forked from mtreml/squeezenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
executable file
·142 lines (113 loc) · 4.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
import os
import numpy as np
import tensorflow as tf
import cityscapes_input
import architecture
FLAGS = tf.app.flags.FLAGS
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
NUM_CLASSES = cityscapes_input.NUM_CLASSES
tf.app.flags.DEFINE_string('eval_dir', '/some/path/treml/monitoring/tensorflows/2017-01-07-SqueezeNet/eval',
"""Directory where to write event logs.""")
tf.app.flags.DEFINE_string('phase', 'val',
"""Either 'val', 'test' or 'train'.""")
tf.app.flags.DEFINE_string('checkpoint_dir', '/some/path/treml/monitoring/tensorflows/2017-01-07-SqueezeNet/2017-01-07_15-45-33',
"""Directory where to read model checkpoints.""")
tf.app.flags.DEFINE_integer('eval_interval_secs', 60,
"""How often to run the eval.""")
tf.app.flags.DEFINE_integer('num_examples', 10,
"""Number of examples to run.""")
tf.app.flags.DEFINE_boolean('run_once', True,
"""Whether to run eval only once.""")
def eval_once(saver, summary_writer, top_k_op, summary_op):
"""Run Eval once.
Args:
saver: Saver.
summary_writer: Summary writer.
top_k_op: Top K op.
summary_op: Summary op.
"""
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
# Restores from checkpoint
saver.restore(sess, ckpt.model_checkpoint_path)
# Assuming model_checkpoint_path looks something like:
# extract global_step from it.
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
else:
print('No checkpoint file found')
return
# Start the queue runners.
coord = tf.train.Coordinator()
try:
print('try')
threads = []
for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
start=True))
num_iter = int(math.ceil(FLAGS.num_examples))
true_count = 0 # Counts the number of correct predictions.
total_sample_count = num_iter
step = 0
while step < num_iter and not coord.should_stop():
print('step is: ', step)
predictions = sess.run([top_k_op])
true_count += np.sum(predictions)
step += 1
# Compute precision @ 1.
precision = true_count / total_sample_count
print('%s: precision @ 1 = %.3f' % (datetime.now(), precision))
summary = tf.Summary()
summary.ParseFromString(sess.run(summary_op))
summary.value.add(tag='Precision @ 1', simple_value=precision)
summary_writer.add_summary(summary, global_step)
except Exception as e: # pylint: disable=broad-except
print('except')
coord.request_stop(e)
coord.request_stop()
coord.join(threads, stop_grace_period_secs=10)
def evaluate():
"""Eval for a number of steps."""
with tf.Graph().as_default() as g:
# Get images and labels.
images, labels = architecture.inputs(phase=FLAGS.phase)
# Build a Graph that computes the logits predictions from the
# inference model.
logits = architecture.inference(images, train=False)
# adapt logits
logits = tf.reshape(logits, (-1, NUM_CLASSES))
epsilon = tf.constant(value=1e-4)
logits = logits + epsilon
# predict
predictions = tf.argmax(logits, dimension=1)
labels = tf.cast(tf.reshape(labels, shape=predictions.get_shape()), dtype=tf.int64)
# compute accuracy
correct_predictions = tf.equal(predictions, labels)
accuracy = tf.reduce_mean(tf.cast(correct_predictions, dtype=tf.float32))
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
architecture.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.merge_all_summaries()
summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, g)
tf.initialize_all_variables()
while True:
eval_once(saver, summary_writer, accuracy, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
def main(argv=None): # pylint: disable=unused-argument
if tf.gfile.Exists(FLAGS.eval_dir):
tf.gfile.DeleteRecursively(FLAGS.eval_dir)
tf.gfile.MakeDirs(FLAGS.eval_dir)
evaluate()
if __name__ == '__main__':
tf.app.run()