zIUT197z2H/O5nrVEO+Y5f5s4Xtff+aHT37z61/5wu//9z/rSyW1yJgeMT7xK5/eMTV98dyZb//7v/zTV/++pzB47113/uNfffbV18++8caLEhrnr1y8+vIrf/QnH0knss255e07psvtZl8u58gUKKH20qkdcfzS8Qu/8wefjsfit+89fM/heyb74mG0Gq32StO6fuy0qmIybIz19M8MDjVTnoPeE8+/srFZrqwt3rh+6ury61oi35/cVWmthRPGvr13P/jebaNT/Sr3Fq5ff/XU0VbTGx4Ynb9x5tzxl+/Yu+OnHtk53P/TS4uztkvbhiYHh4e/9eR3Xzx3Cg8+BH5XBb+D2c3OsH4LtmCougwmjgoCKXxTCEKilCQFCo+kQOkCEHquP4fNr1X1B6Mg+TBegj+5G8hv3RZIHkgkv0LQE5ypn/zYJ2Zfe6FvdPDdH/v1z37mdyNYYuntO/a/uyfX4zKY3n/4zKvnDhwZUVisVbeNpOo6EI+F33jt+VareejIPZFoYn1tvWcwTq4KBAz52VMn77r3ECDbLFcH+pKn3lyamM7OXV/vG8xvrpdndmxbXaiGU4o/qFXT8OrFlfHpvksnrrxx9Oyjjz00PT1ldRrlUiPfY/zZH/73ZCx+z7s+oYe15dnjn/2vH59tmJ/9p+fvf/9d3Wr9wvXOR9/3U1791amh/p+9dWd0+PClVXvv7rsisdiJE8eO3Hm4pzerRmB9dWNycvToi2/uuWP813/pPy8tXv25n/3ZVHZ6etv+g7dOvPzi43/12T8/de5CSI8QeRvNBgCM5wqf+vhvjExM1YsL3a79+rHXd935wOjI7lNvnjly+63xnnhIC109t9hXiBbXFr/9j9+ob7yZG4y1lTAqGIkXBnqnxoxYzdZevXxiafEKed1mzanbrgt2LBrtKcSXVpbbtn0TvA/k0r/+id8aHRrotjY363WCcLHYcoUzMjiQiifDkejK2XNvXHry+TeOCwFaVBsYGBjqKbguDPYWZsan+uLptbUN3HMXMAYgg97rvin0Q+LoIyEJYmtajgQUEv1IlZBAAqUgKQAk3owa+Cxmf7yn39OBgpk2DAmBWNA7mRhtjWInQMaxVm194uO/+u4H7/38//jET/3q70UyU//6l38a15w6DNzz0E9979++/Id/+ne1itep18Z3DBWXGyHd0Aw9Fg9dPHlOj/JwNJku5FZulLK5RCIe0jTuOK5u6Ha3a1lOpdwtDKdr6zVF5W7bA44CRCii6aEkV6TBwg65TLXPvXy9fya7UamszTXe9xMPhHSvXG402k4spHzt774gnctXFzu/+Xt/G0uFv/GF//Xi1/5iDvjhD/z+x371w0dfOvbdf/2eZ3VLc0+988jtO4Z6lzaVu9/9cavRDSHvG8wnU/FuyzJSRiGfuHH5hqbj0z960dPLP/2hn9ZVPR6OzK2ufPUfvnjx9NG9k31gpM7Nzs2uLjY63TBjVdMkgH3jE72ZdE9+cNvEWMPje3a/c2l2eXh6YnCiQCBXF2sG58mkceXq3NFnvvbMi18PZ1ODhZ5UNBdOZyYGRnfODEeMSEiJ6VFNQMTuCMc2bbNVa2++/uqLly9d7unJDPcMpCK5c9fmlrr13vzArh27h8anMrmJdrM5vW1EwW51/cb80rkXXnh1fXlVmLqthpbqS9KxyYXeVM/QcLYNrdtHpjU3pHgWIATqyu/XyAJVw8gjwiDUSQBSIhH69TR+mMr36QIqtz8PF5BEMGeZBUOsEZGBby6Fn7tGKbeGdPmkR4a2bRVy+Z/5+E/NvfnK/GprY/FGEjIT23dHNLo659gu/cKv/j9VSa8tnk+mw9267RGkk9Fo2Ji/vBhJx9aXVnbs6zUYV0FNZ6NhQ/Vsz7S77aa9sV5OJ2Mjk3nO2CaxEGO1jj0y1teqO8l8nAQKx1EUXFzYaNWr8YKm66GwkX7vT+1RQ16x2Lh+dX1kKPv1v//S4HDKbk1dPP9ytbwQT0/Nnn5N1xXToae+9UdPfe+vwasxpo5MvL0EcNeD7z177HhseJisSMwItTbmkrsKxeVmLBtOxkN2o94x65Uiu2VntivDf/yZ3201Gu2uWd0sH961Y7S3//mTZy5tVPxEhAo3hwPD6bnrp+cA4BgDiEVjn/vr+7bvPVyt1KWnKJrX15eSFnImxsb7JwZ/LRTJ//MT/3hp9QL8hxcDiDNIJCNT4+N37jrQHx987ei/H716zdBZ3Ahv1qya500N4NiesVsTkVxuYGx6VzRTsKzmiln6+p994amjLy9tru8Y3/fgu95z/9uHWdtVuWo1qynNcmyqVM2VlWstj5XLtUgkqrjdrcmDwXzULSmBraZUErfa8PlQHoJ+WsEMAABEX0QQGUlA9GcqMV+GQKAQSAJ9expMo8OgCkgASXI5KF3Tu/32PeM793zvS3/HED/3+X/9yCeSI8Njy4sb27Zn832R4fGRG+eXJYltu0Yvn7mWzuU1TrMXzhmxSLPUkZ7s7+9ZvFZK5yPRqFrZqC/Or+/eP3Py2NV8LhpPhBmHjfVGNBJuVs1MT7LeaIaTEV1l1WaNa/jSc2fUqGjX11konurrHR3qZxq/erZ47s2r9z06dfbV4/G4cdeRty0vX/vXb/6g0XZOnji+NntRUTTHszhH8mrIGGLoxuwLhb6++x+678a5axNjR6K6t76yFE2r3//6S3c9cGRguNColGvlTc+JOnT1137/U7Wuc/vuO7cPz2QG+nW2/qV//lap1Z3uH/+ZRx5MqXJpuY5KrNloxJPhaBRyuVy32wxxjYWNU/MXvvC5P/jrz399nI3V6p1MT0zh0KzYnaadSaWFCT/x0V8/cOC+F17412dfeWLDagKo9955/7a9h4TgyXhoY3mjKEk3cqltb98f30Wt1o3lq6Xl6xhafe348daWFKQ1CGtx27a6rpNLJLdt3/7O93xk7479yE1ddjXdS8a0zPSe2sYKRz0zEsoOzESEGx6MD20bVzw7KPcCFrRsJAzG8jDGgnIJBlIwwK0x8RAkjP3pTr7OkYIQGDG/YAxA+kOaEXyV5ve1Ir+5VjACbmsQKiMAW1LXdP79W/+2ePGl4TRb3TQTcXKkS6Ho3NrKxMF7240WKXx8ethuWdGo7pmtH33j8W2H9mf7s8LV9hzYUV6rk6RcLnr1zKUTb56/+6E71lerM7v7NhYrRkypVVqOLXOFeDSiM4O6LUtT+dLcCujKyuV1JVq5euZyIpe969Zbo9FoKg0Xjl1rtmvbd6Vmjx7vilL/8EDXbv/N3/+tJK+0fPnqpddNu+NAGABBECInScBsAG9q4Pajz734zKtvTk7d21FbljB3T+5OpXondo5sbJQzOXZjwdq5re9tj/z2zh3bH7nn4VbTXa6tHTv2FDjuZz79m4XsWCrap4UVpmEkrCoRo2tTq9JlHA2Fa0aosdEpb849/IG3l4qN4txiOs7jqaS0uOl6RjQcyyQ0TVNVFKY9MnHHrfff9t4zP71x41R6eNutb7+LGzFpod10AUQijabZ6tRsTdUUDRqlcnlt2e5a1+duLMxdWV69cvnCIlO1bbfunRzcdsuemX233jIw0vvcj16bm79h1crzs5fXi5te19xw1kHTspFYPJyNaLoru8lkNvJdHUdG0R99jkjod8AOBtFsvYJZ2UiEfi8hICCJwVBdAF+kEHgQBvPZWpJAsiAQGoyoACCUWz1Mt4bMEzJqtaz7Hrj3vt3j9fkitW+sltaPXe8+9ouf6suOLs7OFavWJ37jD2yHKmuVeJLNX58dGBo5e/zNoenJPYf2t1tmt+GQsGxXxCO6Z3nnTl3Ytmesb2RE1eHSqbloUiv05EobrdHJ4fLqRqVciiUSnDHLtR0L04XMhVOvnX/14o4DB3besjuWV5Nx5fzx5UatpIJld9prxTVk9ODbH/rK5//hiaf+pad/uLm2YbmNaKux4MlNKdhWjRMyVUixZ9fPNKvnh7JDH33HY2XbG9yRUxRvYHS8VKqM9eUunLm8Y+fQb//GLyBYv/mLn/nyP/39m+dfKVZbGodtO3aODw8h8L7B6R37br949rwLNjFIpQ2voY2Pbx/qz0eMaDys6Vp4bWFJj2qaoXptt2tWGx3HiMZT2Uy7a5FtMSUUSqV7JxLZdLLTpeqmaXmiaXqJFKpE4EHYYGs3asKzIylcmt0ALaR4vNsxwRFGODS8vZcrsr7ZcT23urzaqtcvnX+90SkLNdqSngXd5kaxVW/2FXpWNoqnL15w3qpWfOulAAFI9GG7PwQMg0nxBP4gQ7bFQSCS0m//z4KJgIQUNGPn5FOo/BZWQTt4Cqj94M9eAiBACSQRGBBJQFAYOo67Z8fU7/zuH5188nurK09Jjq0uTQz292ULltV99qVv7Jh5R7fjRROREy/8YM+dB1PZ/PL8Un6wMDm9S7hOcaORS0Q3Vtq9w5nyZhM9sX33NlWNaRq0Gy3HdUcnxteuN5Kp5OUzx7/9z995x0+8T1FDtu1FjMjwePLU66evn9945IMfGtzeT9SpbxavnNqErltfW43nuI2UTPUO5GKf+uVfuHTh5Kf+86fX5248dWPObtVjnDXorR0lZESuro5ev1qfGFQePHJPfFBLQqFScnYcHKnVW/39iWOvX+vtS//zl7947cbsFz/7ha9//7lQKj3YN53qcSUy5rnl2eW+ntERhcG5Y8mVLsvEdty2f3JshOtKpV5dnptd3uw07eZq9eryWqm6vlFs1BrNzVK97grgBDrA2MDIxMjddzz86Ds+MKRr7LnHX+60Kd3bm+nJDg/Gw1EJIFGSWRf5/hQDs74uIkZ2bFseFGt9YZlBVIuqrU6VKaqRiYXRs7utaCzy2pvas6+fzKfD2yfHR9IDRmqAuBcT1rLnUbqn7LBcoWCovLy+XBZO3epYkhQ/0ODPNfLFxG+VBhKBB3aKJIBAQCCJAMFAQ3/yvP9HIFH6EOxmfsifO8H9+U9IJH17Qf7ge0lSAAEqyFoN793v/mCkNt9eOakroURaXbixNjTSGw7Rqy/+eyg0MDa11+y4rlsubcyq2p2aEU5kY2OT22zT9pAlYnoohP1DGVXjEV1NFtKtiojHNUWB+oYzOTlqtQgM5+Ufv16cW370Jz9YKAyuz5dT/aFoVLl4bDEUyn/it+4ldFvVysrVa9XNOkfstNp6LLQ0V957ZObq6dc+/pk/yaVyn/7F3zUozkKrlXY9ryhrnueAZD5QAGQoJIU9d8/wEN87sad3PJnO6etrzb137q6s1sMqrV1aj4agUT3/zLe/9ds/8/6/+Is/m7nl3bfecod11wOaxlTr/8fWX4bHdZ1f3PDeh4eZR9JoxEyWbEtmhsQO2WFqkzblppDSv5xy0xQCbdJQAw3HDtmOmVGSxUwjDTOcM3P4/TBKn+d9r9ef5OvyNx/tfe91r7V+OSVLxrnU1eunnnvn5VA6wcowmefJF4AORxFZSgqyGVVBiqSMVrvTVsglBBxPF2iTy2MvUWUjhRKPp7apddcN29s62gpi+uiBE1fPD5eWV267eZ3TYwWynIhlYgHgKdUXCuLU9Znzx86YtYbNd+6m1PL1c2eCEwlJgclKQJJUbZ0b4+HE0lQmxWMEYlRh29euW1PfNjI/6EtMD48MDwz3i1DymEu6Nmz//gOPOjVKPkcLqRyTSITC4cmxs0MBH/SUFz8piBTlBgRIklyE3S5bkJedLVCSZVlarv2EYHnal0QZgcs/L49oyzkkGQEQyBAiMoDFCxbKn1eGiqIkFvdDMlDbzF/ef3+ZQug7dTwcTbtcmsOHr63ctBug1FIo3LXhS6lkbtPuHbjIZXMJQaYYOlVa6TZbbEyG5wGvJLBoMK7TKRiGVamVLCfbXXqTSTl6PcjweYNGvTDrD4VCJoPS7qkprTEFp+IEBkQAM7m0q9xNaang9EwilBQzEKHQXJbBSF6SeDadtJdYX37t7739V7dt3rdj7arJqakKT8lfn/1zbtGHynAwz3CyjCKoKPIygAA4UbCto6XcYRjpbKzbcuvuhdmcQau4cuyc3e4htYWwb9FZpvnHU/+wonmvpwZqq1fX1Dx/9I2Z+WmtEq+qaIwkU9cmJgsSh5EKh1qDi4LbUaomNPkU3d3Vs2brJqvDzHICJwA6vzRwfTASTFislQaDw+1wOCrKXB4jzzKRYPji6YGZSLK5qXrjjm53iSbFgHxGykalQrIQz0ViyemZi4Nj44M2k2g0e3zhOS4IWld3tq/tSoaWUtF0MJGMBmfdtoqcnHWVuNu7OlQKFUszeZqdnFvkEcmoVmVjaYXKUFpXYbKpRs6de/75f8UXx8SCUOI2V3nL1bh9dnoalnkgIkMEg0CWkGUs7uflxyIAEBRhAtJy6WOxiBYptq0XF4n/k70AADKQIPK/N0CRfygDWKxqL3IN4fJuUJRlQHzz+7/evr2n7+OPZ/vOhxbTOoc7vng1FqU7tt955sTgvnu+AQlTNJDauLs1Hgup9OalGV9JuVuhVlgdlsBkKODzN65qnhkPaPWEQqUiIGFyKVQaeOHYBEYgfF4o5EWUwOxuczrBODwmEkNoJgsAAURg92jmp4PhmThGoEqNUpJQFJEJREKAaNRiKXryjZdfLSBybUVbZUVDNpEyGTW//cdvwuOTbTbTSDIxRdO8JAEAVAqXQbmiu2fLhm2t1w690bKi6eb7940PL1y+ePLD/zy//+bdnFozdWWhZ3P1y/95PhHOPHzrrfNRRq0Wnzvwdl5Cmix2j6vWH6Q95ZYVNe06rUoSUgtzsUQ6BFSqysbapoZKXzQUmZ+b7u9bSiVRnkzmojaXqbZhvb2kE2AFlZGlU1n/cJCVDA1VdUAjbtuxamFxcWJ0UaZFtd6SjC6OBn3KVGI8PM7kUwYFHhNhKLBAouTqzrVajSO45Juavh5JLjmMZpujsrxihavUwERH04EopnWsXb3LXlGeZLICL4sCS0lAiavGBsdPXzildyiEjH98YhrIUm8olKAZAMBXb9+xtWMHLCuFRbofRGQEQdDlOnUZ/M+FJ0NZhpIkyQBZ3soU0ZnLjaAQAuRzuESxmnt58oAQIJ9DJ4pYL7lYyCbLMgRcjmMFcOOWVpvaUFvRnE8u5KN0xy1f/vfjj+p0SqW9XmFsuWH/PSIvCHnFxNBRAZda2rt5QSYVCrWOgJIyNLWYiIfbNvQkolkMRc12ilKS6Xh6YSbE0mmJRxVGLQEUlIrgeJykJKOFSMc5TijorbhGpb1+YVqSWKVaQ+KkQkko1FiBzgnJdCw6euLMkSOHD0EFsqNz/ZoN99isrpzg+8oPv5MNBO9bvWJ2KerPMxG6AChdTVlnmb27a0PN+hs8H7/xkY50tm3uHhvtf+nlp8NTY1tWt/BKLySV9RXOfz79J51evf/Wmy+eGVnRWffSwdf8keS+NRtLbTWu8tYSb0kkNPnRJ68T4YJaixJmo6us3eDy+kPTff3n0XS6pMSRUhpQFCyF/FAC5WY9z3N8Or+wlPU21KzbuLW0tGyst28kPOlfCk/3XpxLpFAg46hMGHSZZDIjAhMC3KUuOi9m6LRNo2yt37Bq9QYUJaO5qM6szCfjPBvHUSTLSgpAOsyq0+8fGI1E7LaySp1N5yjVOFxVjXUGh4EQMS7PYCRIJ+hoNMDnsrgMUul0IB6hufTY3GLv+PU//uJJWFaGABlACSI4gMW5HIGyDGRxGRYoy1CWYfFmlJblK7B8FRZ3MkUGHFiex5c1z+XpXlouJJU/r/mTJRlCjuPUeuu2vdtaa0F6eDHvkzbvu/X4Jx9SxpqLR9+0GpU0VXPLF35cWe2hKDThTx1467W99z2QS7EWpyWbYUx2tcgiuXBOZ1cjGClKosViEAV2aS4SjcRLyww0J4t5UaPTAAQhKAUmoVqjnMwU0nHeYMRwDE6NBkVBVigpo1Urgnx4IaIAEp3zffTxf98/8mksz5IAu33Tnrvv2I/hxvnA2I//8OMyrbHTURHORjiJNBnsZRVVBGp2ehtrVlcrdPzwuTmzRh7pu/DGJwdFEVRXlupUBSgYKrt6srTv2KETPRu2GLVoOpRYu3nrJ4c/O32p/5G773WZ3TmuMLs4uzh1XZIBqS5oM/y63XviM9nekQlEh1R6KnOp7NXps2OhGAlBTUkdqTIrhIJeY/fUV7qcnjwnhGOhOd9UbG4hlJhPpCOVJc7Oli4c5oYGxz+4NhhnhSqN0qFW84jRYLGUGt21VV6dQ6fVlTqqXXq9MhnJ+ef8uYKst1AYxPO58NLE3MTUUJzJ0ALM+BYgFOoqynVqDZPLZgUux/CiKDiMqlJTic3uwpR6h8UiQ96/GE3l0iq1dj401Tt8CXrL0eJbcLmaVixyRIC0rDpAABFRkgGERSLmMh4MIKIoAYAsd/sXqdIQFkEoslTE9MqfL3dgkcpUJHvl82zDxpZvf3lP3he1uNvPfvRebGhxzz1fP3roYCY3L7NxUqm3e29q3nZbRXXJ0szC6UOf9mzcVlZeyQqM0WyM+RP2cmMhJ6RjtEpPiRyqsyqYdM4/Fbe6jRghCKKMUHgmkeF5tKzUiaA8ABKdZtmCpDGo0ql8aCFoK7PoDOpkIhKenMsmIgoS7R06+dJHb0WiaQIiGxo69+zcWVJenUwzBSn3t2efaLRaNJgykpMMlGnVqgZoMiNA42qowAgj4GQ0G5wau/Tiq/8cjMZu37arZ/36l195cX3Xju4VDR9+eEDGFZt3bPLPhxK+RXu18eSZ06Pji1/Y/0Awm8rm0lZSJXKxDM0EE1kmkysxawSd7vrEUiDjr3I7uFxBokXKZF7fvsNlVfqTGa/Do1RhlFJPAiLPQUlKkhhqchgNZjg3MzJ08VJobkFjdwTn5psaW2PRmWvDeU9pS+PatXVtlVoDiUIul5MQ1KAgCD4VzjMpkUMhRrqq6ghKnh29dOnYCSYH2rasq2n0mgjMPz/zw1//ZnBq1EJg+UIh8L/7CAAUAA2OqEiFXad326wms1WvMdgJShTkiamp4ocFi/OQDIAsyihWTPcV/XcSQJDl6epzOrwkAwAQSZQlsYjPRCT580lfXL4NISwaB4tWGwhkIEqCBABEYJ4poBqs2U187f4HEC31/S89cf8ddzQ0t6ZCs/957T83bquLxJE1Nz5au/Ymnsu///wL1rKy9hUrKYpUmjWpUJIVBCWKihBqdWqGLpgdusB0GlIFd5lZ5Akmz3EMTSc5hpeNLoXDqlmcjSR9KZ1dabCZkylByORxkqMZ/9DwhAonLAbDUsz33CtPD01MGlWKDW0bWus7TAZVIBpzel1Kper4wcMiG5gKhTDSsLZ9jctREghN87JU6e1QiSab15bNj7/5xguXrvVvWLeps62Lzkb6RkelRMpmLR2cGBQQgKmVQd+SzqjFlVjf9JLLRGkobS4VbyxvalzdPTw0cmnoSoLOAwAsOh1OEhqV2mp2kIiUC0cAJda3tRnVJjvUi5hWUgNvk7XG3SjzuArCLJ9N88zkQO/A8TM0HUedOM9SpfYSvdmxGI/UNVSXlzRbDBaNrQrB5EwijBd8TD6sUdmmB0LpDK92qgk8r9JobJ76wQu94wMzZQ22gsDTgRCQEZRAJ0b7aBpIEE7PL2UjvvqaUoOrIp7KLS7OTPr9aYH//9GuUAAcKqqhpLTDUwHLPSiU4bLEiUCIFqdtCCFSxA9Ky13uRddf8YiCAIJlUIkMZLH4L5Fl+WpZyIKyJCEIsrz2We47kjiet7ktX/vql8rd3lzEPzZ1evZ8/97dN3d07r1w6sA7777TUG70JZQ7Hv5tedWq0d7jhBIv91TbHaY0LbpKrJPDs2oVkYmnytsq6SgHCSSfY1GI1HYZAgvJTADVW/BCtuAPZWpbXFoDOnotlEmkKS2uVhsAQmAoU8gsnT96WgKEzW1f8I9/eOSDgesDDrPd43RXe0tcZq+rtMpsMkARnRi/9sGHb9Ick07lEBVR5bCSACBQp9eXlXjUClLnsNROzY4M9l80OwyOMnuWZfyRpMfqQGT50xNHJxIxHEMUCKomlEBm0wxrs9htOr3bavC4a1zOsoPHPhnxjQABNSg1BqWyUGBLS0utVgulUKXy6fGRoUgso7KoWpyN3Ss67n3kTlTCZ8eWcgl/MLA4OTM3vjidzkYlRuhetbKxrYddTFeWoday5nQqMjk8jll0MsUXCoVwcGluZDa+sCTgSJ7JcpLo1mnoPGrQm6sam0WWMDgMWmdDnklJqejwcG+QCRrNNqXRrCGNCAUba2qnhkc/+ugwkwliZouaUrTW1jdVdc9OTQ/PjM4nfdGYbymZzX+upQMEAaKEAgArKzAIoSwu89kggshikYMEJUmWARRFANHi6AQBREQBSEBCIFzGDUqyLKOigBRzXTJc5vMiCFKEecmSWKTfZNKMiiKzefamB+569i9/mh6d8Y2MP/XyC5npvse+8qDO3D505fDsyCWdSqmrWbVx/+8nx30Lc6d333x3nmFEATM6TVJeLLBZmeNNLhtBULFwzmBR0Gleb8ILTIHlgEGHBedYGUFL6wkMw2ZHk7lo3uLWUQYCkyU6koj6ZvyhhUSKjYanTpw7HQ4GdCrC7XA313XrdUaj2Wz1qJemJ68PDZy/dmU8EMRQUBABAYAOUdnt9pqy2pbaJpWSYoRMNhWNRyI5MeN0NIaiS2PT06UWvcuin52fvzI1lUcwr5FiszlSocOBUm+0t7e2uRy2RCx0eXh4IZ8JhaIFJqWlFLwsZfNsEXsM0f+nnO3/9Qevc5XV11eKAE6OTgb9MzkAUADWragxoiqjzczR2clAhMkyyVSGEUWOK/AyyErLd5YCAKcOT/BikvlfVBEgKFCjKEWQBp3OosFwGcdxCvCcWqvvaaurr2hPpPmpeCwRnqCTS5FYTEzlJcJYWmszWpSJUL6pobO9Y2do3lfI0QpM9kfmfenCzMRA38hIkE/wAFAAwKpKFH6upS+zA8HnHCYZkREAIQJkKC3vYuAywEuUASwucKAsI5KIFL17kvw/4FLxlCqOXBJBkpt27BwbH5mZnKx2O0xaZSQcamnYqiWkyNy1bTt2CdARnL+8MHFFpzFa2/au3PW9o2++vXJzk8noYlhBgqKn0r44E2HzWa1B5y51ZZMFhRpXqHEmziWCWaWeNDuoZFSQRNFeoi7k+WgkR5GUUoeLAp/zR1PBUDQUmZsdmZweTmaCKhVlcXhteg3DcwRi1mqwueTS4tjI0MRMKpVO8nlJlpUK0kDoKh2elsquiroKjRmGQ0sLsyN0IQ9QosxTOjM6UZALLoselzTzMzOTS/PzyXhKBCgASoCX6d1et6fEU9JUUTm6ODM0Ndg3P5XM5gAAOILIsgQRhBcltZIkUIhDFEWxgsDqNVq32txeXy1xqVCUKxTYAs7NhePxZKylvoXkWDUhu41afzp7dGQhlUv//1mmAAAA0Csop8GEYYTdpFPgcjgZn43msjmWFTgJLH+8CI5K/PLPGAJwBNgpSuKBEsXKKut1Hn3c71/f2tZQ4Tl+9Jq1rJwAfFohEbTssHtLG1vKy908zSWCGURDKERGo1bNzMQj/sF4NkGwDKyuKmZw4LJqjnwuFcjyMkwQokVBa7kCBMKiO1mSJFmGsozIYtHsgBZRlwBAeXklJAMJyogsSQKGYhu3bwong9d7R1Z01nznvu8+8dfnj507Xesy1NjU9912L2Xwzo2fzAT9EFO23/wdWjAOnz931zfuy6YL4ShTW2OSBCQSy8goYrGq8zlIUFClwJhMgU4IpBLRmUmmwBMIqlSjBVbKZySdmSwUcqExf2hiNhadzmcj8USSzgkISVpK1QpRoVKq7GWlLJ26NDGsIk0VFeXzo3MZji2rNNDpbHwhQinVeiWu0pkj8fTo9LVUOmOx1Za6SiiFkKKTeYFxOKxyMHXhYq+gQhYWx2Ue4jhut7hqPdVNzhoEt4S4xf6Z61Mzs3ZneZmnTAj5eIllJZqTgT9c0CoVai5Nkaq5GENpqRqP02q22jVkpcfIs5gkA6uzfLT/0umrg1qT2eM0T84HLk+MxbI5QkFsbGnpalx36PKxyZkplc4Sj4fjWYbA8Aq3vbW6tLysREsCyIvhBDY0OWbQIR0NVQhCzfsD0UScLoA8JweieSWfUqsNITE/HVxI5WgAQL3d4naUQtRSYbe3dFQbTZrA7ALHoVZPlSjSKFCqdQaVWu00OymSF/k0QikggqUCufGZkNeJ05KEMyIGkYIswMpKBBb/gKLRD8pALvZ5SLL8+TMQLY5WkiTLEIq8XJzTgYyIMgAyUjT3FekBy/AliIDlIEZRdRAT6bxWCZrayuwm8ysvf/CNH/9y7OwVj8P7waGD37phbc2KtaGZ/gKdxEjz1q/85bP33vS4G7bv3zk5O68zuoxGlX8+RqhQnV4jSRJEUUQS4yEGAqBQEkothqIQJyDP8mxSMlhIjhWC44GIfzowO5VNRDPZSCKbxgilq9QuikIqHR4anRz0zYgyQuKYSqEvqShXUfjM+GQ8HrKoNZVWBy0y3qoqpdogJFEJknUraiylhnyUmx2bLOCsijBVNXsDI0NHDh0hTS61TUnm6baKLr3LEYotxFORYGBGLZVoLKbR2csDw5Nahz5fyFOiHMqmdQq8xO7qrC3ram0hUYIWkbnJaCCyWFvtspjtgenpglLtS+WbXcaKqlIEw6JxcXisv+/6yFwgRJBwPhELJ1IAgJX1Vd/au0cU8jOLEX8iSygMRi0KRDRNR5QoocQUOrWsc1rzDMPnaZyXzQYHxKUIncJkhVatNyhNsUxuKcEBKUhCZjAUvzQyOxuOiTxn1qibSipLNKrqEoPdU21w1QFMqbJZca0xPOmbHDgz2n9l1j+XZrKkgtLo9PVWq9pcRtNhkS8QpE6lVimVGlhTgyAQkSV5mSwvyyhWvNQARIDIg2XAsozwnFQMJgticWxHJFGWAZQkACFaxKYCBH4ursJlj4wEJFkWZFGURLVW0dFQefeeHedPXHzl0/POUmc0SkupxPYWV0dbIxuOxJIJbWV3aestx5776eZ9XxNRlFTq127deOCFt5s7etbf3RqLAAQD+YwQD6UEUbbaVTiCSFBSqTE6w2fDaSmbptMx30IoODfL5JMIyes0NgyijEgPj48NzQ2OzU/luOXnDIXhSo1WzGcpGSACp9CpAApSSbrKXrFiRaM/OOt0VN31wBegrB0bOz80dV2DqMo9nQaljWFj4cXeS5cuaO1mRE2yeVGB4/PzgflgXGe3lpR4nI5ys0qBMamJuYHZQLCxrt6ssQpMdvWqFZBm9FZtcGl+ZMZndTeuaCrzNtT5Jxdy2czM6FQinjp1/gyvxoV0diIcVBLKCm9tY11zk9PEFRLDYV8uyAhSMp3nPrs+I8rCzRvWrWmqS8twYXhCZnNut1tvtBjUhgwTvD4yOhsORxhhLhDO8BIKgF6lcFn0NaUl1WVVZhQRWBnFJK3FoaKMXNofmF08OTse57MSw+GyoIDIbCZXonLt2/2Qo7W8ssGutzgxRJ+Ipa9cO3llaLBnVWddednYwPDbr78a9A0OZv6/HomwpgZBkKIJAfmcV7I8bgEAP7/75KK9WJIBBPD/sZIuqw9wWaaHEAAoS1Jxw1hkWwAZUApcp1PqrJqqCkO5t2V9z4Yf/fRnV85NVzqtiIiUqrEKk6DGhVxGxjGFqbo6uhBXCAWion1iaKh741bf5evhud6dX/25uqzF5dYFBgK1Pav1ZWYoy4HFlFZH4ZicSRTkAp2IzC+OTUoia3E59CYdSvDZbGp+camv99pg70g6l9GqKaOScFt1OpWhkM1JKiMtgFAuRkeXwrFQMMtQuKLEU9HoaUvQIQ0KtvR0Oyw1S+Nz4cRiMOPHIe7P0uOTk3ORORoAGQC3WtNV3uD2VFTXlnhdNgWihCJNojpKCRLRVAEppAJBwAOt1dZ/beDK0JDDU5HJZFoaShSYlI9Lghqh1FQoGJ/3B+fiEYNF01DX0myv5VHs3aMfXRgcKAjL7y0liXQ31N+0bnU6z7394SHIJDOilM5JGSC3e10bOrtslG4uEZoO+qfnF1MM5zFZ9QpFVZMHU5J0IBuLxscSKV84WOCXve16AqkpqfSYzdl8CkdgeXmZx+Kwl9VdvHLq1NkLYYahRWjSaZW4VO4wDo7OBgq8w2qscZWpZeyGvXfs3H/7+PTYyy/8+9yxwwiQRZxEcClXoEWOz/GiAkVhbS2CIIgkAlAk9H5eYVkUQmUoi+IyJbAYtil69Ir5+qJfGUDkcxJX0f4gF4cwCIFCRegNaq1BIUGhwHJMOpPJMD0ru7/4xTvDY7Ozs7PHPz7XaIIqhFFZ7GF/weWponMSRsglFWUD/SO4xChRmQ7GSiucg1Mxu7tUouDiyPzNd9+qLFspKcor6pqFbBYlxHQ0kYzGCApxea0IhoX8izMTM76xoUw6ySKsWWdEEZnEkWw6M+4bS2eByPFMPk2QpEKtlngsEo0o1QanxVJaVm00Gw1GQk2pYDadSc5PLYWOXrq8kEpz/69fR5NS4TYa1VBQGSw8xEUJAFbkBRmIfCKxmMsXMByVJdRe6iq16hqrO7Qm3GWgkLwmnEle7R/pmx5OCgWj0shxeZ5OO/Q6b1V1qduey8TmZub8SabG460ucxkpbSDPZ3OhvmtDw6F4RuQAAPfs2XJzz67Q4nxayPtmg6lsgEBBgZa1ZV6VncQgpaIlJsvp1DAQ82lxQVaYFaxcVmot8LJeAQSOzOaZTJ6N59LXx8ZpKNRWl8gkeqV/YTHoX9VaW2MqHR336TQl3hLtbGQuL7B1euXY0uK0L5FhuZwo7dt8073f/DaF8APnT8m4okSv4yKhibkYAzmESwo0MxbO5zIpWFWFQgihDAFcxkCDZd/aMhqu6DYuOtwlsbhpLh5aRfT38kVZ3D0Xh3oAIEFiChWJ4QjHsrksk88LUgFkaGFVd9uOjV0U4JrqXYdOfrp4YbGpqtzucgaiiL1hnbe+MziXyGVjKKBTiSgmc0q1KhaY8s1Ng0xAq8JjKdqqw60adG4+qymvdHk7W7u2qQx2SqMiKIxO52LJsN/ngwxmL1GH/QuXL1xaiM4EYlEUyKQGxQAKeUxnorRKYyqW1VI4gpJum8FsNpeV1KR4EPSHGDm8EJy72tcfS+Y7V7aMTS0ms4xapcREUU1gtR4PJmuy+bDOoImmsjEmhwKJxHCIQ7tFRWfyvIxjAJeFfI7lU9l8KJZkRB4AgCCgwm3d2NGxonGFwWxHBWm499rFgctJnp0OROlCXqemOhqqWt2eMmcJadQO9Q/MTox0NLd1dW/WUzpEjMaTmWAqEaLzepwUlZq6+noSx3RqWWIYNhkdmVq0V5TrUPHsmSv/+PgzXyILAKAg8FiNNRW1GpGf8s/7Uhmnw1JtdnotNlxld2sLOocLzbA6FZ8irWEuf3l0bmhw0FNSYdaaBUKqqrIFrpy8cOpqSMLUMtTrbHvu//qd99958KXnxs4c375+tdNVpiR1uFknacngbCw9t+CbH8godWg6A6uq0WXyLlw+tIp6qSSCZfJyERNQjOWA5SgYhLBoiCnaSqVlXjhAIIpiEMURCUhcgecYURAlABEoyrksf8f+zY8+9tUXXzsw33esrl4Tz0hrWu5ct3rNR5+cAlRF08p1GpUinZElCOw2BZAwOleYm1qU5RzKFgILC/FYGGUCbHwqTYdklmur0S6E8u76NdUdW8vr6gt5KZ1gjW69wSRNn+0b6BthYVhndSoxtBDLxBN+nVlXiIALl6+MRuYyBVaQMRaVCiyjwFBUll1mByRITBYIgOrUGkytymOo1aBY2VEVD9KjfVeMKD7o988xrDKPGkxOl4Wsq65ub2hUKrDr13tnk36MQDWo3ki6DA4cFYKpWJLN8tNLeYfXyBH44mJ4OpAbn59lRE6BgfqKkvrS8jKzw6RTBOKB+blEgecmY8lEOtrgdNfY3DmeKSBSkmWmpqYsOo3FZqsrL6svqS4lLGPzU4H0kqfFOT3m5yIpQmckcFW1twEjYicu93qN+hymH18KXJ2YCSVjAMgYgnR6S++7485oOPX2h+8NhyP/O3oJHKu02cpMdiuKdbV7127YjqNkIRW9dPY06W4oxTQ5kUfcGjojQLWlZU0nls08+9fffHT4o2BBzAFAAmClyM1Nrfu3b8W0OImpLVotgRDzI9dhZdXyahAi/xutwHLeAQBJLNagAQCA9Hkzb1F6Q1AEwRBRLGrzCCh20QAo8qLACzwnSZIMAApQiAGEKfDf+uljj3//e3/981dolqhqrDzy9vEf/vgfqeD8s9/9oaums/PuX7ssJErwkkhAgABJFniAYgCgKElhdJYFMgIkEZM438x8LLLknxiITx/hGF/rup1t2x90VVardap8MpVP+Rd7zxRigdKWFoTzczlUorzpPJIo+K0elxYgTI7xLyzSTDASWBy8MhdlMRQXVHpDJpqIZPiGxsoSj1VIivFQaCmwxEhZBQZ1GCyra4mlmCyTVWOgvbx2PsGML42SGO62OS1WJ0RZDtPqNUpZ4MJLoaGleQMhtnfudFe7dTqghbxvPCLngzhgGRmGEgVcIrOAhLkkQASop2Zn/VOTcx6bSaE1RqOBhQS9tXO126KdmZzFAa+rqvFFoxcv908t+VkAUABcek1TqdtlVZhwJY7i56YCk0sLNpXKYFI7SgwWtaLUWqVH2QwN5iOx06MTAwsBQZb0SvIHd9y9sbtp4Orw0YsnRoNRnSApUGQ4U4hwwvLgBYBNTYkQ2kwOp82ZLTBJVuYgq1Nrv3DjnRgp/va3vx1Ox4pfAYliAEU4UcBFyQiBTkkssUKNs6TLU9FVXQcrqoou0OL1B4CMyMXbDED5fwEvAGQZSJIMEUSWlw3Hy+RLCBC0OLOjAi8JnCQIMpBliEFZliCACILSdN7g0O+/a3f/hasdK9a1tdoXplMPffnXS4OX//DAnZFoJklQ9a27H/7+H20ePZCAIMICy+s0CJ0rWrhQlRZSCggBmg3LdEZWqMhCIT870Ttx9pmKEnVzz2axkM+lMzLHQLmQo1mLy+6ubfQtpQ02s8mo5xk27p+OzwwnBJbgcwlfCsGwOJ8bXQhFaJLJ5KwWrdViFxhcEpS2Mms6GY8zOYOZMmh0cjxeVrOyadua5LyfK2QzSxGBSfv8kYOnjs/GFlOFHMPJEAAtAbqb6jZ0VKsJWN/SGZ4N5BI5g8WK2e08RZgtFp3eEQlMXT99kvaHJY4DWjUmiJCgHB6DElVhRvXUaOzKmb6x+NJMMioD0Olx3bNto8tmCQeDmTxvdtoNkDgz0f/Z1evjgVTxO1BgSKfX3tW0Uq81Hu87fHLADwDQ6jQbWms3r1njUlOzl/uicZZBkf75uSH/UpbnnXrqvj33VFrswxPji6Pnh5aCSgRQKk0CIDJOGnCywVmtsdWiSAEjgdlSanDqx+ZG33v7HV86YSdAa3uHgtIFfYFwMpyksxlO+J+c31NakmKFkXAQAIABACuqls3uyyGa5XAphBIoEnREEUjFIvFlAx+QiijoYkAeAIhCWZYkAYiiJMsIRFCOyRcYQKohTuJSnlOYPN///hcVeMy/UJiZzNjt2l/97g/B+akf3bCpsdRd0NRlMZu3urG9ew2lVaoMyjxNGK0YkCSmIMoilDhEoyMRHKAiABCRRYgAIEEJIRWx+fHxj34B6LmyWndZ5zpC5pO+pWgWBQWuorvZ4KiMD10dvXx9tM+XEBU1rQ3u+goVnlG7LJkYM3XmdCaVFvJynuFkrU6pNSACPh9cZBLhGCOUVjeV19ZrJYHmM0AulfgAoRaMFosgq1GAVDWUoBKMLE5F/dG5xVgiTUYSwTTj1xF4c7VKiMUERJPD0UQilZ0e5UiyzmsjKaNO77V3rnWYVOlIcuL6Uu/C8LXp0fn5gAgAhRNmpcpl9+i1qEaDZ1L0+fHZFJPrqihbt6rbqTXG03N8obC1ZwsgNaevDB84dnQ4MFv8H61wWtZUNTiU2slI9Pr4ECqDDOQRBK2t97aUVs/MTNHZWGd1gyyh87HEWCw3H50TRLmzunp1UxPDkKeGeycWR5G8UHRsLncpAIACUKJT79685oH9d2pk8pcvvHhsbGB1ZcMdN9xWVuomYH5hPhKOMROBSDo7fvjcKX+c/um6lk99sd55f4nZBL2V6LK7c7lOb3lUX7Z+Arl4YhVfiEVg/bITEEAgI0U1VQSiJAMgoaIgsjRncTrXbFkXTvgicxEVonCXeW68ZRel1FKAQBFhxaqtaiV/d89as6hate/e8dlsRVVr96Y1yUQ6m8qqNIS1xBH3M1qdhlBjHC8pVDCX4pUaHKcQDAEKFczGZYwCWrXixBvvXH3/caed83qNpQ0Npat2odqSQjalUFCQDfIiz+YlOpkuzE5o7Fo6J6bC6fnxBVnIOmtrVFpjPJoILsUDoVg0ns4D4DWTzrqSxflQKFyw6ix2jwkQJOBRBnoUalwpMXRqJp2nTUZXebWT1Cn4eJxOETKgMaUCA0Iw5I+GMyxNAy3lCy3R0XRLQ0VlbQnBShkuOTu5lAxHXNYac22lUq/RKp1KBZIKTkej6eG5OMNkQvnC+MxSmmZRIGAUYSPQPCteWwoBAEgM37mmbV2VXRChWV9TWe3UWPSnj13+5Pixq1OzKVkEADQ6Sr60q0dn0Q30j8ai8waNOs1LtEQ5bZ54aubU0AzHiKVm48qmus62SgWqvD4yH0glCFSgoBUjFMF0Jhzx0wLPI5wSYQGOszweTzCBaLShplSj1neVeCXJTsmF0dmrEZIos5rKNB6P1lLT3ZHyj0z39r54/IwkJL92ywOf9F25PDkAK6rQosJQdK4jCFjeDErFiDIoCukIshwxlQH8PHwIJUkGxQ8LQo7lUmFRQeIuT0PF6qr6qlJMBiatkdfKJBDiczGeo4x6zaq13avbtzz3p59//7Ff3b7r/hJvLUKoSitqFDhB6nRqtcHpMUoMN3h1yVtrN9oMgM9LFCbJkM9CGUCjGYiMSGiVKCK//KcnX/j7LzVKocNt2LraaHRqveu2la67k+chl4oCQoepXQhOACHGpRf5HB0e7ENwwuStJHVGTOQAZsYoGcPRWDi10HfxzMnDxz+5rEVFtcUA9Va6wGsAV1ddClk2FQrb12yhI+HA9MhClFWaS6rKHdUeL6XUS5IgS3RybiqbSGZYKVcoIARpMWhklJARCQNIeCmQDC0hKqzEbVR5bCnf3ETvPEIYmjobqssbSYNeyAtTM3Mxf2A2tMgIssNUT4AYr1BdG5/NZZO1FdWCJI8vBIKhgFZF1HtLt/es1qlQhUpd17oZk/nxa30Hjn5y4NpgAQAAwC0r2m7dcbvegGaTQTbHMnnaaHE7HBSOyNPBzNEr/Zf6h+MF2qZRrm9pXLP+Lp5NK3Fao/NSBEEgGAkKSqNRRlSInMUQyDB0FuVlhJieChigrMjy8ZwYTSVZkhMLAlpA7aUlHVtW8Qxg4rxCKc/6p3Caal5ZduD9V2FlDYIAWCzELn5YCAAAgZL0efbv89icLAMEQlmSIERkCOTlgBjKCVwmKygRZcfKrVv2bFEZsGwkmkxGktn47MTCwtQcRuqdpfaulauqKyraW9Z67N67blh79tjlr9/+IAAMZXa1br5JZ3EyNC9JlMdrmxyaKWt2oDjOZwqjZ6+27VgnS5jMowgUQUEWREEG0kt/ffyzt/7GkVisIDer0Y1VGpOL6tjcULemMw9tqMqLUBalUsinFiQBAEyHCjxPR5h4IuObyacFXKXKSUQBChqtwqjVixlu6PzluQx9eTaWjC1VOa1KKJy7MAmNus6O8rVtrfMzwZwkrtmxWWJjH7796XD/GJCA0+Zav3t309ZNBpV6bmhgbGAgF1gwqXGAgolYTBQRr9OqUhgoJUwxFBcPskyqvs6RhZqB0aULw0OxRMaqUlXX1a5cs7K+vMJs1Ab8M58euX5m6LpCxAhM2rJzg8CIU2Mz5S53bUUDAPnx4KKNVJhNOK/AUgxN4tbqurZSo2249+LLHxw41N9fVD9by8t2buhprK21ay2JYCCXj5JqIyWwpMbOZTOx8OLo+PRCljFq1AhQustNleXOQiYr4hSqsDCpJJsAKpNKr1brtJBlkEtXB1E5PRaYnE7E0zSXp1mFBOxKNalWEEatxmxrr1xRWVlhdpSWua0AcrFgxGIyQG8lAotiA5QRDEBQ5BQCAIqGd/A/z0NRkYfw884FiHGCnEoXdCrlzt13rtu0ncUyff1Hxy8NzU6EEukUy0kQArvNwWVlXmQRRLrh9tv+8ZfnY4vBTd1NYqbws698J7IY+eTAiwq9UV1SY3dU1nd2uSqrSyqq1To7SmAcx0MoIRiSSxdUFKAoXOYRDCGe+b/Hjn7wdw4ns4KYF2U1JrXo8SoHuePWRr1OjehcJZvuTk2Nh8+/zNJJT9sKRO/CCEJT2cX5w7lYKBqNzUzHktEpTsQVai0pZQ0OI6FzpcZDMqIiNfmkaKfTheGB0ROXLgZYqcThaKi3O5QcEmQra0s6d20iuMWhvt5r/ZGh6RCFg6YV6zvXb12xYaVOoQrNhSb6RtP5JQDoNBNZGl0KzwccNnt7T7tGYxsfuDS/ONuwelWJvTyTxkeGzx84f30hlMIIsH/zus1b9zc2KzOp+QNvfXZ+NsUEo41NbZ4aZ+/gUO/AXCyTNWqU5WXOphLrptZ6i8u5lAgtLvlFFivxNFaUGxYmAycuDw5OzEbScUHkNSTlNTlK66uaPc46j2e2/1reYLSXGdSCIhPK5EWYYdOzs7PZZGRidupiNMcBoAQAgSAnAwQAgkA9amNHZXNDZbsSFc9N9x24cl4QeadO2V3vtZW4FiM0FDCdWqGRCQIRKKOzrKHHbjIrgUSpNdBdiqAoAlEAgAwhQAACi2lSsCyBgs8HOgRFZKlIAYIAlbM5DoPgxhvv2LnntpnFiQ8/fGv42iCfAziOYAoosKKSomqrV5itpaSCgDCFaOT77r6vu+PGvktX9+zcbMSoNc3N/qVQNhxAgThN5wsAUABY1Eqz2e4sa3BW1lbVtVpLS212jxJXURqlWkvyNDj58aHnH7/PpoYFlh/LFTgEDefzO+ya7lJFy7qyph27ocZN6exMMpyOTCkoXK9VKo0OESUJbbmAqFCdNr800v/2e9Ozc2YSur1eVK9R61B7+SoIZDmfycyORGJRaKhUUCUTvsVTJ08dvdCXyiS0EKRJgABgVaL3b1uvcWkHz1wqr6jwWnlfLLeY4JGCRGqUZWW17roOT3WDRueg7FYRoxLR0OD5Q0PnPtIC4Kxfo8J0odg0M3tFRtW43umtrSAJ7NMr/ReOX3XoSZuzTIHiVV6Hs6R+MZ/+6KND2Ui8vq6q3Fw+Eh85cmE0kikAALQEXFdTtW1NZ22Tl5XFJV90cdEfC8TcZkdTY7NSxSsMWknQRKPRhaW5waEBVKMtM1c3eEqtFQ4VxgqQD89HIlDCOa3L4ZQlYnJ2tH9sbNK3cM/mdZ98dvTj8TElRuQ+3/9019d+acfeGlfjX9597uDFsyaTtqOhfEVDK8MTodgCAJJNb4IFUUFilTX1erXTYnVDlxsFCFxOQy/v/BC5eFIVvVcyUiz+KC6qIYaKosDkxNWrV9374MMMTb/xxr/7+wcRCeA4jpI4x7McLe3YvL2ptYcupBf9s8FgMBRYoPn87tvufPo3T188dWbLjs12nHBg2GwqAxBMgWMyBIwkIwimFHme52UgEwCQGKqiFFpjiUZnKatqcFTWrere+cHLf57r/0ApySzPT2a5mXyhIEkNCmJfvdlRQrjKFeaq2rKWHqmQl7I5nccjIxaO5kQ2TWkyEKdwQwtfYHFSQ6pViFoti5Iowxydg0IOZBKIwgwpfT4RK2QCUiHORhLR6dnFpcwiSyWS2XBc5CMz5+cWGYb+2r3baqvq3335+UCKbmuo7GzxOuur6CwyMzGzNDGW47OixJVYbZWta1s23FzTvRrDFBfPfHLu2WcBXujo3qDRaXy+uRMXJ8PZjNtu1wk0pZJmJ6ZtNXU2tSGTSE3NTTvLaqqaG3KFwvDQhF4pq6DCYFD7E4mzl6+PhjNplncoqLVNFTtXN0iIghNRRKMevX5dxg02k1lMBM9PzbPpLI3iLMdEUulEntVqdZ6SshX1ZWX2MqtGj7Ewz+YLcqGyzm3VV+qNNkqvTAWzh45+evTUfxAkPx9hSkqr6FR2cMbHAPnePXu/ftNDh06devKtZ9Mso1CoNqxeRQqqsZGhifjcsgICQGWppbuxGbpKUSgXJafi07CYqVmumvk8ilPMfSEQgdkMa7cYH3zoK67S0vffefXcmXMAAozEZAlFMJTOMg6L9dbb7skL2TOnjkxN+DgeOGzaqpZylcVcWdX2m+89HvYtdvesUuUFQUJ8dAqVEUIGxa52IEMBQBFFEIDgKCBkGcMgwQsOrVKBU+kcLWvdJVpUyIQxDNET1Gl/Is5xWUky4WiTCmsqI2pryJqOytKGTgTV61yVpErJFjK5YArDMEKrITQkoXdJAhSysUImngjGBTaNIRggtBhO6I06pR4TUBWqcSG4VoRAEiCTWRKSS/TcdGByTu1oNDtd0ag8OHRp9MKZrfv2o2j+yJGB8d4ToQhT4iRra71WZ42ypKG6xZzx0xN9fUMj14XQLE+qmtd277j5i9Ur1s+ODp976Rcfnx+mTLYmr9vlNJudpYGg7/okPXy1dzIUaii133/7zWar5tN330/FMk3dLaWldaNjvYTAVVY1O+3OTGzh5Mn+E/PBhViSlcSeKvumlR0kLwYXw6vXd43NLJy8Oh3OJWgJWV1TsmfzVpJJ9k9M+uJZjstn0rnhpaVQQTYpNd3N3StXVTc1tOnUhnzY71vwFyShvL7JYDVmo5mBgdmzF09dn77OS1kVjqsQbDKeaq2qfOb7fyhw6Pvv//vtc5/5Oc6kMz+0fldD04pjl88fPfV+SODlYuK0zIsuv/UkAAAiiVJxGwiXB6liOh7IEHI8DySwdcP2TTt3Xbh46uODHwgcIEhSlBEUBTLkGVpYu3pNa9ea0+c+G7jaRylwIOMIhtfXlmfyoZH+0PpNPe+89wnK8es2ruNm/AJGTCVjGIJIAKAAIAASRVzYsisHFl0SKILoUMykpEgUsBIooaRYgrGZtLl0NsghZpWqP50GCOy2KNe3qqoqiPIqh8buXhoYKK+vkxE7qdbr61aIiBS+9Fk2ELF6TCpPNceoUwFfLBpNpyLJeCQ5H01zvF2jXLFpQ9W6HajGLBQSiFLBJ9L50LzK1QFJNB+6lvMv0UwBxIIcapoOxz87fKHCZL/lq/dgCk10Yf76xSOnL42SrOgp0xqsOtJYa/U0GaxeAZXYZPja8LXJwatlau26PQ82b78jOjX0yot/eebgBRYAJQLX99Tu7NnUWNO9GJx8+dX/nhyb/Npt27/xpa8dfv+t82c+8VaU163oplPMzOywDlIVdY0iQ5MoMZOOfXLu6oUJPw7A7hUtt+3qCiym3U7t4MjA5euRNBD75pcAAHY1tbKypXtVq39u7PLstMSyDpV1JJaYiYYBAFUltk2rt65as7GipkolFoKzvlTKr8a1FU3rVUri8tnjz/3nhTNTgxAAPYnGWLHJ4Xj0W4/XeCpRNnv46DvPvPt6pCDs7Gj/wTd+oFDon/3rz04MD2YlClbWIssnE/i8YE2GsrAcClwm+spAEAWnzbHvln1qjf6Fl/89NRVQqTAJYECUcRIt5BmNXr/75hu5Av/RgY/oDK3UKCVOQiAiy3IimXfazHfct99b7d645aaakop9d985cvgziFET8RhWZBMAGUKIFCuVln1hQJIgKH5hkoxASCKIGsVMOFSiOIoAjczP8/LqEsfbkwt2Atnm1axcbZUQVKlRGY3K8vrGfDKTiQcom93icqOkXla7cYnnmDBEBELp0HjXkJoKAIAg5ASOZzO5XHQJk+IohTBLc9nItBLN0WlMRnBKyiZjvGC1u9rXmyzVTGRywT8O40vs3NTRk1chk86ZKtdt21FRWQYS8+99cvri9RkTwhi1EoECUW2RSa+joryqxIEpDWO9V2OLU2UudefWbzRXWEdnR/795qF3jp2OFQQAQJlJs/+GG7d3r15cmvvvGx+0rapfu20zVhA/e+9AIhYtr21u7WrO5guDJ87OxCON7Y0VWiea9vf5Eu/1Ds8nYs3u0v/75v5rp/oS2TQj5RNZps7hHApETg/N8kBqaWje1VKuRsQLvUMckFfWtaA64tCVwSsj08UlXbXbvWHDtrUdKx0mC0WROK4gCMqgJArJ2GBf7/tnLgyMDjKxxdZGz6X5CC2BtZ2reuraPXbTpcG+p95/h0TAw3fd8cV9tx379JPjJz+Dtc3F1Qz43KuOyDKQRSgKUBT+1+EhVZRVVHhr5xZmBwZHEATgOMULEkQghkC2UGhsae5Y03P57IVrlwbUKgyBpAgAhkOWyWGAuPHWe1f0NI8Pnf7wo8M/++szD++5/7Gf/fSNJ/4sI3ggl8UR9PParM+z/QAUrawogDIEQJZRCBEUlUVZgwC7mprL5O0alZvCxxJpB0WM5JgOp65MD0o0ckObo2FDq9ZUmohwgGe4uRFTVRlh9cDUQj6RM1XWIxYvDvQiHUSBIOJWgOESQin0JlxtxlVmWZIKyTifC0psML3UF714AVq9C3HS3zsVyyzGE1GL09WyZm/7+hscTXaS801f77vy33dO9U6w6Yyk1rR3trZ2d6AYvnC598OLs0uJuF7FbW4rkflCIiV6nC6l2rLEK2L9vUP+BWuF++59t6xrW++Pzpw+fem/x69fGp3NywAAsHlF620bVpqMupMnjyOY+pEvf0koJN587fWFBZ/D1di1vlOnVTER/8zCzPXxRQep89j0YUby5Zm6mvoWF3roZN+cP1TZ5sKzhB7qeV44PD4yEwll2EKjw/ydvXcWrIpzxz9V5EWvU7kQJROZ+OlQ1B+NLm+mAbCaTfU1zatXrlrbtc5qcZNsXsgmFoKh6ZG+eHLu7x+fTBZyGAJECWgp9Z9+/m2EtX/3lz9Ky9l2r+vhW/e/8N67sLGzWFQFYLFfQQIAQEmCAi/LEhRFGQio0WgFCFzyLwk8IElK4IEkyggKZCjJIuhZt0Gh0x0+eCiXprUalShKogAwHGVyOU9F9UNf//bM1PWP33hRo9Jvv231qi27d6+//8jRAw/tuz/LiuLntTXF1+by511sqAHF5m4gyzKCoBAAFEItQXCimOIKJpLyEgiEKADotUxqZ1vZzZuqc+HpkhLUblVoHStV7nY+n4OMLzE/lpiPyRSkDEQhFWVzaTkvFYCxpKqmct0GlLCkgxMmq5KA+UImno7yAOIUZVBozAJQZaNzuWyCiyZ6xxnMZvU4TVcHesfO91fplazF2LipbfXqW9Q689SlQ2c+/mRhcnEqnkUprLXWu76zmlAZWNl8bWr01Ien2lt1NoNm2p+loLS6q6eydU2epo98cvCqf14jgK7Gjo7VK+vKNRlGPH15+OPTvR/1TgIA1jTVfu9LtyVjmedeP1Bf4fzSA3fqNYorZ45d6B/3VlY7vdWpUBAAzGh2e22E02idHOr94NzQ/Hzii/euyUlw6sqk2orFfHmJpVavdI/TmRcPnJ0JRgwa1Tf3bOlqbaBlZXwx0D83BHqvMpY6hZY6PDgSLLBmpTKUSi47z9SqjZv3bF29t6XOajQaiQLLRkKn+yZ//+ozs5G5jT0rbtt9y7+f+fdde++qby79xo++OZsoVFqN3913B+xY+/kW8fOUjixDWQSiCEUWYAiBoqp8oZBnaIhikoiyvCTxMgoQEYgKBblydU8wlLh2qRfHMAhxUSxWZiEsk69ra/jiN774wcv/uXDi+s37N3Ssaz/41vHKVa3P//HlS31n777xnoWAD8dQSVz2gsnF6NPnDovl4OtyPcRyJYT0ed0IBuU6vabJqM6I0vH50I5V9Xtv6EJJyWpW6dTW0Nis0aV3N3ohakB5LBdbZMUYhuP5FJdnuGSURiUBijlzqcZdXoKrbblIUJBEhdZMaKykxgn4VD7Vm5qeVxvMiL5Cik4P9c++8vEo5Lmde7cHUpHp8wOJ2aiISG3tJTd+5zs2g4tnJ66cOj8yPCctxWWt+uxAUAOZ1nUtlaTqysDwQIQrL9N01phURvfVvtHYYqBtbafHqDKqrNFU4ejAtYnZjIogW9vru5sqqssswXD2wlj86fc+STHMI7ds+8Le3W++c+D9Qyc7Oju//t17CCY0cnkQN2rGAsn+axPRhYysU37h7t337L3x8pHDh/umQ4lstUVXV6ePhsRYdG4+J7MMvaXNq1fpj16fee/MJUaQN3s93WvX4gpNZ0d9aH702pnLRF5MYcIb/RPVroqH7r7vxNmPzl6f4ApslqFRAG32kp7OVS5zVUtF1cqOKpbPPPnaOx9/cuKGHXu3Nje9deCDfffdlfRN/exvv8giaJnOBLu3F+tDl5V3SQJALhIAICorJAHLFWhBlAUJyByQRCiJQJZQWZaUSkWZpzIYiARDIQTBuYIIBVQAIo6hPMsbrPpHfviVd559lk7D2++/NxYaPXHs2qZNrfqK8nvu+onJQP3+tz986ek3czQLAESX9VcgSAAACVm+D4sfkwwhRBBsufRo+RcAylCqMxlvbKw6OzOXkQoel9qmRlatanZVlOc5zmD1uMvLcXq+kIzwoFRlsyi0OgJTkypdIRORZRQHNCT0gMAEISD5p9PBydDiogYRNGoEUTlI72ZC20IqUSguhfs+nhycDKeiZk/NxETw8tnp+qaa8lWV5z68MjgwL2fyFWXa7t3bdu/Zwgfmkpm5TBpXZmBBT5653DsxNGDUaeMyvuiLT6WAToVtba/de+t2TCP6ZhPpUDSzOBlnWIjgJXZDUuCvDYVnw/FcATRX2L906xpvec3FgcFnXj9Jouivv/cVe5nmldcPjoz4d2xav667avbKhYsj0ep6pz/h++f7g0lW+MLWNb/87qMJOpWg05euTo70j8hMdCYW8ZSXre3sTM1NTgzOrNnYaTTY//L6++Oh+JYVHW0VWrPD6Y+mW7s2pNLZ0TNnBqcmJuLJb37tF8nAwLm+AchrVzZVnek9HUhEZxNpAIBRbW6qaLt5y7b9m7ctpYS//P1fwwO9W2/YgKLyru3bB4599ufXn9zUVQ233LbsRS6ONsXOPpEDsoCLEsIUBFGQOBYRRaRIKJEEKAgyjpF2uzMUDjI0I0GCp4EsAEmGEhQhlGRe/vKP7j759lGD2tGzbf35Y0d88/N3PrT98tmJIydHfv/801994EsHzj03eP79YwcH5kdzWZqXZEkGsklH4QoyFEp/Xo1UfJhCWGQYAVBcOEEIRFnyWMwmkkgUUtt3N+sUBMlFPOVqlEdQQYmZlHw8oVTbcMBLCiIZSZaUezU4g2PGlKBx161EYTI9eYJN5Ci1WempwnleoyFFEaYj47OTE0Jy2ltRTxhbGLzE2tijVhoGzxx89d/PlypRm9O5JKZVjLaqu3FxbubQ4eGxEZ9EgK0r62+57ya3AZm9dCFHo7QgrVyzQTSp+z/+RMjn2Tx3eXDs2nRuQQC1JvTGNY3bt2621XWwubiUTfkiiyF/2sTn83lmZDrkY/Kf9s+mONBcollfX33bho4TvdPvnryypqvtkYduUqkU//jHp0kmvWVllVmh+vDMmXyBsWs0J2dil6d8XRXOZ379mJArcDmBQWB/b3RufpqVE8ML84vxOC/xWopYVVbVXV93eXz0w8ERl8X4069+obqhe2ZiWkVCrUY/N7dgdpfW9nSO9vcf/uDI1OKIWefpbm6K+ebHA2PHR6bidA4AgGBghbfxwRu+uW3PrkS2MDc1d/jUZ7H46G9+9dLl9999+9O/w5u/AOQiVgkCCIEoAhSFQEKYnMxJEs8CgUMEHuELslREUQiAxJU6nSmeiHFcnucRUZJFHpFERBRkSZJzKe6uL+7KpnLJYKipuWa4//rgqH///p3nzlz1TUdMFuw7j//1a1/42md9Z89feyYeHQ7NZFIhNhYSAYKuWu0a7J/vu5qCABEFIANZlEWSwB1mLcfy2Tyfz7NF1RZ8Xh/e1m6/YWOtXqvIpqIej7O8vIEO8EklGTn/KQmSMm4kDQogMOUVDUqcSMbC4TijVQhWp1dbWsqmCvnpMbUJ1bkqMJWJT+b5fCyPcCoYT/ojGEVCXWU4llCr1FUrb1GazB+8+Oli/wVnC6pW2Aos0GhJjQLv6588cmp2dnTBqUPWbGurb3HPD0yjEPNWukur6txNK3PxGD0T5oT4wKjvUt/w+NhMkgFtJdi2bT2CBEwuS7WnzGx3M1xBygUmB/0XeiePDC2kBZBJ5xOC4FUTj+7dZHRo/vXu6QSNrO1ouveermQi/fbrJ2oa22pK1dPzC+FgVoFLSU565+wAxPHnfvPd1Z1rx09dCERoxOTBOEapkq/OX3/raO/o5KgMgFVBVpktFCJplKqxuQWny3XD/v3l5XYNQlBa8tzlydGR0fJaV1t7Y3x4+p233m1Y037znXszvmj/Z1c/HJvsmxoVJKCE0gNtLd277tOX1LZu7VDhhie/8dPyVeV77nrw1Z/+Gd7zrWL2ZpnRRZAAAQjDyDyQOQYUCkDigcAi3PIsDzCZVFKGbC7FCQWBAwIPeV7mBQAkIIook+Frm2q6uuoWpmYsLsfS5PXp2cyqNZ1DvSPzk4n6LveKFe3hqPR/P3tSa9C+dPCJpaXTuWSEiUeZLKrV63hRXBgOZdJoNCwVPasYCm1mrc2uC4czmUwhnaMphUKlUiaTKRwDdie2aq33rlv2qIEukUsLuZh/ymdzmOrbWhMRYX7iEsnnW7u72UJ0brwXCpAt6Eobe6xVZt+lo7Hes7jOIZrKDV6TTkjBdEg2tJZ37lJq7BLPhuPzM4dfTQdzlWt3ldVKn/3nNRl1tG/cHmfBwsz03HhARDiNVt3eUi/xNMfSV4cCA8f7w5EYVFIVlSWFOG0uNzaXCpkltH5Nj72jOdA/k48VlBYPikSHpufH+4cwKOZZqalV4yk3KBAqGCz4ZrPdK9qbuuo/fvfwwbODl2fDAonmWFGDyk98bz8lywcP9w0txeYi8a2rW+7etur84NCiP3PL7m258OzxKwOAwyrcxtFQdHwmunvLqnvvvrPOW1HI5UanJs4duxIKZNfu3M5l5r7156fDBc6oIhM06zEb19dVX5+JDgRm9Eqio7Xj7ptvaGysOX3h0svPvrYUCz300L1qhH39rQ8aGzv/+IffyunU0cOHD5wdnlkaW4gleqq85R5nk66aoZT1u27ctX3jL+/60urtWxsb2+EXfgRQrGiFKTZygwIHgAx4AbAMKFIteQ5IMhAKQOSAktTncnmO5QQOYVkgS3KBBZIIZEmWRQRI6N0P3N576XJTS2vv5X5MTqlV1elc+uKF4fXrGtpWN73yzIHGrrXP/vt5FFeeGbhw+tjzOXqCoUNMRkiHgSgJlAKVOHR2hE8keQzHIIR8kdz6+RMDAKCgiJpqtdGpZAs5vV6xsrO1q2NrZWl9Lp08d+WYb/KUVYrXte+iWSIV9akQxu6uQgldYmneZLAbS0umBy5oLW1WtyUyNpCIz9ptotLoNbqr+ByglEwh4ivkE5yk09mbU5nY228eDMXwr35l+2j/1SsXQ6vWdsqiaLToBid8C764TkdUN3qtDkTDg7mpwtDFQaUWjRZiKr2R5qiRq5MOp6LWq3XoXA3dXQLMZjPKbCJeiKRYiZFRyWLSFgTp6sBsqQv3ql0qs6JvdlGvqthz4+rrZ/uPnLr80bXZiMSLEHGq8Wd/cudg32zv0KJKg0yG6fHF2F1bujxm9bsXx+o9nvJym5Dnwom0kI7S6dT12QCrUO3b2rNtTVetxyFC+eChSx/09ddgejNUH/f5ctnQjq0dL394Olngf/HgLwPp6HPvP1W0blo1ij3rNmxetYlFM79/6imTw7t35eaX3n6JVRDPPfPPdqf9N3/462ImOD420b/gBwCUmvR3bVuH5I1rbttnVJrfe/LFb/3h2/CRXwEEAgQBOA4AALksgBhAYJFCCAQBiOLnMCYOQAnjacixPFuAAgc5QRZ4yPMQyECUpTwjr2hrlSRSFGhZQng2nE7IVkvpyeO9Npdi86a6M5+Ouxs6v/iVL//m57/66e/+WFLZ9MqrT6Si53K5UDKSoXMIquDVFKRTApvDFud5jgcMLUmSjACgUJIYhooChxGQItESr7Ky1sxLDJBksSA0VHutZrvDVpKkBZBd6D1xIpHl9GpMhKSUYNxWQ4nXbXaVcLRc6S0L+5cunTivtVfXrV3nrSilYD48eD4vQEAqotE4RaIyu5TyzcdkldvoURGKTwdDganUPffUTs4u9F3PbtleW4jkCa0SIXF/nI6NxTGr2mwAdrUWReX+ywvemjKBTZGUJivSnx5f4KX0uiaFQKMaSrVy/Wqd25WNxY8cHhmfmKM02hu317jczv/+95RvKbN9fX3bSvviQjgyG12543aUD/hnwocvzp0Z8ynUcF1T4+pqxaHL45P+7EqvA6XAJ9cWmry2m9bU/ua1c0uZdK3b0VRX21rujEejxy9fDSboSIEz4aDUbd62quWmjXsjcf+kP9m55oYyq/qxx36TLwRu27v95fc/LDOof/C7A48+cN9nc+dkgnCQKFfgVnjdm3vWq5XGIyc/tlhq1q+t/9vLbyzEUu/9500sM7/xi9/Y2LUzlVq6NDlUfE7tWdUpxKPf/N0fl84uzgUC8Ou/BxAAHAdQAiwPJAhwDAAAJGHZ4icWwXEAyDzg8yibFyUWcCwUeCAIMpuHggRkEQiSLMt4V9eW8f6Bikp3wO9nmLRO7bg+EJZBtq7OHg8FcVXzw1//2fNPPJbK5UqqO3/3l2d7B89duvxmJjmbSgZkuSDkJUGQ6YxA4FgqJlIKnEmDeEgosAJO4SgGMYJzlKjMRnUyle1YUY3jqFKhdlkt4fi8KOedJoOSsEan/RqTPhqNyoVcNpINzechhgMpYnfaq5rqmMgoSKGkEg2m4okEY9JqbQYzbjBkc1mdjleSOA6AKBEmg9LkWSFC/sjLB5eyKmuNholkujoq5qPx4yeW7tjXHvUHshnBbXfKKjEUT6SDBM3SMoOs3WCZGAqpNIZYIipyyJZdPYdPzZ47caW5yWgzAQ3Ma1T6hqrairqu8ZmF/rHxvpGACsNu2905veh76u2LnXW2O27cIeZTZ6/03bhvn0VlDk8Mjk4tDi+mt+7bQRWSCoK/2D/630/6rUrTl+7a9MGVkeRc5JsP3fLxpYnXj50AAFh0mts3bWyss5/vG1maWxyeCkYlXoHAH9+zd8uuGwCbT0Zm9dbWFRs3fOPhL0TD6cd+/qOrR96u7tlpVJU/+YefHx0Y6W4r/ezKgEqjSKayN67fcNP6bX947e811uo7Vjf/+aMDC4HUh6+8Ehy88MTL73z9i48+9cbz5ydHMRQVRNkApc6OVU/9/em/fP9X8Ou/BwgKUAh4AUgywEkAAUCL0JLP34lFdhzPATYHoSwLHBAFIHCA46DAyaIERQGwgmwzV6pVJdn4osVknRgbRlA0l5ECoXxJCYlLSIZG933hZ2/88x/tHd7+wYSnqv7Xf/pTIDR55OibgcVr2cwCW0hDGebSsigJACAFRtboMJaBqajIc7IkIjiO4goRYqLLaUCBTCmpVSs7gr44TgCUJCpKPASKeasrMylRieEiQ4usqNEa6Uwi6gtkmUwWZvh00mgxlLjqEURDkUpCQ3IQcHROZlAxm+HBol7BeGrKMMKYigXmx+d0xhKtKv3ia1c+OBRa2WbqXmFToPJcQvj0qG/tCosMaVGAzY0NJCbMjsTUZv2UL+dbDG3utkwNpswuldGg9M2Ebrpzrz+Q/dvf3kUVcEO3SQV4JsJXeh1dWzp1BtPU1Zkz/UNHrwa+eNsmgMhP/+eEt1pTaSnv7Ko5fep8XUNXfUu9QIcvnO774OhlrVG354ZdPS01OJV6460LRy/2/+LrN3Mk9eE7J/ft3Jbk0V8+/59IPgcA6KzxfONLX45PL8YXBs9PLZyZDoqysKrJ++v/+0W1t+zyoUO8Urfnnlsf+9JDFSUtazd1jQ7OrNi0Skihn3x0OZGe/ss7L0OAQgglWbirs13AxN7F1IoS05071rz6yeDZ8eu/fOy7lYq8qDSYNOVPPPXMm5dOYDi+uWHFqesXH/3Wd+9auwN+7Q9AhkDgAEABgQEUAxABKLpMGgef12uLIhBEkE8DHAeiCCQeSDwQZcBzQBSAJEJOQCpKdiQTUQUq53N8KDZB56V0glOocBzFkjFm3x3fun5p9qN3P+pZ00qZvbtuuQXDFCazanDk6szk0WR6PLyQolQYQ0ukWiYgQud4o51KRVmGFhCAK1AyHGbMThWlQEVBMJlUyQRTV1fbUF+3OLegU5tIJZdIhAwKFcPi3up6h9kRnpuvrOtyuT0oLycDMZVBCTFMljCO5hUkClESwaFSpWZyBRRH9VaHwBeS/sF8fEISJLW5UQCR8x/989qVufJG81yA+OSjoMGF3LWrHM+ByXTy7Pl4e5Nda8ykA2hru7ek1nbpxITdXpJjCx+8e65jRbmRhAIHrR4zEISm5gZEkXvmz2dHlhJbVtqMJN4/Hi2zKNZvau9aWZuISecuX7t6eaZndUdpqeK1965Oz8xXuqp27uucHhuNR+TWFZ2VjeUFkb18/MqFK/2yAGprGm6+oXUxnfn3029t39a+/db9p986VF1htzpLfvuv/x4eHJOBvLa2+oH9dy6FZ+VgwJ9EVFb0zROXQ8nkiprym27abZHyVUaTzlv5xqufde7e63K4coGJ8lLD0hIAUHnXow+muKSBpMI001Xq+tMPf/2FHz8ak6Wbast//P3HHv7Vny6NjT390x9evnLma4/+tFQsPPrEU/85cuiJ7/7k1ffemQj4Pn3uAHz4d8theYwAOPo5bBwFEH6Om4MAIkACQJQAmwEUtQxZRSQgiEAUAZAgL8gIMJZYbvDNX9ArnOlUIs2FA4EoTkIgYrkMb9GVrlrz0N9+94udW7frXTUdPT2jI8PR2KzBYHPavf0Dn+b58dkxnywDQgHUKoqj+RzNmmxUJJBHCUSpUBTyIpMVERSzubR8gZNEaHVqgCA77M7yUm8iyUI8i+McnchEk7TMAzGfSmcyFFSUlDZu3rg3SxeW5kY0JFZWUZPOk0qNOhMP5JMJghD1Rk+p00Xy2UQ8hFF4jhP1OiYaTSE8CQ30kY+PxGcyHStqUI3q+Rf7C5zw0J3VqQgfZBKX+pLVTnNTrTIQY0hUtWNv/cnDg/mYoWuz47X/XFCqiTVNZVyBkdWUiEiVdntlteHopyMfHJqs9uo2dJd+eGxybinWWmPfc+OKNavXBFKJN54/mAhmm1qarCbbQHDk1PHxuipHTZ1NmcetXkcqyOJqsqapigdgfDL00bsfr2qt2XDLpnffOdDbP33Lg3d5CaTCqam0uA8cGfrXhx8vMWGS1H3/K1+8euX8tYuDWzfcsOvemwcHr/7jqedn4skSvXpjU/nKyiZcZzI6Kqp71mejk5mFRVtZldtd/dwrB5/575MP7tz87kefTqZTP3zofpfe8vU//5lCwe8febihqmrrtx8zqpQSLyhNum/v39FQVvHU25+tqFpFqNGfPvunzc0d8IHfABkAFAUIAlAUYEWMb7EGGS0alJcfjAACMQ+UFASIDCQAAZBEIAEAZUQQJApWGJSrw4E+VLZkCvPJTKLAMiiETEFORsW1q24fvBQxWUDPtn28pNaZ0N5LB4OB2Vg8v2vP/TH/dCBwbWJiFJEFpYagabG4PaSUSCLKYhSi0VA0zZMInk7lLTYjiWMFlrM51SJfkCTEbNZJPFgM+ss8Lp1CbTFVl1c1MEyCo5lweCmTScu8tLg4H5wJoLJg1FKiqASkBuXiwfkcJwNXiaKro619455SW0naNzc9PYIoMu2tq3KhwMjY2UuDYf+iXFuic9SqDBrNU/+8LsngkQc6xgaiPM5duhw3qkmLE5Z5dQuT2d23tc2NRUcvx+/80rrXX7syN7tYXWktd5A8AkkCGjTGFWtbxs8OvXO4z6JX33Vnzxsfjh+/OKjXovU19gfu2Laiu/7Tt84cOHA+IZE37Gpub2g4e2V04Mogxxaamyrr62s1Oq2U4+LJKCYavV0dU1PXT3548ps/euCz9/p+ffC90hLnmobqtZ3lt61dx3CaYwc/uugLxFi00WXAJdoXjvZOzv79dz/2eprfevvN377wUpzhqnWaR++/v8TdwFstCqVSnfOFIulVm3cSKv3Xv/KVrhX11z47HpYKJ0dGn3zsO0P9sy8ePeDQq5945KErE8F/HzxQ7S3pm542Kcm7utob1vQMjQR6Wtf+5Imfz2Ui8P7fLGcoUASg+DKcAha/JPA51RcCqdgumQckBjFCloViu5EsAwBlVBBFNdKqwSpS6Vkxb43nR3N0COIyV5DonAR4vMn7xWgsumrLXt/cnNFZNj17gc5NzI34GZDZvu1Btai4cv1QKDDF5GheAjiKyKLEMCKlQumcqFOTEAGFgoCjUjIiQhQvrzRKUGA5XqsjtDqdLPIGpYrlaZPNbNCbo+GUUm22usyl5gqjqVLCQCERn5ybDMz3GtS6aCzHAa6xphWKCZwQF30RQWVTirkml62x9VadvTKTDk1cPTIxct5bXVvisQ+dOfTme2NhGm9v1qxsdWFKxd+f6rXbqK98Zd3pgzML8cjIXMxrtyooqWNN6bVzixu3NvnmwpdO+r7/471vvXv+xAXf1pVlDfWWSDwpFji33V1VXeWfmLo2OKBUG7/6lQeef+vkc+8fo0jSigm37Gq85/6bU5HYq++ceuvQmEGrvHv/5q6V9aFA4uqxS0cHBuorvY985ZtVlbb+k8fOHL7+wHe/nsouPv2nv377O4+//c7Bp44dVqK4RqeodJp++K1v7tqwNji1NJnJvvSv17/8yL2V3qoffOPnxy4duu/Lt/7qm1878+HZ/b/8w74b1tWhxLY7HxyanPMHUzfcfPOBF59p2bR2yy13vPjXv6KCdPXq5Vw8MpWIjvp9Tz72rZfeOnh2dHxttef955/719NvD/v8nw1dzDKpTQ0VFo115cY1DpO3kE4+/Kv/g/f9BgAIUBRgOEBRACBYTuwgy2fYMnMVARACgQGIBAmlLAkAkSGCFU8zVBJEA9Khw70peimdljLcvCQmZCjl8xLLySiqT0zq93/hJ6FQFPDxEKsKLhy2OhXD/RM2p35z191nzw0AJJZM+JYWQhBIsiyKvJxNSphSRgBEMAhxQGEoAGIhA/gCimCI3a1MpxmtgbTZjBSpDIZjbqcVxUm3zY3r1FOjI7msz+mxYrLRaq/2ut1GvdNiMPvnZ3hOQhHKZrbmstFwLEiqFTilqaxZNzTYN9H3sdfhbuveUqr09o9efPudf5iNup7uznxo6r1Pr/cPpcvcxht2lpV5Hf94rhcT+bvu7pgfDZ3rn4qmQGOdMRVkN2yrPXlyaOWKqpn50LULkd/+dNebh0YHJgIdXndjiZLm2LlICsVUXpcJoeMLSxEJ4A9/4ztXR2ef+OsLkVzeoiVLtdRXv767ptS6uJB55+jYeycuogDcuHVNZ0MrpdPQmfn+S+cRpenW22/HAXXqs4M2EnE1VsX8iVv2f+nhrz56aGJyW0N5jhdOj0x3t1X98Zc/Wb1q8+t//LWlpmHbXV+cuDL8+E+//ea5S4//+IvfufOrX/vGY3qPrafO47SXlK++4flff+vGu39x5MPXDnz239cOHirEQmcOftiza/9ffvTdkhLNb94/ZtbrVtW5L04s8ln6pX/8ua2+9Zln3ppNhg8c+aS9vqSrzGlwekpLa9sbKp7507/gg38EEAIEAgQDCAQ4ARCsWH+8TPL9322IokDiARQgpQaSACRpmWwvQwgkWQNqdbCSldKxSJzmp0gV4ASJ4yWIgnQKGMmbSivWzI9fspVXDfYPakxZKMkqBJMplQ61nztzzlvjBlJuYXaWYXIsU8ikJJRE1RqczUsFViQoGYMITmIUhgsCDPpybo+qwAiijBgcuNNuFkQkHA60NdUJIrDaGqFEX7t63GozqjXasYkpk9VksygrvT0q1EIptXwhK+bSLrub43CAiOOjFwp0xlG7R6Z0Q4f/7Q/OWSuru5o6tSrdB6+/QJJgw8YVFOBOHxs6emFeUMAta8vv2Nv17jvXR4cXH/n6doxlXn7j8mKS6Wo3L05wXdudw71L3e3l14cic2OxH//fjc/+p+/89ZmV1dabtjbqVeRQnz8LEQWaC/qSEOcpitx3x5dUDuNzz/732PGLOUnurrI9eF83CeVMltRbje99cumjE/0pANxGS1dXTYVJVLMqXziAG92773h4/MzxSyeO3nTn9raVbamY6oaHHqlzW7btvsFZVv7Qd79tViIvPPkEk+FOHnvv8T8/BWzmhWNnvvfTP/ZH5o698GQiBX79m58lAdjssf/27VMXj3+M5kRZrd5w175NjXV/evwnnx345JuPP3XwXy8/9/rTZ+fntnesqCixfXL2jEbvuGPL2i9+5aG/PPFCVW3F9WsX+mbmv/vgvksnh7q37jIogEpRQDAMYDhAMIBiACcBQQKCBDgOEBQUlyr/QzVJMkDw5VSFBIAMgAigVAyMQSDIGV4uYChUqlBSARRKglCgShVKUIhKrSgrqfUvXuLQRZ5TyFi/0kBAoaDC9DrSMLpwvaqyplDgTFqL2aYHGKY1KywuzOLEFQoMwQBFQbEA8rQgCxDikIcsoUayWVZpQFlW0FDaubkoiqJag252xocqhFBwWJAJT7U3kxEAodNXVgCYn5qaP3Xy9Y8O//NK30fTgevDC2c+Of1i3+Rn4WTQUdZuK3ei0Ut1amtj582fnF565p8nfvTLvxz6+MMd995ZQNVP/+PdsYnMLTfdft+dKzSY+OI7kz/62UcbNlZu2VXz+999UIC6H3xnv8OsPn8hVN6imbiWrKku6xsJrF7ptpfr/vDHI1+9s2nvGs/x4aXXDg5GY3DVOq/JIg2Ph0gSxaFWQUgv//OJq58d+tn37n/6ie9vWlEzvJB8+78X1Vohn1/sPTXxk2/e+u7fvrXda1ZQ7MXLvY+/fvHFc/1WT2lzJXHqnWfDPFXRVfHcswfOHD7b2F6xsqWmtrLq+rkz6zfseuqXfwwx0oNf/24sTo/6wv/8+1Mapa56Vcdd+7cnsvl3Pzy+dkMnrlLPLkT+c3rw7Vf+uW7/3aHsrE6va3DaTwyP/fRH/xeJBBbDCyu3bqgxl4qSrMGJu+74+v277ti/cXNVc/uV85d27t196MChL991V43Vdel6oHPNJjaPxqJCgocILM5VOIAogCgQAeAlIErLvqhlEUsusjABggJIyEX8EkCALMuiVLQSQ1HKSyArSgWcFLRqFYGRpAInSQTFJKXSmOMTBWESwwv5zKxWLZXp63ACYAY8RI/IqqmykgqHqYwDCZ0RVWlZhRpo9DiOgzzL5FmWVMgSkEgFStOFTJbGoKyhCAzBUQwhVLLPF6VIdH5+1mYyq3SG2Zkgi+b8qf54Jmv0GOLJSLmztbKip76hR2WppvQKf2pqeuZiNBUqqXXlkUyEXUxkFvOilSitPX/+X1xudM/+9RqIJKPyB0evPvfXd5sqV2y97Y6T1/qef/e/jU3rb93Tded2ZzCc/85PDqM88f3Htr/4ysefnLz8jS/saquzXbiwWNtiT4VptZp678OxrhUOrUXx2C8+3bC68icPrImkMyf6x0ZGgg6lbsfWNoEgwxl6eom12U2D1y//9pe/lXn6p1/e86svbVUY1X/6+3lXTUtJi+e7P/gri6JP/fYHbWbdTaur71pdNRmK/+LVw8f6IvtuXz/S91HfeHTfA7ecOnMRV/ArG8sYlm6vLn395T98+dHv39u6FiXxV99///ab7v/jC/+58Om7Cpt187bVj95669zgCK7V3n/L3fvK7KU61e//9resf7rUW5b0LezoWgkRpHdi8ehnp2PhRZ3XUVJutxEKfyCQY+GN+x9uqmvVaRyXB8ZtevXA7NXfP/ufb375C3LUlxJ8JTVuPpd67ol/IwgCZBQgOEAJAPFljrNUdNshAMUBigMMAxgBEATIEAAUyABCKEEoY4SMEQDFAYYDlOQRhAOIKMIkRARelChUTWIqDKpRSCgJQeTnFZidLoypKSUQEFTFYwogCFmjSiegcZfDCrG4t9RiNOloNicKYp4WFDpZp0clCOxlCp0BxXEAOKhQkCzHZ7IsxwkkgQkCX+B5lUYxPbmAEagKt8b8rEahtjhsFKEyWvWJxassglAO2/qNu1ua16zpvmXD9v2mynpJ5bJ46lUKjcNl+fj9D75038/++eqpwd7em9fXPvrYLlINM2mkf3Tm7y+9nmS4b/zo9wRl/tfzryjUnvKKkhu3GkmUf/KFC4MDwW9965ahgZlX/nt8320bV7d7X3/jsqvCWEjyOgt25PjM9k0VHq/hb/+6pFQrb9vRHk9lT1+fmA7ExAK+flXX5u5Wu8M5OZNmeQWFw4/ff/2pVz9QkcYHd23du7Pn0D8+oTgxymPf+vkzk4nZPzzzAybDdXgdf7h7uwkl/nvyymO/e+13P3m4HBckUVddXdV7edTqbbg2PLDjxlsyKe5C34nHHvvawzc+lKAjuFrd2bn5/ke+m5hfhJj6+99/5O5bds9Pjm265ZbGVR13bGgf84ffe/HFmhXbE/HAzm07UEnauWYTZXCeOXREoSYxs+aLt95h05CURg7NLVlKq7UI7k8yHx/+7Et3PHTm7Ol/vPRW++bNiwOTyWRi7d4NmEghRYW9eDj9r3Yb+Vx9QBCAYst/LcajIVLEVQCkKKViMooCFAMYIUpyXpJZFMcgiqMIJFEVjmmAqAMyQnNzHEirVGpW5nBc6UvNkMAkYUFEHdRRSCgzgeCUiOISletorqyoKIUoVhB4hJAotaxUoBgAJIVSehxXEYIki7JAKWROEBFS1KhJLi9yjJDn6MmJWZzAHU7nzMw8kEAqnstnFIhCF/ePzI8PhhZ8qRQQkkg8yDltbpWk9lrbaEkzMjp46203tLVUzQVT735y/Y+/f8tls/78e5vsOoHjQDBZmB0efe+Ntz31rU09Gw5/+qmQrvLWNq3r1isV8qsHez/58NKj3/0Wqsb/8swH2zb07NzU9tzzZx0eB8Hjdpv2k8Ojd+1vNpmwF9++7F9KIqh8Ziz+5onRa3Pjn53vHZrzexyennWdrQ21FouHKxC916df//TDkZnZhua2H7z0RGlT09rq8gyN/OPJ/8yMh/705OMXry/UttS98cQPayyGo9en9n/tCdys9thkhFCdOnqoxGYfi2XmFi7feevDv/n+r33cyPYd7b//+R/+/e+nf/KdR2LJ/EvP/tPZtEJhd7du3pmcC9hrKpu71zfX1rTrNe8d/EyjUeeyKavVvrdxhVNXumvH7jNHjyghVJCKmoZGAteHIxFKDwXAmCpc21b0nD95/vbb9t6wdduFq5e+/5OfyRb30shoJs0++LWHEVkAkgBkYVlMl0QgicuLwqKntDhgiUJxYAeSDCQABAkIkiyKYDktLclAllEEilIGRVkcxQgCIxG7WV0vCBCFbJZZlAAAMANJDhCsyHEFsJiXIk4LVOvSWXF+KjyG4VSKmcI1Sys7bBt7WnesW13tqDLorGXecpRQKXQmV4nJ7tITBGnxqI1OXEkRQJIDvnw2Lc1NMumoLHIgkU4AgEiSPhfPUzghcDEM2oCoyqa5iYnRhbnJ6bFxOp89e+DUyPUT/ROn9EblR2+efOuVj267Z/NNN7UKIpgO0H/+09tsnvjhD24tNSJGtbrA4m98cPy3f3gumZNuuPOuifCFgf546+p1G1bXKFFw4vzYP59+7QsP39vYUvvbv7y2Zk37DVvqL12eqK0vDfrThAJ9/j+9X7i33Wkm8gJW5fLcua3DbLT+98R8KJ/LsMmZucGL/ePXRhdQJbrz9j3f+sY3U3nlfz45/u1f/uXvv/0tL0Tv+tY9j3/9dg1pefzHv5+d8t3/4M0/+OXfBZx/5x9/2uDUjoSiT354kVbgN+/fe/ToBbNd1e20Xb18pabZXlVb/X8//M3A4OEbbr/F5jKdP3P0qZ//5OB7R+jIHKFSkUYjZbDm84XS5iZ3Q91N23uSvomMf3ZmcnDgyunb7rg/npzceeMu/1LCv+Bzul3h6WlbefnS+MXKxqrI0iKl1bY31Ceyqesz4/fefced9z7sshv++Pe/nh74ZGZmSEhkEDYHuBwoZACbAxwDClnA0YBjIF8AHAO4PODyQGBBcT8oskBgAc8BSQSyAGQJSOLyUSdLCEA4QcpBCQIgKTAVAbU8o8NlAaAcJ4aVaiDCMIEllJSkIrJ54EcEUKJuUlAsQRaSab8akixL5/LBJDuisMxW1fGb11TfsnVTR3ULBdTzwwkKtWCYxlXq8VaWWspJjQmBmISqJY1R1lkIQq1AAMRQbMkX4RnQf3FuaTo5NbJAx5YiC8lcLDU5OlPI5aZnB+fGJlFJe+T98cPvfzR46vjee24cn1x466X32jo9N97WThIgli489+KxSET58/97bP9tN0/5AgYlqlBgz7/y9gcHz3SuXZfMpA99eG3jjevXrWmQeOzK+MzTT/zrpj3bulY3/+kvr2/e2GMwUkv+eENT2cJMsiBKb380+ejXNmUyYZ2ZYPL5de3eG1d5LveHro7meIBZtEgsRT/z2vEnn34f4Nkn//4Xu7752hL96onxp/7x4mfvvNPcXP393/+ptaH9339+srGpoafec+c3fpfITf3+8UcrVOpVJfoyO+Wsru5oqRw8PXLnrTsFRkwkfA/euz/NGD48fPnkR/+99db9v3j6+dbOsqoG7x8e+2kmmcX1GlkqSCxP6m08Zdq6/SaPyeKfmgrluDMXTnWvXWctrfXWVO69aeeSb3rFlq2QV5rN9qG+6yaTWWvUsjKrUGvcJbV//fu/6ioNLiP54P2PbV/R/sbhS39/5QVnYxmSC4NMBGSiIBsFmRjIxkE6BjIxOR0B2SSkk4BJw0IGFHIgn13+1CQOiHnIF4DAApEDEi8LHJAEwIspUaQ5nmVZQWbV/sRAip6UhGLPMocRQIB+DE+oCMDDFAsLLEgROAcIWkkw2ex8OsuKAprMcekCk4PBFOzj1RftTl9zmbbS5lqaopNLbHyGv/zZLBtGrFqLgBYINXR5KIMbNZeiap1M6TAREfwzMS6bpJPpkD+2NJ2OJTI8hyIsJ/F0ZCFicVkWJmYhKm3ctJGKKz8+eCUQidx837Z5X/ydF866Sk377+lQKVGG5V564z9ROlHX2hWKRixmQk1Bm0Fx4croRx+cvu2B+zA19c9n3l67YUN7mwMi8rgv9MffPb118/r2FfV/+NsbN+xcNzDqr6xw17aXsxlmeCb46rujP/rmTSMDY16vKxBNtjfU3tpTTSHSqeGli6PxHd3N3a3eUJx+5BcvvfTSy3/5y2P3dzcH6PzbfalXDw0d+uQTUgj96vU31u5+aHKO/8Wvv7O+zPjFR/+sNZU98bMf6wVuaWpJIvLbbtxeyCQxXNHU3rM4Ndq4ouPBfTdOhjK/+8NfVjTWoST1q9//9c5dG0KRfP/lq2qtcurqCYnJUXpjKLRY19q6eeuN4UCcFsHIwJCszDet7ppfnOlZt3N6cEFrNs3jBShzyWQqFU3RgM/mMixAayrKT1wffOWNj269c4+YmX/w4e/f1dHRe/7qlx/9OpINgMwSSPlB3A+iPhCeBeE5EJgF4XkQmoOhORjxgYgPxgIgHYHpOMglQC4BmLSczwAmC+gMyOcAywCJ4Vk6zXMsx6VFPpfMzefzUUlOQiAAkcYQHoMAwXIYhQBJi2A0EFGR5/NiSICoAkEphKRzglTQMDzgOChJQIEr9KhWKxMWCltZUVpRbYpFsjwDZ2YTw1fCGR9hUBgVKkJrxiSRhwQrIbyEChxf4AUhS+eVVpJEUJVKkYyENWo9LwJKidBcLhrN2ius42MTAMe8jc2EJB/+5DQGidqmckbIfPrBRZpm73pgo9vt5iTwwkvPzQydbm13iMqCxioqVbzbqZhamHv37ZfvefBel93w1psHNu/d0uB1QA7N5wt/+N2z69ZttLhsh4/13/fAljffOHPL3s7mjmo7RR05OfTMa+e+9tCuhanJPTd2q1SqnvUt+3fXrW/0IjLzwYWRbTdsK9UpNtR5Tnx85Oil09/5zjce6a61YfxQOPPbty/8469PLPa+c/uPHkzmghFA/PnxH3fq1I//8ck129dtWN81MdSHKqSaNRvb1rXNDgxClGdCk3k2uGHr2od2bw8uzIUWZ759912LQ5MUwuzbv2duoDc+3fvxpx/4Z2YorbH32pU8E1l7w00YobTKOZmXx4ZHy+obRweH6zta5QI7PXhlw7qu8NJUeUnJyPVhk9omBJcUOtxpQFUK9b9e++947/UNu1eODh164OHv3rth3dy8H5ESgI8CNgJoP0j6QMwHwnMgPAP842BpXPaNQt8IWBgGi2NgcUIOTIPIIowuwXgQpMIgEQKZGMjFAZMEMC8WMkKBBhwHGFpkuQIUJVEoIBgPRZrCJAIBkshCiWOAn6TiWgyTBSTLSQpZAQCk1Gw0FQQSRQBEjckluKGWamhUbag1rPOYa3qqy2/rrlYSuEKpgBCG45kzx/x8XGtUqxCZxzAJwyWNFRjMCI4DjRlXkoTeoJNwWW3AE8kkRiAQogpKoSb1yWRCkrGKutKBa+etpQ6t3iZk+OHeoYaaCpURUDr+Wt/10Ynhffv2rFrdQfP80MTJtR0NXatd9mrJWCIgyoJaT8wszn368RtbbrihUMhcuTiy5/Y9GiMpYyhJyW+8+vK9t++c9wfTMal5peepJz6+477OtpVVPXWOd04Pnrgwt2nTigMHTuuUhrKqWotWX99sv33nxkJoscJtuvuBLelc/M59N3z2+ht5irz9zrtvW9OmQ3mbUfvK2cAjP/rr2GcH1+y54+M3XgcO029++2NhcerK2Ej3pj05mmUinKW8WaNxOcrdA5euIiqjf2bSXdvgthp/dP+ebGj6vnv27upqmR0aa2pouN43+I/Hf8skc6l8AkHQieHp4FRvWYtbRgQ1CkZ5+dzRI56KymQ4qlJjJnfFn574q5EkLBqXhMlzk+MllS3X+yaNVq0K0SI8u5Tlf/jY90heUVNpGPOPfOUXv/vCDVsQnAUEB7AchFkoJ1E+AdkYwgRhLoBkFpGUD8ZnkdgsEpmGoQkkMIYsjkD/OBKchIEpEPOB5BKIL4JsCEo5hGEAnweFLGAZgPCYyAKeywGZXwYBAwBFGZMElgvjKF1mEjVINk+LOCkLaF6lZCgiS6jSRhXWZKtYV7a1xbnZae/RmhsUGpvV5b51/Yp6h2ZuzocAkMjkk9nCxdOLhbjCqNMptBipxDFcZlkeYAW1FkCUpzQoqpQUBlRjwRQq4HLUJRI5VIXhEI0HkjqjXUbA2MBgS/tqgYWBxWAiEy112mUAVAZifinw0aE3Oles7lm3IRpLDY6MlFtXttXeYLbrrU5ErRUxNdI3PN579fK+u+4aGeidmJy7677bUklGrdEyBebE0VO33txz/Fh/R1tzIsn8/Q8H12xq2Lx71S3dpU++ezoSktpr3Zd7r7z8r7dXbbmJp0W327V9+/p/P/3uDbfd1VJRsZjJdq/pePPv/7a1rNhz6xduXtHE0/S2eufp4fCPf/lnswqDmOlXv/i1sqLpl997pBCMeTp6rIAKDQ2iKG4qca1ev53J8gZj+VTvNZ3RTWmUDV1dlfWNeqPurq98GRMBiqEjodjhE4NGUp3PMySOxDjhyuVhNpWJBNKLS3EdRQxfPJXPhtvWrgws+Vxe9wdHzz/yg2/Xttakg7F4LqZRkRcvXXnxyT+3rV5TrjdLcv70bODBR3/Q1b6rkFnIAf6h7/wAATKEMkRlSACEQACFQApACkISAhIAUpYJGWACgAwipFAmiqYDSHwBCc8isTmYmEcSC1hsAcmG0FgQhoMgFQWxAEjHAZ+TchkpGaNZRuJzsJAFHAOkApAEACQg8LKIsiTKc9lUnmV1CsnplFweEaI5jQZU2hrduk4N6QacKGQSIpNlWU6nUe9a6dESkijLKIIWClw4Th/7OMDFdB6r3ajFcQJDUImgBFQjISoMRQSNkVQqKZWWEgDjcpezvMwWaAxF6Fwy4A+UVVXOjo0SBDTbXfk8nB5bxFUCRsg4QLVaNYdmPjz0vNvubG1dxeSS42OXiLS23LrK7rBr1JiKQFRabGDq8tT83LY9209/9lkmlrrttu0LS8ESb3n/yCIq0kYLmBgPbd7VPTEWPXngPEYh2zesXF3pevLVj0qra1orvVY7/rPv/n7//bdPjw3vum0fpUWOfHzmuz/70dzQoKHEyaZ8s/1XPS3Vjzz0oEtPhjLs77784NH++X//9c8bb75jYS5+5fybjq62xvparavMXt0W9Y/lkyFtibWivopA1WyhUFJW4us7UtuzRgB42cpdqaWgvtRprrLSmVhBEDAlWV5ijC0Gstk0lglPXB8JBlJ6qyJE57sbvAiKcTm6snlFIhE26WSP0TC1FP7g2Me7998cmBklsezmrTf++5lXeL5QVVKaYzmCoM6Ojv749//oWbtr5MJnZU2NCF2AdAHJcwgrQFGSgQAQIOMYIHFZQYlKpaRWiVqNqNNIWq2gUQlKXFKgEgklTASAgWwSZiMIkwKRiBReACEfCPsBHUMyUZCOgWhQZlISnQSJAMhEQCoCsmGQSYBcBjBxWeJFQSqkYyIGEV6gJSQfjoJoWgpkwtP+kXBwgYlHCtGlXHgqG5nNZGmPy72qrqS4vEQgQCDCc+LYxdzoRRGT9BoK1+pIjJAJFY8ZOJlk1UYCVXMEhfE8r1KiKKKi6SwrihhCxUOLHFcwuUxjI32eCi8ns7Io59MyRSGiKEgcR+IYoZTPXXzPZndb3TXziwFf/FLKnygxtLocFSiCoxTAKGRo9Kwkg1XrO99766DZZFvR2eifC5SU2y9emW+stw5e61u1urG6uXTWl37/7dMnLvXfcWtHmuEOHLmCKzRddTUqk/SbX7y8455dZz9898vfeOTd/7xSYOn7v/Tgh+9fKl3ZfPGDgyCfQvS2L9+2J7YQVKgMj3/hrheef1Wt0K1urLt26lwi49eXe3CFztXclaSXcrFpRGFANOpNu9dQGrWttIrNRZg8YyqzS7JgqqgWEbm8vTOXSgh5bnVnY2lllZzN9l8509xQV1ldMzE5XVpd6q20N3irOrvXp+JxjcYw2jecSyYgJmtJ5dx8aGJhfsWatjde/Oee23bU1a6cmprasGqNARIcxyopxWuffvz6+weS0fjwtQtIMgvTtJxhpBwj52nIcqjAQ1GEQEQRCUNlDEdQkoBKCui10KSHNhOwWyWHRbYaZbNRMuuBQQVIHBEEKHNA5AHPAwqgmaTEskDgQNQvCnkknwGZOMjEQSYC4j4Q9YHgIvD7gExDkJXzCcBEIJ1BeBb6fcLBc71Hxq5E6STLSTTNFQpynhdYrgAg2NFZ7jWSoiRDCCVZshv0ClJ1/LOlY2+nB87yiSiVixBsDNURWrPSpgRaSKu4CB6cjZ08fgQUeFQmCywvQgHKSGjJb3XZQ8EgiWMKlSHD8smYACAmAQnFRcAhABCoEhkcPVJT3aZQOANLUYsTDc5P2t0VKp0ZlzGKIATAXR+8YNQ62rrqX3rljba2TrVOr1VKY/MxHKUcLnL46vjdd+4LRdNOvfFyv2/Bx9y7q+vEyWuEFp+ZiX7vkTsmx/qPfThgcVGIiK3dsPrxn/x6195dTQ21qSX6zPTs8MmPFnzT1W0btrSVvPvRW/c8+p1Gt2Z2fLS2tXtkOLI4MUkpgSijeocH0FIy4EdxRToS775pL0HhBV60ltVcOH1SqXMl/BNat4fQ2iylzRipvLmnZ/2a9XpnjdPhPPHO2xq1ft2tX9CaDAIr6A0OlcFaVlXBsbRGq+29NjwxPr2ttZNjmZVtPUcPn12KZNKJdDKfevhrj8yOL3Wv6frm3ltvW9kl8DxFks++8fax872jp84g2RykcwjDoPk8wvOIJAIUIAQEFA4oEiopWUnJSgKoSKjCoVYBjRrZrAYWNbT/f6j6yyjJrivNHz5wMZgpmRkKsphLzLZkyQzddttNM01umHeme3oaxp4mN9httiXLliyLsQSlYszCZMbIyGCOy+ec/4cseeaNlStWfMhvd699z9n7eZ6fG4TdLOgmYR8JOGHQgyIh4HUBnxOIModEJotARIBZ1KgRAQNIATWApQJSA1oeFJIgvQFW5lm1AEAFqQV+cwGqJQg1LrsCgOp1OaIIy4ATKBKoiahBqWmGg9JdgyF0Ry8NREFM5AoAsPhadWpUO/9S4cLrpWvvVAvTrhsncxdeXx4/l1yeKiQShcRawlR0RgE1qaEZmMOaqpXKVYfbHV+Jd7Z3FvNVS2NmDUuCTZbtSESWSSEVdF2Znj65Z//hUtXcSGQcfu/0zZtNwRYJczzGGPOGbt64fTHW2B+KBd9+8/1j9x2r5RS/1/Hqe2MHDg+MTdywC/K2vUObmdzHjvWfev9ya0OgK+Ken1xt62+dnsp9/lMP/Oq5twVEAEg++uRnEvPr77//4WOfejQoY2p3vP7KZYcgUUF+7IlPwOTG/PLMU7/7X+Pjt3buPVwokMnbi7SSLhcq2Y2ppo6O0vIaz6G5yxcVonCcVVyf8oWaV2+Pm0wQkMko46QA4GxL6/N93Q3d/f1yJLLtrnttSNIA6D4w0jW8Pbme3kynZSdfLmbz+Qy0jGBD69rKwlc+99mP79156cJ7dx+469vfe7qhwbFy5WTn7uFspQaAuffgwJceOuYEgFmEQ/jcxJQBMfJ4qctNHU7iclCHkzgdxO60nC7qcltup+nxEJ+b+tzM66E+F/HaqcfB3DLz2JnbDjx24HEwt53ZBWoTmccFvU7gdyAOQ8wTUQCSDOwuADmGIeDQlgoVYAwECJABmAJKKbC+AjfXmFYAWIFWilo11BXp3Ne2h+cchAEAOQAoL4ii7ARAIEzYP9A8EJIJpQgC0zLS5RIAACOAEbMsUtUsyWa/dm15fHozsVktlAzVoEqVGibQDGDqhGMAEGSaAHMwk0uGw5719bWQ1ytJMmOmVjXLeVouWYQSagFdp7xoq9SSG+uTu/cfml1a4EVelmzl4obbW6eUmSjadWL4/eLG5tzBI8cTyfjU2NTevYfsxJxfqdy+uVHX5Pnlz5/93FOPA0kgutDXHZocnzpyuOf62HhL7/Dy2szRB/ZF632nLiUWbt+ONsWe/NwnXv7uT1qGR3Rg3jPUaCFI1Gr9cKcz0jKyb+cHr79y8N5PYMhaulqO7BlJruRLibQkwszaTH1HX2Jhsbi+xiSqFiqyq0mpGK5AsFgs/vyHP+R5ezG+IPoCnEBlGV67fK6uq9vf1E1k1+F7j9jscrlWEWyOYk7DHEqnc129XVWlQCE9tH8kUN9iCux3v/K1fLHUHPMd2dH/s+fPnHv/9LM/+qfBnV2y25Et5mL10YFIHQaYw7iiKpOzc6itizZ10MY2WtdMYvU0UkfDURYMM18Q+IPA6wceH3D5gMMDbC4oO5nkBKIL8E7AOQC0ASYz6AAaZ1Yt02CMMAARsKhpEKCbwLQAhQDwAIiAl4HgBKIbiA7ASUCwA1EGvABMjVUrrJKlfR3elnAIl5rqPN0OSaLloppPWWoVAp5gzgQWYRRQEvDbH9oRbnYiBBAB1DBMuMVFZ4wC5nfaOB5XNI3DyCBIM6CuQ1NHpomZyZsq0g0GAWIWgAjqmrqV+FYs14KBOlW1MCcYplnNE0tnvAChSfWqSZG0tDim1srbtu+5OXq5qamjkC0LnIyZp5wzRN5RVYhppW9Oju7eO3zyvQsGM5vqoiIEb51aCPhCxXwuk0r91ld/k0DkdzoY1WLh2OG9rYmNUkNH39Jc4g/+7GurKymTwPGT733it3+PGMrsjYm2fXcBYnz6c0+U8gliMVt94679D0xdvkoRaW6pK1bK++9/rKWxPRPfVNTS5mamVEBTS0tKall0Nvz8P7/j8MhL81NEKza3dvzouecNFVuVAsZYcAR89d2Xb46n09nG7SOUms09/Q6PVMpl7G6nINjaW9pnJ2cDsY7J2xPFbIlayvYDe0q6YjHy+JOf+/DMiT/9oz9eWl+T7W3/45/+dWpizButB8AhOvxFKA/WtYQcXgDgdHwD1bWgWBOINcBYE4g1gnAdCMaALwg8IeAKAJcX2DxAcgLJBjiZYRsAImASgBIAMgB2wGyASYCIwMLAgsBCAAComcQkwDLvGKkpAIwHTABYBoILyD4gB4AtCBwh4AoBUULExNUaW1tlkWDH4b37t7V2OyCmpkKBRiGtKZVSuVqrVPVqrVwpZoqFcEA40GaLOoRcsfKRQxpQxhyyGA54E8k8hJAxCCAkhOk60FSgVplSs0yTaZqlExMAapkMQVgoFb0+7+LSitfjzuZ1RbUYohahukaoCpnJAcKpNSBI0vLiTR5wPl9wbXnCH21Jrq5GgrJVI5qKk3nFMI3cxpJlZWMtzgvnLnf1tYWcYqKozU1vDOwefO3F10JBx+49e9va20NueW56cc/Bw3pmaXD//tWl5W27h+rrPCtpZlVS/mBk3/2Pv/Hzp4/f/4jHyXfu6Bu8+5HUzHV3Q2tdvQ+LwvTtGwO7hhGEXTsHmjrbtaqWz65Njl5emV4Y3j6s5BeGDh5/4/3Rq5euD7S6tGrh8KNPZXO106dPySIyKwXAy8g09x+7u5TeJNQU7JIr1MjxvvW5BYS4Ki7VxXzpVCK1kSzlqoXEBm+3L01MtQ/uWFy99fX/9l9qNbNWKt997IBECm2R8OnRMxyPA0gVsN7Z7H/k4J6Dw/sJY4V8AUWafJFGZ7hBDtWJwRgO1EFfGLhDwOkFNjeQnEAQARYAEgAUAeQBFAAUAeWAhYCFAOUAEAGWAJYBFADPAQ4gYoIttwW4Ax8AYEs3wQHAASAAwAELAMIAYNC0UDoPU1lWzFXdgtjf1txYF7M73ZI7KDgDkJMxgqIgyna3JNlkp4ciAIDeEuD6g9gGIYYQQ8hh6BC5uqBrJZEjlGGAtuK0CKOWRS2LMQp5iZMcgiDwgCBGMbMwpHy1WnM77ZlsHhKgaLSmW4Bygowwh2tVphmE40REkW5iBujq8lhn1+Dm5oYoQIwd5UJGckFDU3nKlXKWU7RPTaRjMVc6k5Odws7+RgTg3FqhNeQRnO6zb71lGvkHP/v5Q4cPa8U1pZhq7mzx+b3lSlmpGo9/+uGLH15kobp0fOrRz396eeq6UsoPHnpg+vqV1u17ZdEu29yRtkisKfbmy2/56zwAK7zNLTjdPCeUcxmjohTyimiPLM/c8kV8rW0tP/vhM617DyjZlb4d+7sirg/eOWlqolYucjaXw+38xGefUFUyfu4Ug0RyiC2dw9VsHhgaNMuhSN2O3fsnb17zh0Ovv/psyAlPnX4/2lDndPsp0+954gvnPnznofserkHj6PbBq3Ozy5vLkZbYxZMX9uweOnhk4OP3HLMDPlFIIX8oFgrXhSPRUCQSiIUCEY837PBGRJefc3ixw4NsHiA6ARIBFADjAEWAQGAgYEJgAmBBQCCAHMA84AXAcQABIIlA5AAWARYBFgAnAk4GWABQAEAAFAG49Z8CEBzMU2e1D5Ndd6Hdh51N7ZzTVuRQFVLFqKV0TbeQXXDFMGcrVcpFJVsppBnVOIlAWGsPwXt6nH1BKWxHTh5yAOZSeQc2G91cxA29ErTxSEQQIUQYsxiwKDRMRixEdURMYBhM14GlGbLAq7oBMSYUl8ugVoGWgQyTWggYFq3UapSquqICgAyizC9O1jf3L8/ONzbHUklV5jlmql47yCYNrQyUKlhcUENevL6ePnx4hw+DbM1MbBS7WxtC0Vhm6XZ8eenAk7+7Y+++xFpKN2tKudS7fWTyxujeux8f6nRePTdWyaxEGxpae4euvvti77a9jFJTKUd6dlKTlqtq0C2NjU2Jtogr4JcDTkc0SrFeSSTq2tqgp94ioqVlzHL24JGRC5dvr8VxJTcvQbpj5MC5qzcK6RyplQBDtkC4Ws41tXes3L5dK5QAog2tzZtL67l4XCnoSlU7fv8jhsEaQtF33/3AZXdNjE/NjY21D+64+MGp4w8cs6jW1BBVLcfO3i6DgjfeOBGob3rv2k3KSS4vN7y7++DgtlpVRSJvlyS33e6z2912m8vu9NldbpvTbnfxDg+SnEBwQl4CnAAgBowD5KNishAgENCtKBEMsABEJ5C8QIhYjnpqbwRiEIgBIPqB6P/ohxdgB8AOwLuAFACuKHDVA28r8LYRW51ZlbI5a1GnBYtUdUOFSJJ4wSZwhIBqWS8X87Nri9Pzi+m1VCVLIfYgJK+mlHTZZAC77Fy9F7aEcXe9EHACp8BiLtriQzEnsvEQQqZoJJvVs0mtlDUrVWIYFBDACDA1SogpcFyxqkCEqyVLrbJykZYLTNMMAIihawAAmZMAFSwLV8sbdjsTRGQo1VCwnulMAHzE6eJFaWKhGPE611JVCoT05npDQ6Sn3osMk1pmQ0QwdDR04O4zL71k83p33v8ERmKosdFQKu3b9t2+eFKSfY986avFxFwyVcWwtOfu41fPXg4E/e39vWYl74lG7F5fNV8cHBqOuJyb8TTVCBbsMheg2EFrpc7BAWCqqmFJ9lg5Fd+552DZqJ56f1QMDWXXPnz43vtWFO3a9BJmhpJddfjk2zdvAoY6+kZmL1zmEMIcNnRqqkVSqQEsdDTHDt59b0t9gBlKpZpvbWn93rd/XBfrIroajfI920cYj/p6BwMOd0jk33rn5Mzc+pG7jnY216cyCuCsz37igc765i3+IIAQA4YR5CBgGEFe4HlRwAKHMeQ4yPHgTm0hAHmwldbIKEAQYAQ4DCQZ2B3A7gFyGAhRZosCRwjYQ8ARBs564IwBKQAELxAcQHIC2QFkJ5A8QHQByQNkJ5DsQHZAf1BujDV5nQEMIAAiJ9gN0yrkUtnEenx9YWxydvTa6thE8dK13InR1Fs3i7+4lpstmNs7HPs6hdYA4HkKGCxVKaHQIyK/i3PZAM9TiQMCQjwECDBCgG4i02RbKyZAMKWAMtNmF/OlMidwhkXKFatSIsTgIIOQIxaBlo4pgJZlmgahDM1OT9vsYiqVDwUdhZyhEGlstlAs6TWIoWV1Rl0zaxo0VADBrh1DYSdeWljZtntPTU01d+yQPO73n/vh0N33Sy6nIIfyqXgs1uDzRycuvrP9vs/sOnJ/Znm2XCns2r3bycF8oehtqDfUEmDE7nVmUoWm5rYj+w8m40lqKUi0u+rCNpeo1/SRo/cF64KcJAq+Vs0qDAzuqA853z31ptNen1idaQiQFrf3yvkTBONyeh1Ua65gMJmaHz561FCMXGI93NLk9Tvnb1zr6G6iJklvbtS1RFzeaCgUPn3qzJOPPjF1e6K8kXrulbdPvPfuQG+UGuXW/i6nK3hox+D44uLUzMw9dx1Kr60kC5X52YV77zsUctgQoZRSyhjAWMRY5JCIoYAY5rDAcxInirzASzKWZCCKQBSAgAGHAY+AwAORA04RuGXgdgFvGLhCwBYEkhfIHmBzAocXyB4gOYBgB7INiDaABYAwQDyAHMAcQDzkRShIkLcBt19orKsPOhp5JFMGtGp5fX5hdnrm9uTi6cvjL7595sUTMyevli/Na+c2wIU4GE9ZOkXDjU6HgOIJbS1pWSZCFnBC5rdjhnAiS+MZ09KBDKCIEGSQEKAZzLCoyPOyICkKrFWoYaJKVeMERCnAGDNAAQC8CEQb4ziOWBwAzDBJqWiUKoZpALUCygWznNMoYRuJJLNgLqPeWKo6ERZ4bEDaHXP0NAfH5souBze0ayTk8fX2tc+MLx46tvfKhQ+e/K0/mLh8uZpJ1fXtS8ytBOti+c31Y5/84trsdSg7t9/zmD/g25ie8DU1H3n4sWwqLrs8gitgahpCgBdku9/X2NtbzlcqqTXJ7SXUEm22YKTRFWmINTY1tcYoi2aXN5xh/5HtI7enp9YXV6l9x7n3Tzx1733xRUMtVznJcfqti8M9HZX8IsO4eXh7cnFFcrla+gazmxVvuM6CeDOVUKq5aFvzQHfvrauj/X2927cNAtPIp0qf+d2/nE/mgV6MdjfASv7o7r0WAPlCErr8t6ZWeJ5fiW/4YqGO9hZEGWMAMgAZhABKCHkE3idyXh56OOjksIsXnAJvFwTJbuPtMrTLwCYDuwhcMnBLwCsjvxu6nICXAcAAMIAx4EUg2oFoA5Id8CLgeIA5gBlACGAeoC1TBgIIbYECGOYRxBwjWFMrlVI+vVlIpKsasTHoKZUUvVoLOoS+ese+Nte2Rv5gJ/ex7Y6PD7kPNktauXZrvlxkuLvV3tMgN0Wk5pBUrdD1tIUgbAi5HJJkWFQ3iUEZ2QrPoUwzSbFkFgtWsWxVFFAs1Ww2SZYky7QAAAhDl0eCGNUqhlIlNY2VFUPVLd0EmklsvJ2jfLFQYybZSNUoQjwCDND2tnDQ7ZAkCXP6vXfvkgUhXQQ7D+6O+OzbBodnp6aCoSZBUm12qX/Hvsuv/GrowMFAxBltG86uLnTsPBps7kwvjbnDEX9TTzWZIdTq23+3Ui7opZpWUqmm6OWyI+i2LBKJ2SMtLWqNQVLVLdOyUGNXF7FMzeKQwEQsACIQaDzy2OOcyX9w4oXu9sbXzm8EnB6/2zE9dd3vDZ368Hx1UwkEu5cmL4ca6nVF12rVYF1Ytkm1almySQQIm+ur4cZQS2efqUvTkxNf/OInC/nsroHBcrn293/3vX/+xr8sx9f67j20p7+71+M7d+m6gKjDKSt5Q6+UDYs9dN9diDBCmEXBFkYOQYAxs3PQJ/ABDnp47JEEnyB6RNErSrIs83YbckjAIQG7AG0i5ETAMDAIKFdAJdtStwAAepJJREFUvgjyWVAqArUKDAMQCggB9A6y9aP8UPCRUZECCAHmAEKAMlZTlWwtXSSlbK1sAOZ2eSRRIgwSYulaMRry79/Zun977OBw8GOH2+7dFo2FBMXSawB0tjnv3eXtiEoyhjYOja9r2RoZbhG3tdioRTbLRt6EVUJMRihjDAKL0GLJTBcM9Q6bg2mqySGO56CiahBAw6S5rJ7YUCtVpCioWkGWyWEMqcFkKOsqrukUAibJPCNI5nFjUI7KwLJIQ9AdzxRNRZUFtGt33+joWENLR1tX28Lk4tC2wXdffnV4ZGhzdWzfg/eXUgm9kDGpKXlCNaVoaErr0IG18UuMY43bRiS3r5hct0UayiqtVrIQiKKMaDXR0uJz+AIut1uUbKoB125cjXW0uANRu8s2v7QSjgaBThxB3kAsG18c3L13pGvg3IXrWnJqz77dV26P3nOk+9b5CaSradN89qWXY+7o/Oy4RTIOjzOXSHGS2DHUpyuawEnR5o7T776rKaVwvYeI3qXltWDE62n2NtbV7Wkdur24shxPn3nxh09+/ev/8dpbD4yM3F5cm5i+tntX97WxKZ7HqUw2UBdDhJomMU2qWUw3mUEBo4BBKCBox5wTQ5kxHgABAAEhURAlnuMFEXMCRAKgGOiAVnRWVkG5BjQDWAwYBKg60A2gqUDXgGXdyXBjDFAGGAGAAUa3kkUQtQAlAADGYSBxosjcLslvEzlNySlaXieqTbZ3tPZInvB4onJpMTuX1W8uVl+/lDkzVWA8P9If3jsY4QhdXC4XC+zqbK2q0sMD7sawfTVD5zaUgmaphNCtodYdAT+jDDDGBBFIEkQQ6LolclhRqpRRCAFhrKoYigqqKtE0wggCFFAT8ZB3So61RM20oGUyQzMFDgJK7D6ho9ldyJU8AYeqMdlmm1mI79o5PHr5RiG5vnv3tqn5uZAvmE5kZyfWTKvmdkjeWGRt4oapqESvtAzsLG7M+5s6/EHfxsJthqxI97CSyWDZFoqGazXF7uKR6Foen3WHmzW9Ijrk3OYalp3lsip5o6LDw4iqlVMuv8sydafHoZZ0SgXeZT54310VxTp/5tSj9w4XC+WlzaLXV5den9mzc/DFD8+kkklgSGNXL0cbYvlESpLtdW2tLl8ktx5vaepYXEmfevvd3oHubGbDGWy4du6iN+wLNYR3De177NixcytJmfcJCvnJ6+9IIedwZ8e3f/yqyaN9I0MIOxfnFgKNUUSZaRHNtFSTaSbVDaqZxKCUWZZJKYCYBwxDiBGGEPEMSoCzAywxjmMIWxgZCFkcYBzgJSDKQJAB4gDjgEmAZUHTBIYGTBNYFiDmHTzdr7HTjG7ZEiEDkAcOv9huQwGlahRSJUXXLAZFAHlZrEJS1pVMIr+0mBmdKrwxmljMKXV++/bWUKNLnJ5Iv3kxv5amy0lS1OlIjwuY7NytysSGVrCYCRiAFH7k5oZgixDLHDbOIXK6YQHALItyIs6XanfS7tlWlgW0TKYbkBKm6axasfwO90qiqpjUsJhimuVqFQEAAJUx19sd1HXNK7sJgW5PpJgsNYQD6ZLy8osvDu/odbqdmq7s27vr6odXv/nNH+dTmd4d+zLJAgPc2tS1SHs/0XK8KAdjXZmluSsnTwVbeivlBKOW2xtaWFqy1CLEEmU1SqBmMGCZAoYGpV6vZGmmxRgkulN26GqtSixo0Y6dOzDnLGwmdh0/LHK+TKqoauCTj99/9tQVGycVMvkDu7ZRAl966cW+3t43XjhhaTUATcMi8cW5xt52XmZ2GXUO7vrOd38Q9EVbB1rn5uZEd/TWxSvN3U0yyn39K1+JuoMvv/f2N7/+X4IOx3JOe2jPyPXLt37nv33jzVtXWzrb1JwmyS5EGaOAWNQ0LdWwVJNqBlMVWjJAxQQ1k2oEEogxQJhhAWAOczLCdizYocgjAUMeIQFwwkfhRwBgBNCd/gAwhpgD6CPuBAaAQ0DggcABkWeiwAQeIMgAZX5XJOxtckuCHVOe06rVSjqVz2bTS4nVXKXMDBbweNtbA7KDswxSLGnlopIv507dip++nZMwF3HZipYV9vDZnPXuZHW2oFWoRSCDEEGGAIAQYvZRcA7PYQBxRbEEhDADmOcFSc4Vils42a3GuhXMbJpWRSGFEnG7HKl8LZlXOA6ZFqAU6qoly8jtZNAiAa/oEIHEU46jlPEeO+J5rr4h/IvX3hdk3NbVWKzpmmbee88DVo2ceP9kbHjY4XDnN9I8g5wgI2yZWpEIcjDcdP3kWYaQr77TKOVlbwgzdXNlDhjFWN9OLAiy7AQUNXY35JNLiLHSRlx2yAJE1OKmbk90dnUQogl2t6lYtZoZbQrt3r/LBO5kIj68va2/M1g1ipWa1trZub2zbX5xOhZyIFO/eXHUbRcEUazUiv76xmhrTza/ef/dD01OrZ1+78STjz14a+xyW3fvr15+y9CU1Y2VSGvTbz7xlbJa+f6zT//4r/8UV0sWD+oDdhdve/HVE6+feLWhve7S2x8gACBjkAFEqGVRVSeKTqsaLau0pJMqAQYF1KDMgthiHIE83coPQRJDEuN4yGEAMYAIMgwYwggiCHkIJR7IMpNFJvNA5AAPAPeRV3FrQoER3PIqEgYYAhYtA5oQaZFpZc2saZqKEBJlHPJ4Qx4Jw2pZKS9uFhFvjfR7HzvSNjIQXYkbs5t6XVQabLEVVBNA4paFVJ6kFYvAOwACuNUkIfyoaTEIACPM0k23jeMQLOnU6XLk82VCKYQAAPrrMyAElEFgUepzu3QDpPOaTeAAYYBhnhM4yNlkfrC3zmPnJI4LemWfU5A4jEWxrd0NkNDR2j4+tXHr6sTw3h3J1Xisox3b0Ve++um3XjlRWJ/vOrDP0EF6bUVTKliMUo0auhGKNkqcVEik3PXtxeyqJDnq/I2prGqUk45wYyGZghCXshneFNMb65srK9VU3OYJUgBlTlqaWQjXN+VKCUNV8utxu8uvqMVHP/2xZFKziDg2eeORLzyUKZSKeQXxtkMHdl9bii/Pr91z/90XL9+oVtRMYsXhdaaWlgINfdO3pvr629rauv/2n7/dHmkulLOMasl8JR7PDfR0E2D2D/T6QiObxexKfP63vvCkZXLZiuKUbL91zyE/D98/d0ExKojjZQ7LHJIhEhhElBGLmIQSRiEEmDFEADGIoehqpVorltVMoZbMVuKJ4sZGaXOjlk7p+RzJ52mpRColWisxtcZ0g5kmNE2kGVDVoUGQaSJiImIg00CGjnQDagbUDWgQwCBADFhVTdKRhO1+t8/v9IiYy+bzU7ML127ePnHy0olzk6vx8u6+tt987N4nHt7fGJPHFkvrWTrQ4tzR5E6k1fmcKkAkQU6xwBbL+o4p8te3BUa3WCkIIY8NBx1YUUleI4QBSRaTyfyvg8B+Hc68BagKuF08hul8ze7gEWAIUYMSTTcMywi65fpQIORxEw0bhipLgtPpoVDwujxKRW1rCGqMvfnmrWi0fSmZ9IcaKuVaX/+QRwr88gfPBjq72rb3z0yOpVfXXaEmpZgTbHIlm95z1zG1pliG6Qy1WIZlc3mWJ2ZmZ5b07KLoCheTi45gcHN5UZS9s0sJqpcMixHEBTyoWknlMiW9pAOKXR6nzeNbmp/v6u2trw/ZRHFqZtMXbu1sa9EtXStm7zl611Sy8J2fPLNteDib20hnlPErl+tbBlMra8FYVMmrgl2+9+DR8+OzZy9ecdjsKwvLbn/ozLlTj3z8gcRqon9HD6erf/T7f3DqxPkLV24c2NVbrWgtkSZqqGWDPf/0z3t370QYczwvAMgxIBCKDIsajBjU1C1Lo6CiqblKYTNbSGxq5bIfw91+92Ox6Ofq6r8QjX3a635EgPsstaNWCmuVIFUCluLXKp5STsgkWSJOkwmWTrP0Js0laCZBMxs0m6DZFM2mWT5PS2Wm1KChACdzDfh2Re1DpiGnc4XljeR6Mr2yvLSwksmlSwIHD+7o+sOvfPyJh4/4vN7ZqY0TpxcrinZou6c97JxYq01saDaM691ypWZmNP0OuhNutSf4azrPFpAnYMM2ERcUS8bAJ2AbRswwK6UaBxEHEYJoi7Oy1biiXh8EYDNfsgDIV3SdUIggA0A3ICGMUpVH0On0yHaHTbBxvBwJ+UzT9Pub1tfXIo3unljg2u2ZYjrnD3hv37gSqqsrZTef+NQ9V86eyc5ebxkeCcXqxq9ckl11am1Z9rhruUykoVlXTUggx/OGXvb6XBo0MvFseumay+ffzGZ03SyrJb/LubqYIBxQ0huiK8BjhCidvjbqc9g4TDjRQEqlWsgZanX48Eg6sTqy+9irv3pvz/7t18+dXN6cHto1tL+99Zfvn64Wci6vJ55YQVbNUCoCUAWsN7W31SrqwUM765y2X7755meeePL0mYu7BnrGJ6ZcXv9mat1nsz/86F23Llx94rNfffO9U5EgFwnYw2Gf227TKiYi5IO33uJUoqs1s1SuVSply9IAwhZlCBOEIbNES3dA1ORzdNc39vgD7W53yOvwiqJMAaCMEtNU9aqi5WtakRGdFzCASNWq1Vq2XEsUy4vF4hIiVZ+n3uVvolA2dNMiVU0p1ip5wyypuMQ7lJBbCAhRVGBzy9fzyUq+ZtZM4HSFDt/VL9kdkFhOp2xDUmJ99cbYdKlWSKxvBF2yJLBEpjYbLxVU0+MU2oMOSzPmCqpKKYMMbpXUFlLz15ggxqIOIWjjFMNo9gjUJFmVBlySoauEUBuHAGUWgwZAFqAC5iIen2Jo2UoZAMgotQDiMCQMEgIoQzoBsiRBzsHJouQyQqGIVmNRf4gC6Au3Xhx9ayjY8tj+++aWb587d2VgeOi1l14b6OtZX0129/Z4HL4f/vsP/vxf/mVo374rJ96u5vM2l5OWVnl3OLUy0di9p1YomKYqe0Mbk8XOgcHSRqFY9ZrTV9p799++dGvH7r5atZhM5Utlktu4PHjswWqx3NrWvra21r/twdXF8Vhz95X3ThmCsjAxuv3o0Stnz+3q6nz77VNXz524Pj4//o3vv3Ti7i888uBv/fO//+yFFx+4776fPP3LB4/vefO5Hz/x5GeWrl9lvKtSrEmeyAMHd71y8nws+GdX+LWuWMwm2daXlwa2H15eWjl44PA3v/7j3/+vuz1BX6GQbwj78sX0wFDDWlL78pe+9J0f/JDLVjimtBDVpymVsrJYLa+Uq6oo8N5ANOTf0d68u6GuJxhslOwOLPGyJNkEETFgAAIZYoQxQAmwCCWmSclHUwRKmGrpmlEtFRMc0L3uqCA6IUHUtCgjuqaUS4VyfrNQXMzXbhq5sal4ap0pfs5JNHNtNVUpsrZGFPU3IEJy+eL84kK1VLEs6vU6SUYrl8jseqWoUQ1gt0Pq9ohuCSiaMZ1RTQZljFVCKWQQAAruVBWEjDAYtnP99QIAFDChWtHLFAdcAidwG3ndyWMEgQmpyRhkzCEIDpucV8pVVYMQAoYAYGgr5JBSCKFmAVyxbILk8fuZRbVazoS1UrEw3DO0vDJnYIYwiE/Nj+x/rL3F8ebJdw8e3KHpLLG+DAkyzdITTzz01//7P+97+K2h/Xe/99Zr10//6tAnfmPtzK8k2fPmqbc+t+MwNdnJ1371+Jf/MJtLdvZsP7uw4HXsfuvNn37+a/8j4Hdhh+RA7mhr89rCEhS14MqcLehtleX33j6pG2Yuud7Y3j81M9vV3xnfSAwdd/VsG54fv/3xx+/7xXe/b8n2d6/evvTuqUfuufub3/vpt371xuOPPMaQlE6t/+qNd3cdPCBAYpEK5pkFxIZgxMHjV19/9dNf/sq1Ux/u3b3v2Wd/8c3vHq1Sce7Khe17D62OzwUj4bGZeHtT7PT521949NDY9IWD+/dcPHOKI9r+iG/E19JKKapUCzU1ZVJVlJwed8jjDQU9XrfNYRMkLCJOxCLH8QhCyCwAAAOUQsDYFuPXAowSyhjYulERRilltL4TAQAYZMwEFADCKGMMEMOyTN2qlitzs73rCwFBhsFQoM4ngHLBMM5nVhcunR8fvT0DAPLaJdnhjjVHogFvPl9eXCuspLVofeh4Z1QCbHk9k8rV1vPVnEIdGDgFkNMRRUAlhMGtoxYEgFKGQjI82C1FolJFZaW8haHp4WRTtVKKYecgQrSqM0qZgKBdFCyE0qXynenXR+geChiGQEBQpcykgHK4XK6VknGvNxqPW+GAI52Ne/xHpE0HpTDkdy9cvh0vn//K5+7/2RtvphKVSCicr1DONHRIeQqPHT7+vW/95D+P3NPat+/ahbOHP/lbyNuEq2umpY/fuHzkoU+mNtLFxCbRLUYrSNKoUbPZQtfPfrD36KF8PsdLnmiUrC4ut9fVTVwbPfbQffGbCzbZm07kEcdVCilXNLq2shxt8K1Ozxy87+5Xvvfto3u37dm1+9bMggDn3n73/P/889/+4yce+ZOnf/GfP/3pI/ffO371AubkH/z4p3/zF39y7cJltb4F8lhNlQ8Pb3vp/be+8ntfUSzKcaTewy/cuDj02BdunHy7q6tFLFqtPvviynx3b/vLr5/1ev0tDWGd6jv370c2q8Ut1fk8/kgg0NrQ0du1f+fQgzsGjvV0DDREoj63y+mUHQ7BZROcPCdhyHNQ4IANQzsHnQJwisglYbeEfCL22Xi/TfDYRJcseGySxyZ7Zcllk1x20e10eDwOj8/p9Tq9PnfA7wuHgrFY40D/8aPH/+zY8T8d7P+4zDWm1nMb6/kK4bDH7fEHWpvqBnt7tvcPYgtOza1Mzq0jm/OJR+/66mc/NjLQqZZqi2uFyXglW6VuAQ6GuIiTkzmA7hzDIQBw68xe78EP7wsc3N/Y39/SVR/sjHibg16gWoWKRQ3mxHRLo+GSOYddUCxarKmUMQgRuMOCYQwwGUGngDSLAQocEpJErlrWDFW4emnZ1F11oY58rpBJr/VuG8hldZfX5wtHz1y4ms8tbRvqiq8mR/YMJxObhKOpdFkj2rEDPUUFnXvl5cPHDpcLpfTidLRzeHM9Ndi3fXH0NC/yLX0DyeVxjdmvXLjQ2tkzPTm+//C9N6+cMxStWjLKuWQ0XB+Ixjze0O2JmWwqK8lKR5dft7Bo98yOXjhwcPfU1G2nFLl16UNvwO70u/P5itsXFIDugDieLm4UU8cfOfr6P/1vqFYDHjEUCR3Y3vPMy+9OzC80NPmgVY01hsZX5kOyu6BrP3/up9tGdr7+9gf3fvzJzel5M5VyNrRdeP/tgV07Xd7Y+WtTYadsQVAs5JsaWtbi8b72GDIVWi3XKqVapVJTFMXQLUM1iWEBChHAjCLTZBXNKlatXMXKlK100cqWaUGlFZ3VTFYzac2kqsF0wiwCCGGMMQYZBYxBADnAc0ASgENkLol5ZOa1A68MvXbkdmKfV2hrD3UPdDZ1tHlCLdWqtrwwCyja0dewrcsTccmqZqxlNxdXF7OlWrVmIkm+++i927Ztj2fTz7586vnz8/M5TYKwSYYHW50tYU/GgDpgOvu1yJAhBAaaXZ+9N3bP4dZYKGQUzNymMrteujRdWUgbhFAHogZhFoJel0QxTpQ1xbTgnUkcAIBCwAQIXQJ2SVixKIQw6uDDDk4zWb5iVisGg7bX37oKTMHjrp+enA7XNy2MXXdjR6C+eTYRv31r4+7jD4zeHG2pbyrl85LovH72VrCxPZnc/PQnHvvJd18Q3ULfQM/U1cuc08/LoUCwcXMzM3P5wt7jD67HU26n//KFay31TauLs07JRZHrxGtv+jxetVbgnTZfXUMtVwkFw0//5Oe++lZLKdbKqUhD/+zsWkN92GGXUqnitcvXE0vLg7v3J1Y3W7q7ezuaW/yBRn9HYj6RKOcbBlv/7pv/J7Uw6fb67tq3TwLwW9//sd0fSSU2bTbBkND02spDO+4+ef6CTUaAF155+z2DKWde++WRe/dv5oWllY3BbSOz8aJZrQz3Nk3PrDW2tdhlZ11zNzc/dz2dzjpdIUmWbTan3e4WBZsoSZIsc4IgCALGHEJ30m0RghzCosDzAsdzGGPM8RhxgMMAQgQg3UKiMgQsizIIMYI8BzkEBQFyCHCIbYWaUgAJYIBjjDBICcdBamlEK7bU+csFMLOY2szWRIYFiQUCqGwwTZcrZXbo2AGRGS+//Oq5G9PpggkQH5FwwMYNt8iyXTwzlqmqgEM8BdbWcZ0yFpD5toCc2NTnFmYLpVq2YBar0ALA70TRAMIM5GoAYOricaZiFhXDwWP0kdDZJIznscxjCBilTLeIgGHYyYsC2sgbqsEMhlbXV/Yeug+L0ujliW0Hup559qRR3Qy4hLX4hssVdgi2l969/I2RgxqAumHVNTdjagC9qFVqUEKxgBzw+t99/ifH7z9w4d0zgJruxpbi5eVwtOu5Z37w1z96hcinqJ6Nhep0jXe7vbevn94+tO3Ee293NPV3H9meWZwaGBr88Tf/cffO7X/z5jfjDxyKtrTfunJ12579llXMppd27d197oPzgfrAmbdOPP6bv5mOp0Ox+tZER0/TXMRNUunSemLz9Llzhw4ev+sTn37lmaeb9j25v6/3zVNXf395Xa+y+NRkxGmnQr5USdhs0dfffPW+4zuf/sWL9//Lvyc3bnjrfvsTX/zku2+//4d/+We+oOft67P3Htt27crkp7/6tfdefGV9ocDdvv4OJzh43i4KdklyOhw+SXQLoixLdl6QsCBgLGCIMMYAAIQxL8gOm0OWXIIoCrJNluw2m2STJIQwwxAAwBizmKWbBoBYlGSBFwSR5zHGHMIChBgiABBApmkBRohuAdPCzNALGxKqaoa1kigl8mapxtoCnI2n6aS1klUE3jiyd8Qu8a+/9c7t2aRNlrsjNo6aNpvYEpZ4TE/cTgoC1xO1LWZ0yO7IoTGAVd1653raYFtzUiRzuM2HYx4kCLRSMaomEAXMWbigWbIIQm7e0ollMChwEAJJ5FWVFFVTIUDCKGTHHEAWpcWSpVvAJaGNrLKtK2JVN5586u4ff+dZtUQam8JLExd6th995Scvbt8R6vLHagqbWYw/cNehW7eu+zxRZ7AhFi3FF+cD9c3XLpx76snD/+uv/9n39w2hoJZbvhHtGJ4bPbVzZPv/+J//PT5+pW9476VXf7prWzOANFbfuhJf3bmrqaUp+uHFNzp3dWqabiOWL+BS8unDe+/75t/883/++N9v3jBK+Xhzx8CVkxcG9+54+fm3Bnr63z955uOf+oTDxlRdNanR0BJZiS9EY+7rV2/2b+965Mt/MHv70u4HH5+8dObj9x95eWzi5Vff+c0nH8+tLnb07PRx1X98+uUjh+4+98Hp7oHWrGaFG+pGJ2/8y//4oz/807/YuDpWLcb7miK/+GDs8FBvLGTZHe5XL02MTv6I02s1pVJljEGEEIQQIgQFiHh4h9SMEcRbMyEIAIIQIoETBJ63SZJdttkk2SGILplzcDyPeMwYhBBSSCxgQYYl0S7b3U6Pxy67bbJDFmUscAhBDCDPYQCgXlNNrQasgmQtkNyyKNgOH97dsjR79uxsvqJbbrcv5G/pdjU3Ncs2eXpqMdLQ0dXZX8hky5Wy3Y6UUmklXS4oxnB3fcwjr62kMTFlAKtbwgWADEIpAAhCxIBHAAEnwMhKVpFdRJhAWQSE4WSVMkL9do7nod0uumQgSLBcIytZslk1AIMuEfEIVE1W1Q2BRw6BDzsgtMwKQdfHU5YGAvVtDz587/mz47Fg3cWL0wfuexRJLosABZAH9u+7dPXaxx++e3Vt1e0weNlT19M9e/lisL6lkq8GHaLgCPzVXz/zV396JDV/rbdtd8XEPmRsG9r/L9/423965rULryKlpCBo8hi3tmx/843XPvupL/7jt/73xcsXGj3e+GbyY1/+7ZNP//z+ex546/XXLpw62zm0Y+zC6Uhr36vP/3zk0MFwxF7cXFxaW/3g5Lm2Rl+hlPeF6xsLucnZtea66O2pqc987MG7Rvq+8OlPv/nmhxOnzthReXdD9MUTF3/3t3+rM+xMbiZp1YZEmxtpVd38/qtnDMpOvfFWQeP/5lv/ce323Jfue3j99rTH46xZ5o2xZb/LuTp9PRZrhrPXOUHkLAIoAQQAChiizAIGMK2tZfFHt74ttjyDiAG6hdMFEDAEIcIIIQwZhhgAACFEgCKGAGCUMYgQ43gbJ9oF0cHzdpGTeIEHAAKIOMRxCFJCiWV6ZKM7WmvwiSG/f2V+9sKNKVcoPNDX39jeIUqyUszNT6+UKmqooam1vjmxtFDgiu09ndSoXFraKBN6/PjOhqAvsZpWjQwBZOs2CLZ0DJABxngIe2OO5giWeEpNrqwZNc0AHKppMFu1DBMGHTjogR6nSAksKcbSurmRJ6oFfE6OR7ComDmDAogEDkoIOEQCASrp1C5iyti1+Uz+hbf+9k++ctPl2Egsb+ZVTKjTbYqmJQistaXp8qtTczPzIact2ugtFNbrmjtFl0NVyg2dfWO315945O6v/NW/nrtYf3gHsdRSx8DO2+deffSB/d/41j9ef+elI4994tXv/J+BQ9jtdgpCQHQ6zpz64DNPPvnt7z73N9/629LqbOP2fQ3D22wI/tbvfOW5n/7kr//5b669dX1o+35gqLWq2hj223jLYeN+9MtXv/M3f6RUEnzEbV9AFINQNNLT03F1auxPPv/lx37v63/yX7/+h3/w5Ve++7dHB9v/4a3z519/6cmvfZUQw+VzHdiza3J+LhYO3YpvIgiXcquiST5+8EB+JT5+a22gUQw7IQDgwu35R3f2zkxcePRo38pyN4IIIoQhgohBDnIYc5jDCCOMIc8hjDHHYZ7nBYEXJJ7nOVHiRUkQZU6SOUHkBAHxAuNFi+NMnjN4TuF5hUMKRrqAFR6pzMjppfViajK9Nrq6cG5+6oPZifdmxk6M33z71o3Xx8fenJo8OTVzVldXEKrdHL82t5a4+9ixLzzyWHtzX76gz0wvzs3EJWf94eOP7tu1V63ka5rS0dURDkcq1SpvR4/ev7+zsbVWM+Kb6cV8rUChgRCCYMtmuDUc9TuF47vqDu+sG+4IuGVkGGapQhJ5ki0TClh3ozTS5eABnV9VLk6Ur85pK1lmk3FvTPCLTNUtCqBT5AJ2PuIQ/HZO12mqYsg2XuZYRdd3drdcubF27sLN4aG2jUxK0zSllKe6AnkpWhctV9MIWKupyvmb46IgrS0vOB1ic1d3Orna3Ns1NTW5f/+hu/bsfPrFa4nNYmn+SmNL8+Z6iVLWUh94/YX/tNtDjHfMTFxvH9xukGxPS9s3vvXTxFr5yLG2X/3yNc4uLVw+NXj0aKZYfPgTj3OCcPHCm10DIbWkB4L1yfV4T/+uTFrpbmm7cfVGOV1688S72ewqB2mpkp+cnDh25PDyymomvfTVzzzx7VdePH3uVHfHDq9DGGxqnJqZPPnmqw998VFn0P3wg59cXE/KVBkK+QBjhg4zhUrA4fzBt7975NHP6HyEA+pw2DueSCXzKbWi9nW4I1hHhgGICRlFGCOMGMaQR1gQgChtqQ8Yz0EOMwQpAAxByCGMEYMQYIw4DmB85/3J8RhzCHM85hHGGHMYY4wQhzCPOU4QBFEUZJmzSbzDzjlsnMOGHTLntGGHjcoS1HU0O5XgoO2hRx9qaGqeT+UqwOH2du3cdd/9j3zmyLEjmlYZvTJarNWa2zu8rgCDUlUnu3ft9Xoi07PrV2/OLKSqTsnhgVgGFN4xXd+x4qsWmV3OnL+ZeedC+ux4MVOmGMKQn4/4uYgLydiaWKktJizdBHaZc8ko5mIhO1AtUNIAhiBqRzEX9slM5FhFB5kq4wGSAFANmi3qFhAOjux85oVTkUCgPtSYKOiXzs2E69sKuhoJejO5YiziKyQWzs2snLk0FQ0E0vlNh8vvCUbXpla3HT0wPjP1//vvf5LKZM5cSyenRj1+2TTN5XgeUHdzJPLCM9/Zd/zRmYlJwe4oVwoBGx4ZaH/muZeYhUfPnb1xa25p9GW9pka7OoupzY998UtvvXxT4NMGyG0/emx9Y6NzcCCb07a1NxdV5fL5i4ls/vz5GzabeNexo5Ozs60NAUrwaibV5Hft6er6+jf+3V7X0l/XtTskJYl05t2r05NTrX3BgYG24Z2HJ5c2n9y9LWTjFxZWG1raT10a/cXTz7776q/2PvoFprvrPVw4GF5UQFGh1ZKyoy+GNA1qOlN1qqqWomiqamkmsQggDEMEMQ94HvA85DkkCoDjtvZvEEPIACAMEgoZQHBreQIAA5AyhADkIUAQMgqpBSmDW+N5SgFgDEPIYyByzCYBu4jsAuIBSqVrSBRjzd6xW5fPXLzgqe/atvfQyMHd/qBrYebqcz/+9gs//eHa2qrHE3bIPkHwZHJ5h9PT2tYeX5g7e3F0UxU7hw7xgh0wU2IMU3LnVAgABLCqkkvTpbNj2XRFCQc5rxO7HYAQVtEsUeQKKqholt3OBIGZxLJJIOyTCUVVnRIInRJy2jFCwDBJpmRkqqYo4qBHUkwLIRB0wtmV5e3dLboJR69fPby7r6hoqUypraMpW8rqql4o0Z079s0vxY8O9j/30gfEZOOjo6FoyO2vt4xSfX3HxuaKz+347OP3nzhzOZNOgKqS18zZ8WkBgZiv7vyp9yAPTN65sbEUiLW0tHe5edPjYc//7MRQf/C1F94ATnz+Vz9t7B+eG5va1j842Nhy4vUzhlXYtntQdLgcHn+0XpYZd//2ofPXb923bShc15wpVdyyPnn7psuBvC6pr3vH+5dO3jXUa6rkn3/wg/aeLp+bU9PZI8eOfft//dvS5CW/I/+Fr3yqWCp5g67hjqbJhRWa3Vgp5ew2a2edsrm+0nXowfdnM34718XRanYjvlE6evAgqpVJTaGqQgwTW8BZ0/lC0czn1WJBL1ZopQpqKlM1YBJoEkQoJAwwAClAlCJKIQOAEEIoYxQxgAADEDCAGQWUbbUyHkBIGWAQQEYB3aJNm9AyoWVyuoE0E1UMqhBTp5WTp6/Pzq2OjBzq7RrQS/EPXn76r//HXzz/wivY5bvr/o8P9+9kBBSKlYqmlyv5ttamUrZ87sZ4rLv7449+CTFXMZ+XAK4xpEG0RZBiACAILIZUiw612h45HOlpsVmErGWsqkIavILMEcMyJB5UFFCssoBHbIvIPAQ1g6m6yUHGYVKuGgWVZVWgENYUkDp9Qk0xFIsFPLIsi/Mb2WItt2+49+L4lN1N++tDK9lKW2/v0eNHff66ubXlHcMdDpdjqK1FrZQWlzetgl5VszYBtm5rmh0939fb/8tnfvIbX3ikqpqXJ5ahVejv7dIr1ZHhwWxqReDZW2++2t3fNjs2Xs1vLs7NtfX1rC8udrdEqxklEkVXzmdKqRszZ0/1HN63NnN97wN3Tc5XnvvlG163IMiCpatN7Q01Wn3ywX1lynV0NjhwbbWora2u1jW5MvHMju19pfTmjr6+mZXpx3b2Xb058+x7737mS5+qFtI2W0QQHF/8+ndPv/rc3l1NA0P9L1+88fF9gwoxeTnCEP7pq2927+xweKvbdx9oc9mmNpOn17K1kjU/MYH9YWSomlFRMGcPtx7s3fMb++76/Z17PxeM7SHUpZRBpUCKWaOY0wp5rVwyalWqKkDTga4i3UCUIkYAYIgxaBFqka2lzhbIgkHAGKJbkiiE0BZVBWK0JRklABgWNAnUCXXIDAM6NZNXq2z3rmN+X/Dy2Re/8Rd/8ZPv/Szs6/j8V//y+INPCB7PSqKQSOVLSrVcykvQJHrtvffP+1v2f+I3/0Kwx6ZvX/BQTSGoyghj9COdDGMAUEb2dDoevaeppdFj6FSgtLtO2NMtOZ1AMxmiSDUxZXzEw4s8mk+aN1a0dM0MOHiXhHNVllNAQaWUgfaQozXsyCt6STW9NswsQkxgGOT6zPKOvh4oNF68sdDX2ZTPWHMzmycvfjjYHdIqmsbAwPD+6bmNe4/uee/UVU52nDxx0u7ASIMWAh7JW1K0mcmZB47sP3VpvpxJNoTqPUHfyOH9ksy3R/3PvXyikM1OjF7y+j0KMbt7Ruob6zTTymVqMb/z9IVLyBa5/N4PvXUtBnLbJH80HP33l89dPfehz8Fdeu/d+rrt71y+1dgQJMScW8ufPHmuud6fimf2H951+tS5/r7BmdmF3cMjN5bWgx6hORb50VsfrqaVo3cfPHvjxoGRbSsV9jfff2fp0gdPfvxj56aWYpFQd2NAcuCOqP9aPPs7//M/rp98DWVWj+7eoeikAMl0PFFOJicvnka+xmF3wyBnbyplcmtTl1dmLyTjY6XcklbLE1NjEALJAewuKtoNihXNqpSVcl4tF2vVslqrmqoKDAMZBjQtRAgkjBEKCWUMQIYARAxBhjEEkEJIt9BiHAcxz4BAsWhBDOwCqLNDoBLTQh0tIQEZF955+Wffe0Fn/Ff+4L9+9itfkURxcXpuYWy6mMpaOrM73Iam5NOVy7c2+NjAE1/+bw2Nu5dnxrX0aklncdP8iIKwNcyClLGBmH13l2d5PnlxdAUja+/20J5tfkhBuUB1FRWrAGLaFMU8D5Y2tHjOtCAI2HkA4GbJQJATOY5jLCDzpmXcWsyla5bbzts5rli1KpolCNzMRo5zypZZfPnMWKZWjTZ4xm8u/Ozl05cvXr7nnt1zk/Mj+0Y2NtcbfZJFDE/AvjC/kSsWKoXN9t6W6VtXHnv40ZeeO7Onr6mgqGO3L0UCkssVcAY9wajTJdPlTP6D19/LZDKmXnE5RNNCdx084EZCTqnxOt4/Ennj9dNul/PdH3xrx0OPZZLxkd3bNAr+4Zv/4fU5f/LKK9VC9vLSytiNm4wpqWS5gkWXXVIp5i2PqTGzojS3tUyN3SxVjVNTqwKw/B77P/3bcwdHtvvspHnbXhsWMpulyQ/HOlpbKgBcHFtoaWmfXJhpDsUgo29cn/rv//70xZOvuxiNyfJGpkoAApJjJZnlfvPvn4cUGGrZqBRq5ezm2nwiPs/5PfXcNq+/OVzX7g9GZVm2iKFXK8ViOp9ezW2u5bPxWjWnVUp6VcGI8gLPCRzmEGIMI4oghJBiBhCAhIGtLQ8EgDEAKaSM0jtOLMQIddkQZKCkmX4XCrtRYmnyytX08JG7Hnj8E35fXSaRXluZt1TF7wr4XBiK0FSNVC7nbNrutDXVNXT3b981d+vyzOhblgFXCVMZQx/p+7auhBhARsm1ybTPAzpa7U4Rl0rG7EJtM28WK8hiqD6C3TawWbAWMlS3gFtGPgkwwCoq8duRTcaZEhF5lNdNtUZlBIJOHLDhas2s6pTjUL3XXlQUA+DO5rp3ro4GNrI9Hf1iKNARaFmc27T5w4VM8eGhAXuojVCht8G7WSxLHJ64vRjx8xKvMoH6nXxbT5eSV+wYTk4vHN8T6RjsMBmJtrZkEkrQfsPnFC9dvhFtb797W9vQ3n3f+z9vN7c7zAR59sMrf/blT1649Hau0KIUbq+N73A0NrPpMy0u2wfjy3+iZ4/f++jJ85cfPzgUX8x2+ISljfXjO3tOfnixvtH38uvvD/e2TsxP7zp48Pvf/JeQzx3PFPY1Rdcz6Vyu+v7Jy4889UmHr6k7GCll1kfXNg66XR0h//dPnPvzTz2WS6zZbf53AIh63Ysbmyeu3k5WjajHgcpKRtH3Hdnz1kuvc+3tEUYQwnUuG8IAajVQqapVVUGMIcTxAuIwxJgJUMAAmoxQZmnVaqmYr9Tyqc1EYnl2bf56am1Cq6U5DnIiRzDAiHEYMAq2ZHOEMAAQ3XrajDIIKGGUQpMyDJlugWSO2gTQWicZoDa7ynbe+9kDDzyGObSZSK7PLZuGYXf4CDYMAqqGtjY1Fu0cuufJr90cX7n49iugnLh4+q21xdk1yuWYheBWWW2NdwGCoDUgR2TSHOHr6+wWAcvL2mZKKeisWKNuB+d1yxYlMytKvERlCTX7OBvPIKSYY3WyVFZoPKubFFAKIWBRBx+wY5EDNd3SAPI6RAESkcPA5r40envnjj0Slmye+muXbv7xPz7x/ttnu0Ndp09djEZcZq3a1d6uFxSPvzA1en1kqHV2bFEa6LhZmm5qas0msx//+N3vvvCaQeE7H07ed/hQIbWqaI0Q2ByBBoiFuoiH3IQvvfLuYNMj3nD63PVr65nKX3zpMyUNvXriTE9vy3ef/uDzD/c+80/f+Oyf/kWZufd0Nbxwc+XG+NShHUdXO/ZefOEfLLfUWtf87tnJu3c8+I2Lr/95x8fm9UQ05igQFquLCjbnjoaGDwozgt0hlSopVblybSIQPLn3wXBDzFWu2uZXl5Fg7Nve9+MTZw2K2lo6qlVV5vl6XzAoCjnTHOiK/eCtS1/cO5gtF3TM9fS1I7uE/E4YcSAvhzwciLpRa72tvTHYHA16fLKFIRCwy2eL1cnhiOQJSLLD5g8HO3p7hof3Hj/+2Cc++wef+eo37/vU/+rY+aTgrNuyhVLGDIuZlBIGLAoIAxalFqEEAMIAZYwxaFnEYpYJWEUHhNKBZlvQ7h69WXa27Dz8wCeIThfHp6YmbpTKeR7bOGSzkCjZQtWqOT0/F25tMTT+xFuvzd94/uwzfzN/+1QG4CyxEAAQMAi3DJKQAWDncYNH8Di4RFZ/90LuvQu5tYxmIsGiMOKXRAHEk+WxxVpeA2E31x/lGrygPsAHXJgSsLCpL6YMQqCDB/VePNRoaw2IjNGNvG5YHEbYZeMkBEWeq492fnDpsiCoreGwbtSWlapd4A48tOfM1PmD/Xtu35pLZDZGjg7MTI0119dNLyZampuuz87qirq6UESERzbk9rg6OroP7xo+f2Pp1o3bxc35fKosulyiZA3WB2XBURfzzC1uPvPC69nM5NC2IT9nuzox9vlPPjS5uhKyMyqYY3PF8YWFM+/9smfXru5wlFh6psgvzl1q74wQT2h5I/HgY49zzMqlqm31obO3Jtsj/vVsudkfEmQbH5T0ar6nvWUtmWwP+DRNSRvm5Pmr61Pxwb5uHiPRAjOL08eOHQAAnL91M1wfsUO4v69DrZYiAfutmbVtMbdbxDPF2v6hgWQ652uKIIEXRUGkEJUNs2iRokVVAiQbEGRoE6WGgLsp7I65Zb9d8LsFv10IOASXTZIEJInQbgc2GwqGAgPDB+556GvHH/l6IDZCIWOIMci2bMcMAoAh5BBEECIIIcKIgwhznMhhjoOIAVAflpvqnaPTmZzlOnLsHq1SGL9+aWz0GiTEbXdCjtdME8k2dygme/xKJQupOTO3fOPGmVYXhzRlSWcJsiU9huDXHi7AIICaxa6uVN+YVN6cNqcS1GlHbiew8dTnwKWKtbChp2sAYBD1icPt7phfsPOwprLphLWSYZDiOrfQ4OWagqLfhSqqsZhWVnNGwCUDxjAmIjABMSDimxpbSxXt2sTYnj3DhVy5aCrnRy9/4v7HDJsYLycfOHz30z96trO5yxlykDJwhkI3bs0eOdi3tJZoberYiOcK6U1vkC9bxkBPP8Po3PlbkgRqhTTmwdzsRHc7lyjkOuo8ooimZzcL6aXjxw7s6I4SNX391u177jp8cWz54Lauc5NxnxO//t6Z9c3xzva6mCycH53yRZrfeeV7f/xXf7tRKC8kknsO7UykUt0tzc9fvL1Zq1RSGzPzk7mN1Vg0PDq/9sCu4WRNsdllv90+u5krO7VieX7P9t2KWkES+uDEyT29HVFZujk+x9skd71nf3dLVa0c7A0XTStVNT5x1/ZzU/O8S/SQan1rFI2NL4/Prk0ubsyvJdeTxXxeK1cNwwSIZ3YHctk4EUORQ6YJKzVmGoDDSBYhz0GAIUEQckCQod2OvD5nfVNnINrDEM8gY5BBnjHIGGYAMYYY5AFjhAJCKEGQIkQxAowCyqhlkQu3yuOrZkdXL6Tc2fdOpOPzPr8EGAKSyAl8Np+wO+2yw+VxN1iSu5rJa/lMsZwGvGPdAFnLpJQA9pHhiG1p8yAE0KSsahKdAonHO7vEtkYRQFioWasZvaJSvx377bjBw4WdrFxWplfU60vG+IrOc7AlIsR8vCAwAq1EwZzZMBczRtUCnfUelaJs1Wry2izTxFhwe+oaG1vaoo1nzt+8tjC3fXiA1sCPf/ycWsr83pf++N2r57Zta1ENdvnU25/+0sdv3lo+0LNzbKW4q6fT5sWaknL4PEtzCxzE3pATE9QYDZ+8uVIqGumNFU2js7PrR44OqbXNpsYGr8ueVGwvvXKmIcoRm1gfa3z/vdOP3rtzI6txUGxpiMVLtcWV2vunr6SyK4cGWs6Ozbh97eMTE6VM8qnPffm5Z549eOjwany2uyniFoR3zkx7fMGpueW55Y3u1t6awQzLGGrv1A2jJxalgJ0bz9y+caF3W29TR3e6VLl6dYJUCnu7WzImvTW9Gmtuinp5BmXVwMe3t756fnr7wC6OgTcvjc3Oz6cmpxE2iUixZFlAq2nFslKtmYBQC0KLBxbI5Gr5KsmrrGYRg1ALbHmdiU6oTmFVRzUNagbQTS2ZXpm89cHm2iXALAABRJAwxrZmW7/uIxBDCBmgDDOG7phVIQazGeP6us65RJfNfe3KqEVYY3OnP9RQVXCkviGVXJqYH0eSnenMZQ8iR2R9ZR4YBV2vXExXxrUt7cId/RSgkAG4ZYxlH/m9IAA9EclnB3Ortek1M1mmdomP+QWAGIcoBHBp0xhdUgoWCAbtPU1SwIZrupWuKKmSuV5gmxVaMZjIc8N1TqLr44lq0MULAAAgIcnl9YXrQvXUMjpb21eW0iYEuwf6xldWv/XTpx94+NDQ8Miv3jz3yPEjP//Fy831zfaGJq8NddU33FxJdnW3EWipWt7u8SzPrrV0dS4m1rubmhNFJVMomnoCYEqQ5bW7oLtlaTPb1+zPVdRL1xK1xbXmzo6aAaWA++XXLv/x1546fenGfUf3Bnytajm/klXOTsW7Gtw6A5Mz8zab5+/+919+4uOfXkpldV2LtHcHw5GmSChVU9768NZgX9/41VG3G1sAnL8yur2vYz2XawlHBYDiVev507eLmv6lTz25ltWmUuWzF688fGCHCcDZy6cbmlyQwoBbXN/M3z20R6lUfP767oaGczfnv/3qpadfO4kKieWZ22O3RxfXF2qICT6f3SOLhFnrmdz09GKumGfEAgQABjgOCBxDGJoWX6qxhdWV82ffeOm5f/nZf/7F09/+o9ee+cvRsz8o5mcgJBAxxDGIAMSAAQIwAIhBxBigAEKEIWAAbGm8MAAYmhhzHKkPRYhmCaLU2NUdae3TLS4cra/m86fPnKipasAfRoLIS1zMG5hbHBNQ2S6JC6l82TTvmAYZu6OOAVti4jtVBQDACKRK5qlpcyIO8jVmElZSyVJCE3iuvdFBIZMlbk+PbVuLIAk0WTLXc2a+QssqK2pAIciwQNjO72pwVlT9Rlx1C6jVx+dKOhS4tu5BgvlsOeerqxckxxee+vzla9cCNs7B4Q9Pnnr2mR/89hd/9/2JMUZrHtn29jsnP/dbjy5vZCVoBbyey1fGugfq4nPTnT2di1PzPp83nk7193aULJqIlwQe2DBxx3qu3Upv72ken1ryewSvnc8h/o33L9x3z0Aqm330roNnT53HTGlqiNy6+eFffeObRw4enZ6LX5nNjM1uyBB8OHptZ3frtWu333j+548/9NgvX3xt967BXCazrbNRh/D22oZhmPUuuZItd9U5by/EOU1x2RyCDcmyTcAgoah/9Q//3Nfb6fQ4chQ++86prmZ/g902vpLMlNDO4c71zeRyMX/f0baDuwfW0+sPHDtkAUAxN7a4iWqYC/W27797zz337OzviYoI5DarK/PpbCon213BUNhlFySO8hhCxClE2MwZV65df+4Hf/+Dv/rsC//45bO/+t9j53++OvNhITNJSJHjIMJsy9yMIIOIIQwhYhAyutXAtgSmDPzamYURoBaRRFt398769uGW7uFwpMkwgOD0hOtip8+cXVzZGBw8KAiOeHL16V/+O+C4xUS6Wlxrj0R+HTFC79TUnXYF7wyx7qx0GAWJslnTWMwrtEf5sBuHnNy+Xt+2dm+xZEb8wn17fXYeTa+oi3ElVaIlndVUVtGgRgG1aLNHaAnwG/nqzXXVLeNjnR5dJYxhye7qHdgVCNclE/OD20YWlpb2jgyFfKFqEWKGd3T1f//Zn+tm7VMPP/azN652Dd9z+u1XeQG3dDSvxos2zjO1WFYV5BLsAuM0xbJ0Q2eEFzmngJ2SK5M2kamJWBlfWHYx1eMK1Gpse2MoVdZfvpFauTruCdnWViu/+eUv/q9/fM4RCF+4svTKK//6td/5qszLGc1Yz6oBSVzfzOoEtLbU/ct/fM8T8M+uZddWVuwi6m6O6JS5PPbr1+a69+5USlAUvSmLnJucbWtsTFcL7dGQQYjEc6+fPP+P3/rPplBAhPj8Yub1cxc/f2TYxlxjcyt1ja0um/3ibHo9tfbUo0dmp27dt3+HjcN2pyPqcKH7jx3Y3t0oYmttM72WqOkG87kEj8cdrI9EYn63xAmIMsTlquD2TPytt197+t//+9Pf+OLFl79R27zld+vNzbCzE/V2o/4e1N8FBzvZtg4w3Ab6m1FbFMYC1O8gLonYRCYKjN/KMAIQIYgB4CGDDJoG5QD38INPdnXvqG/vdLp96/F1wrRYNMLLEsPS45/6jX177+GBWCytnrv6ocOBsBg4ffXq7r6WiE0ADAAIIfz/K6Zfa963UhgAhADClpB4dMi9o8Pe3yh3NciKaVydKcQzVi5nvn8pe2a8tlkBJRNaFLolQRY5jJGTxx0+wSGw+bQ2niUxr/iZnX4vYolsraunu65t++TUrUi4fnxidsfwsGGBqqYf2X+4d2i4LdocC4Va65u+99Pv/cZTv5GulZVcoq2v5/nnXr770f2xZq8sC60t0fdPX7N7WHLtmqblkitLVaXisHvqff4yU8q5XLUmbMRLJ68t5ky+pSk2u1mhCPptwnqu8urJqbt2bL9y5XR3U/TA3u0vvnupPlb3r//x9vrC5c8/+ZBBrFRNl0ShmEgJIiSqNTLY/P3v/9hEbGohceLsuYjT1RP2z2WrWS17+YMPO3ftjDodAREtJlMi0TksHhjq5hlgDEgYv3/xCoQ2jyQQBj68uT6RSv/5H3yllNmUAs72ligF4Js/PDGwrSlZqlqmPtjeVipXGEVoc7U8P7G5OJ/HBvE5kM1GDE4XHcAj8JhYqqpt5tSrY8vPP/O9p//pa2/94KszF/5F5qe7++HwLtQ/DPp6wGA3G+oAA+1woA32NaOeRtTVCHuaaX8r7W0FbQ2sKUqjQeL3ELtMRYnyAsMIAsYIZRRgatIDew7v3X9/uWS5vdF0Ml0upqipTd2+Vsxmu7oGDh2+q1ZVDM0M+WNdjTG3t+34rrtGJ26VS5uHmtyDAb7Rwfl43oGwAP9vbf3fCoMAAIAZ6G2SmmKcacF40hqdLq9mFIQhAmwlTZIl5pCQT0JuHrl5QBg1CQ2LrMkGOEhSNaugQb8NfnZPJJdTF5KKCODQrvuh0//O2VOiDSAk6EotEvTN3rq5lCkE6j2f/fQnlxPp7sbW1YWpGzcv/Pnv/dHrZ08e3nN4dmp6M5m56+MPrK1vDPa2rq2WkhW4Ek9m8+tjN68Co7SWWDu8vX15Nd3U1JpcSaiUX87XCiYd6OhQavrY0madx/Gx7bGFZNwdadox1P03//ivn37q2FBLQ7Fc9vpd/+fbT+8daWoL+tJVpULYRipXVUuSC+ZUuqO/7cObMwYwC6Z1+trNe3Z0KLqeqDKlFI8nN48dHdENCgBI5yvZYq6ptX5bQwu1rIgkVwhLVxWJ5wFg8YKqlbQXTr7bGnZlVxd7W4IAwrOzqfdefWNHh/v27VsHt3XnShW/z4sWpq4XNlfcaAOy4vrmxvxGqmpCQcSWyUoVLZWp3hqbefkn/+X6O3+I1bd7O1KHDsODB+HOQdDbBtuaUGM9Dgd5nxe7XMBux7INYwEBBC0ATYIMBVkGNDVkKMjUEDMYMwHRKbEYI4gRiCiNuKTDI4c0BaRS6XKxeP7D97Pp9IUzZ7P5vM3llSXPiRd++c5rT+fKRacj0NvQRSzYGA40+Pwf3prTGfRwqN4OWmwsLADb/5PR8NEfJYwSRtvCQtBOr9zIXrqRrxpmS51k51GuaJZ16LDxdR5O4iEFFCLGELDxoD3AxbzIYGRTJQxzbg5uD3O3Z1I3NjQoAZ/L3tq/D0CcLinJ+OJnPv3IzMRESdFIrVrvk25OTt5797FgKJzMVTraO0dvvnN492BzS/eZy+N33/vQK8/9cmi4G6FY2O2sr3cuLJWmpzVNBzOT05aq3F5c6GiP5IrlqqEBqDsEDgFQSOXKQG0J+b12B8Zwz4F2l904efHS/Y88nshor7599o9+/6l4oRrx2eKJ4tVrYw8e2qYz9tRD98te5+itjd193enMRv9A786mulfeu9HdXH/q1rzX5QzZpMmFtTwVLl680FzXYOdhW2NII1a1qsyvrP7eJx9xC6LP42SMFNWqx+bgANwslxBBmwtLf/fj1ykO9dd3y4xBzH3jh+eVau3mxFhXQ4gBOJetoHd+/rVbH36HGMAykVIuCVi2Y5EjACNik7FD4lyivb0jeOCIcXA/HuyGLTEUC3BBD+928DYBIYZ0ExZrNFdl6QJdTZKlDbawDmeXwfQSmluBq+toM45zaVwpYq2KTJ0xCpnJmMl4iAWMChWrrGhqtZaOJ6bGp3hR7h3eabe7fL6wJLlmpq4iDHp7dtpkXhD4ulh90BNl2HZwezu1jOmczpDNJNhpQwE7EtAdIDoE8NczUonnemK2gXpuPVErVNlQn3O4W1ZUI1OmLjtuCMCgm9llGvXg/np5pIXf0cx1hDgK2HoFlHTolTgOALtE40VwI8M4BFz+qM0bra9vxJCYEI7enOYkvH3XTh4Is4ur9X5XNpvVjXx3dw/GctQZikZi166e/fM//t3p2dnu9rpMFpx47e3dxzvzm9Vt/f01TbeADTJybnxxZjWfTec0A0puZ6ms1vf1RoN2N0bnLk4LAurpaDu+b9tqPFdVfcePHXnlhfc2i5l/+LvfeeaNCyvLiS9+/IFr80mP2/7uqZsD3Y1eDDhJ7u0evDo+ncooI3sHb1+ffWjvwFqlZueEzrrwxFJ2pLOpRNn7F2dmbl/9yUsndvZ1aJpWVhSvDZ64dH14R/uDe3d7ReQTxZyqhFx2AXIY42sbqaM9jenN7I9f/2DP4fsf7O4kxJrOVS5eSyU385joDT5/tlZBvpCpcqVzF994+61vpTO5gNPnk0WXQ3A4RdkmOTy2pub6npGv+Zt2AEBqNZQvoFQKrm3AxWU6P8fmFtDkFJmYBRPTcGKazi6wlVW2FrcyGVYpArWCiIKYiQ0VGjVMCeQBEiHHIYwQ0C2qGngjbVUULV9ILa3M+iKxHfuPt7QNCIIk2+2aqhGqbjt4787DR4NhTyabGexrrfPbEc9aW5tHOprjhZpo5+u9do0hjJmIIf7I+bX1zSE00h0eaXdYmhaJ2A7tC0QC4mZaE3g03Cl0N+KgF4U8qDHA1QcEUeJzCppLmlMb5mYJOES+xSeWTaBaxCXSvEKIZvYN7Lznsa+ULKxUamq1TACLhtpPvPtetD54/J57VuMZSZJMtbqZjHNmZaCvVdNLvX271jeTNs46cGD37NiNu44Ov/qzE3Vh4vGgybHbfb31gt0RqWtdyqlKhXR4JUa5YCRs0HK2ojzw+d883BVLF8oUwEirvbOvWbLxz79+TsZcLCZ/859+GosGP3/fnm9+9/mdAx19jcF0TatWK2o1v6szfO3GjUO7t1Uq6uLKciZZgDazu7VxsD76xqWpjz10IJVIBOyiA6HFVCYaCI+urjkk6GDMYRfX47nVzdzZ8ZmnHj7YEYq2RaMFRWnwuYM2GQGgM5LMVD57bO9/PP2rCxOn/+Ef/7LP7STMKmraRDyfyqSPbOuu1hTkDsGqent5/vu10sVS9srY7ZOjY7duzs5PLS9MLE5evXVm9MqLc5dfmbxujU/j8Vnu9hQen4WzK9zyirC2yifiOJfFlTzUKxBTwSmKHpnzO0S3XZJ5JEJECVQJMSyLEQoZhlCwLGiZTNOApgFVMZpbQs1tPcnNlL+hsaG5sb6hUcQSJdRmc1oW9YcavP6AKNtKWW19YVmtJifGXp9fn5Jswb1D/X6n7Way5Pa5fHY5VzM5xjgE2f9zvqIALCynLt/K5SuoWLLGpgu3JgumiX1ukWq0XGLMRJaJ1lNkclkfX64mcgaEnEOGMTeL2cBGxcyo1C+SaCg81NM+3Nz1xd//nw1NA9WaYmhqoVgBDNjsNk503x4bffTB4zanpKqGQ0KbK/FgNABV5o/6EgtLwZD31uipffuHl9ZqzXVRu5179ifvRRo9i4k1plTrmn2qaXo9HhPRxpCHE2ChqlZ08fUXn2tvrXeFIrczxfnFpGyTmGHs6GmbTKVn5kqtze06BX/xje995UsPB73+H71y4lOPHTd0q6qTjXiirT4yPz/TGAkEPH6CufhyIlWrpkvLTz0wPJfMuQP4qafurxTLbRFfTrVy+QqkbHo5M72R5jkxGGvw8cIbp86EGqTDB/o7wxHKgMsutwV8hBCB528txgcG2u/ZM/yjH7373uzUd//tj/fGApiYOmFnp+YOb2thJkPxjZRZyyOspdOz597/5ss//uTP/+3+n3zz/mf/4aFf/MujL3/3s28//7ujJ/8hsTiZy/KlKlYNQVV5Q4eWxUHAYQYlDttFXgAYUqzUUKmMigWUy6DNNEvlSaZIyyVomhyh1LSoYVjEYiLkbBwXdIo+B9o70jcwOMzxDkI4RqxEfLVSSJVKeYOymqIjDjs9LkZBLpPhWZ5HFGvxi5fev72SK6vQZ5fTZfXk9KYMBYTEEgBsyyf0kbqBUJqtWgUNzCbJ6THlxoy5kYOZkrWxqasWJ4hAJ1axxhDH+1yCx46cMrIL2OfAPodQMqgBkWBa2wa3PfiJ34809B565DPdAztWllZqupnJJVY2UkGBI+Vce+eu86dPc5Dce8+RjY3M8ODA+Nj0tuHeTG6jLVo/tTIX8gXWNsrQKnX1dq2sVO67Z/flc6PZTWX/yP74akrg2exysrc5Fq/p4ViHpurlaiGTpadHZ7/1j/88PNDIA3Di5LXievH63OqO/nYRwHPTKwaLYIbGpuJ/82+/+us/eOrcjRmTsQd29aZrxnqhGnC6NMUqVJTdO3csb1jROs+N24ubeb7OIRzd3vmTX5x55KmHZV/MyVGnxK2mshwA9X5/UadrmcIXPvaAP+wfG1tMZqqLuXJvTxMAoCZZO4Y7GQA2ACEkmqk8eve2qqm88K//8a3n3v78px8MIuaxc5cmVtxeePeuPuSLcZ4QsnmA3Qm9bugQCTWKammjmFirJROsVuAsw9RprWBVUqSUpZWiqdSorpiGpVsAaAYq1XC2hNN5FE+RlbixHLeW1s3VuJ4uwEIF6gbGCNtkwemUXaLkscleh+i0iW6XJMm8wEPGLAFoABjxjfnlhSliKoSq6fSaZlqUsvrGNq/XxwFAiWoghZckd6hlNZl5+9yleL6GKQIArJa0s2t5SgFmjIA7tJOtDwKQIlSlUCHQALhq4KoGHDYYi4kBH25tckcCYsALJZlVdaIZUOA5u4gkAZomUS1WLml7dg0/9aX/MjmVDNcPdA/265VqqVBsidWtLE0XN+Nf/NhnOLEa9No3MuT66PlDh3cbeq2rs8XSlVwiZXfbKvm8yy0Xkxshr3sjntg+1CBLdqoLd9+1+8rZywM76gtKiai1fLG6vTkqAlCycoqaNU19eiVdH+79xr89Pz01U+93TG/ms2VmAUANrT3kn1+PG3qJIWFHV937F29Nzq1/7pEjP3/p1IE9PQLCEzOpzs6Y3yZkMumIz4kwmlrOOAF95/Ji1UK7OjzJ9c23X3rt859+xFTMzrCH5+wWRZDHfbHw5EZiM5c5OrIjXlWnp1YMRiOxcNTlmF/PbO9o8/O8QZBgc6QXlrvq65fTm4IzbM6tf+eVtw4eHfEhlNPYzZmFrzy+FwkSEezU6WSREIgFQawONDSD+lZY14I9ft4mcbLN7oq1hur3O6LDCnNUyqBcwck8jifRShyubpDVuLW8bq5vWokEyRZAtmAhMQCwXdMJxshuFx0ugeOhRYFJmG4C1aBVzTQMSqilWWY8nVS1kqkr80tzV899kNtcdTikXCnDAJA4xDNINFLOFZdmLp44dzqxkXZLdpdNnltZWM9shgIOCABCIK2bdV7n3ubA1vT91+9CBKGMoMSACAEGkIOkrV4I+DnLMhCE6ZxeVqBqAs0gNgl57JxlkkTZnM+YUxk6kTai9XV/8BffSCYFQYyM7DxAS1qxZJSrNW9Q2kisYgr27D7oa+lWq8s7h4ZPvH9eoFpda3h1LjM0PHTt9OXBgeHZxc32aP3yaiYckOPxxOLsdTlg3J682dUVi3bFVleyvcMtpXTa6eb9bnfALk/N5VIF04H4olLav3tHxB/igb+3KcRLfE7NrW/EE+ViwM0jhIvlbF3EP58sH9rR/W8/f/PQ7g4dcLcml+7a1jyeyOeqhb7uhpWVNZmjvY3BbMEIeQPzy3M/e+96sWpxduFnL70Z8AvuSCSVqw00+Zw2USNqd9RhEvbiOx/u6Gxz8dzJyxNOQVhb3NjZ1TW5nHA4/S6nTcdws0pO3Zi1GXRHZ+eJqcUjhw+1uMPvnL890tPFQ/jOxXmVEm57n8cvUj+2IyzPrmuFso3QWtGweBDQq16A2znZJ4rOckldz8wjoWKpglrTNVU1dcPQLQIAAgBvPV6AIKAQ4lKpBBhDAFkWVDXLMBAAAEK05a0ngAHAMKQchyDDuWw1uZ6yjJpG6Lvnzzkd7kohlymVpiav3axcNLR1twsv3Zp6592XbiYLPmn0cF8sYJOWc7WJhYXtHV0RhydZK0HApapGCIscRAT8Om0UcBjYecwxhgCVBOCzIUhpoQgwEhUNZItGWSOUUEIpQ5xiAt1kFgO6SRmGiLGPPfZUe9vwyvjJ3v5tG2vr5UzBFu52OUPetoFixdg3chdvd+/bd/DK6Tf27h760Q8ur6yu9XTEPnx/dKC/J69luyjmZW9iM4MtXKuU42tZQPSgRrqGBxObtV37j9+6OS5JFehGrkjENOBgV8d6Mm9Z7qm0Igm6bBcGuxvGF5c7O0KKtmQQirGkYi5od25vhmMryaceuO/67JJpMV6yf+9n7/zWZ+7+h2//8g+/cPD02MrscnGot+X6otLe0iAgNeh1bRRrHQ3eKzNrmDEbb7+9kvrRMy+0NfhPTsxXrGpPnS+Zz1m8WOd03lhNb+TWP3bXoTdOnf/kg4fGNhYODQ28MXp9KZUOur2Lyyt2QXxnudr77oc72wNnZ+a+/96H3/n67/6f//z5ejW7vT68tJa7MTqNokGH3+8pG/yNzerNlcp6Ul7faFXUQ4Tu0czG9URh7Pq18x+8ce79ZybOvJOYnImvJtKpXKWscNTuD3S0tA5G6voAcjECILFMQkzLUlVF1VTdMNSqWioohXy1kK8WC+VyqVot14yaammmoUJNgbohxDcr3336Z+cuX7YArFpEs1RNqWCAXn3rlZdPv3Frbi6VnF1euLSQLDCIbq4llzOqU5IhAMmqnqlUvE4HYwxhMF+sXlrNUgD+3yGpRVhVN1WL6JQRBhnkcjmaKeCluD63XCtXKLOwTlBVRzUFGAYgFhEQs/GYEcvBC4ND+5PLWUSAqVUWJybTyRmjUuxqqmvv3H74rnseePiITZZDdU3uoNeoFfq6Oq5fnXTL3kijb3b8hi/kWJ69uv9Q/8Limidi21haIyZRa3R9Yaatua5YzmWT+W2DPWevLy5ny36ZYlHcM9Q7t7ySSqQwJ+gGWVu90d1bl83mA56AEwBNYwd2j0xPrsVLtZpFPXYpnc0OdLVdn5zvrfeen4nnC4n77hr58MrSrt72ty5MhFxIEnE41pDO53e0RZaS2Ya6SIPLfXMp6ZR4nudPX50xtBqPULFWFaDW3VlXKulNQS+F8MUPL+7b1lbQjKnlTbcT9bd4m932a0tLjdEYAIDHiOP5Z87eoMQK2OwzG5l//vkLf//ff2fXtu0NTsltmufPXedeOhlXdVBT7Txy82pDUA6l0lpxaalaSanlil4rK+pHYcMAeDyxSGNXfVtXXUtvXWMTsrucNrlaAesbG6Zaq2hKqVrBuompiQGEgKOMGoQSSzd1xdQUtVasVDK1yoZRSxtamVGCEUAc/+7Zs5rBMMaEWBZREAOEIpVSAKGAeKOWy2Q3ahBijKqGeXt+nZj6lp5ham2DhxgAQChjCDIGMUSAkV9LkwljBoAmZcACOqE13cKQiYIFLGYBSDRiMIsCgBnYWmgKHCKE6RQoFmvq6ow0t9VSJRnbZJlls7OWValrtr3/xoKimYeONrz1wVs+V/1h+V5mcblcYnhw5NSJV2T3g17eqzuLGwupttZ6Uk3HIvZTZ288emxbqZpySfZkvnz9+mgw4H7v3JtP3HUIM/bMe9cdnBmMNIoQeUK+fLUcsfPLJePytdtf+uyX/9N4N1OsBgPeW1NzFUW5OLcucpxNwnePDF6fmj1+ZOe56+NVRW31ur///Pnf+9Tdv3rnUm9jLFnUx1ayO/s6PG7PXEFvjpAndrfcLGfuHWn98cmbSaWypz90cza3sFGwKHW7fZuJtCdsyxRWABYBY9cXNrsu3fTZpdHxaZ8sEMz++KuPn74w1V/fAACQRMEh8xv58o25VMTpyKnqm6NToV88/4dffap2313rm7lEfJmzyLClG6SkKzmmlavz2li1WjAV07rzbHh/tKm5bbC9d7CxrzPS3O7319ldLlHkRB5BRgTKEIUED2OANZMYjEALcQByEFHGKAOEQQIIIxZkzLJMpVrLZ7Iby6sLC2MbKxPJ+elsZlnVahACiAADoFoxHHaHw2YHIAMAMylSy1qypGmMcQxaJo1nSlGPz8npFaLVTAsCCwIIGGEMMgApox9JG+74KSi7o3YoE1IiBAAGdBNv+fwB3IqQ3KrBjzQ2kCFIANg2vMPjCeZW1VQ22eL2GqZuE91ObyCeWpFFVzqez2+sRRy2fHxVkAJacUMSufqGhumJ8UhLayUfn05t7BgZuj56wynhbD41tV7obKo/c+Vab3v9a++cPX5gdyKV+9mLrw80N75+Zf7VC1OHt5G2cGhPV/OrlyaanHaZM06PZQ6tbXR3NV6bXPT6PZPzKwJIiDwvYJytKkubSb/Xlsvn2+vDs/H0UH1gLK48+9rptjrf6GI8aHe+fnb2cbtr2zCNeQK/ujrxh08etNK1gYH2r9odP3zz/P4djem81RILXJyLVwghkuP67NJ4Kh92uG2YVyl559IUZWBsfo2ZcHRudedAOw8EVVcECBWd1LkcAqzOplJtPh8HAOCEH79z5drE7KfuvbuxpS3gtHHrN0q1glIplohlEWKaDAAAHPZwY9f2vp0Hu3aMtHS2+ENh3mazABIgtWPm5IDMQwlDkeMwByxiWRYzNVq1iGIQwzQJBYZBDMpMizDKDEJ11aIEAsJEjPz+kNMZqBsYqJWrSiaxuTw/cevS7K1z5WoKITi5uPzc6y8XqxUIIWPMbnP6gi0uX72UrmGMCaAqQDqENkGoKvqvjbJba+itPTRkiAH6f6ekEGEACSBbcvitakN3OhrFmIOMmYQAeMcTySDAEAIAnC63mimVKhqS4PLqEkVCfXNXOp3NZ5d37D2az6ci/kBrUztQqy5ZlkIRpZpp7eu8deXivY89Ggq6m9rqL1+51tbRce7dU8NdDa+fv/JnTx4bi6+HAm6XZDt7bUyDcGUxrhnWQ/sHz48vf3h9Be8WBuvd5yU+WVNDsm2lUnr/0uUdrYEfTSx0CyEscumaJvIoGghW1tdnlzbuP7wLWubugZbF9WSVMrfIz6fLUTfziEJercTcnqdfPD0wvGf37pGrS2vfee26xyHObiRboj4RctfH0hjAeF6VBeHEpTEOIFXXTAp1ZtlEwdRUAiGhUNFMxIBSIi+fuWHn+eFYzMYJhmnqmi5izqRoPV8WELIY4zA/tl4e++GvAAAYAG5tegkiwCjgEe9wN8U6dwzt2r9j7+GBwa5IxGEwoGikrAMnYF6J+SQk84C7IxcAEAGMGOD5ZI2sl4x8yarphqVbxLAM1dwKSUcIiJwgCljCiEIKGCWIIInylgUEzhGODtUFjxy57+zb55595k9Vs1BVamdGb2yWSxzGFqGKZZ4en91QCINAtwzCmEZYKZUAdxJIoMTzJiE6tRCA7I7g/aOc5DuVxRiEkCEMwFaLQghSShFClAKOwyalgBB8pxi3cHMEI/ziz3/gU9Sd+x8EDi61QZyCKxQJJhNxBIz29tbJa5PRmNvusXHQq2SXsOhJrq/UdbTmctVCoSi5UE9n7FevXzh29/6ZmNvrFBBFp2/N3DvSf+HW7GeP7z9xdnI8nwp7HJcnknt32Qe6YtNTCy+cufWXX767v8H79uSaW3IGJenKjQXP7m6P057IlSN+X7miCoDVRYLJXKZUUy7dmnWIcGSgAyLA2R2SSqCiZqqKT7QxwyhUKwJn+/cfPt/UEMUAllWtphkLydzFqbidw9cXkyZjTo63IKtUDZsoIsApxFjNFzCEAsdjkbNUHSBoEcpDInLYJNZkYqNmUQRh0VAopAaxFI3yCARkKVtTAAYIcluBoZzT2eVwu8Mt2/oP7+kc6Ovs6vAH7CKGjNBExaAEBSQc80GvBGQegK03xtaACAIOQZOA+U0jnjMsy+J4aINQMYFpEcgxDlCRx5KN52SJ53iZw5ABQokFGADEoSsBUS/llXKxvFnNLEyfNqwKYczj9e3sGnz5wxOEUIzwejK5lnzt/zmOQwQAhIgyBhgDiHkdQsAhGZZVqRk1w9QI0Uz2a1MhAIAyRhmBkEGGIAIYQggZx0FKGYPANC2LkC3uAQKAUriVOEoA7PAIfjuyLEMEpigiBgRZhNdOfdgzePzovfffvDw6MNBNCAXEylTKPskOeQQtIxBwLi4seuw05pXqw4FbEzMjh/pvX7ixu7/15szsJx7YvVnIzWfW9u3ddu2FN2etWnfQ8/apW1/69F1uAfzq9O1n373+6P5dowvpjKq5JZka1qXxVdWyiqqm6szrtiOEakpZkuRiTV3NFBkgm7kahujWzLLfbscAUQoUy0IIKaYlu2wzyysTyyscQBzigm5noVKxCMEY2yW+XKsSACmhECIeYd0yIAAIYgaYbpmcCimlpmUhCAmAFECEMOQEaqkMAsRzHICIQQqoKAmt9ZHK4ppqWRgAG88BwLgv/d0vPU5HINoY6+EprSGT1qyawbBLlNtcXFAANh5AACzKLMrIRyJgBACPkMngbMHMG1bAwxsmLNZUXSO6ZXAS57bZRBFDSCuVbGJ1Mr2+mkwsFdPJUiFXLpZVVdXUimUogEBdQ2q1XFFyWxXLIRgL+kQO1ywiCxxknEGoRQkPgcxhizKdEkq3xM+QMZguq5pmhp182MlrJizUjAKxLLaVxQ0ZgFtgM8AgvbPmYYxQHiEOIcqYSQiEEDBIAUQQoK1ehyAj1uFDh4cO3rW8oCiVnFrNuO28pmgz49f+8l+/PbEW16qrRtlRsvIi02pKycss2enQNK29penS9WvtrU1WBXW1h989c2toxxOyYD/SP3x7bmM9XXz46J6X3z7b1qTt6Im9N7FWVGx2yXH67PQnn7z72vjK6ExyoKM00N744eScZVKv212uVlXTwAgphmkzTATh5OwKRZgBwGNAKK4aBgcxBcQkJsKIUmJaJmKMQVSulkWOQxT8f22d2a9l+XXX1/pNezj7zHeuW7dujT13u4ljd+JAHBsMSDxEOCLKC0JCARREJPgTUB54Ah54DQ9JhCKIYidxYkgc27F7cA/V7qGGrrnqzveee8+8p9+wFg+nqh0h9uN+XlrDd/3W50vMNti909PldnM4zUvvpXMC0DMQIEMgAiE0B48AKAQHUqiCIAZHjLE0C6ZVpCLgSqGMpIyFjoQ4tM46dzYZJ0pJAc6HdjMOntS/+83XRmduMgjbDW5HUqAxSkgJWiBACAvjLgQhZaJ+Nsh7gJGHvTFNcgLio1k5m/jS1g0dL/eaRPnB0c1Pr7/z6Ts/fvDpR0eHh4u6m2bn4nZnaXXT2larea20cPz4R/PpEyGllmqtH7ezBinZX+o2jCl9mRnRjpPBvBwWbr2dXmjFO6P5iYW2hkRKDmwXZY7c2dhlzXit3wJRWz9nYoHgiD0DseBn/RMAIrAQWiAQMQM2ktg57wMxcwAWjIy8eCRxVss0awzGT8aHdw537w3OZjO3P2d7Npr9xe//9/mD23cBLrz48420NzksIEcZxQe7N69dOn+u213qJ9fff+8bX/syuurR44PNq2vD00f9Tvy733r73/7qz/+jr73+3od3Xto+d2dn9PBsvNlJr9/fif7qvUub64+Gk29/753URLEQDIxKCCkbGDkfHBIDzIpSKoG0mE6EAI6ECgtgExNAICCtNRNRCACy0+kOJxPJ7IkYeTjLF+cBzIyARCSAA6N19hkSf0HJZ+DAtFBvGImBWQrQiARgpBIOAjuKTCCSQc7zAoCMhhAooKicVUvoN9ZRn9MUQAjlQgDEZyROkAIkAABMq3D76Pjm7U/uPzmo53UwptlZb/XOx3HLV+RBNhtpv98P9dGHn/zxD/7k25+9+87J0RgAev21v/O1b26//BXTXeu2Ly0n7e5SdzLn8dFhMR7ffS9+cvc7UUQvPL/05ZefOz11P/rg4WB0ohRqxE7LXNlYcQ+PpmW5sdRqgLPOpUJtd7VGGOXWOXYghcEUWZAbDU7LGlJErYEZSODCF9ETWwJC8ESBgDCwkIIBAWrrEEBL6YgIFrRwWJDdP7t9Y3R0MDn46E++/x1fV5GUzp2+/ovfePLB2/njj0anxzvzcuXCxWvXXvzken1y+HDr+Zd2nzy4fGlzls+XV78UxGdP9keba937j06ajfR05/F0PJhA+p13H6x2k9mcPrxzp9tL92fz02mptX77+qfLrSwWwhJI74USLvBwOGoYLRSQY0aw3jJzYNBaYe0EsJIYK1G6sPAO6jfaZ9OxFBhAYWBCKKpCIloiCSiE0BIpABKiAERIFVoP3mMkUUucWolCaIHWsw+eGBCAAJB9IDYCBFgGSmPZSs3ZpKhqG0UKQAgdS/YIIZIylsajVR7FcO73TqyJpaCwv1u++4MfRuJ4+/yVytlZOTweHT54sHvrww/uP7hj8+ki4Jb75y9f++Lzr7yx+fwr7ZX181vnJU8+uf57P/ru733204/tEEKAl974jVf+wa9vfvkltdQU7FpcbUIM82rvyY9v/PgvH916P7iT2bxkHdCUqxvraZa6s5lU4tHBkfW214na3eaF82vjqj6djdOG3j8ZVcyrfd1baY4HYwJKJMYKjBGZIUTBDK2EkTEQASIQBObAIhA7AkvgCRyRJ3YhOABaSF7PLqcREQQIYAJWAvfPyvuP9yfTe7fPxkLptqZoWl88f64jT3/y0XtTJxpJ+ZN3f/DFn/+lncFw97Obmxe2bz3Yv3xtZ3kjquzs7/39b9z7+K1OS7z13vXtl147Oa03N9dvfPy4IcPhfn1xI9sfjrPErDR07sAHYqXmZR0LERtYW2o83h95hCzWS+1kNqtYSxaMTFKABDZCJhKySFXWxYKKhU+fEF974xe+9b3vlc4zsyeWAuqqkkKGQI1IgUDmoBVqoXJLnqDVFFXNaLGViGZTZyVQsN1U116Bkt6L2bxkhl6anZVlZEysdJzXWsmarBUcXGASRivvaV4VkVRCSsmVFqAOJ27ueehdvjd9fP/w7rvv/vRHfzifnO3tHhU0/Lz29Trnnr/85d7ypbWNtc7SetbptVoNAOGCd9NHdz/4/s0bf3jn7vuzE4gcZBsvfO3X/803f+23+mtqWlpHZQwR1tHxwcHbH37rxsd/sHf3gc+hlcFaW3AwkMhGqgEIomBS4V213mk8/9LlJG1EUbx14cLMhl6vm49Ol2K+cG611enkk9OVZtBSCkXaKP1UcSAFKMRTCc0F9AHqigvHGEAG8AI1oWd0AiyxJHCBCSEwA/IzpjsCoic/rCpOo7nsRVI6olkZaqkvnlunMN2fulJGdVnCJ49Hw1E1G9zcn7x298HDqf0/b35wZaONj+/9k2/+07/5wXcTPT88mW5dtbq/ktrTlVj3Ezi/2Um0Wm5FLERkkGosS2cQGomkQJ2GaOoQa6wtJJoR6hBsmirHoq68VigRtHSdhvaeskQajbYMsZZG0l++8zeOvQTBAAqFkdiIhQDEgLGmOMbgIclEKzG1CyZSvY7xDpSO06Y0UtYlCEFEPq8gThpZnOwdniKwknG1U8QqVLVNkFyZOyQJQkiKjQ7s62CFosAlgCyslEKonQMOthqNhqO949nxYH7ypLd8vg7d5Uvr7azZanayzkqjv7G83p/VwY4+ElF0XMm+rh3sldXO3sGb1fgB83g25BRjq9y1N377v/y3/7y9+nlMGqrNwVn96eF8Nodrz3310uUvzCY7jx++fXjvo8cPHp6MqjhgI82e235uf/heu6nbptnUL7z28qsn40Gwfr2/ktfi6rlVO65Bn1y++npV2RNzI1XQSIJSOrCwNWoJWgkkCYDOibr2pWXn0TsgRAjEDByIiIEQiABQEqMQgVgsdPeF545YiGGskfd3DxLMttutu8NxQPGgrP7g298mV089BPKB8GCWT6picDY6cnR6eugBf/TZ8ds3jvrdR2+9+8lH907PrZjlZf3g8d3nr23pCl9cNU+m9lq0bDAkWhDZRsMU1mECRoh55SMVOs2M2PdakZv6bjPCQJGApaY8HNtmAgIhNhQZKHLGOKSpyafcNqKZCZOooubMCZJslDRSKIXdniCPQCptqFZTKwVSiVYSW+eHYwtsGHiW03hmgeVgPK8dkvfI2EgLgZCXTiA9f+XK8y8+38lSAVSWVseqmE7LchJlbQhuntdl5W3FKAgYBCqJAv/1b/2n+fRoOhlaOwUuojhpt9cLq71RsUnSZlrVUTXN++0ozpatH7WW1rvN9Tz/XhX+uKju2zKUY5gMgGpImjCfQHfzKyvbrzVby2AacdyKGt3+1trFjefj0Ds5mh3v7hbTYawkAI/HB8eDj0ZHN3356LVrV7744i8fTOZPHp/u33+43GtvXbz6/o2b3SiWKto7PvrSK1/48Q+/P3SjX/rKPzw6OHt06393olIJGg7pZE4csKkAEGrL3oP1UHu2AWrmQOAZLdGC3guEAEDIBAuSJNIzLs1CXhWLDh8YgbVUzOiCW1gShMUZLACgkABZYoTAL127nE+mbz/YWcni3FJtbaKgn5rNXnr54ooU+cnhAMCTSs9vrd67u39rt3r9WjfT4sn+vNESUuDjg8JEMpCYVdzvKAkhUjCpwBMut+OyCNYHEEGgWHTQzZaQmqfjICPOnXAVxw1otZSKlIqjel5pk0qol/utIg/tZeNtmM58FMda6bOTSVn7YOXJID84LdtxXFTOBkqNTJQ5ySsAWG9H3rokMXUV6kDAvLaxVNZ1IwKBYlZyM9FZHJ2NT9MoaUZxr9s+neYeoo3z52pvy9oSkbp3/X8pjdKY1MRJo5M12yhrjXVk+kaj9LWKK9febDSyNApz9YKtH5X1DYwmhq8CtiIZYkOtWMZGmljIWOVhcnT2p3ceTfcOp3MPk1OIBpC11195+Su/8NXfuHzti42scbq/NxtNSmvS6I2li18RYToc7f7pXz9Riey3o0YzqX2FGJBwOBo0GlmrkQJS0HUjznq95fk4pHG3IDc4zodnEDxGyBUsuiiqicvANaNjDrwwiONnu+nPn5d+ftDzt5VUgIUT5lMoLlhyArChRO6JfgZHAiPQM11Yav3mN//x4eDs8f7+Wna8OwnzMv7Sy8sXL13q98+By3d2Hp6N6uWV6PQk5GU9zcdElBnZbUfK+yyiTjc+PJx1WyqO1XRSraymJWGo/bnlrNidnV/PwIfBad5o6sjI1HBt7Vov66x2SNu7nw2lNr2m1GlYWmmaCIfHblaw6Ql0MJ37cV7WM5hVla1CMfWVHdc1lXkQWqVGj4cWSBgtQwCjfbcRg+VIgNIq0lIqBYABCJgc8dngbJLbXobdpVYrEbYa19Jsrfa2ty+fu/LyB2+9peQcRDUaH+Vn933weU7qn/32v9IuZU8KfRwpFSl0QQhpGQInIup6hho4jeJUWgdk8XXkV6i0eVVZmgNXkYziKCVDyFqCZOlZewzlqN7bx/ePpx9Obh88uX14/eYfXb/+R9vLL//cG//y9V/86ssvXWFHxaSociodNldfmg2PTo92P/zwx366085wc/PC2vLKzRuPlE7TrOGcD3VIlprdbn/aria5OD21ZSE1s5ZcMVaeaxcq4orBM8HTy1V4loz48/j6PLieRcrP1NSf6bAABNBpmIgRmVuxcSAEsAsQSUgQD/Lyxv7gYc7/4rf/w+Dwzs0f/3nSbu8+eNzp9hrd5WBhf29/NBwmKWAwp8ICIwcOQTRTlWXR8eFcJ6qYWUvcTYGQr13t+jx89Gh+eSvNUq2QkUPhKGvI1AhiSjN85epGlnT39+cPd4vC8UrHEKBzYvd+NZ2F2ZiH03qpY+bzSRAiVjl51AqLwrEQAcEERkIABCm1kcaHOEoEWiLotFJfgyisRCmlBqIkSQSCC0IpHUWy0fZNIzrd/sb6xsZGp521MokvfOHVJwenX359m8K5pNdYWe7NhxfiuOm5VkXr9+tp1zspQ6w40hBDpYAyEEpQgi4T2nAkA0S5BhZTsmOGCJQAuehzyYskdxNbzxhnnnxtI6wiU0fgdYIvp7zl1j5Z77/V3ahGd+HgyY27/+Pf/9l3WucvvHrp4iud5mq/3U9TXVmQyrz68uovfvmf/+Sv/+ftD79zfHJ+tbdtNLBz4OqTo91yPApAd258eLJ/lE/HoQYAnAUqLZXMjsER0SIVoQCARbl75ooDz45aFwS4xRvmp1c9CzDvosdCAEQMzP1W+gvPLT15NPSBWk0dGYwZIW5srV/caLev3/r03Xs75E0sVm6//8NHj6pml/YOjx8fDM5vVlnatKVdWu0prA739xwHoVUj1mUVmg32UE/L0kSxtdzrJEkcet2W0Lw/yBFpeSVpRmm3NSfieRXiVEspttbbFy+0GeJ3Px7cfzSoLGcJ1kU5GvPakhyNqLDkCAMLw6as6laEjcgEBVLAaO5QSCkkI3ly6DioULngmdJYaKltCJW3wXkviMgTeeucVgExZFmkUG9s9sAVzTj9pa9/4/yl9Q/f/e6dnXujfPxXH/7Z2WTGknLiVpYkUaPdpu3trtGxun77TZQQS6gD5AUksZZCg2uCT9O0KSoNAcoS6zyv7TzkdWUtVjLRopFAqiJjdCIzpQE4CqQszDEulQHhSNRaBrUxa6a2EYWvO1Fnm7Ned1Ln8/l4+Pj2m3d++qYPICSYCJCQHJCTL1y7tNZu17l954c/WF1am4zHJ/agsDydzcrauidHH3/8GYfgAuSElogYCZ6uogFRgPjc1xkBIymMxKdcVGB6alK/0LcAAIgXfqxAz6haACAQCUArNZp6RGlRjDyquhLMifWDya17zVar17q6vTw9vP833/2Tmzc/2rt/s7sUo6tMmvV7bSPEk/lpWyfTop4VLFBGmsraCXCr623CKtFcV7UAoQi3trqD0znklQNuN2F9rRGmPkt4MK0NSA60db754qvnPrlx8JN3H85rqghJYKepakeISIBlxc6DESyVSLQUAiIEjd4TljYorStLCMEiesRWrCKFCKgQp7NZbdG5aq6qYIW3wQAQibomANuOkm6sHfmXLq8uNzVKV8zufesPvn330U5N0NlITEqQwWwOMsFgy71heZLD4WgIFSgx7oEMee3rUAfwRexU7LwtqjEEAB+ALLg5xDkoo7O4uRx1o4TjJdCZKHw9C1URWAlgVdV5VNgaA3Bt0Tv2Ix2gqZOI4swnTJh2Q53R6KQKFfXXI1dTNfP5jOdT8J5VDJ21NmZyZ2fXzQuQ3s7LOIqG83pc2NI+NWVhYgGSQCggKSU9tXsmz+yYAAIgCgYAISRGghVyAACAwIv/TE9nRGBm4qcJbFEgF+IzMwLA0XA6m5eZicZFBczrndbVi2vrS91YmUj32iudu/rWeDa8+clbxfiYde1ZOxe6CMv97uH+LkA5GMyzTDUTY21Qjch7Wr+QrG5F08ncxKKuhAPo95Ni5gcn5dWL3clkvtpQrZZ6sHcKgKULaQNAY4XF9Rt3nuxZNoE5dCMZa1w/J4hQETKy0ZAYzFIDIJd6SjVFLxLe40cP8yzVoYJQU2mDWGTzSF3aWlrtO6kwEBORTloCUXjyRCaLJNgkTVTsteQs4/ZKx7nbufSnp3nlSS2JX3m50evgxmr83CtfuHv38fffO5At7Mt4cAheV/PcBifUr/3y74RyNptUeVUFdrWolK+quq7bpTA60uRlIfBI1pGVZZWN5oUrZpRXdR1KW5ajMfk5BAKBQB78HKgAciCDCIggg0/GJIBroAocA1YQcqgq8A6EAKNVf2P9hbXta1dfuPbqy89dfjVy7vf+6+/c+vTtZiOLpHGBpJKplCwCI2jJcWqApQSEQLVjRB8COZIzRwXBwrxcPEOwEQgHCEyBMQAwMDEuVocMgMhKiIWrCz2V3BdtGApkAuw1o6ZWGnWkxYVzWTN24/FplrTOv/Rcp78yHo129j4t7Y7OQsOJXqc5l1G33/XBDU5OprNaGFZKgVAVVqkQcSbWes0q1KWts248L7mY10HURWUlYuUsSr+0lFpvx7kDNO2muXBFvvZqZ+NSI1A1PvM2p4qKNNHoE5NAIEAMwVJgkKqWnLFARPcF20hUdHLmL31JtbJ0NsHhdHY6EYLi6cjnRRhMZs66dksoLRmp1VRrq2mvhYFs3FTF3DXaeP5ie+kc6caUqHJESgdyGpklilaGINGHsqjf29oOX5cwmEXE0eaWzO3szl1X11Id7D+qyuHMDYQoAtUIQrnY5nJONamZ4zqvfR0cBghQeeWoaouqLZFVLGJorZlmtAxAyIJDqHxv7MNJ6Qe1Hds5uBKohKICVwNaE8tOK11bWb24vL61sbW1sb2+fu78+vJGv9uDoPZ2dh/eeuv+Zx/m00MU6vA0X+3JVhxJIbQQSnGsFlqca7WTWCeuqsraBpJl7diHmJCEDMSBnqYoCQyIYQGXp+CJERe8GwIQAIyMQhA+XW8gAwiBAKgQERiEbEW8vQwCTADS8dlGR/U661H74tUXX1zq9w4O9xqjNGua2fg0S4XUjnVotduz8WRaHJd+EoJILeTBtjtJq5e0eqYqq6qwcSwFmNoVSkCrJaRSw0l1fDYj5EYXZ/NZkTsbaPuKOr8tVTorfK6MjLKQtY1gxUJQVUtDJBDIaWGYofQAbuac14luLiUy5LpHy074MFu/gpoJAWUE1qvhUN/8NN/bz6vcxxAB6em8knKGmpMGc4kiFeMZ55+NGkd86QW91PcYCtZKJ+LkqMqnzEStHsQxGsFGg06icmDPTuY6TpRMIik2zydqeelSMT3X41MUs7kbFzav/LBSQ1HPJbaMWOo04gY20HYivRqnbY0N732JAVGSQlbCI2MNEEJlXW5noSps5WqyMkgpsyzq9JpL/c5Kr7eyvLLWX1nq9pJGBjoBAcAB6pJG49mTnb333vzzB5/86WhwassqOExUbEtrFSEDOKcRtZRGqIiolarXfu41herGrc9ODwbeMzIE4b3jipkYny6dJSoECRwAA+DTd35PPaaejoaeCHERTigWu1FEo6VgMAoRaJJbwQzIxtmRRuB9VbqzwQNy6uRsEnRdW91QIko7NcFyr7m+ujQcDmqaBfCtZqvVbCkdZ+1GXsx2n0xs7ZMYkJUNkBqBiVzZSKIUnNeCkYTrLMuzQyuUzhqUNnlwlp+MKUrAE0DAcg5gEY1o9/zqBehkwBbqAFUBqCCN0VoWLBLOKYRxjnlOvWURKaTAoAGjwmSwkuLa+SQf90Qd6lCQ80pir62jiJUGJYOObLfTqq1/cmyPR0XcTttdM88rEMpKbvQ5NcIowQyOIJ/rW/fcg520qFbDmBpJP0mLsq7VX7zzH4VOMrWy1noefENFrZX0+WWjsRXpKAExd5SjnNoCZ+PDfL7LiISREJtZdr7Zj9Os1YuyLOqkiTFRaqJIGxOZKIrj2IAxoP6WXhSejfoSABmqmuczd3IyfHD305O9j48fvuVGRw0OMoLtjY6J0zQxKMRsUseJ0xKorpmJuDWb1O+9+Y6JImu9YK8COQqAKARrQhbgGD2TZqGVkAguEIIwDIHYAwfgZ3S2RadFizooEImBkJhZAgaCkynMctRCpImIWeqpc9Xc1fM6QFkDS3nhyvLmav/sbNhoiyzoZrsfxX4w3inqUqcKNB6ejbWSYUw7TwbOh1Rr9Ho8sUA+eDAxOVetLikWRCS0aljrKucvXNGgHBjb6REyjGcwGIFnjkhoKRuNYDqgEoAIFs5twoCOITIsBJiIdESTGQDyuU1op5TXOJuyJ5iehdX21ubGS53lbl4dTvC0wNt5VZdT8bh22vDalur2eO792WxoNKxe0R2HwGW72Vtfbc1nYw1RPfdGy0YrvXVrvruDn960n30CrW6bVWvweLS51ctM/PHtj9TZ6ExlxN2Brx+SiFq4jjLRQftag5iD0EauN9Pnl5a34yutTnu51eqmSTOOOrGJjRJKohaL6f7//YjYe654MXmJxaRPBLUN9byYzCfDo6OHt3/62a13733ywfBwJ1IglZrnzltSUkQ+OKuzxDSMVkHqWGEjVVqPz0Z+bIvKNxKnpAzIUaZ8Cbm3FsACOeKAQICByAbQUkgphGBgIEb31PB8wWpbDIxMAAs3C2BkxEABAdgDVAtfKjQFtlO0XhURGSVQAgEECv1m1O22J8UBqCpr9RsRPzm6fzY/ZApax8NxUVeu1TTdKM2nREai48nUBQJbB2QIAU9ObWfDmQzBC6rD8V5VF3r1MkVNjlLs9NFVoM5AZ6wM9DNqdThpojbCOvbEzRY2YiEkgiIhmBmlls76QNxIxNq5lKoaLSJfOLf51eXXX1k7d2V4erz/6CMyW198/bkbN3/3dPct8GQyv7Sp1i+LXhdnM6gsBOZZHpJYNIwwgqny+3u+tNHpAI/2PAl//T15dhS5ql2Nwnh/4twByc7KUms8z+vSqelhamXl4yrryWhlvWU2q/rCtat/d73fLxnanfNrnY1WGkX6/xM6T9/NMTxtap7tOxZpiQIEgsr62oW8qM7Gk+OTg5PBrlLV7OT0wcc/fXT/xuT4CdYVCuWDKotAHASikaKufW29bplmJpFlnRfTuU1a3baSMhK6nSbWViTqPNiidgh5TaXnmnhh9YPMEiEEmIcgkCSCQCGfejYt1s0MDAIXLHhmFJ6AmPhz5QIA8ekU5QnAwSwHJvQpJoaUFDFj2okhkncfPZiVo0ltWDRPhw92B6OzYV7OGKiyAQmF8XCUVzVL9Fww1RWYSIBU7KCoqHLgPAtS+ZgOTsone3CxD1mGrH3wNJkCsFzp6fNtWFpKpALrffB1WZFwIRLYiGQj0YxcQh0Wk4elQNJB6GSR4XYtN7e2f3W590az28RQOlfF3aUXlr5OwRfT6sWrv647JuX7jcbUmhoE5IVngExmc8tn0wnPZVFDxOHhjnv3fVucYSTig0dgixCxAHYgxy5IEgBKrG6kbIqjRw8asfm/BOfYpbTecBEAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import requests\n",
+ "# image of a beaver\n",
+ "url = \"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png\"\n",
+ "image = Image.open(requests.get(url, stream=True).raw)\n",
+ "display(downscale_images(image))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "3kmz4g1v6SJ_"
+ },
+ "source": [
+ "이 비버 이미지와 비슷한 이미지를 검색 해 봅시다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "qWf-G_Iz4RcD"
+ },
+ "outputs": [],
+ "source": [
+ "img_embedding = model.get_image_features(**processor([image], return_tensors=\"pt\", truncation=True).to(\"cuda\"))[0].detach().cpu().numpy()\n",
+ "scores, retrieved_examples = ds_with_embeddings.get_nearest_examples('image_embeddings', img_embedding, k=1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "iFGNp5hp6VsV"
+ },
+ "source": [
+ "비버 이미지와 가장 비슷한 이미지가 화면에 표시됩니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 197
+ },
+ "id": "Pq7IR86k54kP",
+ "outputId": "fa620b08-4435-4929-f67f-32b3f8f46b70"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "['Salmon swim upstream but they see a grizzly bear and are in shock. The bear has a smug look on his face when he sees the salmon.']\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAACOCAIAAAD7O9C4AACXyElEQVR4nL39V3Mk6ZnfDWdmeV+FQhWqgCqYggcajbbT0+M4wxkOJ8jlkivtrkStl/QZ9BEUoXhDIXOiE2pDio2N2Getdje4yyGXHHJsT087oBvem3Io733me/CbvJmNHq6eiDfizYOJHqCQlXnf133Z//W/5HK57Ha719bWrl692u/39/f3e72e2WyWJMnr9cbjcU3TJEna3d1ttVqyLPd6PUVR8vm80+ksFouvvvpqKBRqNBrPnj2TZdlkMkmSpGmaz+ebmpo6PT3N5XJWq1VRFEmSVFXlM5qmdTodn89nt9vT6XS32202m1artV6vz8zMJBIJm80mSVImk2k0GrIsV6vVYrGYTqfL5bKmaQ6HI5vNXr169Y033tjb2+O2kiTJsizLsqqqkiTxGPy3VCo1m02/31+pVOLxeL1el2U5Fos1Go2PPvpIluWZmRmbzbaysuL1ejVN4278w2SSK9XK+uaeZHJ2VFOnktl99mhyKhGJRPb29m7dusWyKIrS7/c9Hs/U1FS1Wj0/P+cmZrN5ZGTk9PSUj3U6HafT2W6379y5Y7VaNzc3JyYm3G63pmk8tqqqZrP58PAwnU6bTCZejRfh7RwOh9vtLpVK/FxRFK/XOzExwQck/dI0zWKxZDKZo6MjWZb7/b6iKIqi2O32RCLhdDolSWI9FUWJx+Mul2swGNhstsPDw2QyabPZTCbT8PBwu902m80+n29oaGgwGHDzi4sLh8MxNDR0dnaWy+XMZrOmaTyMoih8tfni4sLn85nN5mazabFYut1uv9/nEbmRpmkmk8nj8bRaLf5tMplsNls2mx0aGgoGg6qqDgaDfr+vqqrdbpckyW63T01Nmc1mj8dTr9ebzaamaYFAoFgs8rFgMBiPx4eGhlqt1sHBQavV6vV6vV7PYrGMj49ns9lyudzr9e7duxeLxXw+X6FQGAwGHo9nZGTEYrHIsjw7O/vw4cP5+fnx8fGtrS2bzdbv9/1+v9PpTKfTyLHJZBofH1cUZW9vb3h4OJPJxONxs9kci8WsVutPf/rTs7OzSCQSDAY1TVtZWQkEAoPBgKURG9nt9E4PT9ROW1V6mio5rMqt2y/lcrlUKnV8fDw8PDw1NVWr1dhms9lstVrtdrsQzX6/3263kTxJkhqNhsPh6PV6Vqs1nU7b7XaPx9Pr9YRMmEymer1eKpXYLf7LCrPyqqo2Gg0OJ4+qqqrYV3EfDpjZbBZLweuYTCaz2czT9no9RJ9v4U8sFgtPrihKq9VSFIXdHwwGLEs2m+33+8PDw/wvh0FRFLPZzOPxdeZSqcS/stns5OSk1Wq1Wq2apiG/yKAkScFgsF6vt9vtwWCgqqrL5drf349EIpIk9Xo9t9t9/fr1TCZTq9W63W6v11tfX6/VavV6vV6vHx8fu93uQCDAE7Tb7a2trddffz0SiZjN5uHh4aOjo3g8XqvVrly58vnnn7darZGREbvd/kd/9EeyLO/s7JjNZmSXB0P0V1ZW/vZv//brX/96PB4vlUputzsejzscDnbOZDJ5vV63212tVqenp2022/DwcCQSyWQyH3/8cT6ft1qtv//7v2+z2VqtltPptNvtRs3Hv3u93uH+Qa1aN8marLYVWVMHUncgRyKRWq0WCATi8fjMzEylUkkmk+12u91u7+3tjYyMeDyefD7Phl1cXHBmOKj9fr/b7bZarXQ6vbS0NBgM2GYhE6lUqt1uIwEcb7ZAURTuwGZjOlRV7Xa7HOlut3tJsLxebyQSyeVy7DffwtdxwtEUfBGXzWZzOBycEP7E6XQKQ5RKpbrd7vj4uNVqZYl4NvEPRByZNrdarUgk8uGHH3q93kePHjkcDp74/Pz82bNnFosFYTSbzePj40hbp9NJpVJ+v19RFIvF0mg06vV6o9FATJ1OZygUkmV5MBh4vd5EIsHLINFWq9Xv93/88ceFQuFrX/ua0+n0+XzBYNBms+3u7rpcrq9//eu8ZLvd/vzzzzudjvHpxULLsnz16tWf//zn2ESr1YrCR9zFdXh4WK/X0+m03+9//PhxJpOZmpr61re+NTk5yasJ2yGOoNjFo6OjYqWsKpI6kCXJrKmaqg2waCaTibcrlUooXa/Xm8vlPvjgg2g0+vbbb3s8nmq1yjP7/f5IJNLr9Ww2m9/vt9ls2AfOgPAT0EB2ux0limZCJjjhnGpJkqLRKHusKIrVau31eqenp9PT00J6eBdFUTBqvV6PFzSZTCi2Wq1WLpddLhcKDClRVbXX6zmdTiGgFovF6XQKXdVut6PRKIfEKFXi8zzeYDAwl8tl1Gyr1frHf/zH7e3thYUFt9uNsuVA9Pt99AQW0OFwvPHGG6qqdjqdx48fF4tFRVGCwaDL5ZqcnHS73bIsYyyECmUJVFVVVbVUKsVisd/6rd/60z/909dee61cLsuybLVaz8/PNU177733OHk8gMPh4GAZ1TsHjoO7urp6fn7+J3/yJ6+99tr8/Hy73S4UCmazuVqtttvter3+6NEjWZbdbvfZ2dnIyMi3v/3tcDgslt6oMITawCnZ398vl8uyLKmSpkqarCmaJimyhGx5PJ5oNPqDH/zg9u3bKysr0WjUbrcnk0mXy1Uul3/0ox+9+uqriUSCvXE4HBaLpVKpWCwWvL2Tk5NIJMKC8BlZllutFs4AC763t4cXwcdQG2iaQCDg8/nOz8/T6XQ2mz06OioWixsbG9/73vcGgwEvhSHq9Xrtdtv4guiCWq3Wbrc9Hg8/F++OfRRSaLfbbTabLMvZbLZSqYyOjrrdbhQndhajiRCL+2iaZt7f37969WqlUuF4/ft//+9rtVq/3+dECvHCAff7/fF4/I//+I/HxsYGg8Hnn3/e6/V+7/d+LxgMirOuqurJycn5+bnD4eA7OIs4ChaLZXV1dWhoSJIkr9eLXgyFQicnJ9ls9t133xUriK+2srKyvr7O2RVPj3iJU764uFir1f7u7/7uD//wDx0Ox8OHD00m09WrVx0OR6PRCAaDz549SyQS3/zmN+fn5xEmo1GQdLeX/yqK0u12d3d3K5WKyWRSB6o0UM2yLClSv99XNdVut9fr9e3tbZ/Pd/fuXUmSRkZGbDbb6enp6ekpvuD169c//fTTK1eu3L592+Vy8Tr9fh/91O/3m82mz+cbDAZ2u73X6yWTSRx2n8/3xhtv2Gw2VVUnJiZw0q1WK/GNxWLx+/14rufn57lczmazLSwshMNht9v9wQcf/PVf//U777zj9XqFeNXrdRyDL13GbrfT6eBMY/2F88TKsKScbYvF4vF4FEUpFArFYjEYDPLMRodBhEr8UNhH89jYmKZp9+/fn5mZiUajtVoNCUPerVarzWbDaUBCzWbztWvXcrmc1+tdWVnBOAqlomlatVq9uLjAlzKZTJwwWZZdLtfIyEggEOh2u6enp2tra5999lkwGPzwww9xxr/73e9GIhHje6qqismvVquIpnBF0e28Q6VSGRsb+853vpNMJq9du/b2228XCoVGo/H06dPt7e1erzcYDF5++eX5+XlUPUJ5yfYJg9jr9ba2tsrlst1uF06xqqqSpuGCJJPJi4uLRCIRDocJBcxm89HREZEy6rnZbJpMpvfff79cLkcikUKhcOXKlaGhoVqtFg6Hm82my+Wy2+3lcvnRo0dnZ2dElDMzM4qi3L9//8aNG16v1263s5GDwQCPR5Kks7OztbW1arUaCAQikQhyeXBw0O/38fz+7M/+bGpq6vbt28FgsN1u448LXVKtVlOp1OzsrKZphN79fr/f71utVnxKRA1ZNJvNTqezUqnkcjkMNLpKnEBxSsW+4JBomiajRc/Ozubn50dHR9PpdKfTwRKRDnA6nYiO2Axe8he/+MXc3Fw0GkVukN9ms/mDH/xgeXnZ5XKNjo76fD4iPq/Xi2hms9nt7W2LxRIKhYLBYKVS+fDDD1dWVmq1mslkSiQSRHbGzSYOwpgiSYRO3W63Wq1mMhlizM3NzZmZmb29vePjY+KseDy+t7d37dq1RCKxt7dXKpXefPNNEgr9fl8yxOccDP633+/ncrlisdhutxFfXhyx3t7ebrfbN2/eNJvNNpttfHzc6XRmMplCodBqtcrlcqVSabfbDofj1q1bo6OjCGipVPr888+/+93vfvLJJ9Fo1O12m83mi4uLp0+fkizgyLExh4eHn3322dTUFOY1Go0qipJMJtPpdDKZtFqtk5OTpVLJYrFwaIkWMaZut7vb7SaTScyL3+//+c9/Pj09TY7D4XBEo9GhoSG73b69ve31egm2YrGY3++XZbnZbCIARLJjY2OBQOD09FTTtFgs5nA4ROzZ6/Xq9Tr2UZZls9nscrmQE4ybjHwZA5BSqURsdekoCxcPZdhoNPA0McZCyaXTacL4WCwmjJpQsyghSQ+Ojo+Pi8XilStXyuVys9kcDAalUikYDBKxC0VoMpkmJyc5FuJhJEmq1+upVIr0AfYxnU4PBoPx8XFcwGKx6HA4CDJOTk4+++yzcDh848YNv98v9LYx/WO8BoNBq9VCaPhMu90Wxz0YDE5NTUmSVCgU3n///Vqtls1mFUVZWVnhV2NjYwSDhNJffPEFtnV6ehp/yOl0JhIJgllSU8ilpmn1ej2ZTPIA/MrhcNy5c2dyctLr9UqS9ODBA7QRKsRqtSJesizbbDbihnw+v7W1tb6+Pjc398orr+AUer1e3NPNzc1EInF8fJxKpXhmHNNMJtNut7vd7mAwiMViKAtOY61Ww5fvdDqE/JhLXCa73U7YF41GnU7nL8MBHI7BYLCxsVEulyVJwsRi14nyxL6y2Z1Op9PpSHrMgstps9kQ006ng/dNGNVoNPDkONNWqxVN63Q6OXbYWXEQ+/1+p9NptVq1Wk1V1XfeeQe3XTKkA4yZm1918VI8WKVSefr0abPZdLvdiUSCI4hGrFarhUKBc49S5PHOz88zmQwK32q1BgIBTPzY2Fir1To+PnY6nQ6HIxAIWCyWTqfT6/U6nU48HscHT6VSyWQSdfvZZ59VKpVf//VfX19fj8ViIyMj7XY7FAotLS09ffqUoy9MDEkfbLc4cvF4nAPj9Xrr9Xqr1eIh3W633W7nD8lLOZ3OZrP50UcfxWKxZrN58+bNaDTKjnCWnjx5srq6enZ21mw2FxYWsJjFYjGXyzWbTVx4NKjP52u325VKBS8e10KoDGJVi8Xicrn44cjIiNvtlsmpmM1mcpvixbAXvV6v3+8T17y4YV+5qcIfJJAkSBQGBTOP0hYa6P/NZTRewk9sNpvNZrPVajUaDaSn0+mQ5ep2u7VabWxs7MaNG+KlxEVKczAYIFK5XA7HAjXO+SPJQp6wWCxi009PT71eL8GK2Wze2dm5cuXKu+++K0kS74sVttlsWI3Dw8N8Pm+z2fjGv/iLv7BYLL/xG79x5cqVbDbLOgSDwZOTE5LgHE7hEpHXLZfLTqfTYrEMDw8Xi8W9vb1f+7VfGxkZefG9jFej0Tg6OpIkifTyzZs3OcPc/MGDBy+//PKjR4/Gx8dHRkawJ4VCoVwut1otEZjbbLahoaFcLoesDwYDDgm7IJ6T1NdgMDCbzV9qrIODg3Q6bbFYEHnuhQZCu0q6hyGEXcRTrVZLVGnYbLImYksURREZFFW/iOyEnyjEVIi1EE1+KJK5l94HwWIjCWOtVqvFYrHZbCJ97HK5PB6Pqqqnp6elUglFiJgqijIyMhKJRGw2G+rz/yrcz549297evnXrViwW4zkrlcru7u7R0VGj0fg3/+bfiEBYPLzJZCJGdjqdrVZre3v79u3by8vLwn/gkUgN8uLVarVcLne7XZ/P5/V6T05OLBaLxWIxmUz4YehyY4qcbRKpBBFm8RlJknZ2djY3N1966SWv18vHHjx4cPv27fv371+/ft1isTx58mR5eblSqdRqNZQCmzs2NiZJUi6Xs1gsKCdND2IsFotQbIFAgFcgDPf7/V/KF0LKNqMwJT3DK+vFCuPhMGbGer0eOkPImdDhmGTEGQfTYrGwi3a7XbicWDRh5hA78mdoApEYFAKHn+d2u4WkSpKElsb5Q9wJglRVrVarIsjFrWw2m3t7e/v7++Fw2Ol0BgKBaDTKHwrdU61Wq9WqpmmVSqVUKp2enkYikZ2dnfX1dVaGxTWZTBMTE+T8RK1CPJVI/Pj9/n/1r/6VeGbhAtvtdnwDpCEUCvn9fh6y3W6Pj4+zsE6nU+gzjoGImbCPuCXC7nMmkdrh4eFXX321Xq9zAtmmZrMpy7LX6yV/RtDWbDY7nc7+/v78/HwsFgsGg+fn55LBQPFeNpvN6/WiZd1ut8/nQ4nIstxut1utlvxiyP3/48V7kpdDOHgmVod1wRep1WrNZpNYF2lDfLHlSI9QThw+Va/Uip+LAJgvknSjKVIy4gOoN6Rc0tUw4tjv9x0ORygUwv1sNpu8C1YbNdxut0kqUjlgHd1uN/p+YWGBlEqn0yGXjaeI/0EsgiMvpEq4vS6XCwHVRHbRbBZGgxjNZrO5XK5f5X6Iy2gc+DA5s1arde/ePZPJlEwmy+XyG2+80W63JUnqdDqrq6v1ep14QlXVcDi8trY2NTX1B3/wB6zk8fFxvV5HC0h6hOd2u8llSpJEslMIer/fN4u6tPR8bVzYLG6Elpb1crqk+xOsmji7fAHBJ/ZFJIsPDw8vLi46nQ5BaaPRyGaz+XyefI9IsnFzn89HUs3pdAqHT9aBFZLB0xLOO4ZJWGTjo4p41mhbEVkWDgk25vrICprNZofDYbfbUbQcFVQsr4Z2XFxc7PV6JESKxSLQDHFD9Eev16tUKviyZIwsFgtqplqtHhwc9Hq9UCik6TkzxIiTxreToeB95edri+ISiV++UVXVYrFYr9fHxsbC4fDo6GilUonFYrFYrNVqeTyebrfrcrnILyiKMj8/XywWY7HY2dlZsVjkFYTQUHf5MqWnC7EQNdmAB+EFZWMKR1wkzdgntAs6g0sy+D0vhuucVExysVjc39+nQoyKwj+QJMlut9vtdrwicci4Q6PRoG7q8XgcDkckEvH7/SMjIz6f7585rP//uRDHTqeDueHhJUlCJW9tbc3MzAQCgRf/MJvNFgoFu91ONCM0usVi2dvbS6VS1CHIxQeDQVkvanW7XU3TgFGwtfLz1SdjpEwIifrHzmLv+v1+q9WiIKsoit1ux/lhoweGq1qtgjAYHh7++te/3ul00ul0Pp93u92hUCifz6NZnU4nUBHhpUiGoy6LuJ1fIGRGH1mSpO3t7ePjY8wEZ4iMMAZFFDUlXQ/z82KxuLa2dnBwMDw8PDEx0e/36/U6x9RsNqvPVxLEJZIxkiTh8+E2aZqWz+fv3r07Nzdn/LwxQhHvZjwn4i0kSWq32+Vy2Ww2Y9RQ6cLzxUA7nU6xUsJ7Y03ARzQajU6nQy6AOJqwmg9j7EDOSJIkoC/YEQTFYrF89tlnyWSSNDJun/CLMejhcFisAyec7Rcur2ZI2/It4lfGMIsblstlBEvooY2NjUQiMTIyYrVaw+Gwz+fDbrDaOAZ//dd//c1vfhONgLqSZfnk5AQ/weFwTE1N8VdCsFjwL0Wi2+22221FUVAel04nfrTAsvE+whmSdBvEz0lB7ezsrK2tNZvNUCjEAjUaDUm3xMZwjz83CiXOPo6F8Mf5eblc3t/fn5ycjMfjaPtwOByPx8XTvpiPMAouDylsHxuAJTo9PUWtDgaDoaGhxcXFYDDodrsRBWwiwmGz2dA05XJ5c3MTSBn1JWpwnU5HlNvFqcBSqKpKxULWQQGKonS7Xayqx+Nh51qt1mAwaDab2FPwdJLuvnDwRMSHlPArUTzlA5oBpyUWX1EUtGav1+N98/l8tVolhxwMBr1eL2UPq9X6X//rf71z585LL71EBMoX1et1Ug+EfkKUhVTxdoqiyBcXF//0T//k8/ko3RAfhUIhoTxeNHaXJE/VS8J7e3vPnj1rNptOp3NoaAg4h/CgjeZZaAVhB/kWkgUkl/G1haImx1Mqlcg2+f3+bDY7PDw8NzdntVpJUX7lQ754tVqts7OzdDpN5mYwGFC5UxSFUqmmaV6v97vf/a7wwSXdCLJwvV6PbOfIyMj4+Pjw8DAoDGG/JENUKPZY0kM2BK5cLh8eHrINoVAoEol4PB5JkiqVCk5PpVJxuVyAIIwH5jmLY1DJKCrASx6Px+fzCRXIB0wmU7PZLJfLfr8fv0LTtGazWSwWk8kkGVqHw2EymYaGhn7xi1+8+eab8/PzwmNDuwsv6JIYCDXx5eOhQkQoh0flcrnwk8R+o2yazSaOrRBVROr09PTv/u7vAoHA9PS01Wrl4F4KC2QdNCzr8bx4DmF0iKfQDeh/9lXknyTdvvDYFxcXYFE0TZucnJyenkZrGqMKwiJklEUHKUQZVMBCMBlEhRaL5eTkxOl0fuMb36AGwrOpOjQK1Z7NZs/PzzGv4XA4FouRM1MNxVPhWhirFKCSJEl69uwZ64CmcblcgUAATSCCp0uGRjLYfdUAKDLucbFYTKVSdrudJLjRSvIZCl/RaFRkNTVNowpUq9U4wycnJ+12OxwOT01NgV3jPAjbJcT6kv35UrC63a6k12R+lWbiwo8joyjCxmw2++jRo8ePHweDwTt37gjp1vRcgFB4IkaT9LjMKKAiuSI+b1TpxngHf4JHErZ7MBhkMplOpwMcxel0drtd6m4sEzdH51On4ufGFxTKhlc7OzvrdrvRaPS1117zeDxIAL/NZDJerxfNSvE/n8+LINzr9ZI5FEtaqVSomiPB1Wq12+3Ozs7yLZqedWPjXS7X8PAw+kbVQURGzSRJEpZXCKjIM8s6oJIvLZVKkUjEmErllc1mc6FQKBQKo6OjLpcLfwNNXKvVSqWS1WodGhrqdDq7u7unp6ck6paXl/1+P1ssnkect8uCtb6+Di5bZBAQC5S2UBIYHY/Ho+nBp9VqXV9f/9nPfjY6Ojo9PY2aNZ4kbiI9H/xLz5sGY0ZAxKFGmyKUnPhb401kQ3IVt6/f7wP0I+hFBeIhGYVM6B7p+aqIMF6aplHBoMTxzjvvDA8Po7oURdna2qpUKkNDQ8PDw4FAwGw2I8fpdBogDcgZTdPwLqgvyYaaQblcps0E50aWZVD/ArDgdruHh4fJXRkFi7Vqt9sbGxvdbpc+AKCLxrBf0q3Vi841zwBy+PT01OPxhMNhFhNbD76jWq36/f7x8XFZls/Ozp49e5ZOp6PR6JUrVwCRYgdEfl++dKmGJKEw/8KOtlot1IDFYgERzwtYLJbDw8P/+B//4+uvv766uop7btwezZA9kg2dM+L9+Ywx7EKwFEMvg3H7xXoZTafQxsZDY0Qbi+MhfFv1+YQcqlrYCPGQQqBlvYI+Nze3sLCAq47xLRaLjUaD5Jbb7fb7/RaLpV6vV6tVHDiPx8Pu8u34KKwzjny5XM5ms2azeXZ2dmxsTFXVUqlEjoCkHbKL7yxCMPHkvV4vl8vRPBIKhcbGxuTnm5QuOWHGZRR+WzqdfvjwoaIoKysrqDd0c71exwiEw+FQKGS1Wsvl8vb2NpD08fHx8fFxo7tCFCKM9S9XUHr+ajQaFxcXIyMjAh2l6WEamKEf//jHoVCI0ymMCEIjtDqbagxP5K8q4Gh6YtDoMQixM66O8VeqoTVK3ERYT3FyEC9EVpwZYaTEAxhvpejAL1n+0lUgjyDL8vT09OTkpDAovGOj0SApDyxpaGioWCyenJx0u12yrMJbJfOp6lVO6qqVSgWXaGlpaXh4WFVVAOlEiJSBPR4POX0SGRgjsZG1Wg0I/PDwMIJodH0uXUatz/1//vOf//CHP7xx40YgEJiZmaESylG/5K45HI5WqwWqp9PpzM7OYrJRt5IkkVuQhVIRCpMeG03T2u32+fk5qMjx8fFoNOpwOMjWP3r06H//7/+9srKysrJCgenSURDqYaDDC/t6S5mshwKX3lZIicgvGO9plDDxeaHqxU1YDrfb7Xa7a7Vaq9Uyfq+mg/VkA9LrkiQZXW/js2EZASnY7fY7d+5gvH7pUsgyHgX+kyzLjUaDdaCsy/lEvp1OpxAvAQIuFAoXFxcej2d5eZlegXq9Tr6euNXlciWTSUmSJiYmwJMJX0XSI75UKhUOhzVNAzzyq9ZZvLiml8s2NjZOT0+Btdnt9rm5OerKsizXarWzszNZlkEIooZlWUazut1uIi0CLMTLbrd/mUNDpRNAiR4vRUdnO53OXq8XjUbHx8cfP3784x//eHl52efzcZqRA5w4ce4VQ2eSSHppetxnlAbjGTKbzWSwkHrhsxvTXbyDkAaj/WIpCdElSaIEhqyIfKysQ240A1hDM/ihmt6pgeUSR5/7eDyei4sLTdNu3rwJcMUou4pe70LfFwoFElTcVuTEBzqAyev1mkwmrCeLls/ni8Xi6OgoaRSKRaVSiToxYUE2mzWZTIlEAmy7WEPhoR4fH3c6ndHRUQB64gOtVgu0nPp8yVWWZRxEQPdUu71eL1lx1E0ymaSbazAYuN1unD9FUfCUUNVC5Q8GA9m4xKxdV7+wnYqiRCIRHDq32/2f/tN/olSOqy78WSG2Rm/RuHli6UUsJhuCVUVPoBv9fSGLL+oVSXdZjEZW+HNEfyYdGq8oCnlgASEUWtCorcWX8r/iDIjUriRJ5GLy+Xy5XJ6amlpaWiI2NGoCIWH9fl9E7+hXnFF8WQylz+cjv1CpVCqVCn8I0HliYmJ8fFySJHB21WqV/QbSfXJy4nK55ufnkVRxYKiXkywYGhoivU4MDsqSCMzn8xk1t6Zp6XS63W6fnZ05nc5IJIIq9Xq9Q0ND7EsqlWo0GiAcJUkaHR0VuRKq9ZhF9kUWfqtxXS7pT5G9+PnPf37v3r07d+4IRcoF5ENslWRIsSANIu/AqRIAds0Q3BndMkXvKzKKJk9sdI9kQxAkGbx7WZZBxhl/KG5OQk68gigGCKEXqxGNRk0mU61WEwVTo4YWOLZbt265XC78BBFYGN+LFeh2u+TJyPO1221wB2az2e/304ddLper1SotCajG+fn5oaEhTAdpCzbV6/VS2p+amiKJKlZMUZRWq3V0dEQrTiQSQXUpitJsNnGPkBgB/ZN0r1pRlPPzc5PJFI/HSUY6HI7h4WEqAZlMJp/PT05OArGcmpqS9Z48IjzOj8lkei7BdckwiYtVPj4+/qu/+qvx8XERnap66zdKBfslpNhod8StLqU9JIOlF7sr5JKqhaa3WUqGUhSJKCFY4s+FGFEvNx4SWQ8nqe4JfcxvhcoRTidqGGIFCsZGtcQNrVZrsVgsl8vf/va3nU5nrVbj8+IzqqriJzkcjlqtlsvlxsbGRkdH0WeDwYCQs9lsKori9/u9Xi9QfVz1er1eLpeDwWAikaAJDL+ettJYLNbpdJ49e+Z0OhcXF2VD5VdRFL6u2Wyqqjo8PDwyMiJMxNHRUalU8vv9Q0NDqBkWWfiINFCMj48jW2azORgM0siazWaz2ez8/DzN3HNzcyKQFG9tMplkCuxfKU9CznjKTz755P79+6+88oosy6hfXDHMtjDw0vN2QVgr9fkKNyUjYbzQYWgFI75HyKXQXvyhRe/PNmo7o2ChQYV9NEqwqqpoIJE5G+gsFYqO3xJuPikxDKh4C5DH2Fag4qVSKRqN+v3+mZkZMl5Codbr9UKhwHt1Op2zszObzba8vDw0NIT7T2xPPcBms5EYwzJyYilkTU5OAq2hLFOtVi0WSzgc9nq9R0dHFxcXi4uLeF2ynibtdrvlcrlQKHS7Xa/XOzY2RgLdYrEAxvd4PPhSQrNKkgRSb39/X1VVurBYnOHhYaAZqVQqm80uLy9DKbC8vMyCGB0e+aOPPhoeHiZHJRQJeyD2AxX653/+591ud3l5mdKEUBICfSVWXzIgakh9CYGT9MjIrFNTSJJEZRf9J3SheMpLSl4IE99rMjSyCukxWlLjgRGurmjtkp9P/BitqqbzGsh63kvTS28iINU0jYRTp9Ohk3tubu7WrVs0GAr/FTwFysNsNheLRbrW6KpFd7ZaLXwsl8tFhqLValWrVUxMv99Pp9PDw8Ozs7P4joVCgeqe3+8Ph8Plcnlvb298fDwUCkkGb5Xem1wuV6/XnU7n6Oio3W4neqBYSS9GIBBwOBzGDH6v19ve3lYUJRgM4lRJkkQHtizLe3t7rVbrypUrzWZzY2NjeXkZoOwvMzWtVgvwAiGuoveFCnUiZOsv//IvoRkCTyh8CCFYkiHPK/SK+LdRtmRDVlO4ICJJKxuST/xKZOFFskDE7UKwREQm6W6WgDFqLzhhuFnoeSHEAwOSR2hBkbUXdsR46kShAuObzWZzuZzD4ZiYmLh+/brP5xPBtbB6YpPS6XS1Wp2dnZ2ZmUFAO53O6elpt9udnp4W8KxarVapVEgK5PP5fr8/Pz/PnUFOQ2oCrvri4oI2Wh6SrkZwrdRwzGbz6OgoFDdkz4+Pj4FXuFwuYNNC18qyvLOz43Q6vV5vsVjkfSk2dLvd7e1tu92+sLAA6m5lZYWF+tIPNi66rCN4ZEP9XKzj//pf/8vn8wUCAT4gvGzwbgJ1I6yP+HP1+eK8uIxeuapzIQmdJ6xeX28W0gwVHgFCIoAXmkzcVoiaENNLstXpdOr1+kBvKNIM8aB4Tr7CYuDAEIKF0RSQGCSMFB0tQ5hF2tjD4bCkO1X9fh/PnU/u7u6aTKbr16+PjIxwLNPp9PHxcSAQmJ+fB4oOvEfwTFUqFVprJEnqdrulUqlarSIxQGKExeh2uxcXF4FAAHVSKBRyuZymaZFIBEOMS3N4eKhp2tjYGPV44x4pirK+vj4+Pu5wOOr1OkHu6OgoWZKdnZ1IJDIxMVEoFA4ODlZXV4VFkhuNRrFYpKGbjZReuJCMP/3TP/V4PCg2WU8cKIoi/pCEjdGnvmR3NUOPhvghcsCain+I32JeAW2qhryLkHisldvtxuYqz5e6xWMI9Iv4LfIkWjZEoVp73tcU9xTlJnFUNB3TLBliZCHTdHVCEWCz2UZHRycmJow2FPEaDAanp6d7e3ujo6O3bt1iaweDwc7ODo38ExMTAppBiyVPG4lEXC4Xj1StVsFX4XIJ1w3pPzs7w0knkshkMvw5cSgH+OTkpNVqzc3NyYaao7CJOzs78/PzVqsVBLbf7+cUnZ6eJpPJxcXFQCBwdHRULpevX7/+JVVEpVJZW1tTFEV004IUxdCIoN1qtX7wwQepVIpIQQiWLMs47wKRLayVZKjyil0R+yTpDrL4t/b8JYSAvxJ5NePGixS/oP75Ss9J1S9+InIfqBwhdiLXcOlcCYuvGHAsfFg1IDiEEdF0VIKip/IBGoBBnZmZmZyc1PR8Jpq4Vqs9fvy4Vqu98sor4XAYAGC1Wn3y5InJZELgCDjoDCNMQ2FrenSFNhoaGhoaGiJ3LXyJk5OTUChEBqvRaFAERG/xInBSZDKZ5eVlHHzFkNNGOS0vLwtHXNNxA2tra263G0rEjY0NGIf6/f5zplAk7mhBFl6OJEl+v39jY2N7e3t2dpbY2KTT0ZC9EBkB8Q+jThJbIpZeaFqhPyRDytSo6oQ3g4IREZwQIP7tcrmIh1VDZk58kfp8DUcoHkl3rfp6Z5UxOSIuRe+yFMeDANaoXyW9nIX5Axdv9PlqtdrQ0ND5+fk3v/nNoaEhzeC3sW6ZTGZzczMSiUDIxqbu7+9vbW3dvn2brDfeYafTIXjUDAnIVqtFAAjfmFhY9Nbx8XEkEiEbAkcDZFd+v59nsFqt+Xz+8PBwYWGBtJwIFcEcVCqV1dVVo4Y2m82pVCqdTl+9epVVevz4MQXEX26M8HheXFYE6MGDB0+fPqWtUdLzCEarjFUSqksIimTwWsSvxL/FVxu/TjZcQgj4x0BvfhTwZXF/ESdeUo2SIeITEYNmCE36equWZuALuaS6THojrnDXhMITn8cC4mKHQiGzzgkg6Tlxr9eLPnjppZfQCkK8VFUlRf706dNarXbt2jUKzzabrVAofPTRR7du3YpGo0LXGj1IIUCNRqNQKHQ6HeA04lcEkgcHB+Pj4/SitVotMqUjIyOhUIi3tlgslUrl2bNnS0tLfr9fYPV4eMpKxkwk3w7/JesPL9qNGzd+yZQnzpy4jFZJ07SzszMYR4UrJqRBJK/7ehehpOsM41k368yA4ieyIeFkFC/jphrlXtE7fTHcRtUoGfqf+ArxtyJ2E+8ivvcrn0F74RKvKVAiIo1n3NdisXh4eMgPnz17RqFDhMmqqtZqtf39fdngg4qXNekFsWvXrs3NzT18+PD4+BgLODQ0RDOPyUALdWmheGxQXHa7vdFopNNpcUhQDaOjo0dHRzy5zWaLRCJWq5WaJivZ6/V8Pt/KygrCLRKcsl4oUwz4cvHtLpdL1knbIIk9Pz//ZUOz2DnhJImyg6qqoOhjsZhATYmF1gzlT4JqkY43bp5RdF4UYqM0Gx1wsWpGWUQzCWUpzr1Z7w8WG3bJu5L0xISIGSU9TS90rTE5Im6i6fBG4VoRfMmGsAO6tjfeeOPll1+emJi4ffu2pmlbW1sCxIbtwP+99CRiiVAtIyMjr7766sXFxcOHD8Xrb2xsAN3RXvACxTUYDFwuVzgcho3y4uJC5JZUVcVEnp2dEedCNYVslUolk85m7XQ6V1dXnz59Kkg6xZv+qu8V6rPf7ycSiW63KxP9smTCbwBeoxqAEIuLiz/5yU+ojNKqxuuFw+FWq0XwLPQKoZD8fG+Z0dgphhzsV35ArKb0VWRDQq/QOse3S7q1EjdHROQXzLG4w6XDN9A76zUdDy0KDMIASXrEYFQ2RCF4uN/61re63W42myX18ODBgxs3bmBAebBAIHB8fDw/P3/lyhWsofyC+6HqKbSjo6Pt7e1r1675/f6trS2PxzM7OzswcJ39qm1ut9v5fB6uVPjZBIbs888/HxsbEyxLgA0HgwE0kKpeWshkMufn57du3QIZ9eJDXtoscfw4luZUKtXX2YiNnoesez8mk6ndbkM9Ck20pJ829k/Ra7eyXkkAmWQ28DOLfRW6SuyucPklPYrRnnf4vvKg8BnalIFe8WHRtC10m6CHkAx5VCHWwhUVBksyAE0lgzoU2yn8m4GB3g5LQcUmlUqlUqnV1VXw9ZVKhVKMLMtWq9XpdF67du2f/umf+v3+tWvXCM4v7RDP2e/3JycnXS4X0PUbN26QcHc4HBSPf9U2q6pqs9mCwSAsS3QqEFKoqjo2Nra5uTk6Oirr7MP9fr9UKgn2GyKPaDR6fn6+vr5+9epVVOxXSrD0QhzN0pnBxPGVl5xuse40Yh8cHLzyyivk4sSuX1xcGBPTksE7ptovwJOXclciByF+KMTUKExGSyS9YEP5oRhQAMxcvKGAt4tqtPCZjPJkdJIkPaQwhrGqIe7TdKCseHJZR9zX63W/32+328Ph8OHhIXo0Eonw7pzeXq8HWO/GjRuffvppNBqlom98tWKxuLu76/f7mS0QDofD4bCAJ0HuDdferxIsIeiVSmVvb+/GjRvJZDIWi0GIEo1GqWYKsQgEApAAXFxc0IEnSVKv11taWsrn88a0lrj+eZUpy7JMpsSscwQIKyB2iO0xm833799fWFgYGBqFZVnmwF1yJ41tIQAvyY+b9I4GsSXGBzXKivE4qs/nriSDgpGe1z2EioPnMfUmQ9PpJfGSn098XFo+vEzGJlxyATWd2l/TUWIcpHQ6DUN9Pp8HySnpSkh0WfJ4drv92bNnkUjke9/7ntEgqjoPzCeffNJqteCRJ0eAgNbr9YODA0orYIj/GZerVqvt7u6Oj49XKhWr1SqYtC/9lSzLYGYwjmNjYwK2adG5iv6vgiW26Uvdsbu722634Y5SVZXWNoqgkh4km0wmv99/fHz84Ycfzs7OwtnCXaC3M5q5gd66LjbA7/fTzyk9n6nSDCUasd/K87hQoyvDB6Tnda/2fEGG6rJsKF0LfSlce/5QCLpkMNNCaamq2mg0KM4IqRLG0fgivCaLUK1WQc4ADRUL2O/3Dw8PQTVBUcRtT05Ovv/974tSmPFNcdWhj19aWiITIUmSxWLJ5XKFQgEybeow6vN4HuPSmUymTqdTLpepxtC9N9Ap+YwLBTWyLMvUCcQdvtK70gxtB9LzCE2WyDw7Oys+fXx8DK8rHQE+n48Ikz+As4sHFfcShkPsuvA/hPslGKEvVYWFI/Wi6/OiSEkGTWN8Pe2rshtGaRPnaWBochRLI37CrehKknVcnqpjs/gT2RADipcVi9vv9/F+dnd3FUUB52Qymex2++eff+52uzudzvHxMSphaGiIzrB+v2+knRby7fP56vU6UIKjoyM4UYirAoEArB7kMycnJ43nVryyOOdWqxVa13w+n06nAc9c+pgkSX6/n8R4q9XK5XLULrXnnRDj/176lXCfvnyFbrfLXAnyJS6XCxKtUqmUy+VkQ/Hu4uKC7LZxt/iHYijaSIaADimu1+v5fJ4DQcAs4jXFwO1mVGNG02OUJ0TQZLjMz1+CAVUYF+V58IyoOrOISA+LAASqpV+SAZ0s632OsiEBphiKVMYq9crKCg3saGvkY3Fx0e12Ly4uKoqyu7sLVjOZTPZ0wv5Lp4WOK1VPZACBErsIpwOjXBi98atsomyY5QSiJpvN9gzTe8RlMplI6hLhguERHxNawHhnkwEafulSFEUBsX9xcZHL5Wq1Wjqdpp//4uKC2VrsxPj4OAUfEcUI8RRUWCYDgEl6PpOE8mcySv/5zlhuS7lGZD2MQmaUuUuidkkoTSYTKS5jjlTWKX4GBh4sTe86JF1CzuVS+KLqYbJmyNCKdxe/NVa48Tt5NhwUl8tF0G42m0ulUqfTCQaD/X7/7OxsfHxcNEQY9wzXm5YQTbezhULh/PxcNLBommY2mycnJwOBwPn5OXzmmsF4vahsPB7P8PBwr9fLZDI9ncJTvJSmaRaLBU45LCPoS80QpIs/we7jCGnPB1hcZkVR6CXSNC2fz0NpXKvVBL27pls0r9cbjUYzmQyCLyob5Brod1P12rMwIgJYoigKNGv8rfB4VL0xBlPicDhEpfPSdelwGPdSvLOkZ5VYEWOOQPxqYOjuF/ZOfr6TWNgRgQVVDWQKQviQV1nPzUqGRIxkYG2kke7s7IxC7/z8/L/8l//ygw8++N3f/V1FR3CAiBf2mjp0IpHI5XKi6o9hwSwOdGK00dFRs9l8enrKvBlhrIVMGCMh5Difz9M0KvJBYg3BYnAIi8UigOYX90KWZSp7go5V/OpLB4P96OvTzzhwqVTq4uICTU7vV71ej8Vi1NsXFxdLpZIQXlVnoBMqQVRzxT8sFsvZ2Vm5XF5eXmbpZUPHDvnDgc6qCLeC0CvizImtFTKkGdCC4t14Bk6kUZdIz3f0C3ki2S0OiVE5qTqoX9XzDnyvWW9VNZ4NEcSIfyh6Lu3w8JCxSj//+c+Xl5cnJyeHh4fr9brZbP7GN74BwIZCHpVmHiabzdZqtVgsViwW4Yi36CPEQqEQ6QYhQ2CtoIwf6FA5vGEQEMazVygUqtWq0+mkN18yaDVFUcrlMnMhcfZFNH3pbJ+dnbXb7WAwKCZWiFc2iS4dVVX5MsnQcXUpKe9wOI6Pj71e78LCQjKZbDQaqoElhrMiMJkCryecj1KpBNuYkA9jYl2oOjbV7XYzP8h4GsQWGl+PLxL/K/Ze1PJ4GKMhE9rUqISEMpP0jg+h0gqFgijoCpcFqRX+nMvlIiA1HhtJd+ko3vEnYJF5x2fPnv2Lf/EvWq1WNpuFuj0cDou5LwSA+NH9fj+VSsmyzGQeDIiwlSwmemhiYoKplkgDFTnRoyYkjA42v98/PDx8SeVLkgSUGUz9i0Er/2CKoMlkGhsbM06ZQ7B+abOYZWrSW9H7OoUc/TC4YplMBoIArKHJQM8iqkDsKC8PhAhIu9/vd7lchEWqjlcRUivkhqtWq9VqNTGtDrJ8urT5b1/nzRJoZskAbqFKDahVMOeKtRNyj3skYFhCRsWl6B2wl5Ig/BU/gfUlHo/HYjEMjWqgMWKtiTQVRREIT8z0zMzMxsbG6OhoKBTqdrvBYLDb7R4dHRFE0zKfSCROTk46nQ5shlDoUIo5Pz8f6CCigQ4aRpHIhuS2oig07goBMplMJJXK5XKpVHrR8aeSzVLLzweAxv+V9AkxRsMiG19e07RsNpvJZCRDLcykN8OwT06nc2trq1QqXb16NZPJFItFs4F+g6wuu8u6C3dY0kMzi8WytbW1sLBAJvbSIxoPjdhIzZCQFFJu9GlknSpCNmQNLpnFgT4AVngwiqKI3kZVp14W66sY2tdUnY2DOwunRCylQDsS0qMhsG5iJoNkAIBohlzd3NzcBx988N5770FCyagc5iJ5vV54HHiYtbU1h8MxNzd3cnJSKBQYRdHtdhmhJWjfFEVJpVL1en1yclKgtXDOGo0GKAmh1Pv9/sXFBSRYgkdI0g0i3c+MnpSejy1wkcvlMtwnmqaNjY2Rxf0l8qBSqRCmRSKR6elpUYYUeovsaDAY9Hg8EAeura0RTLFJQmMJdSXrgZKsd6hqhvYvatji9WSdh004ZOgw0SAqXoakALkAspfGfzebTZbP+FvB4MgNNb3SvL29zatphgyC0ORCslW9uiDkjKizVCqRQMHACXAHwE7Yrfx+f7lcFrpZnBPhgfX7fUZRptNpSZKsVuvExMRgMKjVatFotN1un56e9vX+/Vu3bmma9uDBg3g8Pjk5CaEoUefOzg6HnHWjLHh2diZUBkAGt9udzWZJTLCkHAZAVNCFirPK8zBWV9RhxYWsQ4DN2xUKBaFWvrwJyWV8I2ovvV7v+PhYkiSot9gPEn1er9dqtf7Jn/zJ8vKycFzQTxZ9coGkV4H6OtUTJsZut0Orsrq6KjSHpo8CkJ6PxTRD5UcyoFKFnhOgZNmQaBF6+NLdhLlHtZyfn9fr9YWFBVF9F6Gc9nysIE4wl8ViKZVKqVSKHBIUwmi+YrFIO7yqqs1mMxKJiFnrIyMjhO7UM0TWmxfPZrNra2tvvPHGe++9x1unUqlarTYxMYF7JwZ9WyyWo6Ojk5OTmzdvapp2fn5erVYhQc3n8yMjI/F4nE0xmUyHh4cmkwlJ5S1ArGezWbhGhRwwxMtsNo+NjRnL4ZqhNAnA0ChbvAV+s6ZnowKBwC9P6f7+Ph1CBEeIyGAwODs7YyKeoreEg4j1+/0PHz7MZrMvv/wyk9b7eksxwZ3QOgMDoQDfx/hWYwlC/LlkyGILWybMqNE4qjqbjdGySAag3CWwjTE4kCTJYrFsb29PTU1R7ec5xf2NCQXZkFNQ9S6ujY2Nr33ta1euXGE7Sb/BpEIvocPh+OyzzzKZzO3bt+PxOB43E3sGgwEk5OJdYJyCI+mb3/zm7du3+3oH7MXFxdjYmNPpTKVSmqaNjIwoikIH2NbW1tLSksfjSSaT2WyWnDZ8Hkwmw188OzsDR2p0ADqdDtTfYiq9LMvtdvvi4gJWCONx4iEvLi5gATEaEGGC4FHu9/uCaxjBMgPOV1XVarVCSaPog8szmUyj0RgfH3e73ZIkQRPY7/dv3779V3/1V9AGgw/WDOR9IsyUDakUTU+EKgZQg9Ai4rWFnjD+hMv4ViK6kZ4Hyxs1jYj4hLuqGWgaDg8Pxfx6IZ2KYYyFydBOIwx6MBiklIsLwiAnHHYhYblc7tVXXy2Xy/fu3Ts/P79y5cr9+/czmczq6mqr1fpylp/+5Pv7+61Wi05AuhWYEg0hezKZHBoaGh8fLxQK/JsM5+Li4pMnT1ZWVvBsDg8Pa7Xa6OhotVrd3t6m99hkMsXjcUIlkQ5gl8fGxs7Pz/v9figU4gUdDsfY2FjfQINrPOc0XGjPe/dskCgtyDqRmFBsCnMZ6V08Pz/f398/OTlJp9NEkvl8/unTpyR8ZR26GQgEfvM3f7NUKq2vr+OGi3hKZM+NcqPpIC1ZlmFWUQzFH+15nKcQKbH6qp61HxjqwZohCy9yCsIjES+v6PwcyBmOCHPnhS6E31b8yUAnDtH0gJcv8nq9FxcXPp+PBjiomj0eD53EtCOzBxC2fPe7352enk6n03TkHR4ews2s6XkK0t8ul4sBAhMTE2KWbrvddrvdExMTkAMODQ1FIpFyuXxxcQE95NWrVwmkhoaGZmZmwKczyOPg4IBJx4qixGKxfD7Pxqt6ItpkMjGc4uLiQhxFs9ksgAXGBcQBePFXwiB6vV76640+saZpsqqqHAgccJw7EjlmsxnjiLoKhUKhUEjUxuv1+v/4H//jjTfewJHXdHZUsT3C2PHOkJ/g2aTTafiV4VkkrJUMfpJQFUbLKBl8Q+Opkgw5yRcv7fmajMlkomy1tLTEaSGkEiBYo16U9FCR3snNzc3vf//7bHAwGIRyXLwpcgzrQaFQGBsbm56ebrfbf/M3fyPmIdK5wFivvb09j8eDO3Xnzh232y1qSsInMZvN6XRa07TR0VFVVbPZbL/fZwR1KpV68ODBzZs3I5GIwIsq+iDxcDg8PDwsSZJgXBJLp+oZu7OzM2PhyOieGgXLuBpGmRPh18nJCdzVMzMzlJK/zE4x3bTRaGCqqELQAup0OtGr1Wr1+PiYAIT3397e5g0FbMHoshifDO+t0+kAJTs+PobPpNFo7O/vb29vgxbkkIkCn/HpFQP6RSghjJeoZ2uGiw+LvjQ+IKpaxFAQaEmS1G63hVQZUwniUPJGvOlgMBgaGjKbzefn5zs7O0wXFw+AF7W0tDQzM5PNZu/du9dsNr/73e8uLS0tLS0lEgmfzzc2NiZSEiaT6b333vvGN77BRAzeSJIkcm+05NPfTK4I9DDe/cjIyOrq6sXFRTKZtNvtYHLQHIFAgOSRpmk+n89qtSaTSWNMgycK0xWDYY0LaDyT0vOJhq88t4x4Zhl/GWP9+Z//uaIoeGfQMrGXzKXd39/HKbZarcPDw4PBAJHs9/uffvrp66+/ztOTAh3o7O2KofAiHg6WelrqfD7fj3/8Y1jLdnZ2mEEKPbWm9/hregJdMmRiL50toScUnWVEhAVGl47HZufgNDs6OnrzzTc5MMLHEtGo0QiaTCYaql555ZUPP/zwe9/7XqPREFVUPFRGLhjRLyadWCaTyYyMjMRiMXooKOEXi0WmH0xPTwNWEQ7lpV0kYBIVQDxgYC044OgFuspEXyGbnc1mPR5PPB5vNBpnZ2fDw8Oi2VAsXa/Xw8c3AlnFMxgd5a/UWGhri8XCCOBEIjE6OvrlBuVyuadPnwKT0DQtFAphNeHXT6VShIRms9nlcjFwVpKkarX6s5/9DFcDLU0yTBgFzRDtoy1Q49evX5ckyev15vN5zBD1rM8//zwWi4VCIbLGko6gMhnQOCJ8M5o/nLxqtXpxcQEVIp4vNVQYNRqNxtLSUjAYFNQDX3zxxfXr161WK2NwxDkWa0p4L0mS0+l8+vSp0+mkbPXaa6/t7OxYrVbmnUAwxCwJMljG4FRRFNqwWq2WABNj42S9X4pis1lnqTQKFt4IxA2M0MXLxFOEPUbRR8/hAUMGAXIuEomcnJxQFajValRNLgV3ON3n5+c+ny8UCg0MkDVhKyRDTHZJV7EjTqeTWFUIliRJX474zeVyJpPp+Pj4/Py80+mQcYFmBCZWfo7KHRkZwVvc29v727/929dee01RFPbM+MWqYUQlbXHj4+Pvvfce80idTicHCPjs1tbWm2++Wa/X2ZLBYADLNGVp4dVqhukVyHcul4N/MRgMulwuwbcBhTq0O91ud21tjbLSyy+/vL+/T9pmb2/PKElCWDkhmUzG4XCQBb19+/bW1tbrr7/u8/ng58Aw9Xq9VqvFE9ZqtV6vR12FV5BlGcy40+nM5XLItIDm4r+TL4CPlPKL0QUWOqxUKjUaDWZJCFdMMwB7xLIfHR0Vi0WfzwdennTS1NQU2Vr6no3bhAo8Pz8fGRkB/C6+Xfi40guXZoDKoKrJEgQCAX5oZmwwSWpSxsyIkmW5VCplMhmXy0XyCRY8TEkgEBgZGVleXv78888VvTxyyVqJkJBjMTMzUywWz87OZmZmTk5OcrkcMRGx7sHBwd7eHgRJtLVcv34dYCAqATiNLMvQncFWbbPZ0PbQ4AQCAYZKaprGH4II6vV6iUQCLBTV4jt37mxubkqGsNRo/iRJomaHojLSuzPKAdcEpEokEmGUMsJRLBaLxWIwGGSklt1uPzg46Ha7lE3ExEOMO7YMSUUaYIYRAbWke804dkdHR9FoFBKiS6ZTvEgikbDb7alUisJwIpHY398/Ojqanp4WLUyXzr/T6RwZGclkMiaTSYAjLjnyxp01Pp6mE07Nzc0pBnpYeX19negGhkIiIFjCaK+o1+uw2quqarfbA4EATMAOh2N8fPwf//EfB4MBgcklHXtJvFwuV7lcfuWVVwaDAXEEiVpiJWrsVAN7vd4nn3zi9/utVmuhUGg2m3Nzc3t7e8DxXC7X9va23+9/6623EomE0+kUFRvkkrgpk8kcHx/HYrHR0VEcLFmWsfjr6+sTExMUKyQ97rsUh+7s7ExPTwMvZhjpwcHB7/zO7wgGqU6nk8vlMCJQcTLpk3Z1DD0JCI4oIcvU1FQ4HDYWqhFiOBoJyV0uF2VH40FFm8Ja6/P5BALCuODCSdI0DRQytB+yLB8cHPj9/rGxMWMPqvEym80XFxfFYpGxOV+ppYQgItYCwyM/z8/4ZbD1f/7P/2k0Gn6/P5FI4IpGIpFIJNLpdA4ODjqdDqOtSqVSs9mkD5N+CkRQluW/+qu/WllZEXgssVVik9jUXq9XLBbffvttggDYDYk9IfUidcs9JUk6Pj6mbfCnP/0pGdparebz+aanp4FQ41ppmuZwOLgPBQqk1uv1Mk8K/UqiWZZlm812fHz8/vvvLyws9HRqGtlA/Q0Bhqqqs7OzpI6J7WVZ/p3f+Z2uYVoCNY2DgwNFUYaHh+H5YImGh4cZSmOxWJjxLElSqVTa29uz2Wyzs7Ng+i4tVLVaZbQOPReYVOFRaHqa9/j4WFXVqampF/0e2TAAi3nYjBQwmUzb29uhUGh0dBTZelF0TCYTaKhEIvHiB4SmKJfLhNUIBm6D+YWR4fL6+nqr1YKqu9FokFtyOBxwaZ6fn5+fn8s6MokU1MzMzNWrV3O5HPt3//79o6OjN954Q2RHRTuyZICGnZycIK8TExPxeBwhpogr6QOCESlaObjDyMiI1+vd3NyE+JUss8PhYF4elaif/exnz549u3btmizLrVaLhDJsxCRpAMQyFsZut//oRz8CE9fX++WNWh1iPhLWgEYopDQajd///d9HsATGAY1O0oGBsYQI1Wp1ZGTE4/FA20fGnJoPINKxsTGB8ZJ0LAmpc/QHPmIoFBIoI0m3RERCrVbrRfQmF2kwq9Var9fPzs58Ph+NX6hqwDm/KolwcHBgsViYnW78jMhHFAoFYJ4Wi4XBJSIcEZ//slao6uTgHH1JkoAz80DNZvPZs2f5fB4NyXQGv9+/sLBALFatVj///POlpSVq8iJHz3OoqmqxWCBkunXrVqlUAk4JDyBcj0SUaBeINJxOJ3lLq9VKuR54tRgdSw3A5/P5fL6zs7OnT58qisK8l0qlMjw8XC6XbTbb2NgYcwCLxaKiKFeuXCmVSj/84Q/n5uZUA/T00mnL5/OapvE6QqmcnJz87u/+LmT/dN4hu0CsTk5OZFmm7xlMCys2OTnZ6XQymQz0sjTYkM+Eql+YDx5mb2+v0WiIBApk2pf6nlGilUolm83Shjow9JRiHISR6vf7p6en+O+qqq6vr8/OzhIbvihbiqI0m82joyPyq+rzNX4eslqt0jPNbxndremAGXGfL9OhyPjFxQUe3PT09PT0dLfbPTg4kGV5fn4+GAwqihIKhVwuV6PROD8///jjjzc3N+GfEPli0Rcq6i0IsoDYwpB2dnZWrVbJwbRaLZ/PB+iRkB5oV0O/GFpJMGXRh/8O9DabXC5XLpcnJiZCodDIyMjS0tKNGzcYR4unzxBRKoNkqwWOW9NLhGLtZFlWFAWhFN4h2S/k3ufz9Xq909NTVe+pR2QxH51Oh6JboVAg/tre3tY0DSr2arW6v79/cXFhtVpjsZhAXQoPD/siEsWapgHSApcsGaKiRqNBggAM4Iv+uCh/mc3mRCLR7/cPDg5MJtPS0hKdpMbUoPEPXS7XyMhINpvFiIlfCfvDEM2BPk4hn89LhlK9uKe8vr7ucDiIdNinwWAQDAYBUZTLZQpPBMwiVwRlb7fb/drXvlapVB4/fnzr1i3GIcv6uHlVB6nZ7XZiqFAoRM7C6XRWq1W73S5UvabXE3kfpFNRFGFY0V7glTFhoCLp2Eyn00SmGBH+QSNupVIh1KB37dNPP8XFEQGgZJjkY7FYCoVCJpNZWlpSdeY+j8dzenrqdruj0Wg0GrXb7clk0uFwxONxvM9SqRQKhdxu9/HxMTkFpq3w5AS5kUik1+uxhm63e2RkBLWBgkfIOOtQQlLhkHUyQaDlwggIZlEaoyHUUw3Vd5JbAx0XLkkSrEZTU1ONRmN7e/vWrVtfmUpAdg8ODnq93vz8/FdaTFVVk8kkoYaqqtFoVGQZZAGbSaVS+Xze6/X6/X648FWd857FOjo66vf78PKm02lQD2RfyNGVy2Wfz5dIJAaDAWLx5a1lGQffZrNVq1WAOz6fr9lsAq6nBOH3+yORCGKqGYZma3o2nOBUBEHAwvByoEf3er2EWkxPheFSZNUdDkc+nzeZTADTHj16FIvFACaISFBsACsFGFzSQ32Px5PNZhOJRCaTCQQCy8vLJpOJ1HEsFnO73UxHcjqdY2NjZ2dn/X6fVjlCWkgfXS7X1NRUp9M5OTnhwAQCAWQFUmQIGoRWJo0O2IaiIe68iIeSySQTuZjuNDMzw/GwWq33798/PDx87733nE4n1lzWSZ2r1Sp5n1Qqdf369YGObBYCpOkEbtvb25FIJB6Pg5O+JIL9fp84V1VV6uWyASCpKPo04r29vb29vbGxMdhR5+fnV1ZWPB5PKBSan5+PRqPUm1gFMk/hcBgYSa/Xc7vdpCXhxuBVVVUNBAKjo6N0VMOmSpRE1azValGwOzo6EkzxqVQK30XWaasE4RbvRgsksEYG5xEqM6+BJAW1TggROSRoXHSqaDk0SjDFctQ2KStB3FAul8fHx1dWViwWC26l1Wql5PX//D//D43jMzMznU5nc3MzFou5XK6TkxOTycSISk3T3G53o9HY3NzEZLTbbUSk1WqZTCYoQ7e3t/FHqbfiIAKMQbky8oTHJi45Ozur1+tkag4ODmw2W7lchu5mZ2fnj//4j09PT2FF4w6RSMTv9+/u7lIF397eFhSmQmI4Zow5wSCaDJ0Nmg4VAT7E6vV09iuj5MmEOScnJw8fPgyFQvDJ5PN5ssC5XI4iDzWE8/Nz2vvBURAnnp6eVqvVeDzu9XppA2dMrcvlQj68Xi/NccC0fT4fW1ur1U5PTxOJhCB/gvrm5OQExDdCYLfbM5kM4A3wOQz7IzZE2bhcLgRIlmW3203ltd1uM827Vqvdvn272WweHh4eHh5ev35dpPgEQJmwQ1EUGu6QezyVZDI5NzcH1iOfz0ciEcp8Tqfz0aNHjUZjZWXF6/WazeZkMsmECHINeNbg39HTYK1Yw0gkIjo0rVZrLpdLJpNTU1OBQIAyl/Bd8CPNZjN+lUg91Gq1w8NDhp0wrrtWq/2X//JfcA9orFhZWZmenkb4JEki/5zJZMbHx/f394XoSy+059fr9adPn46OjkJWS2xEtpLIjLVKp9Mo4+fsoCzLe3t7sXjcbrXm8vlHjx6pqvrmm29KkpRMJt1uN+VC9I3NZsvn80+ePOl2u+gS6npWq3V/f5+1MJvNc3NzVDShk6tWqzj4zDrjHPP0YLO2t7fD4fDq6urDhw+bzSZHH593bGxM1IYh3GIKMlgJWNoDgQDRA640p4oiweTkJOdva2tL07QrV67U6/UnT54MDw97PB5MYafTabfbhLokI46PjxcXF8EXwLxF0ebx48eLi4sYpnA4TJw1OjoK/t3tdkPHkM/nSXPLsszQZbQCgkUNiomK9XodXxbLaLPZ6vX65uYmw3aEn6rpvX65XE6SpHA4DBs2aqNQKJydnV29elXVS8L//b//d/zC6enpkZERdPmNGzdmZmZ6+qzKer2eTqcJkoCYGifUSXrFZn9/3+l0xuNxs9m8u7ubSqVeffVVculCEGkA4SaKkbrx3gcfOr2esdlFl1Pp1ktbOyeFQv7WrVvBYDCdTtvtdofDAcvF2NgYBYpcLqfqFWIA/DabjfQxnkcgEIjFYhMTE9RenE5nsVg8OjrCf8I+AjQjZUWhanl5eW1trVgsLi8vE0+Rre10On29gw8jIsgXqaUMDQ3RtK7ptO/UX0ulUjweJ9f17Nmzer0eCoXi8fjFxQVTQ+mzZbiXzWYj1CKGB2iFiVf0FmRyraRPZ2ZmHA6Hz+ebmZmxWq2ZTIYC4sTEhKZpm5ub0MjmcjnR86nqbW20ZzKI1ev1xuNxLCDr8+zZM7PZDFxd8EBb9EmZg8EAYByyRSdwLpdbXV0lEfP+++9PT0//5Cc/SSQSRN8vv/xyJpN55ZVXpqamevp4gVarRdknFotdXFxQFxYwAuF6SjrUGPjd5OTk7OwsvNyoMWBF5l9SpsmSZDbLfTlTzh89e9iVHAsLKyGfs1StZzIZ+h6npqY2NzdhlCsUCpIk0YyGYtd0ogRVVRmlh6fC8CD8pMnJSV6mWq2ur68rikJlrdFoxOPxYDCYTCaBOHo8nsXFRZfLRdw0Nzdns9mePXtWLpdHR0dJvWIWUQ8YO1yuTCYDuTmj5Mk1KIqSTCa/+OILeBaBhJPXfvnll9vt9scff0yKD1gS8GJservd3tzcTKVS3/jGNzRNowBPaq3T6QDNYJ4bdYKpqamRkRFG05hMJmzl7u4u7jkzukU7MpZxb2/P4XCMjIwUi0XcKQaTdDodn8/H9IDx8XGbzUZCv91ue71e9BaFI2SLxOzm5uZgMFhYWDCbzevr65qmMS41nU5PTU3t7OzMzc0dHR195zvfITsqgNfJZBIFzBrCwi0ZCoUi4VIul//hH/6BrH0+n/+jP/ojEsiX/DNsqs1skf9iPfmNhPvk2ZNKxzI5NTk6GkZjl0olWZbD4fDx8TF521KpBPcf5YhGo0GRjkpwv9+v1WqidcdqtQplMDo6SkmYAQczMzP5fJ4witN8cXFxcHAwOztLEabT6ZyenoK4XVtbK5fL0WgUcD0atFgsgoLCjSOZRG8qIAvgqbIsM/oR8v5arRYMBsn437p1S1XVdDq9t7eHw0QIBo8U5eTDw0PmECHNmUzGarWCKZqamvJ4POBn0L5+v390dJQqOxDk8fHx8/NzvIhMJhMOh4lOiGe73e7W1lan01lcXATYE4vF/H5/o9Eol8uxWOzg4ODg4IDKLo89GAzGx8drtdrFxQU90wLMbrFYdnd3o9Goz+d79uzZ+vr6b//2b5dKJQ4PW1CpVGq12ve+9z3N0LlJGkLTtGAwSEMR9vGSv4UD8Jd/+Zd7e3t37tyhnPDv/t2/Uy5jyGRZG1hk7aQuy/+fv3j2+2/M+u3d04v0yelxbGx8enoaBEi9XmfoD0BbMjGM2cRJB+0EMoQONQbzUf4jaiNdnsvl/H4/IBOmM/j9floJJEmanZ0FOTg6OirAaPv7+5OTk/F4/MmTJ5gnXDqz2Tw1NcVOw1wCWgZgidfrJZSbmppCmKBF3NjYGBkZESkAs9nM4MXDw8PNzU2bzRYOhzc3NxlSMjc3d+fOHZPJxG9DodDw8HC326V+QNSysLBw69atjY2NYrEI4S/ZasQRpNTExAQUGLFYDDIVka/CHu3u7ubzeUZrVyoVGt7pyJiamtrf39/Z2VlYWJBlORgMFgqFXq83MzPT7XbhXkM1Yisow3Pm33///a9//et+v59ChdVqpTJBGuX1119H8YgEATRuTqezXq/T6aU9D8VBsH7+859D4/7uu++ur6/bbDboCI19y5I2sFiVB+mW/OToyNYuO1z+kWi8Xi7s7OzB0sycIKAaIyMjOOywYubz+WazSRc2peW9vb1isUjxDj0EMLzX6zmdTqQwlUqNjo46HA70PHEK0qaq6muvvXZ4ePjw4UOYfVj9k5OTcDg8PT29ubkJYxhn3Wq1rq6uZrNZgbglSsVkg1cZDAbEO81mc2Jiwul0Pnv2zOVyhUIhRvV1u92rV6/6/f5kMrm9vc2TIzT5fB4vCqenUqn0+32gaShLm82Wy+WWl5cXFxdPTk4ODw8TiUS73R4dHY1EIrlcjgKGJEmhUIgMczweLxQKLOlAZ+DBZ00mk0tLS/gYVqs1EAiAyk8kEjs7O0dHR2Rrh4aGmPW1uLgItiKfz0ejUfxLgdGw2Wy7u7u7u7tut/vll19mKdgj2DeuX7++sLBgTKyTCeeQq6pKEVP3mb4ULJvNdv/+/Ugk8sknn+ABR6PRX/u1X2MQq/xLZhFNlmWTYpGfPnsy6PedTo/H6w8PDzeajYODA7Dx1EGtVuv29jZ5Xhpt0czFYnF4eBi2CdzVs7MzPm+322dmZsrl8sbGhsPhAJakKAqARgYonpycZDIZwHeyLM/MzMRiMWretGgSpsGWMT09nUwmz87OwuEwKQnsHQ4WCSES7tgy5JVgB4cvGo0ODQ198cUXNpttcXGxXC7v7u42m83R0dGRkREKyTabbXx8vFgsDg0NMRDL6/VCd4bM0U8MYYbb7T47O5uenr558yYJGmRIURSUytnZGVsyMjLCYMHJyUnSucgcQYnf76dmxYkSMMZ6vU72YX9///T0FCyG3+9vNpu1Wm1xcVHTNChDYrGYAJfKOvnPf/7P/3lycvLXfu3XhO+fyWRwAe/fv/97v/d7EGXJOu2KoijtdpvuB3I9Ak6IKbTb7fv7+9VqdXx8/PT09OHDh+12OxaLfec73xH3+VK/mWSTrCjNRjeVutja3F578nhrZ8vlcl27do2CFxkpSZJu3LgB6M/pdPIPvA2WuNlsrq2tjY6O8vKc8uPjY7/fPzk5SZpAkiTqCZqmffzxx81mc3FxcXFxMRaLDQ8Pv/nmmx6Pp1AoxOPx8fFxutcZezw2NlatVk9PT0dHR6empgDrUUAgrRqPxzkAxDvDw8PRaBT9TN8VGTXKoC+//LLZbF5bW7NYLMvLy0tLS7SGUnrf2tra29sjNTo/Pw+859atW5RoyDtwnKLRaLfbXVpaisViPMbCwgIz69vt9pMnT2w2G0lgm812cXHh8XhUVT04OIC9CH1MI/za2lo8HofkKJfLtVotsg8ulysajR4eHs7Ozk5OTuLP5fN52Cg3NjbMZjPGl94KUTZwOByffPIJeD3ZwBIwOjo6PDxsNpudTuf//J//UzNMcUd0wPTabDYKMCIvqumjXEZGRmBYvXHjxquvvrqwsFAqlTiQxry8osmyJMuYm0wms7+/T2pgbm4ukUikUqmDgwNeAzzTgwcParVaIpGgxsIhrlQqFGSOj48BNFerVQGc93q9JycncMTDsodMPH361O12LywsHB8fM0CW6T/UbkulUrFYtFqtk5OT5MMYMBQOh5vNJlaG8p/AR5ANz+VydHW3Wq1yuazonGZer9fhcICHHhkZIaM7OTnJIVtfXyeyY0ja5OTk9va21+udmJhIpVKqqq6urpLaptwL4Wy73S4UCu+99x64SMgavvjiC9oMwZpSy4J4IxgMUh6dnJzkSUj8PHnypN/v3717l2/nCQOBANoCvTU/P7+1tZVOp5mQRVms3W4vLy+D4a5UKviU7Mjf//3fE41+4xvfENPaSPBubGx0Op179+45nc5f//VfF5PokWbyR3SVEvOKvDzYmPX1dQQ0k8kcHR0R7vzmb/6maiC7Q+PKp6en7XabnuZCocBoE7fbffXq1Xq9vre3R1rS7/dHo9HHjx+z9ADrcG6KxSK9crgLVDCWlpaAc2iaBnyM1yZxZbVaHz58SKcUEmy32+fm5lwuVyaTsdvtQ0ND6XQ6m81OTk56vd5MJlOtVuGAlGU5n8+3Wi26hC8uLmj9YLgB2pRwiX5fQOJwBVKsAMleqVRwutvtNvwFrVYrEolwH1JZ3W43nU6XSqWVlRVIPhwOB3oaT5xicCwWI2s/Ojr66NEjtiSXy1EfazQacHAC1UKZkculAXBtba1Wq7322mtnZ2dMZpuZmfH5fICc8FaXlpYeP35cqVToNaX/uN/vMycslUo1m01Y1549e1apVMbGxoLB4Keffnr37l2Kj2T4CoXCxsZGs9l89OjR8vLy2NjYrVu30DSqgeeIDAvIWNnQ1Hp8fFwoFO7cuQM5wGAwePTo0WuvvXbt2jVjQGA2mxWqUScnJ71ez+v1ut3u+fl5TdOIYpaWliRJwnHJZDI3btyYm5tLJpMASqkqYBNPTk6mp6dffvll3pnRc8g7Tfq4LAhuq9V66aWX7Hb71tZWJBJZWVmhxxwHn1MI+83JyUk+n4/H4/By0WQG7z7s+DT+AyqncE41OhqNrqysYBHg1SRDQ3wOxpqRkJ1OJx6PI9YXFxfxeNxmsx0cHLRaLbfbPTk5eeXKlYODg9PTU2iAJiYmwAz6fL4bN25Uq9Uf/OAHlFnOzs6uXLlCHSIajSK+TGL2+Xz5fN7j8QAEoloFLmN1ddXn833yySc8hiRJ2WyW6JV669DQ0Pb29vXr18nsc5h5KXB5QNZ4nXg8vrq6ysFYWFj427/9W+GDi8q3GEmZy+U+//xzSltGlTM+Pm4ymc7Pz5Xnh9P4/f6dnZ1Wq0WrgaZpw8PDv/jFL2q1mlmfCoblldGTFxcX5+fnqBOyhWazGbKAdrtNEhwgTjQaPT4+3t/fx9PkAIF0GAwGZOcpawQCARpwcbzo049EIvl8Hv8A9ot6vQ6C+/j4mDaERCLB3NdoNGoymfb29igsaJpGewUFHEmScrkcdBR0FjmdztPTUxpp7HZ7PB6XZfnw8PDi4iIajXq9Xp4B6Es2m6WQB90UD8bgZHKkqVRqcnIS3kqLxfLo0SO32x2LxYjqJUkSHYUPHjx48ODBd77zHUVRut3u2NjY+vr6lStXzGZzNpsNBAIUYcj9Dg8Po+MpFFarVZbl8ePH3W73zp07Ozs7hULBZrOBfsOwplKpdrudSCQ+/fRT2siYPP3o0aNwOIy9SyaTJpMpFotRtldV1ePx/OhHP+p0Or/xG78BM6Usy41Gg9GTqqrOz89fXFwwfVM1MHHiRezu7vKcfX12oc1me/LkSaPRePXVV0GB5/P5hw8fTkxMcBNhTxW6MUdHR2OxWK1WA5VLwh4Cbbvdvri4iCdBGExeH0Z4hlG3220qJCcnJ6SO6B9cX1+v1+sknWOxmMViubi4GB0dVRQlnU73er2hoSG/3//s2TNN0+bm5mZmZvr9Pu1Z0WgUEs75+fl+v394eIj/GA6HA4EA/YAzMzMTExPtdntkZASKdvqcQqGQ3W6HX2p2djYajWIxl5eXbTYbkSb2iAJftVqlMXBqago+WbvdPjs7S6caDACvvvoqrdsQo7HWtA2+9NJLb7311k9+8hNI/ZlT+vTpU7PZPDIygstItjkSiaBsQLAoioJff3Fxcf36dbvd/uTJk/n5+UAgoKoqr0/6KhaLmUymdDp97do1OpGYu7SysnJ+fg64ngoj5xbDV6/X33333fPz883NTQIUVZ8RQckVnHSlUjEbphAq+oBCQf0gEqGtVmtlZYUo2OFwAEDCL3r8+DGVcmBtisfjoQ+Hhl2yOOS4JUkiz2uxWBYXF4FelUolYmMcFEmSNjY2LDpNpdfrTaVSRNfs+uHhYSqV4qyMj49bLJbz8/NIJOJwOE5OTkg3WCyWjz76qFarCfK3k5MTktEkFKampoaHh9PpNIJOMYRFdLvd4+PjlDKpB09NTaVSKSb3wZtIOXZtba1arS4vL3s8HkRnbm4OL2cwGCCp5PCQOa/XOzs7i8+uaRoQCUVRSIgcHx+fnp4WCoW1tbWdnZ1r16698cYb9+7dA+FdLBanp6cfP37scrkikQhgB4LWSCRSr9eHhobOzs6AY4TD4VqtVi6XYaTZ2trCLtvtdgCM9P9MTEyQbUJAQYyZTKaVlRUBCkVd0WgppCQWi/3gBz+ghs1PqMF7vd5vf/vb3//+95kEJiymqpPFAVeBR0kgINBztJBQFRgaGtrf3/d4PFtbW4IoQKF1mFL88PAwiK1yuUwRhgQjuRyw0t1ut1arpVKphYWFycnJUqlktVoJrGgrxe+u1WpAD0gr4+hJkoTtPzw8DAaDzJeqVqurq6vz8/Offvop5jgajVKWz2azoMtFRy/JDpQ2+U+AX7iNZKEwYbu7u7Isj46OUh6empqKxWJkuhcWFnw+Hzlxav6MUmIpGYqEdY7FYleuXNnZ2QGhlcvlXnvtNU3TGKL05MmTdDpNraZYLK6srNy5c+ezzz5TFIXKdzgcxoAODw8TQEmSNDQ0RHrd7XYfHBywi2NjY8zSvXPnDoVI8BGhUAii0XQ63el05ufns9ksJCsiicMY5s3NTRYBJi0hB5qmMZacyYmUruHJ6ff7lUqFRl9Z7wE2XqqqUpGkSUnVIbXxeLxYLJZKJUiXXC7X+Pi40+nc3t7e2dkhJfslzhOH6eLiwu/3U2ijaEXCvdVqCXoFUBNgJknkVCoVn8+3trZGOyjNZJlMhvJWr9dD36RSKTCiVGRPTk5sNtvk5GQ2mwWfeffu3adPn+7u7iLr4+PjrVbr5OSEzirAspS00+k0JwM26YuLC0nnv5+ZmSkUCrQSbW9v93o9ENytViuRSJAuOj8/d7vdogmHLSRDCEMGITANC5FI5Pr168+ePWOVm80mHWz9fh8eCmjWYeBdWVlZWVnZ2dkJBoOi1XtnZwd5bbVa8BgEg0EcF0CO5AJGRkaOjo5UVb19+/b+/n673UaRxOPxs7MzQr9+v59IJA4PD0WpGIeGhgsyapphnjI178nJyf/wH/4D/e50xADgHhgGxhrlSSBf+GQ0GhUIdbHOJycnP/rRj8xmM5FyuVxOJBLvvPNOOp2GJVm5uLgQKbJSqfTRRx9Vq9WpqSmv10uwja+KyW80GtPT0yCxWq3W2dnZ6uoq/s3w8PDBwYGmabj/gUAAAp1MJgNpGFESuWkInMlNk9dJJpPBYPDrX/96NptlIJnL5ZqYmEBdOZ3OqampZDKZSqXQeYipyWSiNIQaI8s3PT3NcMe5ubmdnR28abz+8fFxn89HWk+SJBaXXDmnqFQqEbJhE6muJBKJW7duoZXxwV977TWm2fh8Pm7V6XTgaLh+/brP57t3757X6wWzxWxcj8cDsoD2V7x+VpJ+BCj1z87OcGrX19ch3+r1erOzsxAOHB8fg544PDw06wOnkZ6FhYVarZZMJikZCfnQdDYYVgNfCn/r/PxceqHX+dKFFg8EAqlUittardZsNgujR7FYBK2lKAqpQY/HA3eQwiCNdrtNfcZkMn322WfpdDoWi2EgIPOg6YWeMtrZ+v1+t9s9OTlZWVlBCfn9frBKIyMjjUbD4/GUSiUSmMfHxzgH+HOcA2RLVdWpqSkw1Far9fXXX5ck6eOPP8b60F10fHw8GAzm5uaKxSJz3rH9HA4SyhD99Pv9oaGhcDhcLpfz+fz09LQI/glOY7FYLBajaoY+BjE3Pz9fq9U0TQNlip8wPDw8NjaWyWRisdjc3BxIqW63S0s36mFycjKXy6EkyNrcvHkTYCAFctBHnU4Hxh6zPnwArjba4fHwxsfH2+12LpcbHh6empra2NiIx+Ng/RYXFxm5e3h4KLqrjbI1GAyWlpa2trZSqdSLrczoPzr5YJkTk54u1ZuNGstoTIkwBN7m+9///m//9m9nMhlGu6F6yKvhRSis1Onp6dnZWTwen5qaAlBwdHQUj8fBSB0cHNRqNRDrNJBQ7QfkRUkrGAxaLBaQongtpABKpRKnH3IsrEM6nZZlORqNOhwOAumJiQmLxXJ6etrr9a5duxaLxe7du8eUPfAh4LuXl5dpkgEIQNxkNpvB2xA0UJ4Dy1Yul+Px+Pb2NpAv0seMK2KELtm4Xq/n8/lIQwcCgb29vYODA4JZskTZbHZqaioajeJDoGlu3boFr8T4+DjbSfTa7/dXV1epsdrtdggENjY2AMxYdCpycJ5jY2NAKVnMRCIB0hzsfDKZnJmZyeVyZrN5fn4+lUqRuPH7/egboz9E2Auk0egwqTrPytTUFE1g6Gk8ZiNwlEvTL/G/5H7JDamqCvEJTi3FPdH4SfO6pmlf5i0GgwGDLijJTU9Pb2xsHB8f8+aRSOT09BTxBLdOWZduRLCgbD+x5MnJiSRJ0WiU9h4aj+LxOIvCuGgCAkFOR0eew+E4Ozsja7C6uvro0SMME4ebeDORSGiahlGAkLhSqQBWBnYny7LD4SBPRokJ2SImH+j0u/QhwqCMgYhGo6Ojo2AG9/b2tre3+TmR/MXFRSKRGBoaooUfN/bOnTv0As3NzZGOp4NDUZSFhQUIeSwWC24rw2kHOjU3MTxWnhiZHuuRkZGTkxPQVzADzM3NHR4eUowHzEjJSzX08ZnNZhrdQEsb+2pkfRAQ6SHQ/WAZZANt5yWpuvRDom/RiscNBaWbSWfXUfVOPgV/XpZll8tVLBaRnrm5uStXrmxubvK24XA4Go2WSqWjoyMCCujbyExKkoSBg9qL1r/T01Pwoli0TCbTarU4uxRt6MpCtjiawI6dTif1BJBDx8fHaG8calJrVAtOT0+BjRcKBXQAmGkUA4TYRE+VSmVmZmZ3dxe4plhrOHOoh5hMJpRTNBqlNH5wcPD48WNq6tjuQqEAiVc2mxWbd/fuXU4Og+OAPvNIKysrlUqFszE7O0s0A4JUGBoeeH5+HqywLMsg2/CWsNSk+/f29kg30r9AYdikD3bjDOfz+bGxMXr4aHxV9MF9WM9YLLa3tydJEoGURZ+Fa1ROA53GQhhESU+AEfgL743qIbH8+++/v7+/LwmWa6fTyWJxr2azSb1venoaIBtZKBwXmoAHg4HP52u3281mMxgM8nqVSqVarYqKAa49+4GSJ052u92jo6Mgy+x2O8OA4DUARmexWFwuF765LMuvvfZap9P54osvSJKhoig3kbjCL8ZottttZiVIOv0BrRZ2u71QKMzPz+/t7aG3BMLE7/ePjIwkk0nwSSxCJBIBxkPnNAgccMzlcjkcDsNmUy6XWd/V1dXDw8NisQhHwfLyMvmzwWCwurp6dnZGJt3r9Z6enpKXIvUgVI4sy/Pz8/B7Y7PA6yITpPh9Ph8cY8xgM5vNFEONaoaUptvtTiaTuH2KTuC7ubm5sbERCoUymYzA2Ajhk3SYQ61We/LkCXxpRispvCujKyZJ0pUrV1gTk8l079490KeDwUAhxCVxRwmJrAnIm1deeQX0t6IogjCYYp+YykSxXdM0AICMsQCXTEk4Ho+TpC4UCpw/aiZEiOhkwWnDAzCvgcW6efOm2+3+5JNPkIOxsTHCH6fT6ff74SgnCUKjC4MeRLsHzY9ut5vGrK2tLWFHWAIOw8nJiZijjqcFyqNQKKyvr5OYoKGSrl3EEZtoMpmuXbt2cHBAVzTp/p2dHbbq6tWr+/v7jCLHdjidzouLCxS20AcWiwVEGraJLIMAS3W7XSB1mUyGhjksOJ6WwMzAZ9HpdEqlEk6PEF8ypVtbWzQl8Fdut1t5nrcC4P/nn39OX//AMOrBqMBknYBpaGiILox33303kUhAvSHLspJOp3d2dqrVKn3fNClo+mid0dHR119/fWtri2mrNONqmgYTrkUnp3M6nVQYOXM+nw/nKZ/Pw41BUJrP50lAk3Ho9/s8BwcIMFCz2XQ4HM1mEx3G0y8uLo6Pj3/88cegokWTD2AVRVHIdtKoU61W+UN8KbxL2rkymcy1a9e2t7cpPrBqg8EAI35+fi6yNUDbpqamZmZmqtXq1taWYAiLRqNED7FYjAwZ+Z7l5eWjoyNyfjh5e3t7iqJwn42NjX6/H4vFqHiCsGBAkqSzd4hwT1EUmpHOz89tOlU4DW0gO+bn51VVxcfFgEr6FCMUBJQh+Ijkuubm5r7//e8T6hLE0WU0MPBsccygbvvpT39qbEGTXrhQ+QA5OQk3b94MBAIoUcXr9VYqFZAFsizjulJ5ZQrPyMjIm2+++fTpU4gxaCulBqLo3BWSJNHBAl2CpmkejwdaxIuLCzAzU1NTaDuqyKQSVFXliCPmoVBIlmWSuegPhl+0Wq2pqamVlZXPPvsM8PHo6CjDdik74MbxkpIk1Wo1qBnReRTXgAXncrnr169vbGygHYVNBBnLnAWzPk/FarWOj4+TaQNYC7orFApR7SbxS46RIUqQp5+cnIRCIYIVSZJY1ePjY1mWFxcXBRSdyEM414PBIBKJkO/tdruTk5PFYhGcCKJDZZ34ZmlpCUYnIF9GAZ2YmOAgDfS5AbIsgw5yu92yLD958gTFKTrCJUNfeCKRWFpa8vv99+/fF1byklQJC04zC/lORR9ApKqqwrwKs9l8enp6dHREnxMFIHygk5MT6POePn0KywCMhv1+n1ZPkaLFy4HpVZIkqKclSaIcgQNbr9dTqRTFImQLqgwMoiRJlNmRBnAj1PWg97x9+/bjx48zmQzteNAeeTwej8fDPtHFIMsyeSxFn3ZBSBGPx5vNZqlUunHjxsbGBrKr6lwacHGhdQSGhM67RCJBMZ9GN5zC4+NjTj/2C7DXzMwMFcCTk5Px8fFcLkfYOD09DWSIM0Y6Q5KkTCZDdoAtgbuaFLnJZBodHSUXKum1YV6kXC6Te4N9mVZpWSf5oFQlcPdoMqfTuba2xpIC3QE9qz1PY4ZqjEajhD60lL6orvi8yWSiymw2mz/88EPK1Th2vyT8g17i6OgIa8VkFdC9NFa8+eabGxsbolhL676YE8T5NpvNzWYT70G4RHSV8G7z8/OZTAZkppAtSZLgqGWPaasFh0PJEvUD6PvVV1/d2tqiUTsWi4EBp7fYbreLUjz9aiw3a4E/ASVGp9O5evUqC60Y5rIwvubk5KSvD8QD4DYyMkInCF4muYl+v0/uVFXV8/NzsjYej4fuSww0VUscvunpadxtysm5XA6vA+y/rJNMR6NRwlskGDIPQbJArgvkAtDtfD7v9/sJC3hmcDiapp2fnwNXdDqd+/v79+7dEyw6r7/+erlcZtpl//lhosgipKkAtb9SsIBVQv1P6EaZjvsokCITguGGn5+fX1xcUN0cGRkJBoPtdvvo6Mjv99+5c2d9fV0QKPKGoCg5KICH6AkTNptgSrD2zs/P06Ys6YMOI5EIXWLoLU3TyEJ1u136j8lDotttNtvdu3cPDg5OTk7gEgIFitIaHx/XNA00I2hPmG2MyzExMQEP5erq6tOnT4lqVX10ABg36BhN+tgfs9lMszzgBXxtgD31ep12Pwgm+KJut+vxeHj4cDhMWhXKAtTb22+/TQcfDhD2FIePAraw1PF4nEKtMfJnjAV0N4o+CxLWLk0fETI9Pc00EJfLtbu7+zd/8zdXr15Fo/d6PbvdvrCwQMh/SWhkvYMoHA539aEhl6RKluVGo/HTn/50fX19c3PT6XS+9NJLqVTq/v37X54BSisAsEwmE61XFPiazabNZoN/G4KNcDh8/fr1tbU1TaclRrZoyMSdB13JirNquMbZbBbC45GRkYmJic3NTbQFskL5CEZGnp6aoKZpTM2A/lXWmyfv3r17cnJyfHwMBhCJNJvNpVIJgAaC6HQ6yc5/GQMrCkpleHh4f3+fBnkB9tB02hnIAZLJJE9CcGS1WnGACGZpsBkaGqKbgLQkMQE+KOB04O3dbhcXlpo9QLSFhQXGTyqKAtZNBHHBYBDfi/455tSLAg5vilLsdDo0AIdCIXh+RPABZXqhUNjd3f3rv/7r1157TZblBw8e7OzsSJLU6/UmJyfxAi91Q2g6vRtWC5/vkmCB+Ds6Orpz587v//7vf+tb35qfn3/33Xez2ez6+rrZbFZgA+d0apoGwQ1WHLg3Woe+FKiOEonEgwcPzGYzjJLT09N2u/38/DwajQLEpgkCvAcbRpNuNpvFjsCpsrW1JY6pkC1wbaRYyFMgLpBEtFottILJZLp7924ymTw9PYWYig5mdPLs7Cz5UjpakS1eUPjIJpMJ7td4PL65uakZcCY2m40BSSICwL+BJOySL6KqKhV0yiz0wkNmQfclgy3Pzs4IeOEEZPNgIDOZTBBRiwwIHRkDnRSYMe+CigPVJbQjerpUKk1NTQHbxEGkcTIUCu3s7Fy9ejWdTtfr9bm5OToyUG+hUIiQ4ivjvsFgAExDjHMy/kqSpD/8wz+8efMmjJAU1996660vUzlYULLYnDaOC52ZHBcSMECdAP09fPiwVCrduXOHxJXVaj06OhoMBrgU8B3SWhOLxUQRI5lMUnUiw3Tv3j2fzydmapLTIrOH149FoPja6XRoCsWg9PShTp9++in1TfJkVPpmZ2clSdre3sZThlM+Eomgj9lUdDBsROl0ulwuz8/PSwa3VEC7sDuyXoe5VEjJ5XJHR0cUMff29kwmUyKRQEV1Oh2PxwPnAumY5eVlqNiMRocYSFT3NL3ao+p0myyvyWQCgiy8afEYVqt1Y2MD1r9sNut2u8ktYUyhoohGo6wqRJgffPDB4eHhO++8k8vlbty4QUr9kkEUcpzNZoFIqAYGUHipVAOvuGTIqCksIhhTSZJarVaj0RgZGYGovt1uF4tFvJ9gMBiJRFqt1vb2NnIKZQi6nW6qZDK5uLhI3AfIjjwbGjESiQBNYRGvXbt2fn5O7YKck9PppMcLVQGqggZou90OxRkSLzzuO3fuHB8fQ1wD5o7kJNEcmESQ+FgxWe85gV+FOBdEPKAGYQhI/QmnGMGCn9J4cMlinJ6emkymaDRKrR16KlmWoakBAIOpom3OaHTwe8gnGbNKFPXp9aVuSFZMCLesX6x/KpWSJAm7OTAMxzObzdevX4eIm6jfZDK9++67s7OzzOYAJC10thAsWacGEaAMk8mEQqpWq3SfG6VKvJTJZJJVVQXvC9wHiSNDA/BNOCvk01OplMCM//SnPwXIC85dURR6bePx+Nra2sjICMcFmAqiTaMVeCxFUTKZzNOnT9944w0OMQ9aLBYLhQIpD4wp3frk1unpY2Yah7vdbt+/f//atWtMN6H/PZVKkQ1PpVKzs7NDQ0M4yIL8E2NBIhQXCsjR2NiY0S5QRSYJJ8syRQhCwi9TzIqSSqVOT085bPv7+8Vi8erVq7wdUSqRL27rrVu3LrFhkw0imoFbpqlfOJeyTrsKTabH4xETN8TeA74DmCUA2cYPaIZBoSK9d+/evUajce3aNeooQrAQDqP0463jJYPEcrvdWDPju4h0g0yDmMvlmpub63Q6WCtFUXDcQK/ivtHDA2qlVCoxduFnP/vZ9evXh4aG4D/p9/s7OzsUjB89ekTiQNM0Qir0FgVp9s9mszHQ8e7du5pO+K4oSj6fB41OrwEZyEajIVqBVR01q+kM6Wtra7du3aKZ0WKxHB0dketbX1/vdDorKyuKolAmAh0q+KiEBkLxsF6ilNFqtfb29qLRKI1l3W6XuSN+v587kPGHYkpRFPq2X3rpJYrfgIJolur1emtra9PT09xKSNVgMICJHh+UWjUcPmQH2WPCQMo1qqoC5DeKjqIoz549SyQSXq/36dOnzEYUMZ0xqBRLTUeGZuCfGRhGdIvErMViSSaTTAqXZZmgqt1uRyKRiYkJxYCP+KVg5XK5/f196h4YHWwThSTyCBRJhPlwu93pdPri4iIWi5nN5vv373/ta1/TNK3b7Q4PDzcaDXhE/H7/48ePSahIkgQNs6ZpBFxOpxPJkGX5k08+GR4eXlpa6uvkaZqmCSyNTecDRmkz3gfoDxNNZZ1T/+Dg4M6dOywcFCuI5pMnT8bGxiYmJgQttBB04UlIusvCypp16ltauMA6U10hBTU5OUkhC6pfIZ39fp/uLha9XC4nk8nBYBCPxwGQoUoFSRUd1VTDCJVefvllUidCYahiQI3+nFQwJyYmJicnhQtrMpn4uuXlZTyWK1euvJjeVA2DgzS90X4wGICuJptI5yav0+/38/k8eVqSXjSgl0olt9u9uLhovLmsjzmWSdDRimO1WmEaoURAAYdz02q10ul0s9l0uVywyqC3pqenLy4uzs7O3nrrLSqygUCAqZlYQHgsqWBAsI4aoFgERrZSqWDL0HmsBc1JJpOJVlVenhQaT6soCk8y0Dmijo6OKpXKtWvX2vpExvX1dQgaGKnqcDja7TbQAEY7C7VPuov8p2xAKWk6PbWqqtAt8cAsESQfvAhFCArzoJ/r9TqUNTi/HO6joyM64VBOhKubm5ter/fll1+GE0q0zQjjJelOj3jZwWDw6aefXr9+XVgxsmsbGxvUMZPJZLVaXVxcFKvxomApOks0AX632wX4CWkAxTSCPiZJidjr7OyMfAKm4EXBUkqlUiQSsVqtFFnRxoImlAIIzk08Hvf7/a1WC0QH3b2Hh4cA9NbX1wOBACUdlB/J6CtXrsDdS2soD+FyueiToa4EhM2YB5ckyWazQZ8EQz+miu3HDx0MBowL5Ch3u92pqSmz2by7u0u0YjKZQCxSlyVDBiSV+OBSOEOMYtapMozqXYCGTSYTGIpnz57Jsnzz5s0rV65Qe+j1erD9ms3mSCTy8ssvX79+/eDgQEwR42ywYeAUqMzA1cZ0vnA4TI8TJ0e4cZfME6wnAOrFihEB4MW3223Y6mgUVZ+Hu8h6Fa7dbieTyWKxKE4+ja+FQiGfz8disRs3bly7du3u3bvf+MY33nvvveXlZUmSTk9Pb9269fbbb9+4ceNXFXyUi4sL0MPCChD4kFUidQTtRKfTgaMRljA6mBkXc+3atVwul06nSdOB0wIrZ7FY5ufnj46OoHeidRNcCvAHngwxXVtbEw9K4YjhJZVKhZ8HAgHBrUAMBZBB1vtVoCiiWgLg2OPxbG9vg7EmiwbREsVETS/mwA6Pfy00GRsGL62maZCW46onEgnoihFxY4ymaRrr5vV6v/71r6NKsSyaphGR4GgSDlcqldXVVYGRSiQS5NWEZMs6G7G48BaAgVwycySMAFpOTU0dHx8bPXEhWIqioMgxEbjh5LTeeuut7373u1//+tcpKLFfeK5zc3OhUOjVV1+dnp4WAnNJpL5EN2BBCYkpLWuaVi6XwbURuwmPh+oHxQoxZEBV1UqlQulNkiQGEdDJ7vF4aCGMxWLHx8ehUAhGDbRlOBxuNBrNZlOWZVrBut3u7u6ugAGRtobqjfwb1ToYf6kZNBqNbDZrDGFowOJRaVnDj8HlV3WWfVVVqcNAsyZJEoqHQr0kSUhqJpM5PT2FiogcOj0FAORFqCWUitEiEBTfvXuX1g82qdPpML8ebDghMB4VWxgMBt1uNx01X5m3FBJM9lh6fqB6r9fDt8OcUVASSkvIK4gmnpmxOZubm/Pz83fu3CEhgtMsPT+PE1gYU4ZMhund4vrhD39IjUHB1aCdC0gWOW50bDgcNpvNJE4ZaCPyEdSJSTWRrAqHw/T+0mqsaRru0cnJCeYyl8sFg0GQooqiWK3WoaEhspdIJKkvfCAORCqVop+WG2I3B4OBYIEOhUK4vYpOaQf+aX19XRQ3lpaWgDvz8JIkEcHhD7HEPA99kUAFie+q1arT6QQ8Mzc3Nzo6uri4ODk5CR2DEKaePhfpkgSQ1Lh169bx8TFZNNqa+UNgbfDYmHXydPq9ILV/UaokvUeB3Mfp6SlKSzUghhVFgbhL07SJiQn69K06u64kSaAhON504Ozu7t69ezcUCrX0GY6XchP8EFT+i4pK0hvwX331VVLiCmRA9E+yW7SEYylUVSU5pigKnO/wyUqSROmawhnMd9FolE2ijQwXm5x4Npudn5+HDJf7kEGgmY4iIPRDMNyBoSDXAKM1vh2KhE5i6gyQe4N1oWZMLOl0Og8PD6mBWq3WaDQqBqdj+Mjmm81mgMvcjWpMuVymeUTTNIoHYlwWfMwkLIymSmQsv1IUbDbb9PQ0wGgm6amqigUwm82rq6vkBYhGEcdYLCbr3ckvmhu+ulQqwVPXaDTM+vAtEsuU4NAOJEKFdoETCqliSsPW1tbdu3fBJl0ymqp+SYZkmKID3S49lcPhAKuo4O4BC4HCQIzysdlsoDT7/T6IZrPZ7HK5Dg8P3W43skXTD7UgsMjj4+Nra2uIY6/XowubNgQIDhlxK3wj0JuYDFVVmWRMDxmPTi673W6HQiGaTnEj6DsFFTM0NBSPx09PT8XB6vV6lO6B4VLPoXwpsgzYNU3TmOwCIkPAnU9PT/Hk4OfA6rG+PINRjDRNs9vtpq+ap4UWoa0PSh9JL7TBJzs+Pk6lBVcasgZ2nSrIi94x8gfqcGlpiemh6+vrAl6GQCQSib29PQrelJugOhLIoqGhoUAgwCxZp9NJLfJSYcfo8nJphrLBi0dIBLBfQv6QkqGhIXpN6cAhzgSVACOAyWRyOp0HBwfoLWw8vUS0XhFyQxcTCoVozWZaM33x0ORFo1FKvLLeqit0OA4jkifLssPhwD6adZJ33gckO3GcpmnMEQXahkQqisLAX5M+0WRubq5cLpPVJCdn1jvERWsGPQ49nb6c4IjKJg+D+hErq+rjZYylmK9ccc4w8FogxVB2U/mRZTmbzW5sbOzu7j579iyZTB4dHa2trdEDc+mGPJvD4XjjjTfIM1mt1tHR0S+++AJrq6oq8kRrtSRJMzMzcJlSvZEkCaQ/fghcVCZ9PJb4FpqvjL6UZpif/c9fijGUBQwEGQGoc5ZSsFhZLBaz2YyVAe9rNpvJdoBAIlVxdHTUbDaR1Gw2C/gTNk6HwwGJD9RC9Xqd84f3OhgMoHXE12k0GsTnNG7DXoRBtFgsEDfQc4LPK8tyoVAw62wZtK0Cf8BEapr22WefMUiWdF+j0WCziQawgJyEfD6fTCb39/e3trYYCXFp7ZB1ynkmw2XWh0AZM2G8CPkRaG0dDgdpkV6vd3JyQqoMFNrp6Wk6nebo0kRutIaaPjhYuPCDwYBxWg8fPiREQG0DfaM5an5+Hpw3PobP55Mk6ejoiFEasiwDEzKqYWhz+HbZ0K/2z5yfXwqWeGhFH18hSRK0VYqiAPrp9/vMGwd/h+FjbqeiKFRRCEMEPenjx48lSQKJgLM1PDwMOSytEEAywJkoz7OjRKNROOMEWpCubdh/SqUSaVKn0wlPBEweAL8YWcBCAAzP5XJnZ2e7u7vMfup2ux988AFElQhBuVxG5ghTCEVnZmaAh8uyDIeFsCBiTfP5/P379z/99NMnT56USiV0MBfkH+LsstNXrlwBCO/1evGuaOhIpVIoBlnnoiVZTQWTdtZLFkooD2F6YKaAEkdELeQLGUzEGab/AH4skLcwSgCvOD09Fe355GUAaSp6k6pRK/8qweKTCmk6SR+Tp+llDZHKoxFZlmVGPDAGGFHAEeEESJKUzWZ5iGAwmM/nd3Z2+Hev1yMTSK8mzCLb29uEBcCURQitqirtqdVqFfQ3oRwdsyDBRRMOPhkQWzZmaGiIyqaqquD8mQc+PT29tLQ0MTHx6quvzszMUHeyWq27u7vZbFbTNIvFgn9DxECefWZmZmpqam5ujuYC6pg0V9Kmh+lJp9O0a4LBqtVqR0dHR0dHRLuqPmXT5XKtrKz89Kc/3dvbg2WUbCo8mqrer0YIgnWbn5/HA7uUyxABoNCIfEBE6CLAXFhY2N3d3dnZYapIu92m2VWSpGazSa8UhxA2MmZ88OeQAMBI/eID8MCSIR9hVGxKv98XnoSst4uQ3JIkCWAdNJiyLHMo0aIwLAJZRLagxgOLDdsOvV/hcJj70w2HkMVisc8++4yMtmgyEfJOCliW5X6/T9MiGCNQD41Gg7gGwVUUBfpNNo+uCorl29vbd+7cCQQCuDV04FCLoJZCZmRzcxP+WbhMOaaSzgnDHDzhM3COo9Ho6urqzZs3V1ZW3n333V//9V/H0CcSCcbGMm1FePS8i9Pp/Nf/+l+rqnr//n0qniQ1yBhxXCk5TE9Pj4+PQ8j7oq4SAZpwekT+AoQgnxwMBjwSo5AASoCPEozlQlYGgwEJVREDIg+iCi7rbTzGBxARsfFSVVXO5XICfo5zTad2q9WKxWInJyfk6xBw5qACDcBhHwwG7Xab76b8Alesz+fb399vNBo3b970+Xxgz0mTDvT5VTs7O6CKGWNEx6Ks11OhwZmYmKDiq+mDzkg9NBqNRCLBC1MGjkQikUiE3A+QURLxlOo2NjbeeustsqaKojDN2mw2b29vQ8D/9OlTVVVnZmZIkVPaIr9v1KZG6yYUBmCEYrH48OHDW7duAc6kR+3FmA4ZXV9fh4x5a2tL7BlnmMqjsDXyCykMzZDmEDqDOJFpjALSI+mMIOAvqGwCcGI9UfPiAWw2G4mb+fl5DrZsKHlh0IWPj3qGvlrcQbh9isfjYSaCpmmtVotuZuBgqAoSaxRYMC7klnBaJUmigxl8PtYTp4EhHxsbG6C1ZFlmYhaar1arMYGINsbz83OarjSdiQV+nHq97nA4AFywtdCmaZpWKBRknYIBJggiRLo5MpkMU/xAdyiKAjYV4aAVGyY74EC3b98GtqVp2tra2ubm5t7e3ubmJubMeEBlfXiu2GAOFXQp9+7dEwwAX5kp6PV6jUbj6tWr0Wj0Jz/5CTEECJaZmZnJyUmhpYz7+n+9VFV1OBy8sihJCb0lSVI0Gp2dnWUpsH2ynjYTQkwzIwGNkb2Nz5dKpePj40ePHj1+/Bhyq7Ozs6OjI/LJl7wuZX19PZ/Pg+xjS0S2EGccwQKqy4Ao+IAajQaBrqZpIyMjlMddLhfRGRHf/Pz8+fm5mG7FwLDJyclOp8OkXRy70dFRxjSIlC4ng8gRnCdDTcbGxmAlDQQCBCxIEh4oRMjkRZeXlwHl4WqsrKzQU8UeADxvtVpzc3Mej4eqPkB4qkyQFqNNjdlnIVuKYegjE1OAsh0dHTGnrv/8DC2jbFkslna7PTMzE4/H6/W6pml+v39hYYHjLRvHh/y/u4TC438FxEq44Zo+YJeKpCRJu7u7YDRI3Atpw6Dfu3fv6OiIqjGh29HR0SeffPLgwYOzs7PT09O9vT3QE4qisAuXfHkzI5Ypd0iShHvOWJVGo8EsKFmWyd15vV6v10tJh9yx2WxGYQwNDT18+DAcDjPzjsR9KBSiKwHhC4fDyWRyenoavo1KpTI0NESMzUCiw8PDmZkZTW95wK/CUG5ubt6+fRsmHKiLTSZTPp8fHR2lzkPugFjk+vXrvV6PeZPoA7/fT58FsHdVVcfGxra3t0F9aHpGAPQp07MDgQAZVLxvDjerJj5PWR3CVWiupqencX6N+VLhAxlDxX6/f/Xq1a2tLQo4wuP+ZwTo0uZd+l9Vb9UUHUF9w3BQTA0vUi6XcY6pQONH0inEAe73++vr65AJgHxhtvnQ0BDnjT5QomwSCAO9cYYHUywWCwNzgOPgmvh8Pkq2rJGmacVike3hzyA+pBelVqtJkuR0Oq9evQraHRQXFVxgDoqipFIp6LWSySRd6oK4gso5bVuibYEvggCTihuUWkNDQ7Ozs9VqVVVVKiSoJWgdmZVFtOXz+Ui1Y7lAxLN5uPl2u31tbU0UMbBoKFcS7ihscZqFj4VS6ff7ECeLyv3p6SmoDcjANEOJ7UWJwc0YGhpCqkDEX8JOXfq8UTFc+l9xUc+BylHTNLvdXq1W9/f3Dw4OCBEYK0RuIhQK0aCRSqUQA953YWEBTU+q5ejoaHFxcWxszOPxMEENCmA4oQG/X3psM74U9LcAnijjgDrCg8MrhxFQqBOUAQMUUqkU83OWl5cfP36MVh8MBihbUsDEnuFwmM2gDxbSZd7B5XJNT08bFwvHLhgMHhwcrKysCEPGqBlSo4VCAVcpGAxubGxcvXqVA0clCtT12NhYu90WXFBCLAQJscARkOAl4yA97zdUKhX8evFseEX4djh5i4uLEKIQKYuoHko01LOkWy6kDeAhAo0chEKhYDCoPo9Al5734r/StRd5DbPZTPt4JBK5f/++JElg6SjZwYEoSRLtVTQSC8ec7DQj1g4PD8fHx9Pp9MLCAuk3SqWqqsJhyQG2Wq3GFC4rbC4UCjAakkTWNA3GFeSAoZgkwek3JJSQJIl8bjAYlCQJrz8YDDLa+cGDB+DzMRa7u7tLS0vBYJAHRcGS4me6PZJhdJDFqqmqypC3SqUCbFzSnSSLxbK/v8/3QokOfouCDLcC2xSJRMQeXNoeGgNFAo9lEhaEj9FngV5UDYgGTdPcbrfH4+GpAD5QMuJWsA3gCTCPSNGpO3q9HvJECZm3Bi2oPI/2lJ4PA4UAXVJUqgHdgElpNpt/93d/ZzKZGFcJpg8QmKyXSgVJhN1uR8cDyTw4OCDef/r06czMjNlshteEBKfIl2LuNjc3wW2replS0zQz6E1N05rN5snJSSAQoOAAapTUDozCrCzPLW5tNpsFFg+KjnQ6PTExcXBwMDMzY7FY7HZ7p9MhimQEciwWIwyEZFdVVYhJyPLLevaZ9RJVJpfLpenJCH7udDoTicTa2trGxobX6z04OIhEIk+fPo3FYog7SSkGI5KJECGx2CfRNKHorXy8lDHTjc/r9/sv/a1koJ7S9MQ9K4OTSp0Y7SWq1JqOmmJYMAG4qk/Pok3D2Gpx6R+XRE1cIoSUdVDXxcXFlStXqHe1222AQwi9yWRqNptUThks4Pf7aZVuNBpQs5L7YKCmxWJBqsQKiMAFiAAqUAReiqKYP/7443A47Pf77969y/CtUql0fn4OVKFSqcAa3e126cUGaUnpRmwM2dEnT57UarXXX38dLCgSxuivYrE4OzuLfQSVtb+/n8vlmCfDrojTJhSDphfFmPsougbE+jJiGEvEXD8maYk2GEVR4LJmdKD0QlqIVeAJW/qIUWIRJr9pmobXcukPL2kRWUflE6vjzmPsTCYTzfhID9GAw+FYWFioVCqwWiiKYjabGWArcg3Gb3nxHy8KlvF/yX3QL1mv16neWq1WsfcQ5p6fnw8NDU1PT1er1S+++OK1116DMh1jOjQ0dOXKFU3ThA9gPPDsfiwWA6FpVAeyLJsBnLRaLawmdhS/mJ9IklSv1xlVrSgK5T/sKzS1+O+08Vy9ehUmj6tXr96/f7/b7cJSRwDC/dPpNHCR4+Njn89nLISphrYZTW8g4Q8vqRmTyVQul2HzJsxhWmSj0YD/CDHCIatUKsxz/8pdAc0iqhYmk4mpITQa4f+p+vCLFwXLuLWdTgciP7SX6Fuk0/+SV0RNAjfI7XYnEglOlKSn4F8UKdmQhPxVEsalKApJDavVyrwuZKXX67ndbpo1BPWLqqq3b99++PDhF198cevWLU3TwLhKksT0BkKZS68v6/VvYzwo6f6fmQT0wcGBmOND8hqaWkmSQL84nU5JkoC6G0v30Nd+/vnnU1NTb731FtG+pml+v//mzZsffvhhPB6/du3a2dmZIOYPh8O5XG5sbCwQCJyentIOL25IcbTT6QQCASYJzM/P03UkP5/7FiVOHqxUKuEjU62jYw4DR8af9IeINyUdGXJ0dMR9PB4P0CVo3EwmE0kWesWM2/aVm4rrPTw8DP0EJWS41Hd3d5m1YX6e2gVDydSdubm5nj4DV7gcqEz0mfxC8eSSZTc+CXqRwwBJDseDnB8TD71eLycH4OT169c/+OCDvb29ubk5r9fL/GkUzSXTbBTuS9ImJMxM97PVat3e3l5aWgJ9hjFutVq1Wo3TL/IOPDG1nUgkMjQ0tLa2NjExcfXqVYZpkTvFVkKGMTIyAooGJJ3H4yERAm06M9++ROAriqZpMMTRtB4Oh/f391HpxqqZpmf8aO6AyYhqQzweJ6oSbhMI0lQq5fF4CGyFPQXar6qq3++H0wyAwNHR0fz8PC7tp59++uqrrwpKXMqOosHcuKOYMwZe9vt9hmUWi8Xj42N6ZeESN7r/vV4PrEG5XMaP6XQ6VEKpFsuyTNlRVVVcEZvNRg0NbWF+gYdI0zsayJ7Dd0fUmc1mf/GLX0D9srS0RGceC9Jut1966aVf/OIXtCJDJ4a3/eIp+mcuntmMX2Wz2fb29lwuF/lP0XpKSzWDd0G487+Uoh0Ox+eff35+fj41NbW1tRUIBGB754ehUGh0dNTj8fzDP/zDd77zncFgcHp6Wi6XQTuRtx0dHT07O2NAPL1TBKcHBwdjY2M3b97UNM3r9W5sbEBeoOk1V02vNWmaViwWeTBVB5eK46UZqvSBQIAmW8WAfqGJQ+SjNU3L5/OZTMbj8RwfH09OTk5NTREc3blzh+QLRQgRPwoTKetAXsJ1zIQkST6fj7FqoK+M3y5cYIwAyepms9ntdq36pExJksBIipeC8QD+Vapql24LBJeaN4wjXq+XeWP5fP7111+nOoLTYvQ9LBbL9evX79+/T90asBPwiku0AMbrkjv/pcZaWlpih6anpzudTiQSYe4yGOVwOFytVontOQQ06PX7fYZX5fN5l8sF4b0kSaT77t+/z1CkGzduwNSDQ82ISgBu8KKI4TZEuXTuX1xc7O7ufutb3+KsWK1WeDs1Q36LA408iXy63W5nwsUlrYBbFgwGASvT3s3dRKhIdhQCReHopNNpu90+PT398ccfo8XREHa7/fDwMBqNXqoWi4iVb+S2gBOBVRkrj0gk6H76p1lYn8+XSCQkSTo8PIS/idQ57hocJJC1ZLNZXAuReJP1Oma9Xp+ensYBheyEAPn27dsU+4WCv+QbdTqd4+Pjcrk8PT1NhPjRRx9985vfhFLgK2VLfLWiT49WFOVL5uBarcaoRZAOKGdwL4lEIhgMwinIhxlLwQmLxWJgiCEfM5lMBwcHZCk//vjjK1euHB0dvf7660+ePGFOBtT74XDY7XYDmKGPilSbJEm0Q7366quA7vH6ITYSTiIpIjzuarVKCwASwE4LL9DoL8uyHA6HC4UCWlnkNTS9E3p3dxeYkKz3CzCvi9Gy8Gnz+mQKSPyI5b4UJ2o67ARDdnZ2xpgx8Uhgk0gNUDbQNG1oaAigMPAKgR9hBZgrQzZEVVW6VLa3t0dGRmAwEKXx+fl5HpVBpGdnZ4xoAGOYzWbhAWVJyQ8TXMMBE4/HmaesKMrGxsY//uM//tZv/dalItWLp1fTJ41LkmSWJGl4eJh5rMvLy5qOKHc6ncyP8Hq9nBtV78iDUG9jY4POk3q9Dk1voVAgAGEaz7vvvkvRkAr3p59++sYbb1DiZYSTz+ejQZSSsMVicblchUKB2RAiIW702dH59Xp9f39fRDooS7jEEbtLeyxe3mq1ejwe5gIJgSDLB2wGxUDmiVlwpIVtNhtgpsFgkEwmBfpDJPQvmQbWinmzyD0BuaIPL4X0QdO0eDwuerKDwSAKm+Mty7LP5wMmZLFYyERomoahxO4zVQRbCZUGXh0x0KNHj9iv+fn5ZDL5/vvvoylLpVIgEJiYmIjFYmAO6Ku+f/8+hYRnz54NDw+zCysrK48fP65Wq5DE/DOhsWoAbH6pYOPx+Pj4OC4OgE/40/DHYb8Qpw3MCYqkWq3S+EBlem5uDujI8PDwyy+/fHBwcHZ2BkLmJz/5CaefNny73W61WgOBAK2knAZ+iKtBRxpPyRQMcD/lcpkxvkLmVFUltYZ6QzKEByN0taQ3CjPm06JPhW21WoeHh7jtHESTyTQ5ORkMBrkhjh0KNZPJEJqQlcBpM5ZfxPGVJIlEjDF5iF2rVqvJZJLyKM20siwHAgGPx3N6eiqc5aGhIZ6BEq1YDZvNtrGxwYwPSZLwSR4/fry6uur3+/FkkN3XX399bGzshz/8IbS/TqdzY2NjdXX1nXfe+eijj/b29v7qr/4qGo0uLy9/8MEHxWLxa1/72ltvvXXz5s3/9t/+28bGxtzcnNVq/fu//3sqg4KB12j3Lx1gYeKVTqfz5MkTwE9ms/nk5GR/f1+W5StXriwuLgJJEABCjL2mablcLhaLFYtFSZI6nc7jx48hvSiVSmtra91u9+2332amF4QOZrP5zTffZPMgsaB0TSeZYFkm6jGbzaK6LPx0GjoqlQp1CfwSQnrqiSDdxDzcSypEXJIkCY+EX5GqEDGvy+VaXFwcHh4mtiIMnJmZwVrxyjj7fr+fYteLGotFn5qampycxL+W9WoYhOSqqhIzisqsLMvMl0N0IpFIOBxmBQZ69z3bdnZ2xvRkYEsPHz7c3d0lxL537x4zqsHHDg8Ps0T/5//8n1Ao9Nprr6XTaavVurm5yTq88847v/mbv/nSSy+98847v/3bv/3OO+/AGPDtb3/76Ojon/7pn/7sz/7Mbre//fbbNKUJsJAQI+1XpNPMHX2CN/XFBw8ezM7OTk1NMbAepBElF/Qwox9feeWVTqcDXcf09PRv/dZvffjhh7g+BwcHf/AHfyAEMZFInJ6ehkIhsqkEaHQjUtWmM4zmHPYVH5ZR0MRWaAjaNxgVaTabsc7EMpqmpVIpKLXI317aaeP/kl4Rm032n2q6zWZjiqwo+RlPIcT/uDLwkZ6enhaLxfHx8UsAYuG6jY6OwmdBlMd6UmtyuVzHx8eYLcposiybzWbmqeBIiaLnLzfMbM5ms9hZpnzfuHGDQa9wnlNw/Na3voVB73a7YBiZa9xsNhlMAp+H1WrtdrvM65MkicN8dHSkKMrc3Fyr1fr2t78NSa6ocmqGROBXuhxf/uTzzz8n98oIQuIFjLrVaoULhGIZUSFB+zvvvHN4eJhOpxnvNjk5mUgkzs7OHj58ePfuXYqAks4QBOX1+Pg4FWWbzdZoNKgeog6BGIADliQpl8uBeYXAjUDs6OgIdw0gKBgPznEymVxYWGBrZ2dnBTTgKy80EElIo9ygAqnA/Kq/TafT9KqTWqSFOpvNUhW9tL6yoT3apHdg7+7uImRUdjc2NlR9PptJZ/wSAyOMkYe40KMHBwe4gLwISXbw4gCkjOVONA0yR3sZNxFSK5xCvgtQ6/r6uqZpq6urxG1GIyhq9pqObxZiJ4laoaiAcp4gFGWTcA7oQ6JGgcbGWqmqmkqlMpnM8vLy8fFxMBj84IMPoKuDrkjk8VdWVtLpNMUpSmYQuEG5RIqFXkoaQqjM2+12GqmDwSCDuCGrgBNb0dG3ZrMZ13VxcZHw7UWpMv5EURR6HCBfkAyn8EU3/NKOwuvHyuDbQWlRq9WQ5ktuhzCvqj7RBJIBq9UKek48Es9D0CeSauJ7L91TURSqy6oODRUJNtZcMkBoJN1wsxeC4E/RMezif8X9iTPef//9t99+25gh+2euS16mJElmAhZYzpB6fu33+0VBlDZAAjdGZ0mSNDY29uMf/xhI4cTExF/8xV+cnp5CqKcoCl1EYK36/X4sFovH45IkiTwv6YZqtUoJxefzQQPJwXW73cS9JAwh7VAUhbCxr5N4I21er/fs7Oz27duhUOhF2yE2SfwcTUPboNiwX+WWivWS9RYmnB5+hYHDMbq0B5f0DQIBX6tooDXpTaehUIgjdynselFdcVsRu1x6eFXnzpSet1MiW/urYroXl+Lf/tt/K8pi2lcVjqTnswySHrN/GRUK9UXeEm1JWwTjiikOCmQBOQiGW9RqtYcPH5pMprm5ucnJyatXr05OTnJf8BiRSMRsNpPDpV4hFC/ORD6fr9frJJGZyQaVg8fjoRQID5iiD3VCRZFo1fTWuXg8Pjs76/f7SeJdqhZfWjvcI/pLqa0aN0z5qmFX/4yvKssy/SO/aukvyQRJeUoxw8PDBHE0AIvFMf7Vi9pX+9UlQumrfB1JN1j/zLNdulgEUUMzFphf/OSvusn/Fz2jZjbuvcgFAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "images = [downscale_images(image) for image in retrieved_examples[\"image\"]]\n",
+ "# 유사한 텍스트와 이미지를 확인합니다.\n",
+ "print(retrieved_examples[\"image_description\"])\n",
+ "display(images[0])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "6JEZJlkD8UrZ"
+ },
+ "source": [
+ "## 임베딩을 저장하고, 올리고, 가져오기\n",
+ "임베딩이 포함된 데이터셋을 `save_faiss_index`를 사용하여 저장할 수 있습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "dXrBMAHx8k51"
+ },
+ "outputs": [],
+ "source": [
+ "ds_with_embeddings.save_faiss_index('embeddings', 'embeddings/embeddings.faiss')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "51dgxmGm-c3x"
+ },
+ "outputs": [],
+ "source": [
+ "ds_with_embeddings.save_faiss_index('image_embeddings', 'embeddings/image_embeddings.faiss')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xO0i-dkY-nK5"
+ },
+ "source": [
+ "임베딩을 데이터셋 저장소에 저장하는 것은 좋은 습관입니다. 따라서 우리는 Hugging Face Hub에 로그인하고, 데이터셋 저장소를 생성한 후, 그곳에 임베딩 인덱스를 올릴 것입니다. 이후에는 `snapshot_download`를 사용하여 해당 인덱스를 가져올 수 있습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ETmGo_KiAiOr"
+ },
+ "outputs": [],
+ "source": [
+ "from huggingface_hub import HfApi, notebook_login, snapshot_download\n",
+ "notebook_login()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "K3hmtWQn-k9O"
+ },
+ "outputs": [],
+ "source": [
+ "from huggingface_hub import HfApi\n",
+ "\n",
+ "hf_id = \"당신의 허깅페이스 허브 아이디를 입력하세요.\"\n",
+ "\n",
+ "api = HfApi()\n",
+ "api.create_repo(f\"{hf_id}/faiss_embeddings\", repo_type=\"dataset\")\n",
+ "api.upload_folder(\n",
+ " folder_path=\"./embeddings\",\n",
+ " repo_id=f\"{hf_id}/faiss_embeddings\",\n",
+ " repo_type=\"dataset\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "UTVoI9LWBp1x"
+ },
+ "outputs": [],
+ "source": [
+ "snapshot_download(repo_id=f\"{hf_id}/faiss_embeddings\", repo_type=\"dataset\",\n",
+ " local_dir=\"downloaded_embeddings\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "HGkYTJsM9BVx"
+ },
+ "source": [
+ "`load_faiss_index`를 사용하여 임베딩이 없는 데이터셋에 임베딩을 가져올 수 있습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mbPvs8kV8xTy"
+ },
+ "outputs": [],
+ "source": [
+ "ds = ds[\"train\"]\n",
+ "ds.load_faiss_index('embeddings', './downloaded_embeddings/embeddings.faiss')\n",
+ "# 다시 추론합니다.\n",
+ "prmt = \"people under the rain\"\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mc9JmZSG71WZ"
+ },
+ "outputs": [],
+ "source": [
+ "prmt_embedding = model.get_text_features(\n",
+ " **tokenizer([prmt], return_tensors=\"pt\", truncation=True)\n",
+ " .to(\"cuda\"))[0].detach().cpu().numpy()\n",
+ "\n",
+ "scores, retrieved_examples = ds.get_nearest_examples('embeddings', prmt_embedding, k=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 341
+ },
+ "id": "wckNsAX-9zox",
+ "outputId": "8d5008b4-ab8f-4b42-92e7-b29e57c126cb"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFECAAAAAD0d5MjAAAKMWlDQ1BJQ0MgUHJvZmlsZQAAeJydlndUU9kWh8+9N71QkhCKlNBraFICSA29SJEuKjEJEErAkAAiNkRUcERRkaYIMijggKNDkbEiioUBUbHrBBlE1HFwFBuWSWStGd+8ee/Nm98f935rn73P3Wfvfda6AJD8gwXCTFgJgAyhWBTh58WIjYtnYAcBDPAAA2wA4HCzs0IW+EYCmQJ82IxsmRP4F726DiD5+yrTP4zBAP+flLlZIjEAUJiM5/L42VwZF8k4PVecJbdPyZi2NE3OMErOIlmCMlaTc/IsW3z2mWUPOfMyhDwZy3PO4mXw5Nwn4405Er6MkWAZF+cI+LkyviZjg3RJhkDGb+SxGXxONgAoktwu5nNTZGwtY5IoMoIt43kA4EjJX/DSL1jMzxPLD8XOzFouEiSniBkmXFOGjZMTi+HPz03ni8XMMA43jSPiMdiZGVkc4XIAZs/8WRR5bRmyIjvYODk4MG0tbb4o1H9d/JuS93aWXoR/7hlEH/jD9ld+mQ0AsKZltdn6h21pFQBd6wFQu/2HzWAvAIqyvnUOfXEeunxeUsTiLGcrq9zcXEsBn2spL+jv+p8Of0NffM9Svt3v5WF485M4knQxQ143bmZ6pkTEyM7icPkM5p+H+B8H/nUeFhH8JL6IL5RFRMumTCBMlrVbyBOIBZlChkD4n5r4D8P+pNm5lona+BHQllgCpSEaQH4eACgqESAJe2Qr0O99C8ZHA/nNi9GZmJ37z4L+fVe4TP7IFiR/jmNHRDK4ElHO7Jr8WgI0IABFQAPqQBvoAxPABLbAEbgAD+ADAkEoiARxYDHgghSQAUQgFxSAtaAYlIKtYCeoBnWgETSDNnAYdIFj4DQ4By6By2AE3AFSMA6egCnwCsxAEISFyBAVUod0IEPIHLKFWJAb5AMFQxFQHJQIJUNCSAIVQOugUqgcqobqoWboW+godBq6AA1Dt6BRaBL6FXoHIzAJpsFasBFsBbNgTzgIjoQXwcnwMjgfLoK3wJVwA3wQ7oRPw5fgEVgKP4GnEYAQETqiizARFsJGQpF4JAkRIauQEqQCaUDakB6kH7mKSJGnyFsUBkVFMVBMlAvKHxWF4qKWoVahNqOqUQdQnag+1FXUKGoK9RFNRmuizdHO6AB0LDoZnYsuRlegm9Ad6LPoEfQ4+hUGg6FjjDGOGH9MHCYVswKzGbMb0445hRnGjGGmsVisOtYc64oNxXKwYmwxtgp7EHsSewU7jn2DI+J0cLY4X1w8TogrxFXgWnAncFdwE7gZvBLeEO+MD8Xz8MvxZfhGfA9+CD+OnyEoE4wJroRIQiphLaGS0EY4S7hLeEEkEvWITsRwooC4hlhJPEQ8TxwlviVRSGYkNimBJCFtIe0nnSLdIr0gk8lGZA9yPFlM3kJuJp8h3ye/UaAqWCoEKPAUVivUKHQqXFF4pohXNFT0VFysmK9YoXhEcUjxqRJeyUiJrcRRWqVUo3RU6YbStDJV2UY5VDlDebNyi/IF5UcULMWI4kPhUYoo+yhnKGNUhKpPZVO51HXURupZ6jgNQzOmBdBSaaW0b2iDtCkVioqdSrRKnkqNynEVKR2hG9ED6On0Mvph+nX6O1UtVU9Vvuom1TbVK6qv1eaoeajx1UrU2tVG1N6pM9R91NPUt6l3qd/TQGmYaYRr5Grs0Tir8XQObY7LHO6ckjmH59zWhDXNNCM0V2ju0xzQnNbS1vLTytKq0jqj9VSbru2hnaq9Q/uE9qQOVcdNR6CzQ+ekzmOGCsOTkc6oZPQxpnQ1df11Jbr1uoO6M3rGelF6hXrtevf0Cfos/ST9Hfq9+lMGOgYhBgUGrQa3DfGGLMMUw12G/YavjYyNYow2GHUZPTJWMw4wzjduNb5rQjZxN1lm0mByzRRjyjJNM91tetkMNrM3SzGrMRsyh80dzAXmu82HLdAWThZCiwaLG0wS05OZw2xljlrSLYMtCy27LJ9ZGVjFW22z6rf6aG1vnW7daH3HhmITaFNo02Pzq62ZLde2xvbaXPJc37mr53bPfW5nbse322N3055qH2K/wb7X/oODo4PIoc1h0tHAMdGx1vEGi8YKY21mnXdCO3k5rXY65vTW2cFZ7HzY+RcXpkuaS4vLo3nG8/jzGueNueq5clzrXaVuDLdEt71uUnddd457g/sDD30PnkeTx4SnqWeq50HPZ17WXiKvDq/XbGf2SvYpb8Tbz7vEe9CH4hPlU+1z31fPN9m31XfKz95vhd8pf7R/kP82/xsBWgHcgOaAqUDHwJWBfUGkoAVB1UEPgs2CRcE9IXBIYMj2kLvzDecL53eFgtCA0O2h98KMw5aFfR+OCQ8Lrwl/GGETURDRv4C6YMmClgWvIr0iyyLvRJlESaJ6oxWjE6Kbo1/HeMeUx0hjrWJXxl6K04gTxHXHY+Oj45vipxf6LNy5cDzBPqE44foi40V5iy4s1licvvj4EsUlnCVHEtGJMYktie85oZwGzvTSgKW1S6e4bO4u7hOeB28Hb5Lvyi/nTyS5JpUnPUp2Td6ePJninlKR8lTAFlQLnqf6p9alvk4LTduf9ik9Jr09A5eRmHFUSBGmCfsytTPzMoezzLOKs6TLnJftXDYlChI1ZUPZi7K7xTTZz9SAxESyXjKa45ZTk/MmNzr3SJ5ynjBvYLnZ8k3LJ/J9879egVrBXdFboFuwtmB0pefK+lXQqqWrelfrry5aPb7Gb82BtYS1aWt/KLQuLC98uS5mXU+RVtGaorH1futbixWKRcU3NrhsqNuI2ijYOLhp7qaqTR9LeCUXS61LK0rfb+ZuvviVzVeVX33akrRlsMyhbM9WzFbh1uvb3LcdKFcuzy8f2x6yvXMHY0fJjpc7l+y8UGFXUbeLsEuyS1oZXNldZVC1tep9dUr1SI1XTXutZu2m2te7ebuv7PHY01anVVda926vYO/Ner/6zgajhop9mH05+x42Rjf2f836urlJo6m06cN+4X7pgYgDfc2Ozc0tmi1lrXCrpHXyYMLBy994f9Pdxmyrb6e3lx4ChySHHn+b+O31w0GHe4+wjrR9Z/hdbQe1o6QT6lzeOdWV0iXtjusePhp4tLfHpafje8vv9x/TPVZzXOV42QnCiaITn07mn5w+lXXq6enk02O9S3rvnIk9c60vvG/wbNDZ8+d8z53p9+w/ed71/LELzheOXmRd7LrkcKlzwH6g4wf7HzoGHQY7hxyHui87Xe4Znjd84or7ldNXva+euxZw7dLI/JHh61HXb95IuCG9ybv56Fb6ree3c27P3FlzF3235J7SvYr7mvcbfjT9sV3qID0+6j068GDBgztj3LEnP2X/9H686CH5YcWEzkTzI9tHxyZ9Jy8/Xvh4/EnWk5mnxT8r/1z7zOTZd794/DIwFTs1/lz0/NOvm1+ov9j/0u5l73TY9P1XGa9mXpe8UX9z4C3rbf+7mHcTM7nvse8rP5h+6PkY9PHup4xPn34D94Tz+6TMXDkAAQAASURBVHictP1pzGZZch4GPhFxzl3e5dtyq6x9r+ru6oXNJrspbhJXi5QoUbZ2aCQBWi1ZsmyMMMYMhDEwwPwxNDDggUYeGAMYtkbw2B6JQ0kkREpks7vJ7uqtupau6uqqrMyq3DO/7V3uveeciJgf9/0ys7YmxRkdIDPfu7xf3u/GiTgRTzwRhw6wGWxz6nB42E1//fIf3zpEVUdykIWBTs+Mnd2Y+/UikJOQZqPgSTFNIVc6xHMW7ShzcgtUpOHKHKosGjkXFooFAiUBkxuYCQ4mdyYYxBWmDYCQQHC4k5gHV4IRwYhJsThzWCHmwuQk5hpLe1g5xVuw3BqWoaZ1mL9y1rb7/bPcs5QYh7g4tWyW9Rmtuqtx6cpZOCmTxX/1w7UrcyrP/8yRVYqwv7dq0Gs9BFlLo1yLcdUsp6hzdJ1222FxCiRlgjxJGgvEJDoN1khBKM7k7ibkBiLX2pZ1PJypgr0UdTV1x7ry5doDC83v22WDAwAcshGDA4TxDwCMbwMO/pBjP7kRDgeNxwTY5k64uwMgd3M44vSr/0M4+enEBKeccp1f/PH6MCgRAHdyMBMTE9iGPgVyJy9JiOEOrCYIRu104ta5F4MVeD2tqpxyMceUiiaDA05VHTQ4SLQvdPKkkcFMRsw6mEcFHHBY5SpeyIPA1CyXmK8c15WqtG1gJlpvXa+2Rfo3jtaEZdNS782w/c+++qe3r1z80t/rSwxFJNn0K7PbT6wfnq4+/9anbnOVOw/mZFtf++1PrqqMfvJr21dLEWLqV92a0G+XHsQLhXhBKLMbiarcSomvVRYvX/qhWZkoV+fOtMm0rKU0Vccx9630ScQJqjF2R3mA4r7d5p2hG8zcnCWGIKyFREph5e64mUk5EeXdce/nO+f8ex+/+8zJrCEnZ3fbXCM4wczSXaGLO1HurHrnxrOUIgFEcBOjKOxgJyrDoDAHXEsggjmohHwUaVYJrzt1JYMDoWnUTQ1STdVZ4O5iHrZqZSfGkLM64A4KHIQjQ2woPXKAuwNEFKGKAqqiFk2pUy+l1f3ToZ5Ng3uuJ2+cmxai7kYG6aQaJEB9+sL5c9Z2Xw4uVRCQtOnTv/ngx48nK//v/uaw56g0SyQUevH+KgVfV/UbfyYEc+cy8ZhC5BZE0RoFQ8EtgnCK0eqwbpbyK5+y9WJJLu2ZpizXi+O1PfWwhOkq5IObi+b+c24ItNq/uUqOpsHqZuozCZMKiGCEIqEqhTj0B1UTNbxPeu8XPPm7T9x7/GHT5Y5cyXhUo9EImNkQ7poJdqKcgn/tqdDXmXz8yaQUA7u5AWVQTkRMTgFEZg6a5nzpiWpSD6HrnMAAu5NrlwZVYtGhG4q7M4hjFYnAVLQUBuDO4VRVwYkQu6GUCCU3BzHAgMGpamLvpimsaX7YN2dQTVsx89r6f/R3JW0vr7vurm3vygTBB77+2h/1o/nex69vhyaoeUi7exd+YR4W03+8d/aIjmJF5EaE1bf+46pRivHC5P5lYQtA7FlC4n45Me1rwMFE3Nup4ykPOlnX671v3fjxvkw1xP5WUx2vUupqslCxyI2DZV4dNmdFQ1y+fS0Tk6erN5ZBEZkZgUSYmUwpRCnujNXhfP6Bwrr32N9zw3uP6c55Gq34HSW/e4ePqk5OgDnuarpbACGZlOf/4tolMwA4ESzW7CA21T5ZcA5shugEUyfwwq8/VzVVb0lls9YQWcrFzF0VWtTNzY2rCPUcoN1qcHYAiE0bRB3uR3kVCiw6yIkAKyhmLoHK0Oc01KFbhpksYxO5GHEKN/ghX6/2r7PlMvvW238gDim0z8v2elaeeYI0qMFc4kf+z4+cOuK4/z//+a45busShbKFcHAUKSw9zr7xXAxaJTOyEtks5jC90s4Ybu7mqV2Z0jDsFMSh+qWf9hW1hMwHRtmVgoT10Wk97N/oqIndrTefEt2//Pa6hjNZJ5zd4aogMrUYhNydg6IQ59WiqQyge6X4Pru9kax/r2NsxH3yowigUdijuP3u7QT2u+bdQNBEfq17fMlDBDHUwXCp2BhMpe8yKDATzAUwNSIM4ajCKjSxVyGDiruHKFbUiSFcihGzQxFnU6FgzDllqlTB5lKbmoPcVlymQ8eyeT4XNXejGKykXBQDxzhdbU1y04RCEjL96uP9sQw3+2amTfPbPzBNlbBc+wQPsS/tao8MgSg+9toX/ylL9JfkqWYtg+dMlFV5+jNFFiz58M0fPDC3IoyuJdJiVi9eemySyIuRa5Nnh6e/ed/2UGR9/l/c+tzRxIaJrrZy7zGYc5Z9X/bXBmNfmZSrszpdu5FqEnPTEprsDhcedcjhcFOqoClHLsezaU/w9xjzd+nyRpT3aPT7rcFG5vTeaycSB9zpRPQudGdJ4UKEkoi/9ClhgDgwTJnJJcLI1UqfiCyqCYk5TNWJXKdf3dahG+o+syncDFJVlJMakYS46AZngJxCJerMKCmrszvcuWorOOB5sHQwCwMV3szj4EqiXHNOSiAJxxRf+a+e+ctP1VSKu6X5N3+8Ofb9YyHO4SvhUym11g/8FMc8Kf1ODsRBPAz/9Wdm+/Vi/5uH7Y3JTBt3EVYm/Ac65CD2xtlzrITJShZXP6pWJibVleM9VnFAoPXhvH/78mMxcaD8b36h6h05hyDsxUQluA83jjybBS8UaXil8UUfyQqcBTB3dxhRADvgrmSQ4M4ZlS8XO3jPev0Bazq9R7Pfe/zur94z/J6zow8PuBGdLOkQgKAF4Xd+KJs2KiIwNXewwBwp52wS2PNQOAoBbk7AMHxRtaGhrHorxmwuVVNZb2ZqZs4sQYiobtomMkCWczErIiIh1q2qGWBl2L+4b7ECQMxEhJzU1Kj0fTFT72IcYjj78LSCcxA4Lvz2rWG96i0vSvqV7++Pg61l9sT53NjCJ6thGJKZ46VXf+HFo2HRP/Uz/en8zs5ByVlBXlJolzsp771yf4hDf2whrK6AnNZdXl7HuXVKOaWc03o2nPrnp08tmqzTX6OfWbeHNi1WZ+UoMM3utRyvRdjQVLnLvlxKo31hJgiXtYGDMFzNTNPQq7u6CCorhG7ZO95lfe9IjzbjzqkPOfbNeFeUd1fkvvnWGIrBfYyXT74syuib8urW+b40cLB7zJE5TbSDDLJcSSjFIw07/QCKDBAshf3X7kMxPZRoTAoBSvtO1ROxCErfGcGZkWIrJbs4l8WaQyllCNimoh4MPiy2//V67pyCkyGazsJ/+paY1NppivjngpCNz/5f/0aO5O5ekh39737qkPwmaWyab+Pj3ayQC58/hVTNQ66q4kEL4Ys/Mjm+9saN1d4vOl3Z6oLVGt3AE7T35+3t4e0fiNibn67iqXd+kCriZuK7r37U9ma783q6vXduDztfePwz6dwsbskrvyg135/bh3sLU8AsiKunHLig5OJw82xeTBhFiRRRVFXdMcbubi5ErIPVEGRU+RoZRJhtE06PEjtRy4303O6Ok+OTi7yZB+bm7pvr9/wsdzcfFxAid1ezyR3zbpAi6CZfeyAkTx5IyZpIudsKvlW6dq1uYHZ5/vz5Zq21mjnM1JfTmrgNQzEAcA2TU//TOcwGd3KYmm8mXRBzQUHORkbULOuCaUVsaki5Orr1oyGpmQGuTDo8N+uLDCENk/LVxrOLWWVpDjeHlSG1n0ravwWPcnT6139maJv1sN3fmvemTMriUke2sn6iK5GNh6rwcPNpCUhNWxv23zp8o2uqWXXw9WFdmea+/fXPlrJOXWuz1679v8P2mZ0Y08FShwd+Y/IdMWmUL/LLdL57TeaP//DtrRNzSUzuMDZX+InqAbwRHW/UTQjuIC8Y1bURZXhv8x3KtafwXnP9gQ7dB1z/oKj+3nEnRqcT7Ib8rtBJMmmqXvwFKJkHApebqD22RRtYXhUDMXn7rUctiqqZO1Q1Hp2bgBrLagR3kqT91/7zelCQA2YKhzsoVsE8IGPoDUasJLaNgWOG+6qbvLx8aG3OhVS8xKjxJ04rgplHT1/4uUSpVg/F5oAbdOi0AIkzrErNK7d+4Hg5bShxmx1EJCH20y1RF/ns2pucgi+ayQsvbb32+mHZClbkxvrRyZ4fXn9Fv7sss5r4zOFTP6RVtO2j6rvy5O1ix1dX1aytKv6d+UPYA+0tyo/wUby4s7P81U/+wd20eZHKDHcQkynADLg5AN6om7g7gUgAh426CQKEPMdAeX8rKLzE303Iv++xWdI38ie6V+hg5VLqK+W53kTchbn6rScnVRMb7jge9QZjIqRb92cXGciMzM2nhw/WhWntG42OduZfbJ1eZzDB2Q1OcCOextGxTP3gZCSlKrI3lFlRJu0yvvVkvDVDXNZObm29Lg8P5vB1xfYNPNCTK1Ghts0EzyVprA9Ir0kB9Wf+mx8zm4flrF5b3Yqn7NqdiYfXr+yv84x6Ori5n9P6yW9uHU1+YLIutz3ev/XQ1KvDef5vfupBA7s39quf/OjK2MAPXHzkp52scqtZzfoX/9aOTdBZMLaoUq9FZ/GIRn8KjGJOwpsw2Hmc47A7kfPG8SKQuxuPqBcUnixUvFpuR3V5n8z//63pmwDeCWJ3hE6Sp8s0+dbZvSsRJmC3+NKzxDariIvmQgAcfMO2D0olcANgTtWtB4grDEKb39GaL/6Z43UoTAqMc9td4lycYZA05I2RoRZV5URkudTdK383oVqLM5FzYEu+msJjQZJf+akOSUojZbYNYi99cemdSz0IhVRdeeM/WUHyRH/jafyjW1uhp2lIXV3V8+3a3wz13tlPTB+IWf/bv7XTd0PdmizWk9L1tOKjt3edWEufqlefO2IYd9uLb52rr0vtxQspqn957tygNzE9nHi27XXcT4+fOo2hHt8HAtyNWDKIQGQn6HchJrpj4OHKTBsrMC7bUmkZONDtZt6hKb+L7P5/H6PHTwS+q+lEGZbjK48MFJMG5kx5cSZ6bC7QY7jtgBM7hVvnIgdzVjd3B/fXP2KxLicAA+vku5d/6KjKRDDwJgvA1bRRENwoKQC4WTmz1TeXy+OqqafmtdsP3gw2NAEMipILp1BZil7Cxe7ZHkJGjNlUYZqSMTm2rh3P0iDD9i8902KN4Jf+q53nHvjF3abUp9riJM10wmpFkumipu1Xq+mlZkZpSTrLKbWMne7NrfuPehj1vZZTqwqJeEicU52SGEgL59/4B8dOCF0NanIfrA1l9ajNFIATUFjIzBRMvrHpBAI5YcxeEAjucALIHQp2IkJhqZIO2hxuz5zYfzeN/f2OjUXwE01n4rua7gYX27/+s8ugRgQnvlhNe2rtVlP6DnAXNqovPWwgV5gqzMDLg7MQ7sncyVy4eugfP4NlMMDVmRxGTNzMjKEES8kZTm4qW1Ve/PJPaMlDz/bVp7uhGTxziS4NugGJ1vWaK8jXP4WQ2aLbfE5FSj8Yuc1vHZ+53PZe4vKr/1GpBN1uc/o/+8TOcc2DNzXV5rAjJ062qkuTys6rz8bT/Y1tmjbfOb2V285oCwesnaG0k/iVh0Uysjb99Mdu90GDGNhD/FcPnb3RRmabDSSymqCirpwrPqabiLIQu5kFIicC2WhJIRuv6SSkZhodOyMDw8kLUTDTosdbAf8eFd03EeHmQYjY78TpblTE94enCg9esVuoL4cyQPOZR/0IRu5EoOrVeb8eiG2MI0BD2mH2tauaOcBz/mcf74oGwFTHuxxSNYXIlK3XjQI0W7yaLH7zyWFIpVD/rZ/s6ojarDgoYsgZIbVNaMvhW4+kVVhp5TZri6MMGYw8/Pd/9UJgrlJ77fjR6bLKW3jTP2uLsloZedii3GdzEq+qZmKTPD/60kdTGs4yaPGVd1yCbtOt8Mj33VoH7tZWv/1wDsVD1VH/8LN+O+acc87F/+1fPtipoE5pmfuqRvFGuBnAG9WMgUEscZQukTvARCSySR3BzZz4ROhjhM3UQA2uVqhbCed/X4p+V9PHf4lA9wgdjK799rnG1ghlJQj69ieoCmdeHuplcfNSrAwxvv7M8YQSOCkbBQv7O7GZd1MAHKBha/btiz9VqF5LKcylSPCm8GRriHAOnnvEy683SXwli6n+L5+Mzik1Pd55OJMLKUXrz/bHKRq8ObLgaf3Yk8veOKzDVBDBWWEG58f+8I2tXEqkf/vJU4tpIZIHby0qCmHaz2ZVUptFTqJF1ZfVauK3m/tWu3XPOrt29VzhJEOc6Kkf4FkuO9osrz4+pEihhEg5YrufHjOnyPYn0S6G0Ph2Vc+rPlJFx1jvRCfikRTgpuocxNQJTjEwOYjNOUTxQkQSo5A5mJkZWsyKIlEUWOmX2h8O90yIu2DLuwfR3fj73us2Qi6+CZL4nqvuDjr5wQ4ikSBApXeEDnZQc/H+4hgTbOrffsBzpOb+2LE5WNziNFPDHsjU1EDO/PapWT1onwmaLU4m1a3lr3u5tV2MQhQv2iynXEvl7tCUvNj/R3y20q1jjsdXL1xDyZq3vxonFWlxqVjmQ+9UQOQQKojPrGZNznImYkfzZJUcmosPP/mXnl0MbR2H2x/b8xRapPbM1V1nXc6CcXE+WE+2OgteUE1qiW+3D8SbCPlMeeFsS+aqw9HCsS6t21SKZY7IGggksaqq9f0StrfbnR/erc9MUi6vXzr6EgRxKhN5YMYNiJmJoGYgZgERuY+YGREQWVMyqQCYqoNp5CyAiOBa3MaTrsNyqex37fD3VtkPu+IfcNcHfIWIgLvYO8jE3vgPk9Jopmh16dFis28fPXSwv0WxMOB1/WY15RK8qJoznOS7H53qsWRycuW2jemT/9thPUsdACKD6aTKsSnOBirdYLN//dLfVmvSqo4Hu3/v8rRfF+LtL8SK8hju5q0+mzoYxsFzX05fj9Rf33Wrm3WzWBVCcbaFFvXKVrN8+aGBaBCqTrVf+ihLtZqUOvT9rqyu7dVQxDoED7sWj+fTybCYd/rRdsuNSFFVPB+qwyMv105BdXGrd4O7BM/754+qYXELut/uro+GjlZXH374IYRi9ZVpu/RAYHfbQOUbONyJT4IoNjci5jGEYSY43XGg3UwcRAx1VWvr9sT+/p7D9feEbJuM+e++SjDB7yBBXILLraPHBxM4Mbu8fnr7MFbLM/WCTN2YwA1e3J70GqHF3QlOeuNPVKu+BhkTxVqK0p++wccTFTMlIlHauz4PCnby3Cesv/J0eyPPDJN2ne7fLX1m6y99pS9G5GZFPPY2aAQBxCX1SeOyvXG4tZ7uDTb8m08rubuWyUGuudf6kPtHszXVitrd+bAKqzlTc/oQD7yTn7i9PrK9bv/6kbWTa/uX/7vZ+tpbpyfnfvO3fnlvvrbuqNSeHt7n1Mvk1Z1/eZg0TLdESzEreeeyx8gPV83Shea74Ymv/6O/+kQ8TG20L12nkEd9HoEOd3MidwPxaCgBdWYiV6JNmOYwJjeGG8wJ7kwEhyEdzWI0v5spu0eY9wjZP+DsRvofPFXedeUk0Up8DzhDZVLonbB3ZGLETORf/H61yTI8kNMUruLOzSS8dia4qquN09aH/mHSJBlkhlAHoyvhVCp38rhocW27YUQlt5KNp7+4u6xkHUOl07ScD4PVPMGfjcnA7jDarg+ywZmcGJoo9s2i/eb3Cc9mA73x258rxcFW1laVzgNOvXlkHAZrVa39sbafVLGOL/wP4fDK/kPLMJ29Pd1pPBXsfvyHb17f+5GfP7599jONHbx97ZlTcaIHRzns3Ocm/+S585hSoMbMGXA0/fz22aPQycwzpR6pbP9wt2wmJrhqtbHefZkgotGFozGR7WOgSgR3gQNg8tGAO0ZloZHl4G4sGI4mk/4OTPp+yX3QJHifZB1+L3XiwyYDEe7m0wEnXwQ3uBETQnr5ryVpblreX20VhqhJ08Rrn1KjAlUI3AlrnXaJChimEmOwbvtQsc0dEZObefvmm3/K2A2wlJxw69nlkkTbdtLXVNNN90GJfm6yMjc4E506XGdBiQ4my8ViSbz/nV/cP9264IVGSB2wUpuhDbmr48ePeeprbfH22w8C1LdV+M3/8Ud+8s97qOpdWnEzbbyUIZTM2/nKx2Do4lPPfudpPaBw9oHMq2OdyuF9E8dCWGEgK5DDyauvfY48DpQxMZ9X82dutjmuW59NuVqwj/Jlc5DwCLsxTmgrDjF1EPu4khNtUCoaUbExjoeD1SBltdrdAHj0vYQL+gBy3HvW9Hvz7u++l5x8dDjuYu9VjrntVoAbATDjXfeQ7k8e1dwYUlWut04PFgqrIrq7eH+mORyiBcCobqLrkEm483oguBpo+NJTsbinAB0SyJtcpr1uaeWhLofLyqhwl/b6TfqPmvz17SkSsZNQyVockOcfmHfzxgZ9+WNF3Y3Ujvsq5ETT/un/fDp0sRqs1tW6CYEDy8XpL/xJP4rlzV2f57xYlqSTA0GfZGfRaFEu39zKfYIGdQ5a+9tHUxKJtdEAITcJqXkrcuwFiSpzyTa59P/6C3VdCFWVASEfiUU6wi8Y4RXzUWqOEZEfF/ETdN7BIAY7DMRMDmZDcV4fLzfa93sGae4VLv4d1nQAuBuy1Zl8e7kGRupj5vMsytV030NPEjJCLWm9P80u7mN8AqHy2FyzGJQpti3nnlYh5dD0wl6yUly++NOolYO5ZXVyXlT7rqE3jss0LXkYegozAVhCYNhk//lla0MkOJMWo16n1Qs/6i0JHS9vPpLV3Yp51caUJSgtdo+nLWjelzNPNBWnJmr/1rpOV5QuvdlKQVWJtNtDJWF7sgpNCiw0uXS+KlLXVaEV4txvTCbIhaItAZCbUZOuP1aRKHukPm6zf+T49vkqcQqTqFUoLExEzMI85pUILHyirEQOFiE3N8eIdfEYoBMzu6k5EYilEs2aV8vfzXl/t6jvHR+6qL/r5L3fvBuyDRTtwb9wADLSEg3lc3x8+jWsWUmSMQtPAu2vd6ucS9Zaiol3p7760G1zNeEFl4o9h1W0QMhcVInB7b/+2E5llpVKNisFSgsu0k0keyzL7KDYq/Xqnk1Kmc9+SR8ZDve0qKmqWQg8XL/++PFkosOqHNbFeFXK2tZwjgQj6053JgyyqmX24Jr3/8oDz/bzofna4/0QOQ/G3pMW1W7S9U1f29bv7DZL58KgGD17dfV2iQ4WnxYnhIZ7Orr+SFc0GLmjhc3kZ2ZLZeLU93u9VUQj4AKAiCWImURyklHcLGTqxMQiTGBxc2JyzeZmzHBN2QBHdlLobTJQ4aAfEKIDAMzMTEsBRngH7hvka5xLPPoTMHO/J6U+3jvSKIiYyS3YHaFH4qKrUEaHA5j6507Nq282GeRgcqZ5k/X4UjHepnWVx4x93J+rAWQ24y0TJcDNzE0DQq6lz8//rKZIgUyLOohs4+64u5ZiI72A4UxiA2az9W9/usNsyQpGyYpBWd58uImBQ895fSqtMzOF68GyEcyo5qF2MiMqCEEmEXL2vnOTXKorV/aAdQZZycVHVAxtL9Yu33ooZQPBPTtK5w/+YEosQULPwsxEVL2xVaJITgE4fcQNMTVCbgBJE2XjvBGPGg84C5EIYaQUiYOYiGUUijvRBrfd/ENj5GaQANO8PhTOQiV8mNq+lzmzMSgfpPr03vvpzhfGPMAdoZMGRD+/NU4RR15u9/7WO3V2mDM5t1Uhn/whzu31Q5eRxBnr22eyOdh0WFVNJD8gqJqqEkMcky+lz5qWyr3kVIzgaiQ8ertaijrMwEzuFCjHWf1rlx/rUm1UwD70hQozvfCcxBmVhS0O12wUvVx/qyZ1aFFoSLUEUqGEKgRmlGjbc9HpheqccVsHqFIwjGCKFBna68cPDjrSHwrFmuJTf2hIZpKIwsZsx1eeQNDgVQXqT0sE20TYHXCZVpGYmImZgwgTAONAiFUggptDfGQliW98s03afdRREI+6aoYQYNovbhZy9iLvE+GHCf17OH24x5rfIUnSnS/chWGtsIvft2U2TrQuHsvsxSehY/7AZdu7emj/Tmvxt/abIsIMmdJwOimczXne7N1OEeSu6g7l3Kx5/j/+vCP0wTSlbCMUxcxMLOSj7psaAFJjkboanv90w/3QmpF4TgqOvH7n6VTPfZkD9m4YObu8GoRYUJTlsCWwwwMNFEVYMPTX64aUvv5ETkGYSALTSL0DkgD03YeCjS+EhFnSIkusLPOVo8ijosZ0+aOCQSIN7ZtXp2ygPBlfoXorgZmJmJiZx5ypEoNCVY0w2wZ+84277sSjDcAmIXsXVCVhVy3dwaFGGNmHrtDvnwQfLPb3nr9zfPfCHY4cyDX3XGysfELY6pv+9c+UzeTkKkigdfdgG2++MXVluBvPbrfzPD6kbaX8G28e5REJJnZ19+bCW3/smFgybEjqBM0KYiaWQFbUAYI5HMyuLpUujiZWTTLWRD7Cl+zv1PfnrZAWod75Q9J5ztq99EhyYffQ5MOmLsjuQkkCuIZxOJiHJPnlTw4NrbuMINaPUDnIKttevPqxToQBgDUPFIi0mTLxW/tCMDMK1dXhtBqCkJRv7q0mc6CvDRQIWSMJ0zh1hfmEo+YAxXo0ARtA1s2YYObEJ0LaRCmwcfEd43c3H66va9NQMJ64V7jv1fDvPRnwPnfv3acId9mwVBGD3DYLD6EEvBJO6ZgW53rWI64o3CB59fyDazIzM56+fiooYM4y2duKR9scVM3USESla6tf/tz9FXTaixV1uGsZzZ4EQS4ji48Y5ghSsmDo2q/fOghiQbwkBcxVX3lyGuepS8jhB2fKruHy4tFeCQgxXkpFjCk4WQlikpNW8XgXHG7cnGLmMUBTdtlYYUShrYvpzMBCgDvPGhZhKVkRcNCMaypJeH3PBzSsYev59KB4ZEqNgZhILd7B2DeqzsQwdzdEGbm8PloCjCCWb5Trjo66j4RFOMxZ4OQHh8WdDN8LY7tn+Hsmx3uE/AEnxi8Q7qFAa/CA2niT7IH1dfPmZ9TIjIS4rWGePZD1lz+9wZukmr56Vo3IjSX0fKk/tVhnNVWDEDlk+Vt/VIM7oagBPtIkiYg5sOWkDi0ugV3dGQjW5T/5M9tt1kziw1AAc+VvfxSzuOpY1+stkMPiS6cmPs7G9J3d3sncVM0iI+SsbIsdD1h+9BCJswtKRiVjchNMVXrlk4VsE9uuU0qDVrX2HDp9yIgliBC++zQHVAbolY/31CcRazeuEKLTRmeJmFlEggQYLCtVMhpxHn16drxb2Ccu3DgZzN0QI4GoHC6YC79XYN9T7h9+jeg9JuLOHCHiO/9JRrHs6wEbI1TTqn/r6XWBKZiktoY8LA+nWKaHbzTKzCHWzbUdHfkYfIb42/voYlEbE3BSmnRw8xnuwF09lNGv981ixExW1OCmzkJulolD9EGbP7yc9IjOlpPCjT1ceaA01qeKPCuk5NX6ebkcAsxR1rfvV+N+WJmZC0NqMYdtIVeP/rVT2+vqrdtaRahuZA5FdfDmD3V0wluSuolwCS1FPrYza2KRQPAbT7QTeOEmff8P98PujAUVj0sjhRN/GISNqnMgwEpB2KAyBJAEEfMT521Dqht5Fcajx2dwhEAO8GrBnAX4PWZdNpHZB8gb71L2O4cnLEYiPsnfVkU8DFXNGzLnINsvzCdh9vyKYN6Ak/iimvfxlfnACKHqat/rLjzbx1KqsDAN4dfuX02Wmay2yaJy2xqq6T86lQW1rHKxgec5GHFFFoi3ynpwgEwliYY8jQpOfenSOqRIGsLQO8BOzZv1OZ73XUiJLblFaob/9I8MebKsW9p95VSowRRiyLK/bcF7nfS63tb6GEzZw7cnXrRWBB5TYmzbX3349B6Rh5pcopdiVVRip+Ey54YDA1HKZ86s0qwuqYQnE3hVpCIzeCpF+pq9ESECsxALw91FXDnyEKsqMhzFRlqukI2YeohjPsXUAa4UEusqBAF7gXjOevOwJh/j/7tyORn0bt29I+0TcoTjZG6NSV5sAvk7c2Sj/Cza3E24GBxucDcid7OA1360Ps5oGwtVHdgxOA2CG08qS8q+c9zIO8sH1EFmoRW9+a3PDseiDg1HPpgNFaanTiuX4m7WzxdDPG5KYIKHamTsEyhoyLwIq6Dmqsq8VjQxN6rmgMNmX2zvL4UDl0zM5q6oJJN2ogPl139AlHOhzBF5HlMBEVkJ8JDayncvpEm9zJFUidkNrs36+T+10tnKRt7BWD1rSpDprbMxCANMZj83TTmZTHW8bsIUiOA0vkpi4zFNAeITsoKxMYhH4tSItPOGpeTk2CxtIPDGfSciGw1fJpT1YicUGcHUe7Jj71Pxd33yDzx4z+0bnGbzWe9hzjgAK+ZuBlfkK288dUzXpQkWJpHJqTMaqrdvPTQQoLnE081vnN1TddZSzYQRPh4ERXWQG9SLKA22kywgW+n7+e1QojIFEvG69VzMzJzU4QsgaSlakjKyBKZkqYzubdYbD1FcL0vOxVhgbmqMFLpoub197RlPyAZXYLUdxwUkD41XTal8qH5nr4KaetiELcLzC6uPDYWF4XA33YBWQRSXdktsIgsTwMsOHKqT3gzKRBUAwNyKjWgqk9sY/4M2AJk5jXHBSIbhjfvovqHD3xM/uxZ1MmJQYFNLq/1VuKPZHyC+e2T+/ssf5tZ9QNruHubMiCKcuHge46uP1P3W21tSLFaAkwxKzl+axYwc2dJkOvm1TyQ3sFk1Id9/uD1sLErgapjFBGSqPBtJ5LTW5a9kXcUMOBNVtabicDMbmFc3Zy7ZiKHqJVZVzlPKRd0BqpY/8ePrLV/nQcmzgiR4KZrgwePua2e3tKgJB1M6bhHECZy7ifc9CLF78yN6TCF5I0KuRhLq3/kDQy0qRETkltUUIUZy+Pz00DSBiYkk06SyuhmEx/vITcZIw7wY0Ym5dIziPzG7xaWKApz4UmNkCB87A9iJPzWaXzMzIoewWyn5cF8D7iTqPlj4jjvSHT/6722ejF4GCKB7NZ0AIsb4e/iAb/xwCct3ziGHJgDKrgo+fvm5nnmQUNVGr7/y0TUBBK7FmpcfT8vslnJeFnYPsUx3bMIG5AHtyzcjlaDiDo4ROY2UaBPM3jBEVwpCsFJitmyzLuv4qDH92PdFhkeQeFIxSHBUbYnwil749ABWZwd53dWFnQhchrlbmbjyy+tHdQiEcAJ8Oi9f+pGDuqmYcBJSmRFTn2P83HmaVAICpAohRuK6FmZigpuWYD7mSNVOkE5mYCROjXgfoM6xCuwgYma48KhLjLGY7W5NGhHBN1g7kRej7tZx+D2H5R8esn3gPLl7KPcQIwmjjzFqutmNW/d31YVmD9RWwmSc3I1enT2dA8Go1enOL8mzSgRw3TjkxadksmZ28NGUECNQh0KieViWOn75MzVVJYgzhUbSUGyE6Sew186sqiJVsKzaJ1Nuw/F3dXRByLmEan+IcDOTyJaL5qSkQRHevvFsJ+KwUpjr9VQ1MTuXNLUqNEb09acDKvaqSaMddm3enGyHbEEYADOFGGBmhcXWT0SEUWdJdNlVM9JqTGO4m1lNgMOJzHFX7BiN+Ekgbk4SAt8RnTCDaIR8mPzEDDttwDiYAe7CTqSHN9N7oPMPkL7fUfb3ifyD7j+ZHCe4EMW7IRsRWUnFbBS9Tb/20VbDrY9JCY07G2jlZOUr30+erU0EnS/8j2wbYM5ta3Tlwv37YqRZ6dZsGHLu21rrDEfqCPuvPH04aA4skUNL6x6bEI6rVxY7IGka6pZD6nJireO14036iFAvAxXl5F485JuS+1zSMDg8xpfO7BZTgjGI9HAiECaQlYn3UKqHb346GTuJgLwUIxH57e+zehgosKuThDHkhlVtXlGO5ODAbtieVfUkOLububs5uA3kSk7sDhchwMdcOTGfFAM73JxDEOGRSiMby69lJCSdoKFjEwByMgPUJQQ2DDcP3O1dtvp9tvtD1nRscNYPUvN333WP0EHwUoqOTTfM0uc/HbQ7PpuLSC4ohM5h5bXnbqO3SeE012/+wl86LHB3qaPxW/rIgidGkKqfg9xtp7VJrxRgnK/Enb7yGMBBpEbKo60D5fobLc1LW0d06yFnJD8eMJw/QZeVZqfLFD1CMLWjN6IXSBCBUhMvPhY9JSLEQNQfhhgaIodbdG+c0oV/fYSSVaBVQBmyh7p//iNRGSzk5sSSy5gKzYErrmYEsJCr9Rxc2lpGEZgBUgl5GXFzuIzQ+lj0MKZPRgB6zKdsLo9ZHgJQ7ORgEzptgiyyUW9YqMAXRxsZ2/eEX/2ev+8R4IelYO7xIMlp0xYD7l7MYxJGzgw9IrrGHz9oLx5tDdWkqlmDOaXc/NpHdxtM46pxmd/i2GcyI3eYV7/1mStT77w06+Hhajnoahq4WjWwZeb17hcf7NvEs1JT9pn2r0ox8wCrWvriD6cFd3WdWHKoGcc16Ds7Kp6yumA1JT4G25Ac0wv7iSgbzKRRHH/zJ2+LImVkor3P3553FDhTpdNcIpdi8g8fzw5DBnewz2+b48LOgymZmLw+GajLFilY1cFlRdyFir0+nphIH4tX4hDJmFSDSaehN9FK0U977kgdFGqxvInHKdSVEIsWhVRVMIebbeJnYpEomhQUYCQEKoiiGVUau+QJVcmDl6vXo3QSCpu92ze7666Nf2xTXXJy18nkGrF+jM34Ntc3oDFAABdq7mg6w1VtXH22Jqv49Sc5NC+dLRIDOeCylEpXb368S6OPgv5wmgUsopml2P6FR8QTecwiOnhDFII7OwJWOj/+4tNVNi1GFGqSL87KCFUT6Ss8b5r1lHRIzEpSUIeLh5XamIAMbdTiMDNy66+fGvPxzFJ2mmunJ2Xz+3K1XpyZB9XNC8Lgksujnz6VfewE0YaLj2rbtl9/epI8gOS1frtUVTIuXEyJxK2qoLSe9xkSs7shVCHG5srRrkWCFyI4jSC+j2HvmGPzEy4D4OOr33TTgLtvkuy4A5u4jwgEiGhDq8ImR2U23Oxi5aDyXv/rfWaePuDT72GY3wPDsrtlBYnAAmV58fuzDy88idjUMCLnzo2uHTzb24g5xy7vqKgVU0wao8vXHweci+p2fSqwg2IwsHV9LsaL2+dSbpogAM318MtndAxcifjlB8+tAQpDl4nU3EXCAXPR0RzKJJbspGZktLp4vjjBQUFzr59/SPPmBXPYl9OVcHHA3Ak7MBmGsFKHqzocXz+roeQXvo+UzetLttMkcrrtOVAwQoQ3jZdS1S9EC8IxuILMJ+uXdlIwch+I2SFyD2eVw8hjHtt8MLkzbyQtI8Z+MktwQpAdW7HBN0SWMaQzNTApvL95aMHuDaq+x6AP/Pi9h+MeocMcxWAkoOOuvrl+uper6QGvm0gGcqfU1S8+VoPHx4zddjQvUJJ2Foq/tDdPLlyGyFe3KCalwO6EqniDI/+xee+BWGATVL++V49FAcRUvzXbKT6vY5/cyHOmWMLWI4NvGvB4xVmJ1BweFrdPjV0HiX2GybXP2hjXulN98ay4RoA2rT6KSiju7jZ0g3rqbs5d81V7YinUWfWlR6ph6qm65I6qJrIQJLL6enrhyxM1SBVdASuTr/je0geC92NjLXId0TY4SDbclDECZDgTuYEkjAbBDCfcGmBDrKLRSo8Z9/HIzSEMotLfOgIZVe8V+PuD8U365z35c9+A+x8wQzacqXuybG7EbjDXUq1L8/y5iU8vPt1ovWkvmGlgf/5zPZgBEVqtTq2tkAjHSSw6/NbHipo50+Sdr3Zd5R7EHQ5dryni1J87RZQ68xK28/rX/1BngDsJeSfldpWsRQdRQlJn9t2H+hEJMzPWsnGLPdyOldqIHVZNc3TuURnDKAPvvHqmC7opNiDiIVCKjaCY5pxzbt46t+u09dKjOz2by+riU8O6sepoFSlTARnFilSx13ztTNPkMD5gkOn1r3//YWNOQE/MpL7JEm/ojkQAMQsRwJsCF/fRa3+XM7cRTIiBcWLsmU4svruRMAvo1o0SMLbZ+15qTpu/PiB//j0H8z1CxxiKmOcSY1x/5WMa9M3PlKoic3LQkMrk0sETqubOIdBFrXIEFytWucrxy8/2pEMJsf52ZyTMbVBhJSLNVo6DKFOIlre9/fzW/boqpRgJ++wv/py3VYhdYnJoFkOTUI2cMgcCF6UxjCF++z4d5zgR9/LWR4rpGINKVV2eDQ0l+NgERdquM6yOhqwgIstbX32k9rp6/mMgzVH2L+9tNQvn3zhTieq1LGJcIakv3nj50wdIITDgZrT1b+97bBEnTMQDE7O75nFtIjpx3EEsgDuYT+hOdCJod3cWYTnpCEQyIgEbosUm6CZSBCJmLG6tSDz/rmQKevdfd8T4IZp+gsgx0T0cOR9NFyiUit65/bHCV689m7eDKwjOOTF/+Tmx8TfyfHC2D0KSS/HKrbw5vU+djTiUV56JVeFqHj1wwbLXkqlb58RVI2ibnH/tJ1c6DEMqEPZLe48s9jErB4UVSI5aqlUxOXGPpkGdrbi7sb75SGG6QzCdPVsVhTtIqvZa3GOLaiOyKJIvr2vPY3NlDjF0bz6YYnjn+kc7SWq5rK+uGt6qbj+uVNnFgatiEepla+cPPlVzS2OLNaP9b/zBoS2RQFxGIgBMcaLp7jIy/saMCzGPZHcfywqIaCxUPCFVuRe/q6E4EbqBWX1Tx7G8teRwUrD+72FNv4cCTdhQ9WOTKF2bnDe/0Z+2WlxB7qQqwws/3BdmIvLc1Q+vOVlACLFBPn71iYmrcLDQffexZL3EViBkRCaiqOYVs5eB9kp96dqzZRFSygomP3PL5oxwtDAoI5NOI3qhk+punkQHmcLMuVw/bbKhqsTp+nRoUu3uxFLVF06djuvI48si4uNhygtpjgO7IdTNTbs/T8ob8wdXlr3vJn/3/BJx8U59tveJ3MocizLgerP6Q9dk3eScihNJ/Xp+sm9oxQAZQCQMc8BOUhUjX+okVc184ovckezdtCgAjHSSERvzsZ5907zAbCRWST44QnifdX9/3P77M/B+hw1LRNb4+ky9rilpzNtf+vThtPk3P9+1gVlQiIdByptHT60bojQT7Hztk7da8TLMPM7CIoff/P4eGZ5Ils+dKqUZ5krcoVpldbbk2REnnreJ47+8f2+9nJzA0N1Uj3hXU9Ij5+Gfng4lHNGQE5NUVWBuKQ+eVoEMvBi2Bi+FBVQ1A+e2j9lCdOW6fW19ZtWkoaqccqSq/q0crA5d4wywW3hzeiak5pXTgnVhVn82sMnOq2ecA/ZvfmTo66qAHLEv01Ukbg5bNJ4nv/5sUx/PKYfIRIgSjYPDfazsMkuh9gwqwhKQEkXKeawLC0zkyW3s/g5mOJERRpKkWVGDxCggYU9oOEsTaq38eJVMKMLrSu093hvuid9HMsYG8du0tLGTCvaTunUiWFE/CSDNOb5rTa+3txvnIIMfXPvopBwcPJW3dAPHGy+qbzwHGlZEKeIK7Ya+o4ieuHZeHqxOQxnEwI2pElALuZObFvdibsUZRiEQ0be/72A4e5PHDg3iDmYb+kw1Vy89RGO/YXLVUopx7FdNs+TttU5WS70xySAGiHl8sNFXlki5/8ar531VDUcBQVZduTC34zwIu48MlpeeK1avzh+uhqylmO3bdq189T6WVXPz1LGNAZYhSCH2g92vy1AGr26/9KN5MV3XjVEoDr5TcHyPvRQxO2k4sQnn3DcAyZiuB7OPhUyGu273icaecCtBIArJbf8IBBbri7xv0ab3jLsavLl6grTjxNDgzvNukvxy17ybynS7AbliemX9NOIru/dzTeoEuGlK/rXPJfc61ij1i+cjFQV5Ia6GnN6szsOCU4BcPKswayI5wXLK8FxciwdSbiuePH/p2etyczoizz56t6Vbq7PwN59BiFSK8wb7DPUIb1pJvj1Ll2/v+VgZJFaMNz4LVQ26n/pz9bpLxxo5aS+TV9KDVWdFaAOF87XnZLEs/8FfXQ2jQLb7o2VMlx7UUIXPtz5nYaial9IjkFUvbHHt8LeHj3rcYrhyMxgxbbrHnMjNYYhiSnBTHykrm/BqTNxs3L0whu5utAkxTyRGd1I1ozwlm9660ZMpczH5d7HbJ17E5v++e+Fd9VLvErqX7BzENTeTbz9Wdc2X/0Ce5IBxYtt6erl7Yq0RK664XP+BoxQqqDMCjlfhhcenymJg8JUH1M2qQCDSNBR4MZi5kIa2ouM36idnGt2Jg3hRmBGVLkkp4fDgQZOAUpx8QzEOWbq+yYv55Fa3an5ideTERCLkBbzhk3Jdod/7ObmZ6z6GxPWqqf/VEzNTkN1RpVu3sTXTxXRwYWIJsakzv67nl2u7/s2KTYRham7Z3W331WaX2cX4c7cPcChJjZoOd2Ksux2XYQgRTizkm7V+o14kMlLnNmSKTXg3UuFHlYSfBH13ixzYynDrtnnSGPmEivm7L9p+MmtOlHoTv99ZC04uOe4K3Umg5uRBqoOvf7aT47c/ta7hwuQgLzb/yuNTBwVMafKbYWssFzLiaOskL3+0KJMRaH14tkCqVuDwPCQjUwKEAxBrwalXn751ECZpQwyEmxHl7FQ0vL43IUEuNjbAIvKSj3tTJUphGnz+N580MBMLO9TZ1ZRAMZLm44PFTpea4lK307q79snlwk109K5g+jcf1WKVUhlxFMlVG7cuP9rW7db8F3504nGkurlYg5Lnv/GpugwF9Mhf35rOUhUqQtNvnurkHY/vzYyFCRJk5JuNCRlsSPGCO7E6HGCB+7iFwWaR3exmc8e30goWllfXNZTEFe8FX77HGG+8e/89k+Vu/o3uFbpyjOSmVFX6zsFHyta3zkyrTVM7Ih2q4eufyZGztNINv/H0cUTOTrAqJqObB4/2SoWCyX7eUtTzGQHQIalbMbhHZlAVYTc//+TOxNa7DHczCABmLVRM8MpjJKSDwt3VzK0MnffC3YS/fkOGsC8SQEQsKKOmwwlSB83eUKzXOVKo+/50/43jRwZtxxV9TKg9d04pdXFQc1VnmqUVl5da7bRLf3jvpocTXStCWq0uf6QI1z40la7XkhjiMYk7EW0qkE+qVdyco4AkMG2Cb8DBBD4Jzd03bSeIebQFY6vYEYmjjQEYGWseCKHs30Tw7Jrp96Tm7xbsnSlCdy/RiQ9BBr4X5HV3K2xI+v1zyFd+CI2MSRxGXoXLBx9bGdvaF3Tx/A/KSR658WWpvn3qTEFJIagc1K2jmlQMeEkZsKxkHoWcKzGX+3/5q6zTq6mchLgSWLNnkuHSo+wog9EJ09A1EbQQ7b98Tko9UVQAEbNnK2OXM6ZQcc68CnJMbZgVxcCrN8qaqlY8mJMEIeIhcLQuw9zNOERhkpuHldduqT6U7cAjYczMgK2Xz+/kKtQmqVRT3gZZcMniNjYe4FHTaUOzoxjcOcjdhDlAbk4wAxGddG0mYvaRE71p+j/u6MNwG+eROzuzUr5yE5KdP6Bw4UMcuZNPG8jnnkr1EQo6kbrbuxy5nIq58TCU3Z907978ZM11F8ZC6jLYlfq+biBup376zR+ZrwcPgUCh0mWRNx6cE5UsYjxMokMiAHctRrBxW43RqzFb/+//+v150m31mWIdYEQc2M2VeTjek4KSnXysECEidCGnprtuYWjX6mogEDNUddNWARyoKM9KVYkZKJxputlHfuKNZKY5ABidg2kZ1tKsN9+IETGn0//hZwfpJjvJ9hYnjZ9iBKN98ZFg1hffadouDsUtCEh5g7jjXViZb/jVI4CwQbg33tyGgjxGWSdhE+7RbFcfvfoTb0sKcwLdvpqDU5R/5yD8DiJ37zff5dbdY95FqArZkNi24tm1fOvcOTMKyjBBOtLqX/yJQ5qvuCRfvPPZrgiTqVFI3XTBrzy9iCns8Ir5lU8tIgkXUtBv5qB9Z8ihLlCPFZV8vN4L2rULqdrKhsK1WVXMipT6a/ef74Kuirv31GlIgOgkmnXy1hM9DRTcXeoSJmng5Tvb6gbzJtLKmqHETtdxmufbauHo/C/cBy3UAKzGToE7DjIkgnBxHzCtcrbFR86otWXwppsEXlc+SbQAzJcvf+I41iJ7L1/XuOK1QbtpW2AeiN3aIGMyVKAFNgwUmd0ALaZFieGcJAJVzQhhbJoJFlJjsKVMrCOyCC/quBNXG8jIlNyaq4u+Qh/1BMq9V64fMgDc6Ux5EkZsonpiGp1MBvE95t0JJRUylj6qzb75NHGr0hBpUvVqsTiPaNEa235xXi9PulK5dKV5Jz+pyjaYBD+u4KGKodT0rUttP7i5j/X7oYIjGcf1BIdnnRk+MszGB6yHqw8E45EEC5pRllhrC5oo7FvPjr8UgbWNBsxeDEMSsVpmLfc4nOdCIswVDnKYycU+rixeXxdGqMVA6qaqpnmVQlNNJjwgch40QNWlCrTIs+f50FFvqz/4rb1TqKZVKf/P/5IBqSJhsug4TVo7cYPHjX3GtJAbxIwEJ6wGB4VNYeaocJv4nAgnbLqxhcUY2BOfONYOEIsQfLjgQev0vtLl9yNzv8u4185vPtwDzjjcXCiEFBKGiz9EEpMaEbn1KV4MDxROAVLiV55BGeFldx881W+197tGMgL1h1tkVc0Ej1+Zcy5q6mAJ8Koht36hmtmaY4i4M7uSuCtg7jfv7ymVsZM8Bk9l8MFLzlRWbx9tKqiJrQqDUr54H3OQwqGaFKLZEZQkMKRGDO30Kq2oSVplhLoJHCtupAzKMW5VNHQy5XWWpo1k7EVNU5fK118iaXLhpq1+85kzS1vz5NrXn2nETXMxlBd1sRqzJePCPVJa3R1mEBgCmY+ZwTGEJxkr5saOS8AmATvOAxbhkXLhzhvyJBxOPMbz+dpth9FdFf59Dtogd5uQDvRuocNsZM2Ra/vy7PEiSp4AidQV/sZT074kDileWH2iHzchcrgvWqW3H1UyiZXksuq3CSFYkXT7tc/sG1QNLCKOuiHzlAj1Kk9/LVQRBpiBTRWIjsXeqiH1saxPp7GBBq10wSq/EE76bDAbOg2v09mxY2jrWNoQn6/gTqKaQlkt8n7J83Ble+7CpooQYAZipMUwoNk6NekrWy06tUISGKaK5uufMvfp3Fu6cu3R6ztNaHHtqT+Tilkesi+GLz9yKvKJpp2Y3M3+S5AIc2KyEQp1B3GIvEm8wOwOf3Ijgk3idXT4hE9YdidlZ0a4cBxynU+E/v58+r+D2DfW5ySou2veWSwVNS8pami/+pRbnatAruDcS/76ZzpzQixbv/WJuY70BHcHGembH+mUHBGZOkyMY3Cj+LyePy5QG1vuUKgiWcmUhXO49VZTMTY9U7QoYLK/frCyTehuhoMDqsu0QnJj/LEHNo15mOpBi1TfOkvr0pWagy2STi6UYJa9IjvUMo0RfGq4fZVXdSRPhdmtN2aKs706hno6a+vC7da8EVol85KM4ne//Zz57RXUsvzsc3l1xWt++r84r/X23s7O7u6ZNX06eanG9MrYEnAsgnByM6ojCgWyzTpqHMUNHMhHGz++rBOWgJ90FHSCudNJEm4jcXcnun1ZK7P34Gm/z2F3ymsIuLtFlzMlZRTzHPOkv/rT/bRZsrqb2VKrC4dPLAVMgdYX/uhBO4yND40x3a8Orz3GKYxVZocTSXWsnKz+ynNdM5iNXQgotBW5JpPU9FX4wtPtphIc8FIUrvHSeqLH082yiPq1dndrCbbUriarybjaOTGHzjiUd/6oG5hqBo5jH7/6EwpSrwy7vgrHuTtMFyYPnFltrbcCQUT1ui+v3exBTdzdbff761eG5NXW2b2Wgqhy7L4w7M9bzMt9HKZ/OKZpoj7n3Us30vH1a7fXhfXUx4ewqphg7uCTnRsITmRG3PTDeNYBGKqaVk6Bi/tou/0uWuInq/eYzFZiDgV0T1NIJ+vjlVMPHo+bEzr9O7jw7xnjZDI+6Ynh9/aGdffJaeuZTLm62D4uU+NSBEHTiuzLT84OpQio/e1HTx9EZd8kFUjpYnMqEyvUI795OvRtlMx67dIfPWQq5mOlRzWJhtxrJDfuvv2na1eQkSg8q7HXVD+9QsW6iWjlxmcDKldmgGK/qQghZhdl3R8eQsB08IaTVuG7+2fXYSLO7F5qvfL2t/9ZPgo/vrNfLcoOdSUth61pzBojDX0JTchdC8+rZabamb0Y7b5g/5fY71Tn9mw18FG8FVbMS5p60Bxnp7DY/tTksFTzjja/90hTBpszuUInnBU+th5xd43onHnsrjwi4rQpeyAA5M7MVnSkapCMFCzAR0cbDl5cqGo43tUH8vc5HLZZksj9rtDFik/PpVsuNAS6tLdNvA7guo+UctV948cpWAZ7+MKfWk27etyPykHrGm+fbxcNMZlXevHBwDXDyF9dnLs81LYp3fTYiEGT5dDFvND7Qx7rNQ2u5kDm5863/WxfARCB37py9nhVC5ZcpinK8WyEGJlKKD5c49BZmaW0bamy+ecfzqim0c0wOyxHs7+4Uw30pU9055r5l564r9meM88qzmAb4PHMad1fHWe1tFynZaEoprb4qTo1t09dSJcxL2cfaE439Zbev2xq7juZc2/zcnt23CYCRkfN3Rh3vHMvkRblDibiPlAVTeyE6cOKze4OYCMQOYFBOgqEecOm2CTm3I0mg16uP1nGs/eK7/cjc/KTbzr8no17qCo6I0HmINMv/xluWUAyiPLBVnn9pb+/6CaY7O+8Pn9iEHhxIkcVVOFvfrLjwF0IeaiOPpPZ5hll8vzDWiaLtg/dmcWWahMdNHSQzHr+v//URBkFwRNaLc6DQ8s0V32MyTKCxK8/XMANqD5uNWg3I2KGEXxo6+s7bz4kRHLUtOvilIev/51C1Df/8ImtyVqAyY9A5//0p59J+b433/ibtyaRb9L2dU5dZWZ1XaHvbyVV9bph2djUUJyB+rPT2tcDC9gnU5RZj5TJF+7gKvYNm9RIUB534HD3DLLCQFidwjsIK3FXdans5sP9cb0OtRcidysgCTzCiHFcFOAQ8qDJA3lINhbBFmVicxpQ2eX6E73W3FHIgncnZO8d9IGTgcbNgjC6cLpxHLNTvrumO43eSQ41XfbHN7ANlUHCMPzf/sB2sUK2M/vSRxH7CkU2nqSs9dofk8bMXeG+mnlVg4i7Vz5XPHkaqvmws86na4KlwTjkZnV44+dO/lMfxNxTRzUIzI5scag9++1PsHuWFBsSl2m+060eC71PLjzB7ACZF8nNm6fq5LUoQ+p18JWQp/64Paxn6cune3U9+M5jfdX30ZbTNtQ15cIdkQDwdWAtHqKqs1sp1luXY0Bh9xhjoRHtpUaHmoo1GHbWV+rbXG9geBvzbpbZ66bzuHHGNCxXpzS3KwIZmIjNrMDdQHLi+ZMTqznTWGgHjLXu7k7BzOFlcWPmKQioUnz4+GDz/14HcIwMwr2p1dFRUlMixO/sPRQ3u8e19Vr16sUftYFU0vSdtz49NMp6h+EPurF6JFdW3DO5Lndt0oJYLn31sUNyTqDtEr6wjjVg686gZLNv0aMnKb+xJbJqAJEIk6uLsdO1o4eKw9iSZrZsaVMfgBzmSbv92lmEyYup1d98LBZUTbW73YgahegkL5x5OJauvPTYWhVXbs2GQlHCdJJRNejWXR1QclGfotdmFpI5KLaTVrBJ/QUMCZRow2W11CVpuE/1+mHabxs7SV+OnpLlobRzNhmdb02p3CjzsejN1RkiZLk4mRMLnxRAMtPYxAIkYYzbmUyNA8MM5fBtDyiEbPiQ8WHmnjZ10e+514nvSbjAQdDsWlPi1z5CcUPUXaP305N/8GNdn0ksfOHp+/oQNVUYMQgf5hcerDqHEpR5Wba0rg3Ad8KjRVeD1WzzK9883bK5dT2QZT39jee2ZQz43Coy1YJ67GLpzq6cqXrxgfkggBFhRlVMPG5mDssrnq2P+n+ejZgZxrke3njGUftybRV6P1ySJQmvPXpk88YuPpCbGC7u1r62sFrZvtctpX7IOedS1HyJSTUsSzXWH2gSImYvgxOZV03sNbTTtgrV6VO29NnWNLV/+y/MjxZ30tQnMdrQx50WZm5aNA9H4fYbNEtBYoSajY01wBEnKdAxUXdSne4eIozuNIJmYXem7tYR4gj/fKjU382avffCXb7e5sjHUqFwz02AFhdSGi7+/HpvdEOZEw2r8GM3JeQaVXr1zw2SxAhm6kSwvPXSZ9Zk7kJAvDFpc8XKmv9bu+kMmpgMp/75Ew9VqpQHJaMSb775Z9s07s/r7lpyKvCxSsAMWpoh6gt/1vLErAuR+BvnTnmbmZkcPl0e+7D3t24lBAIxy3r+hj/SS4Ru9dO+myzdXKpL8clF5fENmvoUx9/54yuXlTTMVbW7xSkVDMSBAAQyRIdtl+zVpA0CrQ2qVFcWK5ks1we3D5ddIePt87Nb73x7v/3uY39/O/abKIzdncCMstbZ1rAekyymKeYrW/cNK2KwAVAa1Zsx8nfHSXYCkjksgkCkmzTd2JJMfHin2oGF8H6Z3iM4+j36dw64s8ndnjPuhFIguUwupdNKDpADzX7gg1P7RmSw6o36weWkJ5LezcHsRkdv/vk8HZuvaPvWmejRjfL6ZyvJKqDSNje/9n8wVbdhAKv353+1frZe+ojjmoDHBuRErl7UzJrEF9ZPLt0JLkPbffEntlEkBDi7rWZD7I8eeChJhBIRQV58fLKswNOnjud9vrEKytP8zdNxJ0jzWjsRWVw6Pr8q1YXypKRdm03j4Jm3Utf1xdAu13FerZe302qVoXkYFx5T9sGmfJydpJm0Vae6un60c//5+dmnH+GurwgOJ2Ib4yCibr291Q1KrgY3WrTl5vlzF8w8gIjHzInaBtuBbZYrkpEUS9gQLseY3EgCiM339yZshrtNfD9E6u8f7yF7jDIGkfNdocMBM9JC+MbDDBgROTAMLCbHZ46NzfXL3w8KiTPspKtxvGRnEw+Ag0p461zgaEA++nG+TYV90cTp/7rzSHLm3CciddLfqmdQ2qzp0ck1CivI1Iq5YCB74UnkmCYulOf7h48Fy7NA6sSI2g3T4B6qWs0dOaYX/mQngVR3D4oy6kZY1jf+hFRNHUqZ1C6LB3Vx3S9k9TQL10r/zlduzi6VoiQxJHZVCrFqpvNTU+/bzTY72xSl2ttCG6oqEHyrkN4+PvN4Nz1c0XKWNyAq2fgyjTgdTybbXSZ2BTmbNt3tB7ePHULFSQBidb9TDXHCZAyqzuTBuJZUxHxDuJKobub59nwXhT9Ukz8shnfQ+zYEcMDhxd5l3t0MCZK+/aN3QcO+6prJ7dnAXhn7639OW43SmSQDEZnVN7cqDCkYHMq3HuAQlFC6ocrz3hpuFf/2Pwozzey5BLIwuf3yGUXMG2sDy906RneMe4wL+6oq3/2JrmoWnGLf+tXjU1ebJsgIaBfePVpNCLGqcnL3XPWXnlhFYeIdDSL16nB/fXj8ja2FBWsvX/2HO+q/c/C1iyF1Wy2q1axNLV/f/dgPV5O2GlnqKVPTRoJMt0Kuy5CyS4gqMe7u1a/mYchOdNNCe+p0i+4w3N7BrR3euKK+2aLBqtKl2aRdEMGIyCbHk3DjzKmumBTXMTTkTapwk5MHAGIvTqxSvOLsY1DEDme4qqsf7O6IsXyo9z4iOh9w4T2B3OYeg+V74nQPlEpl7pevfzodjtU6psWkz8Eye79l/+un41LqvBDuNBJYXOuvf8YGil09eIh26wGcEqc8WCGsI7L5+V+a/Fhcz9S7IVpnTv4Pnj59C2zC1qOi3naeP38O0Zy4oBradeWHq4+w9XXmpCTbf+GdeWlLUyyQhuBD7SpCFQYXzzb95SdyqI3a3cq/8IWrl/Lg+Niv/ehNm9RGj55PV9ezW3/l9Kl69X//+12MswdarK7/n/6yZUPXDmgAk5qE9ODcWrQZKusTVDm0ta55XuouwZUpWFSX3IbOdwapNVEIbhSoGLmxuGtflO8/SGpgKmFdEfTWA/e9rbHX6JmIg6uOPgBcxm3c2J0rcw9aSLjSwmJlZIo4NSlx5qtb21oP782xnojzJCl7L0XKN5jeHbzd3TlxTYOG8Pb0Ljgzcnt8iEVuPTBP948tFlyLjY4+d/W6uvK5zIGMoVBn1lR8deUHETsXkbqLb155uGFH6ZNzziy4dopu/bO9xw/bZdBcDOycZ596vBrGVC4Aih1ee2ard3cyU25uneqmnw+TTIxMUkl1fmfCROw2Ql+bx2WYERzzwy985tzKq/DKP3yL/mH93GdOT+47dZ3+7Iya6EQ6P87d+R+prqcurtshJu7jtW/dXCjXA2uuVw1GOow9fEPmaW4lD8nhzoNXDAtNlZRgMASCljTv1cgLKsBcbVzOmcWdkTyU3dulcoeyu7v2y8npwxKp6MZn28h8rC5yP+kS7UbE4KiUQdHVXLDZiWcY9ttJifbhKv0+3f/AE1VZUeT+uDt9zx4uTI667bUK/+qP2qnTJjCIp6Sjx+EAv+HP9hTdWDOiIYojHt96WilDEoFk8ZFHp2wo6945B6kWq6cb+oNf/NU/sgiUh2xMZD3OxsNVZe5uRmSKxeWpS3a4qsHbzvD5H53uC1khiWkd6sED12Yg2hQbECAozq602jl6+noj67PrH/i5F//yY4vsy+Hwy7q3roqSGtt+kKfRY/sr58m42W56Hq43s27gErxq1zZSGX24tVXy9Mbu4TBkF1bkXEI3NJPVqhiIMoSZzWbHCxcw3Iyh5MGc3BxWoOtZXU4vh0rLJgHrw/FsL92OVd7UVDN0IwYHs7trJPBG6I4IUvVA6mNreSKjMtzY2lpV7zbS79X09x1vtsva/OsAzEMdunQztHwvIgee7y7S7osXf6x6fLokuMNScYYbucYy+9Knqt5JVbywGMeQEa/NT68zjEvTE+3+paZxkHaDe4nZ3gD38qf+xrSYIA3F4SgxShmCbUiBZMPkG7vTo2ZEhd3T9r4dTz967G7mBHAyJqkrViPc2ZGcKGomMZWdty6em9V5r3z2F1e3Z6+nNs/n3dvft1aohpxrmebyjB9Owxd+fn7Qhm3hw2Go0CMRoT46nulobhsM01wmx1YUDlI1KWTTpq29T8YEc4QoVk86dfNiSoE3zBlTYy6hLOa1T6cri/CajYhI+8XW7NjGZd83/25WW2LXMVYXKMBQjsGsU4NRdAM5sVvU41s7kuLvUc2xEfJmEpw4cy6Fq+7Kje6w5Uv3eO9w1HOdr/7JT09qXY7qXzJAMCNTrg/e/vNLN1VjM3clWDF+5RmmQUAVk/v205DiVLKhpFmhxVOgpmwd6X3HSMldYRabBhasjD1R2Dn8ymPtQRk3mwel49bLXzobsgHCnolMJkyC4kIggxOIRaTXINmDXz7rBd001Vea7jpLnfP6yts/5yGMdvdgiw/2Ul69eGnSdXVVF714vE5JaTVx81f8odEhIyTqzlaHGLI5XAupu2eU+f5ipU5Emj3KUE2YS8qm0aAMNhorGeFOnroZh53lQjyNfHdYPppsrw80YNwgY8OgHd84geBKzAwat6pm4iA2EpYNbBSKNcmuzx/x9xr3D5sAfs+fkzQu4OgldhdfP5A2Xc53iZFjxEb5t5//kx5ize5EWgptesBzqr/56PmkomrZ4E5BmAkvPpfZmJlSlZ3XW4Dnobhp0Ygzj3Gzmq9nZ67WQ1dGyp5KZet0QuZgVPvfqIfWN9QBVLyW7lx3TON+hjnDi7oWVwTazGHiEKEU4MTdp/6LvV52wvJUrJeTt19ItFrf3NpuauYADqgWvpW7mE79b54MO9MzDVa31gdKrRQ2z5enYz2ce2VblH7tf+n6omplSIAb9Vdef+XS7U5dLQ1DGpY333nr9vF6vc5qpqlfr7t+KCPLmolsSIKdnSjs5GMwkoe+OjWLMZzwKGTcOoI2iQQad50WIVfXrIBEEUGGM4NEGMWOr/bVhyNvHyj3O5qOzbeIVpevlbbBcIB7wJnRV5rs/IUnjCsnA5NlG1uoEMCLF38+szaAZxc1FiZ23388FyrkXkSsqluF9+vsWjiFt3doSHtTF922da8MA6HamhX2Mj4YsdLis48cV67mMAckHsdq2bKNakDCBJPgrlHUNglICVE9SKLgKdyPiSOfWZ++1OhbU2fP3/6kCxtQHLnt1s3QCWaf1nUMVSnXlG5LHqQqhm54IhEYcCy3b55a/sqn3dmc3MjgyujQkxq5jd2EPS0vNb17Jqg5VDkaoo/9vZV4vaxSvbNcW+Wj++GWj5t2lzu3kRvpMmZmeQTGGSPuQmzqxAaWSObiNu7bGrzqqdLbF588Eeh7Cxk+ZBrcyfGeqH21f/nqUj03pXpX+xFhZll9+m8vhzk5u48tccYtRNnbm7c+umaqmZBNMBQtueQUTtmashlXudH2kQGw1Bc3a5je2cJ0onWjXVz0yZlAjLpOK8hJ0T2RV//xD5YM2xAiq6Od5VaTGMQwddJkphzVnYROYnuSoBAyDs5u2pgPNrt6tKwu1ovD0n/z2VAimB2si8n66jpkRZ9i2A26vlrN/HRLGouVg247FTC5G4ZJrx/5oYFjkCAcs7kaSQQRnCQGBkmIsesHR8m5qGkpakNKaei7rmhW7dc6WDOVUAeJMYgQ8uLY59O42azoZGeXO/LaVJkS3FzYjWKkohg3B3BiDkNsm+7i+sPlu5HfHQ6df9CtfvTWd/fVqc4p3I3TTQyRUNoFF244CaME8ZjEEsUekK/+QAp50qxKqrBor+7sDpGn33ygWhuzs2owbtlL3R0bOoBKkdOlynNmq46lUy/qrD6dk8R10OKuQVJK5EdsxUbCXeE4zHvnIWhpUpTVFKlq0fE6cIIrha7RWdWjxEDdqZvbCTPvohGhZLpx7VEMk9f2ogVVg5IXXWo09WKI3myH428l7v44HYpPD+TMrz7ItZIFZW9ttdX97Jq8uMBRxLgtKYr0JCnEwZnJOa6kx8CNZ8DNiZ0sKZPZijlU1Xq5k+1cd33LYlGKgZyKW5n4qkmmmStXMMyNBFCHcBoT3mLFDEYaontxJ6MCocL9VBeg8sr3pVbW0mTb5NXfh7bRu9f5uxYhW4Vs+VppFAmp9ns0fVNQqGRUs6FPhny8GGTsnEFIL36Sg1PKxd24XrsJF3v18crJJViW0m9vp4iSUjGi2mZv7RGXdu848VLyJocvYytWugMXqZZctNzZhM5Ht527EFdMBy1I6rZC2sSzPtQrJgpW2Kw52lsLGaIYb+3fDnKpkNblWx/zg2iM4u7cpzJ2eOKCmpL1fYYwIDeZUvfQvpnZ0Gs8LJOCW2HdGSP1GqKQSy2q5MZQRPHc99lOdgWxsc8dq2kpRdVMS7f/9uvHiNV2kywbeeqHnLvjNYnUagbY0PnYt2Tc42JkJ6uZ6abC1MZukzzu6wZThjmzD/uupYnpQ7X9bjrtPYpuUsOAROJqmkVCuKdN6EbobDQJheaNBAZHnLBe36wfT71NNBcyJa23WIgmbz5lmVwkwwhVo6DUpaTuULxyHuKBJrGX6uYGiKCmhpvCN/sbjVvzmOGE32sOVwNbMDaNrEWpagJk04UpxxsSXLzWvgpqURgexGseqBne2q4KHV94enW8LoFy6Q+PhlxS33WDesIsWHt6Fty0ZOfdcHzr4Rhi1dRtE7dDp8ykIjGEECv3PChZbwxEVuYQgoR6wsTk5jy+MRjBVdVgpajm9f53ru6v22bISa0M665P3dGK68npIHBiGpsT8OgTjFkuVTVV8BjVGcUozLKhFqoAILb+RtYsfLfB3IfVtL3PAphwKuy3kpvzSNu/B3sf9xpQ1tByqgfNIAsywBQwmn3+x1fwEK0YJ9DR1ja7CR+eWQ7RQFqnpiGXLGkoxdyHcO3GGSA2ZXvgsI+kI+2grohcYbDNviFE5OyUfePSEpEbvLEyWdF8MTFNGsY+WGaG2N18ploD4m751O2pMjmcJ9dXKS38yZX45TPzrj6cBVNoXyIAdYcJTfaaPpz345VVQjmsVsc+6YJnNdG+TGpZydHctDMOVJwYiEE9GFVJeR1k3EmJiUb8DA5yEzc4xjhehOjtdTVv+85BZIbCpkPdND7v1susLJI3AiosNMJyY9Sy2YbXSpTKzO7Spsei23y4XUnmwB+WWP8wHp07Sqq5v53goGBupYR330tEMKnIZT2fpbUWHStywPrynzk+FaRYMbHA12tSMrqSdwZHCRw0lu0dBzxlNzXTrRd2Z4WarbDU2epA1iB3DbGqCFDXcS95dxgM8HEXOjgIzAYr1SAeq6uYwK1wsTA6QN6+1QfJVqctP65QrUMkKFUV2G33UzM1eeHpzHVvOSlRCEuwgDlYznNX422bXj8mMm2r+PLsPt6i7vp+lMyh+tapM4eqxMSkZQJVK0xmznAVIkANzs7E6huWJgCQAcZirkakOKKjKieIGzEsm5drg8g0ogwFRMrM5O7GYycNMR4TNsTqgBeWELIqY0O1psqKiq5ubzUp1AW/+9hQLE9mg1moh5srZ4crhGHvSq0SM5FRDE74yjPn8qozigYmkvCN3WlDJcRFcQZx2SESj6+e2TpkMytxtXPU1AfbIfXZVGEV33hOsrTiPj2yvX99f8WmJVQxjhER2djXJGdVR6Gxug7gTY66aLvc1q99NocqktNG5iB+ay+YqaBA2lcf6wKDjeu87AfSpj4Qv/QHucG0KX1vpfCYlTatUzWNTN3KZ+vB3bdLG44ef3IrxzX3Elmq/NYjs/Zom6HZmNVH3lJU91zII8NJmJITkxsMLMIYC7xAzszs7qXSGmuAzIyJTIX0uFeetWWd3J2UxgbRxEJEY6sCA8F5ZNBrkRBLcbaxqHlTJ+v97d0JE8qH0SnuOEnvWdPZnGK5dbk3QEAciO8x72Nzci7KjQBWT2KBRBM4wc1/4w8wqxE6ycaF4o4wa/Xak6Qw4VxHq3a/c+kPa+oGVRWS2+uPFWqnijp2svjGI2xKQoghQVVo48lsmhmXcRdTgouOtZUeSsC149PeVo04YtnQf/pLn+E+QELW2YuHj1XMFgrF48xTWk/qXb546imS3MYuk2aouVBgEtQ7D86DFNe8vD2sB3un869u/R+HtZfVraYxm15YXB3I9rTamjZb2+eUGzFjWoEUNSeGgtx506j4pHEQgXBSqGbM5AjspKQk5O6UI1mBpSWpiSsrjUQXYiVm8UKAEzEY7kxwLSKVYgNQEo/BqmJ1tT0lHyrzd6n5u47Jrbt9ed9gImMTiHvBmU2rWJMoDnt019cJpMHdzYu89adxa6+VhVbqNKCqnAj89g/3ybgKvcwWW3v/84VfPCopa/HAdrWc7ULbgNJq78pvTSal0xjYhN3NAo/b753kmTZl2z4S+pjBFA7Ori6dOeWNwHIZk04grA8fRB+J86SnX/l5BsOIRJYDQcIearnx+EMHGkgHTOtM7il160Vv3Zqq4xQWh4kT79aM2SOnf3YmTXPQN74z8cWNf/yfnb5+KR4eqSxevZFcTj356N5scioX0lAzCZlZya1vCn4dBFOtCKwOhiuKRIpJi4uRC48OKTsIPogAZA7ZYGTmRixAYXYHn5hjgpUYQvQ0lrEjqDqJ5zrf2j4j/XT4ME2/N3V+z3lzy4cXbniryigJTHTXvCsxULZuqne7nqt3Lj6+KkCKai6l4lceuvhLfz0lDujDUdNcmXAIZHT9sSFmAxocT08d/vJ/dX16MFBhzXb25e9LKtFlvXvzOv/q3+nRT6gcPyZDWJc48BAzpZazWnJXR2lAA+V5MhEJ3jVUd3vP/409L/DeIxEOttbQrV99lrphUll99enfWT+9npMqgxR1Pzva7qfa/uZftzpkXRzd2l9eXdyyhtjh959+MN03qSahbmupKmRptlqseuzvqcZz00X856f+xK2Pm8Cq7UlZ95evfffNF467jJq6Fe/tnd09f3q7rUIXKK86RSFhmKqMXdpc2FVE2TxHzeTRmJRjgpFnFiQCikPFN7v3hEBmKmQgtRAoA+xOTj5QTVY25W7ZjIJnHabpnZ0Hq4EzIhVE+wABn0TwdIJhAdaka5dvLysqBi/UhsI8eXfChYhTw+5N+WLbaZdbHtqiJaTw5fuPHltJ5E7JJJZ4mkhQXZBTZayxQyjhN84+ka/1uWRmDzdv7SFOWkrxFu39P546dT1N6vwNelrIzN0grix9m4q5g4njerooM+padweqydbqTDze+oj3XkmlVJZtra6MCz9TbI7sw5mrv/Uj4len82m3Q+tS8oonDfHBrHvxtRtXb2CaTrXPbrVbM77/7CwyVLCma6EnK/1AqLRP60VCVqPY5a76J38urabL2cCcGGH2yY//tAhKyX3y4Z2X3rh48UtrrbenM6nbybSN50RINbiSeHbhwYMQmXFFSo3oKiSF66ZOdDRrGyyOQA6BEjOUnALzXUqN+9iLh3XcIkCdmY0YKy7Xml3bFFD+riD8OAHM+9WVK4qy2SyK3FX8XUJ3YgFqmPhLPxM1ZBAKM0v2V/7ahY8N05Hj5taVytrqqPr29s5NNbjDAx76L3+oXx10qrkG4tvxIQ9NVJ3k/vDf/ierOknXXnhkKmPjLjP3EhRFx05SkJ0rv/Lx7yshRwesPifVRF49dfpqUCuDIW9pvxCPb/Sf0DIbLKy5fflnSv/I0VCVw/vs/sO+6y7ceO3g7W9G9id+Zrp9nnZStXKerLZjV9b1MJFVZTmowT1Ws0bW3aBOQeOEi7x987llwvxWaIM4WHqAGWrTVo0e+lEuOiwPj1f5YLl/cOP4uDuOk+29ve02TOdTU3Ct3hcOdWpg8D5RMI+usR9DU20x9pRRImInJ3Nh0hKVKJBlppPmwEaFEZMXI8ALiZCL8ar1K/VMsNn07V7hfpjYyQHqDpdtyNhQNdxN372mAyxhmERPxB8JKeaEamg0DriKqtkbWA1khmLRw5av99560IpvnqE++uZfmR2VZHCUEN54ZnvNjWjM3P5P5554I4qvJje+zwJpUTPL1vYhGnzcYA/rrXwkOalFNivWLtvs33iyY7GSc4yyMEPS+etcLQIAPlu+cf6po0eOZnX18oufuHj5wvKGt/ed/ujtv/dHKNCw7Ppmjc6IhkDk/1/a/jvssqO4E8erqrtPuuFNk6NmJI1mlLOEJIscTDJgg41xAPvrBKy/Nrv2Oht7vbbXrNe7TuwuTtgYsHdZB0yORgIEymk0kibn8KYbzzndXVXfP859Z0YBEPt7fv08M2+64dxTHaqrPwG6oTtK63FSEoMVIefQlzWSEKpJlJNHumt4uiw//T15niArJwoKYGHJOQNSKgBNzRqLIAyoIZzqnTw5v7hvvMiRXXdVtzu9fo2FSKXxQphkdSAbowZLQGDprEhaQxBR4MZCni3AxGubVkjqjGiNlUnBrgHcODAGyvm1q1ay+W99tt5kl24cEseqNJkcSJCemg0iosTEBl3srqmXQRQMUCCfP7z6zosC+lwrZLCQF6brRtGduLISaNSvB9tOmi9fWi6xEKkk/vG3VZrkBnFU+X9966A11jpvDWeMAY5RWJSMxLyMoUELSqe6+AdW+yIkKKogNQe2D/9ciaMQvBQQkmGdsbFPXKXFlPq63s9/n/39gewgHu/uWfdFmtq4dvNFOQF95ko3X/hYLnSRD2/gLIV26nzVEqseJLqgiITGSDUeBYSIhiwGT8eDG+Rr/mEw7awgqviJpNBcCIHICCMZlIqVDIKo2RGFLACPx4unTp5aGD06Gofu1gvWrW9PdWhpvtZxmo4o8RENaFQumgQQmvlZFMhAFLCRCCKji0gGqEFVRkBrJeqE8iagRDFDdcNT3Uak8DnAKVSAEDEulFZC870gAhk6P+iooKq1awEkT2ZJxSCp1E4UktYTM/tuERi30CeqECnT6ThI+NSaekWRstPf9Zl45mCp4oyiPahryywnjtZmfz97xXGTlbE9Oj5sI0hkFjFmwTHUdW0JgJBGWnVwZCiJ6FzS0XzQ7S2uH/U1xkCpcsndmaXxvie3/6+TiydG4Ir2J964Z5W9BS+Y+W+/4+wpb1Ia+vaRfL3n6OFMb4Z7j2ytXe1SGZsCMeZD9Pt3soKSyzOpqwAgCpQXBjQ8/8KYV/az72ikYFTSyV3pWQIP1uXRV2CcqwhEFG0FIEFVM9e90BKoL4cLxw/suXccaWb16nVrN6ZCtRryJAJJakMz4cKKmqBFjQLOjcCoiDUBVbX5I0lAJGNVQNWAAACC2Ki2Pj0722ztvuWavrJdX1ryqTSahUiTcz173oMQQYWSRNQ+sd4w2KCEwJ3S9J5cv2N1ROZgVKOR2naND7TUW91wzASxm9TCo3YPGa0gP3g1oMkVJFL/c2/RpG8oDQOYZwAVZgGxuy9PAipMxNa0G0amU6dM3TaluYLmn1+towGizdIph3By/5492dLxJ3HzZevSdjp3PPy6GDeE1Yf86r3V2NqWzcfJfVuKQUspPTIdYC/YRCE3Wrey+zfYwPHJxy5GUgVDPC5rARU0Jk/qCH7LFYdn6JOzVwZnUAEpUKOf1WahBIWHZKyKl7SZEDEiKIChAMjMzDlNzV5mRcul08cOHd1f7kPobNm8ursmobriEBJorHobi1cEasTE1IIAIDCCqKqSUVCFgAaIRFSNNtVfgwqq41PdRhHxOaApCFBYDo8tqgWoGwimAGg8L+jNBjJDFdXTL4Jh1dHaFaWZGpWH9/beQFWW+GADqKHg5ipj6sUwM1y5AJ2uknrpxJRnBdF6z4+NOuQwBe/vxWsqwghGNr10bYRGzAACPrHTxtRYA8pgoDNOZvqFiyZfO1WBGaqFey5mbRupFs70Thwd99eseeU1ny9/b1lG2YJB8/Vk6hgMp7W/dxUmoylR643ovhuSurUck4Pfr7j70jqLrSIkrVb1D2+e6ad4aNxZMCRkIdYRHLBxYi3WkdSc6JT5v/xkr+scM1gHooxkwSOqV0QDqkCWPAAa0MYUVSUSgTCmRonYBzUyt/E6QS7r6itf7d19lDbuuPaSGR2OFxoQrJiGxAIiQBYlZEEEkdU2CZ9aUABhbh7d3FpU1TQQMMGyNMI033J+V0RU5Xg4JCLKyBNBasHm2ptmBKPlaNVIvjze2YuushyitsrQOr34fet6WQVdkQhod+9kEBmt/cx0VgcxhsFiaig5frw1Fl/UiQ5oWrktriRO3vOTiR+CgsLSa01/Llagtanb91dre51aTIkIDABTi1OGxdmLZ0ep1STGU0fanzjWOzkemOnu9jdsn15dr+28782LZSVjX/qZJds7M5X0Xfure5amrIuOi3SpXLz2IFeYDPzWRffg673TTPJRGh4pd/TT4fTu20tSyGqrJQOG6BLBLg3FMAQ29vPbrxkV4JFAtLFIbZSYCACUUEUEqbmhthl/DT+pORsXQEBxUAGAUtF55QuNG81/7ZEPlN2tV196qQ3zCyUa23AA1SdWGZHG1qoCamUth5CmpTUKBr0m6AM6wwqIKOotVpqacv913k+VXHhEhG8y3k3tNObj+yNEY8USqUQBgzZ1rXPZOwIgxBCT1IVT2iqbdAElZrK8/eevUOhni6evP2Wy+Njju1aZ9hIt4KZRnEhSYgpw7AQwOYw14F07ba0utcpzf5jerGfyHqggSuzNd2yMIqoHdpShijGCpSDWykKx1Pa5XrzGLJ88tOfkkUW9/8avlxdu7U7PdaBYV0pI+cDiRdGPa+8Z+kcfPVT0pRV7r75aQz4mVZXsbpDoQdtPWLELwXWHnbQyhtOvzFgudWG4SkOGw4J6ngkwMQoFsqgo+S7H3d9Ztld2uOe1RuD3uQ0waGpjqEwmM0mSXc51f/89X/pg3HTZxXMtFl9FIAmcAQNCiCkEJgeRNCohBCUUVYKAJtXIPJGWVFIgkQjLR9an9YqDxbMO8eZfnURxCwe9Y0URFQUCVGUTzivDgiqixBgzh7SvnfdZUQGBMvI998JqUGD+hdVXEflsMIUuxb7xF85AdKhAqmjJLg8dg0pKPnn4u0FsRow0/4Hb546sXvIAQKpB5lOphaKLB95SJg6MHQeb5RApK6Rd29P/PNh7yK3fsPX2LUufu+HiyoNlPwZbWgCX7k/XDXw19myd/8FbqE5h6Ia7LqnJqoKjiu7eOK6CkeTJbdL62mwXtAgJm+L0R35J6jI/0F/vrUW2o7FxVEeDJi/Us4gaGqWyfZt2nx5yXFn5mnH9LUEMZwGJiiTBFANL0zc8T8Oe3ffctWxmZ3cUUwWE3I0IVSnNosHIBJywoiXxZFBUAUxUcsyNFoOqkooBFhoemkvHHQjfDA0LAEBo1S8sM6ICqJA0hWQVOS97V1EgjawWQveJbRK42ehxVvt8QAEl4oNvR5LoRldhMFWZ4OZ1TICqhsE5ioFQFDi19SBZU2ueq3fp7qWNZzAuTdUUI6NLMwwBhbN7Rmt6XKOtEyuVkhTp/OjOfb36xg2vuWBDEjCgecGG+ZBI1IhppsFykt61loRZCVDzO7d2T6SdYFyZgStd1IQGg31vqhgQ9dSLY/Lw1vRk1xkTajoFq3qR0yM8vZSwLXiY6ThhtJjOahka9qm36cvKDUa/0UgXmNAVv2VDBQCjohzJAkhUC/GyXd8Dy088fPhr8+WGa3a4ymiAxNajAkwSmdzk2EEmx65oo5ACmib9A9AIZIKADuZXQ6RvsE8/B75LypxP9tOhiAIgTaSFERXwHFW5kUZgUKcBjryoDgqgimBVawu1hTLMD1xFVWv+ieeDE0644kqogetT7nBouz1iZ6qYPbJhtkJjrUC9+f3r+0XcclBza5O03WkbBqlFjl5YRqNIECNQitUDj+8zW29Ye/ntdW9UD7CorEmXeKbH0dikcNVUiKn//IsigMk0hLp6YM0wTauN9erAToKzihr2hU1MBHCiv7EO9oKhdgj7aa5X/M/1i4Cwr2tJVNIxZYcTssZEtKUPiIhQreq5DLuRnh7yp0T/OZQ/tflnojaYJ6UMRNOSQNs336ph4Z5/+Ui46MJL5zp+WJs2hOASITfGxvJ3hRfJ3OzaJ9U3FAFCVBA9ks3FZ8b8LJPl7ARfLp+KtHLRakBEgCiSc09BzoAySEp0erzNc8Ol15YAD6xEVFdfe2K9GPekSUNqhGqph84QqSKYFqKdTXAcJV00q3dfSCjj4XReDsKcZxy215u5zCC4hOtaAtvRg6+ui+DRbERXHX7g4b3dLT98/AYa46m6VrISk5hND42FmTIqpm3FLMVlvbVUkyNFH2B683pslatOtUfGSxoTjt4/sBGCAXV7smJML+nUcwZNhuDjjr2QYP3Edk6FIldTJx67XVQiWam9ECAKkKl5VvBZ1vSz8A49H5vwlLH1lJ7RPBQVCESIlSCKVUs+Cgc39fyrT++/59GPbb36ys2utzQ9rCC14psNM0zgc6pjcgQm+EZPG1AUFQnA29Mzc5Mh+vSo60pVXgE4PX0STZloo8s52QoCIppzI50QATgiOkgeaXcWG+61ojUDCAmTQmi9AWnYHT52Y8IOfS3WpiRCoIi2ZWIyymcrEqZkcPrFJciSiVNcs3YGwzWls2lqMUpJofY10b6wk8txZ8dW88Dn7tw3ddOrpzt7Dl3R2TWLqkA2RMxXR4EKvW21TIq1dqb02M4r58EQESBteN/8S8tqw6iosRZ0jCktDO97DZMCTJ3YnNZ4Gfuu6ChVbC/VWS1YH/rOYIBIEO9RN2bFTqexFEBkNzBQuGY38wzokTZ39ZsN85W/rRyRaqMMKKSCiM4aCUJknKe027n0dbz8sX/4wvabLt253+TMBN6BAlADHSRQZgfcSFKuoEdAEInBx1Nz09+4CrtyHTxc8JZxcpKDKCt1GJanBF1URInEHZ7GeFalNOvFJI7mhsWwdnm/XfOJXaMkqcUbrhQnPHNK0pEcJ6sp+ZT2+UtKlGEQTYwtTxdhHN2aTowIRhEl1Jl/op0vt9eO/3X3I2HTS96Rj/pEX7zu5fNzMo4REY2YEPNumN/kS2O9IEBN9kQHQAA1YJbJr8+U6HxFwZYZehtbWA7270yBmabHO8mMQp6CE1u5GLpLSgyyvDFCVLApP/HCOlhnO3SGFZQNCFKYpUKfTfFhslmGlbCcH9xny+xQAUCciWKMigNClUCCqXiwwAoEIXTe9rYn/uVz/7T6O9Z2ypg4MSxgUJhkBVMgEchYoSbdIhIBUnWBFk929dlloPXcF39gnAdNRlGUkJAioUHR6JjPIWfYBpTUC4FNDl7DEShEAjXWlGJie2hK57DE0H7YdABCXqb2sW53RCiGgmuZQPqBHzVUqwN9bKsgZ2VtMw5KhlG5lQUwCgIMy2Lq7NG3Lh98cL9ecOv3ttumGrkO4WO/nmwecU2as89rREliCYCJUyWHpsj8iXVkxHoUA0yblRUr7y2nKIpcZNc98G8vNxrG6B76wR6085hJApCg0RJQxRxqrQKWhH16qLrc111C9EF9e9RemEKjTqZxhZr2lOp2kwJBY3uNT7m9K3+eWGLjuU2dMKBpiDwCAAQEAg7AAloQsDQy2//d/3v/Z//KvfC6HIINxJBwSIznLPpWijGA0Sb5JgUITTZmxKdyoH3hwCEQocgKb73BmCiIiZqoh/01+JzmYy4xqAUxygpoUPPzpvfJU1Wdl9MbYpwk7yYHQRIAVogEKOHkFTCcSVlLeOiGkTRO0kgg+NWp4kS/sAvFqkdudb1WTNZtMf3KCABSkp1Ng+zmJV332L4PM17zo1c7cyr6Sp2V6b/Pdg0XZisxGVc0NERGObKANqKLoXtmQ/1Pt80K572MIW8of3FFNAnbY0pu3DUX+qMc7x2tFrG2m4pEo4AcgkRuL3SmRgQeVB9sG50a43ooi7Gt3LHQAlXjnlty/s3bN8308DzxANSqbN246yf+9sMffcnzqbaWQwQQB8gxsWXT+yYDGlW58fpBNqixN8jUgAqgPft+k7U8K52Mcn5i6NOWHXqKDf1PoQHigCDQMzFXlvtnLqgCgyACWhr0x5lMTEeIAA++FgJRYFje/0IhsaCI1oImn781VWt6M/2HT14znhqambWdUcBG+yRJVj6sOzO94d6//sj0TRdftU3Ho5zECxHL2F5Tu1nnE68+s0MAazFGVlVGQsFZ1nCttoStEBSmAEHU4BlUFQFNnkZ22YKOlxMa3lgsWLCuTlSMgnLtwQA+Imk/UcaQPXadxgTSYjBGtHVxdCOiSpbRcytqf6Nof3PRgAbfffbljZIp+1kKP/3G9/2vT3/Hq9QhAloMabDZqD81QsIVujbqRFxfVcWI8unpC8dECqrm6dcbssD54NBJVJfE5cr5FQ/nSSM6Dxg5obUqabrHzpySRkWHrIy8molgMQIgDzbEIkQO+QPcHUqwCoqJ1erY4Z/sp91BPpx+4pINvdCeWp2PS0MREUSTs+oZg/Vf+fCXr5l7+4sGZpgWXC0rEAiLf8sAvVsMTpTdkbXRJgnEqCqgaFQgyuqljdvKSrKlrsfEqAKJDw1sB8ia7rA1liSILeK110jBmJwYbXMGEZVDJCVeaHsSJalo8cpxOljVDrWWKeLS8cuNKiYJ8nM4vvqGMT//y7NGfTIBN60OlLWZK+xN/cCu3V9/60su3rVaK5ctASp166W80ZzRSXkInCqoigBFpeVTGyMQmijP2GYEYvCHDqSAflT11TIiyUp3RIQECZ460lWVfL7vAgnNqyk6F4E9W8uCxii5Y6uS4VTQGFr3tYM3rABkkgSyT17eGeROh7Ozn3/e7Oo0K1oyqKQRCVHnVt6hc+87Vv2XTf/Plp6fdlrxkECF1SQj3Vx5VTOyJi7f+XqbpFbjRHeLmI10lktesBFYyT5+gwKAxLNO5jZtD6s05nEwdPUobx/LCpvvdtsNIgIHVmVNrtji1QMAHQqr+u1B7kIAJ2DvW2hVBlxqv0F69P+X5hKOhGhsMDPbpm/8vo9+8WMX3np5y8+eLvJFnu7GlXrZJJgruwIERqwXTq9BRkvydDykJqUZ7ztp2Gq1GNgyrPiPwNndKD59eldlePzyiiezCiWmtamvI6VUTIJs0kcukTI1VEt84ibPBhkIbZpo/fWfHeRs1rE9s/R91/gqqRmBo3IkAszSprKk6j96wW9s+ODM9lPOqWiShwYjpDNjMt2KATTYYwuFuoR8VFRFBcPgujREi2h53KnxvluZEGJo/DQIyWZhcWNksxRdUWXcmwKT2kevSQQUufaAko7klpGg42Bm/rWLeT2VWO0ZG23++KyNhFmywrH5v23f9AAE9akPKFuuFgSSpLSX9Dj53vLAJ//5b268af1s1WvLuMWNjRsFVQUFFG1YUQIIqqPDax2wINFZ1alJ75B0ce8JdByUozpkghWccdNvojnP2aGJuILH8sBFDNyAkm3K3V1X79qyujszN9fJHOmRLaUd+arS5eX1AoTMiiaxcGdnQ59joFZ11d9ed8JT9HVZKXFjfWWNrpDintxy0eDL31FlKWrRiosxRgGQCHMtE3ulScHTobVZao2GoNAIlKPJYNjFOi+NAQMnJQMljKER2kMyLv3sIfDUHxscR4Vxy2R5tWfO1sQgtQcSi/X0GmsMoaaP7lAnU+SOP+q8QDxyqaJi5hrlov/LNkEsf+PnT0bbCvfMGcAkIRPJJFlrbjXTpb/w8fe2fvMDJ1dldVCjE2A9TvTlGzipKqDFCOHEyYpU4FzqeW5/fvAYmQpAUMA0cAXVxhlyhRd9HiGu6SvBDOfnCKWp3xjH4AiSqTVZK6NYjwdVZ1yEehh00SeBGyEBsga+/DwuYmbDeDVeMXDEXBRhqE6dJUSduBaoKvCa3uKJm+tQTNG4750lCQHSdlcqCqbdU3Rmb6sigxq5MbMQQJMm5WIARW/ycXLkAoeKwLxiQYPGlnOE3dLFzKd1lpaYJv2jU+oNq/igICOI45DiOEg53rtNy6lc5MH7uyp+6fjGCgEdsdL/fdC/dXva0hFKRo1s+h7H1FryFJfiLe/5fPK7f1HMYNsjIiFIxPMdX5gZwFEE6R/qqwpoOMdLbwKfPn6sZdnGBA1Nni4r8t8ICIZAz8mPeEQjHiGcGK1d9tYKQB1bLMRSI1EqHj0UD13kzHIWDs+z3XC/4+AtqU3a48GBS/0oTX2qmsVAglYiWBStxKVLtvAoxgrZehTWp59ftxY4F3ZJyQFNkrHPU3QgPEh89Nn+tUYLE0KCwshBnU9zGkMioQAqsXXfThFF9VUQFdaIndb41GU1jI2YkeGkLLKZRMZ1UU35xFcmRUaPaeoGQVlbi/ePi1Zm8sFj1wewrq8zgaBL6BqR7skQgEknnbQVgcfzo9g4Ca380Dxowks5n106eSU9+3qIiAwOgxBgnnOSVO0ExdpR2PCX7z39Ux9PyOUoSQ6aKVhEI+wBRAkjkYIBzI8ssUMBA4SszmGkNLpE8eQJMMwWeiEAoWVhNabZtpFLrEkgP4d7FzIsoizpgQuc0aRWRy5itBi8iAhgWrsy2bvdIEcF9e6N0963Mqhmhbj7oa0bY+aHOSeFr1pZ8IDMoIzOh1pS2+C6SGV5vDF58MbEpwZRozQdlKxBFQmsmNUw6q03qE3d2rnxFGlKxjcTGYWMFxfXAWD03GDcjCQm+3oeAaOodZENqRKkJ4aQjjXEyCIKCaEqEkQY8Y9uWprNeXH+0OsqtGHcGYiaxDQH19983/X0kXtuPkcAnJh5PK2dX8fRlSdCYqIAWTzvYBwBAMYv3fq3n/zcVTdsXr+el7IyVom6Sju9BJWQwAoBkWikR8LFEguMiglK8J3Qaw2wMzwhUhEFtE1vQ9fMExobRw/0qufkhRVBjToth5/bFeraEXDdAmODjEoxFEUJLVfzL1TmSMDY2wDjlq9bGAnYfPLNtOyywDFtu5GvY1so+KaqaGBq1lZEwIgiPFh96LF3gLYISBuROlVKEwQOPir13cyRuJqtAjMGm9zjtuScZ0mPSUAV2SX7zVpv1JeMIgpgIUV73xZFCByNQEwsG5sgXlyV0FoMzSphtRG1seCyd6Tc9jR7N8wtOcT0akk4TxtTxecU6mf7von6BGfxjYr35z2aIzhAPU/9s7FqSQczb7zu6CPvD6+6+YXb9ywenivLbHa4XDAramzMt40KUP/Uxq6KAQZCNa3A6DLWXDqjkGKwBpo8Q2Sy1wYFIcQI59luIrKiSTA58eUrRSwIx8ComBnh6GNwWnFIjuezHtqzG1Z1KkMDproVWv0Y0939naMcY8qdjsQkJQ2gIYJECmCwyDgqqQAyl7L2K+vWl1SgIgdBVVB1WQKgHAUgRfxUYt2UCqsyyANqjNqk9A1aH6jKH7/UBYOhlgnl0zrSIzsMSJDgA4BEzGw1vOZXtiV5P7KIiALHGKMI6xh84WbVlOFjV4n1HmZvTQy1DEw44U8dm8+5rawK+LQ1oEllzoX/7K+Zm3/nXgEBAYY6s+XS1/7ux39v8d23v7vEmXHdGs4bMagCwDyRIQapiuVDbMuQGAQOESGZ6ifYS7auzt1Eh1Ka07nGBHiifAZJQueXYRV0GDQ7fHJj6W2laBNqocRQi1KiktQ23fDAth0D10mgt6guoBWIUSVUnX+6ptMjL1Z6G9lCMAUrB24kNNknAS2AKnHQk1PdL7ychBJQjREaDWybNedLAEJl9cANLTM2UVWQBodfkxlrs34kFBVVEvfQW4IDjtysl4TGmSPVVvCBESKS09AqYGo+29bjWZJm2wCxKQ2qdabgrFXb/NTet42QgnFbA1GBAo2R0ORg9LkE+tkmBnx6eM/e3SZ11smrJ8GjAXIr07uiEihql4PdZAVe+orhR//yI7e/Oh9SN1AxLFRJBaxAo3HpsK7ZoNSR0oQVlHGYS1avORmth4RlskszSoAqKtikKwYb/wYAABAgKk8O0JQXJuMaPKHwqRSprryIodES2mztxf7abRdsWjPjRj0djRKQvK/D3NfLd76gX1edll+1ev1cGiomA3UAVVS0ppixjewkRQ/99r6v3QApE4AEVgZVQOcAlFkR1ELptpculVpUDJ7oT8carVEhiKICUgyOXBSz6HmSs7rEUXbvbB5qL2QhqcRRmkjl2BXpaCwTv87G8A6JXWxPJSOu4Y7OOvU2RQGv7aIRdzs7F3/Dwa7ntackes0fV/4/v2YyGeznnqOqGtCY1MlTlnREgH5UDsNxMl403/XpH/vwx8rtVNJSbEVt8MuoE3vueVrnaLpd5EbROcxTuwGL1jDWZRSgiQ+kTr4KT+wEUAHceXApNL4XMrvxuxHJJKp1/eQu4RyMDzrec0EN6Ux/cPUIJZDnZNHmNIrJtBdl/Vx20bgV7rvnxLbOpqnpbRvK/rSvGFmNgnJ7Vr2iCmLwJtpHu3OiOQFKEGUUBLCWUZoNey+deuf6WeNjrSIGjq6d6kGSDL0YZUBAzvbkc8JcMgqrgpJNlb92q/rIAqB0rLOJHIpmXBZQU0OwROTJ+mYogGGw4cQ/rA75oMoIKuPaE74fPMvJ6tNH7Lkg6fmrd1O3XzndeNoT9PxOAQAAvgBvScSd/U2TFHSDWAKuKE9r/Un3H+583XUkM3UphlgAopFGUTLOboT7H1s8dko5MILYdnvz+NVwY9U2AcEDNLAKbTqyiCMEACJFOM8nQtAaNcVw7bqqYA/iRMatyHVVMaSxvwrZpbsXt/aKyHEwCuqqug29gvI+4Wd3pIP6zPvuu2h+cBrLuXX1d/yKRqEIJBTHGKNQA1VgOzb+RXkZNyKgsmh0ioCEisqRETQPJy47zkbFG9FEF7PSO5cui4I00mW4f302GpLHiYAJgwu87x1BAJiFw9G5jY4EgAljEI7N0oYKKsKKAFMpQHckmN8kA0nG1ta5MWOHiDIpZT9XEdbzM31F0HNBfdr6oOd3iqa3ODdY6HTJnr+ogwJodFglScwGGnurfnDXP384XHzmAgW0FJGAtTlq1XXm85/dozvWXLVqNkFjcLk6dPedev97t6w/umi1TldY/4mIIDTyFwBISucdzaFliS23xYCt551GGne/ss6xG44Bie8tW0OTuruukVSJSgrcqXR6DBb3b2zFpS//ct+OL3hj7y+yguIps/zBj/4KV5wIUPDT+yj1xHmZ8VjOrDHxVS/r21Viy6QeZ+bvviuNmqdgoBwrRbXBtJdm0PiAbANUl97Z6/a3coVko0W1FbS+dlt0dFK0MQ7SpFB6ADYPwNdqY5o99NbYNYFQQRGkioCAaAhrNHakLXI2URhSDL9kSkyj8876VakIQkR7Dof0jeZ3anbiZ9eAlXRdzu3GJodX2JxlTB5nq+5SSyzVxoQqxWrmrvd+9iM3VgLJqD3MypaIKiFpNCFNgrGhiKZVm52r1p9+8qErT2ehRkuRAdg5FueKXz5z+Ge/99L0bOcSjEtf/Pp6n7fHNaWEIgJoiIMmxGi4UaGgaOjcdBZZJF+zpm1Io6iiGN693bMYscj02IynvMDljegjSl3WkVTHiLke0hHuW70dJfF3vyQd2daaay/8jp3Hj8VGHUyKdNvOfmrNUso+D39flonUVogAIgM9lKMq2YnUFAKook0SirUSiEi69uemZBXHotSgXDPaaX5iB3KZr1RLMmz323fs8DIGKwL+tJtupS21wbFjRd+U00U0gUqLIrJ1xhiMgUVVRcWIOPv/Q/n1vIrY2d5y/howWdPLpJ8N4mc/JXf/YSgsz3z4fdtfcFFZqRJEC2cF4tQaGw0t+cgKIIDprS/OFqhgmmjdo0FRQij+4w9vfse1sRpPWqi9FtC2OHlPbXYRomRUGiDHyuuf05EzBtVOdZSMRlZFwP7Sdm/L8ShyWg2vDEk7G5/ahSmR+FqwVstOdHd/Ltn64E1ro9Bgz8vEuFjG0kTqe4AooBr2HZpWCdlcpVg+mm6sjNbWJKQYAuodq1HUJSgYJl6Wiq7ITagDqELQ6W1LZUcqjsCqqoKBt20Krh40txpNkbLI519h61FEEGMfdLkTKT0qOx+CIKiCShQDzF6jOoeKxDU3NWkxMWbpN4W/PVuov+VfVlzWVwpxRi2t+uhd7/l31//B7y/ddfLvvvgLHwx/o7McvWHLTqWZGkB8yv2ka521lkBxnHar4KNptAWRyJGgIR2/4KuvX7OcIk2axChF1cKVS2isx1WFjLI2hDkAAGvPCzoRKiP6pnijQO7JS1KxY8gAs/vXr9Y0Ncf6F3AeG3R0IFBGe9+lF21bt/+FQQEPdzaXcybBYcrm1Zf5ZqRr5+R8bHPkfpHi7EfWcxQSbCeAGNiWT24WxiQhgNCUKQTIpinGGFiAQqXLrlCM4xYgoiM23bX/YTOPajfpzJa61YZ75aZaSIQYW09syDKKLkkrKvtVaRrPQFAQdTqmDB1xBOKaQQEUhRiK5NuI+bkMf/Lj00b6+YFv8A+TLD+860/3XfJj6Q9c8McfOfShP/rBX9j1a08ceeJOW1pVESeTGaIiTTJWozEwENmkrsdrLLtJzI0QKpJq8dD8f3DT47Pvi0RKi4lO7H9x0olEGyljXrkeY8y54kwMiiJkBJURRCC997rK9GLlxMq91ys4i3tbRVWdWRxTMTXV6thUZ1qDl6+59HGzfQiQ3nMlUpsgQecjLQUABRVqLV6tIUnqzrhXP/nAjSNviXTKKgKLPZquZzaJNaQTOIQaa41RRuWoiBKx2wFVr0IKhDYzvc0j8WKam0/OpRH+4juSPhYYiRUe32odhARR8z0LwMIyQf6CqmbdSggRgat49phabEbPAin+RjE/G/dv/pCn/yLF3/3ax/yf/s8rHtz3wk9t+fybfs/+1p9teOI/bSiIWGwjwa4K6FrD2A6VSQwSqoItisVVjb8hIhnTeLsJbbrjumQ4tCyTBsaILDsQbowxdeWAa9Ivm+cTIeG5UzZSMgCE3EgtgA5ObGI6BaPA5mC9o3QO8cldEpU1RtudmZmb2zC7ZWlul+T/fA1qBH74Sp1mCpr6fMdJFlUgVXt696U0VnWxbGcf7LWS+XVqIEeVyAoP7soUkhSQQhQVUYAksaSB0Yiq2szYCrLaO88gEjHTxXyc2jyvmk9lbB6S00+8oTI1R1Gbzj+6KiG0Og6p3unJ1hMGPwYFL2281xAao37AzWklokDm5Nsyq57svp45wmESufNKcGf/Xn/8P18NG0fLh7/nxI7iVy4/k779vSfpo6+cOlOwQLNfb049S/YLODuuGSGWXhXt/FpvCJGQJtZ9JJrQnW/AqdhiM2kRVJWz5lRNVVYuBIUndENApEYn9GzQLQI2tVhhRSD3wPp24qNvUYJf3cmhk0rcd12d9bVtqloxT6dm5tY/emkCBx94sTdiDg13ho5CKlTHLafGAEpGxR5sFT6pPenMCF/++1gfuKRBeXItHO++tkRKE1Xwok3VIUksSggKagyj0zTPqAqJJRaM1h39ChjTOyMGARCQLPgkefNlYwhjtsEm95+ZzkdliwzbU/fOBABotFyVg5IaebKVKABHL9gI3yBjbsK361D+rdf0s4jNSV2289dbFzobF/ljX7zok+tOXyw/+rHR+vINcz/z9yZYYKMThKnhMDuDx+87CTaJJ/c8+niobdhWCRljDKGqRUVULAZHbvLz7eXOSucTFKAka2zShSM0iwoiRyBQ1Cbm9JSga4wMxgiAsgJSet+lraTujHEUwyM3yepOIuHU9ti6/1iEKMZSEI/Fgau49ai/FNHZfcWmMVpBL3ls6zKoIqmaw7dgv6XOc4Bq6joaHd8a1HrGGEXjvm1DJGdEIayMG2sNSowaxVoWrZcLV6lUtRUx6GD/esuDKZIKAAABDfEo+9H+cOzYprXE+0rwh45oTIwcO7F+FBwSIaioDZoZLIpOopFZQFWFRZSEHPK3EfSVNPsbjfSndolJ/QbxM5+7YvGWas0v7LA/eebLa5aKu/4iu/FFTp/3IS8JVqZJ1ACxNfz4H3/wp394aWEUfe/M4vDIkMZtJm8MEaiyIUBUyu66NqM2F8OV6Z1QERMTCRFUmFfmdhQBWiknIDZBXznuFYNs0FsTI6Zjlt6+6wflIOYes/umtzA4b4/StF28e0PoG42YcqJzgxddOLIfut55FPeFV5/qJN6xZXAzxcCAl3Ea6GtXVVM9smpYR3YpGWarJLSQUCsz/alVScKcWFSv0Y6SCrAwOQKAMGRhlNqa5kzEQWoZhxm42Lr/ymGSLIcyjVUCp77QycUaLAV57Owgtf3X/K+dgz8rwSonR44dsAawNl5SIs7ATM89iNMBhNwwWvbR+goqYzNKznndqa4cgZ/9GSan4s1+gVTUGCWkwmQ2WVHLMhoZqKkViyhy06cMJ54YQutDtpi7/DNrN5S3X/G9V2arPvQ3q2aOPKxynQNnazEBasla+Nj73/Ge49f/QOGeePhBxH6RWWyNk04WwYs2+uhDqzXn1f+50XrFOqGJ6zOCEygxYevVmkQafTqUSBg8ULQWhYVrBE6eAYF2YxeqwlaPbXHGCwlk+tlX9rJCMDm2iiK9ak1fgTQqxanO1M2bxycPvL50JSwubDJWbUA16hNXok0hienymikICUULKCygJRmwFogHKPqJm6fO1NsoFAudaCNhphG6o8IuB2EyzYFVmmjfBrDjmcq32geXOxjqCAiYVq27N7ACogorJCBWaWZ6GufeftEIox1f96uzQ/UWI7sAYmvuZPb4OgVFUwdYdhhHLfEgCQX4RizQZxnFaFA8QJDPJBvylpnKCgAGUouNUD0ZUOGYRkx4DGmsEIDd4PFb/LX9h79n/OLNxw6/Jp35wT+w8e8Wf+GFwZZYtdKRyVL/0Gcea6352U3OPfTgKy9eyrRUQ4bMUC0DkoIoEBglsTpKltpKYvCsKrQgAqABISJhMqiKgKhANqqSmYA7DJ4PgT6vZweEmN19hTVjxqjtg0evHczkbNPHLkQ1l4zGKoQgLrR4vEGKO8O1IyFzELeig6R2ilQnyRKiq205dc8l0yG0oE4icGTUvnWaWEDPXJ7Y88O1JHXdgrmTNbONGNK2IVQFTGtCAsXEgjyyYwwgpC2bPbGh8LUXVBYTwr23oTbuPqwBFGTUmkmG7hIznIrUy1+2rIJsvLphJgDW2mzf9QJC5CttD6Mp0gXpsIOKUv2WRfdJQ1FjBKB95J9NFussJFY16XbWJHmrPTPbKSYi5ZAgx4y8jiAwzT68562P3fqv9pqlXc7cvA75+Z/9asevfugVF9vDV0JQZz53xyPTN73romw5H44f5xeom8bKECRJcswkJQFg4wAgwIpGF2CzYEyeMichKIEgkShYgIkAKyEJTLhsZAzR0yXFAICTAWUjLQ6/TrRWFaU7nqftggLB469AxfEQKKqj2ro8VPlo7mM3Wdcvsj07OmMDBgmFALNTFIWR0we+y9akiCrKAoaG1tUpRfKAef+Htg2ok+Y0Ml94caixRkaJc+NoVEgFENWkQHsfvrIG7wZIwTx8UTPdigi094SLElTCGIIgExIIQ5gejDEJRu1COu7UzqNYYAXOSJWOvlJVUcsKQ26OzA25I9HEKkmefhu+YXNVEKtRhu+c/ct+F3rRD5aWR0HHw+PLvVIwcGAFUBptue2GHTB/vPSJpHPvW+dXT335FZJ1lqaePwRKstLoa7+ShqQ3PFEfueOutTf+2iWpxLI1zpZ6W9YvrZkzkoLkHZlvWSGIICygoFiTUvLAxm36FEYlkaByoqQME784aJI2BSJQQCQzAQw8I+jEVaaSP1qsrxwDgxt+/efGm40qDU5cKAIlmFo1AkDLIcR08OCvj4GG7p5XeiKIhCTW1jPHTBSQxJ+82HPijY0iUdGYyhgxwOQryKZ/xAeoZ7yd+fgR9JFDmto6Q7VVSHqJKgKY1OUfn0UgICDfNo+9MrCCsCJw56sXTtUUQWNowMDi8jwDMQapN9VDU2XqARVtjxQErbXLvQ0iQH4caNw59bHbV7coANS1ee6J3BisQbTKr/ir9/zs3q02KWYvNACMogAc42LwrAiwkC19/fE3XOtLqjWGUx/5vqMvv7e+ebgqzIwizFYmnR6sv/HTiVtV/dVvrLvq9jddmkgZE5BKXTXfTttrOxxR0k6nOjWHZ6u5AER1FijZfeV0IDp/q6lCIEZNCGoApFGgRDTAao14i0TNPkb1GUFPlqPp5a0vXeaGFWnE5BFdb3JWwlNhXdQYkTVjCNa0GOx46otmu4+thfHhi6sCNRhFUSm3PQSABpMjq+ZKMDVRlBgQAWtEciDREw9jrA3PuJgs/O2P4aCQjgdKixHiIE/HqIIIJs36X/nNOhpki1n34LEdzBwCE4kpH/r+WgFUYlRQYIY0z1RPt2yVO5Yhkg5JkU08sFPBqBatR3GtZ8LxWGPeP7iYpDJwCDWY5zy7Q8hNOQyA8H1rfu2tFw3JNB8MnCgZQtg6MUAnn7xqSAvHxQGQe6Rc9+SOP70OLIUkkI60HVpnbtruvv6yjbsv+PU3rKMxVN4k7A0WI/FTHTdjS1FsddJwal0EFdJG+ygSAFC1uCUKWYXz8BBiFRySsDYGMwYV0JASGAONE8/KwH76h2JAT3bh8HU1epRI8Y7n0bQYITiedqN6EU1MjSkkCSAa+9ErkZWm96+eBRAAFMVYlTuPV2jBuAevI0QmI6QcEVg8gEsMxpiosT0US96Mvvjgql43rwtVThI2A6J92Gj0mcR8ZnZriQxBQ8v3rrHKISoIS7J/eE20ERuUlRrFNLHERSsJ3qdDE32MmGTINH7Uqtg8c/Zwx4gYHJUQg9ny+g1apgwgafatz9FXWmEGB3c/8uDdn7u7Qx+bVytgDJFNVNlXAdPax+CrclxqlLTuOfYOs9ajNxy75PTp64auzAY2nXFgTl25drjqRY/C5qPf9c4N88HWgiCeE+USxlPUcYqtvDVdoM6vrpQjqAIhcPBJbczJdBcjI57jOiAoqhpQQFQWVCQCQIM2dQiUGFRVIPOUitxKqxKs2mG/3V5bAWUq73tegtEIwVJqGVgYsH9sgJQ5kiDl7pszzJfsl3elLkQypIqxipt7pRKjPHFZtBitiQZEUJkDgHWEzHFoNLV1TgmkV76rZfXE/ae4U2Q+pcW8/uJCo7BDRj5+k/cWWEkN3PDzpMxgSHw0B/PtNo0NrhsUWa0hY2vrZYrBjjJlk5a1Co4Pk4qZ6oAudxmEoA7ETG7zEgszon4bSzrA6OTRHlidjfWuTx4fjhUAQaKv1SUUQ2iIziZRGvWNDZpTYWR81+r5W/ZMz6QxLFF2KkDVqrYn/zC68AnqnvC9URvGNrOMRRoLbyluKDYKu26n07Gqw7YHjsLMqhIJc096LN1hTQDCcHb0EiCIsgCRRCHAhmaiNnGo5Ah04lpF9IygO17ORnP/cp2MjYma60ObNyWF9VbSz75UM2EzpGL3H6/1Nk+qJHYe2Xd9PwK6h29AgakACEmA2s/MLGFwJS1vqxgJOAk6yD2wCQm1jYZotS2g0Zok2oF5SYz0+N3TSeiI4TKJJ3avC4zOt6b8yfteKCYCESajopwC2ytNYLQGH9to7VILNAZBlMo5ZrUUFUmP+X6okDhahXTq4as48cUoUXx8TmOmPCgZY+kqZWLMoUC28TwUjOp5pLaVOgY3JyIaMh5b6zEZJdfsOX24MVkiMgkJgyE0iEAEgj4rqv4YAH2azJ/ur0vuuc0PkamaX81h7sjjN88kMxeW4brFsUWjBdTgOCCMM6yXt60FBMg2riO29aiVCKaM1girJeilVevwTopg9TyLNVYMDGxRVJkyY6yqswqQJy7PbGMERUS29s+ylo1bYPYd31VTRKU6/+Iu21JnLFdPXt33Qx2kdunv1hh0UlM07l+vzNRV2VHdVNsMM0KEOA7A5oQVyZ64sLvCGmgQ7shoLSIIgiqqkAUQUY7sHl+TQIEkGmOye4uJDg1Z7HxyIw8lkmnQH4jLhXAGga3c+lqN0wE5sLCgkNgirTlJiB69w7RWgGqRqmNrE+hELA2MTpPRUBMFTp2CRnQCRCrP3Lp+o2aS2VmowdYIF8bqvIMaPddFmu8U2QMmZipb82W7/lq/6pKZC5IQbTsGs0rXySG0a+f5ww8tJ+jD2TzcRNOdys86VEIsh6jRxJUKYBQ0rh6uMue85M+irrERnQMkVWEBJGMRJ4v5hCRj7DNECQB4bMb5g3hRDWwEYWnf22wSrNfWGT81tZAtduulPY+/pbTdzOHYhE+/wnAyXnPHzIalIlUbFDhUbGn1gedV1L37sqZTqXAEAQWqnbMqyqoqCJImgJGVWWjfrWw0GgUfzT23IS7P1ezy8KJLNyyklSoqORKE4EJkQJX6ktU+kk98HUUBnQ2Api58ivkXL8iOgzbEP3KjA6/isuM7pPqimkjRrpJ+YICEBGLiLAE/m+rI01pz51Slu2roEzBSbs2Wt5zFsk94/+c6ASqEsRKLePysrlr++LFPHliYmX7ejb01a//x7gPxj5ZO/dXr3R13HTu2ns6BHMB4NzNbYFzBzuV10lZGgUldVRDB9Prb7SShX7kAAkBDAqA42aLBCgen2ac1dnCq9GyJnIyCPnC9jaIgoXPnBReaKKAh+afxhhH6cb9ad+2f/oABYFVKjx+5uhal5P5LSSNgVMEQhdBesg/V2icvrRokx+QEAGjYtkaZgygIKDgH6AMImvHRthRqM1JP9aHNLPmI3PSwmt58bCjgBZUMqrIbOeMLNKBC7ErDISiqAEbrAFFcWR75xA1D5MlIJ+2NVotJ2nlO5StePWIw+bqNa1bF3LokK9KZnBBBnosGRUMZCW6mUxTWOUy7dydedQUYdbZnTPqISlUBmjSkj/G6Hb9991WdW2+/5eG96cx43x8lv/w9b/wB++9Huxa6sHtBz/NEpEhJYc69aXJ6Ng0QzMpIN4SCp/gii5N9+sqJjgIQiqIgIClYQ6DCbMzKSDcGQTUwP3PLxqZsn9r960OMuUq0n3uVtNSK097fXJSWi4lJRr3qkvFoVcHgnbkDN1YUst7BV/dSJRONohdET5d8daR0Si+YjI+Vka7LayxqHUUAhYBSAqwjKNGxx9s2tHSc1dENYqvyq0b1Rbu36SDSlDcMgM6IahgNs5Dh7u3TjIDOuzErAqqwziAKVRnMfvqS9ceyfnMagsCn59rVVG5ZXJlTZVSZpqfKwdYS6qydjoyCdebpt+GZEZ8Ql2xw3dk+YZVYP/vVHx8V33iHH8tgFSmuvWcTX/iCq19YF2dWnzn0u6fW7dz4X6b33vDpJM3yM+uzPbfNCFo++z6iCcazFxR2zwTv6nzlZyUDdHJ6rVmBzzb/TUjWDMCoYBo0AyqCMRhVkWRy2MJG3TNGOiLlX4cLPACKmEPzV8dO6gKY+KKfWWihT8RxMZTuqsShGL3rqpwpuMfN1tJkmQVLGFikGq+rho4e2NyeMOIlMgogyNIWo+gjqJIq2FQEAqMi7V8qKMy1SDzjyEE1HiarHv/aVORI9bJQQJcaQayhLcNs8cuoMtvh2vqaEQBBHMExH5wLdvy+V1VuKJOTTUN7N8VaSrYS01Gv41C50ha77dvWTqUQHAi4xH7rqK9EUsQWJmJKJm7sZvXKwopPZzko1GNFFTb1I2bt4Iuz7PfO9eePveZXf224fmrpz3udS8yBy45Nz/St5XPsJjHCnSyeO/I+tCaSPTf9ixo0py8sGrLleUBMRQBlUEURVWJmVTTGGjo70SMgkaHsmUH3We9zz1dhq5Hzf71kXceqCMTWu6/P5jvHqtITVVFGQ/aO/O5dgsLw4PYiGRctNqjC0StJ1/WdffDaFa6WioIggCxvtYpRLQpBQzeUICTMW9++0U6xD74GFgEvWru/38WADkLqLJgkNUroEWPmFpbmvOZivNS1AjOgUB6fNKou1T2PwRmRFZASJo9tZBJxSaoJGcEQCKF+5ERV1kRcK6Cl50xiQ2CIUDhxbctJejOdTaeaqtl5UResa0NgTPehcbjmye0vTd//JzPF6U03z4XHH3rdDfvf/+ml/f/p0WRqdiwKcDbq7ADWzJ73Osur1MXkPM6bRl68NAVRxPPUrBRAQRhBQFmFmo+vahohykkHISI4fzFZad4ee+A7x5GNiOb3XG2nyjImCYg/5aqjMNax9LqUTeUtLPjMVw8HCsqHL9R8kKYehVklUupyXVJ78vLm5VF1IuEj5ZwBkgZ0L2gMszYyUVt/LqtXD7XwQQN5lK5b/Sm5vYbSKGSjypBLCIj40JMLRbVoLadxubBiWUGigo4sLM+kZV3R7Lvm2qdp5ajbm6Oz2Wx3LllmG0NaxtEI0pz3d4t6GMhYRWsgRn7GfXiWsCMAWEduqpu1TJYUpzf2zpESJ1u7s6FRjIFIq2DuIr720NrDbu3xX/qZ+z73JVe85Q0/+odvuZCKV/Q+2W0lS0sV2XMj2YCZnT4nNtBfNlHL5GxkLUrtR1uT5ggYz6buCgiqAgqoooCGCJSZiRBgsrVTRFKJamEC2ReygR3AaOrM79yy5kwMRYRs/5GXoCa1MZ44aZ/qe6vM6qPLUAetxdX3VjPiDVdPvhbk9ExtQisisBFvstUHnvfV6cv6qRgG4ijARgHYWHT9CEGVlAubPHj1EpkSIGo5M1dl6ktMK5Mdqy7B8Yd+A+qY9Fz0raU12qq75YEPfbnYoDNvH5vuqFvNLrT8SEEQa8zi3BfzWM312a37mdNH2wwIikDGlydnZGE1ibGhbqEUnmyQZPd3nmZJwAMWuQHCJqOdGBw9a8QnaHafopjWOLLIUFaRtyJIE36aAJEqoAiZ4CqPrUpcTO/e3MfZvzXbP7tt7Rt/Y9Pz/PCql3Xc4oUXhHXf+9lPXG3mbTIoUo/NjismELc6iU6NVmTZL2wNiRmBEUVDMWih2UG8gdEog8hZtDMSjFqxQPTe1sFGEEAQtGBY0VGNRNBU9eiZiVxx4t4nfqq/uDoudyj9l9s6CQKhKCFXlWdAwaoT22lMtMaw4998Z8xH7qFka/fTFzK7OtBk66I3PO4OXlJljUMBhyZ5R2MIG3YV1AZkel+pKiIKxESKRHH2f89fueW6f/i+FP9p481jOwgJJ1x37rkU2vf9xd7L/tOcKUfj+U9d/cqp9NiaWNZJGZwzAgbvfKEmT+zgKpV0zeEWqoqiaueUzlarZqrE1AlGTatPvko0P97tgBpLqNYaeirP9Js3I4CUpXXWIxPW0DQrGkKVmiyhRDUIAFD7bqxPZsuQld0HTueb996c3nX0p251dfGqVAd5rFGJ3SkoKOERwmpZSrFR67AKw4w0B1FJDNthCwOAnQx9JIiYLG5Lzjk2np1ZiMDGyT5upaciOhsRRKMDAGzsoJ4Z9Hpw7Z9dujDTKxRj9eVfc+kKqaMejb0QMIbi6CWJY1Ml4/VvWbtgtf3Y1na852UBHAQXVBURZd3HYfdPsa0NoEoI0YAKIpFVZhERExKF7r2beeI0qGmiapS/9ktnrsmfd8WVPpz8ERi3TV5XnXF/5sCtg/d99qXvxkUej/OiV//1h37upVZKlwbmqImTLi5fRcc/sGnsq7B6w7qiZhYwIPjV3prSa7ss+o44JqM9bwZf7E/dsFIURmcNfltBZ0TIWv1+SntnpxCNgoqKtkQY0CFJ4KQA8W3XHs3wsJ1+PvWXvfelr7ppOl3c8In2iwfQURshdTj1GKydnl41P/+3ePlVKUBDpWNKlha6ZsqYWmPd3d9NgmnOWRoZmmDt8RuyCvBsVQAn2tEE6agR5Z4kFwhENMnsJ7pFAPAsQddseOFeZ1NNffFIsj1xqgSKGKuxVwBgyqQ/ZZTJJANc08OxgyO3hv1mzch64oRFABE4sUeXLyPfGCWzgCgIgbLVwCIiiWfI6t03BVFFVbRFqqBcr7lw4++Xd3/18z9+4+03LLeGAx1O9ZJNX99x4t1r/2r9Aahj3uEyueriP3v9//jxebsI3tu08razdve+3398OHrZhrWqTx4cv2kDixAC0H6pZlMtq4Iqm6A5vn66jPBEJ1bsMJJzppHBf65hJ0ZlW2T50pr7NyauaIyCDVQiSAZVXQrV8dNLB574Um/4W1cnJZQ7yi0Pb3ilrT31//fbWkdnrG+XNlGcrgedblx3V/+rd8jMd2S51chaDXqb6g2tvW+Y3ZaygHlilbOkzBMbEUJO+fSVZqWbok7EDACUNF8EWKnNKqAiIscIZNCBKukkx39G0EsslmZ9HQs0+cdvKFrEiIAovvJqRCHh9AjMVkxKgLEOWW3OHL0y/cSNBmjUUvHNuOWN2acuaI3VRQVUBRMVVJW91RBEFQQlmTkw2rzAigCCJrUMwLzxez6xpVz9+rt+78YfT0dglafnp9zxBzb97m+9nE9Gg9nYZOnt7z91y1d+b92re515ma4Xi3Un7/yX/XTdG7D3Is4Wxi8ZvGD3/4QJ2v22dSZL7bBdt8cWkO67EHxCj7w4QpopuNxQQ+18znApIo6UTY1VWjdvMJ2SEFRYCyQArsNjx/YfXgidacxfvfGJC8DRSVm4KeaHc6u07hPu1vksfuZFgNCKIPmxLdvjTg+vfn46WIx1aburptatQj6Yv/erN/NGx+jg+AatCamRZAMAQduTrU+pJaECKIGC5HWjH95QJZvylAiSomEFocaD5pk1ZzueWwzjDMezU7vv/i+rVJVAjPqqDkCqisYevACZQDRiLF3t0seS9ctf+xlPqkChblgEMn36o78IShFUQVhNaC5PjPioquAVs86/bEq9aKM9haoGRRfWLrCH0Qte8ufvfMM7xsdzOOLsf/t4ftvfXlyfgmzP3heacjC9+ce3dB88+FcvGJROjhcXPP77D294++e2fi986YkXu8Vxmf3n1m+xKCKoDp93W6LjopDHriQaa/roK31sl4//RM0WfLRATxVy/JZNEBXETN+967c/e/TO61qbkjxzFuDU8PSJE/P9at3U9pesSvNWTPjItSby9JcO7vnNx9ftO3PFeGn0lbfmIX/0T18WXNQq8ztO7tw+f9n6pQt4dtNNhAACULvhPYvy0Hd3Cw0+c+H4dUDUMG8VVEHJnFg1xyu0WJ0I/gGAomQ1NMo6io0ql4hFRFwpG8oEcfyMT9VeYNPtdftU/e3FVxZjQgQxUHsfQVWxbpnBTgZBZOJKIDj30BXmH9dtrI0vGOoqNtdi3fINrKxGBTmKQYBGUEgiN+dVZOTu1/ZEVUgVDQGQRll7oNU50cZS3vlTP/up9606uvyVn/7nD49uetc6/PSj35988XpuA6H7ye7Hb9J/eNMrtZ/tuuu3Dl//nhfET2GVHVM7jNEev/8d2+YnLglaFeBMTPZ9cVudl66c3xydeZjn+hG1JgumOYF8zufpSqwWtPj9tySvfuPB/U8OjTWIiNbmM2uv2zA9AxCDoK8wnhaf5A67N2362JY1927x06OHt06f0fsXugYkT9cPLtsjuZ9af/piWVgzNIZUBVoLJ05N329eXDkCZ4Hnp8CYEKE5ThEgI8e2tWSlDoSgk3ENaCD1K9K/K1k9E05045ocDgSfJeh1GdLFwg7y6uhn/qDVbzESC6hnloYDif3FdTVFshE5piEP/ODr67/7aSMmTPUpNoJRoNNXHV9dRW2xKAizRVQFMhaFRRHQRNTx/kt7DRsDKbEIyD6c6W8ZzYx85tL8/X/4Hb/12vcU9//5RVt2zeHoimk6dOT7tRdm9lxreGbNz93+2y8YtD/1z/e99E83Dnutk7fncGRL8GqLD257w3xUQBXQNCk6pZV0dCofEuhytTUk8ti6VBWEsgInEiby3NlsrE7Y/vBX3lw978VlEThUQdB0rUNl1oETTxl688RpKIuxPR5bL1s8uXnnXT+0VNFt/+O9ldFLleviaj7xtfZxLrrF6oPXry4TqxEQCUadcTfdu6Wlq7qhqpC0HWsr6OqG3qkGZXGnq1eSkHN1AUBCFwXOysQpAGjD6EagxrURG0UYmFRuUIWUSRSxSliSCg59zy0Dg4CRUxyPy6gKRGjcwXVkjEFNI6OA5PtOv/y/n3gZq3YHzgRFKyIl+Hu3WUdFHU2IwK0SRJ1MS4W1gjE1xAzX3b9qlZEYXQ0W8thChqRKezN2WdPgeIz/7vd++Z/v3fmeG0L8SZOO117Cj9uCqPXhO21a7jo9veXhj7T5kUO//J+787kpH2sHrRQo4P6P/1qPNZJVm6rkibchkX+a5XCS9b6dZG3Y8dZlMkI5VM1yzjzhu62MkWeSGCYqfBDI2RggfOeeHzFpXdVebGd29app5KqsgqgNnLmywt6JU7UOFsefflhvPJYd2L5wHE38fz/815/69B3vmzMudIp1h7aOlqdnl0/ek4KVESTWZM6jdFbHx147Mu3IibYP6ubgXAQEBEHnSIzb//KSLFmrE5c4kWbuH0FrqVJE9mDHapxBsmbJWxbDChJZyTiw9pnTGnFkVpVkcO3bWnm7IiTLw0GY1HfR5P7yrI5WQZhFgeHUztOfuXZLI3HS3D0iY/fvPV4vI7ZQuxhhqRNFhCw2jwBCB4p716uATUZWRpZmds8TLyXl4zuWkzyx3ZyGp1/2R798+u/qry/9gvqqAwM9tNbVyl95+YynVW64zf5tNf7Zv/7OJd/KHSVHHCabrUj6sZuojtRo7tlOZgm1Hp74wB/L9MLUk6tQK966DVglMj6lfP2cmg21WqiW5m6XW6Tu1M/oHIZUiPjUUs61y8v46PZs9+blR676ukl0eeOqwcce3JYPrOlp74G9L1weJ8Zt3g9J1xpFLH0etH2BN2twQy4KWB9tEyirRksgwqJiFtzWFEpiz4jK0JAq1BnIURbI0KhuQZkTAoDGMJGY1wl5Wi3BU8+RFQAwBmZRDhLn0JWZCprQH7Fq06OSwR3T1DI1qsTAACb/7M7Z3/nztCn1h9iUB03ySO9UmhXlSHzQwyFZZAC1iUGO0ojasksf3lVXRAwIRTvXr4JGr70zOyoEueNQzEx24Kr3PpS0jv+OtRbDSOGhiyo794HO1ZET2HB4y21f/XynPz1aMtZa86HX1YNTT6C4Yw+9ni2iJTQieTtBYzCOXnLDjTOlrQ7uQvB9cn0gFLWJ+Tbi3QRdhXtHnnz8oc0bDn99aVg8rfoKYFDFmHrkuox1XL4jeXF1SC7uXvtkq09Y/+sP/dc/7o8z59v5r338L2f/dXoGL3j5F2ZtJVKOmUAcc/dUsS6ZxaDg8OSMgkaFCU0J0fgzF+cnNY1qnCNszKUQkIHVrF1eqNhAAIwNVUdFWVeU0hAR9OwaP+nqzX4+RAAA5mI4mpr2C1E01hXbCR+ONOmv7485oyYjQ+wfvr583sZTigikMYIogoCdufXIcY0iBY7+yFA3NQYwSQxJFBAFFmjFvZeUIjJqR/ChdfjRdRxa8cTMmiTIifsuCyPgJNb4vAPfe/MaADeuYHT08nJQ3fFSP6TI2w9e9KKLPlLnS7Kunaa1XASLnbe/aoD5J6/ZFmtWAjCArQQEDGm87RcvHqFLDmytIpX90hpniZLEfrtq34opzu87dGoJHvygfySEp/9dAFURhoOs5ha0q8/ftH73uvl1x/ffuaBJBdf87x9+QtVVju3huYc3vHnBpjufN//oqlKSIkHrfKKV9rZnWcpKgm6p3UAJlAWQrLVJ55FVOO08WUfRi20OzhAIKQ7ymLSDQq9yVYysSIQSmIgMTqAzjU/XMz5VFEJQptLBSNJ7iKQqI2BT5gVEu269NqJrwgro97e2lEujWTAIqFFAAYSVvv937Ilc83y++yf7tsZBQBCwKKRRgUUZbftIf71PPCCo+Uqfjg8KrY3Zu7YFlN9xHeaJPdQ98adfOH71Tw5LzNmBH4xtMkfvvLVoZ95cdGKXed3xL+WS8DhLvF0qZvtb1gU4+cgrlx0DKwJQWhhVEBEeuqXFtHtmao0KGtWcsAESfZsxBxZrQjCZMVuOpo3qHMB5CVXjxcADSkOKSfeRF73Z7W23u7NffnJfOFn5das6L9xgRgLtLx76/dkPnWGeWt95w8cX0+Ax5TFTNI7i5WEmR2NihNPJWJAsIQAZQwg6feom4DN58D6KhJKlIXaZSl06Nx0gtS43kk0wJBprIWwYyo07q4o+Y3rXwKACQl6XzwBrYmJZiQZu9oLgjq5G13H1irzw1OGEdS6LQCCgcSItgNbvPLHXRK3Xffof3zXGSMyRrEZUVlRFYdt6YHrKI5qin8FDcx42RgrDZP8qGBXDO14PNozbix96+cz7rxyZ3z1BIiW59H43WLgtmBqovOpEduwla+9Z6iTayX0WrQkkp7PiK9dPa1WIMACbLCEk8GUd7HB1Wk/fXXQcj8VBqcyAKiv278+5WWWGJDWxdzOe3EJu5SDmvF5BqFK2IOmEVv+r/2522Q53zNtj8Ei1lIz2vO3oL0WAlvvYX2w99K5fvcu1qLV089qvzMzCwJMwRmP88dW63qoiICy4WoAMorFEIMxc6o2nWqur1HA0RZGIMLOIhMRWoVh39x/uLZcoZWcbJ3DVKIYAgSbFZgQ5t6bjiiwas8YoOuJqqRfvbRmtqwjqZWJj5A5dYvxIEtGGImvvubIw4xFqA3AUaNZ0N0AcISqf/I+3XHAqDVYF08KAE1ZQJBTnvrYpkWiUJD0+tUmnb/GiPhy61GN694Z1vNihuHzoNe+7Ym1CF7UIx8Fkr4w+bdUJRrGjdb3+cMd2eVhrKHxFHCkDLby/6/ZhWvoIghhNhoik9djLGE5ykvfWqq+qoEY0irEA5ttN5AiEGdHPDvedsbF4xvRuQQhVI3tjpzv36+2P7SliZ/nRLTv2m3yxP/eut19/mgt96I9+Pfm75Z/6l3/6P/esmT70g519oZVomhsliXA4bXeVBQFx6FgVgBGh4dOvWt37yPf/9pNtl7ddrOpgGziuAYnt1pn9P592ZrtJ6niiRkHYaOPJJOKAz1KUQGXhyAop5sXS4N5aow9KoCuFyvbRLlsCr5Ooh4dfOWhz2yvoRIUVkNA4y1OWQbD7G+9cND5VAJMVziQiioiGrIPd04CgVd3Sxy8GV1zrvHHDk1eGKf3ad0dy40rc1Be2XzS7kPzIhaVIXvFP3OpZOA0dDsWIgNsbW4+pS8h06qIYVs5T8tiT0QzaSwUCAaNTVtQQGIp61iHcdz1GcegxRwXrzLMYF32LFtQQmiQZFjf30IyKZwa9wU8X3VzXyOenX/Jvvr7l0pjv3XLj6b3oWK/YvLgekoPv/N2jB7YcfeE7I6xZ/9hPHHrJE59eykLJgFZhKrZnFJEQWCoHjX8PM0cGpGx0ZPbSv77uze/7/AnMsqKdOINkXIKt+K8/8t1rPvIj2RkZLkmjgozG4eSgfZKzgQCdA1GcBR2Ac40PWOByz7HreTxMUammLKoTMNXpy8aZco4mEEFa/fHcplq6bGAkCQxQOe8rxlY6JXWvMpbkxtnKqHgDSWpGHT8wwMqA2PncR6eWgovReHfvZSO/pjsgoyfbq0OZPLIRoglUb33dwy8dbuTlcQmlV5BFjVgnc1NZXvTyVf1i+fbB2iNhuoxgom9BnQX8+B2VsTEVbNl+XmWETng5D1q1enlXj66SUNUOgoboHJMLzdnVykHbuTQcz7bm97IiKZKIcZnB6eOb5w5nODxHFWy+E2ODAb1MrNlx0X+df/TS//4mmumfoMvs6ifT2pUjcuyefMu/v/AjGx56NDl+1YuvuTBLPnTiNbfZunCihiVZbKVTQQmiUapphIaBEZTBgrhNZ9666nX/+bfyv3r7bTe++uc+8KWH9h0N6AaP//2PXvZd9/7M5y7bv8fZGCM6UkWQUJF4RE04CpEKxBCeyU9nAUOImIRo53x72leVqop7ojttNU+ypaKDlVEWP6w9w/i/X3TvrjVdYNPRUCz3Mdi1Op5Nj97zSb6l6GUkE6VjBGsAESwhooi2eNNPX9XjkkS19N2G/MTJ6XV5HarXr680jWdmTt3xuoVZnkpSSftWtNVLra47c8+fXX3rrVlsL60e3PKJdDv2NvhhgsBAGoEunSMlYhth6pGbRA3HGsZsbFrhzKK5akV3mQzR/61PDxkCnJ2TGVdOPVV1AoCDGnIyDH174L9+8hXvu/TAvS5lmQH5zn98iQDNdfqtkz/4A6/5kR87eKqC7ZfWydKuf/83P/zGd+YmqmXOTWC//uz5j+RFxc1hmgFlW/Rnb0pr3f769cf3PfbwA59YLpc3z87KwTOzs29466U5Hz/iU7SOeLKbQ0EiRARqMjs1+CxHq6LKQEjGm6ktd23Klitm1ECsGfuU7f51nXFVGHYhCiHidPx/brn2+vW8RPPuJkoxzp/acz8s7mlf8dvXjTEkHEOjr6yJVVSBCUMeacd/oJNmoYOCy34VqoBhn+/dxorl69aQqQ36T2y/+OujIizEXXNFXKw7SH7mD/5kbfeu/vXl1FUHceaDH1i9+gZGNllARuLA/eume0ykqUa892UKJsQ69daUxuX0OBU1qwKqojVk6BmFt6dGEJ59sTcGzfDAxbJYb4xPQ1QqFVqObe+QWfvl9/OvvaF1+Gi7ap04+uozG9ft+cDPuTXtvHXPD73mJ37o+q1X/ORVi5edXow13/4dd/7ja7Ze9cJrW2L0dAs6G4uRaRBQcXrKB0AjhITCSbseyUIa52Z049YXcajH5YG/fHDX9umtF6/NdDQ4+bBPUiZkrqEpzyAiAQKYJsEGfLagp5lXMoCI7Y2bDt1ajtiRcqAih5rIrH7kOlDDJhogA2pav7njK63dX+bQoqNnNkoBOIYtVf7K/7SrHc8k7bFqCIoAKJAYUeHAbEjVtM2SO1jN5opijtEsRKRQRd33Gg9ptTqmUEu6+/hP95amp977oQOvucxeeUnagwqHM7/5ml3s5cxww+GZJ9//lo88eavxYBe6pKhB+PB1UEZjlDg9WDl2InVp1bKWM10+cCH4xutM1SCa5y5AcbahghoiM3P1FliD4+mnOOcoAFXYkuVy6sn/eddlv8P3ztGZzvju+S7RuvyWj+LMDVtO/slX3/but2+/86//64006A8PDjsujm5/8+KdX/w12XbzlReuMfuncKEtqAqoYbYzLwA2gqhFILtcJwWGy2xpPaNNSV/8uVd+vwqPqQQThlFTZGAB37AcwDbHa402PiLqs4EopqZH0VjFFGbX+uOXLtZiMYoJ1BYoFNKD31/FtCYoK1YWdNfNTO1y3gzTvNx/7PTsfrlttLE1mpsb9NK2DnLW0Bh4KjpkZfU6wWpnFdoZj6KQ7J/OR2CkLM1gYXvFNvEOeOokyEuB4OJf+tg7Ljgqq6dXP7a8a0Tw1k2hR25EIeu/6oHrf+s+Tgq11BEC8F7qM1vKCELkbfHorig2aB00oHdMEp7campWIVQVC0qo32Ssf4Ogg4JFwHHHcxHPHclOYg6jrPbT9PXP3P22n1+emncLuOn0B8fVjXMHX9v6iUfqx/7Ezq7+rTf9v8Uv/4+1t2JID3V5mmTD6WC3dl50dM+ZB98/vvy7L/NZ6ps5RkLbqgKSiSxEBngk6jszq9QZEUCimdE931WPZqVVV0URx6JaQcJoVvKMRmtcRBpdZORnG+mtKazFiMltp7gnm9vLquI1WRw6T6jpomys0KhS6UVF1CZnilGBaKnOL1k9Lu7e/d3V8mCq6zlhBcyXgQVVAMEkoMAYyIiQMkEcB+q1WMHt2QJiIJTeHU27I6imXbtW42W77eVX/vmH/+Pbk8osLy/8w7qdFkP/5OHLwYzETPdbmy45vbx9ulIatSMCBOYl2hIMMNlg4t4f9Y5sGGURlGIGUhzayZ5VFVHIYEPv/TaDDqrgSNXOxjWzbrY6b3pXAIBW1XJfeu/By/+8Pb+1ZzkNevfUK7+y+YL+2uMbX/P8539w9vL2X7xhy7998h//B9N44/reumUuutMWTuyuw9xLNvSP/7ef+llPZ+YqUgVUT2VEVVFRFTIQV40DX7Teszi0hGosp1tsvmSlnY40c4MWc+oEwTRUJhRUUQEQaQQUmUSeCZcyjoHYYZ6Zu6+oBECUSQ+NQ7ChtW7PmtbA1FYQBchGwFHMEjGSqY9GYHzXreVSkerQZjQ2rbjsggKxIIJxAKimAgpiCIWz0BIbEdTsfV4EAIVgj16QlMbbJAZY8txetIM1F95+bXYEs7FPD1zr1ZiL9n1k9ZrKQL9z0ZHZ1aenrqvGXRp7o4qs4WRnbWWFEQ0ujDaiQbN49GK0kIyTbgb9nSGIqpKCbRCf334qp4CJZRlfdn+9OSx1ntZpVPKv/eUT175h7kxtaDzrh0EG/X//8zfL3D3b8DUfe96blhZ+4/H6VT9tfv3iYRukP+tgnK4alquXh8H45anWBe2F4S5woXkn4XrsjUhENqisBD2Trpl1lWMExKiuTNKKc5/FYBLQdK4mohhdXGHXTQoRTedu9AT5GUGvJqTdOjN04AeWJjX6+vD63NhR2963DqwdtAOiRAMobNtqNamRMw7jMhtd6iwP1xQcNecy84LNjIhoLSOAqRhEiUCDDEe2M0YAPD0dUMhYCQubfbAWbO2gTsPpIqSnX/sW53/L/AeScHK7aNXpbf/VPIw4AFwXU7x3x/bxNO+3s16YFONCVgyoMTNYytsEAU7t34gYMTdFfWh+0+kG4I7q7KQe9Q1j27Rn9AoF46yKtYNMYofpKc9Q+MxfHn/tj+jCYndpdnlq5NOk95Z74PmLd4qbG+66+vDRn+3+4Iv+y21btlx2UmOnmqllaSkZrOsst6ermE5b737oqx97az0VJm8sdc1ONJAaYEakwtGlvDhbGhACBevO4JT2O/1CDUOS2rFBDuImhqUARAjQODciqKoBFXs+0RUR0UavwVKFML3v1JZxaB1ft6Rx6vDNpa263N33qtpU2TiLI8cCko5MkqMrs1HhQQGjzNYGrMGYjdNeZljuvWqgGUMM64Nmy5AupmMj0doWR0pQiA2XR106cDwaUXLfTw4SqnJDELPjRRqc/YO9m39z7tdGo97MZzdMBcrv33SLH4vlGse6YWgPv5KMN/Orx+S4gpE9s6HWktgpTt11W8qa++NPvHrBUbSp+uy7DBODRQWbC2VGzUSUFRqfJT0HkKSzqzSeQ6MAgPGJUudEhu7xzZyFs3r5JCHxkP7sF3/6TfFRQeN1MOt9mtSdzoMvf/RLVbJvT3mm47/2HZt2P/BT08XqB+fLzZtygeNPptRfI5auXxxPra6x2vn7txWGIzHheOYw+JiDiYkNLIAugfHW9cEWY0IwoAY8qmS+iAmjasgu8HsjxYT7RTN2EZGDUVEkZXWkDGCeyVq1BMrBBwY4uMaMeJRUqDo0Uybmtt07uckIInLsfHF/10jZdiFhdONUEKLgEDIgtAmg2JCIbz306BkDNSaUN/KftTIDADmZLcdce5eG8ejVa6UATK1bmv7oPI8SEBhRzARcGNz36l+cGWzAqlXe/4JWUiUffu2/dFTnLYyh867PtE+3NQG7NA2N3zD2iyZYzOXJGbTG9++/FliBDEJ37gVWFRpJhga6Ck8pwTzriF/RE175mQDQJaBQb26Ol5pWUsYuj59+xU8sHVqfTqfUWlsNnCzwcLz+a4e/M/vF2z77YH/v3CV/8Mb5N/5Ium3/EyRnIg+M7VK6MZ7Zu8ibVy8+eTLV5KLL5mw0TKhObA5EjcxE8xlwup2onHe5GBNHLEgxIgS7ZhNrETSviRCRjFFVURVVNAYbSeBnJnKkwqIoLiseusIGU+U1CB63qUSLs6dwM0QEi3D0Y99XaWscCOPhnQGRUbyYM64FxC5FoyaktbTu2NnGcRURHSiqKBhQUAZnqmFRB00GZuum985UlSuTUA32d9ZiSDOKnTA2XpL6TPayCzBZVhzzkR88SVOsg9+7alrb0c3Il+581W9/4g2jVjV68PnOC5AXN3+BCAAB03h+GyDW1ZdvmbemiqswaLWj3yxrQobQfFsmmysPVUKhJK2hGuyM2Tnr7ZxGCSaPnXntfA/GKRgTA832PYwtv77f0Q/+68Mv/OHB/1z9652bbhh7Gm5Y8G5VYjLdOfPI585I5+GFl12+CkO7aPNUchzYilU2lRqvHAVBrYJBILd6OmE5r8BAlXOR1ZCqjSGd1VO9qGSAGpQ8Nc6loE1dF8EoPFOJQmIQVSDI6OErKkHjhCXd2zKYMHb2bGx5QbXOPDS8QculaMP03gPo2x5Qg9qT3VwQXCKIhAp2ed8u6bNDTRwosKBJDIgImGLgTJUno4KXjxSDUeHqGGL51Rd0fOoNehNHESCmJ7ZsGFVmbLh4aG2Wb/jcD8y8mz/dWeB+34b3t24f/uwt3RPHFgbtQArqhfrTocGfZ33YBgL+X+JOA2PM8kR9gD5wAyREMhb1OVhxPX2kiwGkJGU9U26N6Xms30F7nDzwll+9+VhEyXtTNh3GpIqZteOYWf3xY6965/LU//7NDTwfpZ4mvmr7ZRdQ0T79x7/6fnrLb//mle/8qfUeR/XI1OOlrwXLqMISRpWosKhOfNVcZ64wT8lFzMA0hRci4yBqd2tRGgppw3OjswxLVmrA3gDPkr0zoyqgt2dOb5jXmAQImhxe7zCJneSerSIEbFA/fPiLO1pjDNz+woubV1FBc2KNqwgssRq2HrMHkvaoTHMJsWtIfO0AUEWMSyEky2qZmPKWADLAsnS+1H7+MuXW1K1xZLIcpo5tG6/VSkL3U+/+t6ueeM89v/fyfP0f/0C7IruUx6tm/+2OqnywXTvgRDhGAJ7yYokoJofnpkai/rOXGs1qU2vtTWsE3AisITYD/f8ieSdFoASSo0WnTvEs8dGnPMV/+ejzTi2MuvXU1LIx64dLm8ZnUunMLHDn1W+k3uacQ5Vyb6YetGb9Bm3hXf+we+sLru61rC69ZMu89xaBgr3oFNpoRRHskiSioKSkSACuM52TEImc3SnSABlJQEgjGAhuo54YxcmBQKMa2aAnSCc8F3wmGlaZSRmIsgdWF6ccQCUMYfk2H5xbrUdu842ocv3vF87kI+vqZOGxd3ExTkSiAJ7aiIxkVRA44QS/fonJqAqGgxHUwFlWRgBM84S9N6vuSbaUmBdVRuztGZfd9WZCW284MbosirFDULO0NdV0ENInf8W87pPvufJ/Xyzzr/nTfauWbavMtrxmPHN6OulfeecWcCjBA0TX8UqASPbRixQg1r/eXhhYj2YIbFf1DE9Mi2hyR77lBP902jmAGMUsS49sU+sCr9z91JcwfRS/+lI3nXqfzsADg7v+7rted2MPx8vpVB5IRh0K9fxJWUPaGaWSJl/786PPe1fij9ltafErm3XHzOFV2WrQ1iv+sXJEggbTEx3DzfaYESCdnukaFSTWs5qwWCaiSKAkwVgw1Lpk1aM9N0ybbZOYpviqjcg0oJ4PlzrbY2vPIsycfumq6AyJCuoZvzlGLtKTfFm0qCjs115wYRe4pvbX18wqK0KMgrq4TlWNEUBVJqoeuHIcMHhMuqiqkW1WqSGTOjDqu/Gjw4guVYsGBKw9vfDaoYtePz6ogAUPLZto2qu5DGn8wK3vefdvvPMPNmiWTm07kKQ4aC37K0f9rvYeSPbuVOXoPWqdtRu8Etp91wRi7+NocTblntTRV8uxWrANXdsCgDbIgm+eyJ0N/qQRigK2pvTIZT53fPZ5PZxOfv7zP7HlFPKx6fn/fmTdp9/7Pb9y+Bd/5etxrQiluY8bTC8cPDoaPk5TnJet3T/9yzt++frFYXrhFatP/80/fPhMccGVl12YK8AVCwNERUCgA6soRgVmRFDqrp1NFVZEXyeN20aETGPGKUYxW7cpE4toTMOSaKj6hA0rCp6N1lTVnlQRPdz7E0PrEU0kPqPdyti8PADrB47BgIh8eefRWe5l2X1Xehx2xyZGVRl3FJCMIqpGB+NjmzG6NIl1llqUGFiZrCJBjBrHhx9+h4sGx60aUMep35PPlt6uGt35pqIfA+3fMhXbF/UyWw8eOPq+Qxf+2JqTH8Vt11zeqns+RXNsZnq0VoTq1UfbPh3FGEmCSwVRVMEu71SKXqbE+DN5ZqI1jvNTB9YrKxgyDTnkOWkRPGXLRiCgmLT7C5tC24azxHJXDP7uT/7oTffZIbZ07we+8qaL72+/7TVf+Mef+YGfWxVmzCivTi/xTN2rp7O41Lb6bw7d9O6630pPPrT0xPHwYHjrm0cx961xYur8VExKIUbQ4x1HaJHBKQu1ZtqoiHKekhgoFqTSCEOq1zS4UbLh5IlujWfNvQVVdeLFhwIqdmWPygYhAsJSmSpViOnnli8eOsI6GXO+d1ajwan8wQ1oOSnJjXT0qReMpCx8deAnVKNlSga1T8ctb7iboqCop/yutZ1+EjRSTqSsY6qnesmyq7sZ+eCK/3PznmusxSIS4JDL7F9einWr6vzzRdNLWW3ki7+gcQ106yo59sFfXm6/Tv7yw2CSV777gjNJNECfvsVO+SL/7CWRc67UYJ1K1YLIZD1kp4uZmGAfS5DgohXLJkZ35JgrwUWTGQuKeJ531YqKxNmijK6ADlZ+1+BGNeQR0Hcfo/X9uQhRC+/bY7CJ3/Obv/K2r1FJvpt+4TVv/JXeTXPL8qrv/ti/+/pvvyQMpvXx8Ug2rk94MJdM9d7/11e9bcuZk3sfOok7Lnrz9s2/eOR/nDi9uPaCCk/4jd34wHrjSkhKPLNqFG0wWTUWi9lcWwgFjQLKyvXgqcsjEgMxAFgQZOeLTcf9inOckAQGFXFGFUAM2nOJHEUEMDKeJ6xG6frDnTtWz54ZFr2swmjObIpEOerJrRjyuiglre/emowZhc7gxmDnhlls9KYLVWpcCpyLowcuBkZFUEoBNApQ0W9cI1EYRo8fs9cIoSoBMwVfXjakMtfPfVcaSu+Gs63a3NIpXXJi1Q9tHvfXzZ956y8YHOdr5niqqG26OXEu5l/bkPzaZp8sx9JzFHl8p6eslk2fmknVD6IFlabsLOzb7okLoqCSdefcLp/LSD8/5VMVUrCn1hdJYQB5jJ0lmw1x+sdf/W9PV8ZZHcXwPVf82R/+U3XD9g1zL/7EH7zxht+7qbcUT0/j0TWXjDt1/snfd++a3v3BA27dLS+6eBqVE7rk1IOjqb3RnKDe6W3h068Z1AYlHR69hJCUAUjLzrq5VOUpVwYAstQhPG/zSaoCWVuaXZqZ0JhFJ7Q34KYi1zQOmRVXLQyrRGfLM9N67+2V5tj1pYH62AsiubZWR18eABmIq+TO5xsSEhPsDFQUUVmA6piLGkuAKpkC3f09IlEJ2eTY4OymDjCodaihP9fv/PSbDjhLAIAhivn6zNaTlmh89NZlhzXXu/IwTrePEjsazD2ctu+pXj7608V+1JNTnx1gCx6+9PFNGwo58tJydWmXa7B5YJU9Oy0NfNJ5aFviw0ilMe5F9Imm6I5cRgYQCOS5KguRrjBAJ7QBUDYKePL6GbBBDHPCJq/T1juz36V5KCWzjnvrD9nb46mPnoHuDS/47R/+bzf/8rvj2ECwIaf/j7m3DrftrM7FxxifTFmy1/ajyTk5cQ8RNCEEDyluhUCB4jRAkdKWW4pToEihQPECxeEWLRI0JCRI3D3HZdvaS6Z8Msbvj7WPxLiQ9t7nN54j+9l7zbnnnOMb3xz6vume9/3yjM5/XDd10vNO78QY6ohk8Wk7qkYssfS8etv68y4tWn3LId21eWNaAQRGhXVzVRMOnK4dNcHJ7k0ItH/DImaR5sR8GmOMKEQgLDAaYkNhwAj7e8RSQe91PQ+/fOBk1apcdcvratdYyqPEZHtxkKBtwJ6lo0oTzSAvymLx6JoCktk6EZx3iRJmwaHXUZRBQBEsUj837YBFS8SMELxIbA+FIUspLM/0O29NNqdsUASx9i77yeklcUpXrFm9mAxSlx7Zb4x1//OWm7fuWm4pKfIZaBxEtl1sCnG8NbzIffuGfONBL9h8UDbIF6bmBz1QSVVM6F5WtxvutidKCFFHiTECIpJ22cCXJARI6o8P1WTFplb8/BXEVeQtZ6aeI1Aq0muV9fT3vvNfrS2L0ODgbJHZ4eDIY7xZXFi6+HWt133o++9ceu+J88txetUg+9RHjjrxB3Dqc447nHt9G5JKkHctHLEVhvbEGz+8owWvmHr6BaGnIzJ6Pr7bHzmLLp9sozswgzoCj6PFFrDCfYtBQACyifnADEREIqMgRRhRmEAx7keMjAJkNfe+nK+JdUbq12MblYoZBhUaN0w0KlBW3aLHuyoYJ3H8O4fMLhMAqZs6us7FM0ZRUieZiDYgKMqBuSxZXxMDCKMBhIDgG16CSVNyyLhcoyZjAVCg9rS49YT5DGXqY0dVuVsKw87x237yy6uPWHf0o46KA8OUJMlEm0EXseAitOnhh8Dgkiueu/sD6zYdecgwmqwqRK+f0w1Ti/VbN/CIy5mjECEoB17QrXEMpK39o7XOACOIRZSVXlJEJLU0f5A4ApEhKEVF8z///rXHzlWG60yjCSd4SReSGHnthgc956fvfsthf/7z8z40tpyxue6lt5jJg94xMzWN3iuLntEALqaTdnzPcMsbF/6q+PZbH3nYzssfGsoEg2SrvWZN7KOsWpeKoNqXGVwZscZygoX3r2IBIdZt4wEREIRFRkQ9DAqEgeWA+fSIgOjn9vzwPLfcCqrxjReNb2l4cZEw3ngUE1mw12wQ7RQ3akzOfya6BAVw8o7F8VqriDHqyGNZLUqDEJgiVxe1123GUYhEAOwRQ8PHmFodHfUpb9dVMZuwQkYX84sObu3RWRy78sks1eTmDbe+74LJh73mtFRtrxioMqq2VKnK14PallL0J4rpg47mV/7qyMt+4ejUE1vjzXRYtW5kLDVY150RKWIkjjJKs7uWb9R9KwjwJ1n6SNVwwMMmRrU1zUJUFKLRoorx7ktO/6v5/I4kwrBpVXqm6k9mLeyjD8uNP3/ydb/70qH/+6gXtCr92dfXr33EGTrogXJMKuhmjaJx2wyZqTm5cc8TnzD9uqede/4pVz+UhHSMioIrrXhnNm6aBX/AIP3KFWEdxiOw2vd9JlAirfYSjObRSWTUIMdAAoKReX9pFTGSNqtP+7cJqypILx48sFs20wGg18u7n+rBNkK89nEREL2G9FI5tjARhPncKat8nUsMIYk+BwAiAWIBkEEjKAaJqDSyRIcoeenAKOYYElrOPeYN45A8eKl+e/KQaj22c/u6vNCL9t0/OuJ966uDo/OqIO2TwJRikafBApRK7zgoFV6y+vEn/uVf+u6Fl3xiWVYdc/jGU9qt+TrNsos6U96VqjaRR0hAkhmIy8f02zRC3brrO33/9niX7+/LzuAKghQjE20+lCORGGLgIk2+S5+C5PaJQieSSJ4d6dx8uOa27WPh0IcumKUNJ9zvG8s7Jva0d7ypfNbrJua5WaaFwZhQiCQ1mh0Hx6K3u7fjzx9867UHf/Lhlx33eykxsgKT5GkdQdLJo8d0LYT7EgMjoAHEpdiO6oBBawGhwI3Jhf34JKNhcOEVIBrcr3Qi4QDZpsPndFGMNc3q9cP1uxsYySfL5UGeTMOV205An8Q4TJIfHzW5MytRmJO/iDtW96KJHIyrsQZBioDg9VCv3rLT1CBCpBA4BoNiKw+aIgMGA6rWSTIKQFiWNp89BBgeesW2HRvM8ItfPOF9x/V+bdZpmWsnQ0RxCZTjjcgDCVm3XJ48XpJGRHdGOpdz60lnxvnNl//+O411D7ltqrnIkzvWtZYqv9IGSQTCDZct2xeRJyBSd2+JvDel0wqKx8oByCIQCeaPsw7ZKRZnqXHdG87d8qH5/sYnHl6B0vq2a678dr22ffJZ/kf0wMll63dteuvrr9ndImqtOWR8zo4VxpkkRAohcalnxYer/HYJxSPtHC6d9Hf/6y8ud5hzUFH0Jr/HMXY2jsWCjGa/f48apVX7MWHDB0BpIKCIHbMiHGPkfAXAQo8iOFSgUK/kHYRRgEiim3St6O3Jh1SwnAVXg4ErDqLUN2Nyh19bmKCI2V/27L6pQNVh0vbVxFCT90UijaKh2bYjQWgMxVbPeOQQgaMNZjyiLqBWITW1hjQSRvDWac/o02Abm+fx0tk2Ya/dmnr5qvJLHznknw4ru/DLF+TI2RCISp35bKawFljS5emLb3l6OkwI64R7LY+42xVh7cHnLN160/c/2XzEQ9bDhUcy9PUgxKRvfRIgj16VBsEDK20VSEQE3gsrhYC80ldwgPJHfewHLgYBJp/55mJy7UNL7Uzi9fLsgvXn1dv+6mnHNK/6+HNOr2/69c/1wjUPf8ZZB3P3A9tOb/UCKgnh9H+76Mm3v6PGddKs62CUBKrRJQJVxoNNncotNrsPTs6/6nWT5rGfGN8eTZlYw6ku2+TKdM14RAJx+yNHViwKMGFn2Zn9pq5FRyXFpPFQoQlpHI0+YmlVEAuB6J7gR6IwE7jKR0BSGry95UTjMhvTa9dph0mlRV3lj/VRAMgkBx6JqFSZG9IV/ufZcS97HAoaAoij0JE0oAJfjDhnlDaRMQzmus3bclsNGq3+CR/68vPNIf9k2ZZ+eb0CCLEip7HfwXpcd0M26Jv6+nWRtRFYYcaNwfsQ+yE58djn7/n1tz/73HOhTcoVSVb3dVbj2O3Ls7DCgsloDPjwJ4+2rOwB1Ai1jMU4rhkAxE9tX01v/Rnk/zl1dXrmSe/tfn/HaW84Je44hi+9qHVd8lG/qNtQayqPU294U8YP++06iAAoogdN5VMqWkNPrSNh91Xnx2L7ri3Lj3zdfHv6drM0C5EVaR6UpWQTTTmg6Wm0TgUJmWXHDIhyBu+0OBGgsQg2rkBIAoAg8MiDF7m70jECs5LSRSEUEaT+rS+GMJY486vjlWCIacwumZzeBcQipEeujjCARFJGAWqIrZ/crkSiDxIjEmOiGEIEBFECAAQcRtlglUBEG/uF0QsPqSSvcfbLb7vxzPd8KC+Wk84lZkqxkPGtysQ00VkZ8qWuVdnw8idESVJBzUSCEIKrgMSxyI72qWfzh54bj1tkpaoypZISCjccqUBYGBFRJTq42LxPOhdwBttDf6XtSCQEYteQH3+Envu6pZvpkn89/Zc3PevkjWtV2X3fbzfl5xx/2SCQQ3Aqoc+tec5w/VkbH3SoRARiCJlPsODG/Mz1/zV3W1y9qKbbB7XM5vc0np884Nrtt6xWHATVcLn0dmwqregunVsISMKEtxyEoit7oNIRAKAzD0biCsLQyI0BZIX3CDREEUEoVIKEEryH9Aq7tmBjQrz68cAQLHu59P4D0iIc9zqRwkFARFuwAhLybz5fGDgwRFYYTaoihQgoYjhYYgl7C3+WmaCcG9jrl49dDNOJeeTPzvvY6Z9qz25btUC/PGWiD6UqFxvAVpxR2Cz1+C4Pe6rUY5aAUAQUksAhIpAmDjrA0hH/NvzRv19w4lNbNS4lCQYr205RMBpMEkqslP6PBhY6UOcCABQZKb1mkyqjBlDkzNI796QP7C2W1ZsXzduOX43Z9Rde2X74Xyq/5zKZKrDwSaMu6aTuaTp0b1y9KiAyArixRVAa1Uzvkq2Pfnk2fWXRczNTa+i0F5+z/rDfjR3CxITC3T6njbFEmO5i6hhHg/Cb1yknar9vJivdbx3ltEQEXhlQJhEURmK8B0snJiaoggACxxiFfn8yuESDXSiO8ILK1mr7Ta+oAABEcMT0B8KOlYAxQplP1WXdB1SRIAgFYBSdgIiPAJGtlK0cfRWJAVhQkyYY9GK6OCVpCld/hr/xpDCsf3bmWefMumtPr20s1G17pogHPDUdVPfdu98Ak8vXNG0wqYmAICQUg0geo6+M1t67VmuZnvSk8z/2szPPNpZraGd7tq11kUd4YNYqV0h21/v+Y6XO0iqRb4+/KKCKUWHObnbswdO7+0f8444XnXX43B36iuWjn9+46fNz4LIxTibGpNCostlmskST2ySplDASmDoBSf7rthe2n7/Ym58blDummouQ4u7+zulDrj5sqkZUGGBYJ61OI7KRvTDUe5UrwIwEC8eDcOLutojz5rxnJgojj0VQhIRHnT53f7UhigoDjoAQGQiKW19aQiON9vfT054kepP8NJtZjgwMZPbCE7OLCkBr9i3W+PWzJEbkICjIBEqzRBcheja0tKqpI6sVZAsdhX2/Jtk1m/bs+R99zCendtvxs834mmbVO+N48YblylnC2FI6Aowfc4TuL7eaVbPOEkBhAmRkF6WM7Fl8BCEuM+zCaRsv+99/dcoLPBHI9mpq56j9lyKpWHu10gzzRxTU98loS2sEN2ziQWdGUOQjQKjXjD9sQzac7h06+Z2fPWrLldlJcN03y/bqRv+SGzure+bpp+aIVZmMFdxq9BsiigERdEkmu/zlePHcnoGrB0DFA1ty0qZLP/GqQ2x7yz9mXU0YCgRqtBumlswBwIEdM4IgrLDuzQCyhgOc99Gl2qklh6D2fXivySPeg9IjglDZJ0HhyEBqS7EhUmJYXbbB1obFm53fPMPHIBAVaT3qxhEOLIxKAVoTBte+YEgg0bMWFRA0RQh1EHaiZxwYQabIwgCkAktdKVUvPKZY9ZFvnfeesuhIOXNOc65Lk39+CCU19n/9LDtQ89MQxpfrR4b5ZlFmMJfkWlCYmKKEKgRbxYgQSuMaExhasrw8f+T/uuL7r37OxoOH1Q70CEIgAgLsIyHf9b7/SJ2DhKQh/fs9QBAECKNt/QhnHixjZf/MU96x5ZPZuuOOOHLK1Ndtu+q6pQyL3mPWJVUtqjHIUiG7NE2EoESEkpjd8GPzZHusHWu6pYlb/Yl26/wl//HiJ0S66cxnDyxxqJdZj3VyYeK92eB9wkQBiMveWo/i9IFKFwAAtWpLkSLFfXhzowQKjEad7iKshDGUOcGIYNzuokSElIdbV4GokHt32be/FQT5QHgdARFhQgITWsUOO5k7AA48ysITRgghQgiAG1INztcRGQSQFChQ41aV8XGX/qu78IQFG/N+w+f9flLHZhKrwPO///M4bHQgA6eHPfQg/rhX55AoJmAtKBJcjNF7H1GT1jE2quWgu1Tu2viqy78x9sSHqEtuzkYejghIZFEYAFFQ/gSoyBXFsyUnrTPX1sKRFLJPv7mpf+RubxKpzBsnNx526LaffeVKNXbp8sGnH7oqw6OrZdsqImnO0TQWJxUBqMgiipfO+8lDDjnspsW5Oxq4tTWF7ih3jD176f3ua8++YVMuVSgGgZpjUKHiei9y/r5LIRWRQjmciih1y+1P2oyuE8cSUaNCzMjzF8SV9t+7N1GYGoiWgWORMwRE8+3H6oFuCuO1T2NxulZh7X9MuMDAKMOpSKJ1oSB4llS85coOxz92ZGuodDUkdjSwYFOf9kqua+0SP33Lg9KiICjtwmTfr3Eowa7ynV8f+57Ln/GsxhDBhJRMVxvWtllTugwTnyfXcKxMGjEk3YzBqbWxDR4JMYDToabaBYmSgAOoJzoV2nIOuDb18JgTL/vQLecef1r0Emy/tdzAUhtEnykEBJaw8rAER+GEYFSCyqOzBGUOTo1KGEJEwBFAzFDl3ebQ2EIy76zZPHfs4bEzLIzfeMTU467+yqXX+1Ofueui085Zn6ui3xwGzTVw7I3HVOlthzN4CgKoljv0139542cbqHTDTTTiz+LG2eYhT/3Fuot/99Atr1i/5gGPTLe2eQ17SFUQRU4lEjkYAERhxmhJXPO7G9qeJS11JEXAzMrK8kQ3Y5RVO72t9MhlRoikEDQEg3gPVNpgQp9zJxpq1/nxUfW2NQ6NomRPd4J0NtTcOKYd+8iY1NTORJuymyfzKkyXCLObbKqT+JMXaRMBlLUEE75nOkpP7/AudvNh8LjQ0irWijvL9fUniC7b9XACNr//bc8+XnqqUTIBo2EMtYAVV/RDDs5bQo4IHEwIoNH7lrISgxjSVPb7riaOEiKk3BhLEOou15HBh2F84DHvu/LNJ+0oEboTvcmujU5ERIWVUEbt3f9QmBBEMQKCSDsEbffC8wlIHO1M6F0jDjPLcy3u7eJswszJ/NlFZVp5eflFN35mvnnK64+57svlCw/larlUrf5o40WqNCJJb82+HPlYnT1K8T/wrxdMM23v/s3l84+74KpXDd/7hUOP+CS466/55UePeSLqhVXRVUhEmINzSWL2IrprV9aJ9r85WIFXEVmzYyRSspTmrJXTmOcjB39UFdYjGm24xzg9aIq+Qt0j1Vm+4JuvNfFY0FlE2lO1a4jBuqqh+06DHSi1PBFsO+30KHR3Xn1NtRTd7PHP7W5bOms+LV13547di/1s3cTs0i3DqR27j181vHpqzVE6R6ijqF1Tk5ctjy2TddXU0n++70uPVHUv0XXCAp5pWKtcc0BmAXHepWNpnrGPzjlWINp2pISkgVi7cvdOp7jKlMobWjeTpgnk6+UhmCQmlA3oXz73yjed0Nq1OimgSJEBhVGrlZIZywhaNSpmJEAGZhSioYAwEToEBBRQIggQISmkKPSSN/1aNJTzh23YlB2yuShbP3ovL/ef8ojD68v/afGZp+wqXKOR9ZSMkDlJu1wL8NzBspIFdK1ikA7A3tBN+zfv2HP9kX82ueqJj9/0qmN69btlWY474Zm//fEnb+5WVGpbW7WYoUlUrEWNkN1IgRXPncEZwdVt0KUhJSISJaVQm0Ai7c4cqzhKoyDQiG9z1Ep2V6Wz9axqaRSrihAu3XDclY2k0DmQ2t4aY+syR2E49OQM63xuLP+7bx17xJ6knyxp/4Af3/TC/sfsUQ/9xDEXvPaIITA1JsaSuT07yrAlrOnV502Mbz5UdzoNKbqsebKiC8/irPAz7qsXmLPOkIW8ndbggbVoU1D0mUlDdynIkI3222E8ATSpN4g+Zp0iyTAUjMlwcamIFBhEWgdnziJ4T8OiTnqIUYIyEzv/8sR3n/bUgy+SkxdxqFkQQdkIAoiEI1InANAEhIGNQowRIObaRYaVblcCBiLkEEu/pw9SpENWiQ4q2bHq5LVxqcrVQafiZeOv4PMvgbNP6W/t9alyJ6uqEYQYhBS3k1qgN7VCoIe6slI1zCXfvK07aNDUGcs779h0UPmm8OZTny5lMAuqN/4XnW1fPu/Ip58UbaimYvAVKIUOCUBYqjqn1A03b4Q8hqphSyJCFLEywIZZyoM0OnuCjrgCfyrCiAwI99QCbRzgUOnNv3u65vbpjYXsARExB0x/nXSGXOVgPEdQIWIpzWTq5U9onTP70XGt4+Gf9x996PBhX/jX9MtPfbTNppQmRcFhwmPp0mJZbVvN13bzXqNlFQtFTodlPGnL9Dh87asHvXriUxAbul+T8RpEhCtBnajoirqWoAzIunHZ2a/qKhFtGZWeigzGcKwW5/qBFJJ3WWpIV6BIR87KZPuqVFmirB/3POUBL/3Js666+t87C1aUAhmxFgmAgFrBRQ8xMno/4rFi8eACY1ipZgGC4eiDr0PXhOCyqQCWXMxMWFWfuM5oaA6Ofv9TB+/6/Q/Lx6772fd6jR3XmXDI6qkYaMSRoENDV0pRtgLLgVjlelmWz3+/nTWswK/f8gP8p/N/9eEndW063xw0l5eaU/awd+w+/5/Lcx+fFYXLNKs0FmYEARgTjYVJ5tU6XwetSRocI5CiHmZYu5BEMS3lDexV+igLPZpuuTve+7DhF5Lsdw0seOEYP5h+FCa5DbF7URqZckORldQIUHZ6kFxy8evf8OTzVq+Tq8c+9NH3nlQXD3vJ855/+yr7OOByuVchROfTJJmEbVVncfaaTc3OqlYmkbB0g9lf+/akXP5JfNchaovJBpAkrufztvEgw2FFutHEYj4vne9u3uxumDAeSKroIoKQHZ866oRDZ3O9db7nY2CgKlm7GofKsEagdnvanX+wVoCKlaxa2P3pi74yf/Ub/m6mm5mcPe5LdIhbue+MPSqweSWeFJJkRUzSUhK3QorErixLF6Lt2Q7Hm374q5zdYU8/s1X0Di/deLGQLq558affNHWE+WK96aFw8/wjjzq0uWYxST2RAGhbJyiZ5Ha0vSPoTIJhfdS529cetOaQUycW3qrf8oKHHfbO0w4dRj2Y2tY1mYJup/mscy//5Bde8FSX+aBV5VGxB0SgOgdEfX2zATQe6goqRALxMB7MDXRotmwgNrO9iUcEQBr1UsA9pWGjZidx6danDX2z70rdnxnoaTGIj54M6NTQsiKITgJ57MSJx37p/F90dpVL7e/94ztWo5vCi9937vVHJD02PgKwd2P10GcGXarb48MnT65Jo/d9l3Bnyf3mlObtX7j+2Y9Kdk/0NpGQ372roGzdRNS6r7QHk7rBnutv2tqV5szGJxw8kVopu6X3oo3Vt++67eMLkyceekhtEx85JM3Jg8YqNEjiQKk03blzKiBQnQaOqb150xtuPepLjzv10evG11hqNFt7362jWWoAiNbSsMQiMRrYWJergASCRMA+xKXoXABFYSK78Ze/vqVx8hGHpvnhSZ+mqkaddRZ1vvhnx/zrT80p505u+0pc/cqN4IOzemgAEcgkISHVKs3INQAhb7yA08c1xNTrjh1+4p/Gnv3E5qH/PHzbf/rF2Xp+OZu1DlLOh3TEh6/8ly+/9HSr6wqS1BEpDcAoIaPlSw5Ji6XOnjqdBUKph4P6dzt/84OXvWGtAQx5a4C4Qmy8//V9T5ZeNQd1e26bWxd02VpsMozV3IgYzHnpIAkoonjQC8Er1WvPt4+96K3fSwadxWAufMMDn/HY+9120cnvf/uOQ5cy9t45Vgb7ppnVcfwkUyd3TD5qgBKMAQDsJb3emvfvOerls25pXN2ynjMedh1JLSqK63YbHbn1m5dsm5+ZfPDGmWZU61ebsq4DZzlH1Z5onuRJLVzxs88t08S6gw89uMkTTTWIpCqlSOnaqWKx061Z6cWsExY4rfHgFz7+6z/+xXEz69ArSu3KwsdRBxRY1C2+bRuq1bMdjLkZHDHTwzyLa0BCORhUggCoSYfrLv4FDNa8Z6NTmhoS7Y3vfcNBTdWpexPNTQ/5SqZuWB6/8bX3W+qmhfLEqQcBJG0kIZXNj1z5lXodRgKV1BObyg//fPMLHzQ2f8ep2aG+wvbu9vJMWzyiqVAF5U763I8/9LXnnKFc1rtm3JeDhW2b56TXL7vm1n/xX/twrNsuywE5eBfWbEw2PWXtngmHnOQKgVEQUYB4VD0WOCBOZ4WMOsY0clVMfPE4GQYK2pPtwmwwts/5IGiok6g9FzxIY7dZq+zql3/wkBCC4YW/N+HDP//Kke881R79o7zdNRQjIbNkdVOxIR2byc8mIQjlsce2gmjnrvvyCX+7xi1T05Vneidx2WWqnzeiBsXV76+7Fdce/ICpdl5Tl4LJPchcY9FAMdZrUFZJCSZ/4NGy57Zbtl7wzQ2nPGm1x7K9x4KNTBFiPH9j3a9sGvLYXaOYBWEw8YZnXXTlwqEPj7a9zFYEPOjgMSMPSUoqydJbf3jVVmwrm4Lhnrtuy+GHXlckGlObO2BL7c0fudmuOfdhUDSHSttEezLm86e8bH5MT44vv+zqkw6zhz9x9eJXFuY9FTEqBaw8INhmHhq1spXRSBxIgWRDVeeRV4/7mf/9nS/Yo377C+Kp4gHfeFZaFrO7xxL0MUkYXKKEHD7skV9920mvnv3+y7rJTKc9NbvuRP7NjjMPVm/2+lFj07NShLl+miZjBjNz/eNuemjuXMfbtqlSNyKXhkgjBgjN4YA4fYUUokysHQy7j6pDwCAgIQOdkU8wUBJFRRw0N/douk8JLx927XufmKJOpK6qtAiHHlPYja1eOh4Wk6TrIwsLMipEBJBhuvUBkgQzIFvtUXm29VPJuQ+e6PocKpVEErejl5X9TpY3wh1Xfu/KqaNffSzs6OmitgEwWW0Jol5OPcRagkEq8+i5mNP2xJMxKa/8/XPv/9TT2ntSMF7b2sRddPlxS1Wi+zpVOgRHoSYYhM6jzr7lwr+ZfszD7h90CIqibwgjAGIJxMN4/BFq21LZVy0US2s3dd1gogHRu+jzpNq29NMLjvrbY8Y5lkY1kkQjiiwe9pF3nnV0P6Nm9uRTH3FYWmp1xZ7Um5oFJI5ep8LVIPqgJACvhM1QIqf+Ng7ZIT99zY5zz9owsWGsTuCXv7UPORniNLthmvpuTJsDrSWKVM84/WtPe8H9HnDO0eMbNGvB+BzB+JYjBPIn9VPUvVMAoNqxPXi7+vV/fcTpRWeeqqmSHMOKG8ej4UXmA1qgR+94AYkk+qZq004fmUkkpsbYGCzVVpVgAsiisbhbxXa5+op/e9W1cZm0RsoGpKrah2UNUUPEQVH5wALISiMigA7F9pMrjI2ae8MJ2vb55s1/taFabGIa2EqwXJId0mRyGF/y3Z/m93/ahMp4UEZsV42iNTG19vyTkgHXO6YUOg02APgIRYHknKva65/w2L/9+PvyZ58x5nS/TqzrFhO3nO3joNFxKFLFkCYRdOjXSf9+D+7d9uNvrDvp8ONXg/OyYDUABt+oOMnYQT09Xg6r4TCK3ylBgWSNVEKsurd85ZZ161/1BG17VWMyy4W4EmOMDX/+26c/57HcuxqfNAvFnvF+discTBBk5C+QCEgoFPplxl1iEACBRWPi7MINDOM3pm/6wdnriz0LdGRofOVBt551/OknnLoxIaxiokOfYhCtY13NvPqMN138no01BMZaINu6unimesHm+dZiu+5N6m4SyHeLrFHNvWn7K75yzGKeL+D6RSd7++MhiiAiyN3TsJKGUOW/We0r4QjAAlWeMmhmihFQiKrdrm7FrCo6W973kmP+9ZUdJ2GwXJERJ5SkIe+mlEce1i4wo4LEICIjNq+hg0qUpdSVanDRt5561G3plimBtAzkvKjeIGIyoXa867I9p//jQQUnzGJbBjtqjbKSXXPTI3wp5TUPj5qt1sE2K58Mq5SVtxOpHxj/mpd85Yv/euRTj+vEIRb99JI9BsfLilKkPCmAPQQPKfetC/X9/mzpuh/8Zmn86BM2TcyARECLoQ3gQl3VMLejIiAAq8hE9EtXbdnejYWvp951mml2ocJ1E94hUdLE6L1T/OkvfeUH5sTxh+CNMU/uKMbvmJwa1HtT4CIsIB4FyqLeJSMmXREMLD4ipAW7tjPzsDw17B560bdmZ5L+Zwb2tGc8aiJ3PlJKHIXQmEF7cPL33/nUj94vWbIhTA6Haxdesf7jW/7lS/973UI6U6jEICzXiR2MI37wuY/71olwx/pCFxr2VVyEhRDlnnLvKnKkS5837xUSAEsOnVZp9FBlVZWroOdiY9HUzeWp4rYPPP/h1+TNyACCFusKExROgm737XIoax+ZUaHWozg4v/AwpYNBu0jDL829dvXF8ZghtWusUlsqXQ2cT5e/conb8Oozws1mPO9VzsVsojnLXjzp37Wxt9y5rtFaUIEtadm8vuo7Dmh9rLMk9tOeefbzf3jFm1c9+hGrhn1vv3vqhoVewyaQtVqxhlBmumbQujE0zdhvHvOgweC6n34idnY1126c0qRyjFUkjmiWlxU4KEpfDrpLQefUnD52fb5at4tg5xLdyRTkTeTenkG/H9TBuKzuf1rPYGtx/vYLnyJGyrmNCsNo0oiQhRkUB6dIA0u3kYw86bywMVk7L2RoybegmFbj/o7mF+JYM8pNX7rokqlHPfnUsVg4RG1iJWoshuHgbx/xon94fGduChZTRR8vPltOfeesN75rzHkF0RterFOf+TV15+N/99RXnTfjW+O3GQbhfb1/K7W6A1qgR0vQoTK3DY7dLgKEURTrZuIMVQ2uhgoDD/XWQg+rqXjbV57zsDVHnKUcjPgCGKV2LRN9Z9twPe8qvBdhUFoRCwJQvP4cJ1GFqnXxFza8nIsth4UUa1MbVRRt1c/ry358xyHPOOMgGehDbM8HVyurDJSG04g7r3ql70H9y2fsIh+CxWT7xevdvLZ1upw1GwnqBnPqrrj0H867/CP/+phHrW52b3iKzvJpQsoztVAjphiRKsy5I5RhzMtufsZZsNxdWFzobt4xQN31JkEH2pRDCcGSaTYmNkxO5q00NcLBum6e88RMpqG3bftN27dF2+l01qwqq5Tm2t31RVWOy69OOmGg3fxhkcxoyoD2FsFF0DEhL4HRUYhFoZLmQbzHcP+OTY05u+1zGx+nx3Ln9tjWoe/a/ZXrvvvZ+73wsTMYqgEZxbGXqFTiqd98yeaXTy2NGxqqJ0y8cPnIB7x+61XpzMEGuFL1UOUDaDUbOxv//pY3X/GxupgZczRCH1kh6RShu3GtCkBU0V58kBVkUSRgqGm9MQs7ji89D0D1O7+54mRndfadC/72Yegos0gswswxoiEdRcs3T1vthpWLgIJAhMwgaOcGR7MntmMf+t4Tj9k1pX749M5Mi0ujxczo+fnPX5We+dJNM7jUABE/rAaYcAXNBkUKZG5ONywW6ub+7KJ1VmdEl2tXIhPWCYDVISpT1emWNtSnfPXWz77h+Gcc9sHVRbJmIrJFCZgoZ+o+5plqIVW2iZ62bUdxeZ6kMzOaQJnaWXKsG6V2g8EQUgdkdHSugXFoFOW96Tjdsvqqm++4Y1sxsXHjSenEBA29Ad8JSbm+2+hO7zr8s3WdxLjjAS7YMOKcBUQaNU1QLSDgBm3yqESWGSCZTO0WWX1ZJ9O/fucpc+96RXPY1FQNk0H7VeXg6l+8/e2PfdYJjVYdiLwKNEA/OPQbL55742RPw3j30PXmpmlJjyjopvooQquCskxtSMtWfvs/Hv/S419he/lAwwh2RgkBMAgg3z1OV1Dh1YcvR2AhEdTrOs1SFzdc+4BupMLkQ/zmhpN31+mH5r65YSnJvZWogo+CAwq+Vo2UafC7p+h58j6SAhFZ4TyTHThp6jTC65dfle9p8o3pX6xqedcoMWZ04X/8/sHnHUn5ePR5WNRNxWwig7WtPKmS0qpta9ENyp+beSbfSFIIVz15MOwsUntRt8ZMFI2xFeLtpw/bsZh9/dlfeutBL6p1o+3Rxsi2o5eHOhVvrbJ6wBl7rannE4k9IqOV0sAYTIDcDQ0yM3MRlI+gUiolMUZLuiFLdl/46yv9xPixT5rJmUOAmj1iMV1zPuyNDaYWcz9sgsSsnDUDRBj1+yIpHsX4Wje0olpG3p1J6lCG8bGZQcRjf/Jd9fKHvP/oIxfXrrGBSsRlj+0zH73jO9/51Dl/9tiJymtElEQUL2Vf/Jvn/K9TytCfdP01h3UNuMb85PyO1QDFYk0+GxyNdau/ce5Ji68r/i7XOKqg8wplnwgi8f6Wi0jEoohZ77zpFYTBgqZV4+NjfQalfvo4KOt2N6nUlvPPX1y/+Z/1J+OehgpsiGLifXBYc0ZDB9XMV3rrdsEcJYVQEK+brENANBdMt5cmitu//qhNzOvT8Svrg7L5tFnrhjv/cwuPeMFUsdxsaa85+9o57YUeOINep7mVoE3An7/OLVTVL1/tUKS/CezmbbNlNiAqbZ5n4PPap6WS3z016siLy53X3fz9v5142J81MIS6FX1iVKPq20SlNkhGiUaK442uquqcdWRDLKwUK2JtsIi2HUtgbUQssTFG2c5446rLL9qaH/HMIxo6VNwTAgGPJC51gLWlmNYNoHGlguoNmyGHwIQcFYkC4IgUy/FCOjDWtGhISR1TE6K7pcomvXrLwefeH7c8ZU2d7VrViX4Kh5MIw2CXn/iQf7kBvn/6syb9gGxADIkv2h/8xGte8YyqXaDleRuE4+pBp8NgfaW1M7OgzDCtdO/57VftfNeaHaL61lbkiT3QqGvqHpgNSO+cmK1mBIPJpzNTAKAslIfO2XJhXPbMyCPa45d+6IjXFCOgHiZmAI5RFNRRoJpZ+Pdng9tjqkDJtoOriDo40/TD9PdncGPXT2547lpbIjI982wpZ3Ynir/6GfiL+zsogk0VEalr6rVWEIkEldWsWrU0rxpsnLuN7ijbeRVwfSM0v31C7Zwgs+hWgPauaycOS2iHG9Oxsa1rpLf+hc+++Pc/aZ1w5lEdKeqItuWTSkQRVjGLDoDTDTcOJ2SoayBAQAxKEUTP2LDBTRZDVUIqJWXBtKbijRdc0V9/0nPXm6ruKRFjIoYVboy9CFUaUSmlyeCwydS3aeEbNsZogygFMYj2+fpe1slLRzXmiV6mxmA+NMYu+sbOFz4hDniNsVFksZNJzazJjYHatb392k9Uj9vyoic+9OBBrdN6kHWqIbzouL+Ze8WyBnStYJ14wixFkBiZkkamBFFQNao/2/CohQ8nVacaKu2BVxri6Z4AgSPZnxxiHGnlVaOhOaaIyQWzUzuXWtIv2+orj5r5xifPffICNDQyAqOI+GIYBSWq9lQSXn755/ou6zWGtHTl2qgmysZYr9tszd3xd+r6L46/sm2cEIJvj0fati7+8OOdVzxuaYfy3jRbihHtr1O7q8dKgag0VeyziPT7tfY6Nl89cqyoaGwNmeqCNzsfSQVI2lRRnP3a0wH1jY1WgcvB6LIMCT7ppYsXXfye7nGPechMZFcZVIqDC0CtBhIIzSxu9RTBAkoAQsMOyCSKXYm20ZiqBgOHrcTo4aWXXYsnPv00A74qRAyzxBB4BN8CI7wxFHCACCjg1K17rj6zGYrxsFy0kjqvawWsgK2MHXSHt0lts5ShsEm2sL2dXPWZ7Y99ZzaIjMk4DFSYz9fpoJSOhop0duvc7Hm//PgDn3DxD496xVjdb85Uw9AZFA/83Ct3vqMCP7XUrFGLp1QFBYLK2rGcBBWAWkjVqRc9+nlvunYXTvhe0qxW2iLxnqC/jfCl5xU2eKURmUWRU/7H51Ve9SSv02H9kDdd/J4NuzQaM2rOQyXVsCSCJG+Oj9n4mOdO1HUvgGvd3tWSTUzC0Bipb24d87HtTz/GDiMTMJASP5n+9H31W08z2ysa5s62cwgAcvUTwhJZkYBZQwtgLYavfegN3anuljNcOe5m06rz07HVfVSEaMZ0pWx16e5ZXyXXH4asdpP2NCaVjtXUU568uPvbn3370Y8/bTwZiAgQimCqPIBEWY9bIY81ErMYKow1FOugTcMIZQ3Drrfrlmvv2MPjx73+EFP3jQSVSd2PTApRBcI4mhkZ0TgyiEgMbGWs/c7LnnrMji5nCSSzEWtBpjjUttOIQ+kb7Nc6TcXuCBsv+8IVz3zEuvmFEMZ0KWlEpT0LKgBwWvlkerhkHn38Dz948iO3P/txzx/bkxk2y3ntNn792f/wRmxKR+rcIOtceQGV2zxrkjCJAE2WVXXYvz/jn184KApp00ADgjAQ0z0ADYm+anDUoIUgAFYRQynjlwxP3dMzOjiLP5C36S+URbvXTHRgQmQlHMQmCjozDY2ufn6ssDBpl8wNMzmOp41eMTX0U7+Bf42vnurWkbSSwMF37K8+svAX5/qh51qSXpKmmoXU9luP6BsTgwq20YCoKWK65+aX30ZV9qZprXHDuqDgC6eHQAhRbItRAf7bwxkZrn9sxFKHABQll1ZSRZ2v/7t624Vfev8pZz1YIQtKjJlVjAyGWrbqImcAiBAlgRAR0YDmenyVcos3X3bFTdUhxzx1esbUVaGa5FmRrwomHcSAgAQvHEdKB4wAhMJxmMpzd1/2t/d/5mo1SCdNQBgyMQ+G2fQkMZMYxx2s0cXZWz78swd9tlXvRpPRMOBYu0qTzGVVFFZKByNyaL6NF6bPfex3//mJ/+tLzz33SbzYDuybCw3+/F+87S1ps9ebrBVB1lCKtR3jxBjPSMSMQ+n0i9O/9Ofbn3hkL7jQdIgiwoJyD00UvvUzu5THKgsxSW2Mtk7g+w+QIh1C7K3j31374id6RXNj2SihCIwhcENbkGYjiYyd+dAa9tPdSdpYevQGM1l09XjJY/3vuvs9qL9oMIFYozWgfvPJuec8tjGX5m6hm2UAVgugMjdiusfEWpROM+MFI0W6PrZXp306rsZDk6zZa197w6tDFBDRiUKSSj3wbHC22nq4QLeIQjZ6NZOzJwiymG7c9JzdP/rEB054xDF66BwlsRAEHU1MD9uxmz0gKQDxAKS1USbN9PDC315zS2PtUU9em9OAqj4TxcqAIgleMVIIHA0KR+EgKzgFEZAUshiXnmKe/fP/fO2a4x9xTGuIE91BVzB1dtWGMbRKLDCxr5KxPZ/6ysaPH3vr0GoKdT6BmTU+B58JK+OE82VtpLXGbaWFxtjzz/z0D9828cFfnTepWUk3x+HMR1/8D29plgTs0CQqRBDdEI28gmYoihcT9A/8zive/6jHqbod93YDI9DdGyPzXefPQkoIgjYFRrR281Vv3+4qG5LO9i9f/7HD5m3gjC3EEXOXH/jYSFAYHSGqvpnqNY4Ia6EZJo6frlzSV3WY2P2p2y9Zsye1RA5raSeD+bf0HvsUi6XRCwu4uuglWUaMJHDJ0cgYrWCjZRgIImD8xQn5hoO9rhqh6aAW+c6pU5ViQd3IWERsdZ70VLrZrfbDKsVQiWadUNQGRJvaa5l+3nP+6/cfqQ554Elr6tU6YGAzxCATCnp9RG01QqKtVN2lwW3dxeVl2nDEUw8a7y9Xlc80GUatPQmRsdlOJykioUeIcTTdI4iIVoQIiCmGvFedeuquG3/yk+Mec8YxanpRhlFjMj0VYgMrxNT38snwma+Of+CEnbc0Kts14w4bygIm2kVBspohVMZwVaVHzN7Qg6AOfeMFf3v4uy9+5V89wueV4Wpmx+rPvOgN7yoGWoNtjJkgKECIEGQ0riYhyZoLMHHcv3/oO7c8b3ZbY4R9PBpSuHvnzPk/f+76XZQ4lSRYs3UKbvTH3Ip5b2z4vV/d/syjt445FZNkhCDOgn5Yg9GOSCIorjFZVL4TmoN0NxtS0eW1nrjq2z960+qFJkcqtEp1svmb33vcixrsdJnUkA3mTe7ThCIJhx88OWgf8iJtNDAQiYk2XPKyRgVIY3V7SRtvqp+/JhSZZ5W2skBYTgxiTynYkYwtL6OEiOLUDAkD+mBYk0RfL97/fuUdv/3hV2XTaYesX2+D7gh6l6+Kc955X1duedjt1WTtoTMnru6kKNWgJ8awGB+VxsgCqckyHXF3P4JwYEAfCESP2qkospDCyN4OYs7IB532jCt+8uH3Hb7h2JnpMS9VUFBmufJj3TxL6YIPDs87W5ZTUsaOmSRrAENEX2CnMhC8GISslnbwNNvctaPoxc7jTz7//m999z9c/A9ORWj2Z7oT//HKF71HdZu63W4lQkGYCSAiYRRCybuNeWMXc/2MTZ9/7TNP9yOYTL5zGpZWZofj+n89xGcDrZQf1xEBjf70kxdUYZs//073jZ8/ttsYokHstAODMOjlZU/sAlAqkUvIPOmYBK6VLm+d9VVLijZ+7crnvTFUqtfKB6bEcf7sJ0/44ox3EkU77mud1CGb5KAIJDxlatvabU3gvIFMIavTKts1dxQUNFZ7DpQFan+rOqzQFRlIjdN1prwqLFTZDx5e900lgibqTh4iYkATFCAgCvcxbjim3rbrpku+OmhMTTWLcnGxtqmuAQltnq3dND0zPpEWPe6VVRWsaANco/JoAMjo3KQGQWidK8T4aHRAVAzKK4moY9nQBCxKK86QNaHu0cmPgcsvuvkblx93zKFPumPb0tqsXrilP9OMtOMfL3zFSyBwloo4aq2goSgwBmr0gAhM4BA9aHBq1VS9PN9bmPyLB/7T1R//m394q17o+Npozx/7q/M+yy61hSpSrxCAJBqhUSDpG9Fotjx9zRFv//r3z3/F2hhZCMApre4ep5957EJfjUlgTQJKotu65X69Ybbwkvzhz1/YcaynROrl4o6lkK+aTBpjtfIeEhlkiK02hJCEFJzSIa36t3zhKev24OQd/1W8A4oqGdM+TYdW/eTD+v0PWKgZgJTwEnc1c9IWhQhcV8/7cGYadd2yWa0JghqOweXjG0Ju92SJZlND0v3ZaUmlEOtGpmwYX06rTA1Tw7uPk4ITjygqS/eDCwgjSoy1ioFhYuKprujNz/V8zJvNdjuhhLQCVAQA5dZbq7pOmRPay0JKSpS11lptcASKHnReOIAgRKiQRYsgEREAoCIiJlRaIWhN5Mcf9iA7/4sf/ObLX9+08Xi9bd33xlctT5Qf+PgjLmjyKNoDg3uZru9ZBCjN2rN+TzF3/N98+PUffN9L3rJu0aasPJh/fsEbP1g2dqwZxkBDg1pzjMGQcPRONTLAWNWt4y/nlz32rX4ENySSgtx9Nn8QqzLYUFlODKOKKvni7HHXxsYe+vvzvhyXnjoWgR1qOLgcLi/D7Lpm28zvsWunDFKSdNa1G25NVlsTnGD3vaeMjVU//vWjHjwodF7tXOW2TWS3ffCO1549GCQRAIhcCQwmUN4eFaR8veXms40WytoFiShvlAs/Pi7Z1Rr+7vhJ5VUFtvu7t6RLhMBZxhDcLx4gTRIgt31d4SARJZK09g+liggS+5gAxNrr9q4kb63yyhIAMIcQR6w2QKJDsRhT0uAZpc5AEJXVYzqxigi7zN5HAeGkihoDiOAom42EkRSRIlKKIiqtCURiDNVuZZw+6eSxC7/4q7X//JgTt3zkfm3+1rvVBx4VMIzaVMH+IY0DgOIYURQeutjeddobP/TD+i9fAABZpklEQVTwz/zu2a8/Z9AcpgVuW/fxc/7l1Utji2Z84KagZtJKAdTDXn8wtIT9G3930+CYhx7a/0L1NhFAAhERvAdHruXBipOm51QxUCibP/7LeZh0M++6dumTHz/70MqTydavM5Kpuj936x3XbouttcXNvw9eJb4e7FZnvOb0VowGrYyd9wCc+/rOF62tVavyKQzh4P4XP/2E943NZ5LUCIJcl7B1A4BpKmZgYaHLcMx5TsbtZfcLoEgE6TfPrHFLeutphglV0r99l9vpm0NsZQi1uEsfOOZjGmFpeXJZgUMBlaQ67LshBCTvWddemxD8mhAiEkGxUmhssAgSi46KGvmwTiA4RcilttamiU1JSl/7CMyRAZCNSlAxWAFEhShAOnpRirTSRGiQSIFIjGQpOEdUUXXcp3714V9eOIxXvYZf85mXvYXQLqUrhS8EvlPj4l3FIRKIYD07Mb71yHd/6pz3v+/vfvSOCENpJy798sPhryvObx7Cb2MxKOZ2DQr0dUTgwSDk6056ysxwz2Ef+OLjxpYZRmkkwHsgmA2oSkfgSKUoKDj7yeseNFBLcWJyYsN34WnBOBDstJySmjuTa45+kgdLPuqQdFoynL9Dpg+FOnArxCMuOqLc/oHDXjY1zBbGjVfthamr3t5902m2bsasZ0kAo487L9tYQdoMJIDsvFx5BIXQyMy2354amEytOTnn1EGga/otCDrauph91YZ2v2A1abyKzcvNuPGAYm/C5gCFlaBNFO+jYUIliNFj9EFrTTlHUcSVGADCfb0FJI5Zd9bvmatFWLSWygAists9KhuBAgGFCBEoMz5EQG2NAik8MyhtSWmtUEQLMICwaKhZGVKSNrvl4s8Xl8xJj++dIi94/lHKx+6EX9m8RxPbf2CQkmiE/LmYzzR2ly9a+9d/9d5/ec7rj5pv7dq4SAf957OKNzr/hY8eoQnSiVbSnuW6iErJNK6eHMDGjYn5+288/+m78pJHryEN99ANKwKYGu/QJIIS6Za3HeKa2cKq5d7sW178CLM7ZzKZZvFkobfgzVIGPSAOeaqKWq1bY301zJNhhao4on/Tf5x9OOxpQm/VQqcv05/93COf61GVuZ6frCIg155uHgIkLesICH1V8dhpykCzoy8oR69IW8Ebhsvlmq/PKheUYCzso4epDjrJvbdW/+gY00Wqtf3tbNaPrEFUmkLcDxmGIuI9odVGROcBFAlYzQwALLQy9xMTEDWmdVUHTSFwtCSea4BUeBSU7V0gEYwmUN6kqUVhKMsKtdYWSRGysDAyApDmqBIMeVctA3Y3vrUvyUSk8vA0VBjSYbKi8/2YMLB3GdxJEpDILICdQUjXzi49/eA3Xf36S1597BOb1R1TzXjcF57beHl16jtayiqdRAeC0YshUQH7DvfE4RtnP+fnbY3IAkQoqO6+vQeV2f4S5WgtI7NVL3uE7Ss7DKtvP/NZ//box3Q5RKMpD1Vpta5DYpwTQ5agolT5ApM8r0ulw3AcvnLL02bccGPjpttnpruTO1+18LZNhVsVuEymhyRMsajULcdIM80jCIKvaycvkrmkSRrOP5cJIJg6q5NFsLt6T9VsWFdDpknPwGmbkZjmd74AQBMAXHWUBABgMInFuA8RXZAFnDcBkIWSLBJhCApFSIvnqEYdROgIImSzfIePGqOIWgnARzMve8ELmJkIMbEQlVEITBNcLpcqyZQAgIygPgBBxEU2wHEIeZ3gxHOLafae5luqC+2C224vINDIyu+dYyIKgDKIsHt1vTwJY0381NvOe/HffONtj3/QcEvdOOLErz82f4xfVxn05RDI9jQysnDZ6vvVxQ9/v/iKF+34DRpbRRACxKhQ303pFqpKjXNErVhBxDUvmq+tS11YHL/jtg+95aDVRCaRUoOFqluSliIm2oUEMlU7AG2K2nidDmF64V/gBaaE1cw/PL7db3/row96r9udTpRjpow16MgSyird+uSqlRpHglwXHrCn2p6a9o7rHhwROebK+TlV5nf0Dh1AXqdlAVU0HoVyZ3SQLWa2ykLQvtrzsLrOyYNSRh2Agi8oLD4aDA41GQMxEhkQCoERtAZgFgRkghhMW/d9DYoMsAAppZBohLuKAqhQmC2FqAw4AiFjTZLFPXtCs1FHZqCVkh2IiM3E1SaPRO2OT6Ax5KxIG1Jr27PJQnsUMa/8EdlHpnNXSxcRjFEkrKlca4g6nZr4xBvf9uKXXvC1S89Ndbxy+dTPP7l30q6sZ0VEJCoaNUFpbzu3ffLG0z903GJGSSz1CHwFUpD9gDsIIiIiSQFJ5VD7pliCJJRdpyOwlSxuwTPfq9BB0sghog/9Yd4IIUElLrHjHBGNAZ+MeQs1NBbf3nq13QPBat66yaVv+tjr39TfmQ/BclQhmCoa7ILd7m0DEi8A4oYOICSwZFcTXb82B5J095eM2e2jaV56uMu1i7UTsqjA63ExyNz82dFVWmEgtevm43andpmBppQuDThja9aBFV6zUEgiIVgd8nYdR9VQCSMathACIwKgFiGL3qyayKUO7ANoBYImshApopgqBCZE74RANdrjs+sPWt3J3OK8zxsyrKOgsIxI74AUuSoQkRmbnprUKaK3qSRCqDWnFBtxH7CEMLMAyorc1QiRFBEpnVZgwWh0nYk1H3nKB776kLc33nzlmE8X52de9v7tU3WOCYZE1QLALBxEl1Ednzxy06JNN0VqGGs1CiqOlN4NoKY3Rv00HfaAkBlRakZEkiDDidtmVttpw1lWVopCUnha6qEa6jBMUq1wtCqTcnGizF1n5+uO+6vNi6tg3LauwI3bHs8ffOQtZTqcVEksVQpg0A+qQrYmqw0aAlLsIrMgmKmx0oXbNoIEV94xTlsoAAy2n5GzQ9uvFAIwJu1E2JPxt5+Og5Qqan51tjMtg4bVLUUBRSV10WAWNa+/1resPRKIMvvBQUdv6btvqlPrmmxMACIAkRhSQ8yMhD5C8KTTrDW1anaitW469ctzu3ftnu8OXRSIMUYWQKUUEQonmiGdnJnMEwXM/KfDndyLxJimk3/3D7/8UHzes7/x8VxVuxqn3P9ffRJ1hLzUQAggzKL7tr/hkfRbY1la41YrrY0iECKl7g6t1fMZ+TRHTcxIXDICkngRe/X9r3zjReCTXMAQ06DWqJQGLWS5RTiazCuTZr+5NHnlm5/6mN2p3QNTy+6OEz77vBe88bCdVIekm4egBFVECTVC8/a2QIOBCF0dhZk4pK1kPPziuEiq2ew/oOhhhObcnhOiF6RSSQBgsS1CAlBbFg83oNSE3fz5cyYK4Kh0i1SgCMRBiWhe4++YWqZoQAGY5E5vs3skbknXrmmkmjKAEX7LiAFFmMQ289ZYNjPRyqxid8vNt9y2Zddir3aBRTjuraxHFkBSulZjE5MTTZMYOpAN5L8tGnriGy/52pZ3du/3Onpjld5YnvpG9cVGqFDFKkRCEI4M3jdi94YFHbVwu6ONMdYYhYJK27u901OzZ5BxsCvpplAzMKHE1O+86dV37HlQNFolKjAMAGKmyixlaGg13h8Ri2BizK5k+uJPPvsht9Zj9UR0qf3xNRv+q6X6cw0daXUXm81ClJfgnVLm1lOWW41lixFczciAnLWlh8u3nEBY4+CGs5ZaEWn6R5NmwIkMovVeYQTSETVGdclBEqnwraVL+0cvDZt2WHQsE5sIQavShLSo95TGqT4pEDHJgZCLsB+V5wCp8lX1nsFozBC1UV5bjSBgTd6UxO7e7Ed5GQWIRIiCJMwMakT/M9qfibAemzAAMepR68J9QDa6ZwntIqVFfcyFT/zn14yfe/7rX3b/a6ZP+NBTjnnQwqAZMz9WMoMwocp6aWv+4c/otUisBQ0QZcSmrfTdLD3pyrRxprAjqkQXRViYodRLE5P9deTHEibvNO1i4xAggAdOp/bIiCgK/PJSM7/to08/c2tsFaWbThsX/uSZX1D1Tsw9aZz+uTMRxZP4qqxjf/MxacthIrGuvCAIJDnGZtbtrwaitOtkaISU/dmZgSjxS1KRAEdtSDAoJZc8RAXKG5gc+bXT6my5yPI2QhSlhNHWdomJ1e7zI+cJC1NyIFzyvYhU2ZqJph0oAkBSembV6tWrV81Mb9y4pp3aetewdD5END6E4OuqrL2PLKNcLEoMihBJaTM9ZsUHwTii0ZM/lhXq/ySNUop+asvkh0e9edA556Uf/fy6cOnar37CPmimbdTQrWD6U8xdLb0j04oJVKKJRjj1WgDvTtFVjqm5nhiTEiOJq0QYIAYwE1evx8VDp6pMx+BNgjEgRrbgVBpz+AmBADCDaqjm/CvPffTuOi38eJvoa89+/MultKsXSnDc3Pbrplk2xml2dWTbr9sTWdmKCRWeRRAxy5TKh7eRquvIN+ou9RGSW24+C7T42hunRCI2GkpLzaa7434A7H1vwU4sLmNmomo4wxKATYi6v9ubet1HTqPFAQGASWk/pdYKrfTdFkEeZHzjERsmAuvmzEGbDj9o7ezUxMTUNFKoQZssMCCKrwgBUCfpSpFtBboGkZRO8mZ7bMJG1oZGxXbhcNff88cK3kU4Zg2FYGP388//xy1rHvL+K1+1R//2oBd/LD31YKvH4t7+IOc62nfbxgiSajSQVgQA7k6wW+qLvl5ky5Qgo+K6QhGiGAD87x9g50xhlChWydLvclXbEFgxQ8fefI1RwCEw6IFZ+PuXP/qWPdkAG2Wzc97vHnAKyUz3ZsgKMNmlnSYjsIl1FQ2lC9yywRa/0XUVgSMqSjPtKjrre5mljG47OKeA1PzBYauYqSgUYVkFsa00ApLIjY0ZpwxrG2OVtQpEPbW4nUB7FISQXd/XPLFwmvYzzQqAkhT5wPu9u8YBAHWAzur1Rx991OGHrJ/pNLUaIatHDoweJy04F9mXiMDBVZVWhERKIQIqm+Z5o90ea7caJGIMCdCdwaX/28LN4YJKQpdb5d++9F2/Bf+BY//+ytaNT1n4ame9DtYjEJGwpL1+HXvtLAcQThtISms94qG7u9LHX/PWZMLnXoMgcQjAQiRR0l2bj1kIm/y4EkOab/tUAZVGTYiD4SzdbA0Jx8hSTIS3POhRe0x7IU166+fOGPsA38/6pVbugtFp9l8P0K7t64aralbAO/vroW7e8T3XDQLMoFQSvLIubNTofXFj6rmB1PjVmRxC4krx0C8C2ozKgCn5WyaN+MBh2BfTMw2Qmc4dd3g0oihq0TdAUvXNoIdLwAhoDMg+911Gln63h1poHtQ1rV6/dtVU07ALgQEQgYgSG2Vstq0YlMLAqI0m8D5EBlKKiHSSN8fHO+3cAAOS+FJSGEFf/7E8QXeTu1q6DzipeumYEt7z1//wzh90bvqzl7/nv8qll37oiqSB3CZCQmGmlrFcrmlZEQlkgUgpRSCIAEQrrxlCRIkC82d9+ZWOXYJiFi60Aw6InsXYqe9uGlM98GiMHhC999EzlVEAHNTXD5pPLx+P5OcWuTJpePPGF1XYd5R2D7n2L1/6nl+Xhw65uViJ9orDradUieOkrHsA3vp4mFIM/3FwRFAAlqBpNZlgFesig+HugweF8WtuvfwcR9mSAwyNrUWaNoynvHZivv2EClBnRT8LTntUTctXBG2WFXtiXf7uxFIjdTXoWqmQNDlQGL3cRiHbXqhQ3Lf5EWnWVsjUzMwCpM3Kxq0jcSCg9WvTgLEyHENg1IklEdKKUCd5szXWsRqBBQgVAVrySIrkrhEbriAijAgB7xQ73m07Hy1O3is6Gs9ZlBhUszrnH7/xu6mlk//+F5/Z2Tz7lb12gjHRIaBJYsVgtzdn2ySoWY1ZTMCg04SqDvss3ccRw8v0GWP9lIIoQ5cVA/bABoqIRXHZI6p0sT0xbcOwY37540u3t5MhAye/X2+n4pajqLuQSblmS/7J8IpFX9nhqj3rf/rGdzwdfnNkSsmwjkNveObK0FRRCHzdACZPZ/6zXmjecH5rWLIQBsrTvUkKJF90pUHJsKF+rHLNha+NCNy4Bs1YjNkw5bC0vDFFYucF0IANbIFuGoshUcHoKNsmLRNGXhnuQJC7b2x/yMbgniItGj94tQkqVSMYVQQy1hqtm+1Op5Uqubf4/97kT0KsPPA6UJgbDzzvYzeuunXVu5c/sPD4zt9aVs6LTgyCIlLpoJWlK6gXVgERraSA9j0FGU3ayZJaXOJgU0XJTVNOUBRFCDh+SXhQiYtZ4msF0m++8ZFJ7Slj6Fx1RtKvu7NcS8XJnsN/dvHbfba4B+yejd/+4D8/0JcXPBAcDCLlNU7kP3tYSwVUsapiEMV1uqmcgffNrU9JmCDa9r5COKOv96imWFOqk9/cKkwdnQqy+7Y2JFQhF0bb62RyGRRXNQOy8z5pm/7OQ5F1rAQluenoHAhcJARBRkX8Jyj93nQndvqg9WvHgqA2RkkEnbXGxsbHx9qtRqJx76H/10UroujWnPOuj9ywPgxeu/GdW95y9TsOqqckIomARlB292Sejvg2dUMLIhJH4QOUTopAQKKacy30KKpc3DrRc4no4C3g+FfPUhiTiTRBpjCcfdYxGlF8lV9THGV0nGsUGosg6e0ffJ3ShZ9xPP7tr777NCn3dE8nrINUBCrr3zyOIoS+jo6k0uNJvxriKy4+9jaAyKjSDPZaeuSAu7LEL+epv/+f1xqcE+b06hbZRoDUzXLUPzg4bQrGKogIqFo1LV2v10RkJvJEVx7DIuwYBQSENP1p1Nn3rPbgqD178LqW1QQCpNqdTqfdbrczizFEINj77vgj5Z5Sr3+MxBgV1XH8Gc/7+nJnkJ975rtv+cxlXzu217BqRFPCADtnExztc6qheDRLuRdWbO8tChAJ9pUG5axWO7ElSKqK4Iy5csdjyzTkq7TTgGUZ5gZeAyaZvu4Ms5jMLUwO/dAI5u948rHSD3aJVv30P95yymAwcXFr2kGPvXZZEpKHZz6QinUgScnTWDtpmuEm46wQR0pzcvvuKgS8vUNiwyoYsIeyqino7KoTsqaxIKqYQ/+Th1aBJXgAFmqpdlbT1RNQklCTol7asqYPEp0AC4pog3+KF32vuzSjBDuzYeO66U5ncs1Bs1Od3CoAEI53Yr79vyxEABqFen9zyhdgYq589kP/pvz6525qJkoBaBKFGHoH5wIEgIKJjgKoAEAOeMkFZiEFYafze3zKbdW8Yw0kNqgSVM+Y/zpmArgK467yoMoBNRpYoYaUf3essq6/5rf1QEs68cGp50GJvVC3L/z8Px23SOOD7qmxDEPh2lc+s09/phNkV0fiIGnmB94WqfSXQAOIblreR0JPtePrJ6Nu6FRR0OBYyKulOw7PTQV39ChONi+97P4NB7GOhIyl6JYKesthgQkiV5jcNjmJGnwkiIgC1hxISfpHyD2rXUMEQm0nZtcetH7NVCe1CkFEouAoJrqX+P/e5L5aOmoFgshp9rrwK8rx1nOf8cxVL/qnmTISR6VRk6rp0OaItE9Ep0hECu8cp486ot2AM6OAFUv8zaqF0ouYyApVeWzJPpoOjJGvQBdSBba+63a21pQcjv7w8QETn13x27/uL8VF4ekbPvq2tdRSe5oPeqpWgUTbpja0Y5gDiq8ds9Qh71jKS0WLqQZhRSY/gJbClyHeOh2obnsgFxPPWkTd5GeFcM+vSBK1dHHTe6HookIhGaJRxl9/FCasYsUKfn8Sphg9kwQggcTAiEjjj3yo92LpxKITCr4OZC26QmJkIEIAQtoLQHBftPgnShWAmTTJ0pp3fr9ng+09+kkPf3Hvws7MqoaAIgIo04NyGGECMzS0VndTOilCiGU/DmJHqszF8vZNFoIKbe/bEY5ek4sx7QR6lCwOshDQhoqm098dPjXkhluzEPLCqo++bAozESdL73rBQVy0/ET3iCP6roCAUtpxGhvrKpTgmaPW2iQG2OS7TM+iMCltgO2+m6pZFtqex/NhIlYtVDUG0ttbnWDbu66aABl0nvDJ9Zgje0YQanuFqPZcPg3aK0UtqK9Y34PaRyFgQEBFf6Kl37OI0lgX0kw0OxeVJQJE4EjIMUS+1/j/Xs93H68DFaEgoZJi8v5fihGWl898+PP/9lvHHHv4tAUkZi5tx8iovMCQGE1743PilQuUGCnqoqpT7APVGZfL671KnOqTrk3vkPXLJiDaaGlQa6dYorESkkvvP2yQGxSEy0nnIxsfNkfelw3z5mc8OOSTJTpbB/KBIWI6kZXBZyrIwKlKUW2bURIHpe0rKtiEpEVeRTNMAwYZLFXS7aPKGqHlAHjAJKVd+PBx7QThR+eUiU/KtU9LCuF+VBUnNasmh/xq2cDRRka/PHfDpDjDhfIxhZqzhgoCvC8OllH1DPbG7Xvj4NHjkBFa8GhAce9jHkGjKQk6xcBCWitcaZMhpRCRCIX2nnDfEfekaVn5PYh73wj3qtzRx2hf4L4C/a04AoFAzLtXnNX/TYtt35111OfXvrcF69rKBYlq9yEtr4hFAQNQQ9Cg4ppUoDudfIQjwoBam+1TISBaHxhQtdZM26gbWhB8EABAg+zRLurDlEMOPngTL7vm9d2JuFzZ5ruOf2RIkygKI7FzUQDBKlFKpNI6UGiWUVlDINCjQYYLeegGC6jQ3HxzpYIOpc9N9tLDYwuQhUIVjS9abvNRp/TbXq5sGa8AJIAKPSfCHLkvSkmdHpdCCBElxG0bc4mxEhYRQaVX4CHv8jjvVUYdDaPhRLjvBnnvyrznNMA9Xsq9ngMAUGlMnnzRAvTHlxdOOeSWb/6ymQKbnLSSjt1/rEooCCndtDY5UOkiHGOILILG2Ks2ChCQACkI2IwhUp5qktoBsgALRsluPrgTAcsyEtrks6/McVAmg7FPV8+tuJFEUcIqlHUEEZ1rJiXCajn2aqCY5IYAaLwfyyJzMpN0WsM6i9vrJCPNESPLE8cwB4iifMHzY82IR//DmSiwvLVSFQmIB6p6AQGAGXMjzAc/S7OIQCjwmhPGtKKR8QqqlEbEgHd6Yvv6he7B1kR4VBQlxP95nQPcx3j+AIsHAAANeKg6bNVtyUTRaLXPPHr7X3GaZlCQNm58L7koIlJmPCtl0InZH2KMtB6YGQGU0pdtUBqjZwatfFmzsjbXoYpVDcKADqzm9NJTg6gwrCOE9NOnndmDRPrtS3/4hsqbRAkKEwYXQASSTEUgAcXdpDZDi1mmQAR7i0SQBuhN3fDb8Wx3snmaHJel2EGEdJArQEYKNSZV38dyVZzalS6qa9ECIzJIERGECCRtW1G46pEhGItSDfGaTYqQGUGEBfWooftOt/sHnzriSiPTKOr+f+Gb3aOs4NHdXVY8TXTJwav04zwVMIwij3vqLf/YK+NAAeSxucLMioAgiRUhIuJ0aj+k2ArrEgqgCAFvPpsxMscARrMAuyRPq3pyuQqKGYEQDMSbXupVqHwEnLhoxxvnlfVd5d792rTKc2LEwEZCABTA1IwsJxa639YV68wwi0DZXk5lOI7RXj08Ls+Wrnl8VWT9EpBIV7oBAAgcmGwfM+V13h2T2Z9jzQSIyL7SEiMJk0mUEEvmJYHgqujmpp2KziEiCGtjRqWG8MdaF4mACIJCAJQ/jd/nj5Q/MOJw4KcA76VZFgUAA6T14fNtKQE9qYhPaHx64rSdbYw0nU0GFWF0+Rh1YoOgqJB19AEnH7kkIMCsaJ7HK/DMSoGgAtFV0nDX3TpRO5HAGnSss/aOdNVQOxfZ2D3f+jvIatipzZsfcdLChM8YCQSwdhEQyKYAxIgQh4PrTx5mvpGQJwyxLAI14PeDxiOf5+Oe2at640ElMaDPvLZNAhSU2oEMTNLHibSywqqw0TAKUqgiiWfFkk6kEjRIRIC68sEstleBFgejxhWdICMx3O2dfreHiQd8tdfxA7y7fu6tT/2PlRWI2D9G73Jvw24oAGiGJlmDY7f4/nRddvasfmD16eSosGCz6eYqGNWSURBEskZPVNCY2ztnkEa8PjGKNjd22hWyZ9YGWEQqylW12OMqgAQhYBBq/e5YFX3hROnhN489gsrOYtL4OL+oTIctzUJMOpR1EGaVmSAaBLnmG7reizFGIlCsdBjjetu/faRlfG1b4eZ1FnThOUQQn2QQUYgHlYSMfCNrGgsgIipGIBEVKowsiFGPt5WAkEGCUAVhdd3qGYUYR8VwMikw3Jmu9J51vk94pBGJKzv8H6GcP0lWArv7vIPsvSDFkg3r6dnDq6ZwvpgP7GM2fXZx2YJtwMReTmhEJEgbJJryiYnkAKXv5RxgZlH69rE8GgyhiKOJTD3WVrqh+4ERoiAElWh7+WG1lbKGhLfe8dKd2fytjL/4zatL0XmKgihKe+djZCFLQTQIcGVuOThpFQmhMFKsq9agxDWv/dpZ1nFh8IZNLLwUjNYuS7TYAAJcOfYePYnVHkpd29oYJGGMniJoQ2DGoodEUyxBOAKxXJMlwYVRhy2StsJAI7atOz+5uzpy+0qavHeMX+5xc/1vtz/9CZm7ezbzlb/D8ULzMF19hOOGyzJqLDxj8E/eksbSctyfhxGTIijyWod99fSoEJUACauIlIZLD/E2OEa7tzaljWSrYh01O5Lak4U8bD2KIlYRffzYC8jQ99P09g+/YcpHGVOsxRPUvhAGaLEOSoVIUPDWXx1fxbRohKi5Dp5ZafCb2lxYTTVccHKpSgZmRYVNk6BiEpajEsUK62ldEzfrlJVUIYJx/RFmsU8mmFAYIuRR9RmXtN59Ur8Vq4AcgoKoQYx4FK/2KngliSJ7718EAJEOrEUAAKCMLH005ysAe0P5vXXuvdH4vnzHvUUD+847kpV4Hkdr6x51uv88+75aqeYgjMJrAeC8UkCJ50OmhjEhQd+OL7v2vRXCUuZFaMTtRCTK23EtujGT7m8fIgLhGCPHKADou61Ao5wDAQiDNhwhDplgNL1phunYdcnqqpq3up78xJnH99deON/e/sbz1legtbajlRw8oaXmLSYlBCQJPv/J+uA8TRIiQYiCURSA1mqs8NLYuTCJRRVEgDFJNTNiHMHLqECJQgKNyCQ0J4AcWEJkEEpHlSURjsQcK6v8/Pp2QEEHQBJJwwFb+crGfmdD/SNsdiVP8j/Y+/Q/IKPLQVR6bUc0Myhpzv7Fle+pwuIeyNMB4GgYDlkoNZB1DuwZ29egMWrx7S2tDioKIKpRyigzzCB9JomRBYAps79d2/Z1oGHrl1vPcRa/cXx4+zmnm4p0oiKIIEZfF6V3w4vBIwEqcT789KTECliFqMQ5wQBKKNVxmHYq/s3stAzKKAxi8lwzE4U6sIAoTw0DhMDMCnkzAMVK0DNj1LkSGY1fM/dKcOIqM8MlV1EAKQZj8S7vcFxR3oFax3va7uEu4dq+rfH/RzLaO9atNokxQo1QPuLB9mNbb280lqoGAIJEERRQjVy1Wzru3/MjCyqCGEIQEdnt17KKUSKNNjbV0ECsHIyGcEDq8TRccyIj19oOvvjCiTBz2x1P+bvxFw8KI9HoSICE0blGI803L6zKRyBmLtzaWzXAtJ0pRIi1GwFF2Ew5hmVL3z7OuBqQI1PasCCIGEYJPYwqV4LCUYSwv1kR1pWgEACrbIUPB4niQITEyZlpBaH0BoCYjd0fl++Nb+9isn+o30VWarKjw+n/Sobuvsto6XJIZ9umnTdClnbMn8EpH9nV70/WanSjIogoNk/aKsb92QpCJIXRxcjCEG7LOwxRCJBQQFCnCBgShBAFCUFUli7uOLl2NRZrP3+/B3bb8INHf273G7qOkgiaEiRC8T7WPqrftZK+AAsEJ+PnHlR4lTMisndRIiKrLAGVD6V14U8eUxZgUERsngKjAnFeABAFrcVRlzSCbJ2zFKtaEDUJWb0C20iENaW7vEr0OYp0gSMSaUrUgY/oHh33laz23WfJ9v53QNkN73b0nc7z33Pw/mRZyR9J1ZnQ7WQsg2RsePimzU/756W1y2kFgEQEggoYs2ZGIvsdF40CAKGKgMJS3zhDMYoYQhQWoYQIgksAXARCQmwHeyttCAPW5ke7X7gtMf1fhW/9/cTQglfjxgkCQKgdG8LqmuNJCwqzc5Ce3YKknZOg+DqyCInYXAmA7tTLTzmtX46wstOEmIk4uADCgtEmBChAiijCLWLEVREYEaJJR02egAihB/Db5Wj9TBXLZa09CINN9ts53FnnByr53kKovd9DgH3cfP9HuWuD45+oyT9a9i5Tjc52EkWtNRhDK3/qrfC0H29r6gwk8mjaAoRNQxml9ysdonMMIEwEAvWtB7HEEWa1MAPZoGLhtI+RARBINQgvOTTr1xgG//ksE1vt397yq7+aXoQQgm2b6FiAXR0Ai2Lz5iMLTYQSaicVOdCmrhnBO0YRYskSgMhZzz/q/WXtxTvQKlXCSMJ1HUQiC+fZCH1VBKPZPgmxqkE8M3OaCZAAAIIvXV1cLS5KKeUwjiJQtEbuat4oBz6x0eO71wjqwG+P3vf//3mv7/dBNKetSI1VE3kyvhxf8+kTTnxJV3eRvY8AACwkmLIg7d/eg6s9k9KCKAJ+fpUQS5QwYmsk7VUsI7nIACBASmVwxRGwSIP29+9/VHdW4LM3nnH8oMrYJMiiSUQ4+ABexvNVxztAQmHvIe+TTTPKBSSM4BYZrGJIKnatynkR9g4UWogwOiQKM4skBoCQQowiejgN0UeAyBzZJitvdJRQJc71xzmmNMaSS9QgDEbtLTzs/WclTLubZYvczZGDA326fQvg/6j0/1eWvlciJ4FaUYXWxkbZn2hNnvMvbznstdUUcvCRAYVFgejoo+C+ejrZSQPRcFYXVuzyruMWIpPxZL0I1Ksw9eKrViCKUWkvE0bvuvbsHWlpb73y6b0I6fU/e9JjB02nbIkThMig0JeetJDc74u9RCJTHHLC/YRkjHUgrqsgEoUxy1AoWkmHqg5eeWqKTw2QkcDcB+1BR2zmxCQuUEIu9aYFA2djMGSX6nHxJAqEg3BdjO8YpK2i3ehToAgqpMo0KAqMciwr/vkIkwYBaWXYFPfH6SMVESIAEt1JX6OaOQLAiGwdZOVzB9S79yZ3VsKhfS3dKxL5XiPzOy2Ovde19/wjh2P/YpSVi9t7TLSBk/FpN/T5IYdltWn+zdhPP5i9QbD/8yu7MfXANAJnGd0brtw0A9cOimz9xMbxH61vphQjaIsKFE/+563Arg7GVUAErBOF9W/X5tVi0vzMsyTNuPWr6uVpLOwym4REABE5MCKz1iPyYpEQWNiWeTt0o1AMAiAIrJMRV5kQxMAMCiMkmYhEgFhHjoyImBsS1onxRZIMSDGH0Qatfl8lgCaA0tb4Xi9NLj0u2b1KhCXGGAEFFBHdZ0vbtyf8T8p9PN2dKgcHKHxl70KkpAEVZ1Prxzkuvv3LxYeW35PcqIuryqIBpDXE0Szf/gyUiNJm4qATTzh87RTedpJCZkCiYYTI6rr16CsvuWdAxdHkBpu9c3mQt77fOrWLmLuPn94aOrYNznI1Ai2LdUCIMUlxNNAVnWNhEmpkQ0/oayYRBE4aJCTAQOhdZCEImDUEhQVDAaOuQ9WwmjiCJIYgqriurAMzc8Dbm54sYB1ChCBNKa48OCSYC3NkAQYGrf6A0v/I7fduadr7orSRgvZmAO+a/h19908/3wFfqXyc+2ybq1ePmZv0i15jPviL757arsw1ygEi0Qp1+j6lK2AkO31IW9WpbjzpiWXpBVFikmiXX95ax7UnzF0qACw2Vab7yIcuQbr95+c6RJr40APfQ9rqOmCWkwDgihvHkI6UjhJcEBCfeotDUOLqEVw6pRkJMogAOxeBOYrNDBAIgq+ISMWach1ZYYgyIBfHYE4NKx84hlimBw/A1EZbTeKj8bxjOsyIFY5RaRUgolH/ncLGfYzKcSWzew/nu68LZr8zcpcTAo7sisG2lBNxenJdNrPzlPnfjL3z48sBqt5tETjwCqLYAZaOIsFjothXPpykR1PXHJX3PHbxyTVXbIIqFIsIWQMFTHjp09fPWuONbl/57edlaTewcSYzACDIvg4CgDo1MCJ49VEEMGqTXrUjk+D9CCnTpnvLu+x9iMCeTTaqfmP0kRk0czqmQy0KQbfSWNbQXKhZAAHMfDZNzALBszBzNINiA+vxWsSjAcUSySD/d/ZnBLkPFnivZ7vPq+he00f74lFhspMJcB2SzsEbK3zmP6n7Pfq9h2c8dosn4gBqxAW433sfAaTGqGSuxrisFQlHwdpjtmvxgeRqgMqWDiBikpDE8d0DP3n57kf2s9DBdz/7sCXUKSRpngATCsTaMYhQmpCMWm1Glq2xo34ySH0dmBlAMLMsICII3oUR0lOa64gAKN5D8IxgWrk2GAWFB4OsE6r296JSqJXKtoI0ubbBoriB15hf0J4sUgCWQNCPgKIT+j9jEfzBZ32fjrt3Swe4D1q/ZzPf/zMAQGBR0y1AQxAnkkPjpvhlePnizglVxFujUiLIDuAAR46JUGmNTvXrSsWcRwVfTNKkdcFhnVAFiG5MewShPAFpL7TiIP3hOQEky77tz92TLZF3S5jrGAkZwqiXTqVGGCWCuIqRI+g07W3ZBFIzCgMw5dozCgKBrxk4kDZZigLMwJUbYXukuVvAFCJAaFAQSp/8UE/AKJJsXReQGKnm1JSVBLphHZvmwLB4crtLRWSSP3Ge6e4i9xTK3VfBvYWbO3vrsv9nf9LZ9p1g1H2vUxCNEELzkMnspZ9fppd8bTbHfLnPGveGqAdU2ST4yJGSYasqA5duhHTmy76+5gwe1owsnQYQgkoMQB0qNfFt/SCFRXPu/W9ZqKFJoWPadmVMlP2oJW4EY8Ig3jMyAzXjfH5KRUFGDVpoKQgKCEIMAhDIGKMQhQXYB1QIDJaGt5cGImkVqApmqbHeMYcYI80frQdGB3vB9QMS0BRXj8lsMCISyS2UimiEB/Hf0NL/uNz3zWO/7FuEe7eAlW7uCoE5ovJFXDV74qov8UP8nsMHMS4HhbKCG0h749YYkQiR0jlVY9Fwmr1A8IwmuXHPg6tY68qTnnQRIGmRU6KW9a4LX96vVLL6ZS9Zv2wdqOjRJkWDo9NcC8SolGQBUowIZa24snlsUnbBNOPQlRxBSjP5vWWd9jJBCEUNFG1dJw3wJGRkWDI7q8tUsq0qLSAJVCu0AKpiAIvCmO0erzKQoL6L7UWIwN2nP3fJo658kMg/GwenGuAJlYhw5P3x8r2Z7V7z218fH4Xne3++900x+tz+ePweTkR0b9v4nSx8bxw/MvY7p3P2NcjL3o/u3Sf2a3+lNQAhRgEhUUSKFaa1JLNv/PoCPPl76w+Kbk68UD1iUb/TAKMAADmIYKIEARZSGBiuP82ZIUjkSE0ENimKQojef/1BOrbcwd9InrUjj772epDZwfiCNYZCYEBhShABUCmsRQTdEKhVXXgMxkqEEUEl1W9z4DERiF5AhFAlFgVFCHzlWVRwOuT6siYJiAAJM0qIQtEzKVO1DsmGhR5b8qvABS4KRJtqZtJzoHdwcyhawd7W5/tu7gceKXf67w+EcP9j3t99uW5FxCwzj76iOqq9Y20aaq+sXjnRAVW2URYoVBBQ1RJEIhNJcHz5w6XyIBG8mgTkpAGixM+N3VQ8hFWZz3/wdTqyIi9WWlaFnJwC5yOSsMoVCgOyL10ALdLMud58NPYqAQYUk9+w3HLDQT+gqyJEJtBpAkAAyFXpRYDBhkZx+QQKCIACBhLnAdkDUNaNeUhS8j/vt3tDyEyGYnMtjFXSpMWq1pAYABx5rXtLqngPlvYnPtP/4wF7O3P+xPPeq/yp+QFEEoljf3ZTsvoR42sOz4Z9x7ISLt55VFkACweRpIIIwFGAWeYHx6gFFBZk1YmIWY6gYg34/Yd1gvar33HGA+9QNStE39KghxmFKquCjNwKIomRfQnASJiOVckvm7NlJIYozMZ+Kl/WE6lN0NdRYoRIqRVBIKkLj8iMFk1+Wz2GQAACOMLsBwFBgXR3jYKlqN+sbfUZhEFFtBpFylhBlw2oVAsg/PGTi3d7enBgt8VKl91+M/8DR/5PafwPOe5/4JcjUAiHJPPdIxKcOGSMOPJKA8j+vncYFSAcMqhKZIRhzSz5BYePDSrDIAiUBaMz6wBcb/JX5Ql1rFf98sYf34YYoyDUsxh91h3TvFQzoqAyeqU7IVQUJXJicvj0A1rzQQQEolh60ca0GpRZVnrPEgEiaWQAQF/WYCASgJ+xV2yyARFphILmvUAkxIjJlhn0gvbWD38UBhoDIDkiIog6WHXFFuQkpYCwr7nxvnrHK63vI43/P/UK75PKAYgZdSzSZyhr+i1/RKdpA6h4Z+99ZdaBo2JVLVCQGERiFOKrHgpdW8YogKAB0gSF+P8r7kuDbLuq89Zaezjn3Km7X79BDwmheUBIILCYJBIGM5hiMsZ4imMHxyF22anYCUmqXHbs2MHlUJ4JrnLZQLDjKS7bGAeEMCAJhACBzSgxCJ70pCe9sbtv33vPsPdea+XHubfnfv2kJ8XrR1ffM+y9zx7WXvtbU6PLH/hux9Q5+a7/mJKL5JShV3TEG0rSvRUUlKnIgZWQDOm9jcZEXZN+7dMvCTomBQAxHXzJU6WvRRrXkUVBBZ0FAFUNNROhOkm0D75yIygCkigQcRNVGRHE5g9c2YSsJ/UVN46D0WRIwVkFTcFHueSGSJkHpamc9Vj6bp2dzmIZ4FQtp+dqyPqEHBke65jP2k0qChaki3WTyiztd8Bp657edotKUDXHvolRYlJgIf9gfE5VoiQWRkCLuWdFrouPzj+rBI9/cu0r78+wJKsO54468s2gwa98ywoIm24OAgiSmuoTjU0mK8hOfuxZk4YbUUT1PZJhCAI5lLHN92wzowAiHJmQkzLTnD/zyNPb1igKQKySimpizLOHFk3OVXn97VdWGcQ6lmy6uYpwGc5U3/PTBjIrQDpdnOcxDFuMLtYMK3bba/ExhiF5okmFDKOj0HF+IXWHsU7SGkhsXumIqlInxEeOcJKUAFXJf/PgBRXUVlonNwueBFDS+ONvXkWrX/vwf12ZH4/zOEkFyD0VTiCYzt9cjqIilHlQBA51Of46FWQtcvVLb1c9tT8IIIHNqexllatN06TWb9g600LCDAQxQSV+kU9MLhAFVlBUhBRZRZWZMreMzpTOLC/AaY3iOjnbjlcWdbAvDe0yOlJF3Z0j7ybIrQ3m1jc3PXnWMX2iRvwxFTNrd1LjmBH8Sj7UvBmIOm+m3lkk0n6yUUA12ECs/MeeEYIDRAao9OOvLmskRQERsJLmCTUt57dd+RQCKX71HSad6YI468Mlt2U9sZbdkaPPqcSgR6+ahTp3o97XwuFhNp4n9OU41MVprxMbaZ61M9TBt/7WjXDkTF02bp+NTCjsalZwZDKTeXPP5UYUHYhR4qqZCFEWfbCLx+7fB5pFyquVHBBoLDqnyUuqqyKWnVEP+kmIYXrOVhFtXc9p3QZmem5vB2nKuBFn/uoASK3Ju0JrN92+2Lq3n0VLNntqy2Cs6fO3cAgRndW+YRpuZyJ7nTZERJiZ0WpwACKdUARFRh/BCQni9oiRmFX77hteGfyqeJtWJ3Y4ub4zrqvIgoQqehDcuFfbM//4CpLl/f/9WTeaoGMyimSX7r1JFQH9h27osA9APQw2ZraEzvG7rhgHHXScVWjtIYEEHSnU+wx/2C9naX8Tet840s29NQDkogInRaihH81dz14TOC1RmaHqxFBvvnPyQadIqhxjYgVQzT0qp5T6VXDlYDK3YaG0wwJwTgqU81WhtmjKWe5voVnLngg6+5FiQ0ixVlBBbOb09ksg1IVpanUWbz980UoyRWuIKoIZNGTH2d8fvGLFHfrkyr+fW13BmiBqOvTR3hURKdLqp25SRQXuoKhohpMl+5I3FB3qYWgEpGlYWUkwtwAstb3nBjPCWFG2nHWAU6zrxBUDJwXp7fPmga/dUs1aKRKPexTo+ao3kPvHrkmAjjTEFisrvFGOIU7c0hHkvLfVNg62rJStK+d8MfYNg7hR3DvX7eW89fbn8sKmla6ApDZ8/QUreSMu10A0fv9rzSlq0khUVQV84ereSjrz6e9eTVT9xg9csVw11ogIO/jI6zkisrl73+GhiUbJQ8bduiab7HMuG0OyaDwAN0FBwYgpDCDJAI4yUMMLg/Ctlf0oYGxWuJpVBUDO5FB8qHvhWhtTXH0AFGC5NvukvuG9i8AKlisFVRFASwiSEqfex473GzRresd11eTuFpBPIK2FntnFjnIdfl0b3CdGmbO7CrZ9AnCLlz4A4ujIuCcRZbI6UfvQXzUvWomYaoMqqmq63bGH5e6HLz2gNv+9a25ZSs6pjeDw4K0HnzUk5Tz87Yu1JAaZM+Iw+KxpbDPisbEWjUGJUQBRDbicAPo8fvDKlZUCZXJGwzfGBomQ6hMhtdFcDg3C8pdvimsBiEBWHmVE7fiiS3LxjzzFk4KWq0So01woqMxgT91xgWa13/h5s67Y2LtbV9T5svWttNdK3yBTnNeob8CZz37Kw0152VAVkNLhP9jnZTiI6rpufPcfvO+SI9jYiVFQRXS9YydvWjWTO35mgosfvffXC189lEcSkgw/8LOltVG6X3zwmQ2JibZY6ouNzlSjRICZIYiAGBsGBFQS7wGwce7S37aP1HmNOvhh36lYUXH565eKIKqiqfv+X13qq9nstPVSqShiGldmrhoWUQgwISKqSpshXJKAWXr+ZSXNualP+mZf8J0U3U8w4Vrg1T3HoG3S7sEHzo2mGR0V4CyZ/QBAt8Z7V8Di5Mdu6oP1YmW47F7xW68cDzmZ3KsCGnKd+5wEd/vFl+Rx/L++b46r+iOlssFY3H3gOeMsWdQ7b8jYJ5Luyc/ZBN16OaKRqtIREKLRpmYEQCDjrQKgq0ZyOnZr7BdHDz5jRZRMljUPORAABbvgdXzt/srM2GEsTwmh4kQXMVTWN5FQOU5zNqgaQolNApr74Qzqfbx1T99rZeMWeqx9vwHUQYA2FjGeZdR329MfL+3ZYNwW5B+x8z+PXrMSs1UGtT7Zp5045Q2fbkaqQETG18+MGD74+nF5+P29V+zDSj/LXiyKu+011UBqb8f3vLQEFDXdBz7rIJXU9TEaawouOpaDpiittxEaFIQUsLti5mqk01hY8c6ixOrkNxyKgoJ1eTJZ2ax1RrW6BAhAXdN1Jikbl7s0GdWJFRFUjEFNiXXs7cQYXWd4jxfPfJy0JkvswVY2DPr57+kIe34m4pqbNIAioxP1dPAn1Kh6TIYiC/STVJqhIXWaYP+JS4Dthw9eEdzwT95mM24e/sLABWoWHjjyQpPqfJL/48o1FTYmdAYfvJEdAa2skhfCkXMgzkSmqFIknQwGEQwVSmWUEgk7IRsQa5VDx37pmsqRmMTzJhAkLEC8ZYus497XOzBRE/cZwAxApRS36lAxMXNWFEljRSYZxk7Tz3VqLr5JOt8YL252Hp/Zl+vapXYodgvztiFc3LTctkuhdRufVtVeU5mGP22P++utWYv7PgOC1mnKudqG7sB5tujbgQh3NPnVad43gLXv063ndDAvePFidL5GR2oGlz8XQJgVqMGQZNGfviim8o7vWpWFP7rloBfE0SvLYa8pB3/z2s7E5qWr776ycuNudMvH770GmZGTgiqKbcMTp6P/mJsSRL0FRIAqa4Z5lRBATWGBeOHUZMV+/KkCgEj5miBGbUD6UIdIMsfi25xDiEiQBABY0HX7c4QgrGgQgWl7XqL1xbA7G98DZjsHtr/17jkymJ0ew91vnStta+zGDIygABhzqEITHEHqXnrlUxehjX6J5I3HBYJ5jl+h65VOf/z13U4aNVf85MC6MFj5h9eAKKo1H35DZqw4eeqD5nIhghAARYl916kA4OeOOjSVwU6ORKox+olEAVD1Xcsmlf2DcGzlqYyCYLobBl1RkepkTs9BI6bjqYWOwWiTVBmMquv2DCqLIqEBptxuX6T/HzDxrdjtnjNkhwfWBvu8DxPby9+2FC5YUO2agNbQwsWH3Chxy+msOG9tdZAqvvV1jIP3P+36kMsoTvIJDuHCD1x/uMpj6PKH3FWjBCWag398tY9KUgcAUdSiZxhQzL2XAvdXyXYzQBJwFZYlGRUF3zFCua8eXrh1LmdVVVus+xirMaBaAX+zZ4ck3Wy60oG4SQCJbErWziyUkFDFbU8wOX3nrF10fstqx997Su/bduM1tr9zsedM6/DyOtHm+wD2sisW5g4uWN/rdalhjYkVVEQbDV3PA9QHjt1YUf3hN6CHxtiscZ4H+tE3p0gkrvnwv1xeddCHzqmPXR0gaAqxNXnpFMiE8dixp1eRDOaFVUIFm331NKFJKja3oFrz3MLyX700qYKqy9YbZ0gwhSBV4dmTFnYKuSCEhkVBI3fmPU/3agFQ8Pn2vsK9Vvoe4MaehFvmDeLZ5xFO/R+21Xs+uODmGjbtXbgBnJlCQriaLXRd1us5ZzPDGlOaYnEIvAB9Oxnc+kJu+h+bf351cDKykqo4pvyu7DlqG2dDeNVL4/6GoCT/r1+ERNDENot8nhkA1Pig7FNTD6Dr2xrVf2TcSZoU8wIEdcDi/+obN0VIoFT4dQHMxAlonZL7voPjriw4mrWZ66iiJjV2cW5dAFJRyuyOeQ/3GtLzXOw7sOtzKG1bpVOhfrNF3g7v7Slj7MneEboGvQlsQDHPKA1noZHRQe7u9VQ/cv/Lxm74d6/LvR+mqqbC54Ps/a/1YJAx6bMfDabOYSGb/89PRyVpEoACStcIEDCvYvROwHStKCigHvn2BQkTIXYKEavDrOSbfm6egRFNx21gd+NlwCBA37nQgJvHaQg0VW4YBEDcXHe8RGsaDFGTme1WUrMj9OM9j5/L80/Enj4D72eDfx60uyA3q7iJMSTjQShzYdKwTk8NLDEb3zXBzp0XzPO+rzxw87BYrbOJpGacxtU9r69jKqpkcNjrjrr1BPed5klMIUZtU1fnIEAqeuLYsSq4suOx1XWZL7qrVl2ySJkXNVCEYrl4SSyBESi364MOk1UgVlhNjdHOzPUYWmWcqlBnoMdP4JQtooqS3Tmo/54r+Ync0/cqccuevk5P2ErfTlO34qlfNgAYD0qaEjNbAuFQJxC0wNZf8MG4WFb3vKoqHn37Wwu1ZWg8VtQbX/Y7b1wUwpTlWqKoChpvi6pgl00Ccgkm5oVaYgpnXvTO3GnwhalzCkgMt95yqhgbgMVOsjYSd0LdjGOenELPNTz7KM7e71xTkjFsKDqPLcoABlYbUJvYxnH60tDYNB4FIIwZc6FtMBrY4N/dJpndi8Ejbj2Hz2CNvTpUkQim2vf2DVzfnRG3IqStcr9t4qb6iIgQVFJi0Z3g2XUwYKa42a1FstGrS7X9iE3taCtQ6AvEiFVgnoIXNYYvvnzsvhkOh/p3L31x4yGpAKKTp/3DJ3+8BFIBbpIBQADjkzFCESmoc9xARkaBUgN57gjQOSIRkgRHTlwu0o/kLbaApbAgCIOq9xs4k6sOX1iXHgVAwK2rDDAlQFD0DVT1pzopgSZRVRRwBjfzxelyOseoMU8azerew5S2hYl2vQ+P09wWNylcNhTGyrGaz1BrTCzKCpqyxc92nlHSHc/rLecvvqpXdbhBQXQNHH3Hmw7VYJKaVCXDQgo+ZwtMkiaJDSlmHYMCVE6ALCrbPBNJ7IT8Z/2FK5qR9G2rLGjtm5mQYVDAuqDp/2HcC8PUIKlglrWYtgJAEwFFUatuvvrNhWGOmhhFkSGzsFOftVkPnyzd6rmWu4YM71bOFGyjXYttkdu9Zu+OaOJW0JdAmGOMoybZ6kzAGJmZRcAM/u41Lgzvu3bJp+c+9XSWN4EU0PrF/4Nv06SoirEWEAEF7wGQ0S49UEAQcrlBVICmxkZSEsytGABUk+5+DiuUTjuujedBKSRRAGEosg18qRoOqBHrGECoyGYfpNJERRXMXfJ39PaDorKqKClmtNk2rj3inbdcNO3Mx2lssWHzPjteMJMGd3lqTV//mAnBwhaVHqUYY9CUqORy2dSRUQVUXXY3PB/il668sAmd0bg/Z8rkGBSb6q3PgGXPAqiJQVhITUYqRtHd/63LpQa23qiqSkyeVQhspuCIVczRr72pAkjQneEoGBoWIExqvAm0NmruZrLLjAygajO3Jt80NaOomKHF4mPXNVUmDAisFoybRhrb1NtTc6nH01tPDK3pXPd6bCM/euJM7VFb9rl5sceqblLiKCJQmFEb+lohufd8f1b17roYaKgu2G4MCEoyyeJTx6ddg4IUa9akqupzIBES/dxqUIMJiwIEIEQQckTWeQ7CpEY/SxcpSBb2WRAAROEyKAuCUsfpho+dePdIKU1CVfJumqdCVasAwKpisvrBbx1a6WkTgFRFyHnZmskBZlqQ81/rj0dq3taUszykAK2Mt/5zS/2PE0PCHWBYCVUVWVUaPvYQzGIhIZp7Oi8L43Lp8kYOAusilGITo843l2tlTUGMWNecBBDJ56qgJOU9/Siq6H1CIWgSJkRR8pkqMAKNb31GLgzQyWaoSj0JwAIJbdcKrXOgLk/KbgGGQI0z7WatAFrFlp8nOjT48Wck4UkFCAAJvdtp6xYF3Kg424tNb73/eNn6DuVuMKHbXp9KK//PULPtdG7DvtPkJNhSpqQmJAXMuf7yZx4dutlhYPCn/0bR3XvBZWGyWqdBSA3aJKjlfOX3oUQSxBiYBQnQORUEkvLIYmFVyMYlAsIkyClFBrLUyYgkLn3ielszNvsSaBvYMNSMKspoc9INwXcr00m1eNcGjVzvrCDYIn51OPWaLppUBUAFZbAGYJMkhxu+9Unj7+cyKWar92wPyYZD+m5lPF60eHo+RwQkNNiweag0alIpg+yj876y4gScEf+RC29JBF+4sBafi9FeCJzIQAbdXiqNUHRcIghFm8ruIIFmVMuZR8YxYjG58C8fMqCjiXIG6rE712BqOGTp8898SukRiwyEUDQlYkJ0FiHMdwCmUTkBVA2eaGxdghrKex7UeI0WaDUYFQSDWdZ0T6PEMrlUclSpMytq1gZ9NtnX47u3tCVS3HTxna/N3C45V9dmgwpRa8owvdQmgdN1oJDIGGOIDO0cd7rVs2/HDWY6fEIE4ZRm19uNAsEQbXBrUuAIWXZ6GEgmsSvj4f0Uzcmo/TraGD7440YSjC+PIoCuwEogMWFypnUGIFAX7lGBpM4SoHK0Jb6sCynGi9LqZQzArMoKCpYUCuN9GW76hQNRbc125kAuSaVpGMgb2LQW7GqDDfVDOJXtdyweS5uLhhIVEEWptXmwlpRlJpiiyp5gys6r6TwZwS5TRNf+bBvGDXaNTwxNZQLcfKV1qtiQP90AA8QTNRnrnUF358EDFVs3HFMnXfbep79wkk0eDIcTAarJYiWaBJUL305Eii6e/JJnTJDnqEDMlud/6tmj7mDSWSr3J5LErFFRyRNgXSZKY9g/V6lX61GhHfMxI/ncQtdv3o8pBsRa/BdP5j1EdMdPqU3QRFQhFCEBEcbMGWVAVYR2GW1w29qZ7e4yvI971NeRl505xMxTZpfX1+o9J0WKbn9u4++NYWBnM45FNljOIBlDcflEgoozWBH8xMszTX1e0Pkz/gP3/chEWI72HLTG0GNWURR1Pd+WzyRyx0EkSFRkCJChGZ05li/5Sd31nztjlTixAgOAzUhBSYPYcDxFge5gdl6TEIyVWFdN38EUR2l7qtYIeTOme/YfAIuUvjCUpFgqiiIqGEVVBW9AtA1QaS3ADpZBO/ffpk47p1d2L2vtz1bacEraXMnjkQy3uVFtrWwNXt9QuQKIbOgUElYirtU5UBHqfnrxkuUM6pSK44Pj7/s+M+mOsHe5tKFbYoUqZAT6XauiCsQFLN91cyAA17EAUMeOdrBWEJnrDF6ISDGBoiqidwiAuY+V5P3Ka+j10vQ0lWpWTmCzQdfNjrRtk6tJUs3NvaevypssIX61MIF4PFWvIIEBUHSQFBFAknoHZ7cFfvJo5yGfoSm4mwC2Nyz7WOfGTpxGdR2GJQlAYPJ9tZUm+EP60R8KAhrtqpmv3v2Cf3b8ggCrB/ePBRSQEgsiILqBp6QIgMT+jv0HQiDKc1QUlnpFKORNQcY/3zQkdQRBRKXMAqoyaSgRtCi5cMkoqqLEGlPALkzqq0jWxDgAAJ0gjgr65BWHo1DMyzMHDJgyeQYQJQOAAkhOggAnEjZ5pnoOaOuOOPx5gfMIgNun22yZ7+AHu3EvOWcUBs8FhtVtP1pDmfXaEJCp/8zKaGzw4O8deP7DRSKfFqJ5z+i1Vb4ywBo7ZyyTGopaZSRoswJVgUSU+OTtr6kMk8mcAkmXR1FcNilq30PQ4FKZlC0CkCdFNTEEIWADkBftAURVUmMFNEzOBKeM0yDuCgBaCyrHTF9dTDrRwH1mEEgmJgmAgDEgoIDWcSPQRC+J8kzEAhs4J1obpPNlDnu93yaK2T64jx1zwz2PdJvuT8ccYYPXqpDzxOLEERT7uunPXtcNopnqUH/xcz83aKDqjfvl6cwgAkKQCoyo9RZUkRAkFp8/c40ZWzDOqIJO4qrUUb9dZos+GPXIIakIgJJBBYjWxUYpQaO9DE2LmCinBhxGOPQs06KVa80+gyz5JD3z2lJoXJj7CldjGFMUAFEiEBUgMpBUQmBhcBaU1ofg7OwRd/z38dOue/q6Lfz2e0+45m+bd6629U/zjYmAaBJCsiixNnj/6j+/P1jBsuk9Mvln3eDHjmmpg1ElGVFz5L4CNEsXMAiCkYTZ6E9fXtQ+ab9gQCEbNFK2fKQbXcbolEaCagHYuP2NIKANMYMJasy6HBEJGW0zBiiJoZjsD2IpgUNBZvVuxQiFlI9eNBCX7Ajvu0GKKmhlbUIHxkZMnrDQ8Sr6P57YJSy6lSCym33vbpYy7b9rs2F2TN9m0ADrL4Aq0NZJtFYu4ibEb6ZcmQlWOJWxNr0HOsvmizvgBJuawtQ6iUCL0tKsfQZSTK0MSzh1f6epINfKPTB1smrPsetzT1MSVxTY0IG/cDAIMuza8pL/8oNQyoF5FUuGYlVU4RvLxy+aNHPNYJlILEbKRB994CUVWERnFBFAQ+BE385aM2RVZlERloB59IaAOCVWRAFHigrKiKFmpTT2NX913fFQEICrOgkQqMtyTJjNSXMpkQlqVSVg4YgMSkwGozm9PK6bPiSwVvnJEuTOZ1Fub9N2eWv3djtCBo9p4zUFgAS+yC1wq5JtnSu2l9Iym5nHQIvyqiREsjbB/DXHxxIyiH6y0uelXnF4X2iMAtjeiOxdF7zg4hw/U/QXLDCBoEnF79+8X22wNrMKhChlnRi+PGd6mSKqBmYWFs2zBTYShWITkyAqFhZIQZmonCSJGCDFh9bNYAUJeFwyq1HNe4TKUR86fRkzT8QoYDI5JE6RGT1MksOmoxSSGqPnFf15Z9qwns96jtYttPne5hJh+yzaFZOPCZgBt4kqhCAs2lrq4AYz4u3tX9vTW88mBECuk3OqS4c7YrQDONeh/KKLu/s6ZaWJUwk8eP/JMbL//Kd6QEGQ1Sb2Rz74I6dAWbPcKBIAV0GgPnrYda0AAjYsoipATRGZk9GmYRZQtQUpKqASNjVzTbbsnV5cD3UmRJTKBkBAtNMNVDiwj+SDJlUlK0Yla4RVhIw19enYWzpKBnOISdpsHU8GPf6Vrjsv9Q3/nr1sROsgycZBVQBQFmZRsmgMiHCaXd/w1JrgR+0sRCBQBbKWVdQ6jYNDC/NzlPVMZ9BdXNBBQTUjK9uqd+KdL8sN1393Y95ZoWRFbaLuu587ByxOCtvuek3FisfpcJYDAyC2eRTBIGcdl9kiVY2qqkCRTdEjCE3kxBGag1+/YWN/EIRGEUXVdlwCUoX7F0C1ShohQZGDkjXGEHJV0+ghXh1Bh8pRAsJdzY3+yWj95DT9eXbFylZCjoCxXovMMTv/qyoohyqEmIA0bLWyWJNZQMEqtEnVp4dTqjIPiAaqR7tUdYMuImt/nvcrqwFFMBqO3HhpI70HV16hudhoBBiy4YfefhqNpLyDgiCq41oZ771woXCiqKp1ZCUA+ub+FaOGY6ojCONUba4I1KxOUkpYQ9F54I281lpS4ioCABvKu2q4SZS+dhGQBKQAeewVowSsIoyUHQz2FVdfcyJGuxoKevKMos5jU9dNBeiaacfmR3arIEuNNYaU1x8FBYCMk5AlVE5qrKbNy7x9Uls+o1YBZuEQAUE5WQsCVutJBqEDPOm5wXyR6jwoJUZYHeg1v0kS8s9e4bn2gZgoOPz4vkvGZUe1yFUQVWDUYJQvPM8XlACVuY6tAXzvugFVqJEjk4gB6lAiAVAcn5pwTITNwVVzYF1QIcE4Dsgg5LpFdBGd49OvU26CQU35ZB5DAgYmsMZflOuYHh3lvdWRAMk5wrBbhwR27/R2/ZzfbNoIqWwtaFbybu04s1CQJBx1tlwXAbIknJwX5d1jqKkqWAVUQABBBVBmDMk4I5Jw2O0G7rLFgy50VIJCjEZ6Y51f7RDwN6/WeSozaDzV3fDR71A0E5gDJ0ogqlWwQR94nXpSRJYUkwAJwmS+Mk3mk7K0g56BghIo1sNoUuL5pnNmfzesSSoomOpkEgna3I8sGInDE0/jugyOSMrTc72EbU4wB9CR4tujsj+KbDICfrI29b1X+m71bpfQ2sgj62e0nd+cXV0c3nr70g1vvjJsuVWTtWn55HLnwAHPjGab7LCB01sr7ATVJFSKmAshEYiSBKONmIZ7B426BJ5FySlGhyGXxO7ha9lFNBhih6I+Xc4YR6k+FB3puMi/uFKZhbsPXZbFuiOTLh0biRn3JV8+WjSpo8wNIyMlv8DkCBHM0qNSdWpPIz/4i+scJwOihoCtSafKzigfLlQXZeRjMTHFg80FAYcukAndv/31U6yoytnoEK7O4wNLjRmnaIc5qZJM+3EjO531LszgvtkvgNZwElpYqFXc7ND7COsBhndYkbqRPW9+TlscDWFd2FBfg81qE8L8Sp4HM3E06TI45IbySdFYqyjRI9b9NJ4v3/Ghp728/zd/9IsUMfWaxpMCUuSexfTt/3GKhirFW94k2ObO3NA+gfWtwApaLxhlprpHEQA01hWB2QLkhUUAhBiTTDtJEBT4pqrHdYfFaFBTfMdKf9goOe9UpA8Pr0Qx/K05Bh9FDTalILsY9335YlQSZa6ncFHHtM4q4RHgXLMsULd88KVxmuROlGI2qU3QGlNOnRVLdSHha5c0dhgyjuwfXhiUdZPY2JB506+rUZNEFVkF6DzFuMfCJfbaFrbS7LmYB3XmgUvqwo4yM/KjuUm98MicZ2y6qRlMunWVV6Z7eoBFFRa+8qtz//vw6uDGEzTsEZ/qD4a5QI0DXcIu/PXcz1yN+Minf+XO35r04i6fgYpIBJKCTA+ehIgqKiyQjGFBovmuA0WkEKIoAjAzM4uG5873EwKoNex02fVTQHQdBywRV+8fJ6D09auKbuLIlkerKAkqpi9dB0IsKVSqrIo2QxEFUgMddQ1R1lkYnb6SCVUAW5eQSWPqWFGzr5u7DGGS7PtuyZoRJMaUff0w1nVkI9jYDN3SI8t1CFGANTHibrDrY6dz13K1y/xcLW7ypAWtXLKyguKKpV7KhqY7PEScnemxjWVWax/6xZlFrUd2Prz7ee/qDAfLF11fzZsgB2LtTeJer2kGPckO9K/lEOdfdftn3tsbw2bxfb3dRGQREAWnwJ6qgiIRc5oERqPq+9OEiokFQYUTtpFWq0N9XxdVnljVyZlxY5NPpuMYyNcn68xGu/TQVUbBgmq5NBwEQt8vVy4VQTVSRxUFsB1UVTHUuGc/WpqQWaP2225/TcitZlVcuZo4yoC7F9jVokTXpztO3Mxn2I6loOzhm7VJIsiiYGTl+KhOKkrI0DRG9+70sw1eqwZqf+xV0ObZcO7VRrIJ9n/x7d9+3c9P6sW6C5rf+b7/cEU6fbi879hzfXPkGXXQOB+JCjN+/33vWF6ob/uzFTegV35XcfwCNtDnJiuCC8ce4E984zJWJfNDf/eW9UP6FjEeAdGyNT4akemBHRRUkEBSFCTFvjcqAAgiACoppRbSxeguT4RGnRiOyC6INFW/61SSP/2IlDZ1j3Sv6zkxIKDZ/gh9O3fBJy7tN4BgpEEVBMkGgAbEyuiT33N8lBlrTFN/9SkgDECGmwR55+ElTmiXz7w0YzFYVPjQz33n4WaFsSE27uELa/TaRARPWD10JjGCqIJCXef6+NNtzmzzzj/C29mJoHEx+80L/9MfffW65aL4m2/99JFfue733+GLP7wv/+o9/+13f+l1P3/ZMA+SU/7pz/3im3Hh/77D/8ill4T69jt/++iLv/MY2Juv04c/eseD3XL/3b/5rs7YUN6fLA/ShtHezN8BLEGIy2CMTm0rFCQ4p8EYBQDbJxAlVE0KKpETIwoaILR5sE1v7BmtxknNqIKdjhhNSIVbBr948nlXNRQJgDoX7Iemw0V+10UgqCQxoAgBFV2DKFHT5P7SFozjtCDyrWuMESRLYVzhQjq5amLH3W7nSttPnaqXLvzB12eP1qFCqorIF44Y0ESD3svyqUaRpFVnx6ig5yW9t++eXYW5oS+n7+yEqu5OJqnVO5ffI9c3vBBP/drb5M9+/eufws//Rv/fXveHn/nC5z/1rh/83jf0fPmVO47Ssy8M9LY7f/ZVHcX4G8efvu/IbbHb/cPXfv/ff+KKlz9r8SC/96fe8B2DcTf+9k8sVLjW/m1jDhaBpewWhqeJgdUKq1SjQBSRzDTMpnJkwRSZuYWeCciCAmOT1Gq5WkXDPuvYhijH/d26Zji49FxbjTukAJTlpELU3Pc9EREwVAFUQWxuUVpl3z/85dMYvVKN+s2rwKiCpnIc3PJkJICJv/GG7qrKJCcd5z+Z6knkyiXoHPcHj2EUp4ic1Y8GFTMN20wK5jGM+G6C2Lmy9w0lnVNizdkjte+P+keLe55rbB3nluWNn159xmfv/MnTb7uJdOlO+Jkrfvsf3/NWqt11V73xRjP6tV/4np8+4Ef9h37yxl9O18HPX9X8efm3oxvec3nlKubL8zOLk4Xqrdd+Lye32chio9ZPbSx6VBfEM+kdLCTk8UlDKEqYWuNo4ciqzCwKoEiqkArb5KuFNYBS1YaBo4pIzO04n4N91PQeelXtLTMSqCiaUSGT09czImCsRRVUyIImY5BM5r9wGUdpxJvyG88UdswSywb9yqPWKQV65KZo87qDuHRghZM8wpaRu70vH5+selGDbBtTn2q9hNGACDGa88i8uBlC2Vs6334kPDfqLxODHL3v2Ucn10p04Z23/RZ+bzF4NdZobv7Mjz2rxut/p6xy51Aiv/F33vLXg1DPDd+d/+A7b33TO3sxu/gtt7yipyfn6nx1/vmfvHrc+8KvXvgrnTPzcZdNHRXA2ggwrwwgyogNkaraclWoAgM1kQnoGOxkWTgGZgEGg0nVXGSii4WSKqZHNJR5t9YqOavBS+WTwvLJ+8msZu3GiBYhM+95mRVxjNpwgthp8oLEp6iQVn96UoGoU5Xhu59Z+waNVmOQE2PDapvsUblspcNkKt9rnIkPCI4Btbjoa5/6yI2lr8o+N3516BgBGIENO7hyP6T1UBTaxtDcoufeeGpvO0dmpo1r7qItUL2bGoxEgUDX6tkKAc481TeI0a0Cf9qeKtd+86J02223vBqq3sEfvfu3LhsWPwATCwK3vEiDUU7UBamMNp3r/vwPJhk46Lzs/l989V8eigzlS16s0kiPMeYpXR0+/akTb36jjBbD1AJFBWdmGwizxCR268cQAqEIiLbneUVC0NSAcEptIHpVUOl6aiEP1VRPGpprxjA/n60dD5GzX35qSn7WwZHn6vyuLCkoNGNmSLHBDkV2hjjVcRTIoUpSVxw+IEk8xCgcKsjHAouH7+9BXnawLJKYvF4aNQTdYacr/+LVz/qahurAiTlttFGDZBISGHexP+Ajnu9J/cmnLAZxlz7l5eWVWs+P4N8BLOd21fXqLV6ONpKv0otvzsqQV/qi52YkdbIuD9CiPRTBWGjMa64tJtYN802V6NR+YjrY2/zTDYoBZoiKqqhREAEgVWmqD29z4gl18zb1T2U9aDc0Re56i/PKs5luIL2+YYW1YEsWFd9kRVWwGkbmpMHkhgmiIVs4u1rFANYqcRFrb1XKUhCw6e9boPzApW9SbRM2QUqnjzdqmoQXHx5dfNUxcQ984Ee7kWNIQJbJ9fd5n+dZJkz/VPaw504N5Sk1tHCoAk+Wa6yNT5YmBG1w4xkxU4Z18mOfRfEpEKNziYFbUACi5lD7+RdmLL62nVmOnpnBzKZsVdsGnRQRRJDJAAI3jKhAnJK0N1o3V9XMEgMAOBeb4mqq0ToDWq1zNxdqNWktBjLquF+9OSqAmlgKB7CsBqiDNUGT8Oql4XicUKGAeeM72khdgVW4sNvPueYbbo6xP6E8WN+MT4184sVFOpAnO0zl/i8eyieMnJBACaH7lA5mlVZklB+LLPdPQwqESj4WkzOLxdBK35QhA8uEmyJmUJ5GVGCylfc2yFxDIECwtqi6yUVMdVZKzPp13Ws21aGtIrXlHvj/ADNz597usgKwAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "display(retrieved_examples[\"image\"][0])"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "machine_shape": "hm",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/notebooks/ko/index.md b/notebooks/ko/index.md
index d3baa3df..c68982d8 100644
--- a/notebooks/ko/index.md
+++ b/notebooks/ko/index.md
@@ -10,6 +10,9 @@
- [구조화된 생성으로 근거 강조 표시가 있는 RAG 시스템 구축하기](structured_generation)
- [지식 그래프를 활용한 RAG 추론 향상](ko_rag_with_knowledge_graphs_neo4j)
- [GitHub 이슈를 위한 EEVE와 LangChain을 사용한 간단한 RAG](rag_zephyr_langchain)
+- [다중 에이전트 계층 구조에서 여러 에이전트가 협업하도록 하기](multiagent_web_assistant)
+
+- [유사성 검색을 위한 멀티모달 데이터 임베딩](faiss_with_hf_datasets_and_clip)
더 다양한 노트북을 확인하고 싶다면 Cookbook's [GitHub 리포지토리](https://github.com/huggingface/cookbook)에 방문해보세요.
diff --git a/notebooks/ko/multiagent_web_assistant.ipynb b/notebooks/ko/multiagent_web_assistant.ipynb
new file mode 100644
index 00000000..2d79f1e2
--- /dev/null
+++ b/notebooks/ko/multiagent_web_assistant.ipynb
@@ -0,0 +1,494 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bqBiunVBNaRg"
+ },
+ "source": [
+ "# 다중 에이전트 계층 구조에서 여러 에이전트가 협업하도록 하기\n",
+ "_작성자: [Aymeric Roucher](https://huggingface.co/m-ric), 번역: [김하림](https://github.com/harheem)_\n",
+ "\n",
+ "> 이 튜토리얼은 고급 수준이므로, 시작하기 전에 [이 에이전트 쿡북](agents)에서 다루는 기본 개념을 알고가는 것이 좋습니다!\n",
+ "\n",
+ "우리는 이 노트북에서 **다중 에이전트 웹 브라우저를 만들 것입니다. 여러 에이전트가 웹을 사용하여 문제를 해결하기 위해 협업하는 에이전트 시스템입니다!**\n",
+ "\n",
+ "이 시스템은 간단한 계층 구조로 되어있습니다. 여기서 `ManagedAgent` 객체를 사용하여 웹 검색 에이전트를 관리합니다. 이 구조를 통해 웹 검색 에이전트의 기능을 효과적으로 제어하고 조정할 수 있습니다.\n",
+ "\n",
+ "```\n",
+ " +-----------------+\n",
+ " | 관리자 에이전트 |\n",
+ " +-----------------+\n",
+ " |\n",
+ " _______________|______________\n",
+ " | |\n",
+ " 코드 인터프리터 +--------------------------------+\n",
+ " 도구 | 관리되는 에이전트 |\n",
+ " | +------------------+ |\n",
+ " | | 웹 검색 에이전트 | |\n",
+ " | +------------------+ |\n",
+ " | | | |\n",
+ " | 웹 검색 도구 | |\n",
+ " | 웹페이지 방문 도구 |\n",
+ " +--------------------------------+ \n",
+ "\n",
+ "```\n",
+ "\n",
+ "환경 구성부터 시작해보겠습니다.\n",
+ "\n",
+ "다음 명령어를 실행하여 필요한 패키지를 설치하세요."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "CYWYKDSVNaRi"
+ },
+ "outputs": [],
+ "source": [
+ "!pip install markdownify duckduckgo-search \"transformers[agents]\" --upgrade -q"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Hugging Face Hub API를 사용하기 위해서는 로그인이 필요합니다.\n",
+ "\n",
+ "아래 코드를 실행하여 로그인해주세요."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from huggingface_hub import notebook_login\n",
+ "\n",
+ "notebook_login()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "⚡️ 우리의 에이전트는 [Qwen/Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) 모델을 사용합니다. 이 모델은 `HfApiEngine` 클래스를 통해 Hugging Face의 Inference API로 호출됩니다. Inference API를 활용하면 다양한 오픈 소스 모델을 빠르고 쉽게 실행할 수 있습니다.\n",
+ "\n",
+ "_Note:_ Inference API는 다양한 기준에 따라 모델을 호스팅하며, 배포된 모델은 사전 통지 없이 업데이트되거나 교체될 수 있으므로 [여기](https://huggingface.co/docs/api-inference/supported-models)에서 자세한 내용을 확인해보세요.\n",
+ "\n",
+ "_역주:_ 이 노트북을 실행하려면 Hugging Face에서 발급받은 HF_TOKEN을 Google Colab의 보안 변수(Secrets)로 등록해야 합니다. 또한, 여기서 사용되는 모델들은 Hugging Face의 Pro 구독이 필요합니다. 무료 계정으로는 접근이 제한될 수 있으니 주의해 주세요."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "id": "04PbAdHBNaRi"
+ },
+ "outputs": [],
+ "source": [
+ "model = \"Qwen/Qwen2.5-72B-Instruct\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "owjHzaaLNaRi"
+ },
+ "source": [
+ "### 🔍 웹 검색 도구 만들기\n",
+ "\n",
+ "웹 브라우징을 위해 우리는 기존에 있는 [`DuckDuckGoSearchTool`](https://github.com/huggingface/transformers/blob/main/src/transformers/agents/search.py) 도구를 사용할 것입니다. 이 도구는 Google 검색과 비슷한 기능을 제공합니다.\n",
+ "\n",
+ "그러나 `DuckDuckGoSearchTool`이 찾은 웹페이지의 내용을 자세히 볼 수 있는 기능도 필요합니다.\n",
+ "이를 위해 라이브러리에 있는 `VisitWebpageTool`을 사용할 수도 있지만, 우리는 이 도구를 직접 만들어보며 그 과정을 이해해 보려고 합니다.\n",
+ "\n",
+ "그래서 `markdownify`를 사용하여 `VisitWebpageTool` 도구를 처음부터 만들어 보도록 하겠습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "id": "Ye74sBu3NaRj"
+ },
+ "outputs": [],
+ "source": [
+ "import re\n",
+ "import requests\n",
+ "from markdownify import markdownify as md\n",
+ "from requests.exceptions import RequestException\n",
+ "from transformers.agents import tool\n",
+ "from urllib.parse import unquote\n",
+ "\n",
+ "\n",
+ "@tool\n",
+ "def visit_webpage(url: str) -> str:\n",
+ " \"\"\"주어진 URL 웹페이지를 방문하고 그 내용을 마크다운 문자열로 반환합니다.\n",
+ "\n",
+ " Args:\n",
+ " url: 방문할 웹페이지의 URL\n",
+ "\n",
+ " Returns:\n",
+ " 마크다운으로 변환된 웹페이지 내용, 또는 요청 실패 시 오류 메시지\n",
+ " \"\"\"\n",
+ " try:\n",
+ " # URL로 GET 요청 보내기\n",
+ " response = requests.get(url)\n",
+ " response.raise_for_status() # 잘못된 상태 코드에 대한 예외 처리\n",
+ "\n",
+ " # HTML 내용을 마크다운으로 변환하기\n",
+ " markdown_content = md(response.text).strip()\n",
+ "\n",
+ " # 중복된 개행 문자 제거하기\n",
+ " markdown_content = re.sub(r\"\\n{3,}\", \"\\n\\n\", markdown_content)\n",
+ "\n",
+ " # URL 디코딩하기\n",
+ " markdown_content = re.sub(r'\\((.*?)\\)', lambda m: '(' + unquote(m.group(1)) + ')', markdown_content)\n",
+ "\n",
+ " return markdown_content\n",
+ "\n",
+ " except RequestException as e:\n",
+ " return f\"웹페이지 가져오기 오류: {str(e)}\"\n",
+ " except Exception as e:\n",
+ " return f\"예상치 못한 오류 발생: {str(e)}\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "jD_kJGxCNaRj"
+ },
+ "source": [
+ "이제, 우리의 도구를 테스트해봅시다!\n",
+ "\n",
+ "\n",
+ "_역주:_ 한글이 포함된 URL의 디코딩을 처리하기 위해 코드를 추가하였습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "q45tiLuGNaRj",
+ "outputId": "cf20dfb9-41d9-4c35-ab3a-5aaba8e4077f"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "허깅 페이스 \\- 위키백과, 우리 모두의 백과사전\n",
+ "\n",
+ "[본문으로 이동](#bodyContent)\n",
+ "\n",
+ "주 메뉴\n",
+ "\n",
+ "주 메뉴\n",
+ "사이드바로 이동\n",
+ "숨기기\n",
+ "\n",
+ " 둘러보기\n",
+ " \n",
+ "\n",
+ "* [대문](/wiki/위키백과:대문 \"대문으로 가기 [z]\")\n",
+ "* [최근 바뀜](/wiki/특수:최근바뀜 \"위키의 최근 바뀐 목록 [r]\")\n",
+ "* [요즘 화제](/wiki/포털:요즘_화제 \"최근의 소식 알아 보기\")\n",
+ "* [임의의 문서로](/wiki/특수:임의문서 \"무작위로 선택된 문서 불러오기 [x]\")\n",
+ "\n",
+ " 사용자 모임\n",
+ " \n",
+ "\n",
+ "* [사랑방](/wiki/위키백과:사랑방)\n",
+ "* [사용자 모임](/wiki/위키백과:사용자_모임 \"위키백과 참여자를 위한 토론/대화 공간입니다.\")\n",
+ "* [관리 요청](/wiki/위키백과:요청)\n",
+ "\n",
+ " 편집 안내\n",
+ " \n",
+ "\n",
+ "* [소개](/wiki/도움말:소개)\n",
+ "* [도움말](/wiki/위키백과:도움말 \"도움말\")\n",
+ "* [정책과 지침](/wiki/위키백과:정책과_지침)\n",
+ "* [질문방](/wiki/위키백과:질문방)\n",
+ "\n",
+ "[![](\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(visit_webpage(\"https://ko.wikipedia.org/wiki/Hugging_Face\")[:500])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "8RI2SoklNaRj"
+ },
+ "source": [
+ "## 다중 에이전트 시스템 구축하기 🤖🤝🤖\n",
+ "\n",
+ "이제 `search`와 `visit_webpage` 도구를 모두 갖추었으니, 이를 이용해 웹 에이전트를 만들 수 있습니다.\n",
+ "\n",
+ "이 에이전트를 어떻게 구성하는 것이 좋을까요?\n",
+ "- 웹 브라우징은 병렬 도구 호출이 필요 없는 단일 타임라인 작업이므로, JSON 도구 호출이 적합합니다. 따라서 `ReactJsonAgent`를 선택합니다.\n",
+ "- 또한, 웹 검색은 때때로 정확한 답변을 찾기 위해 여러 페이지를 탐색해야 할 수 있으므로, `max_iterations`를 10으로 늘리는 것이 좋습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "id": "iWz8z2a-NaRk"
+ },
+ "outputs": [],
+ "source": [
+ "from transformers.agents import (\n",
+ " ReactCodeAgent,\n",
+ " ReactJsonAgent,\n",
+ " HfApiEngine,\n",
+ " ManagedAgent,\n",
+ ")\n",
+ "from transformers.agents.search import DuckDuckGoSearchTool\n",
+ "\n",
+ "llm_engine = HfApiEngine(model)\n",
+ "\n",
+ "web_agent = ReactJsonAgent(\n",
+ " tools=[DuckDuckGoSearchTool(), visit_webpage],\n",
+ " llm_engine=llm_engine,\n",
+ " max_iterations=10,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "o9SSuIIwNaRk"
+ },
+ "source": [
+ "그런 다음 이 웹 검색 에이전트를 `ManagedAgent`로 감싸줍니다. 이렇게 하면 상위의 관리자 에이전트가 이 에이전트를 쉽게 제어할 수 있습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "id": "dbNDCILRNaRk"
+ },
+ "outputs": [],
+ "source": [
+ "managed_web_agent = ManagedAgent(\n",
+ " agent=web_agent,\n",
+ " name=\"search\",\n",
+ " description=\"Runs web searches for you. Give it your query as an argument.\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Aj06e4Q1NaRk"
+ },
+ "source": [
+ "이제 관리자 에이전트를 생성합니다. 이때 `managed_agents` 매개변수에 우리가 만든 관리 받는 에이전트를 전달합니다.\n",
+ "\n",
+ "관리자 에이전트는 전체적인 계획 수립과 복잡한 사고를 담당해야 하므로, 고급 추론 능력이 필요합니다. 이런 이유로 `ReactCodeAgent`를 사용하는 것이 가장 적합할 것 같습니다.\n",
+ "\n",
+ "마지막으로, 현재 연도와 관련된 질문을 처리하기 위해 `additional_authorized_imports=[\"time\", \"datetime\"]`을 설정에 추가합니다. 이렇게 하면 에이전트가 시간과 관련 정보를 다룰 수 있게 됩니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "id": "zJHVCwWRNaRk"
+ },
+ "outputs": [],
+ "source": [
+ "manager_agent = ReactCodeAgent(\n",
+ " tools=[],\n",
+ " llm_engine=llm_engine,\n",
+ " managed_agents=[managed_web_agent],\n",
+ " additional_authorized_imports=[\"time\", \"datetime\"],\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "zTTIQqP-NaRk"
+ },
+ "source": [
+ "이것으로 모든 준비가 끝났습니다! 이제 우리의 시스템을 실행해봅시다.\n",
+ "계산이 필요한 질문을 던져보겠습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "wiQv7ZetNaRk",
+ "outputId": "5e81551a-51f6-464d-db1d-ca3664be6d60"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\u001b[32;20;1m======== New task ========\u001b[0m\n",
+ "\u001b[37;1mStripe는 몇 년 전에 설립되었나요?\u001b[0m\n",
+ "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
+ "\u001b[0mThought: 먼저 Stripe 회사가 언제 설립되었는지 알아봐야 합니다. 이를 위해 `search` 팀 멤버에게 요청을 보낼 것입니다.\u001b[0m\n",
+ "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
+ "\u001b[0m\u001b[38;5;7mrequest\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mWhen was Stripe company founded?\u001b[39m\u001b[38;5;144m\"\u001b[39m\n",
+ "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7msearch\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mrequest\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7mrequest\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
+ "\u001b[33;1m====\u001b[0m\n",
+ "\u001b[32;20;1m======== New task ========\u001b[0m\n",
+ "\u001b[37;1mYou're a helpful agent named 'search'.\n",
+ "You have been submitted this task by your manager.\n",
+ "---\n",
+ "Task:\n",
+ "When was Stripe company founded?\n",
+ "---\n",
+ "You're helping your manager solve a wider task: so make sure to not provide a one-line answer, but give as much information as possible so that they have a clear understanding of the answer.\n",
+ "\n",
+ "Your final_answer WILL HAVE to contain these parts:\n",
+ "### 1. Task outcome (short version):\n",
+ "### 2. Task outcome (extremely detailed version):\n",
+ "### 3. Additional context (if relevant):\n",
+ "\n",
+ "Put all these in your final_answer tool, everything that you do not pass as an argument to final_answer will be lost.\n",
+ "And even if your task resolution is not successful, please return as much context as possible, so that your manager can act upon this feedback.\u001b[0m\n",
+ "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
+ "\u001b[0mThought: To answer this question, I need to search for information about Stripe's founding. I will use the web_search tool to find the relevant information.\u001b[0m\n",
+ "\u001b[33;1m>>> Calling tool: 'web_search' with arguments: {'query': 'When was Stripe company founded?'}\u001b[0m\n",
+ "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
+ "\u001b[0mThought: From the results, it's clear that Stripe was founded in 2010 by Patrick and John Collison. I will gather more details from these sources to provide a comprehensive answer.\u001b[0m\n",
+ "\u001b[33;1m>>> Calling tool: 'visit_webpage' with arguments: {'url': 'https://en.wikipedia.org/wiki/Stripe,_Inc.'}\u001b[0m\n",
+ "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
+ "\u001b[0mThought: The Wikipedia page provides a detailed overview of Stripe, including its founding year and various milestones. I have all the information needed to provide an extensive answer. Now I will use this information to construct a detailed final answer.\u001b[0m\n",
+ "\u001b[33;1m>>> Calling tool: 'final_answer' with arguments: {'answer': \"### 1. Task outcome (short version):\\nStripe, Inc. was founded in 2010 by Irish brothers Patrick and John Collison.\\n\\n### 2. Task outcome (extremely detailed version):\\nStripe, Inc. is an Irish-American multinational financial services and software as a service (SaaS) company. It was founded in 2010 by brothers Patrick and John Collison. The company is dual-headquartered in South San Francisco, California, United States, and Dublin, Ireland.\\n\\nThe founding of Stripe was driven by the Collison brothers' vision to provide a more accessible and user-friendly payment processing solution for online businesses. They started the company at a time when the e-commerce industry was rapidly growing, and there was a significant need for reliable and efficient payment processing services. The company officially launched in September 2011 after an extensive private beta.\\n\\nSince its founding, Stripe has experienced substantial growth and has expanded its services to multiple countries. It has also received significant investments from notable venture capitalists and tech entrepreneurs, including Peter Thiel, Elon Musk, Sequoia Capital, and Andreessen Horowitz. By 2023, Stripe had processed over $1 trillion in total payment volume and had a valuation of around $50 billion.\\n\\n### 3. Additional context (if relevant):\\n- **Key Milestones**:\\n - **2010**: Founded by Patrick and John Collison.\\n - **2011**: Officially launched in September after a private beta.\\n - **2012**: Introduced Stripe Connect, a multiparty payments solution.\\n - **2016**: Launched the Atlas platform to help startups register as U.S. corporations, targeting foreign entrepreneurs.\\n - **2018**: Expanded to 25 countries and introduced Stripe Issuing, allowing businesses to create their own physical and digital cards.\\n - **2021**: Raised $600 million, reaching a valuation of $95 billion.\\n - **2023**: Completed a Series I fundraise of more than $6.5 billion at a $50 billion valuation.\\n\\n- **Services**: Stripe offers a wide range of financial services, including payment processing, billing, fraud prevention, point-of-sale solutions, and more.\\n\\n- **Partnerships and Acquisitions**: Stripe has formed strategic partnerships with major companies like Ford, Spotify, and Twitter. It has also made several acquisitions, such as Paystack and TaxJar, to expand its capabilities and footprint.\\n\\n- **Impact**: Stripe has played a significant role in shaping the e-commerce and fintech industries, providing tools and services that have enabled businesses of all sizes to process payments more efficiently and securely.\"}\u001b[0m\n",
+ "\u001b[32;20;1m======== New task ========\u001b[0m\n",
+ "\u001b[37;1mYou're a helpful agent named 'search'.\n",
+ "You have been submitted this task by your manager.\n",
+ "---\n",
+ "Task:\n",
+ "When was Stripe company founded?\n",
+ "---\n",
+ "You're helping your manager solve a wider task: so make sure to not provide a one-line answer, but give as much information as possible so that they have a clear understanding of the answer.\n",
+ "\n",
+ "Your final_answer WILL HAVE to contain these parts:\n",
+ "### 1. Task outcome (short version):\n",
+ "### 2. Task outcome (extremely detailed version):\n",
+ "### 3. Additional context (if relevant):\n",
+ "\n",
+ "Put all these in your final_answer tool, everything that you do not pass as an argument to final_answer will be lost.\n",
+ "And even if your task resolution is not successful, please return as much context as possible, so that your manager can act upon this feedback.\u001b[0m\n",
+ "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
+ "\u001b[0mThought: To answer this question, I need to search for information about Stripe's founding. I will use the web_search tool to find the relevant information.\u001b[0m\n",
+ "\u001b[33;1m>>> Calling tool: 'web_search' with arguments: {'query': 'When was Stripe company founded?'}\u001b[0m\n",
+ "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
+ "\u001b[0mThought: The web_search results provide the information I need to answer the task. I will now craft a detailed final_answer to provide my manager with all relevant information.\u001b[0m\n",
+ "\u001b[33;1m>>> Calling tool: 'final_answer' with arguments: {'answer': '### 1. Task outcome (short version):\\nStripe was founded in 2010.\\n\\n### 2. Task outcome (extremely detailed version):\\nStripe, Inc. is a technology company that provides software and APIs enabling businesses to accept online and mobile payments. Stripe was founded in 2010 by Irish brothers John Collison and Patrick Collison in Palo Alto, California. The company operates globally, offering services to businesses of all sizes, from startups to large enterprises.\\n\\n### 3. Additional context (if relevant):\\n- **Founders**: The company was founded by John Collison and Patrick Collison, who still serve as the president and CEO, respectively.\\n- **Early Investment**: In 2011, Stripe received a $2 million investment from notable investors, including Elon Musk, Peter Thiel, and Max Levchin.\\n- **Growth**: Since its founding, Stripe has grown significantly, becoming one of the largest payment processors in the world. As of 2020, the company was valued at over $70 billion.\\n- **Products**: Stripe has launched various products over the years, including Atlas, which aims to help entrepreneurs start and grow their businesses globally.'}\u001b[0m\n",
+ "\u001b[33;1mPrint outputs:\u001b[0m\n",
+ "\u001b[32;20m### 1. Task outcome (short version):\n",
+ "Stripe was founded in 2010.\n",
+ "\n",
+ "### 2. Task outcome (extremely detailed version):\n",
+ "Stripe, Inc. is a technology company that provides software and APIs enabling businesses to accept online and mobile payments. Stripe was founded in 2010 by Irish brothers John Collison and Patrick Collison in Palo Alto, California. The company operates globally, offering services to businesses of all sizes, from startups to large enterprises.\n",
+ "\n",
+ "### 3. Additional context (if relevant):\n",
+ "- **Founders**: The company was founded by John Collison and Patrick Collison, who still serve as the president and CEO, respectively.\n",
+ "- **Early Investment**: In 2011, Stripe received a $2 million investment from notable investors, including Elon Musk, Peter Thiel, and Max Levchin.\n",
+ "- **Growth**: Since its founding, Stripe has grown significantly, becoming one of the largest payment processors in the world. As of 2020, the company was valued at over $70 billion.\n",
+ "- **Products**: Stripe has launched various products over the years, including Atlas, which aims to help entrepreneurs start and grow their businesses globally.\n",
+ "\u001b[0m\n",
+ "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
+ "\u001b[0mThought: 이제 Stripe가 2010년에 설립되었다는 것을 알았습니다. 현재 연도를 가져와서 Stripe의 나이를 계산해야 합니다.\u001b[0m\n",
+ "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
+ "\u001b[0m\u001b[38;5;109;01mimport\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mdatetime\u001b[39m\n",
+ "\n",
+ "\u001b[38;5;7mstripe_founded_year\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m2010\u001b[39m\n",
+ "\u001b[38;5;7mcurrent_year\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mdatetime\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mdatetime\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7mnow\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;109;01m.\u001b[39;00m\u001b[38;5;7myear\u001b[39m\n",
+ "\u001b[38;5;7mstripe_age_years\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mcurrent_year\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m-\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mstripe_founded_year\u001b[39m\n",
+ "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mStripe age (years):\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mstripe_age_years\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
+ "\u001b[33;1m====\u001b[0m\n",
+ "\u001b[33;1mPrint outputs:\u001b[0m\n",
+ "\u001b[32;20mStripe age (years): 14\n",
+ "\u001b[0m\n",
+ "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
+ "\u001b[0mThought: 이제 Stripe가 14년 전에 설립되었다는 것을 확인했습니다. 이제 최종 답변을 반환하겠습니다.\u001b[0m\n",
+ "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
+ "\u001b[0m\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mstripe_age_years\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
+ "\u001b[33;1m====\u001b[0m\n",
+ "\u001b[33;1mPrint outputs:\u001b[0m\n",
+ "\u001b[32;20m\u001b[0m\n",
+ "\u001b[33;1mLast output from code snippet:\u001b[0m\n",
+ "\u001b[32;20m14\u001b[0m\n",
+ "\u001b[32;20;1mFinal answer:\u001b[0m\n",
+ "\u001b[32;20m14\u001b[0m\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "14"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "manager_agent.run(\"Stripe는 몇 년 전에 설립되었나요?\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qwnHiiibNaRk"
+ },
+ "source": [
+ "이렇게 에이전트들이 협력하여 과제를 해결했습니다! ✅\n",
+ "\n",
+ "💡 이 시스템은 쉽게 더 많은 에이전트로 확장될 수 있습니다. 예를 들어, 한 에이전트는 코드 실행을 담당하고, 다른 에이전트는 웹 검색을, 또 다른 에이전트는 파일 로딩을 처리하는 식으로 말이죠.\n",
+ "\n",
+ "🤔💭 더 나아가 복잡한 트리 구조의 계층을 생각해볼 수도 있습니다. 최고 경영자(CEO) 에이전트가 여러 중간 관리자를 관리하고, 각 중간 관리자는 다시 여러 부하 직원을 관리하는 구조를 만들 수 있죠.\n",
+ "\n",
+ "심지어 더 많은 중간 관리 계층을 추가하고, 매일 여러 번의 회의를 하고, 스크럼 마스터와 함께 애자일 방식을 도입할 수도 있습니다. 그리고 각 새로운 구성 요소는 충분한 마찰을 추가하여 결국 아무 일도 완수되지 않도록 할 수 있겠죠... 음, 잠깐만요. 그건 아니겠네요. 우리의 단순한 구조를 유지하는 것이 좋겠습니다."
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "cookbook2",
+ "language": "python",
+ "name": "cookbook2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.0"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/notebooks/zh-CN/_toctree.yml b/notebooks/zh-CN/_toctree.yml
index 141a0467..bceb4609 100644
--- a/notebooks/zh-CN/_toctree.yml
+++ b/notebooks/zh-CN/_toctree.yml
@@ -70,11 +70,9 @@
isExpanded: false
sections:
- local: agents
- title: 使用 Transformers Agents 构建具有工具调用超能力的智能体
+ title: 使用 smolagents 构建具有工具调用超能力的智能体
- local: agent_rag
- title: 智能体 RAG 通过查询重构和自查询来增强你的 RAG
- - local: agent_change_llm
- title: 从任意的 LLM 推理提供商中创建一个 Transformers 智能体
+ title: 智能体 RAG 通过查询重构和自查询来增强你的 RAG
- title: 企业级使用指南 (Cookbook)
isExpanded: True
diff --git a/notebooks/zh-CN/agent_change_llm.ipynb b/notebooks/zh-CN/agent_change_llm.ipynb
deleted file mode 100644
index 5e7b2c67..00000000
--- a/notebooks/zh-CN/agent_change_llm.ipynb
+++ /dev/null
@@ -1,317 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 从任意的 LLM 推理提供商中创建一个 Transformers 智能体\n",
- "_作者: [Aymeric Roucher](https://huggingface.co/m-ric)_\n",
- "\n",
- "> 本教程建立在智能体知识的基础上:要了解更多关于智能体的信息,你可以从[这里介绍](agents)开始。\n",
- "\n",
- "[Transformers Agents](https://huggingface.co/docs/transformers/en/agents) 是一个用于构建智能体的库,它使用 LLM 在 `llm_engine` 参数中提供动力。这个参数的设计是为了给用户最大的自由度去选择任意 LLM。\n",
- "\n",
- "让我们看看如何从一些主要提供商的 API 中构建这个 `llm_engine`。\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## HuggingFace 无服务器 API 和专用端点\n",
- "\n",
- "Transformers Agents 提供了一个内置的 `HfEngine` 类,允许你通过无服务器 API 或你自己的专用端点使用 Hub 上的任何模型。这是使用 HF 智能体的首选方式。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[33;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mWhat's the 10th Fibonacci number?\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "['unicodedata', 're', 'math', 'collections', 'queue', 'itertools', 'random', 'time', 'stat', 'statistics']\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\n",
- "\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m_\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mrange\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;139m9\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m+\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m55\n",
- "\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m0\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;139m1\u001b[39m\n",
- "\u001b[38;5;109;01mfor\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7m_\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01min\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;109mrange\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;139m9\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[38;5;7m:\u001b[39m\n",
- "\u001b[38;5;7m \u001b[39m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7ma\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m+\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mb\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\u001b[0m\n",
- "\u001b[33;1m>>> Final answer:\u001b[0m\n",
- "\u001b[32;20m55\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "55"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from transformers.agents import HfEngine, ReactCodeAgent\n",
- "\n",
- "repo_id = \"meta-llama/Meta-Llama-3-8B-Instruct\"\n",
- "endpoint_url = \"your_endpoint_url\"\n",
- "\n",
- "llm_engine = HfEngine(model=repo_id) # you could use model=endpoint_url here\n",
- "\n",
- "agent = ReactCodeAgent(tools=[], llm_engine=llm_engine)\n",
- "\n",
- "agent.run(\"What's the 10th Fibonacci number?\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "智能体的 `llm_engine` 初始化参数可以是一个简单的可调用对象,如下所示:\n",
- "```py\n",
- "def llm_engine(messages, stop_sequences=[]) -> str:\n",
- " return response(messages)\n",
- "```\n",
- "这个可调用对象是 llm 引擎的核心。它应该满足以下要求:\n",
- "- 以 [聊天模板](https://huggingface.co/docs/transformers/main/en/chat_templating) 格式的消息列表作为输入,并输出一个 `str`。\n",
- "- 接受一个 `stop_sequences` 参数,智能体系统将传递给它应该停止生成的序列。\n",
- "\n",
- "让我们更仔细地看看我们使用的 `HfEngine` 的代码:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "from typing import List, Dict\n",
- "from transformers.agents.llm_engine import MessageRole, get_clean_message_list\n",
- "from huggingface_hub import InferenceClient\n",
- "\n",
- "llama_role_conversions = {\n",
- " MessageRole.TOOL_RESPONSE: MessageRole.USER,\n",
- "}\n",
- "\n",
- "\n",
- "class HfEngine:\n",
- " def __init__(self, model: str = \"meta-llama/Meta-Llama-3-8B-Instruct\"):\n",
- " self.model = model\n",
- " self.client = InferenceClient(model=self.model, timeout=120)\n",
- "\n",
- " def __call__(self, messages: List[Dict[str, str]], stop_sequences=[]) -> str:\n",
- " # Get clean message list\n",
- " messages = get_clean_message_list(\n",
- " messages, role_conversions=llama_role_conversions\n",
- " )\n",
- "\n",
- " # Get LLM output\n",
- " response = self.client.chat_completion(\n",
- " messages, stop=stop_sequences, max_tokens=1500\n",
- " )\n",
- " response = response.choices[0].message.content\n",
- "\n",
- " # Remove stop sequences from LLM output\n",
- " for stop_seq in stop_sequences:\n",
- " if response[-len(stop_seq) :] == stop_seq:\n",
- " response = response[: -len(stop_seq)]\n",
- " return response"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "在这里,引擎不是一个函数,而是一个带有 `__call__` 方法的类,这使得存储诸如客户端之类的属性成为可能。\n",
- "\n",
- "我们还使用了 `get_clean_message_list()` 实用工具来将连续的消息连接到同一个角色。\n",
- "这个方法接受一个 `role_conversions` 参数,用于将 Transformers 智能体支持的角色的范围转换为你的 LLM 所接受的那些角色。\n",
- "\n",
- "这个配方可以适用于任何 LLM!让我们看看其他例子。\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 为任何 LLM 适配配方\n",
- "\n",
- "使用上述配方,你可以使用任何 LLM 推理源作为你的 `llm_engine`。\n",
- "只需记住两个主要约束:\n",
- "- `llm_engine` 是一个可调用对象,它以 [聊天模板](https://huggingface.co/docs/transformers/main/en/chat_templating) 格式的消息列表作为输入,并输出一个 `str`。\n",
- "- 它接受一个 `stop_sequences` 参数。\n",
- "\n",
- "\n",
- "### OpenAI"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "from openai import OpenAI\n",
- "\n",
- "openai_role_conversions = {\n",
- " MessageRole.TOOL_RESPONSE: MessageRole.USER,\n",
- "}\n",
- "\n",
- "\n",
- "class OpenAIEngine:\n",
- " def __init__(self, model_name=\"gpt-4o\"):\n",
- " self.model_name = model_name\n",
- " self.client = OpenAI(\n",
- " api_key=os.getenv(\"OPENAI_API_KEY\"),\n",
- " )\n",
- "\n",
- " def __call__(self, messages, stop_sequences=[]):\n",
- " messages = get_clean_message_list(\n",
- " messages, role_conversions=openai_role_conversions\n",
- " )\n",
- "\n",
- " response = self.client.chat.completions.create(\n",
- " model=self.model_name,\n",
- " messages=messages,\n",
- " stop=stop_sequences,\n",
- " temperature=0.5,\n",
- " )\n",
- " return response.choices[0].message.content"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Anthropic"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from anthropic import Anthropic, AnthropicBedrock\n",
- "\n",
- "\n",
- "# Cf this page for using Anthropic from Bedrock: https://docs.anthropic.com/en/api/claude-on-amazon-bedrock\n",
- "class AnthropicEngine:\n",
- " def __init__(self, model_name=\"claude-3-5-sonnet-20240620\", use_bedrock=False):\n",
- " self.model_name = model_name\n",
- " if use_bedrock:\n",
- " self.model_name = \"anthropic.claude-3-5-sonnet-20240620-v1:0\"\n",
- " self.client = AnthropicBedrock(\n",
- " aws_access_key=os.getenv(\"AWS_BEDROCK_ID\"),\n",
- " aws_secret_key=os.getenv(\"AWS_BEDROCK_KEY\"),\n",
- " aws_region=\"us-east-1\",\n",
- " )\n",
- " else:\n",
- " self.client = Anthropic(\n",
- " api_key=os.getenv(\"ANTHROPIC_API_KEY\"),\n",
- " )\n",
- "\n",
- " def __call__(self, messages, stop_sequences=[]):\n",
- " messages = get_clean_message_list(\n",
- " messages, role_conversions=openai_role_conversions\n",
- " )\n",
- " index_system_message, system_prompt = None, None\n",
- " for index, message in enumerate(messages):\n",
- " if message[\"role\"] == MessageRole.SYSTEM:\n",
- " index_system_message = index\n",
- " system_prompt = message[\"content\"]\n",
- " if system_prompt is None:\n",
- " raise Exception(\"No system prompt found!\")\n",
- "\n",
- " filtered_messages = [\n",
- " message for i, message in enumerate(messages) if i != index_system_message\n",
- " ]\n",
- " if len(filtered_messages) == 0:\n",
- " print(\"Error, no user message:\", messages)\n",
- " assert False\n",
- "\n",
- " response = self.client.messages.create(\n",
- " model=self.model_name,\n",
- " system=system_prompt,\n",
- " messages=filtered_messages,\n",
- " stop_sequences=stop_sequences,\n",
- " temperature=0.5,\n",
- " max_tokens=2000,\n",
- " )\n",
- " full_response_text = \"\"\n",
- " for content_block in response.content:\n",
- " if content_block.type == \"text\":\n",
- " full_response_text += content_block.text\n",
- " return full_response_text"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 下一步\n",
- "\n",
- "现在去为你自己选择的那个语言模型推理服务,用 `transformers.agents` 做一个 `llm_engine` 吧!\n",
- "\n",
- "做好之后,你可以用这个新的 `llm_engine` 来玩玩这些应用场景:\n",
- "- [智能体 RAG:通过查询重构和自查询来增强你的 RAG ](agent_rag)\n",
- "- [用于文本到 SQL 的智能体,带自动错误校正](agent_text_to_sql)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "disposable",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.14"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/zh-CN/agent_rag.ipynb b/notebooks/zh-CN/agent_rag.ipynb
index c6a132e4..66d0a275 100644
--- a/notebooks/zh-CN/agent_rag.ipynb
+++ b/notebooks/zh-CN/agent_rag.ipynb
@@ -37,7 +37,7 @@
"metadata": {},
"outputs": [],
"source": [
- "!pip install pandas langchain langchain-community sentence-transformers faiss-cpu \"transformers[agents]\""
+ "!pip install pandas langchain langchain-community sentence-transformers faiss-cpu smolagents"
]
},
{
@@ -163,7 +163,7 @@
"metadata": {},
"outputs": [],
"source": [
- "from transformers.agents import Tool\n",
+ "from smolagents import Tool\n",
"from langchain_core.vectorstores import VectorStore\n",
"\n",
"\n",
@@ -208,7 +208,7 @@
"- *`tools`*:智能体能够调用的工具列表。\n",
"- *`llm_engine`*:为智能体提供动力的LLM。\n",
"\n",
- "我们的 `llm_engine` 必须是一个可调用的对象,它接受一个 [messages](https://huggingface.co/docs/transformers/main/chat_templating) 列表作为输入并返回文本。它还需要接受一个 `stop_sequences` 参数,该参数指示何时停止生成。为了方便起见,我们直接使用包中提供的 `HfEngine` 类来获取一个调用我们的 [Inference API](https://huggingface.co/docs/api-inference/en/index) 的 LLM 引擎。\n",
+ "我们的 `llm_engine` 必须是一个可调用的对象,它接受一个 [messages](https://huggingface.co/docs/transformers/main/chat_templating) 列表作为输入并返回文本。它还需要接受一个 `stop_sequences` 参数,该参数指示何时停止生成。为了方便起见,我们直接使用包中提供的 `HfModel` 类来获取一个调用我们的 [Inference API](https://huggingface.co/docs/api-inference/en/index) 的 LLM 引擎。\n",
"我们使用 [CohereForAI/c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus) 作为 llm 引擎,因为:\n",
"- 它有一个长达 128k 的上下文,这对于处理长源文档很有帮助\n",
"- 它在 HF 的 Inference API 上始终免费提供!\n"
@@ -220,13 +220,13 @@
"metadata": {},
"outputs": [],
"source": [
- "from transformers.agents import HfEngine, ReactJsonAgent\n",
+ "from smolagents import HfModel, ToolCallingAgent\n",
"\n",
- "llm_engine = HfEngine(\"CohereForAI/c4ai-command-r-plus\")\n",
+ "model = HfModel(\"CohereForAI/c4ai-command-r-plus\")\n",
"\n",
"retriever_tool = RetrieverTool(vectordb)\n",
- "agent = ReactJsonAgent(\n",
- " tools=[retriever_tool], llm_engine=llm_engine, max_iterations=4, verbose=2\n",
+ "agent = ToolCallingAgent(\n",
+ " tools=[retriever_tool], model=model, max_iterations=4, verbose=2\n",
")"
]
},
@@ -234,7 +234,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "既然我们已经将智能体初始化为 `ReactJsonAgent`,它就已经自动赋予了一个默认的系统提示,告诉 LLM 引擎要逐步处理并生成工具调用作为 JSON 块(你可以根据需要用你自己的提示模板替换这个)。\n",
+ "既然我们已经将智能体初始化为 `ToolCallingAgent`,它就已经自动赋予了一个默认的系统提示,告诉 LLM 引擎要逐步处理并生成工具调用作为 JSON 块(你可以根据需要用你自己的提示模板替换这个)。\n",
"\n",
"然后,当它的 `.run()` 方法被启动时,智能体负责调用 LLM 引擎,解析工具调用的 JSON 块并执行这些工具调用,所有这些都在一个循环中进行,只有当提供最终答案时才会结束。"
]
diff --git a/notebooks/zh-CN/agents.ipynb b/notebooks/zh-CN/agents.ipynb
index 0a48deab..d9975ccf 100644
--- a/notebooks/zh-CN/agents.ipynb
+++ b/notebooks/zh-CN/agents.ipynb
@@ -24,16 +24,112 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: smolagents in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (1.0.0)\n",
+ "Requirement already satisfied: torch in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (2.3.0)\n",
+ "Requirement already satisfied: torchaudio in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (2.3.0)\n",
+ "Requirement already satisfied: torchvision in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (0.18.0)\n",
+ "Requirement already satisfied: transformers>=4.0.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (4.47.1)\n",
+ "Requirement already satisfied: requests>=2.32.3 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (2.32.3)\n",
+ "Requirement already satisfied: rich>=13.9.4 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (13.9.4)\n",
+ "Requirement already satisfied: pandas>=2.2.3 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (2.2.3)\n",
+ "Requirement already satisfied: jinja2>=3.1.4 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (3.1.4)\n",
+ "Requirement already satisfied: pillow>=11.0.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (11.1.0)\n",
+ "Requirement already satisfied: markdownify>=0.14.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (0.14.1)\n",
+ "Requirement already satisfied: gradio>=5.8.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (5.9.1)\n",
+ "Requirement already satisfied: duckduckgo-search>=6.3.7 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (7.2.0)\n",
+ "Requirement already satisfied: python-dotenv>=1.0.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (1.0.1)\n",
+ "Requirement already satisfied: e2b-code-interpreter>=1.0.3 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (1.0.3)\n",
+ "Requirement already satisfied: litellm>=1.55.10 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from smolagents) (1.57.0)\n",
+ "Requirement already satisfied: click>=8.1.7 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from duckduckgo-search>=6.3.7->smolagents) (8.1.7)\n",
+ "Requirement already satisfied: primp>=0.9.3 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from duckduckgo-search>=6.3.7->smolagents) (0.9.3)\n",
+ "Requirement already satisfied: lxml>=5.3.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from duckduckgo-search>=6.3.7->smolagents) (5.3.0)\n",
+ "Requirement already satisfied: attrs>=21.3.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from e2b-code-interpreter>=1.0.3->smolagents) (23.2.0)\n",
+ "Requirement already satisfied: e2b<2.0.0,>=1.0.4 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from e2b-code-interpreter>=1.0.3->smolagents) (1.0.5)\n",
+ "Requirement already satisfied: httpx<1.0.0,>=0.20.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from e2b-code-interpreter>=1.0.3->smolagents) (0.27.2)\n",
+ "Requirement already satisfied: aiofiles<24.0,>=22.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (23.2.1)\n",
+ "Requirement already satisfied: anyio<5.0,>=3.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (3.7.1)\n",
+ "Requirement already satisfied: fastapi<1.0,>=0.115.2 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.115.6)\n",
+ "Requirement already satisfied: ffmpy in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.4.0)\n",
+ "Requirement already satisfied: gradio-client==1.5.2 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (1.5.2)\n",
+ "Requirement already satisfied: huggingface-hub>=0.25.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.27.1)\n",
+ "Requirement already satisfied: markupsafe~=2.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (2.1.5)\n",
+ "Requirement already satisfied: numpy<3.0,>=1.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (2.1.3)\n",
+ "Requirement already satisfied: orjson~=3.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (3.10.11)\n",
+ "Requirement already satisfied: packaging in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (24.2)\n",
+ "Requirement already satisfied: pydantic>=2.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (2.9.2)\n",
+ "Requirement already satisfied: pydub in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.25.1)\n",
+ "Requirement already satisfied: python-multipart>=0.0.18 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.0.20)\n",
+ "Requirement already satisfied: pyyaml<7.0,>=5.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (6.0.1)\n",
+ "Requirement already satisfied: ruff>=0.2.2 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.3.4)\n",
+ "Requirement already satisfied: safehttpx<0.2.0,>=0.1.6 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.1.6)\n",
+ "Requirement already satisfied: semantic-version~=2.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (2.10.0)\n",
+ "Requirement already satisfied: starlette<1.0,>=0.40.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.41.3)\n",
+ "Requirement already satisfied: tomlkit<0.14.0,>=0.12.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.12.0)\n",
+ "Requirement already satisfied: typer<1.0,>=0.12 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.12.5)\n",
+ "Requirement already satisfied: typing-extensions~=4.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (4.12.2)\n",
+ "Requirement already satisfied: uvicorn>=0.14.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio>=5.8.0->smolagents) (0.30.6)\n",
+ "Requirement already satisfied: fsspec in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio-client==1.5.2->gradio>=5.8.0->smolagents) (2024.3.1)\n",
+ "Requirement already satisfied: websockets<15.0,>=10.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from gradio-client==1.5.2->gradio>=5.8.0->smolagents) (12.0)\n",
+ "Requirement already satisfied: aiohttp in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from litellm>=1.55.10->smolagents) (3.9.3)\n",
+ "Requirement already satisfied: importlib-metadata>=6.8.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from litellm>=1.55.10->smolagents) (8.5.0)\n",
+ "Requirement already satisfied: jsonschema<5.0.0,>=4.22.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from litellm>=1.55.10->smolagents) (4.22.0)\n",
+ "Requirement already satisfied: openai>=1.55.3 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from litellm>=1.55.10->smolagents) (1.59.3)\n",
+ "Requirement already satisfied: tiktoken>=0.7.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from litellm>=1.55.10->smolagents) (0.8.0)\n",
+ "Requirement already satisfied: tokenizers in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from litellm>=1.55.10->smolagents) (0.21.0)\n",
+ "Requirement already satisfied: beautifulsoup4<5,>=4.9 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from markdownify>=0.14.1->smolagents) (4.12.3)\n",
+ "Requirement already satisfied: six<2,>=1.15 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from markdownify>=0.14.1->smolagents) (1.16.0)\n",
+ "Requirement already satisfied: python-dateutil>=2.8.2 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from pandas>=2.2.3->smolagents) (2.9.0.post0)\n",
+ "Requirement already satisfied: pytz>=2020.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from pandas>=2.2.3->smolagents) (2024.1)\n",
+ "Requirement already satisfied: tzdata>=2022.7 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from pandas>=2.2.3->smolagents) (2024.1)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from requests>=2.32.3->smolagents) (3.3.2)\n",
+ "Requirement already satisfied: idna<4,>=2.5 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from requests>=2.32.3->smolagents) (3.6)\n",
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from requests>=2.32.3->smolagents) (2.0.7)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from requests>=2.32.3->smolagents) (2023.11.17)\n",
+ "Requirement already satisfied: markdown-it-py>=2.2.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from rich>=13.9.4->smolagents) (3.0.0)\n",
+ "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from rich>=13.9.4->smolagents) (2.18.0)\n",
+ "Requirement already satisfied: filelock in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from transformers>=4.0.0->smolagents) (3.13.1)\n",
+ "Requirement already satisfied: regex!=2019.12.17 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from transformers>=4.0.0->smolagents) (2024.5.10)\n",
+ "Requirement already satisfied: safetensors>=0.4.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from transformers>=4.0.0->smolagents) (0.4.3)\n",
+ "Requirement already satisfied: tqdm>=4.27 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from transformers>=4.0.0->smolagents) (4.66.1)\n",
+ "Requirement already satisfied: sympy in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from torch->smolagents) (1.12)\n",
+ "Requirement already satisfied: networkx in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from torch->smolagents) (3.3)\n",
+ "Requirement already satisfied: sniffio>=1.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from anyio<5.0,>=3.0->gradio>=5.8.0->smolagents) (1.3.0)\n",
+ "Requirement already satisfied: soupsieve>1.2 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from beautifulsoup4<5,>=4.9->markdownify>=0.14.1->smolagents) (2.5)\n",
+ "Requirement already satisfied: httpcore<2.0.0,>=1.0.5 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from e2b<2.0.0,>=1.0.4->e2b-code-interpreter>=1.0.3->smolagents) (1.0.7)\n",
+ "Requirement already satisfied: protobuf<6.0.0,>=3.20.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from e2b<2.0.0,>=1.0.4->e2b-code-interpreter>=1.0.3->smolagents) (5.29.0)\n",
+ "Requirement already satisfied: h11<0.15,>=0.13 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from httpcore<2.0.0,>=1.0.5->e2b<2.0.0,>=1.0.4->e2b-code-interpreter>=1.0.3->smolagents) (0.14.0)\n",
+ "Requirement already satisfied: zipp>=3.20 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from importlib-metadata>=6.8.0->litellm>=1.55.10->smolagents) (3.21.0)\n",
+ "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from jsonschema<5.0.0,>=4.22.0->litellm>=1.55.10->smolagents) (2023.12.1)\n",
+ "Requirement already satisfied: referencing>=0.28.4 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from jsonschema<5.0.0,>=4.22.0->litellm>=1.55.10->smolagents) (0.35.1)\n",
+ "Requirement already satisfied: rpds-py>=0.7.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from jsonschema<5.0.0,>=4.22.0->litellm>=1.55.10->smolagents) (0.18.1)\n",
+ "Requirement already satisfied: mdurl~=0.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from markdown-it-py>=2.2.0->rich>=13.9.4->smolagents) (0.1.2)\n",
+ "Requirement already satisfied: distro<2,>=1.7.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from openai>=1.55.3->litellm>=1.55.10->smolagents) (1.8.0)\n",
+ "Requirement already satisfied: jiter<1,>=0.4.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from openai>=1.55.3->litellm>=1.55.10->smolagents) (0.7.1)\n",
+ "Requirement already satisfied: annotated-types>=0.6.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from pydantic>=2.0->gradio>=5.8.0->smolagents) (0.6.0)\n",
+ "Requirement already satisfied: pydantic-core==2.23.4 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from pydantic>=2.0->gradio>=5.8.0->smolagents) (2.23.4)\n",
+ "Requirement already satisfied: shellingham>=1.3.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from typer<1.0,>=0.12->gradio>=5.8.0->smolagents) (1.5.4)\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from aiohttp->litellm>=1.55.10->smolagents) (1.3.1)\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from aiohttp->litellm>=1.55.10->smolagents) (1.4.1)\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from aiohttp->litellm>=1.55.10->smolagents) (6.0.5)\n",
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from aiohttp->litellm>=1.55.10->smolagents) (1.9.4)\n",
+ "Requirement already satisfied: mpmath>=0.19 in /Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages (from sympy->torch->smolagents) (1.3.0)\n"
+ ]
+ }
+ ],
"source": [
- "!pip install \"git+https://github.com/huggingface/transformers.git#egg=transformers[agents]\""
+ "!pip install smolagents"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -62,34 +158,27 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "\u001b[33;1m======== New task ========\u001b[0m\n",
- "\u001b[37;1mGenerate me a photo of the car that James bond drove in the latest movie.\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mlatest_movie\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7msearch\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mWhat is the latest James Bond movie?\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mLatest James Bond movie:\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mlatest_movie\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mbond_car\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7msearch\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mWhat car did James Bond drive in the latest movie?\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mJames Bond\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144ms car:\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m,\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mbond_car\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20mLatest James Bond movie: No Time to Die\n",
- "James Bond's car: Aston Martin DB5\n",
- "\u001b[0m\n",
- "\u001b[33;1m==== Agent is executing the code below:\u001b[0m\n",
- "\u001b[0m\u001b[38;5;7mimage\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7mimage_generator\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mA high-res, photorealistic image of the Aston Martin DB5 driven by James Bond in No Time to Die\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
- "\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mimage\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
- "\u001b[33;1m====\u001b[0m\n",
- "\u001b[33;1mPrint outputs:\u001b[0m\n",
- "\u001b[32;20m\u001b[0m\n",
- "\u001b[33;1m>>> Final answer:\u001b[0m\n",
- "\u001b[32;20m/var/folders/6m/9b1tts6d5w960j80wbw9tx3m0000gn/T/tmptcdd2ra6/2bf48fc0-6fff-4e86-8fb5-85b3221bc0c8.png\u001b[0m\n"
+ "/Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
+ " from .autonotebook import tqdm as notebook_tqdm\n"
+ ]
+ },
+ {
+ "ename": "ImportError",
+ "evalue": "cannot import name 'HfApiModel' from 'transformers' (/Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages/transformers/__init__.py)",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Tool, load_tool, CodeAgent, HfApiModel\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Import tool from Hub\u001b[39;00m\n\u001b[1;32m 4\u001b[0m image_generation_tool \u001b[38;5;241m=\u001b[39m load_tool(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mm-ric/text-to-image\u001b[39m\u001b[38;5;124m\"\u001b[39m, trust_remote_code\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n",
+ "\u001b[0;31mImportError\u001b[0m: cannot import name 'HfApiModel' from 'transformers' (/Users/aymeric/.pyenv/versions/3.12.0/lib/python3.12/site-packages/transformers/__init__.py)"
]
}
],
"source": [
- "from transformers import Tool, load_tool, ReactCodeAgent, HfEngine\n",
+ "from transformers import Tool, load_tool, CodeAgent, HfApiModel\n",
"\n",
"# Import tool from Hub\n",
- "image_generation_tool = load_tool(\"m-ric/text-to-image\")\n",
+ "image_generation_tool = load_tool(\"m-ric/text-to-image\", trust_remote_code=True)\n",
"\n",
"# Import tool from LangChain\n",
"from langchain.agents import load_tools\n",
@@ -97,10 +186,10 @@
"search_tool = Tool.from_langchain(load_tools([\"serpapi\"])[0])\n",
"\n",
"\n",
- "llm_engine = HfEngine(\"meta-llama/Meta-Llama-3-70B-Instruct\")\n",
+ "model = HfApiModel(\"meta-llama/Llama-3.1-70B-Instruct\")\n",
"# Initialize the agent with both tools\n",
- "agent = ReactCodeAgent(\n",
- " tools=[image_generation_tool, search_tool], llm_engine=llm_engine\n",
+ "agent = CodeAgent(\n",
+ " tools=[image_generation_tool, search_tool], model=model\n",
")\n",
"\n",
"# Run it!\n",
@@ -223,7 +312,7 @@
"outputs": [],
"source": [
"import json\n",
- "from transformers.agents import Tool\n",
+ "from smolagents import Tool\n",
"from langchain_core.vectorstores import VectorStore\n",
"\n",
"\n",
@@ -341,14 +430,14 @@
}
],
"source": [
- "from transformers.agents import HfEngine, ReactJsonAgent, load_tool\n",
+ "from smolagents import HfModel, ToolCallingAgent, load_tool\n",
"\n",
- "llm_engine = HfEngine(\"meta-llama/Meta-Llama-3-70B-Instruct\")\n",
+ "model = HfModel(\"meta-llama/Meta-Llama-3-70B-Instruct\")\n",
"\n",
"retriever_tool = load_tool(\n",
" \"m-ric/retriever-tool\", vectordb=vectordb, all_sources=all_sources\n",
")\n",
- "agent = ReactJsonAgent(tools=[retriever_tool], llm_engine=llm_engine, verbose=0)\n",
+ "agent = ToolCallingAgent(tools=[retriever_tool], model=model, verbose=0)\n",
"\n",
"agent_output = agent.run(\"Please show me a LORA finetuning script\")\n",
"\n",
@@ -501,9 +590,9 @@
}
],
"source": [
- "from transformers import ReactCodeAgent\n",
+ "from smolagents import CodeAgent\n",
"\n",
- "agent = ReactCodeAgent(tools=[])\n",
+ "agent = CodeAgent(tools=[])\n",
"\n",
"code = \"\"\"\n",
"list=[0, 1, 2]\n",
@@ -621,14 +710,14 @@
"source": [
"import os\n",
"from openai import OpenAI\n",
- "from transformers.agents.llm_engine import MessageRole, get_clean_message_list\n",
+ "from smolagents.model import MessageRole, get_clean_message_list\n",
"\n",
"openai_role_conversions = {\n",
" MessageRole.TOOL_RESPONSE: \"user\",\n",
"}\n",
"\n",
"\n",
- "class OpenAIEngine:\n",
+ "class OpenAIModel:\n",
" def __init__(self, model_name=\"gpt-4o-2024-05-13\"):\n",
" self.model_name = model_name\n",
" self.client = OpenAI(\n",
@@ -650,8 +739,8 @@
" return response.choices[0].message.content\n",
"\n",
"\n",
- "openai_engine = OpenAIEngine()\n",
- "agent = ReactCodeAgent(llm_engine=openai_engine, tools=[])\n",
+ "openai_engine = OpenAIModel()\n",
+ "agent = CodeAgent(model=openai_engine, tools=[])\n",
"\n",
"code = \"\"\"\n",
"list=[0, 1, 2]\n",