-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDHNutils.py
350 lines (260 loc) · 10.9 KB
/
DHNutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import torch.nn as nn
import models.pytorch_ssim as pyssim
import torch
from torchvision import utils
import matplotlib.pyplot as plt
# from thirdparty.perlin_numpy_master.perlin_numpy import generate_fractal_noise_2d
import yaml
import numpy as np
import random
import string
import qrcode
from torchvision import transforms
from random import randint
L1Loss = nn.L1Loss(reduce=True, size_average=False)
SSIMLoss = pyssim.SSIM(window_size=11, size_average=True)
MSELoss = nn.MSELoss(reduce=True, size_average=False)
BCELoss = nn.BCELoss(size_average=False)
def GetSSIMLoss(target, pred):
return 1 - SSIMLoss(target, pred)
def GetL1Loss(target, pred):
return L1Loss(target, pred)
def GetMSELoss(target, pred):
return MSELoss(target, pred)
def GetBCELoss(target, pred):
return BCELoss(target, pred)
def Differentiable_Round(x, alpha):
m = torch.floor(x) + 0.5
r = x - m
z = torch.tanh(torch.Tensor([alpha / 2.0])) * 2.0
y = m.cuda() + (torch.tanh(alpha * r.cuda()) / z.cuda()).cuda()
return y
def InitializeModel(mod):
for key, param in mod.named_parameters():
split = key.split('.')
if param.requires_grad:
param.data = 0.01 * torch.randn(param.data.shape).cuda()
if split[-2] == 'conv5':
param.data.fill_(0.)
def Unnormalize(tensor: torch.Tensor, mean, std, inplace: bool = False) -> torch.Tensor:
"""Unnormalize a tensor image with mean and standard deviation.
Args:
tensor (Tensor): Tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
inplace(bool,optional): Bool to make this operation inplace.
Returns:
Tensor: Normalized Tensor image.
"""
if not isinstance(tensor, torch.Tensor):
raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
if tensor.ndim < 3:
raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
'{}.'.format(tensor.size()))
if not inplace:
tensor = tensor.clone()
dtype = tensor.dtype
mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
if (std == 0).any():
raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
if mean.ndim == 1:
mean = mean.view(-1, 1, 1)
if std.ndim == 1:
std = std.view(-1, 1, 1)
tensor.mul_(std).add_(mean)
return tensor
def GetOption(optionName):
with open("config.yml", mode='r') as f:
opt = yaml.load(f, Loader=yaml.FullLoader)
return opt[optionName]
def SaveImageFromTensor(tensor, filename, needUnnormalize=False):
assert tensor.shape[0] == 1
tensor = tensor.clone().detach()
tensor = tensor.to(torch.device('cpu'))
if needUnnormalize:
tensor = Unnormalize(tensor, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
utils.save_image(tensor, filename)
def SaveScatterImg(name):
# img = torch.randn([512 * 512, 2]).numpy()
# img = img.tolist()
# img.sort(key=lambda x: x[0])
#
# tmp = []
# nowLen = 0
# cnt = 0
#
# while nowLen < 512 * 512:
# # step = randint(16, 32)
# step = 512
# if nowLen + step > 512 * 512:
# step = 512 * 512 - nowLen
# tmp += sorted(img[nowLen:nowLen + step][:], key=lambda x: x[1] * (1 if cnt % 2 == 0 else -1))
# nowLen += step
# cnt += 1
#
# img, tmp = tmp, img
K = 7
size = 512 // (K + 1)
img = torch.randn([size * size, 2]).numpy()
img = (img - np.min(img)) / (np.max(img) - np.min(img))
img = img.tolist()
img.sort(key=lambda x: x[0])
tmp = []
# while nowLen < 512 * 64:
# # step = randint(16, 32)
# step = 512
# if nowLen + step > 512 * 64:
# step = 512 * 64 - nowLen
# tmp += sorted(img[nowLen:nowLen + step][:], key=lambda x: x[1] * (1 if cnt % 2 == 0 else -1))
# nowLen += step
# cnt += 1
for i in range(size):
nowRow = sorted(img[i * size:(i + 1) * size][:], key=lambda x: x[1])
tmpRow = []
for j in range(size):
now = nowRow[j:j + 1][:]
if j == size - 1:
for k in range(K + 1):
tmpRow += now
break
nx = nowRow[j + 1:j + 2][:]
for k in range(K + 1):
# print(np.array(now).shape)
# print(np.array(nx).shape)
tmpRow += ((K + 1 - k) / (K + 1) * np.array(now) + k / (K + 1) * np.array(nx)).tolist()
nowRow, tmpRow = tmpRow, nowRow
if i == size - 1:
for j in range(K + 1):
tmp += nowRow
break
nxRow = sorted(img[(i + 1) * size:(i + 2) * size][:], key=lambda x: x[1])
tmpRow = []
for j in range(size):
now = nxRow[j:j + 1][:]
if j == size - 1:
for k in range(K + 1):
tmpRow += now
break
nx = nxRow[j + 1:j + 2][:]
for k in range(K + 1):
tmpRow += ((K + 1 - k) / (K + 1) * np.array(now) + k / (K + 1) * np.array(nx)).tolist()
nxRow, tmpRow = tmpRow, nxRow
for j in range(K + 1):
tmp += ((K + 1 - j) / (K + 1) * np.array(nowRow) + j / (K + 1) * np.array(nxRow)).tolist()
img, tmp = tmp, img
img = np.array(img).astype(np.float32)
# print(img.shape)
imgX = torch.from_numpy(img).reshape(512, 512, 2).permute(2, 0, 1)[0:1, ...].unsqueeze(0)
imgY = torch.from_numpy(img).reshape(512, 512, 2).permute(2, 0, 1)[1:2, ...].unsqueeze(0)
SaveImageFromTensor(imgX, GetOption("dataDir") + "train/Scatter_7/" + name + "X" + GetOption("imgExt"), needUnnormalize=False)
SaveImageFromTensor(imgY, GetOption("dataDir") + "train/Scatter_7/" + name + "Y" + GetOption("imgExt"), needUnnormalize=False)
def SaveScatterImgV2(name, m):
img = torch.randn([512 // m * 512 // m, 2]).numpy()
img = (img - np.min(img)) / (np.max(img) - np.min(img))
img = img.tolist()
tmp = []
# while nowLen < 512 * 64:
# # step = randint(16, 32)
# step = 512
# if nowLen + step > 512 * 64:
# step = 512 * 64 - nowLen
# tmp += sorted(img[nowLen:nowLen + step][:], key=lambda x: x[1] * (1 if cnt % 2 == 0 else -1))
# nowLen += step
# cnt += 1
for i in range(512 // m):
nowRow = img[i * 512 // m:(i + 1) * 512 // m][:]
tmpRow = []
for j in range(512 // m):
now = nowRow[j:j + 1][:]
if j == 512 // m - 1:
for k in range(m):
tmpRow += now
break
nx = nowRow[j + 1:j + 2][:]
for k in range(m):
tmpRow += ((m - k) / m * np.array(now) + k / m * np.array(nx)).tolist()
nowRow, tmpRow = tmpRow, nowRow
if i == 512 // m - 1:
for j in range(m):
tmp += nowRow
break
nxRow = img[(i + 1) * 512 // m:(i + 2) * 512 // m][:]
tmpRow = []
for j in range(512 // m):
now = nxRow[j:j + 1][:]
if j == 512 // m - 1:
for k in range(m):
tmpRow += now
break
nx = nxRow[j + 1:j + 2][:]
for k in range(m):
tmpRow += ((m - k) / m * np.array(now) + k / m * np.array(nx)).tolist()
nxRow, tmpRow = tmpRow, nxRow
for j in range(m):
tmp += ((m - j) / m * np.array(nowRow) + j / m * np.array(nxRow)).tolist()
img, tmp = tmp, img
img = np.array(img).astype(np.float32)
# print(img.shape)
imgX = torch.from_numpy(img).reshape(512, 512, 2).permute(2, 0, 1)[0:1, ...].unsqueeze(0)
imgY = torch.from_numpy(img).reshape(512, 512, 2).permute(2, 0, 1)[1:2, ...].unsqueeze(0)
SaveImageFromTensor(imgX, GetOption("dataDir") + "train/Scatter2/" + name + "X" + GetOption("imgExt"), needUnnormalize=False)
SaveImageFromTensor(imgY, GetOption("dataDir") + "train/Scatter2/" + name + "Y" + GetOption("imgExt"), needUnnormalize=False)
def Fade(t):
return 3 * t * t - 2 * t * t * t
def Interpolation(a, b, t):
return (1 - t) * a + t * b
def SaveScatterImgV3(name, m):
img = torch.randn([512 // m + 1, 512 // m + 1]).numpy()
img = (img - np.min(img)) / (np.max(img) - np.min(img))
img = img.tolist()
ret = []
for i in range(512):
for j in range(512):
if i % m == 0 and j % m == 0:
ret.append(img[i // m][j // m])
else:
ul = img[i // m][j // m]
ur = img[i // m][(j - 1) // m + 1]
dl = img[(i - 1) // m + 1][j // m]
dr = img[(i - 1) // m + 1][(j - 1) // m + 1]
di = (i - i // m * m) / m
dj = (j - j // m * m) / m
ret.append(Interpolation(Interpolation(ul, ur, Fade(dj)), Interpolation(dl, dr, Fade(dj)), Fade(di)))
img = np.array(ret).astype(np.float32)
# print(img.shape)
img = torch.from_numpy(img).reshape(512, 512, 1).permute(2, 0, 1).unsqueeze(0)
SaveImageFromTensor(img, GetOption("dataDir") + "train/Scatter2/" + name + "sc" + GetOption("imgExt"), needUnnormalize=False)
def GetRandomStr(length):
letters = string.ascii_lowercase + "0123456789:;'\\,.<>[]{}-=_+|?!@#$%^&*()"
rand_string = ''.join(random.choice(letters) for i in range(length))
return rand_string
def SaveQRCode(name):
QRC = qrcode.QRCode(
version=40,
error_correction=qrcode.constants.ERROR_CORRECT_H,
box_size=40,
)
s = GetRandomStr(randint(800, 1200))
QRC.add_data(s)
QRC.make(fit=False)
qr = QRC.make_image()
qrImg = torch.from_numpy(np.array(qr)).unsqueeze(0).unsqueeze(0).float()
tResize = transforms.Resize([512, 512])
qrImg = tResize(qrImg)
SaveImageFromTensor(qrImg, GetOption("dataDir") + "train/QR/" + name + GetOption("imgExt"), needUnnormalize=False)
def GetImgFromPatch(imgSize, patchSize, patchList):
ih, iw = imgSize[:2]
ph, pw = patchSize[:2]
hc = (ih - 1) // ph + 1
wc = (iw - 1) // pw + 1
ret = None
for i in range(hc):
row = patchList[i * wc]
for j in range(1, wc):
row = torch.cat([row, patchList[i * wc + j]], dim=3)
if i == 0:
ret = row
else:
ret = torch.cat([ret, row], dim=2)
return ret