-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
116 lines (102 loc) · 4.26 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import os
import shutil
import h5py
import nibabel as nib
import numpy as np
import SimpleITK as sitk
import torch
from medpy import metric
from scipy.ndimage import zoom
from scipy.ndimage.interpolation import zoom
from tqdm import tqdm
# from networks.efficientunet import UNet
from networks.net_factory import net_factory
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='/content/Data/ACDC', help='Dataset Path')
parser.add_argument('--exp', type=str,
default='/content/model/ACDC/Mean_Teacher', help='experiment_name')
parser.add_argument('--model', type=str,
default='unet', help='model_name')
parser.add_argument('--num_classes', type=int, default=4,
help='output channel of network')
parser.add_argument('--labeled_num', type=int, default=136,
help='labeled data')
def calculate_metric_percase(pred, gt):
pred[pred > 0] = 1
gt[gt > 0] = 1
dice = metric.binary.dc(pred, gt)
asd = metric.binary.asd(pred, gt)
hd95 = metric.binary.hd95(pred, gt)
return dice, hd95, asd
def test_single_volume(case, net, test_save_path, FLAGS):
h5f = h5py.File(FLAGS.root_path + "/data/{}.h5".format(case), 'r')
image = h5f['image'][:]
label = h5f['label'][:]
prediction = np.zeros_like(label)
for ind in range(image.shape[0]):
slice = image[ind, :, :]
x, y = slice.shape[0], slice.shape[1]
slice = zoom(slice, (256 / x, 256 / y), order=0)
input = torch.from_numpy(slice).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
if FLAGS.model == "unet_urds":
out_main, _, _, _ = net(input)
else:
out_main = net(input)
out = torch.argmax(torch.softmax(
out_main, dim=1), dim=1).squeeze(0)
out = out.cpu().detach().numpy()
pred = zoom(out, (x / 256, y / 256), order=0)
prediction[ind] = pred
first_metric = calculate_metric_percase(prediction == 1, label == 1)
second_metric = calculate_metric_percase(prediction == 2, label == 2)
third_metric = calculate_metric_percase(prediction == 3, label == 3)
img_itk = sitk.GetImageFromArray(image.astype(np.float32))
img_itk.SetSpacing((1, 1, 10))
prd_itk = sitk.GetImageFromArray(prediction.astype(np.float32))
prd_itk.SetSpacing((1, 1, 10))
lab_itk = sitk.GetImageFromArray(label.astype(np.float32))
lab_itk.SetSpacing((1, 1, 10))
sitk.WriteImage(prd_itk, test_save_path + case + "_pred.nii.gz")
sitk.WriteImage(img_itk, test_save_path + case + "_img.nii.gz")
sitk.WriteImage(lab_itk, test_save_path + case + "_gt.nii.gz")
return first_metric, second_metric, third_metric
def Inference(FLAGS):
with open(FLAGS.root_path + '/test.list', 'r') as f:
image_list = f.readlines()
image_list = sorted([item.replace('\n', '').split(".")[0]
for item in image_list])
snapshot_path = "/content/model/"
test_save_path = "/content/model/{}_{}_labeled/{}_predictions/".format(
FLAGS.exp, FLAGS.labeled_num, FLAGS.model)
if os.path.exists(test_save_path):
shutil.rmtree(test_save_path)
os.makedirs(test_save_path)
net = net_factory(net_type=FLAGS.model, in_chns=1,
class_num=FLAGS.num_classes)
save_mode_path = os.path.join(
snapshot_path, '{}_best_model.pth'.format(FLAGS.model))
net.load_state_dict(torch.load(save_mode_path))
print("init weight from {}".format(save_mode_path))
net.eval()
first_total = 0.0
second_total = 0.0
third_total = 0.0
for case in tqdm(image_list):
first_metric, second_metric, third_metric = test_single_volume(
case, net, test_save_path, FLAGS)
first_total += np.asarray(first_metric)
second_total += np.asarray(second_metric)
third_total += np.asarray(third_metric)
avg_metric = [first_total / len(image_list), second_total /
len(image_list), third_total / len(image_list)]
return avg_metric
if __name__ == '__main__':
FLAGS = parser.parse_args()
metric = Inference(FLAGS)
print(metric)
print((metric[0]+metric[1]+metric[2])/3)