-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
344 lines (320 loc) · 16.7 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import tensorflow as tf
import numpy as np
import os
from PIL import Image
import time
IMAGE_SIZE = 300
IMAGE_DEEP = 3
BATCH_SIZE = 100
CAPACITY = 2000 + 4 * BATCH_SIZE
REGULARAZTION_RATE = 0.001
LEARNING_RATE = 0.0001
KEEP_PROB = 0.5
CLASS_NUM = 5
OUTPUTNUM = 1
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
class cnn(object):
def __init__(self, LEARNING_RATE, REGULARAZTION_RATE, IMAGE_SIZE, IMAGE_DEEP, BATCH_SIZE, CAPACITY, CLASS_NUM, KEEP_PROB, OUTPUTNUM):
self.learning_rate = LEARNING_RATE
self.regularaztion_rate = REGULARAZTION_RATE
self.image_size = IMAGE_SIZE
self.image_deep = IMAGE_DEEP
self.batch_size = BATCH_SIZE
self.capacity = CAPACITY
self.class_num = CLASS_NUM
self.keep_prob = KEEP_PROB
self.outputnum = OUTPUTNUM
def rename_image(self, filename):
n = 0
oldfiles = os.listdir(filename)
newfiles = '\\'.join(filename.split('\\')[:-1])
fileid = filename.split('\\')[-1].split('_')[0]
for i in oldfiles:
os.renames(filename + '\\' + i, newfiles + '\\' + str(fileid) + '_' + str(n) + '.jpg')
n += 1
# def get_file_1(self, filepath):
# list_char = [chr(i) for i in range(97, 123)]
# dict_char = dict(enumerate(list_char))
# reversed_char = dict(zip(dict_char.values(), dict_char.keys()))
# pic_list = []
# pic_label = []
# init_label = [0 for i in range(self.class_num)]
# filename = os.listdir(filepath)
# for i in filename:
# pic_list.append(os.path.join(filepath, i))
# for j in i.split('.')[0]:
# tmp = init_label[:]
# tmp[reversed_char[j]] = 1
# pic_label.append(tmp)
# np_pic = np.array(pic_list)
# np_label = np.reshape(np.concatenate(np.array(pic_label, np.float32)), [-1, self.class_num * self.outputnum])
# return np_pic, np_label
def get_file(self, filepath):
pic_list = []
pic_label = []
init_label = [0 for i in range(self.class_num)]
filename = os.listdir(filepath)
for i in filename:
pic_list.append(os.path.join(filepath, i))
real_label = init_label[:]
real_label[int(i.split('_')[0])] = 1
pic_label.append(real_label)
return pic_list, pic_label
def get_batch(self, image, label):
input_queue = tf.train.slice_input_producer([image, label])
label = input_queue[1]
image_contents = tf.read_file(input_queue[0])
image = tf.image.decode_jpeg(image_contents, channels=3)
image = tf.image.resize_images(image, [self.image_size, self.image_size], method=1)
image = tf.cast(image, tf.float32) / 255.
pic_batch, label_batch = tf.train.shuffle_batch([image, label], batch_size=self.batch_size, num_threads=4, capacity=self.capacity, min_after_dequeue=2 * self.batch_size)
label_batch = tf.reshape(label_batch, [-1, self.class_num * self.outputnum])
return pic_batch, label_batch
def conv_net(self, name, inputdata, w_shape, strides_shape, padding):
with tf.variable_scope(name):
weight_name = name + '_weight'
biases_name = name + '_biases'
conve_name = name + '_conve'
bias_name = name + '_bias'
actived_name = name + '_actived'
weight_name = tf.get_variable('weights', w_shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
biases_name = tf.get_variable('biases', w_shape[-1], initializer=tf.constant_initializer(0.1))
conve_name = tf.nn.conv2d(inputdata, weight_name, strides=strides_shape, padding=padding)
bias_name = tf.nn.bias_add(conve_name, biases_name)
actived_name = tf.nn.relu(bias_name)
return actived_name
def max_pool(self, name, inputdata, kszie, strides, padding):
with tf.variable_scope(name):
pool_name = name + '_pool'
pool_name = tf.nn.max_pool(inputdata, ksize=kszie, strides=strides, padding=padding)
return pool_name
def avg_pool(self, name, inputdata, kszie, strides, padding):
with tf.variable_scope(name):
pool_name = name + '_pool'
pool_name = tf.nn.avg_pool(inputdata, ksize=kszie, strides=strides, padding=padding)
return pool_name
def norm_net(self, name, inputdata, lsize=4):
with tf.variable_scope(name):
norm = tf.nn.lrn(inputdata, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
return norm
def fc_net(self, name, inputdata, w_shape, regularizer=None):
with tf.variable_scope(name):
weight_name = name + '_weight'
biases_name = name + '_biases'
conve_name = name + '_conve'
mean_name = name + '_mean'
stddev_name = name + '_stddev'
weight_name = tf.get_variable('weights', w_shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer is not None:
tf.add_to_collection('losses', regularizer(weight_name))
biases_name = tf.get_variable('biases', w_shape[-1], initializer=tf.constant_initializer(0.1))
conve_name = tf.matmul(inputdata, weight_name) + biases_name
tf.summary.histogram(name + '_weight', weight_name)
mean_name = tf.reduce_mean(weight_name)
tf.summary.scalar(name + '_mean', mean_name)
stddev_name = tf.sqrt(tf.reduce_mean(tf.square(weight_name - mean_name)))
tf.summary.scalar(name + '_stddev', stddev_name)
return conve_name
def relu_net(self, inputdata):
return tf.nn.relu(inputdata)
def drop_net(self, inputdata, keep_prob=None):
if keep_prob is not None:
return tf.nn.dropout(inputdata, keep_prob=keep_prob)
else:
return tf.nn.dropout(inputdata, keep_prob=self.keep_prob)
def inference(self, image, keep_prob=None, regularizer=None):
actived_conv1 = self.conv_net('conv1', image, [11, 11, 3, 64], [1, 4, 4, 1], 'SAME')
pool1 = self.max_pool('pool1', actived_conv1, [1, 3, 3, 1], [1, 2, 2, 1], 'SAME')
actived_conv2 = self.conv_net('conv2', pool1, [5, 5, 64, 192], [1, 1, 1, 1], 'SAME')
pool2 = self.max_pool('pool2', actived_conv2, [1, 3, 3, 1], [1, 2, 2, 1], 'SAME')
actived_conv3 = self.conv_net('conv3', pool2, [3, 3, 192, 384], [1, 1, 1, 1], 'SAME')
actived_conv4 = self.conv_net('conv4', actived_conv3, [3, 3, 384, 256], [1, 1, 1, 1], 'SAME')
pool3 = self.max_pool('pool3', actived_conv4, [1, 3, 3, 1], [1, 2, 2, 1], 'SAME')
actived_conv5 = self.conv_net('conv5', pool3, [3, 3, 256, 256], [1, 1, 1, 1], 'SAME')
pool4 = self.max_pool('pool4', actived_conv5, [1, 2, 2, 1], [1, 2, 2, 1], 'SAME')
pool_shape = pool4.get_shape().as_list()
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
reshaped = tf.reshape(pool4, [pool_shape[0], nodes])
reshaped_drop = self.drop_net(reshaped, keep_prob)
fc1 = self.fc_net('fc1', reshaped_drop, [nodes, 1000], regularizer)
fc1_relu = self.relu_net(fc1)
fc1_drop = self.drop_net(fc1_relu, keep_prob)
fc2 = self.fc_net('fc2', fc1_drop, [1000, self.class_num * self.outputnum], regularizer)
return fc2
def losses(self, logits, labels):
with tf.variable_scope('loss') as scope:
logits = tf.reshape(logits, [-1, self.class_num])
labels = tf.reshape(labels, [-1, self.class_num])
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=labels)
ses_loss = tf.reduce_mean(cross_entropy)
tf.add_to_collection('losses', ses_loss)
loss = tf.add_n(tf.get_collection('losses'))
tf.summary.scalar(scope.name + '/loss', loss)
return loss
def trainning(self, loss):
with tf.name_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(self, logits, labels):
with tf.variable_scope('accuracy') as scope:
logits = tf.reshape(logits, [-1, self.class_num])
labels = tf.reshape(labels, [-1, self.class_num])
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
return accuracy
def run_training(self, train_dir, logs_train_dir):
with tf.Graph().as_default():
train, train_label = self.get_file(train_dir)
print('the sum of the training pictures is: %d' % len(train))
train_batch, train_label_batch = self.get_batch(train, train_label)
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
train_logits = self.inference(train_batch, keep_prob=self.keep_prob, regularizer=regularizer)
train_loss = self.losses(train_logits, train_label_batch)
train_op = self.trainning(train_loss)
train_acc = self.evaluation(train_logits, train_label_batch)
image_op = tf.summary.image('input', train_batch, self.batch_size)
summary_op = tf.summary.merge_all()
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8
sess = tf.Session(config=config)
train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
step = 0
print('start training......')
while True:
if coord.should_stop():
break
step += 1
start_time = time.time()
# aaa, bbb = sess.run([train_batch, train_label_batch])
# bbb = bbb.reshape(-1, 4, 26)
# print(aaa[2].shape)
# plt.imshow(aaa[2])
# plt.show()
# print(bbb[2].argmax(1))
# break
_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])
duration = time.time() - start_time
if step % 100 == 0:
print('Step %d, train loss = %.5f, train acc = %.5f, train time = %.5f' % (step, tra_loss, tra_acc, duration))
# print('Step %d, train loss = %.5f, train time = %.5f' % (step, tra_loss, duration))
summary_str = sess.run(summary_op)
train_writer.add_summary(summary_str, step)
if step % 500 == 0:
checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)
except tf.errors.OutOfRangeError:
print('Done training -- epoch limit reached')
finally:
coord.request_stop()
coord.join(threads)
sess.close()
def check_train(self, test_dir, logs_dir):
filesname = os.listdir(test_dir)
image_arry = []
image_label = []
n = 5
a = 0
test_count = [0 for i in range(n)]
real_count = [0 for i in range(n)]
each_count = [0 for i in range(n)]
init_label = [0 for i in range(n)]
# list_char = [chr(i) for i in range(97, 123)]
# dict_char = dict(enumerate(list_char))
# reversed_char = dict(zip(dict_char.values(), dict_char.keys()))
# count = 0
# init_label = [0 for i in range(self.class_num)]
print('the sum of the test pictures is: %d' % len(filesname))
for i in filesname:
image = Image.open(os.path.join(test_dir, i))
# image_L = image.convert('RGBA')
image_L = image.resize([self.image_size, self.image_size])
image_L = np.array(image_L)
image_arry.append(image_L)
# for j in i.split('.')[0]:
# tmp = init_label[:]
# tmp[reversed_char[j]] = 1
# image_label.append(tmp)
# np_label = np.reshape(np.concatenate(np.array(image_label, np.float32)), [-1, self.outputnum, self.class_num])
real_label = init_label[:]
real_label[int(i.split('_')[0])] = 1
real_count[int(i.split('_')[0])] += 1
image_label.append(real_label)
np_label = np.array(image_label, dtype=np.float32)
with tf.Graph().as_default():
X = tf.placeholder(tf.float32, shape=[1, self.image_size, self.image_size, self.image_deep])
logit = self.inference(X, keep_prob=1)
logit = tf.nn.softmax(logit)
saver = tf.train.Saver()
with tf.Session() as sess:
# print('Reading checkpoints...')
ckpt = tf.train.get_checkpoint_state(logs_dir)
if ckpt and ckpt.model_checkpoint_path:
# print(ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('.')[-1].split('-')[-1]
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print('No checkpoint file found')
for i in range(len(image_arry)):
image = np.reshape(image_arry[i], [1, self.image_size, self.image_size, self.image_deep])
prediction = sess.run(logit, feed_dict={X: image})
# outputdata = np.reshape(prediction, [self.outputnum, self.class_num])
# test_label = outputdata.argmax(1).tolist()
# real_label = np_label[i].argmax(1).tolist()
# if real_label == test_label:
# count += 1
# else:
# print('real_label:', real_label, 'test_label:', test_label)
# acc = float(count) / float(len(image_arry))
# print('acc is %0.5f' % acc)
test_label = np.argmax(prediction)
real_label = np.argmax(np_label[i])
test_count[test_label] += 1
if real_label == test_label:
a += 1
each_count[real_label] += 1
else:
print(test_label, real_label, prediction, filesname[i])
acc = float(a) / float(len(image_arry))
print('acc is %0.5f' % acc)
print('the number of each prediction category is %s' % test_count)
print('the number of each real category is %s' % real_count)
print('the number of accurate prediction category is %s' % each_count)
def application(self, app_dir, logs_dir):
filesname = os.listdir(app_dir)
image_arry = []
typename = {0: 'Sunflower', 1: 'Dandelion', 2: 'Daisies', 3: 'Rose', 4: 'Tulips'}
# print('the sum of the test pictures is: %d' % len(filesname))
for i in filesname:
image = Image.open(os.path.join(app_dir, i))
image_L = image.resize([self.image_size, self.image_size])
image_L = np.array(image_L)
image_arry.append(image_L)
with tf.Graph().as_default():
X = tf.placeholder(tf.float32, shape=[1, self.image_size, self.image_size, self.image_deep])
logit = self.inference(X, keep_prob=1)
logit = tf.nn.softmax(logit)
saver = tf.train.Saver()
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(logs_dir)
if ckpt and ckpt.model_checkpoint_path:
global_step = ckpt.model_checkpoint_path.split('.')[-1].split('-')[-1]
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print('No checkpoint file found')
for i in range(len(image_arry)):
image = np.reshape(image_arry[i], [1, self.image_size, self.image_size, self.image_deep])
prediction = sess.run(logit, feed_dict={X: image})
print(filesname[i], 'is', typename[int(prediction.argmax())])
if __name__ == '__main__':
lobj = cnn(LEARNING_RATE, REGULARAZTION_RATE, IMAGE_SIZE, IMAGE_DEEP, BATCH_SIZE, CAPACITY, CLASS_NUM, KEEP_PROB, OUTPUTNUM)
# lobj.run_training('train', '/data/log/')
# lobj.check_train('test', '/data/log/')
lobj.application('application', '/data/log/')